
NLP Applied To Portuguese Consumer Law

Applying NLP Techniques to the Search of Portuguese Consumer Law

Nuno Cerqueira Pablo Cordeiro

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Pedro Alexandre Simões dos Santos
Prof. João Miguel de Sousa de Assis Dias

Examination Committee

Chairperson: Prof. Diogo Manuel Ribeiro Ferreira
Supervisor: Prof. Pedro Alexandre Simões dos Santos

Member of the Committee: Prof. Bruno Emanuel Da Graça Martins

June 2022

Acknowledgments

To say that this thesis was a challenge for me is not an understatement. I feel like I have grown a lot

since I started it, not only from the time it took me to finish it, but also from the wonderful opportunities

that I had before me during this adventure. And to that, I owe it, first and foremost, to my supervisors

Prof. João Dias and Prof. Pedro Santos. They have supported me through a rough patch without ever

making me feel like I owed them anything, but I do. They also gave me the opportunity of joining a

project that a masters student can only dream of, giving me more of a purpose when the writing would

not go so well and keeping me engaged in the work that I had to develop in order to complete the thesis.

The knowledge and expertise that they passed on to me is something I do not underestimate — and, for

that, I will forever be in debt. Obrigado, professores.

I would also like to thank my family for helping me, for taking care of me when even I could not, and for

giving me all the tools necessary to navigate this path, when most of them did not have the opportunity

when they were my age. I know the privilege I carry and I owe it to you. Obrigado pais, avós e mano.

In addition, I would also like to thank everyone that was involved in the development of this project

and its thesis, starting with the team at INCM — Carlos Gonçalves, Bruno Patrão, Ricardo Matias, Diogo

Proença and a special thanks to Helder Santos, without whom this project would not be possible. Thank

you, Ana Catarina Fonseca and Ana Filipa Claro, from DGC, for your contribution and thank you Maria

Duarte for providing me with resources that were very useful in the development process.

Last but not least, to all my friends that helped in keeping me sane with their company and friendship,

you have all been irreplaceable throughout these years.

I cannot promise that I will never forget how important every single one of you was during this stage,

because we all do, at some point in our lives — but know that you were. This thesis is the product of my

work, but also yours.

Thank you.

Abstract

As citizens, each and every one of us should know their rights and obligations, especially in a day to day

context such as when we pose as a consumer. As of yet, the Portuguese Consumer law is not accessible

to the point of being able to insert a sentence written in natural language in a search engine and getting

a clear response without first having to scroll through multiple search results. This type of barrier is also

what keeps the common citizen from consulting the legislation, especially given the amount of jargon

used in legal documents and their structure, which can be difficult to navigate.

The issue lies in the way that the Diário da República Eletrónico (DRE) search engine works. Right

now, it performs a word matching algorithm but the problem appears when the system cannot find the

answer to a query when it has juridical jargon that the user does not understand and does not use to

search.

To solve this issue, we introduce Legal Semantic Search Engine (LeSSE), an information retrieval

system that uses a hybrid approach of semantic and syntactic information retrieval techniques, based

on the Quin system created by Samarinas et al. LeSSE uses a traditional information retrieval algorithm

(BM25) along with BERT to derive and use the semantic value of a query to search the corpus. By using

the semantics of the query and the corpus, we are able to create a connection between synonymous

words and expressions with different spelling. For this purpose the law corpus had to be fragmented into

small segments of text, using a text parsing algorithm that accounted for the structure of each document.

We explored the use of different training data for the language models used in the system, before arriving

at a configuration that performed the best, with an accuracy of 89.0% on the legislation corpus where we

had annotated queries for training, and 78.1% on another corpus with little annotated queries. LeSSE is

iii

currently in production, and is also available to the public for testing.

Keywords

Information Retrieval; Natural Language Processing; Artificial Intelligence; Neural Network; Legal Do-

main; Portuguese Consumer Law; BERT

iv

Resumo

Enquanto cidadãos, todos nós temos o dever de estar informados acerca dos nossos direitos e obrigações,

especialmente num contexto do quotidiano, em que passamos por consumidores. Neste momento, a

lei portuguesa do consumidor não é acessı́vel ao ponto de ser possı́vel fazer uma pesquisa num motor

de busca a partir de uma frase em lı́ngua natural e saber imediatamente a resposta sem ter primeiro

de percorrer vários resultados de pesquisa. Este tipo de barreira é o que previne o cidadão comum

de consultar a legislação que lhe diz respeito, especialmente tendo em conta a quantidade de jargão

usada em documentos legais e a sua estrutura, por vezes difı́cil de navegar.

O problema está no motor de busca do Diário da República Eletrónico (DRE). Neste momento,

é usado um algoritmo de pesquisa de termos literais, mas o problema surge quando o sistema não

consegue encontrar a resposta a uma query, porque a resposta inclui jargão jurı́dico que o utilizador

não entende e não usa para fazer a pesquisa.

Por forma a resolver este problema, introduzimos o Legal Semantic Search Engine (LeSSE), um

sistema de recuperação de informação que usa uma abordagem hı́brida de técnicas de recuperação

de informação semântica e sintática, baseado no sistema Quin criado por Samarinas et al. O LeSSE

usa um algoritmo de recuperação de informação tradicional (BM25) em conjunto com o BERT de forma

a auxiliar na pesquisa tradicional ao derivar e usar o valor semântico de uma query para fazer uma

procura no corpus. Ao usar a semântica de uma query e do corpus, conseguimos criar uma ligação

entre palavras e expressões sinónimas com diferentes grafias. Para atingir este propósito, o corpus de

legislação teve que ser fragmentado em pequenos segmentos de texto, usando um algoritmo de parsing

de texto que teve em conta a estrutura de cada documento. Explorámos o uso de diferentes conjuntos

de dados de treino para os modelos de linguagem usados no sistema, até chegar a uma configuração

que atingiu o melhor resultado, com uma precisão (accuracy) de 89% no corpus de legislação em que

tı́nhamos anotações para treino, e 78.1% num outro corpus com poucas anotações de treino. O LeSSE

v

está neste momento em produção, e está disponı́vel ao público para efeitos de teste.

Palavras Chave

Recuperação de Informação; Processamento de Lı́ngua Natural; Inteligência Artificial; Rede Neuronal;

Domı́nio Legal; Lei do Consumidor em Portugal; BERT

vi

Contents

1 Introduction 1

1.1 Current Challenge . 3

1.2 Procedure . 4

1.3 Thesis Structure . 4

2 Background 7

2.1 Semantic Textual Similarity . 9

2.1.1 Word and Sentence Embeddings . 9

2.1.2 Similarity Metric for Semantic Textual Similarity . 10

2.2 Neural Networks for Natural Language Processing . 11

2.2.1 Recurrent Neural Network . 11

2.2.2 Long Short-Term Memory . 13

2.2.3 Transformer . 15

2.2.3.A Pre-training, Transfer Learning and Fine-tuning 18

2.2.3.B BERT . 18

2.2.3.C BERTimbau . 20

2.3 Inverse Cloze Task . 21

3 Related Work on Information Retrieval 23

3.1 Information Retrieval . 25

3.1.1 Traditional Approaches to Legal Information Retrieval 25

3.2 Natural Language Processing Approaches to Semantic Textual Similarity 27

3.2.1 Universal Sentence Encoder . 27

3.2.2 InferSent . 28

3.2.3 Language Issue . 28

3.2.4 Sentence-BERT . 29

3.3 Quin . 31

vii

4 A Legal Corpus for the Portuguese Consumer Law 33

4.1 Defining a Common Structure for Legal Acts and Legal Segments 35

4.2 Manual Annotations . 38

4.3 Automatic Annotations . 39

4.3.1 Inverse Cloze Task (ICT) Dataset . 39

4.3.2 Semantic Pairs Dataset . 40

5 Legal Semantic Search Engine 43

5.1 System Overview . 45

5.2 Semantic Pipeline . 47

5.2.1 Semantic Pre-Processing . 47

5.2.2 Semantic Encoder . 48

5.2.3 Semantic Search Index . 49

5.3 Syntactic Pipeline . 49

5.3.1 Syntactic Pre-Processing . 49

5.3.2 Syntactic Search . 51

5.4 Semantic Classifier . 51

5.5 Results Selection and Presentation . 51

5.6 Model Training . 52

5.6.1 Hyperparameter Optimization Techniques . 52

5.6.2 Model Optimization and Training . 54

6 System Evaluation 57

6.1 Performance of Legal Semantic Search Engine (LeSSE) in the Portuguese Consumer Law 59

6.2 Performance of LeSSE in the Absence of Manual Annotations 60

6.3 Performance of LeSSE in a Different Law Domain . 62

7 Conclusion 63

7.1 Future Improvements . 65

7.1.1 Language Model Size . 66

7.1.2 Number of Manual Annotations . 66

viii

List of Figures

2.1 Simple Word Embeddings Example.1 . 9

2.2 RNN cell.2 . 11

2.3 LSTM Structure.3 . 13

2.4 LSTM cell.4 . 13

2.5 The Transformer Model Architecture. [1] . 16

2.6 Scaled Dot-Product Attention (on the left) and Multi-Head Attention (on the right), decom-

posed. [1] . 17

2.7 Unidirectional and Bidirectional training, on the left and right, respectively. [2] 19

2.8 The three components of word embeddings - Token, Segment and Position. [2] 20

2.9 Annotated categories of the 100 most frequent websites in Brazilian Web as Corpus

(BrWaC). [3] . 21

3.1 Spearman rank correlation c between the cosine similarity of sentence representations

and the gold labels (label that classifies two sentences on the basis of their similarity) for

various Semantic Textual Similarity (STS) tasks. Performance is reported by convention

as c x 100. STS12-STS16: SemEval 2012-2016, STSb: STSbenchmark, SICK-R: SICK

relatedness dataset. [4] . 29

3.2 SBERT architecture for STS tasks. [4] . 30

3.3 Evaluation on the STS benchmark test set. SBERT was fine-tuned on the STSb dataset,

SBERT-NLI was pretrained on the NLI datasets, then fine-tuned on the STSb dataset. [4] 31

3.4 Diagram of the architecture of Quin. [5] . 32

4.1 Act Structure. 36

4.2 Act Structure Example. 36

5.1 LeSSE . 46

5.2 Search Results Example . 52

5.3 Bayesian Optimization . 53

ix

5.4 Grid Search . 53

5.5 Population Based Training (PBT) . 54

6.1 Google vs. LeSSE . 60

x

List of Tables

2.1 Question-Answer (QA) Pairs Example. 22

4.1 Act Division Triggers . 37

5.1 Example of Training Hyperparameters for Manual Annotations of the Consumer Law Corpus 55

6.1 LeSSE Accuracy in the Portuguese Consumer Law . 59

6.2 Testing Accuracy with Automatic Annotation Datasets . 61

6.3 LeSSE Accuracy in the Retirement Law . 62

xi

xii

Acronyms

AI Artificial Intelligence

API Application Programming Interface

BERT Bidirectional Encoder Representations from Transformers

BiLSTM Bidirectional Long Short-Term Memory

BM25 Best Matching 25

BPTT Back-Propagation Through Time

BrWaC Brazilian Web as Corpus

CNN Convolutional Neural Network

DAN Deep Averaging Network

DNN Deep Neural Network

DGC Direção-Geral do Consumidor

DRE Diário da República Eletrónico

Faiss Facebook AI Similarity Search

FNN Feed-Forward Neural Network

GPU Graphics Processing Unit

ICT Inverse Cloze Task

INCM Imprensa Nacional-Casa da Moeda

INESC-ID Instituto de Engenharia de Sistemas e Computadores: Investigação e Desenvolvimento

em Lisboa

LeSSE Legal Semantic Search Engine

LIR Legal Information Retrieval

LSTM Long Short-Term Memory

NER Named Entity Recognition

xiii

NL Natural Language

NLP Natural Language Processing

NLTK Natural Language Toolkit

PBT Population Based Training

QA Question-Answer

RNN Recurrent Neural Network

SNLI Stanford Natural Language Inference

STS Semantic Textual Similarity

TPU Tensor Processing Unit

USE Universal Sentence Encoder

WMD Word Mover’s Distance

xiv

1
Introduction

Contents

1.1 Current Challenge . 3

1.2 Procedure . 4

1.3 Thesis Structure . 4

1

2

The Official Portuguese Gazette (Diário da República) is tasked with the publication of all laws and

norms of the Portuguese Republic. Currently, it is exclusively published electronically at Diário da

República Eletrónico (DRE)1 by the Imprensa Nacional-Casa da Moeda (INCM) as a public service

that offers universal and free access to all of its content and functionalities. The DRE is composed of a

vast set of publications, from which procedures, norms, applications and rules are derived. This online

resource currently provides access to all of the Portuguese legislation, as well as services that allow

citizens to find the norms and procedures that are inherent to their search.

A portion of these legislative articles belong to the Portuguese Consumer Law, also available at

Direção-Geral do Consumidor (DGC)2. The articles in this section of the Gazette span across topics

such as Insurances, Commercial Activities, Public Services, Health and Safety, Retirement, to name a

few. It is, therefore, important that this type of information is easily accessible to all of the citizens given

that there are rights they have and obligations they must abide.

1.1 Current Challenge

The current search methodology used in the search engine created for the Portuguese Consumer Law

allows a search for legislation that is based on literal keyword search (articles are chosen according to

a comparison between the literal keywords in their text and the ones that the user inputs as a search

query) which poses some limitations on the accuracy of the results.

Citizens normally use Natural Language (NL) to introduce a search query. The problem is that

sometimes the legislative articles contain language that — despite being technically NL — is not easily

understood by regular users, due to its formality. The legislative documents often contain legislative

jargon, which are technical terms of juridical nature that are not easily understood, and that can cause

citizens to reach for professional help in issues that may not require it.

An apparent solution for this type of problem would involve manual classification of legal articles such

as the creation of relevant keywords for each article. That way, the search query could be compared to

those keywords in order to evaluate their similarity. However, the problem behind manual classification

is that it would need to be done by legal professionals, and this process could take a lot of time — which

obviously poses as a great obstacle in the classification of those texts and the subsequent extraction

of meaning and knowledge from them — thus, slowing down the process of including them in a search

result, something that is simply not possible given the urgency of including newly passed laws in the

gazette.

There are currently more than a million and a half digital juridical documents and, every month, more

than a thousand new ones are published. Only a small portion of these are considered to be a part of

1https://dre.pt/dre/home
2https://www.consumidor.gov.pt/

3

Consumer Law but the intention of applying a new search methodology to the Portuguese Consumer

Law is then to expand it to the whole Portuguese gazette.

Another way to look at the problem would be to search for a connection between legal text (in formal

language) and the user’s query (in informal language), which would exclude the need of text classification

and the inconveniences that accompany it. From this, we are left with an important question that we aim

to answer in this thesis:

How to create an information retrieval system capable of searching legislative documents using only

natural language?

1.2 Procedure

With this challenge in mind, our main goal was to engineer a system capable of searching through the

Portuguese Consumer Law by providing a query in NL and returning a set of results, in the form of

segments of text, with their corresponding information such as the title of the act and its article.

The first step would be organizing the law corpus in such a way that each document is fragmented

into small segments of text, so that each of these can serve as a possible answer to a query. If more than

one segment is needed to answer a query, then they could be combined into the search result. Once

fragmented, the segments would need to be identified with the information pertaining to their location

on an act, i.e., each segment needs to be accompanied by the divisions in which it is inserted, such as

Chapter II, Section VIII, for instance.

This task could be viewed as a Legal Information Retrieval (LIR) problem, but more specifically as

a Semantic Textual Similarity (STS) problem, since we are trying to find the semantic relation between

queries and segments of the corpus. For this task, we receive a query in natural language and then we

compare it to the existing segments. Those that best resemble the query in semantic value become the

set of relevant results.

The system developed in this thesis was the product of a partnership between Instituto de Engenharia

de Sistemas e Computadores: Investigação e Desenvolvimento em Lisboa (INESC-ID) and INCM in the

context of the project Descodificar a Legislação.

1.3 Thesis Structure

The remainder of this thesis is organized in 6 chapters, starting with Chapter 2, in which we present

all of the concepts that were essential during the development of our system, and which are in the

understanding of our proposal. Next, we have Chapter 3, which will introduce current approaches to

problems similar to ours and state-of-the-art concepts that were used or compared to the system we

4

implemented. In Chapter 4 we describe how the law documents were fragmented into smaller segments

and we also describe how the annotations dataset came to be. Chapter 5 presents the architecture of

the developed system and goes into finer detail in each step of the pipeline. In Chapter 6, we analyse

the performance of the system according to different factors and we compare it to a baseline information

retrieval system. Finally, in Chapter 7, we have the conclusion in which we provide a brief summary of

the work conducted, the milestones achieved and the improvements that could be made, in the future,

to achieve a better performance of the system.

5

6

2
Background

Contents

2.1 Semantic Textual Similarity . 9

2.2 Neural Networks for Natural Language Processing . 11

2.3 Inverse Cloze Task . 21

7

8

In this chapter, we will go through the essential concepts that will be needed in order to fully under-

stand the related work and state-of-the-art to be described in the next chapter and the solution to our

problem.

2.1 Semantic Textual Similarity

STS is a concept that deals with determining how similar two pieces of text are, on a semantic level —

that is, if they mean the same or not. STS techniques are widely used nowadays in information retrieval,

machine translation and sentiment analysis, among others. There are ways of representing the semantic

value of a word or an expression and, in this section, we will present them, as well as a metric used to

compare text based on their semantics.

2.1.1 Word and Sentence Embeddings

Given our problem of STS, it is especially relevant to address Word Embedding and Sentence Embed-

ding, which are two very relevant techniques involved in the representation of words and sentences,

respectively, in a semantic way.

Word Embedding is the process of transforming a written word into a feature vector. It can also be

seen as the mapping of a word to a point in multi-dimensional space. These points can then be used to

calculate their distance, which would be their similarity. Word embeddings are able to capture not only

the syntax of the word but also its semantic value, given the context in which it is used. Word embedding

is available in algorithms such as word2vec [6] and GloVe [7]. A simple example is present in Figure 2.1.

Figure 2.1: Simple Word Embeddings Example.1

1From https://corpling.hypotheses.org/495

9

Sentence embedding is, much like word embedding, the mapping of a written sentence to a numeric

vector. There are multiple ways of embedding a sentence. The first that were implemented were the

ones re-purposing word embedding methods, like the ones mentioned above.

Despite the fact that those techniques were not based to embed whole sentences, there are ways

in which a sentence embedding can be deduced from the individual embeddings of the words in a

sentence. The most common way is to average the word embeddings of all the words in a sentence

— average pooling. When both sentences that we wish to semantically compare are embedded, we

calculate a similarity metric to evaluate how semantically similar they are.

There are, however, other ways of improving this baseline approach. Some include averaging the

word embeddings in a weighted form, according to their frequency in a document, for instance. Some

exclude the embeddings of stop-words. And then there are other techniques that have shown better re-

sults — Word Mover’s Distance (WMD), for instance, goes beyond the usual comparison and allows the

semantic comparison of sentences that have no words in common, and yet, share the same meaning.

It works by calculating a distance between two documents (or sentences acting as documents), that in

other words is their degree of similarity. This distance is the minimum cumulative distance between the

word embeddings of both documents. What also sets WMD apart from the previous algorithms is the

fact that it accounts for not only the semantics of the sentences that are compared but also their syntax.

These great steps in the STS field all seem to fall into a crucial dilemma in the task of sentence

embedding — they do not take into account the word order in a sentence. In this chapter we will explore

an encoder, Bidirectional Encoder Representations from Transformers (BERT), that has state-of-the-

art word embedding mechanisms and in Chapter 3, we will explore some other encoders, including

sentence encoders, that have excelled at creating semantically meaningful embeddings.

2.1.2 Similarity Metric for Semantic Textual Similarity

In order to infer how semantically similar two pieces of text are, we need to define a metric by that we can

use to quantify the similarity. One of the most commonly used metrics for determining similarity between

embeddings is the Cosine Similarity. It is therefore able to serve as a semantic similarity metric, given

that textual embeddings are able to encode the semantic value of its text.

Cosine Similarity is a metric that is used to compare two vectors on the basis of the cosine of their

angular distance. It is derived from the formula of the euclidean inner product between two vectors A

and B, described in Equation (2.1).

A.B = ||A|| · ||B|| · cos θ (2.1)

When we resolve by isolating cos θ, we have the cosine similarity, defined in Equation (2.2).

10

CosineSimilarity = cos θ =
A.B

||A|| · ||B||
=

∑n
i=1Ai ·Bi√∑n

i=1A
2
i ·

√∑n
i=1B

2
i

(2.2)

2.2 Neural Networks for Natural Language Processing

Neural Networks have shown to be an indispensable tool in various Natural Language Processing (NLP)

tasks, such as the one highlighted in this thesis, but these have also evolved pretty quickly, and this

evolution has followed an iteration progress, where each new and more sophisticated network builds

upon the older ones. In this section, we intend to start with the most simple, older network types that

build on top of each other to create the ultimate result that is what we used in our system — BERT.

2.2.1 Recurrent Neural Network

A Recurrent Neural Network (RNN) is a type of neural network that excels at processing sequences of

data with its connective structure that allows information to be passed from the previous input to the

current. RNNs can also be seen as multiple Feed-Forward Neural Network (FNN)s that share weights

and flow information from one network to the other, when in truth they are simply one network in which

the cells (nodes) loop over themselves for every input element that it receives.

These networks are commonly used for tasks that require pattern recognition in which elements in a

sequence depend on each other’s value.

Figure 2.2: RNN cell.2

RNNs use a hidden state vector to pass information from the previous state to the next. The hidden

state vector, ht, depends on the previous hidden state, ht−1, and the current input, xt, and therefore

holds information about the previous state (see Equation (2.3)).

2From http://dprogrammer.org/rnn-lstm-gru

11

ht = f(Whh · ht−1 +Whx · xt + bh) (2.3)

where f is a non-linear activation function that is usually a hyperbolic tangent function, tanh, or a sigmoid

function, σ.

The output vector (prediction), ot, depends on the hidden state vector, ht (see Equation (2.4)).

ot = g(Woh · ht + bo) (2.4)

where g is another activation function, normally softmax.

The weight matrices, W , are initialised randomly and adjusted using the error from the loss function.

The added b in each formula are biases.

In the training of a RNN, the weights and biases are adjusted through a process called Back-

Propagation Through Time (BPTT) that is heavily based on the standard back-propagation method, in

which the weight matrices are updated according to the loss function — the error between the predicted

and actual observations.

In a summarized version of the algorithm, for each time-step we calculate the error. Those errors

are then accumulated through the time-steps and a gradient of the loss function is calculated for each

weight matrix (a partial derivative of the loss function with respect to the weight matrix). The gradient of

each weight matrix is used to update the values of the matrix, according to a learning rate. When the

error between prediction and observation is satisfied, we stop.

However useful these networks may be for some tasks, they pose an issue for others in which the

values in a sequence have long-term dependencies (values far apart in a sequence depend on each

other). This issues arises when the back-propagated errors start to diminish along the layers (tend to

zero) or increase in an exponential way, which inhibits the weights from updating — Vanishing/Exploding

Gradient Problem. This, in turn, renders the training useless and long-term dependencies get ignored

or over-estimated in the process of prediction. In next word prediction, a word is predicted based on all

of the previous words in a sentence, e.g., in the sentence, Yesterday, I walked my dog, when trying to

predict the word dog, a network would have to consider all of the words that came before it. Nonetheless,

the closest words tend to be more relevant for the prediction but that is not always the case. In some

cases, words that are far apart in a sentence have a high dependency, such as the words dog and bones

in the sentence My dog is very smart and he likes bones. These long-term dependencies are not easily

learnt by RNNs.

This example was demonstrative only and does not represent the real challenge of long-term depen-

dencies. In a real setup, long-term dependencies are between thousands of elements in a sequence.

12

2.2.2 Long Short-Term Memory

Long Short-Term Memory (LSTM) [8] is a special type of a RNN that employs a gating mechanism when

flowing information between time-steps. Apart from the hidden state vector present in RNN cells, the

LSTM cell is characterized by having an additional cell state vector that, at each time-step, can be read,

written or reset — depending on the gate. (see Figure 2.3).

Figure 2.3: LSTM Structure.3

LSTMs overcome the Vanishing/Exploding Gradient Problem by allowing the errors to back-propagate

unchanged, resulting in the update of long-term weights that need to exist in order to learn long-term

dependencies.

LSTM networks work pretty similarly to standard RNNs with the exception of the structure of the

cells. In a LSTM cell, there are three major gates — the forget gate, the input gate and the output gate

(See Figure 2.4).

The gates are merely vectors, like the others in the structure, but they are called gates given that

they control the amount of information that flows between cells at different time-steps.

Figure 2.4: LSTM cell.4

The forget gate, ft, is defined as:

3From http://colah.github.io/posts/2015-08-Understanding-LSTMs/
4From http://dprogrammer.org/rnn-lstm-gru

13

ft = σ(Wf · [ht−1, xt] + bf) (2.5)

The input gate, it, is given by:

it = σ(Wi · [ht−1, xt] + bi) (2.6)

The new cell state candidate vector, C̃t, is given by:

C̃t = tanh(WC · [ht−1, xt] + bC) (2.7)

With these values, we are then able to calculate the cell state, Ct.

Ct = ft · Ct−1 + it · C̃t (2.8)

The forget gate, ft, defines how much of the previous cell state, Ct−1, goes into the current one, and

the input gate, it, determines how much the cell state candidate, C̃t, should contribute to the cell state.

Ultimately, we have the output gate, ot which is responsible for controlling what parts of the cell state

get to be transmitted to the next cell.

ot = σ(Wo · [ht−1, xt] + bo) (2.9)

This output vector is then used to calculate the hidden state vector, ht, which is transmitted to the

next cell.

ht = ot · tanh(Ct) (2.10)

Wx and bx with x ∈ {i, f, o, C}, are the weight matrix and bias vector of the input, forget, output and

cell state vectors, respectively. The weights and biases will get adjusted during training. ht−1 is the

hidden state of the previous cell and xt is the input vector of the current cell.

All of the three major gates use a sigmoid function, σ, to push the values into the range of 0 to 1, in

order to control what gets read, written and reset (0 nothing, 1 everything). The same reason applies

to the use of the hyperbolic tangent function, tanh, in the computation of the hidden state vector and

the cell state candidate vector, but in this case it is so that the values range between -1 and 1. The

distribution of the gradients prevents the vanishing gradient problem.

The dimensions of the vectors are as follows:

it, ht, bx, C̃t, ft, Ct, ot ∈ Rh

xt ∈ Rd

14

Wx ∈ Rh×d

where h is the number of input features (the size of the input vector xt) and d is the number of hidden

units (size of the vector ht).

2.2.3 Transformer

The main problem with LSTM networks is that they train very slowly — even slower than standard RNNs,

given their complexity. The problem stems from the very long gradient paths in the BPTT process — the

gradients have to be propagated all the way from the end to the start of the network and, when the input

sequences are very long, this translates into a very deep network that is very slow to train.

Another problem is that the input of an LSTM network is serialized, i.e., the state of an LSTM cell

depends on the state of the previous one, so the previous input has to be introduced first.

Considering that current computer processors thrive on parallel computation, the training process of

an LSTM cannot make use of it given the restraint that was mentioned before. To overcome this necessity

of training models on sequential data that make use of parallel computation, a team of researchers at

Google came up with Transformer.

The Transformer [1] is a neural network architecture that relies on an Encoder-Decoder [9] structure

that can process the input sequence in parallel, i.e., the input elements are processed at the same time.

It can be structured into several components that are displayed in Figure 2.5.

The first component is the Input Embedder. This component takes in a sequence of words (query)

and converts those words into scalar vectors. These vectors, however, do not have any context em-

bedded into them. And, for that reason, an additional encoding component, Positional Encoder, is in

place to add to the word embedding a context based encoding according to the position of the word

in a sentence. After this process, the resulting word embedding with context is passed on to another

component, the Encoder. This component has two layers — a Multi-Head Attention Layer and a Feed

Forward Layer.

The Multi-Head Attention Layer (see Figure 2.6) uses an attention mechanism to assign different

weights of importance to certain words in a sentence. To do this, it takes in:

• Q ∈ Rw×dk , a matrix that contains the vector representations of the words in the query

• K ∈ Rw×dk , a matrix that has the keys of the words in the query

• V ∈ Rw×dv , a matrix that holds the values of the query words.

where dk is the dimension of each query vector, dv is the dimension of each value vector, w is the number

of words in the query and the attention scores of the query are calculated by the following function.

15

Figure 2.5: The Transformer Model Architecture. [1]

Attention(Q,K, V) = softmax(
Q ·KT

√
dk

) · V (2.11)

where KT is the matrix K transposed. The softmax function is used to obtain a distribution of average

weights ranging from 0 to 1 where the low scores get lower and the high scores get higher. This helps

the model to increase the confidence in the words that have a higher score.

Then we concatenate all of the attention scores of all the words in the sequence and we multiply that

by a weight matrix, WO, to linearize the result.

MultiHead(Q,K, V) = Concat(head1, ..., headh) ·WO (2.12)

where:

headi = Attention(Q ·WQ
i ,K ·W

K
i , V ·WV

i) (2.13)

WQ
i ,W

K
i ∈ Rdmodel×dk , WV

i ∈ Rdmodel×dv and WO ∈ Rhdv×ddmodel are all linear projection weight matri-

ces.

16

In the paper [1], h is the number of parallel attention layer (heads) and it is 8, dmodel is the dimension

of the output (512) and dk = dv = dmodel

h = 64 .

Figure 2.6: Scaled Dot-Product Attention (on the left) and Multi-Head Attention (on the right), decomposed. [1]

The reason why multiple attention vectors are used to determine the relevance of a word is because

each word tends to overvalue itself among other words in the sequence, and so, to prevent that, those

contributions get averaged out.

Each attention vector then gets sent to the Feed Forward Network Layer, where essentially they

transform each vector so that they can be received by the next encoder/decoder. Since the attention

layers are independent from each other, the vectors are able to transverse the Feed Forward Network in

parallel, which means it is possible to pass a sequence of words through the network, all at once. This

allows for parallel computation which, in turn, improves the speed of the model.

The output embedding and position encoding is identical to the input ones, which leaves a final

component, the Decoder. This block is composed by three layers — a Masked Multi-Head Attention

layer, a Multi-Head Attention layer and a Feed Forward layer. The last two are similar to their homologous

in the Encoder Block, with a slight difference in the input of the Multi-Head Attention Layer, which will be

discuss ahead. The real difference, however, is in the first layer, the Masked Multi-Head Attention. This

layer is characterized by the use of a masking technique that prevents the existence of a bias towards

a specific use-case of a sequence, i.e., we want to learn a possible output for a sequence of words, but

not generalize that output for all similar sequences. This is done by resetting to zero all of the relation

weights between words that are ahead of the prediction. By doing this, essentially it is creating a mask

for the words that will not be used to predict a word in the sequence, by assigning them a null weight (no

relevance).

After this step, the output (a masked attention vector) goes into another Multi-Head Attention Layer,

similar to the one in the Encoder, and is used as the vector of values, whereas the query and keys are

provided by the Encoder.

With every layer, an additional normalization step is executed in the following manner.

17

LayerNorm(x+ SubLayer(x)) (2.14)

where SubLayer is the sub-layer function, such as the MultiHead, addressed above.

2.2.3.A Pre-training, Transfer Learning and Fine-tuning

In order to achieve the best results in a task using a neural network, one must first train the neural

network. This process can be done in multiple ways, but essentially it requires using a set of data that

is passed to the neural network and, according to the training strategy, the weights in the layers of the

network are adjusted to make it so that the network can perform better on the task that it is being trained

on and with data similar or equal to the training data.

That said, there are essentially two types of training methods. The first, Pre-training, is the most

basic type of training and it consists in training the network on a (typically) large dataset, starting with

randomly initialized weights in all of the layers. This type of training usually takes the longest to execute

and it requires a large learning rate to be able to make the most changes to a network that has never

been trained.

In addition to pre-training, it is also possible to train a network that has already been pre-trained. This

process is called Transfer Learning and it is simpler than the first since it involves freezing some layers

of a pre-trained network and training the remaining with data adjusted to a different task than the one

from the original dataset. In this type of training the learning rate used has to be smaller than the one

used in the pre-training stage, since it could lead to a significant impact on the weights that are already

adjusted if the learning rate selected is too high.

Fine-tuning is a type of Transfer Learning in which only the weights in the last layer of the network

are changed, and this is usually a very fast procedure compared to pre-training, given that the amount

of data used is usually much smaller and so is the learning rate.

2.2.3.B BERT

Many systems have been engineered for the sole purpose of retrieving information from unstructured

data. This retrieval might be applied to various types of information, including legal. BERT [2], is a

language representation model that was built upon the transformer architecture and developed to help

with such tasks.

BERT is different from other language representation models in the sense that it uses a pre-training

technique that relies on bidirectional modeling, as opposed to a unidirectional modeling (left to right or

right to left). Until BERT appeared, language representation models would usually train this way since

the existence of a direction was what allowed the system to generate a probability distribution of the

18

words.

When we’re given the task of understanding textual data, such as a sentence, we subconsciously

understand each word by looking at its surrounding words. That is the ultimate way that we have to

know in which context it is being applied. This type of understanding is bidirectional. And so, given that

language understanding is a bidirectional task for humans, it only makes sense that it should too for

computers. However, it is not as straight-forward to put in motion.

The problem that emerges when applying bidirectional unsupervised training is the trivial prediction

of words. In a unidirectional training, words can only see their left or right context. It is the existence of

direction in the training that allows for an unbiased prediction of each next word. When that does not

exist, as is the case in a bidirectional training, the prediction of each word — based on both its left and

right words — becomes biased, and words are then able to predict themselves. (See Figure 2.7).

Figure 2.7: Unidirectional and Bidirectional training, on the left and right, respectively. [2]

BERT manages to treat this issue by using a masking technique. In a normal pre-training cycle,

BERT (which relies on unsupervised training) goes through all of the unlabeled text from which it is

learning from and, for 15% of the tokens in the text, it applies a mask (by replacing those tokens with a

[MASK] token). Only these masked tokens are to be predicted.

By masking a small percentage of tokens, the inevitability of predicting a word that was there to see

all along during training disappears. Since the prediction is only done on masked tokens, and not on

the entire text input, it creates a mismatch between the pre-training and the fine-tuning, where there is

no masking due to it being supervised training. To solve this issue, the masking strategy is not only

focused on replacing tokens with a [MASK] token — this is done on 80% of the masked tokens (80% of

15% = 12% of the entire text). For another 10% of the tokens (1.5% of the entire text) they get replaced

with another random token in the text, and in the remaining 10% (1.5%) it just leaves the original token

unchanged. The purpose of this last percentage is to create a bias towards the actual observed word

so that the system can actually learn the correct prediction.

The masking is applied to 15% of the tokens since this was the number that achieved a better

performance. The problem with a small percentage of masked tokens is that the learning curve gets

19

much bigger. On the other hand, a greater percentage of masked tokens results in a lack of context,

making it harder to predict a word by its surroundings.

Another task for which BERT also pre-trains is the prediction of next sentences. This is especially im-

portant to determine the relation between two sentences. It becomes relevant in tasks such as Question

Answering and Natural Language Inferencing.

In order to represent the words that the system receives as input, BERT creates word embeddings

based on three components. The first component is the token embedding. This is the value that is

assigned to the token, in a fixed vocabulary that BERT uses. The second, Segment Embedding, is

simply an embedding of the segment to which the word belongs. These are not to be confused with the

default sentence embeddings that BERT creates in the embedding for the [CLS] token that appears at

the start of every sentence and collects information about the word tokens in the sentence by means of

average pooling. Finally, we have the position embedding, which is precisely what its name states, an

embedding of the word position in the input.

And so, the input embeddings are the sum of the token embeddings, the segment embeddings and

the position embeddings. Figure 2.8 describes an example of the embedding of a sentence.

Figure 2.8: The three components of word embeddings - Token, Segment and Position. [2]

These embeddings are then fed to the neural network by the encoder, and its outcome is then

received by the decoder.

2.2.3.C BERTimbau

BERTimbau [10] is a BERT model pretrained specifically for the Portuguese language, using a Brazilian

Portuguese corpus, Brazilian Web as Corpus (BrWaC) [3], which is composed of 3.53 million documents

extracted from pages in websites written in Brazilian Portuguese.

The corpus contains a highly diverse content, ensured by the amount of annotated categories from

various sites (see Figure 2.9). The quality of the corpus comes from the pre-processing methodology

20

used such as identification of URLs, removal of duplicated content and annotation of syntactic informa-

tion.

Figure 2.9: Annotated categories of the 100 most frequent websites in BrWaC. [3]

2.3 Inverse Cloze Task

Originally proposed by [11], Inverse Cloze Task (ICT) is a technique based on the standard Cloze

task [12]. In the standard technique, the goal is to predict a masked piece of text out of the avail-

able context in a sentence. In the inverse approach, the goal is precisely to predict the context out of a

sentence. This is done by training a model on a set of Question-Answer (QA) pairs that are generated

from a large corpus, in which the question in each pair is a sentence in the corpus and the answer is the

sentence that comes before or after, when available. So, as an example, we have the following excerpt:

(...) Zebras have four gaits: walk, trot, canter and gallop. They are generally slower than horses, but

their great stamina helps them outrun predators. When chased, a zebra will zigzag from side to side.

(...)

In Table 2.1 we can see the the pairs that are generated from this excerpt following an ICT training

technique.

This training technique is especially helpful for training language models that will be used in the

task of information retrieval since it can create semantic associations between sentences that would

otherwise be ignored as semantic pairs by the generic pretraining done to the model.

21

Table 2.1: QA Pairs Example.

Question Answer
Zebras have four gaits: walk, trot, canter and gallop. They are generally slower than horses, but their great

stamina helps them outrun predators.
They are generally slower than horses, but their great
stamina helps them outrun predators.

Zebras have four gaits: walk, trot, canter and gallop.

They are generally slower than horses, but their great
stamina helps them outrun predators.

When chased, a zebra will zigzag from side to side

When chased, a zebra will zigzag from side to side They are generally slower than horses, but their great
stamina helps them outrun predators.

22

3
Related Work on Information Retrieval

Contents

3.1 Information Retrieval . 25

3.2 Natural Language Processing Approaches to Semantic Textual Similarity 27

3.3 Quin . 31

23

24

In this chapter, we expose some of the related work on the topic of information retrieval, as well as

state-of-the-art approaches.

3.1 Information Retrieval

Information Retrieval is the procedure in which a system retrieves information from a collection of re-

sources when given a requirement (usually an expression or a query). This task can be applied to

numerous domains and is an important aspect of our day-to-day lives.

3.1.1 Traditional Approaches to Legal Information Retrieval

Legal Information Retrieval (LIR) is a specific type of Information Retrieval and, therefore, requires dif-

ferent approaches to the way the text is searched. Usually, legal documents are written in a very formal

language but search queries written by regular citizens tend to be in a more informal language. This

type of imbalance creates a mismatch of vocabulary that damages search if not attended to. The current

LIR systems are mostly based on two techniques — Boolean Search and Manual Classification.

In Boolean Search, documents are scanned through in order to find an existing match in the search

terms, according to the logical conditions imposed. A user may specify terms such as specific words or

judgments by a specific court. These terms are combined with logic symbols such as AND, OR, NOT

in order to provide a search on the content of the texts. They are widely implemented by services such

as Westlaw1, LexisNexis2, and FindLaw3, which are American legislation search services. This kind of

search performs poorly when literal term matching is done for query processing, due to synonymy and

ambivalence of words.

Manual classification is a technique that is used to overcome the limitations of Boolean searches.

This technique relies on classifying case laws and statutes into computer structures. This structuring

is done according to the way a legal professional would organize them and it also attempts to link the

texts based on their subject or area. It allows the texts to be classified and it makes it easier to extract

knowledge for a search. The reason why this technique may be considered unsustainable is because

there is an increasing amount of legal texts and not enough legal professionals or time to classify them.

When we look back from LIR into the broad spectrum of Information Retrieval, other options appear.

These options do not have a focus on the legal subject but rather on generic text documents. In spite

of the particularities of legal documents, such as the connections between different documents, for in-

stance, we can also look at legal articles as text documents — therefore expanding the field of research.

When we do this, we are met with several other studied alternatives.
1https://legal.thomsonreuters.com/en/products/westlaw
2https://www.lexisnexis.com/en-us/gateway.page
3https://www.findlaw.com/

25

The Okapi Best Matching 25 (BM25) [13], or rather just BM25 is one of those alternatives and it is

widely used as an information retrieval ranking algorithm. This algorithm is still used today by search

engines to determine the relevance of entries to the searched query, along with TF-IDF (Term frequency

- inverse document frequency), on which it relies, as we will see.

BM25 is a bag-of-words retrieval algorithm, which is defined by the representation of text as a set

(or bag) of words while disregarding their syntax or context. The most popularized version of BM25,

introduced in TREC 1994 (a conference on text retrieval) is the following:

Given a query Q, containing keywords q1, q2, ..., qn, the BM25 score of a document D is defined as:

score(D,Q) =

n∑
i=1

IDF (qi) ·
f(qi, D) · (k1 + 1)

f(qi, D) + k1 · (1− b+ b · |D|avgdl)
(3.1)

where f(qi, D) is the term frequency of qi in the document D, k1 and b are optimization parameters,

|D| is the length of the document D in words and avgdl is the average document length in the set of

documents. IDF (qi) is the inverse document frequency of the term qi. It is used as a weight function

and it is defined as:

IDF (qi) = log
N − n(qi) + 0.5

n(qi) + 0.5
(3.2)

where N is the cardinality of the set of documents and n(qi) is the number of documents that carry the

term qi.

In a paper [14] released for the COLIEE workshop in 2019, this algorithm was used to retrieve legal

information based on query search. In the third task (first task of statute law) of the competition, they

used the BM25 function to derive the score of each document based on a searched query. It delivered

promising results but was still not able to be set apart from other information retrieval techniques — their

results were not largely separated.

Representation models are one of those alternative information retrieval techniques and their goal

is to process information in the documents and queries in order to represent them in a different way.

There are three main groups of representation models. The set-theoretic models are the ones that aim

to represent documents and queries as sets of words. In this group we find the standard boolean model,

which was mentioned previously in the context of legal information retrieval. It is one of the most simple

and inexpensive representation models available.

Then we have the algebraic group of models, that represent documents and queries as embeddings

with the objective of defining the similarity between documents and queries based on their vectors.

Finally, we have the probabilistic models where the similarities between documents and queries are

given by probability of text usage and relevance. In this category we can fit language models, which are

a very specific case that has been expanded given their importance in NLP tasks. We will approach

26

systems of this kind in the next subsection.

3.2 Natural Language Processing Approaches to Semantic Tex-

tual Similarity

NLP is the subfield of Artificial Intelligence (AI) that is focused on the computation of human language.

This includes their representation, analysis, processing and generation, in a digital form. This subfield

has revealed to be quite relevant in the creation of new ways of interpreting and representing legal text in

a way that normal citizens with no introduction to fundamental law concepts can understand and query

certain laws by using natural language understanding. For this complex task, there are a few factors that

weigh in the virtuous operation of a NL-based law query system.

The order of the words in a sentence is a very important factor in its semantic value. As we saw in the

last section, the first few sentence encoders that were released - some that are essentially repurposed

word encoders - have fallen into the same predicament. The lack of word order encoding.

Two sentences with the exact same words, but different ordering, can have equally different mean-

ings. And the context defined by that order can influence the meaning of a specific word. For instance,

when an individual says, I went for a run, we assume that the word run has a meaning related to the

sport. When another individual says, You have to run this on your computer, the meaning is completely

different from the other sentence. Not only is it being used as a verb, the meaning of it is no longer

related to the sport, but rather to a computational task. And, even in a case where the word run was

used as a verb connected to the sport, it could still be differentiated from the computational meaning

due to the associated words, for most of the cases.

3.2.1 Universal Sentence Encoder

Google’s Universal Sentence Encoder (USE) [15] was one of the language models that were created to

mitigate the issue stated above, able to consider the order between words. There are two USE options

available to use, each based on a different model.

Deep Averaging Network (DAN): The first, DAN, averages together the input embeddings for words

and bi-grams and then passes them through a feed-forward Deep Neural Network (DNN) to produce

the sentence embeddings. By considering bi-grams, it allows the representation of pairs of words in

a sentence embedding.

Transformer: The second one, Transformer, constructs sentence embeddings using the encoding

sub-graph of the Transformer architecture. It uses attention to compute context aware representa-

tions of words in a sentence. These representations are then converted to a fixed length sentence

27

encoding vector.

DAN vs Transformer: This last model is much more complex than the first one and more resource

demanding. It does have a slightly higher accuracy but the DAN model achieves a compute time that

is linear to the length of the input sequence. This encoder is also available in a version pre-trained

for Portuguese (Multilingual) [16] in the Transformer variant and in a reduced accuracy version that

uses a Convolutional Neural Network (CNN).

3.2.2 InferSent

Another very popular sentence encoder model is InferSent [17]. This model has proven to be better at

certain key aspects of sentence representations, when compared to USE. More specifically in terms of

distinguishing between a sentence and its negation. USE, however, performs better when estimating

the STS between embeddings and also seems to excel at detecting relevant word order differences.

3.2.3 Language Issue

There are plenty of state-of-the-art models that have been benchmarked in competitions but the major-

ity of them, including some of the best performers, have only been pre-trained in English or Chinese

datasets, as is the case with ERNIE 2.0 [18] and XLNet [19], with this last one only being pretrained for

the English language. Since pre-training a language model of this calibre has computational and time

limitations, it is simply unfeasible to pre-train these language models for Portuguese data.

Some other alternative models that are pre-trained for the Portuguese language include Multilingual

BERT (M-BERT), which is essentially BERT (introduced in Chapter 2) pre-trained for multiple languages.

BERT has an STS score slightly lower than the ones mentioned before, but still quite relevant. However,

this difference in the STS score is due to the fact that BERT excels at generating word embeddings but

not so much at their sentence counterparts.

The reason why this difference exists is because BERT is not trained for semantic sentence similarity,

as opposed to Google’s USE or InferSent models, so its sentence embeddings are not semantically

meaningful to use in a scenario where we evaluate and compare the semantic value of two sentences.

However, there are ways to bypass this constraint. The most popular one, as we have seen in the

previous section, is the embeddings averaging strategy. It consists of averaging the embeddings of

the words in a sentence. Another alternative would be to use the token embedding of the special token

[CLS] as the sentence embedding. This token appears at the start of a sentence and collects information

about the whole sentence due to the bidirectional exchanges in the neural network.

28

3.2.4 Sentence-BERT

A team of researchers from Ubiquitous Knowledge Processing Lab (UKP) developed a system, Sentence-

BERT [4], heavily based on the BERT model that has averaged promising results in all of the SemEval4

editions from 2012 to 2016, especially when compared to BERT’s averaged embeddings or CLS em-

beddings — and even when compared to USE and Infersent. (See Figure 3.1).

Figure 3.1: Spearman rank correlation c between the cosine similarity of sentence representations and the gold
labels (label that classifies two sentences on the basis of their similarity) for various STS tasks. Perfor-
mance is reported by convention as c x 100. STS12-STS16: SemEval 2012-2016, STSb: STSbench-
mark, SICK-R: SICK relatedness dataset. [4]

Sentence-BERT, or SBERT, is essentially a modified pre-trained BERT model that uses siamese and

triplet network structures in order to extract sentence embeddings that are semantically relevant.

The system trains by encoding two sentences in the siamese way, i.e., running two identical networks

adjusted with the same parameters on two different inputs — in this case two BERT networks receive

each a sentence to encode. These encodings are then passed through a pooling process that the

team behind SBERT found to have a better performance with a mean agreggation strategy, as opposed

to a max or [CLS] vector strategy. Like we have seen previously, it consists of averaging the token

embeddings of a sentence. That way, all of the token embeddings that BERT outputs are joined into

one vector, consequently joining a layer of the size of the sequence of tokens into one output. Finally,

both sentence encodings are then compared by calculating their cosine similarity. The whole process is

depicted in the diagram in Figure 3.2.

The training is done using a combination of two datasets — the Stanford Natural Language Inference

(SNLI) [20] and the Multi-Genre NLI [21]. The SNLI has a body of 570,000 sentence pairs annotated with

the labels contradiction, entailment and neutral. MultiNLI contains 430,000 sentence pairs and covers a

range of genres of spoken and written text.

When developing SBERT, the UKP team compared the performance of different metrics in the evalu-

ation of each sentence pair similarity. They experimented with the most used one, cosine-similarity, but

also tried to use negative Manhattan and Euclidean distances. After the experiments, they concluded

4an international workshop on semantic evaluation (http://alt.qcri.org/semeval2020/)

29

Figure 3.2: SBERT architecture for STS tasks. [4]

that the metric used, between the three, wasn’t relevant given that the results were roughly the same.

Therefore, they continued to use cosine-similarity as the metric of STS.

They also considered using a regression function that maps sentence embeddings to similarity

scores but refrained from doing so given the resource exhaustion that would occur.

When comparing the performance of SBERT, in STS tasks, two different strategies of training were

used — Unsupervised and Supervised Learning. For the unsupervised approach, SBERT only retained

the knowledge that it had gained with the pre-training from BERT (based off of Wikipedia) and NLI data.

To evaluate this system, three datasets were used — STS tasks 2012-20165, the STS benchmark [22]

and the SICK-Relatedness [23] datasets. These three datasets include labels for sentence pairs that

define, on a scale of 0 to 5, how semantically related they are. SBERT was able to outperform both

InferSent and USE on most of the datasets, with the exception of the SICK-R dataset, in which USE

gained an edge due to its training on a variety of diverse datasets that seemed to better fit the data in

SICK-R. The results can be seen in Figure 3.1.

For the supervised learning, SBERT was fine-tuned on the training set of the STS benchmark dataset

using cosine similarity as the metric for sentence embedding similarity alongside a mean squared error

loss function to assess the quality of each prediction. This dataset has proven to be very popular in

the evaluation of supervised datasets given the quality of the sentence pairs and its dimensions — it is

composed of 8628 sentence pairs that are divided into three categories (captions, news and forums).

Apart from the fine-tuning done only on STSb, another experiment was done by training on the NLI

5http://alt.qcri.org/semeval2020/

30

dataset first and then the STSb. This latter option resulted in a considerable improvement. In the paper

it was also found that using RoBERTa, a BERT based language model, (instead of BERT) did not make

much difference in the final results. These findings are displayed in Figure 3.3.

Figure 3.3: Evaluation on the STS benchmark test set. SBERT was fine-tuned on the STSb dataset, SBERT-NLI
was pretrained on the NLI datasets, then fine-tuned on the STSb dataset. [4]

3.3 Quin

Quin [5] is a fact-checking system that was developed during the outbreak of COVID-19 with the purpose

of providing the public with an automated fact-checking system capable of examining the veracity of

claims surrounding the topic of COVID-19. It was later repurposed as a general fact-checking system,

capable of verifying open-domain claims.

Quin works in three stages (see Figure 3.4) — in the first, the query goes through a BM25 sparse

retriever, from which the top scoring 500 results are extracted. In the second stage, parallel to the

first, the query is encoded using QR-BERT, a BERT model specifically designed to work in the context

of question answering, trained with a large dataset constructed using NLI! (NLI!). After the query is

encoded, it goes through a Facebook AI Similarity Search (Faiss) index to search for the passages

that best resemble the query in semantic value, using a cosine similarity function to compare between

31

embeddings, and the best 500 results are extracted from this stage.

The union set of the results from stages 1 and 2 are then used in the third and final stage, where

these go through a relevance classifier, that is essentially a BERT model fine-tuned on a large dataset of

query-passage pairs that applies a linear transformation to the embedding of the [CLS] token in order to

retrieve a score from each query-result pair in the union set. These results are then reordered according

to the score attributed by the relevance classifier, and this is the final order used to display the results in

the search engine.

Figure 3.4: Diagram of the architecture of Quin. [5]

This system is very relevant to our problem, given that the motivation is somewhat analogous to ours,

albeit in a different context, and it combines traditional information retrieval with a NLP-based approach

that is capable of assisting a traditional keyword search with a semantic component, hence the reason

we decided to base our system off of this approach.

32

4
A Legal Corpus for the Portuguese

Consumer Law

Contents

4.1 Defining a Common Structure for Legal Acts and Legal Segments 35

4.2 Manual Annotations . 38

4.3 Automatic Annotations . 39

33

34

In order to apply NL models based on DNN models such as the transformer-based ones, one impor-

tant requirement is the existence of a dataset that can be used to train and validate the model.

So, one of the first challenges that was addressed in this thesis was the creation of a Legal Corpus

for the Portuguese Consumer Law. In this chapter, we will describe the several steps that were needed

to create this corpus.

First, we will describe how the initial set of documents were analyzed and how we decided to structure

the corpus in terms of what is the minimal amount of information. Then, we will also address the creation

of a separate corpus, made up of annotations that were created automatically and manually, and that

were crucial in the training and evaluation of the system that we developed. The process in which these

annotations were created will also be detailed.

4.1 Defining a Common Structure for Legal Acts and Legal Seg-

ments

The set of documents selected for this law corpus was selected with the help of DGC’s team who

provided us with a document that has all the law documents generally necessary to answer questions

on the topics regarding consumer law.

Those documents are extracted directly from the DRE database that contains all of the law docu-

ments existing in the Official Portuguese Gazette (Diário da República, in Portuguese).

After analysing and performing a short study on the corpus of law documents, we were able to con-

clude that, in average, a law document contains dozens of articles, and most of them surpass the char-

acter limit in the language model (BERT) that we are using in Legal Semantic Search Engine (LeSSE)

(our search system, which will be addressed in further detail in Chapter 5). This language model can

only take as input segments of 512 tokens1, the corpus needed to be divided into smaller segments to

accommodate for the segment size restriction. Therefore, each act (law document) was divided into sev-

eral segments, which are generally paragraphs and each one of them has information about its location

in the document.

When writing a new act, lawmakers use a Legistics Guide2 which is used to write and structure an

act according to a convention. In this guide, the advisable structure for an act is the one in Figure 4.1.

An example of the aforementioned structure is present in Figure 4.2.

Inside an article exists a substructure composed of paragraph numbers, paragraph letters and para-

graph roman numbers, as well as normal paragraphs which are called segments. These are organized

1a BERT token is generally smaller than a word — a word can often be divided into several tokens
2The most recent guide available to the general public can be found at

https://www.parlamento.pt/ArquivoDocumentacao/Documents/AR Regras Legistica.pdf

35

Figure 4.1: Act Structure.

Figure 4.2: Act Structure Example.

36

according to their hierarchical order (i.e. segments are inside paragraph roman numbers, which go

inside paragraph letters and these go inside paragraph numbers3)

Since this structural information is necessary to locate an article, or a specific paragraph, it is also

included in each segment’s information. Therefore, each segment has the information relative to its act

name, act id (which is a non repetitive id used in the DRE database, from where the acts are extracted),

publishing date, ELI URL (a DRE.pt URL for the act, which is used to point to the full version of an act),

summary of the act (it gives a brief description of the topics covered by the act), annex, heading, chapter,

section, subsection, article, paragraph number, paragraph letter, paragraph roman number.

First, the extraction script checks if an act is out of force by using the Vigência attribute associated to

it. When it is, the act is ignored and is not added to the corpus. When it is not, the act id is used to extract

the act, in full, from the DRE database. After that, the script checks whether the act arrives fragmented

(already separated into articles, by law experts) or not. If it is fragmented, then the separation into

divisions is already done and, therefore, the only task that needs to be done is the segmentation of each

article, i.e. breaking each article into multiple segments, along with its divisions. In case the act is not

fragmented, it must first be separated into divisions, and then the text of each division gets segmented.

The process of segmenting the text of an act is very similar to a parsing task. The act is iterated line

by line, and each line is compared to a set of titles to determine whether the line begins a division in the

act (one of the mentioned above). In Table 4.1 we can find all of the possible regular expressions that

trigger the start of a division, along with examples of those expressions. The script also checks if a line

is part of the signature of the act (the ending of an act) and, in case it is, it discards those lines so that

they are not used in training and in the search. After all of the parsing is done on the act, the segments

are added to the corpus, stored in a file in text format.

Table 4.1: Act Division Triggers

Division Regular Expression Example
Annex ˆ(ANEXO—Anexo)(N.º \d+— [MDCLXVI]+)? ANEXO II
Heading ˆ(TÍTULO—Tı́tulo) [MDCLXVI]+ Tı́tulo VII
Chapter ˆ(CAPÍTULO—Capı́tulo) [MDCLXVI]+ CAPÍTULO I
Section ˆ(SECÇÃO—Secção) [MDCLXVI]+(-[A-Z])? Secção IV-A
Subsection ˆ(SUBSECÇÃO—Subsecção) [MDCLXVI]+ Subsecção XII
Article Artigo Artigo 2.º

The main difficulty in the development of the script was constructing all of the regular expressions

that caught every trigger expression for the start of each division. This was a crucial task, given that

without it, the structure of an act would be completely ruined.

As of writing this document, the Consumer Law corpus is composed by 237 different acts, and the

segmentation task resulted in a total of around 70,200 segments (roughly 296 segments per act, in

3Note: Some of these divisions could be omitted, such as paragraph letters and roman numbers, for instance.

37

average).

An additional corpus was added, in the context of the Retirement Law (Estatuto da Aposentação)

and the acts in that corpus were segmented in the same way. This corpus was added to see how well

the system was able to work with a different corpus, in a different context. Being a smaller corpus, with

only 2 acts, the segmentation resulted in 583 segments (around 291 segments per act, in average).

4.2 Manual Annotations

In order to evaluate the performance of the system and compare the results of the differently fine-tuned

systems, it was important to have a dataset of golden labels for QA pairs, manually annotated by experts

in Portuguese law.

The first step to construct this dataset was to put together a set of queries for annotation. We did

this by extracting search queries from the DRE search logs, which we had access given by INCM. The

search logs included the queries inserted into the DRE search engine by real users, as well as the name

of the act that the user accessed at the end of the search. Given the information in the search logs, we

proceeded to filter the search queries based on the act that the user accessed, with the help of the initial

consumer law corpus that we had, i.e., the name of each act in a search log was compared to the names

of the acts in the initial corpus. If the name of the act in the search log was included in the corpus, then

it meant that the query would probably be relevant to the consumer law domain. These queries were

then pre-processed in order to filter out any mistakes, or irrelevant terms.

The next step was annotating the collected queries and, for this task, we had the help of Helder San-

tos, a jurist at INCM, Ana Catarina Fonseca and Ana Filipa Claro, from DGC, whom we sent the set of

questions and, in return, we received the answers to those questions in the form of law annotations (ref-

erences to specific passages in the corpus). These annotations contain information about the location

of the passage in the corpus — this information refers to the name of the act and the divisions inside it

(annex, heading, chapter, etc). In the end of the annotation process, we received 321 annotated queries

pointing to a total of 175.544 segments of the corpus, which means that each query would point to 546

segments, in average. The queries-to-segments ratio is very low, and this is explained by the fact that,

for the most part, a query points to several segments (e.g. a query could be annotated with an article,

and that article could point to 10 segments of the corpus), and that explains why a single query could

point to over 500 segments.

An example of an annotation would be:

Query: portabilidade operador

Annotation: Decreto-Lei n.º 56/2010, Artigo 4.º

Since Artigo 4.º of Decreto-Lei n.º 56/2010 only contains one line, this annotation would generate

38

only one pair in the dataset:

Query: portabilidade operador

Segment: O perı́odo de fidelização não pode ter duração superior a 24 meses.

4.3 Automatic Annotations

Because the manually constructed annotation dataset was insufficient to cover all of the search subjects,

two additional datasets were created to ensure that the model was fine-tuned on data that covered all of

the topics in the corpus.

4.3.1 ICT Dataset

The ICT dataset was created using a technique with the same name mentioned in Chapter 2, but slightly

altered to account for the type of training that needed to be done. In the original article, the ICT dataset

was used to pre-train the model but, in this particular case, the dataset was only used to fine-tune the

model. Since the original purpose was to train the model from the start, the authors needed diversified

data to generalize better in the predictions, but in a fine-tuning task, the purpose is to adapt the model

to a particular task or dataset. In this case we are fine-tuning the model on a dataset where the answer

(in the QA pair) should always be a full segment, in order to assign every question to a line in the

corpus — as every answer to the automatically generated questions should be in the corpus. Whereas

in the original ICT technique the dataset was built by pairing each sentence in a line with the rest of the

sentences, for this dataset it was essential that the answer should not be the remaining sentences in the

line, but the whole line itself.

Another key difference between the original technique and this one, is that, because the lines of the

corpus are mostly sentences, they need to be separated into portions by dividing them using commas

(,) and semi-colons (;).

The line from the corpus:

É na sequência da mencionada disposição legal que se torna agora necessário estabelecer os req-

uisitos especı́ficos da instalação, classificação e funcionamento daqueles empreendimentos turı́sticos

para que, mediante o seu cumprimento, possam ser classificados numa das categorias previstas.

would give way to 4 QA pairs, where the questions would be:

É na sequência da mencionada disposição legal que se torna agora necessário estabelecer os

requisitos especı́ficos da instalação

classificação e funcionamento daqueles empreendimentos turı́sticos para que

mediante o seu cumprimento

possam ser classificados numa das categorias previstas.

39

And the answer to form a pair with each of these questions would be the original line. Using this

technique, we were able to generate 211.794 question-answer pairs.

4.3.2 Semantic Pairs Dataset

The other dataset was built by another masters student, as the main work of her thesis [24], and it

required creating a dataset of QA pairs, automatically generated from the corpus.

The system is composed of three models — each one of those models corresponds to a Nested

Named Entity Recognition (NER) task and is responsible for predicting a different set of labels (norms,

semantic roles and named-entities).

The model architecture is the same for the three models and is based on the Named Entity Recogni-

tion as Dependency Parsing [25] — it consists of a BERTimbau (Chapter 2) model used for generating

embeddings, followed by a Bidirectional Long Short-Term Memory (BiLSTM) to generate a contextu-

alized representation of each word. These are then fed to two separate FNN, one to generate the

representation of all the possible spans of text at the start of the entity, and the other to generate the

same but for the spans of text at the end of the entity. This improves the prediction accuracy since the

context at the start and end of the entity name are different. Lastly, the two representations go through a

classifier model to generate the scores for all possible spans that could constitute a named entity. These

are then ranked by their category score and after filtering according to some constraints, the final named

entities are used to generate and identify QA pairs.

The system goes through two stages. In the first stage, it predicts the norms in the lines of the corpus,

and then for those predicted norms, it predicts the remaining labels (semantic roles and mentioned

entities) involved. In the second stage, QA pairs are generated from those detected labels.

For the following segment:

1 - As pousadas devem cumprir os requisitos fixados no anexo i da presente portaria: a) Para a

atribuição da categoria de 4 estrelas, quando instaladas em edifı́cios classificados como de interesse

nacional ou de interesse público;

The model would detect this segment as an obligation (semantic role) and generate the following

questions from it:

Que deve As pousadas fazer quando instaladas em edifı́cios classificados como de interesse na-

cional ou de interesse público ?

Que deve As pousadas fazer ?

Quando deve As pousadas cumprir os requisitos fixados no anexo i da presente portaria ?

Quem deve cumprir os requisitos fixados no anexo i da presente portaria quando instaladas em

edifı́cios classificados como de interesse nacional ou de interesse público ?

Quem deve cumprir os requisitos fixados no anexo i da presente portaria ?

40

Each of these question would, in turn, be paired with the original segment as the answer. Following

this approach, we were able to generate 57.839 question-answer pairs.

41

42

5
Legal Semantic Search Engine

Contents

5.1 System Overview . 45

5.2 Semantic Pipeline . 47

5.3 Syntactic Pipeline . 49

5.4 Semantic Classifier . 51

5.5 Results Selection and Presentation . 51

5.6 Model Training . 52

43

44

The goal of this thesis is to introduce a system that merges a common document retrieval technique

with semantic search abilities on the Portuguese consumer law. In this chapter, we will start by looking

at LeSSE, a search engine we specifically created to answer questions on the topic of Portuguese

consumer law that uses state-of-the-art search techniques, and is based on Quin [5].

This system was developed for this thesis in the context of the project Descodificar a Legislação, a re-

search collaboration between INESC-ID and INCM. The goal of this project was to make the Consumer

Law more accessible and understandable by the Portuguese citizens. This was done by combining

popular document retrieval techniques with the recent advancement of Machine Learning and NLP to

provide semantic search capabilities to the search system.

This chapter starts with an overview description of the system, that will broadly explain the pipeline

step by step. Then, we will address each system component in a more detailed way, as well as the train-

ing process for the language model used in some of the components. Ultimately, we have a description

of how the results are selected, organized and presented to the user.

5.1 System Overview

Our system takes a hybrid approach, in which it combines a traditional (syntactic) information retrieval

algorithm with a semantic search. The syntactic search allows the users to search for literal terms,

such as names or titles included in the legislation, and the semantic search assists in case the answer

contains juridical jargon that the user did not use in the query. The semantic search is able to identify

synonymous words and expressions that the user may be interested in. A visual description of the

system architecture can be found in Figure 5.1.

First, the system starts by pre-processing all of the law documents (acts) before any search is to

be initiated. This will save time and resource exhaustion since all of the acts will be used in each

search, therefore avoiding repetitive computations, given that they are always stored in the database.

The search query will also undergo pre-processing, but since the queries will be inevitably different each

time a search is performed, it is done during search time.

The pre-processing is the same for the acts and the query with the exception of one step — the acts

go through text segmentation first, in which the text of each act is separated into segments, which are

pieces of text separated by line breaks, and each one of them contains information about its location in

the document (e.g. chapter 3, section 2, article 24) so that they can be later referenced in the results.

After that, both the segments and the query go through Semantic and Syntactic Pre-Processing

— two distinct text processing steps that are needed to prepare the segments and the query for the

Semantic Extraction and Syntactic Similarity, respectively. It is worth mentioning that the pre-processing

is done at different stages for the segments and the query. The segments are pre-processed when the

45

Figure 5.1: LeSSE

46

system is started and the query is pre-processed during runtime, right after it is inserted into the search

engine.

After the semantic pre-processing is complete, we move on to the semantic extraction, which is the

step in which the segments and the query are encoded into embeddings.

With the segment embeddings that were generated, a search index is created and stored locally in

the server that hosts the search service. This allows the similarity search to be more efficient, and given

the persistent nature of the corpus, the index won’t need to suffer changes as long as the corpus does

not change.

Additionally, before the system is up and running, the segments are used to create a structure that

holds each word present in the segments (every word in the corpus), that is used by the syntactic

similarity algorithm (BM25) to determine a syntactic similarity score for each pair of segment-query.

Once all of this is complete, the system is then ready to receive a query. In search time, the query

goes through the syntactic pre-processing and is then used to calculate a similarity score for each

segment. The 20 segments with the highest scores are selected. Consecutively, the query also goes

through the semantic pre-processing, before being converted into an embedding, that is afterwards

used to perform a search in the index that was created with the segments. The search index returns

the scores of semantic similarity between each segment and the query, based on the similarity of their

corresponding embeddings, and, at that point, the 50 segments with the best scores are selected.

In the final stage, the 50 best segments from the semantic search index and the 20 best segments

from the syntactic similarity search are then united into a single set, but since the scores from the

syntactic and semantic searches are on different scales and are not comparable, the results are then

passed on to a trained semantic similarity model that assigns each result pair with a score that signifies

its similarity to the initial query. Ultimately, the results are ordered according to these scores and returned

to the user.

5.2 Semantic Pipeline

5.2.1 Semantic Pre-Processing

As opposed to the pre-processing done for the syntactic search, the one that is used for the semantic

search does not involve any of the steps mentioned prior, but instead rests on the Bert Tokenizer from

the Hugging Face1 library. This process has been detailed in Chapter 2.

1https://huggingface.co

47

5.2.2 Semantic Encoder

After the semantic pre-processing, we are left with segments (and a query) that are prepared to be

received by the Semantic Encoder, which will then generate segment embeddings off of those segments.

Semantic Encoder is, in its core, BERTimbau [10], a BERT model trained on the BrWaC [3], a large

corpus that was constructed using the Brazilian Portuguese Web as a source. For the purpose of

simplifying the fine-tuning and evaluation, we have used BERTimbau Base (BERT-Base) with hidden

size 768.

BERT-Large, with hidden size 1024, is known to present better results than BERT-Base, but since

fine-tuning it requires more computational power, BERT-Base came as the best choice in terms of time,

performance and computational limitations.

In this step, the ultimate goal is to create a segment embedding, but since BERT only generates

token embeddings we will be using the average embedding strategy to generate a segment embedding

out of all the tokens in it. Therefore, once BERTimbau finishes embedding the tokens in the segment,

all of the token embeddings are then averaged into a single segment embedding array.

Once this has been done, the embedding array is then normalized. This is a requirement for the

Faiss [26] index that we are using and it also facilitates the selection of a fixed threshold for the maximum

cosine distance between arrays, since these distances will then be comprised between 0 and 1 after the

arrays are normalized.

For the purpose of adjusting the Semantic Encoder to the vocabulary used in the law documents and

the queries (European Portuguese, formal language in the law documents and informal — sometimes

formal — in the queries), we had to fine-tune the model in order to teach it to recognize popular semantic

pairs between queries and law segments. To do this we used the Trainer2 class from the Hugging Face

library, providing a training and evaluation loop for PyTorch, optimized for Hugging Face Transformers

classes.

To train the Semantic Encoder we used the Manual Annotations dataset (Section 4.2) on a task of

sequence classification. The model was trained for 1 epoch, at an initial learning rate of 7.40546e-05,

weight decay 0.244911, with a training batch size of 32 per GPU (a total of 64, considering the training

was done on two GPUs).

Since we are using the Base version of BERTimbau in the Semantic Encoder, with hidden size 768,

the generated segment embeddings are feature vectors with 768 dimensions (features).

After the creation of all of the segment embeddings, they are then stored in a Faiss search index for

future use (every time a search query is received).

The reason why we opted for BERTimbau as opposed to M-BERT is because of the way these

models were trained. M-BERT was trained for multiple languages, including Portuguese, but in a much

2https://huggingface.co/transformers/main classes/trainer.html#transformers.Trainer

48

more modest way compared to other languages since the corpus is proportional to the available source

material in each language. And since M-BERT needed to be trained in various languages, the trade-off

was between number of languages included and the size of the training corpus for each language. Given

that M-BERT was specifically designed to be pre-trained in multiple languages, its performance cannot

be compared to the one from a model that was specifically trained in one language solely.

5.2.3 Semantic Search Index

After every segment in the corpus is encoded, they are added to a Faiss Search Index. The Index

being used is the IndexFlatIP — providing an exact search for inner product. Since there is no index

that provides an exact search based on the cosine similarity of the arrays, we chose the inner product

considering that the cosine similarity is simply the inner product between normalized vectors — and that

is why all of the embeddings are normalized before entering the index, in the final stage of the Semantic

Encoder.

The Faiss library possesses two functions that easily allow us to convert the index in memory to a

binary file when it is created (write index) and read that binary file and bring the index back to memory

upon the initialization of the search system (read index). This is convenient given that the creation of

the index is a task that takes quite a few minutes (20-30) to complete, and would be a waste of time to

repeat it every time the system initializes.

After the query is encoded into an embedding, it is then used to search for the 50 arrays that are

closest to it (in cosine similarity). We then use a threshold of 0.5 to eliminate any array that had a score

below significant — these arrays represent the segments that are not relevant to the query that was

searched. The remaining arrays — the ones with a score above 0.5 — are the ones that represent

segments that are relevant to the query, and these segments will go to the latter stage in the system —

the Semantic Classifier.

5.3 Syntactic Pipeline

5.3.1 Syntactic Pre-Processing

Before forwarding the query to the syntactic similarity search, the query needs to be processed in order

for it to be recognized even when it is not written in the same way that it exists in the dictionary, due to

various concerns.

The syntactic similarity search that is used in the system is the BM25 algorithm, which uses a bag-

of-words strategy. Essentially, it means we need to divide a phrase into words. The words belonging to

the query are therefore compared with the words in the dictionary (corpus/segments) and, for two words

49

to be considered the same, they must share every Unicode3 character in the same order.

In the syntactic similarity search, the words of each segment and query are used to calculate a

similarity score. For two words to be considered the same they have to be be exactly the same — that

is, they must share every unicode character in the same order. When two words are compared by the

algorithm, one starting with upper case, and the other with lower case, they are deemed unequal.

Because of this constraint, the syntactic search must follow a syntactic pre-processing that consists

of five main steps:

Natural Language Toolkit (NLTK) Word Tokenization: Using the NLTK word tokenization tool for

the Portuguese language, each segment and query is separated into tokens, which are words defined

in the NLTK Portuguese dictionary. This helps us construct the bag-of-words necessary for the BM25

algorithm, and is especially helpful in recognizing a word that is separated by a hyphen, for instance,

which would have been viewed as two single words by a simple space-separator.

Removal of Punctuation: Since the previous step does not remove punctuation, every punctuation

character is removed so that it does not count as a word. Otherwise, the segments and the query

could be compared using, for instance, the number of commas that they contain, which is not our

goal.

Word Lowering: Words that contain uppercase letters are lower-cased so they can be identified

as being the same word. This ensures that when the user submits a search query that mistakenly

includes an uppercase letter in the wrong place, the words in the query can be identified as belonging

to the corpus.

Stop-Word Removal: In order to perform a relevant keyword search on the corpus, the segments

of the corpus and the query need to go through a process of stop-word removal since, by definition,

they offer no additional meaning to the sentences. To do this, we use the NLTK Portuguese stop-

word dictionary to remove all of the irrelevant words. In this corpus of stop-words, there exist words

such as: a, ao, aos, aquela, aquelas, among many others. The process of removal is quite simple

and it involves keeping only the words in the segments/query that are not present in the corpus of

stop-words. This a major step in the text processing since words such as de appear a lot in the

Portuguese language, and the similarity between two phrases (a segment and the query) should not

be judged by their amount of des, which provide no contextual information about the phrase.

Unidecode: This last step ensures that every word in the segments and the query do not have

any special characters such as é, à, ç, among others. It also ensures that the algorithm is able

to recognize every word that the user typed with a missing accent. Every word goes through the

function unidecode from the Unidecode4 library.

3https://home.unicode.org
4https://github.com/avian2/unidecode

50

5.3.2 Syntactic Search

Following the Syntactic Pre-Processing, the processed segments and the query will go to the Syntactic

Search, where the query will be compared to the segments, on a syntactic level. For this purpose, we

perform a BM25 text search using the BM25Okapi5 class from the rank bm25 python library but, before

any search is done, at the initialization stage of the search system, the BM25Okapi object is initialized

using the corpus, i.e., all of the segments in the corpus that have been pre-processed. Since it only

takes a few seconds, there is no need to store the binary object in memory and it is done during loading

time, every time the system loads.

5.4 Semantic Classifier

At this stage, the segments that were chosen from the Semantic and the Syntactic Searches are col-

lected into a set of segments that will be reordered by the Semantic Classifier, which is none less than

a BERTimbau model trained in the same way that the one in Semantic Encoder is fine-tuned. However,

their purposes are separate — the Semantic Encoder uses a base BertModel class to generate the

embedding for each sentence and then they are compared in the search index based on their cosine

similarity whereas the Semantic Classifier uses a BertForSequenceClassification class and the seman-

tic similarity score is calculated by applying a softmax function to the logits that are returned by the

model, upon receiving both sentences (segment and query) as input.

The Encoder + Search Index combination is used at a stage where comparison speed needs to be

high, since we need to compare the query to every single segment in the corpus. At a later stage,

in the Semantic Classifier where, at most, we have 70 segments, we are allowed to use a BertForSe-

quenceClassification model to compare the query to the final segments and classify them in the order

of relevance.

5.5 Results Selection and Presentation

The final results are shown in the following manner: The acts are ordered according to the sum of the

scores of its segments, in a descending order. Thus, the act with the highest sum of its segments’ scores

is at the top of the results list. In each act, the ordering of the articles follows the same strategy — the

articles in each act are ordered according to the sum of its segments’ scores.

In Figure 5.2 we have an example of the results interface where we searched for the query terms

”benefı́cios fiscais” and it returned an act in first place named Decreto de Aprovação da Constituição,

and inside it two articles, Artigo 103º and Artigo 85º.
5https://pypi.org/project/rank-bm25/

51

Figure 5.2: Search Results Example

5.6 Model Training

As previously stated, the language model that was used for both the Semantic Classifier and Semantic

Encoder was a BERTimbau base model fine-tuned on the annotations dataset. For this fine-tuning task,

we were able to use a machine with 2 NVIDIA GeForce RTX 3090 Graphics Processing Unit (GPU)s,

each with 24GB of memory and 10496 cores.

Prior to training, we ran a hyper-parameter optimization in order to optimize the learning capabilities

of the model and its performance on unseen data. We did this by using a function in the Trainer class

from the HuggingFace python library, which we also used to train the model. This class provides an

Application Programming Interface (API) for feature-complete training in PyTorch, which simplifies much

of the process and abstracts the researcher from the training loop, focusing on the optimization process.

The API also supports distributed training on multiple GPUs/Tensor Processing Unit (TPU)s, which was

beneficial to us since we used 2 GPUs instead of just one, and we would like them to be used in parallel

to guarantee that the training process finishes faster.

5.6.1 Hyperparameter Optimization Techniques

In practice, hyperparameter optimization is nothing but a search for the set of parameters that optimize

the training process and maximize (or minimize) the validation metrics, which in our case are the valida-

tion accuracy and loss. Usually, hyperparameter optimization can be done using various techniques, but

52

the three most commonly used ones are Hand Tuning, Random (or Grid) search and Bayesian search.

These three techniques, however, possess two downsides. The first downside is the time it takes to

find the hyperparameters that optimize the performance of the model. With Hand Tuning, the researcher

must try a set of hyper parameters by training the model with that set and then evaluate the performance

of the model. The researcher must keep this cycle until they are satisfied with the performance of the

model. This task can take a lot of time, and can sometimes even take weeks or months to reach the

perfect set of hyper parameters.

Bayesian Optimization is a technique that automates the hand tuning process by using the Bayes

theorem to make changes to the hyper parameters at the end of each training run, which makes it a

sequential training optimization, and therefore it can also become a very slow process.

Figure 5.3: Bayesian Optimization

In Grid Search, a set of neural networks are trained independently in parallel and, at the end, the

hyperparameters from the model with the highest performance are selected. The number of differ-

ent combinations of hyperparameters can go around the dozens or even hundreds, which means that

dozens or hundreds of models will be trained and only a small fraction of those will have a high perfor-

mance. This, in turn, means that most of the models that were trained will not be used and, therefore, a

high amount of computer resources were wasted training them — making this the second downside to

using one of the most commonly used optimization techniques.

Figure 5.4: Grid Search

Population Based Training (PBT) [27] is an optimization technique that combines Grid search and

Hand Tuning. PBT starts in the same way of Grid Search — by training a set of models with random

53

hyperparameter values — but instead of training the set of models independently, it allows the models to

share information with each other and reconfigure their training hyperparameters according to the most

promising models.

Given these advantages, we decided to optimize the hyperparameters by using a PBT algorithm that

was available as a scheduler option with the same name, in the Ray Tune library, that is integrated into

the Trainer class function hyperparameter search.

Figure 5.5: PBT

5.6.2 Model Optimization and Training

In order to find out which type of data would train the model in the best way possible for this task, we

studied the use of 4 datasets for the Consumer Law Corpus — Manual Annotations, ICT, Semantic

Pairs and Manual Annotations + Semantic Pairs — and for the Retirement Corpus we used 2 datasets,

Manual Annotations and Semantic Pairs.

To choose which training dataset would return the best results we followed the same evaluation

procedure for all of them. We first divided the datasets into 3: The training set, used to train the model;

the validation set, that was used to evaluate the performance of the model during training; and the

test set, which was used to evaluate the performance of the model on unseen data (different from the

validation set), after the training is complete.

The Manual Annotations dataset was divided into 2 subsets — training and validation/test. Since we

did not have many golden labels, we decided to split the dataset cautiously, prioritizing the validation/test

set given that these sets had to have manually annotated queries, in order to check the real performance

of the system. The validation and test sets are the same one given the same reason (not enough manual

annotations). Instead of using percentages to split the dataset, we used the number of queries in the

dataset — 100 for the validation/test sets, and the remaining (221) for the training set. We chose this

query-split approach as opposed to a traditional percentage-split approach, given that, if we had chosen

to divide to set according to traditional percentages, such as 80-10-10 (training-validation-test), we would

have only had 32 queries to test the performance of the system, which is just not enough, given that

there are plenty of topics in the consumer law domain and, with 32 queries, the probability of covering

54

all of those topics is very low.

The other datasets (ICT and Semantic Pairs) were also divided into 2 subsets — training and vali-

dation — but in this case following percentages, 80% and 20%, respectively. The reason why we didn’t

divide these datasets into 3 was because we only needed one test set to test all the models, and we

chose the annotations dataset because that was the most reliable since it included manual annotations

created by experts, therefore the veracity of those annotations is guaranteed, as opposed to the ones

automatically generated, which might not be correct.

Before the division, every dataset is shuffled in order to guarantee that every training batch is repre-

sentative of the dataset, as a whole. If we did not shuffle the data, we would risk creating batches that

have similar data, which would set off the gradient estimate and, therefore, lead the training of the model

in the wrong direction.

Then, we ran a hyperparameter optimization for each dataset separately. This step was necessary

due to the scale and diversity of data present in each dataset. A selection of parameters and their model

performance are displayed in Table 5.1. The final training hyperparameters were chosen according to

the accuracy, while monitoring the loss value which is calculated with a Cross Entropy loss function. This

function is defined as:

loss = −wy · log
exp(xy)∑C
c=1 exp(xc)

· y (5.1)

where x is the input, y is the target, w is the weight and C is the number of classes, which in our

case is 2 (0 — not relevant, and 1 — relevant).

Table 5.1: Example of Training Hyperparameters for Manual Annotations of the Consumer Law Corpus

Weight
Decay

Learning
Rate

Training Batch
Size Per GPU Epochs Validation

Accuracy
Validation

Loss
0.261884 2.42913e-05 32 4 0.837746 0.934985
0.244911 7.40546e-05 32 1 0.843621 0.634938
0.204092 9.25682e-05 16 1 0.84328 0.638671
0.261884 1.61942e-05 32 4 0.83131 1.09068
0.0596527 9.41399e-05 16 1 0.818426 0.500694

55

56

6
System Evaluation

Contents

6.1 Performance of LeSSE in the Portuguese Consumer Law 59

6.2 Performance of LeSSE in the Absence of Manual Annotations 60

6.3 Performance of LeSSE in a Different Law Domain . 62

57

58

In this chapter, we analyze the results upon evaluating LeSSE on different datasets and we discuss

the influence held by certain factors on the performance of each test configuration.

6.1 Performance of LeSSE in the Portuguese Consumer Law

The primary purpose of the evaluation was to compare the performance of LeSSE in the Portuguese

Consumer Law corpus to the baseline, BM25. After choosing the best model from each training session

with the different datasets, we compared their performance on the same test set. In the following table,

we present the accuracy results for the different combinations of search algorithms and training datasets

used. The accuracy is divided into 4 categories (TOP 1, 3, 5 and 12) — each TOP x category represents

the percentage of test queries that the system got right in the first x results. And so, for instance, this

means that the Baseline system was able to fetch at least one of the correct results, in the first 3 search

results, in 70.0% of the test queries (TOP 3/Baseline). The accuracy is measured by comparing the act

in the result with the act in the golden label.

The third column shows the results obtained with the LeSSE system without fine-tuning (training)

the model. Despite the fact that these results are not the best, this option manages to achieve a better

result than the baseline. The fourth column shows the performance of LeSSE when the models were

trained using the Manual Annotations dataset, and these are the best results achieved, especially when

comparing with the baseline.

Table 6.1: LeSSE Accuracy in the Portuguese Consumer Law

Accuracy (%)

Results Measure Baseline
(BM25)

LeSSE
No Training Trained with Manual Annotations

TOP 1 42.0 44.0 55.0
TOP 3 70.0 74.0 89.0
TOP 5 71.0 88.0 96.0

TOP 12 75.0 95.0 99.0

The reason why all the accuracy percentages in Table 6.1 are whole numbers is because the test

set from the consumer law corpus had 100 query-answer pairs. So, for instance, this would mean that

the baseline search algorithm (BM25) got the first result right in 42 out of the 100 test queries (TOP 1,

Baseline (BM25)).

After comparing the different iterations of the system for the Consumer Law context, we chose the

best configuration based on the TOP 3 measure, which was deemed more relevant in the search task.

After comparing the system to the baseline and its iterations, we ran a small test to evaluate the

performance of Google on the search of some queries and then we ran those same queries on our

system, with the full pipeline, and fine-tuned on the manual annotations dataset. The results from this

59

experiment, as well as the queries that were tested in both search systems, are described in Figure 6.1.

Figure 6.1: Google vs. LeSSE

This was an important experiment since it showed that LeSSE is clearly more apt to answer queries

on the topic of the Portuguese Consumer Law than Google, the most used search engine in Portugal,

which is also used to search DRE documents. Google was only able to find 8 results out of 20 of the

TOP 3 search results, while LeSSE was able to find 15 out of those same 20, which is a significant

outcome. In order to restrict the search domain of Google, we added the term ”dre” before every query.

6.2 Performance of LeSSE in the Absence of Manual Annotations

The second evaluation sought to answer whether the LeSSE would be ready to answer questions cor-

rectly when there would be no manual annotations or jurists to annotate them. This was a relevant

question to pose, since there may come a scenario where there are no manual annotations available

for a specific domain in the Portuguese Law, as it is the case now for any domain other than the ones

we have worked with — Consumer Law and Retirement Law. To prevent this issue, we studied the

option of using automatically generated annotations, by following two generation techniques — ICT and

Semantic Pairs generation. Additionally, we also tried a mixed configuration of Manual Annotations and

Automatic Annotations (Semantic Pairs) to see whether it improved upon the Manual Annotations con-

figuration. And so, upon training LeSSE with these automatically generated datasets, we compared their

60

performance against the Baseline.

Table 6.2: Testing Accuracy with Automatic Annotation Datasets

Accuracy (%)

Results
Measure

Baseline
(BM25)

LeSSE

No Training Trained with
Manual

Annotations

Trained with
Automatic

Annotations

ICT Dataset Semantic
Pairs

Manual
Annotations

+
Semantic

Pairs
TOP 1 42.0 44.0 55.0 45.0 51.0 50.0
TOP 3 70.0 74.0 89.0 76.0 77.0 88.0
TOP 5 71.0 88.0 96.0 84.0 90.0 96.0
TOP 12 75.0 95.0 99.0 95.0 95.0 98.0

In Table 6.2, the fifth column presents the accuracy results of LeSSE when trained with the ICT

dataset. Despite not being the best in the bunch, it managed to surpass LeSSE when no fine-tuning

was done (when comparing TOP3), and it also showed a significant improvement over the baseline. This

means that it could be a good option when there are no manual annotations to fine-tune on, since it is

relatively fast and inexpensive to generate.

The sixth column contemplates the results from training with Semantic Pairs, automatically generated

from the corpus. When comparing with the manual annotations dataset in the TOP3 category, training

with this dataset did not improve the performance of the model, but it did perform better than LeSSE

when trained with the ICT dataset. It also showed to be far superior the baseline, and even scored higher

than LeSSE with no training, which was indicative that it could be useful in a scenario where there are no

annotations. The generation of this dataset was the product of a master thesis from another student, and

it required the help from two linguists that annotated the segments with syntactic and semantic functions

of the words and expressions, so its generation was slower and more expensive than the ICT one.

Mixing the manual annotations with the semantic pairs did not show an improvement over the manual

annotations, and we concluded that it had to do with the incongruousness of the data — the manual

annotations were quite different from the automatic ones in terms of topics covered, but also in format

(the manual ones were more naturally written than the automatic ones), and that created an inconsistent

dataset which was not as fit for training as the manual annotations themselves. Another issue with

this mixing strategy comes from the fact that the datasets are not balanced in terms of quantity — the

automatic annotations far surpassed the manual ones, since those were easier to generate, and that

created an imbalance. However, it still managed to score higher than all the other configurations in the

TOP3 category (apart from manual annotations), so it could prove to be quite useful when there are not

enough manual annotations to cover all of the topics in the domain, or the quantity of annotations is just

61

not enough.

6.3 Performance of LeSSE in a Different Law Domain

In addition to the Consumer Law domain, another challenge was defined in the Descodificar a Legislação

project, which was to make the developed system work with another law corpus (another law domain).

This task functioned as a test to see how well LeSSE would work when dealing with another domain or

subdomain of the Portuguese Law. For this purpose, we were provided with a few annotations on the

domain of Retirement Law (Estatuto da Aposentação) and applied the same methodology that we had

done for the Consumer Law corpus. The annotation dataset consisted of 111 queries pointing to 298

segments. This dataset was split similarly to the one used in the consumer law domain, by using a set

number of queries for the validation and test sets (the same set for both, due to lack of annotations) and

the remaining queries were used for training. In this case, we used 32 queries for the validation and test

sets, and the remaining 79 for training.

In Table 6.3, we are presented with the results of the experiment, homologous to the one done for

the Consumer Law domain, with the exception of the way in which the accuracy is measured. In the

consumer law domain, the accuracy is measured by comparing the act in the result with the act in the

golden label, but in this domain we only have 2 acts, which would automatically mean that there is a 50%

chance that a random answering search system would get the right result. Since there is no relevance to

that kind of metric, we decided to measure the accuracy on the article level — we compared the article

in the result with the one on the golden label — and this led to a more fair comparison between domain

performances.

Table 6.3: LeSSE Accuracy in the Retirement Law

Accuracy (%)
Results
Measure

Baseline
(BM25)

LeSSE

No Training Trained with
Manual Annotations

Trained with
Automatic Annotations

(Semantic Pairs)
TOP 1 43.8 43.8 46.9 40.6
TOP 3 50.0 68.8 78.1 71.9
TOP 5 50.0 75.0 90.6 84.4
TOP 12 50.0 75.0 90.6 84.4

The results obtained from this experiment were much the same — that is, the manual annotations

were the best dataset to train on, since it far surpassed the others in any category of accuracy and the

automatic annotations (in this case Semantic Pairs were used) proved to be the second best option,

with the exception of the TOP1 category, in which it did not score as high as the others, but it was

compensated by the other accuracy scores.

62

7
Conclusion

Contents

7.1 Future Improvements . 65

63

64

The proposal of this project was to create a search system that would connect the Portuguese citi-

zens to their Consumer Law by modifying how the search was made. The current Portuguese Consumer

Law search engine works by searching keywords in the articles. Our improved version combines a more

refined keyword search with a semantic search. For the keyword search we used a well established

algorithm called BM25, in its original version, and for the semantic search we used a BERT language

model, in a tailored pipeline.

In order to produce the desired results, the language model had to be trained on a corpus that

included legislative jargon. This was an important step to ensure that the model would be able to create

the right relations between similar words that it had not seen in the pre-training stage (first training with

an extensive corpus). It was also important since the pre-training was done using a Brazilian Portuguese

corpus, and because we needed it to be able to recognize the European Portuguese vocabulary, it had

to be fine-tuned on an European Portuguese corpus.

The training corpus was constructed with the help of jurists from INCM, who annotated questions

extracted from the DRE search database with passages from the Portuguese Consumer Law. This al-

lowed us to pair questions with segments (smallest fragment of text in this context) from those passages

and those were used, not only to train the model, but also to evaluate its performance during the training

stage and to test after it had been trained.

We also tried training the model on other corpora to see how they would influence the performance

and how the search engine scaled by training with automatically generated annotations. We observed

that LeSSE is quite capable of achieving a high performance when trained with manual annotations

(89.0% TOP3 accuracy), especially when compared to the Baseline (70.0%). We also observed that,

in the absence of manual annotations the system was able to perform quite well, scoring 76.0% and

77.0%, when trained with an ICT dataset and a Semantic Pairs dataset, respectively.

Ultimately, we also tested the performance of LeSSE in a different law domain. We used a few

annotations from the Retirement Law Corpus, which is a smaller corpus than the one originally used

(Consumer Law), but, despite having less annotations to train and test on, the experiment proved that

the system is fit to work on any domain of the Portuguese law, scoring 78.1% TOP3 accuracy and a

decent 71.9% when trained with automatic annotations (in lack of manual ones).

7.1 Future Improvements

Despite having achieved good results in the task of searching the Portuguese Consumer Law and even

the Retirement Law with natural language, there are still two major improvements that could be made in

order to increase the performance of the system.

65

7.1.1 Language Model Size

In our system, we used the BERT model in the base version, which means that the model has 12

encoder layers, as opposed to BERT large which has 24 encoder layers. The large version has a

better performance but the training and fine tuning of such a model also requires more computational

power and memory. While fine tuning the BERT base version, we found that the resources were being

maximized, given the size of the dataset, and so, we did not choose the large version. An additional

issue with the large version comes when we generate the search index from the segment embeddings

— in the base version, these are arrays of size 768, but in the large version they are 1024 long — and,

because of that, the size of the search index would increase, and so would the amount of time it takes

to perform a search in the index, adding another limitation to the use of the large option.

7.1.2 Number of Manual Annotations

As was mentioned before, we ended up using the manual annotations dataset to train the language

model used in our system, and to test the latter. This was important to help the model better understand

the jargon used in the legislative context, but the dataset was also essential to test the behaviour of the

system with true labels. As we have seen, automatically generated annotations could provide some help

in training the model, so they could be combined with manual annotations and even replace them, to

some extent, but the dataset used to test the system has to be manually created, in order to ensure that

the questions are correctly paired with the segments (answers).

Right now, the manual annotations dataset is composed of 321 annotated queries. Each of these

queries has been annotated with one or more segments of the Consumer Law Corpus — in average,

each query was annotated with 546 segments. To be able to test the system, we would have liked to

use 80% of the queries for training, 10% for evaluating during training and another 10% for testing the

system, but since 10% of the 321 queries (32) was not sufficient to cover most of the subjects in the

queries, we decided to select the number of testing queries manually, and we set it to 100. Since there

were only 221 remaining queries for the training and validation sets, and because the training was much

more crucial, we decided to adopt a common approach when dealing with shortage of data — we used

the same 100 queries for the validation and testing of the system and the remaining 221 queries were

directed to the training set.

We would have liked to use different sets of queries for the validation and the testing of the system,

since there is a slight bias the system tends to have towards the validation set, but the manually an-

notated queries were just not enough to be divided into three separate sets — training, validation and

test — without also separating the subjects covered by the annotations into different sets, which was not

intended since the ideal split of data is the one that separates the data and its subjects uniformly. In an

66

ideal scenario, we would have liked to have at least 1000 queries annotated, so that both the validation

and test sets would be different but this would also require more help from jurists with enough expertise

to annotate the queries with the correct segments from the Portuguese Consumer Law.

67

68

Bibliography

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-

sukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems, 2017.

[2] M.-w. C. Kenton, L. Kristina, and J. Devlin, “BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding,” arXiv:1810.04805 [cs], 2017.

[3] J. A. Wagner Filho, R. Wilkens, M. Idiart, and A. Villavicencio, “The BRWAC corpus: A new open

resource for Brazilian Portuguese,” in LREC 2018 - 11th International Conference on Language

Resources and Evaluation, 2019.

[4] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings using siamese BERT-

networks,” in EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language

Processing and 9th International Joint Conference on Natural Language Processing, Proceedings

of the Conference, 2020.

[5] C. Samarinas, W. Hsu, and M. L. Lee, “Improving evidence retrieval for automated explainable fact-

checking,” in Proceedings of the 2021 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies: Demonstrations, 2021, pp. 84–91.

[6] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector

space,” in 1st International Conference on Learning Representations, ICLR 2013 - Workshop Track

Proceedings, 2013.

[7] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors for word representation,” in

EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Language Processing, Proceed-

ings of the Conference, 2014.

[8] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, 1997.

[9] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” in

Advances in Neural Information Processing Systems, 2014.

69

[10] F. Souza, R. Nogueira, and R. Lotufo, “Bertimbau: Pretrained bert models for brazilian portuguese,”

Intelligent Systems Lecture Notes in Computer Science, p. 403–417, 2020.

[11] K. Lee, M.-W. Chang, and K. Toutanova, “Latent retrieval for weakly supervised open domain ques-

tion answering,” Proceedings of the 57th Annual Meeting of the Association for Computational Lin-

guistics, 2019.

[12] W. L. Taylor, ““cloze procedure”: A new tool for measuring readability,” Journalism Quarterly, vol. 30,

no. 4, p. 415–433, 1953.

[13] S. E. Robertson, S. Walker, K. S. Jones, and M. M. Hancock-Beaulieu, “Okapi at TREC-3,” Pro-

ceedings of the Third Text REtrieval Conference, 1994.

[14] B. Gain, D. Bandyopadhyay, T. Saikh, and A. Ekbal, “Iitp in coliee@ icail 2019: Legal information

retrieval using bm25 and bert,” Competition on Legal Information Extraction/Entailment 2019, 2019.

[15] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. S. John, N. Constant, M. Guajardo-Cespedes,

S. Yuan, C. Tar, Y.-H. Sung, B. Strope, and R. Kurzweil, “Universal Sentence Encoder,” EMNLP

2018 - Conference on Empirical Methods in Natural Language Processing: System Demonstra-

tions, Proceedings, 2018.

[16] Y. Yang, D. Cer, A. Ahmad, M. Guo, J. Law, N. Constant, G. H. Abrego, S. Yuan, C. Tar, Y.-

H. Sung et al., “Multilingual universal sentence encoder for semantic retrieval,” arXiv preprint

arXiv:1907.04307, 2019.

[17] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes, “Supervised learning of universal

sentence representations from natural language inference data,” in EMNLP 2017 - Conference on

Empirical Methods in Natural Language Processing, Proceedings, 2017.

[18] Y. Sun, S. Wang, Y. Li, S. Feng, H. Tian, H. Wu, and H. Wang, “Ernie 2.0: A continual pre-training

framework for language understanding,” arXiv preprint arXiv:1907.12412, 2019.

[19] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le, “Xlnet: Generalized au-

toregressive pretraining for language understanding,” in Advances in neural information processing

systems, 2019, pp. 5754–5764.

[20] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, “A large annotated corpus for learning

natural language inference,” in Conference Proceedings - EMNLP 2015: Conference on Empirical

Methods in Natural Language Processing, 2015.

[21] A. Williams, N. Nangia, and S. R. Bowman, “A broad-coverage challenge corpus for sentence un-

derstanding through inference,” in NAACL HLT 2018 - 2018 Conference of the North American

70

Chapter of the Association for Computational Linguistics: Human Language Technologies - Pro-

ceedings of the Conference, 2018.

[22] D. Cer, M. Diab, E. Agirre, I. Lopez-Gazpio, and L. Specia, “SemEval-2017 task 1:

Semantic textual similarity multilingual and crosslingual focused evaluation,” in Proceedings

of the 11th International Workshop on Semantic Evaluation (SemEval-2017). Vancouver,

Canada: Association for Computational Linguistics, Aug. 2017, pp. 1–14. [Online]. Available:

https://www.aclweb.org/anthology/S17-2001

[23] M. Marelli, S. Menini, M. Baroni, L. Bentivogli, R. Bernardi, and R. Zamparelli, “A SICK cure for the

evaluation of compositional distributional semantic models,” in Proceedings of the 9th International

Conference on Language Resources and Evaluation, LREC 2014, 2014.

[24] M. Duarte, P. A. Santos, J. Dias, and J. Baptista, “Semantic norm recognition and its application to

portuguese law,” 2022. [Online]. Available: https://arxiv.org/abs/2203.05425

[25] J. Yu, B. Bohnet, and M. Poesio, “Named entity recognition as dependency parsing,” Proceedings

of the 58th Annual Meeting of the Association for Computational Linguistics, 2020.

[26] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with GPUs,” IEEE Transactions

on Big Data, vol. 7, no. 3, pp. 535–547, 2019.

[27] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue, A. Razavi, O. Vinyals,

T. Green, I. Dunning, K. Simonyan et al., “Population based training of neural networks,” arXiv

preprint arXiv:1711.09846, 2017.

71

https://www.aclweb.org/anthology/S17-2001
https://arxiv.org/abs/2203.05425

72

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Current Challenge
	1.2 Procedure
	1.3 Thesis Structure

	2 Background
	2.1 Semantic Textual Similarity
	2.1.1 Word and Sentence Embeddings
	2.1.2 Similarity Metric for Semantic Textual Similarity

	2.2 Neural Networks for Natural Language Processing
	2.2.1 Recurrent Neural Network
	2.2.2 Long Short-Term Memory
	2.2.3 Transformer
	2.2.3.A Pre-training, Transfer Learning and Fine-tuning
	2.2.3.B BERT
	2.2.3.C BERTimbau

	2.3 Inverse Cloze Task

	3 Related Work on Information Retrieval
	3.1 Information Retrieval
	3.1.1 Traditional Approaches to Legal Information Retrieval

	3.2 Natural Language Processing Approaches to Semantic Textual Similarity
	3.2.1 Universal Sentence Encoder
	3.2.2 InferSent
	3.2.3 Language Issue
	3.2.4 Sentence-BERT

	3.3 Quin

	4 A Legal Corpus for the Portuguese Consumer Law
	4.1 Defining a Common Structure for Legal Acts and Legal Segments
	4.2 Manual Annotations
	4.3 Automatic Annotations
	4.3.1 ICT Dataset
	4.3.2 Semantic Pairs Dataset

	5 Legal Semantic Search Engine
	5.1 System Overview
	5.2 Semantic Pipeline
	5.2.1 Semantic Pre-Processing
	5.2.2 Semantic Encoder
	5.2.3 Semantic Search Index

	5.3 Syntactic Pipeline
	5.3.1 Syntactic Pre-Processing
	5.3.2 Syntactic Search

	5.4 Semantic Classifier
	5.5 Results Selection and Presentation
	5.6 Model Training
	5.6.1 Hyperparameter Optimization Techniques
	5.6.2 Model Optimization and Training

	6 System Evaluation
	6.1 Performance of LeSSE in the Portuguese Consumer Law
	6.2 Performance of LeSSE in the Absence of Manual Annotations
	6.3 Performance of LeSSE in a Different Law Domain

	7 Conclusion
	7.1 Future Improvements
	7.1.1 Language Model Size
	7.1.2 Number of Manual Annotations

	Bibliography

