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Abstract

Vineyards require specific ecological contexts for all stages of their life cycle, such as appropriate tem-

peratures, sufficient water availability and some pest control, to maximize wine yield and quality. In

Mediterranean Portugal, the region Alentejo is a known wine producer, with very high temperatures in the

Summer and a worsening drought situation. Alentejo also contains multitudes of different regions; most

of them derived from human settlement and land exploration, and some areas that are still semi-natural.

Research published in 2021 showed a correlation between the landscape surrounding vineyards and

pest outbreaks, in across 400 Spanish vineyards, suggesting that a landscape of semi-natural habitats

may lower pests, decrease insecticide use and improve biodiversity. This thesis gathered 19 bioclimatic

variables from the CHELSA dataset, as input for the ISO Cluster unsupervised algorithm, a variation of

k-means, creating 10 clusters with specific climate characteristics. Those clusters were then integrated

with a statistical description of semi-natural areas across the region, through land cover data from DGT

— COS 2018. This project aims to provide an initial, descriptive statistical study of Alentejo, to, in future

work, be possible to analyse semi-natural habitats and vineyard productivity.
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Resumo

As vinhas requerem contextos ecológicos especı́ficos para todas as fases do seu ciclo de vida, tais

como temperaturas apropriadas, disponibilidade suficiente de água e algum controlo de pragas, para

maximizar o rendimento e a qualidade do vinho. Em Portugal, um paı́s mediterrâneo, a região do

Alentejo é um produtor de vinho conhecido, com temperaturas muito elevadas no Verão e uma situação

de seca em agravamento. O Alentejo conta com diferentes regiões; a maioria derivada da manipulação

humana e da exploração da terra, e algumas áreas ainda semi-naturais. Pesquisas publicadas em 2021

mostram uma correlação entre a paisagem circundante das vinhas e os surtos de pragas, em 400 vinhas

espanholas, sugerindo que habitats semi-naturais em redor da vinha podem reduzir as pragas, diminuir

a utilização de insecticidas e melhorar a biodiversidade. Esta tese recolheu 19 variáveis bioclimáticas

do conjunto de dados CHELSA e utilizou o algoritmo não supervisionado ISO Cluster, uma variação do

algoritmo k-means, para criar novas regiões com caracterı́sticas climáticas especı́ficas. Estes clusters

foram então integrados com uma descrição estatı́stica de áreas semi-naturais em toda a região, através

de dados de cobertura do solo da DGT, COS 2018. Este projecto visa fornecer um estudo estatı́stico

inicial e descritivo do Alentejo, para, em trabalhos futuros, ser possı́vel relacionar-se habitats semi-

naturais com a produtividade das vinhas.

Palavras Chave

Portugal; descrição climática; carta de ocupação do solo; vinhas; GIS.
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1.1 Context and Motivation

Viticulture, the cultivation of grapes for the main purpose of producing wine, is a practice with a long

history and still substantial throughout Europe. Particularly in the Mediterranean, wine is embedded

in several countries’ cultural identity, and grape cultivation is very significant. Two Portuguese regions,

according to Nomenclature of Territorial Units for Statistics (NUTS) 2 from the European Union, dedicate

more than 8% of their agricultural area to vineyards [1], from cooperatives and big companies to small

wineries.

This thesis is a conjoined effort made by members of Instituto Superior Técnico and the company

Natural Business Intelligence (NBI), regarding wine growing and its climatic and geographical context.

NBI is a Portuguese environmental consultancy group, founded in the beginning of 2020. The group

focuses on aiding companies improve their ecological impact, implementing different farming strategies

to improve the surrounding environment, or to minimize prejudicial impact. NBI is currently partnered

with Alentejo Regional Winegrowing Commission (CVRA), an organisation dedicated to certifying and

protecting wines from a specific region in Portugal, Alentejo.

Figure 1.1: .
Portuguese NUTS2 region classification in 2013, with subregions.

Alentejo, the blue zone [2] in Figure 1.1, is the region on which this project will focus. Making up

to one third of mainland Portugal’s area, the climate is temperate, with dry, warm Summers and mild

Winters. It is currently posing some challenges for agriculture, as it is the driest region in Portugal, and

has some of the highest Summer temperatures. As the climate changes, the rising temperatures and

less water availability may turn some areas inhospitable [3]. It becomes relevant to study new areas

on which agricultural areas may be installed according to their ecological needs, for climate change

adaptation [3,4].

3



Figure 1.2: DOC wine growing regions
in Portugal.

It is one of many wine-producing regions in Portugal, with its

own wine classification label, “DOC – Alentejo”. Denominação de

Origem Controlada (DOC), or Label of Controlled Origin, refers

to wines that grow on a specific geographical location, follow a

rigorous production method and have a higher standard of qual-

ity. Some producers on the Alentejo region, having met these

requirements, produce DOC wines on the subregions pictured on

fig. 1.2.

In the last years, an organic agricultural practice has been

demonstrated to have positive effects, regarding changes in soil

health, diversified biodiversity and higher product quality. In 2021,

a study presented that the landscape surrounding vineyards may

be also relevant: habitats classified as semi-natural were proven

to decrease pests and improve biodiversity [5]. Therefore, it may

be relevant to study surrounding land usage when managing a

vineyard, which is the purpose of this project. This thesis will be

the first step of a larger study, that intents to correlate these semi-natural areas with vine productivity,

suggest a reclassification of the Alentejo region, and lead to a more resilient use of the land.

1.2 Objectives

This dissertation’s main objective is to assist decisions by future wine producers, such as the location of

new vineyards or which grape varieties to plant. New regions in the Alentejo area will be proposed to aid

the decision-making, created according to climatic data, and described by the presence of semi-natural

habitats, such as nearby bodies of water or nearby native forests.

In future work, this project will integrate a larger research produced by NBI, that aims to associate

climate and land cover data to vineyard productivity. By studying the presence of specific habitats and

its impact on grape yield, wine producers may be advised to install vineyards near some habitats, and

steer away from others.

Some sub-objectives of this thesis are:

land cover and climate statistical analyses The thesis should provide a statistical description of

the area according to climatic variables and according to land usage.

Regionalization regarding climate New areas will be defined with consistent climatic properties,

to assure climate stability in certain regions and to showcase differences in Alentejo

Description of newly calculated regions These new areas will be described according to their

4



land cover, so producers know what would surround a possible new vineyard, and how that might

impact the environment.

1.3 Contributions

This dissertation will contribute with proposed new areas that are climatically stable, so that climate

might become a fixed parameter and other variables might be analysed, like land cover or other dataset

at will.

This dissertation will also produce statistical analysis of semi-natural habitats on Alentejo, that may

contribute to an improved land planning, according to each region’s ecological needs and traits.

1.4 Thesis structure

This document is organised as follows:

Chapter 2 presents some literature on climate impact on vineyards, and how surrounding habitats

may impact production.

Chapter 3 explains the datasets employed, and some technical information regarding location data

and the used GIS software.

Chapter 4 contains the developed work, and is split into five sections: Data Preparation; Statistical

Background, where the necessary mathematical concepts are described; Analysis of Climate Data,

where the new regions are defined; land cover Data, where the Carta de Ocupação dos Solos (COS)

is analysed, and Criteria Compilation, where we calculate the final statistics.

Chapter 5 presents the results of the previous chapter, an evaluation and a discussion.

Chapter 6 indicates some limitations of the project, mentions possible future work, and concludes

the dissertation.

5
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This chapter will share some light on the context and importance of surrounding areas for a viticulture

practice.

The ecological context of a plant rules its development. Variables related to the climate may affect

the plant’s health [6], therefore making their analysis of vital importance. The highest and lowest tem-

peratures the vine experiences, as well as occurrence of frost or lack of precipitation, may prejudice its

development [7, 8], which will in turn affect wine quality [9] and yield [10]. In a Mediterranean climate

like Portugal, it has not been common to have extreme weather events like prolonged frost, snow or

consistently very high temperatures; so far, Portugal has been recognized as one of the best countries

for wine growing, along with others in the Mediterranean area, but climate change should be accounted

for in future wine growing implementations.

In Alentejo, a region known for its high Summer temperatures, low precipitation and low water avail-

ability, wine producers have already established the best cultivars for specific zones, regarding their

preferred temperature and precipitation values, altitude and soil; however the surroundings of vineyards

are often overlooked.

In order to maximize yield, an absence of pests and diseases should also be sought for. One of the

first studies of its kind, an article by Paredes et al [5] correlated habitats surrounding Spanish vineyards

with pest outbreaks. Organic farming is an approach proved to be effective as a more natural pest

control, by introducing animals that are natural enemies of common pests, or by planting specific plants

that repels nefarious microbes and insects [11]. With the changing climate, pest outbreaks and fungal

diseases may increase their impact on viticulture, and pesticides start to become less effective as pests

grow more resistant [12].

The aforementioned article modelled landscape effects on pest infestations and insecticide appli-

cations, and concluded that vineyards that were surrounded with simplified landscapes, such as more

vineyard area, had a significantly higher pest outbreak and need of insecticide application. On the other

hand, vineyards surrounded by semi-natural habitats would have four times less outbreaks of the studied

species, the European grapevine moth.

We proposed to study Alentejo’s semi-natural habitats. Since there is not a developed research in

what constitutes a semi-natural area, we had to analyse, one by one, land cover classes of Alentejo.

As described in the following chapter, the COS dataset provided us with 11 classifications, which the

NBI team divided to 13 to clarify and distinguish some habitats. Variables that might prove beneficial to

the environment of the vineyard were chosen to be Water, Riparian Area, Native Forest and Shrubland.

Agricultural habitats, due to some practices by producers, negatively impact the soil with chemicals and

contaminated animal waste. Urban areas and low vegetation areas do not provide enhanced biodiversity

or any ecological benefit, and pastures, also due to wrongful management, strip the soil of vegetation

and any other resource. Pine forests and eucalyptus, for their high water needs and for being an invasive

9



species in Alentejo, were also considered non beneficial for vineyards. Native forests are mindful and

appropriate of the Portuguese region, and water bodies provide a vital component for vine growth.
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Location is a type of data that is increasingly useful to record. It is needed to create maps of cities,

which in turn allows the creation of GPS, to register habitats or to plot mountains and lakes, ultimately

to better know and explore the Earth we live in. Such type of data, due to its inherent relation to the

planet and being so closely attached to the visual component of a map, has specific characteristics and

needs. In this chapter we will explore how this data is described and how to do it universally, how it can

be managed through software and which datasets were used in this project.

3.1 Tools and Software

Data that contains geospatial information falls under the scope of Geographic Information System (GIS).

GIS is a system that manipulates this kind of data (’spatial data’), and arose from the technological ad-

vances of the 1960s and 1970s, when land description and planning were first being computationally

calculated. Nowadays, GIS applications are more powerful: able to import spatial data, perform anal-

yses, create new information and project it in maps, with two or three dimensions, with descriptive

information.

This dissertation relies on GIS to analyse the datasets described in the following section. Through

institutional access from Instituto Superior Técnico we were able to develop this project using the GIS

application ArcGIS. Created by the company Esri, ArcGIS is a feature-rich tool and one of the most used

in this field. It allows, among other functionalities, to visualize areas in 3-D, to perform statistical analyses

on geographical data, or to edit and create new features, all through explicit menus and intuitive mouse

commands. It also allows users, however, to program in Python for additional, personalized operations.

It is able to import some filetypes useful for geographical data, such as .csv, .tif or vector formats.

In this project, the Climatologies at high resolution for the earth’s land surface areas (CHELSA) dataset

provides files of the type GEOtiff, while the COS dataset provides data in an Esri-only file type, .shapefile.

3.1.1 GIS datafiles – Vector and Raster

Vector data is an important type of data and the baseline for spatial representation. Vectors identify

individual geographical features in three feature classes: points, lines and polygons [13].

Points represent discrete data elements. Having an area of zero, they are useful for marking Points

of Interest (POIs) of irrelevant area or shape. Each point is internally represented by its coordinates.

Lines, a one dimensional feature characterized by two separate points, are represented by their vertices.

Polygons are a closed shape defined by connected points; they are used to show boundaries and convey

area and shape information. Polygon features will be, from the three vector data types, the one most

relevant in this project. Figure 3.1 exemplifies common uses for vector data types: points represent

location, lines represent roads and polygon represent areas, such as green spaces or buildings.

13



Figure 3.1: Examples of different vector data types in use. Base map from OpenStreetMap.

Besides being represented by their coordinates, features also possess attributes, extra information

associated with a shape. Considering a simple database of points representing museums, each point

may have the additional attributes “Name”, “Admission price” or “Closing hours”.

Alternatively, raster is a geospatial data that defines surfaces. Also known as grid data, rasters are

a matrix of cells organized into rows and columns, and with a specific cell size (raster resolution). Within

the scope of the project, raster data is the original data type of the CHELSA dataset and the main type

of GIS data file used.

While vector data describes individual shapes, with no information about the space between them,

rasters provide a way to describe geographical continuity. A classical use of raster data is for elevation,

that has a different value for each cell of the grid. Points could be used to pinpoint mountain tops and

the lowest point of valleys, but a considerable amount of information would be lost in-between.

The matrix’s cell size determines the level of detail of the raster and ultimately how accurate a surface

is represented. A raster with a cell size of 10 kilometres may be enough to describe the shape of a city

in the scope of a country, but not precise enough to describe elevation on a mountain range.

Raster resolution, although directly proportional to accuracy, comes with higher file size and need

for processing power. Figure fig. 3.3 exemplifies how resolution can alter our perception of the subject.

The most accurate representation from the polygon is the raster with smaller cell size, which brings an

elevated number of rows and columns. The 2 meter cell raster loses some shape information, although

14



Figure 3.2: Rasters represent a continuous surface, rather than single shapes. [14]

maintaining an acceptable area, and the 4 meter cell raster exaggerates its proportions and loses all of its

original shape. The less detailed raster, however, would be the one less computationally expensive and

faster to load and operate on GIS software. Therefore, spatial resolution has to be carefully determined,

balancing accuracy and computational speed.

Figure 3.3: Raster resolution. Smaller cell size comes with higher accuracy and slower processing.

In the next section we will expound the factors behind the ideal raster resolution for this project, and

how it was achieved using upscaling.

3.2 Dataset description

3.2.1 Land cover data

The land cover dataset COS used was provided by Directorate-General for the Territory (DGT) [15] and

collected by the NBI team. For the months of June, July, August, September and October 2018 the data

was produced by DGT through orthophotography, meaning it’s derived from aerial photographs. Different

than a standard picture, orthophotography accounts for Earth’s topography and camera distortions, so

an accurate picture with measurable distances can be obtained.Its spacial resolution is 25 meters, a

highly detailed digital record, which allows for precise detection of land cover and each region’s area.

For the remaining months of the year, the dataset collected information from other data sources
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available, like LUCAS (land cover and Coverage Area frame Survey) [16], CORINE Land Cover [17], and

others. This is an accurate method, and logistically easier than through personal observation. Satellites

photograph delimited areas, and through image recognition algorithms they are able to be automatically

be classified; examples may be water bodies, shrubland, pastures, between other habitats.

More information about data collection methods and specifications may be found on DGT’s technical

document for the dataset [18].

A supplemental dataset was utilized for water bodies, obtained from the European Commission’s

Joint Research Centre within the Copernicus Programme [19]. This data was also collected through

satellite imagery, derived from the Landsat dataset [20].

The original dataset by DGT provided all bodies of water of Alentejo, despite some of them only

being active on some months of the year, possibly due to lack of precipitation and high temperatures.

This dataset provides an additional attribute to their data, “Occurrence”, that indicates, in percentage,

how much time of the year a specific water body exists. The Guadiana river, and the water harnessed

by the Alqueva dam have occurrence values superior to 95, while small ponds that disappear during the

warmest months have occurrences of 20 or 25%. This dataset allowed for a much accurate assessment

of water impact in Alentejo.

The COS classified the area in Alentejo into 9 major classes: (a) Artificial territory; (b) Agriculture;

(c) Pastures; (d) Humid areas (e) Forests (f) Superficial water bodies (g) Agroforestry surfaces (h) Shrub-

land (i) Low Vegetation areas .

This classification is then divided into multiple subclassifications. The NBI team grouped many sub-

classifications and divided some classes, creating their own classification system with 13 categories:

1. ”Artificial territory” was renamed to ”Urban area”.

2. ”Agriculture” was divided into ”Agriculture”, ”Vineyards and orchards” and ”Olive groves”.

3. ”Pastures” remained the same classification.

4. ”Humid areas” was reclassified as ”Riparian area” and ”Water”.

5. ”Forests” was divided into ”Forests”, ”Pine forests” and ”Eucalyptus”.

6. ”Superficial water bodies”, grouped into ”Water”.

7. ”Agroforestry surfaces” were grouped into ”Forests”.

8. ”Shrubland” remained the same.

9. ”Low Vegetation areas” remained the same.

A comprehensive list of the original classifications, together with subclassifications and meanings, is

annexed on the official technical guide [18].
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3.2.2 Climate Data

The climate set of data was collected from CHELSA (Climatologies at high resolution for the earth’s

land surface areas) [21], by the NBI team. CHELSA is a dataset that consists of “downscaled model

output temperature and precipitation estimates” for a climatological period from 1979-2013 [22], using

data collected with a 6-hour period from the ERA-Interim dataset [23].

This dataset has a 30 arcsec resolution. While meter is a measure of distance commonly used on

planar surfaces, arcsecond is an angular measurement, corresponding to 1
3600 of a degree. Because

of the spherical shape of the planet, arcsecond is a more precise way of describing the resolution [24].

When “flattened” and converted to meters, 30 arcsec are approximately 1000 meters.

Figure 3.4: Angular diameter formula, of how an angular variable is converted to planar distance.

The baseline for climate data are individual registries from local weather stations and observatories,

that create a local report and analysis of weather. These, stations, however, have a limited geographical

scope. If the temperature in one city is registered, and it is also registered at a weather station at 100 km,

there is no measurement for the area in between. Downscaled models of temperature or precipitation

utilize climate records, which provides accurate readings for a finite number of locations, and interpolate

it for a larger area using mathematical models.

ERA-Interim calculated that interpolation using specific models, which CHELSA reformulated using

their own formulas, correcting possible biases.

For instance, for the mean daily air temperatures, CHELSA applied linear regression for each grid

cell of ERA-Interim monthly means of daily temperature, and calculated lapse rates Γd according to the

recorded pressure levels, in hPa. Using the lapse rates, temperature at sea level t0 was also interpolated,

and, for each cell, the elevation was gathered from a Global Terrain Elevation Data dataset. The final

formula was

t = Γd ∗ elev + t0

For land surface temperatures, lst, the main component of this project’s bioclimatic variables, CHELSA

based the formula on the SRAD model, by Wilson and Gallant [25]:
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lst = t− Γd(zh − zc) + C(S
1

S
)(1

0.1

8
)

in which z values correspond to elevation, t corresponds to the temperature grid, C is a constant that

was chosen to be 1.0, and S is the short-wave radiation ratio.

3.2.2.A Bioclimatic variables description

This model was used to calculate 19 bioclimatic variables, known as being biologically meaningful and

used for ecological and climatic models [26]. A compiled table of these variables, with respective titles

and units, was adapted from the official dataset source [22] and is presented in fig. 3.5.

Bio01

• Definition: Annual Mean Temperature (°C/10)

• Calculation: average temperature for each month of the 1979-2013 period. Each month of this year

set was averaged (January 1979+January 1980+...
34 ), and lastly the mean of these final twelve months

was calculated as well.

• Usage: A simplistic temperature variable, for a general sense of average temperatures.

Bio02

• Definition: Mean diurnal air temperature range (°C/10)

• Calculation: average diurnal temperature range ( Tmax − Tmin ) for each month of the year set.

• Usage: it is useful to see how temperatures range between the various months. A large number

means the highest temperatures and the lowest are consistently very different.

Bio03

• Definition: Isothermality (°C/10)

• Calculation: Bio02/Bio08 ∗ 100

• Usage: Isothermality quantifies how temperatures oscillate during the day, relative to the seasonal

oscillations.

Bio04

• Definition: Temperature Seasonality (°C/10)

• Calculation: standard deviation of the mean monthly temperatures

• Usage: variable to measure range of temperatures, in this case how they deviate from the mean.

Bio05

• Definition: Mean daily maximum air temperature of the warmest month (°C/10)
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• Calculation: maximum temperature across all monthly means of the year set.

• Usage: useful to see the maximum mean temperature a specific pixel of the map reached in the

last years, which is important to prevent a potential sunburn

Bio06

• Definition: mean daily maximum air temperature of the coldest month (°C/10)

• Calculation: minimum temperature of any monthly mean temperature values

• Usage: may be valuable to detect too low temperatures for the vine

Bio07

• Definition: Temperature Annual Range (°C/10)

• Calculation: Bio05−Bio06

• Usage: the highest temperature a pixel reached minus its lowest temperature. Another useful

variable for temperature range; a high number indicates high variability between the warmest and

coldest seasons.

Bio08

• Definition: Mean air temperature of the wettest quarter (°C/10)

• Calculation: together with the precipitation values, the quarter (set of three months) with the high-

est cumulative precipitation was calculated for each year, and that quarter’s temperatures were

collected. These temperatures for different years were then averaged for the whole year set.

• Usage: useful for insight about temperatures when precipitation is abundant.

Bio09

• Definition: Mean air temperature of the driest quarter (°C/10)

• Calculation: similar to Bio08, but the lowest cumulative precipitation was sought

• Usage: similar to Bio08, it may be a useful variable to relate temperature and precipitation.

Bio10

• Definition: Mean air temperature of the warmest quarter (°C/10)

• Calculation: for each year, the three-month set with the highest mean temperature was calculated,

and these values were subsequently averaged.

• Usage: general notion of the temperature of the warmest season of the year.

Bio11

• Definition: Mean air temperature of the coldest quarter (°C/10)

• Calculation: similar to Bio10, but the lowest mean temperature was sought
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• Usage: similar to Bio10, provides a general knowledge of temperatures on the coldest season.

Bio12

• Definition: Annual Precipitation Amount (kg/m2)

• Calculation: cumulative precipitation values of each year were summed, and then averaged ac-

cording to the 34-year time period.

• Usage: may be an important measure when accounting for total water availability for a specific

area, for the whole year

Bio13

• Definition: Precipitation Amount of Wettest Month (kg/m2)

• Calculation: maximum value between precipitation amounts for each year, averaged

• Usage: might be useful to account for extreme climate conditions, such as floods or extreme lack

of precipitation. It might not have been the same month throughout the year set.

Bio14

• Definition: Precipitation Amount of Driest Month (kg/m2)

• Calculation: similar to Bio13, but with the lowest precipitation value, averaged

• Usage: similar to Bio13. A particularly high value in this variable means the water availability is

high throughout the year.

Bio15

• Definition: Precipitation Seasonality (kg/m2)

• Calculation: standard deviation of precipitation amounts for each month, averaged for the time

period

• Usage: Coefficient of Variation of precipitation. A high value indicates greater water variability,

which may be important for some species that require a constant water amount.

Bio16

• Definition: Mean monthly precipitation amount of the wettest quarter (kg/m2)

• Calculation: similar to (Bio08), with calculated precipitation amounts.

• Usage: more than knowing the wettest month, this variable refers to the wettest three-month

period, guaranteeing insight about precipitation values for a larger period of time.

Bio17

• Definition: Mean monthly precipitation amount of the driest quarter (kg/m2)

• Calculation: similar to (Bio16)

• Usage: similar to (Bio16), it refers to precipitation values for the driest period of the year, which
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may be considerably more than the driest month.

Bio18

• Definition: Mean monthly precipitation amount of the warmest quarter (kg/m2)

• Calculation: for each year, the three-month period with the highest mean temperature was found,

its precipitation calculated, and lastly averaged.

• Usage: useful to relate precipitation to temperatures, especially in the warmest quarter, when

water needs are more prevalent.

Bio19

• Definition: Mean monthly precipitation amount of the coldest quarter (kg/m2)

• Calculation: similar to (Bio18)

• Usage: might provide useful information of how precipitation relates to low temperatures, in a

period where vines might be in dormancy.

Figure 3.5: Climate variables, respective meaning and units.
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In this chapter, we will go through the experimental process, from the initial data cleaning to the

creation of Principal Component Analyses (PCAs) and region demarcation. We will also explain the

statistical tools applied.

4.1 Data preparation

4.1.1 Land cover data

DGT originally provided the COS dataset fragmented into sections of Portugal, for easier handling and

downloading. Those sections, which include, but are not limited to, North Alentejo, South Alentejo and

Coastal Alentejo, were previously compiled into a single shapefile (file of vector features) by the NBI

team, and clipped to remove unnecessary map area. After the compilation and clipping, the COS files

received no further preparation.

The specific dataset used for the water habitat was gathered from the online repository, where it was

split by many small areas of the globe. We selected the .tif file that included Portugal, this file was then

clipped to maintain the area at study, and filtered by the attribute “Occurrence”, with occurrence >= 50%,

to only keep polygons of water that are actively present for at least half of the year.

4.1.2 Climate data

The bioclimatic variables were considerably processed by NBI and already ready to be utilized from

the beginning of this project. The dataset, as mentioned, offers their data separated by twelve parts,

corresponding to each month of the 1979-2013 time period. Since the scope of this project was not a

climate variation throughout the months, the NBI team averaged the twelve months in advance, resulting

in the mean of values of each variable from 1979 to 2013. The geographical range of this dataset is

global, so each file also had to be clipped to exclusively maintain the Alentejo area.

4.2 Mathematical background

4.2.1 PCA – Statistical analysis

The main statistical tool in this project is the Principal Component Analysis (PCA), a technique widely

utilized to lower data dimensionality and improve computational efficiency. PCA, most appropriately

used for a dataset of three or more variables, summarizes data into new and relevant features, leaving

behind redundant information or outliers that could potentially interfere with final results. In this particular
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context, PCA was not only a cleaning aid, but was also used to portray data visually and reduce it to the

essential information.

An important concept in this tool is the concept of variance, mathematically symbolised by σ2. In

statistics, variance is a measure of dispersion of a variable, meaning how far the values of a variable are

to its mean.

Given multiple variables, the one with higher variance will explain data variability better than others.

A variable with low variance may not be relevant: in a dataset where samples refer to wine, and are

described by their properties, like alcohol content, price or acidity, a certain property with the same

value consistently for every wine sample (low variance) would not aid the characterization. With this

technique, that variable would have a very low attributed importance.

To apply a PCA, features are expected to go through a normalisation process. Normalisation is nec-

essary for PCA due to that consideration of variance. Considering two example features, if the variance

of the first variable is significantly higher than the other, this would wrongly lead to PCA considering the

first variable a better descriptor of the dataset. With it, all variables have a much more similar variance

value, and are considered of equal importance for this tool, which is the intended. Normalisation consists

of rescaling all values to a specific range, in this project being from 0 to 1.

The formula utilized to perform that transformation, having x = (x1, ..., xn) as a set of n observations,

is:

xi,normalized =
xi −min(x)

max(x)−min(x)
, (4.1)

with i = 1, ..., n.

The denominator, max(x)−min(x), is also named the range of the dataset.

Having determined the minimum and maximum values, each value is subtracted by the minimum

and divided by the range, resulting in a rescaled dataset, but with identical variation between values.

Figure 4.1 displays the variance of the bioclimatic variables before normalisation, and after, and the

maximum and minimum values for range comparison.

The output of this technique is principal components (PCs), which are linear transformations of the

original data. The first principal component is a vector that represents the maximum variance direction,

the second principal component describes the second most important variance direction, and so on.

In Figure 4.2 below, a graph describes a simple two-dimensional dataset. The direction in which the

variability is most significant is displayed in red, and it is the first PC returned by the technique.

Referring to the wine example, the first PC could be 0.5 ∗ acidity + 2 ∗ alcohol content, meaning that

this linear combination would be a more summarized way with which we could describe a wine sample,

together with the rest of the PCs.

The calculus of each PC, how that linear combination is calculated, comes from the eigendecompo-

sition of the original matrix. The premise behind eigendecomposition, the creation of eigenvalues and
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Figure 4.1: Variance table pre- and post-normalization.

Figure 4.2: Example of PCA applied to a two-dimensional dataset.

eigenvectors, is that any matrix, multiplied by a vector υ, outputs the same as a certain value λ multi-

plied by that same vector. Each of these values λ are eigenvalues, and the vectors υ are eigenvectors

(demonstrations present on [27]).

This relationship between eigenvalues, λ, eigenvectors, υ, and the original matrix M can be de-

scribed as:

M ∗ υ = λ ∗ υ (4.2)

which is equivalent to

M ∗ υ − λ ∗ υ = 0 ≡ (M − λ) ∗ υ = 0 (4.3)

Internally, this technique will first calculate the eigenvalues of M , by solving the first part of the equation,
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(M − λ). In case of a 2x2 M , it was demonstrated to be equivalent to:

M − λ ∗
[
I 0
0 I

]
≡ M −

[
λ 0
0 λ

]
≡

[
(M1 − λ) M2

M3 (M4 − λ)

]

When replaced on eq. (4.3), we have

[
(M1 − λ) M2

M3 (M4 − λ)

]
∗ υ = 0

When the procedure calculates the determinant of
[
(M1 − λ) M2

M3 (M4 − λ)

]
and equates it to 0, it will

obtain the eigenvalues of the matrix, which are as many as the number of rows and columns.

From the eigenvalues it quickly obtains the eigenvectors, through the formula 4.2, and we have

reached our new variables.

4.2.2 Clustering – Machine Learning

Clustering is a widely used method for grouping information. Given a set of observations, clustering

algorithms intend to assemble such observations into groups, according to user-defined variables. They

can be applied to many fields, such as (a) the medical field, in which patients might be grouped by risk

of disease; (b) product recommendations, by clustering customers’ preferences and defining profiles; or

(c) to group documents or music by topic or genre.

Figure 4.3: Example of clustering algorithm on USA states [28].

When projected on a two-dimensional graph, it becomes easier to visualize clusters. The figure

below, fig. 4.3, exemplifies a clustering algorithm applied to states of the United States of America,

according to two Principal Components.

Between supervised and unsupervised machine learning, clustering is less commonly used for su-

pervised. A supervised learning algorithm refers to a set of observations in which samples are already
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labelled, and the model uses a small training sample to learn and be able to predict future observations.

Given the previous example of wine data, if the dataset had a label variable for classifying wine as “high

quality” or “low quality”, a supervised model would train with those examples. If the model was to be

given a new wine sample, with new values, it would be able to classify it based on the previous learning.

On unsupervised learning, namely clustering, there are no labels for a model to learn and train with.

Therefore, an unsupervised algorithm must cluster observations purely based on other factors, such as

the distance between them.

Figure 4.4: Example of supervised and unsupervised machine learning algorithms [29].

This project will use the ISO Cluster algorithm, a variation of K-Means, one of the most used tech-

niques for unsupervised clustering. ISO Cluster is an algorithm that initializes K number of cluster

centres (means), and assigns each sample to the nearest cluster. After the assigning step, the cen-

troids are recalculated, samples are reassigned them to the nearest one, and this is done iteratively until

convergence.

Figure 4.5: ISO Cluster, and K-Means, main formula of minimizing variance.

ISO Cluster attributes a sample to a specific cluster by calculating the variance within the cluster in

each step. For i = 1 until k, and for each observation x of the dataset, it will try to minimise the absolute

value between x and the cluster Si mean, µ. The cluster in which this value is minimised is the cluster

assigned to x.

The algorithm proceeds in the following manner:

• k number of clusters is chosen, and the algorithm initializes k aleatoric seeds to be the centroids

of the clusters.

• For each observation, ISO Cluster will calculate the Euclidean distance between the sample and

all centroids, on any number of dimensions;
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• The centroid which produces the smallest distance value will be chosen, and that observation will

belong to that cluster;

• This step is repeated for all observations of the dataset. In the end of this step, the centroids of

these new clusters will be generated;

• For all observations, the algorithm will calculate if adding one to a specific cluster will increase or

decrease the variance, and will choose the option that minimizes variance;

• When clusters converge and an iteration brings no new changes, the algorithm ends.

4.3 Analysis of climate data

This project was organized into three distinct steps, which are represented below in Figure 4.6:

Figure 4.6: Steps of climate study until region demarcation.

All 19 bioclimatic variables were analysed for their correlation, the ones which provided redundant

data were removed, and it was performed a final PCA. This second PCA showcased the most relevant

bioclimatic features, and created new variables, with which we have performed a clustering algorithm to

demarcate new regions in Alentejo.

4.3.1 Principal Component Analyses

The first PCA was created through the ArcGIS Pro menu “Principal Components”, pictured in Figure 4.7.

The input raster bands in this initial PCA were the nineteen bioclimatic variables, normalised as ex-

plained above, and it created the maximum number of PCs. This allows each PC to be as accurate as

possible.

With the Raster Calculator tool, the equation eq. (4.1) was applied to each bioclimatic variable. Se-

lecting each raster from the list of variables currently on the Map, the .minimum and .maximum functions

are available as ArcGIS may calculate statistics automatically. The output is a new raster with the same

value distribution, but on a different range.
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Figure 4.7: Normalization procedure and menu of the Principal Components tool.

On the Principal Components menu, the input raster bands are the ones previously calculated. Since

all climate variables have the same spatial reference, extent and Coordinate Reference System (CRS),

no changes were necessary in the Environments panel, where these parameters, cell size and others

can be altered.

The output for this PCA produced a map with the first three components displayed (Figure 4.9.

ArcGIS allows users to produce another output, the “Output data file” option on the menu: a text file

containing the covariance matrix, correlation matrix, eigenvalues, and eigenvectors of this technique.

Given the nature of these variables, and that some are derived from other ones in the dataset, it’s

expected that the whole dataset is very correlated [30]. Extremely correlated variables are generally not

useful and are discarded, so we chose to produce the text file to verify the coefficients and proceed with

data cleaning.

The full correlation matrix for this PCA is depicted in Table A.1, on Appendix A. In a light red back-

ground are the cells with an absolute correlation value, henceforth |ρ|, superior to 0.7. Being a common

threshold used in literature [30], |ρ| > 0.7 was tested as being a rigorous value for biologic variables,

while still preserving a sufficiently high amount of information.

In Table A.1, we see that two pairs of features were found to be identical (|ρ| = 1): the pair Bio09 and

Bio10, and the pair Bio17 and Bio18. Considering the meaning of these variables in Figure 3.5, this is

not unexpected. As Portugal is a Mediterranean country, the driest quarter of the year, the Summer, is

typically also the driest [31,32], similar to other countries in the same Koppen climate classification [33].

We therefore proceeded to eliminate two of these features, Bio10 and Bio18.
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Bio03, which refers to isothermality, is a measure of how temperature oscillates on a daily basis and

its relation to an annual variation. We found its purpose to not be clear and easily explainable, and with

its very low significance in the first three Principal Components, it was not included in the final variable

set.

Having eliminated the aforementioned variables, we analysed the matrix of eigenvectors, annexed

on Table A.2 in Appendix A. As explained in the previous subsection, each principal component is an

eigenvector of the original matrix, and each cell represents the weight of the respective feature on the

PCs. A higher absolute value indicates a higher weight on that component. On the table fig. 4.8,

we displayed the three most relevant variables of the first three PCs. Only the first three PCs were

considered, as they explain 93% of all variability, achieving a balanced compromise of simplicity and

small data loss. The figure represents the correlations of those relevant variables, ordering them per

importance.

Figure 4.8: Compiled correlation matrix, ordered by variable importance. Correlations of each variable with itself
were not included.

Data was then cleaned in the following way. The first variable, Bio07, is closely related to Bio04 and

Bio02, which is expected and will be mentioned in chapter 5. The statistical tool considered them to be

the set of variables that describe the most variability of this dataset, therefore they were not eliminated.

The next variables, Bio05, Bio06, Bio08, Bio09 and Bio11, being highly correlated to Bio07 and having

low weights on all principal components (per A.2, were discarded, as they were redundant and did not

contribute to the PCA. After analysing relationships of Bio04 and Bio02, no other variable could be

eliminated. In the next set, Bio17 and Bio14 eliminated no variables, however a new feature, Bio19,

could be discarded due to its correlation with Bio12. The third principal component had no contributions

to the elimination of variables, so the process of data cleaning ended.

This final set of variables, the ones most relevant after cleaning, were used to create the final PCA.

This PCA has also created a map output, describing the variables across the surface. The first PC is

displayed in red, the second PC in green, and the third PC is displayed in blue, creating all colours in the

RGB spectrum.
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Figure 4.9: Output from Principal Components Analysis of the final ten bioclimatic variables, Alentejo Region. The
three first components are pictured here in RGB format.

4.3.2 Regionalization

Describing the Alentejo region through principal components already allows some interpretation and

insight, but it’s necessary to demarcate regions and describe them climatically for future wine growing

investment. It was therefore decided to experiment with different methods, for a more accurate result.

4.3.2.A Colour analysis hypothesis

When producing the PCA, it outputs a map with the three RGB components. Each colour exists in a

range from 0 to 255, and specific values in all three components create a new colour. Some examples

of RGB values and their corresponding colours are below, on figure fig. 4.10.

As per fig. 4.9, some colours can be grouped together through simple observation: the top right

corner, referring to Serra de S. Mamede, is predominantly yellow, whereas the coast has a varying

green colour, with blue undertones near the southernmost part of Alentejo. Given that these values of

colour derive from the values of the first three PCs, it is a plausible hypothesis that similar RGB values

present similar climate characteristics.

Histogram analysis is a usual approach. In literature, colour histograms are common for representing

and segmenting images, in what is called histogram-based thresholding. For a certain image, at least
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Figure 4.10: Some colours and their corresponding RGB values. Image from [34].

Figure 4.11: Histograms of the first three principal components.

three histograms, one for each RBG component, are built, then combined to calculate which value

combinations are most frequent [35, 36]. A preliminary analysis was made to explore this technique,

which were found out to be unsatisfactory.

4.3.2.B Clustering

Since the objective is to create regions of this area of Portugal considering climate data, and there are

no previously labelled groups a point could belong to, it is appropriate to apply an unsupervised machine

learning method. The algorithm applied was ISO Cluster, an algorithm mainly utilized on ArcGIS.

On the tool menu in fig. 4.12, in “Input Raster Bands”, the second PCA performed with ten variables

was chosen, as a summarized way to describe data variability with no correlation between variables

(principal components). The number of classes is the final number of clusters, and the number of seeds

the ISO Cluster algorithm will initialize. The minimum class size remained the default, as the number

of observations in the dataset (number of raster cells) in relation to the number of asked clusters is

sufficient to create statistically valid classes. The sample interval, an optional parameter seen on the

tool menu, is the frequency with which the algorithm chooses a cell to perform calculations on each

iteration. It was also run with the default value, a very small one in comparison with the dataset, which

produced longer and more thorough iterations.
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Figure 4.12: Parameters to configure the ISO Cluster Unsupervised Classification algorithm.

In the next image, fig. 4.13, we see the outputs of the clustering algorithm, from 5 to 10 clusters. ISO

Cluster created, for each image, k aleatoric cluster centres, and, based on the values of each point, they

were annexed to the nearest one, which evolved until convergence.

Figure 4.13: Composition of the clustered Alentejo map, from 5 through 10 classes.
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A key parameter of a clustering algorithm is the number of clusters to create. The optimal number

is largely situational, depending on the context and goal of performing a clustering classification. For a

general sense of the major zones, it might suffice to categorize into 5 classes; a more specific setting

could benefit from 10 classes or more, depending on the importance of changes in temperature or

precipitation. One degree Celsius of difference between two clusters, for example, might be too high

and need additional classes in some situations.

Nonetheless, in a general setting, to create too few clusters would be to misclassify the data, and to

not provide as much information as the algorithm could. Too many would fall into a loss of significance

over each cluster, as they would represent very small subsets of data and, at a maximum degree, would

exist one cluster per observation.

After gathering data about the ecological context of Alentejo, we decided to perform the algorithm

with 5, 6, 7, 8, 9 and 10 clusters. Less than 5 would provide little information, too broad for the scope of

the project, while more than 10 classes was found, by consultation with experts at the NBI company, to

be too specific for the area under study.

Through the tool that is explained further, Zonal Statistics as Table, we were able to gather data

to apply the Student t-test, followed by the Analysis of Variance (ANOVA), statistical tests for cluster

significance. Succinctly, both tests calculate the mean and variance of populations, compare them and

test the null hypothesis. In this setting, the null hypothesis states that their means are approximately

identical, therefore the cluster is not robust enough to be relevant, and may be dissolved. If it’s found

that this hypothesis may be rejected, then there is statistical significance in the tested clusters. The

t-test may only be applied to two groups, while ANOVA applies to two or more populations. The chosen

α = 0.05 indicates that, for the null hypothesis to be rejected, a 95% or more Confidence Interval for the

difference of means must be reached. The p-value, the value outputted by the statistical tests to prove

the null hypothesis, must also verify p-value < 0.05 for it to be rejected [37,38].

On Appendix A is a table, Table A.4, with mean values of all variables, plus the first and second

principal components, for the 10 cluster file. After gathering the number of observations (pixels), means

and standard deviation values of the first PC, the introductory t-test was applied. The groups chosen

were Cluster 3 and 5, for their consistently similar values throughout all variables, which could indicate

a dissolution of these specific clusters. The p-value for this test was 0.000, meaning that the tested

clusters were significant.

To test all clusters amongst themselves, the ANOVA was applied. Through the same gathered values,

it revealed that all 10 clusters are statistically significant, with p-values = 0.000 for each calculated

comparison.

The ANOVA, a widely used method in statistical analysis, is considered a valid assessment of sig-

nificance [39, 40]. Possibly due to the large number of observations per population, small changes in
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means or standard deviation values were considered sufficiently relevant to justify the existence of all

classes.

To try to capture small, and possibly relevant, microclimates in this area, and not do a too simplistic

analysis, the 10 class clustering iteration was the one chosen to proceed with the statistical description,

and will be the one presented henceforth.

Figure 4.14: Zonal Statistics As Table,
in ArcGIS.

The final step to analyse climate data across Alentejo is to be

able to study bioclimatic variables according to the clusters. Two

ArcGIS tools appropriate for this situation are “Zonal Statistics”

and “Zonal Statistics As Table”, which have similar parameters.

Given a raster that contains the regions with which to split the

data, and another input raster with the data to be summarised,

both tools will calculate statistics according to each cluster, one

through a visual map and the other by creating a table.

Some statistics that the software may calculate are Sum,

Mean, Standard Deviation or Range. Using “Zonal Statistics As

Table” we chose Mean and Standard Deviation, both to analyse

cluster validity, and to describe through the mean how each bio-

climatic variable differs across the map.

An example of a Zonal Statistics table and the results of this

analysis are presented in Chapter 5.

4.4 Land cover data

4.4.1 Initial PCA

COS data presents the location of different habitats on the map, such as water bodies or invasive plant

species, and this project’s motivation is to describe the presence of certain habitats with regard to a

specific climate region. One way to describe the presence of a habitat across a surface is through a

Euclidean distance calculation for the entire map. Each cell indicates the nearest distance, in meters, to

an instance of that habitat, which will create a map indicating areas of strong and weak presence of the

variable. These distance rasters will then incorporate a PCA, to analyse how they are distributed across

the map.

Therefore, we proceeded to calculate the Euclidean distance maps of all variables, for which base

rasters are necessary.
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Figure 4.15: Aggregate menu on ArcGIS
Pro.

Due to an error that will be mentioned in the final chapter,

Chapter 6, the Euclidean distances were not being correctly

calculated. The solution was found to be a conversion to con-

siderably smaller resolution rasters, to correctly maintain all ar-

eas. The consequent upscaling to rasters with a larger cell

size was made using the tool Aggregate, which aggregates a

specified number of smaller pixels into a new one on the out-

put raster, of a higher cell size. Although not mandatory, this

allowed for both datasets, climate and of land cover, to have

similar precision and scale.

The Aggregation Technique parameter on Figure 4.15 was

set to the “Maximum” option. A raster that is created from a

vector data file, such as polygons, serves the main purpose of

conveying features’ location. Such kind of rasters are usually composed of pixels with only a value of 0

or 1, indicating that that specific cell is present, or not, similar to the example on Figure 3.2. “Maximum”

allows for the upscaled (larger) pixel to automatically assume the value 1 (therefore being present in the

output) if a single pixel that composed it presents the value 1, even if the majority is valued 0. Other

options that the software provides are “Majority” or “Minimum” of the small sized pixel values.

This creates a raster with 1000 meter cell size, which decreases precision but improves file size

and processing speed. A comparison of all three file types is represented in Figure 4.16 and will be

commented further.

Figure 4.16: An example of a COS variable as (a) a shapefile, (b) a 25 meter cell raster and (c) a 1000 meter cell
raster.

With the 1000 meter rasters, we calculated the Euclidean distance map for each variable. It signals

0 when the cell is coincident with an area of the habitat, and increments by 1000 as it gets farther; the
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value, should be noted, is referent to the nearest area of all those that impact a certain cell.

An example of a distance raster is below, on fig. 4.17, together with the respective shapefile for

comparison.

Figure 4.17: An example of a distance raster and respective shapefile.

Before applying a PCA the rasters were normalized, as explained in the previous subsection. After

that procedure, the PCA was performed. It served as an exploratory analysis measure, to attempt to form

some conclusions on potential areas of interest. It produced a map with the first three PCs, presented

further.

4.4.2 Buffer calculation

Apart from the PCA analysis, this project decided to explore a different approach on intersecting COS

and climate data. Having the clustered map, we aim to describe how habitats are scattered throughout

Alentejo, therefore we aimed to intersect COS variables with each region.

However, some habitats’ impact is not limited exclusively to their area, but have a wider impact. The

presence of some variables, such as water bodies, might completely alter their location, from the soil

composition, plant health, to the habitats of pollinating insects and larger animals.

To cater for that, we created buffers. A buffer is an area created around all sides of a feature,

utilized here to portray the reach of a habitat’s influence. The decided area of influence was 300 meters,

counting from the edges of the feature. A close zoom on a buffer is depicted on fig. 4.18. The buffer

area is in dark blue, whilst the water body that is being buffered is the lighter blue polygon in front.

ArcGIS possesses the Buffer tool, on the Analysis Toolbox, to create these zones. The Input Features

are the shapefiles of each habitat (it is necessary to be in vector form, not raster) and the Output Feature
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Figure 4.18: The Buffer tool (a) and an example of a buffer (b).

Class option is the name of the buffer output file. In the Distance field we chose 300 meters, and in the

Dissolve Type choice, the “Not dissolve” option. If chosen “Dissolve all”, all buffers would be considered

one single polygon. This would greatly hinder future calculations, as there wouldn’t be information about

the size of each feature, and consequently wouldn’t be possible to count how many instances of a habitat

exist in a specific cluster, or the area that those instances occupy.

Because cluster areas are important for future statistics, if there are habitat polygons near each other

with overlapping buffers, the buffer area in total would be miscounted. Overlapping areas of influence

should count as a single one, but their areas would be summed, largely overstating the real value (see

fig. 4.19 for further clarification). The Dissolve Boundaries, a more specific tool to handle boundaries of

polygons, allowed for a join of overlapping buffers, flattening them and unifying their area.

Figure 4.19: An example of (a) boundaries not dissolved and (b) dissolved.

For reasons stated earlier, these buffers were applied on specific variables: water bodies, native

forest, riparian areas and scrubland.

An important detail of the riparian features is their possibly negligible area, because of their nature

as usually thin streams of water, being length a more significant measure. On final calculations of area
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percentage on each cluster, riparian features would have a minimal presence, and their substantial

relevance could be undervalued. To consider this issue, ArcGIS provides the Polygon to Centerline tool,

particularly designed for hydrographic polygons. This tool creates lines to represent bodies of water,

specifically through their centre; the tool Polygon to Line, that might be considered valid in this situation,

creates lines around the polygons, which would be an error.

Figure 4.20: An example of a riparian area polygon, with a centerline.

Creating centerlines allowed for a study of riparian zones’ length, in meters, in final descriptive statis-

tics, besides the area provided by polygons.

At this phase, we had shapefiles of buffers with dissolved boundaries of these four variables, and

could proceed to the intersection between them and the climate clusters.

4.5 Criteria compilation

To use the necessary tool to calculate statistics, the clustering file had to be converted to polygons. Due

to the nature of the clusters, that contain a significant amount of small areas spread throughout the map,

the polygon conversion outputted the same small areas. Each cluster was then defined by multiple small

polygons and a usual larger polygon, all of which had to be considered the same class. In the Edit tab of

the main screen, all polygons with the same gridcode (a unique number assigned to each cluster during

the ISO Clustering process) were merged, creating the final shapefile needed.

The “Tabulate Intersection” was the method used for the final statistics. This tool receives a shapefile

that defines the zones, which refers to the previously calculated clusters as polygons; another feature file

with the variable to calculate the desired statistics of, and it outputs a table with their data of intersection.

This tool differs from the one utilized by the bioclimatic dataset: instead of means, sums or standard

deviations, “Tabulate Intersection” focuses on the area occupied by the variable on each cluster, and

calculates the percentage relative to the whole cluster area.

The outputs of this tool are the final statistical descriptions of this project, which will be analysed in
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Figure 4.21: The Tabulate Intersection tool.

the next section.
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5.1 Results and Discussion

5.1.1 Climate data

With the PCA we have gained insight on what variables explain the most variability of the Alentejo climate

dataset, so it is useful to picture some, as well as others of general interest, for future interpretation.

In this page we depicted Bio01, the annual mean temperature (meanings of bioclimatic variables in

fig. 3.5), and Bio07, deemed the variable with the highest weight on the first PC, which regards to the

annual temperature range – the lowest temperature of the year subtracted from the highest temperature,

for the 1979-2013 period.

In the first image, we see that the central and south areas of Alentejo present a higher annual mean

temperature than the northeast. Topographical features are very well detailed here, with the Guadiana

river and other small rivers presenting, interestingly, the highest annual mean temperatures. Bio07 is

displaying how different the highest temperature in the Summer is related to the lowest temperature in

Winter. Near the coast the range is low, and it increases to the east, presenting higher variability.

Figure 5.1: Bio01 (a) and Bio07 (b) across the Alentejo map. Red colour indicates higher values.

From Bio12 we see that North Alentejo, as well as the southernmost area, has the highest pre-

cipitation rates, while the interior, as expected, presents less cumulative precipitation. The centre and

south areas of the map present higher degrees of variability, meaning that monthly precipitation values

can vary greatly, while the north, coincident with Portalegre district, is more stable throughout the year.

Bio17 highlights how the south of this region can reach extremely low precipitation levels during the dri-

est quarter, where drought is a common situation. The northernmost region showcased, through these

variables, a more stable flux of precipitation throughout the year, one of the highest yearly precipitation
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Figure 5.2: Bio12 (a), Bio15 (b) and Bio17 (c) across the Alentejo map. Darker colours indicates higher values.

levels, and the most humid dry season. We can then hypothesize that this area is more resilient to

drought and favourable to species that may need higher water availability.

The map result of the PCA, previously shown on Figure 4.9, may be described by three individual

bands (principal components), the first two relevant to present on their own. It is also pertinent to give

special emphasis to the second component, when layered with the water habitat of COS data.

Figure 5.3: First two bands of PCA on climate data.

The first principal component, displayed in red, is a measure of temperature variations throughout

different periods of time, and inclues Bio07 and of the most relevant. This map of temperature range

is exhibiting the region’s continentality. Continentality is an observed climate condition that states that

temperatures have smaller variations near a large water body, such as an ocean, and larger variations
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as one gets farther from the coast [41]. It is a known property and prevalent in countries with a large

coastal area, such as Portugal. Near the ocean, temperatures are consistently temperate and with a low

range; near the opposite border, shared with Spain, temperatures can vary greatly between the day and

the night, and between summer and winter.

According to the eigenvectors table, we can understand that the second principal component is an

axis of combined precipitation variables. With no DEM (digital elevation model) data applied to the

technique, PCA recognized topographical features, like changes in elevation, through precipitation. The

water habitat layer overlaid on this map shows that the area with the lowest values, in darker colour,

overlaps with rivers and riparian zones. This means they have a specific precipitation pattern, identifiable

through this method.

Considering the clustering algorithm applied to the PCA variables, some statistics were calculated for

each class, to better understand, on a cluster basis, temperature and precipitation values. These values

were gathered using the two most descriptive variables, Bio07 and Bio17, and the average minimum

and maximum temperatures registered, Bio05 and Bio06.

Figure 5.4: Clustered map of Alentejo with statistics for Bio07 and Bio17.

The continentality feature is observed comparing data of Cluster 1 and 10: the annual temperature

range in Cluster 1 is 17.21 °C, while in Cluster 10 it is 26.34 °C. In a future implementation of a grape

variety that needs constant temperate weather, coastal clusters present themselves as a better choice,

temperature-wise.
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Figure 5.5: Clustered map of Alentejo with statistics for Bio05 and Bio06.

The temperature values for Clusters 1, 2 and 4 are similar, with Cluster 1 exhibiting the least temper-

ature range. It should be noted that, from the three clusters along the coast, Cluster 1 is the smallest:

both Cluster 2 and 4 cover area that might be considered as belonging to the centre of Alentejo, less

affected by continentality.

On the eastern border, Cluster 6, 7, 8, 9 and 10 present very similar levels of temperature range,

with only one degree of difference between them. That is clearly consistent with their annual minimum

and maximum temperature values. Cultivars appropriate for hot climates, which tend to produce sweeter

and stronger wine, would be a suitable choice for new wine growing investments; if paired, however, with

bodies of water or riparian areas, as rainfall values only seem consistent on Cluster 10.

Cluster 3 is the area with less precipitation amount on the driest quarter, and even in cumulative

annual precipitation.

5.1.2 Land cover data

After converting all habitat variables into new raster files and creating Euclidean distance maps, they

were individually normalised to produce a PCA, whose output is displayed on fig. 5.6.

We understood with this output that PCA created artificial lines, which don’t align with any previously

recorded topographic feature or specific habitat placement. They derive from an artificialization of the
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Figure 5.6: Principal Component Analysis on COS data.

Euclidean distance maps, with no geographical value, therefore the result was suboptimal. We have also

detected a lack of patterns in land cover. While some habitats are semi-natural, their placement was

most likely planned, driven by external decisions such as financial, social or political. We can conclude

with this PCA application that a numerical manipulation and transformation of COS data doesn’t allow for

meaningful conclusions, and that technique descriptive, statistical approach is more useful in Alentejo.

5.1.3 Integrated analysis

More than a climate description of Alentejo, in part already addressed in literature with respect to climate

change challenges [3, 42], this project’s motivation is to encompass that climatic description with land

cover data, specifically with variables that are here hypothesized as semi-natural and positive (recall

Chapter 2).

This semi-natural variable distribution across the map is displayed on Appendix B with accompanying

maps; a summarized table version is below.

Cluster 3, and, to a lesser degree, 2 and 1, have considerably low precipitation values during the

driest quarter, and precipitation amount is very inconsistent throughout the year. The three clusters

have very substantial riparian length, but further research is needed to test if riparian areas might suffice

for an extensive vineyard’s water needs.

Cluster 1, which encompasses most of the Odemira municipality of Beja, is the second highest

valued cluster in shrubland area, with 47.5%. From the article by Paredes et all [5], it might be beneficial

to employ that shrubland area to provide more complex and diverse biodiversity for vineyards; however,

it is the second less fertile in water availability, and, as seen earlier, also low on precipitation values.
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Figure 5.7: Area percentage, per cluster, of each semi-natural variable.

Therefore we may say that this specific area is not for cultivars with high water needs, which is one of

the most important factors for vine development [43].

The Cluster 10, which represents the Serra de S. Mamede Natural Park, is the cluster highest in

shrubland area. Its water body percentage is low, and is the cluster with the second lowest value of

riparian length. Despite these values, it is one of the clusters with higher precipitation values throughout

the year, and its annual temperature range provides a comfortable interval for vineyards to have a proper

dormancy period, where cold is a relevant factor. We may suggest this cluster, for all reasons described

above, a potentially good candidate for new vineyards, proving the cultivars chosen are adequate for the

high Summer temperatures.

Cluster 4 stands out as a seemingly good candidate for wine growing. It has a considerable riparian

length and medium water availability; considerable precipitation amounts, which don’t reach critical levels

during the warmest quarter; and has a medium precipitation variability. It is also fertile in native forests

and shrubland, which are being hypothesized as being beneficial for vineyards. By land cover data, this

area is highly urban. Further analysis of this area’s land planning might prove beneficial, to utilize this

area to its full potential.
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In this chapter we will present this thesis’ conclusions and suggested future work.

6.1 System Limitations

There is some lacking data that would have been beneficial to analyse, such as aquifers. When analysing

merely water bodies at the surface, we may be wrongly estimating water availability, therefore it is sug-

gested an aquifer analysis to complement this study.

In COS, the classification “Olive grove” was assumed to be referring to intensive olive groves, and

therefore prejudicial for a vineyard, due to specific management practices that worsen soil health and

surrounding biodiversity. That classification was not explicit regarding that management, and some

traditional olive groves might have been misclassified, and could be a positive presence on Alentejo’s

vineyards. A clarification regarding that specific class should be sought with DGT.

6.2 Conclusions and Future Work

Climate suitability for wine growing is highly complex, and dependant on multiple factors. Per Gregory

Jones, renowned viticulture expert and climatologist, the minimum temperature interval for proper wine

growing is [-1, 18.9] for the growing period [44], which is, in the Northern Hemisphere, the Spring and

Summer seasons. From temperature values alone, a producer would theoretically be able to produce

wine on all clusters defined in this project. Water availability is, however, a very important factor for

vines, and also, proven by Paredes et al, their surroundings.

Cluster 4 and Cluster 10 are, from the data collected and analysed, good candidates for future wine

growing, due to their medium to high rainfall values, appropriate temperatures (although for different

cultivars), and very high percentage of semi-natural variables.

We have described the presence of four semi-natural variables in Alentejo, and, within that descrip-

tion, elaborate on the area’s climate. NBI, partnering with CVRA, may deepen this work by obtaining

productivity data from wine producers. Having a stable climate, productivity and semi-natural habitat

presence may be correlated, to further discover relationships between them. A positive correlation would

not only aid in controlling pests and lower insecticide applications, but it might incentivize general habitat

conservation, which might bring benefits to Alentejo’s climate, but also flora, fauna and population.
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A
Tables

As mentioned in chapter 4, the first table in this Appendix shows the correlation between the nineteen

bioclimatic variables, which the PCA calculates automatically. Except for the correlation of each variable

with itself, all cells of the matrix whose absolute value is superior to 0.7 are marked in red. The second

table below shows the eigenvectors calculated by the same PCA. Eigenvectors produced by the tech-

nique are the principal components, and each value is the weight of the corresponding variable on that

PC. On the first three PCs, the three variables with the higher weight value are marked in green. Lastly,

on Figure A.1 we see how much data variability each Principal Component explains.

Table A.3 presents the eigenvalues of the second, and final, PCA, with the first three variables of the

first three PCs also highlighted.

Table A.4 contains, for each of the 10 clusters produced with ISO Cluster, the number of observations

per cluster and the mean values of the final ten bioclimatic variables. The mean values of the first and

second PC are also listed.
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Variables Principal C. 1 Principal C. 2 Principal C. 3 Principal C. 4 Principal C. 5
Bio 01 -0,027958 0,167132 0,205055 -0,041703 0,383784
Bio 02 0,372245 0,083815 -0,134326 0,262455 0,022927
Bio 03 0,130150 0,054812 0,123826 0,900006 0,080351
Bio 04 0,388698 0,062022 -0,240154 -0,178825 -0,027109
Bio 05 0,320872 0,186521 -0,055962 -0,045436 0,233648
Bio 06 -0,223647 0,067567 0,217370 -0,056393 0,215819
Bio 07 0,389371 0,076732 -0,202872 0,011614 -0,003411
Bio 08 -0,188475 0,126604 0,220058 0,059224 0,284280
Bio 09 0,219265 0,204653 0,028331 -0,161353 0,347419
Bio 10 0,219265 0,204653 0,028331 -0,161353 0,347419
Bio 11 -0,186437 0,106662 0,237072 0,033240 0,294365
Bio 12 -0,026912 -0,334092 -0,173702 -0,021839 0,324542
Bio 13 -0,104914 -0,236093 -0,346981 0,090083 0,239297
Bio 14 0,236434 -0,370478 0,258049 -0,084156 0,000600
Bio 15 -0,285927 0,131887 -0,377571 0,056720 -0,058408
Bio 16 -0,091400 -0,264006 -0,301640 0,036547 0,261251
Bio 17 0,170676 -0,394198 0,279993 -0,022991 -0,006954
Bio 18 0,170676 -0,394198 0,279993 -0,022991 -0,006954
Bio 19 -0,074867 -0,315099 -0,248262 0,063595 0,317167

Variables Principal C. 6 Principal C. 7 Principal C. 8 Principal C. 9 Principal C. 10
Bio 01 0,098191 0,057189 -0,146086 -0,115544 0,049869
Bio 02 -0,019133 -0,010674 0,136884 -0,030455 0,361951
Bio 03 0,052751 -0,012400 -0,119459 -0,010463 -0,111822
Bio 04 0,030739 0,040272 0,079208 0,135063 -0,197040
Bio 05 0,027902 0,029828 0,050812 -0,070657 0,012732
Bio 06 0,023585 -0,002093 -0,092515 -0,158819 -0,048826
Bio 07 0,001549 0,021123 0,104497 0,070568 0,044800
Bio 08 -0,004263 -0,063052 0,769960 0,464252 -0,041043
Bio 09 0,111595 0,070816 -0,101483 -0,022184 -0,068120
Bio 10 0,111595 0,070816 -0,101483 -0,022184 -0,068120
Bio 11 0,048485 0,007924 -0,148986 -0,153608 0,144746
Bio 12 -0,300415 -0,091955 -0,065375 0,097994 0,683626
Bio 13 0,006334 0,021612 0,278074 -0,487738 -0,327962
Bio 14 0,491734 -0,693012 0,050671 -0,087198 0,022278
Bio 15 0,770544 0,231860 0,015116 0,093133 0,289974
Bio 16 -0,037727 0,015947 0,188854 -0,266671 -0,073058
Bio 17 0,121497 0,465155 0,063144 0,012589 0,012309
Bio 18 0,121497 0,465155 0,063144 0,012589 0,012309
Bio 19 0,029582 -0,059092 -0,391980 0,597383 -0,337018

Variables Principal C. 11 Principal C. 12 Principal C. 13 Principal C. 14 Principal C. 15
Bio 01 0,057823 -0,253081 0,640116 0,464873 -0,187236
Bio 02 0,592106 -0,315871 -0,003903 -0,256977 -0,233851
Bio 03 -0,322073 0,111790 -0,009489 0,016810 -0,025897
Bio 04 -0,258853 0,150080 0,172031 0,114877 -0,027769
Bio 05 0,222066 0,630846 0,145234 -0,043766 0,225635
Bio 06 0,151274 0,478146 0,076938 -0,384570 -0,361063
Bio 07 0,033282 0,048992 0,024933 0,203897 0,302305
Bio 08 -0,018439 -0,009468 -0,026930 0,020124 -0,004880
Bio 09 -0,219346 -0,191839 -0,302897 -0,157088 -0,126558
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Table A.2 continued from previous page
Variables Principal C. 1 Principal C. 2 Principal C. 3 Principal C. 4 Principal C. 5

Bio 10 -0,219346 -0,191839 -0,302897 -0,157088 -0,126558
Bio 11 0,199593 -0,061270 -0,261040 0,100571 0,666504
Bio 12 -0,284579 0,190125 -0,101059 0,157496 -0,135077
Bio 13 0,187132 0,048671 -0,308207 0,387682 -0,202448
Bio 14 -0,018542 0,005575 0,001257 0,004047 0,005050
Bio 15 -0,052922 0,087442 -0,004713 0,012480 -0,023165
Bio 16 -0,217702 -0,217305 0,418294 -0,526391 0,315610
Bio 17 0,023574 0,017860 -0,013160 -0,002193 0,004802
Bio 18 0,023574 0,017860 -0,013160 -0,002193 0,004802
Bio 19 0,313002 -0,025751 0,003685 -0,027366 0,020349

Variables Principal C. 16 Principal C. 17 Principal C. 18 Principal C. 19
Bio 01 -0,032625 0,027343 0,000000 0,000000
Bio 02 0,158918 -0,139452 0,000000 0,000000
Bio 03 0,028268 -0,019143 0,000000 0,000000
Bio 04 0,634634 -0,391051 0,000000 0,000000
Bio 05 -0,460367 -0,244790 0,000000 0,000000
Bio 06 0,415121 0,321978 0,000000 0,000000
Bio 07 0,125450 0,793735 0,000000 0,000000
Bio 08 0,007371 -0,004093 0,000000 0,000000
Bio 09 -0,104497 0,036448 0,001937 -0,707104
Bio 10 -0,104497 0,036448 -0,001937 0,707104
Bio 11 0,382176 -0,169159 0,000000 0,000000
Bio 12 0,028800 -0,023033 0,000000 0,000000
Bio 13 0,016526 -0,016274 0,000000 0,000000
Bio 14 -0,003631 0,002331 0,000000 0,000000
Bio 15 0,003432 -0,002338 0,000000 0,000000
Bio 16 -0,025899 0,024981 0,000000 0,000000
Bio 17 0,000859 0,000431 -0,707104 -0,001937
Bio 18 0,000859 0,000431 0,707104 0,001937
Bio 19 -0,019218 0,013863 0,000000 0,000000

Table A.2: Eigenvalues of the first Principal Component Analysis applied to bioclimatic variables.
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Figure A.1: Percentage of variability explained by each of the 19 Principal Components.

Variables Principal C. 1 Principal C. 2 Principal C. 3 Principal C. 4 Principal C. 5 Principal C. 6
Bio01 -0,04402 -0,18431 -0,17376 0,61295 0,70994 -0,04956
Bio02 0,456180 -0,13731 0,25671 0,10956 0,04619 0,72996
Bio04 0,477530 -0,11276 0,32858 -0,08657 0,06013 -0,61045
Bio07 0,477530 -0,13025 0,30927 0,00503 0,05059 -0,03988
Bio12 -0,0168 0,415050 0,17524 0,34179 -0,10625 -0,17836
Bio13 -0,12348 0,30784 0,373200 0,06573 0,0057 0,12415
Bio14 0,32261 0,409020 -0,30579 -0,3435 0,46993 -0,05872
Bio15 -0,37247 -0,11886 0,394690 -0,5484 0,48277 0,08757
Bio16 -0,10404 0,33932 0,31791 0,11478 0,00978 -0,02536
Bio17 0,24155 0,441010 -0,334070 -0,16093 -0,01089 0,16925

Eigenvalues 0,13244 0,07253 0,01594 0,00288 0,00171 0,00128
% Explained 58,149% 31,845% 6,999% 1,264% 0,751% 0,562%

Variables Principal C. 7 Principal C. 8 Principal C. 9 Principal C. 10 Principal C. 11
Bio01 0,18904 0,1238 -0,02106 0,01468 0,00172
Bio02 -0,08956 -0,03109 0,15227 -0,0685 0,35114
Bio04 0,17993 0,00352 -0,10108 0,00401 0,47425
Bio07 0,06619 -0,01457 0,01963 0,05863 -0,80421
Bio12 -0,0672 -0,09279 0,75549 0,22863 0,02574
Bio13 -0,02642 0,5428 -0,36167 0,55103 0,03428
Bio14 -0,53224 0,09411 0,02568 -0,00071 -0,00689
Bio15 0,22786 -0,07486 0,30142 0,03865 0,00275
Bio16 0,01415 0,34794 -0,03222 -0,79601 -0,05585
Bio17 0,76057 0,03915 0,01697 0,02439 -0,00247

Eigenvalues 0,00058 0,00028 0,00009 0,00002 0,00001
% Explained 0,255% 0,123% 0,040% 0,009% 0,004%

Table A.3: Eigenvalues and percentage of variability explained, for each Principal Component on the second PCA.
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B
Supplementary Images

On this appendix we present, for the clustered map of Alentejo, the geographical distribution of the four

semi-natural habitats, along with a table of area percentages. Image (a) shows the presence of water

bodies on Alentejo, specifically when their presence is significant 50% or more of the year. (b) highlights

the presence of shrubland, mostly distributed in the northernmost and southernmost parts of Alentejo

as per the table. (c) refers to native forest presence, and, lastly, the image (d) shows the presence of

riparian zones, described by their length in meters. The final image, (e), is a compilation of mean values

of bioclimatic variables Bio07 and Bio17, along with a labelled cluster map.
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Clusters 
Water 

percentage 

Cluster 1 3,8% 

Cluster 2 3,9% 

Cluster 3 5,7% 

Cluster 4 4,9% 

Cluster 5 6,6% 

Cluster 6 14,6% 

Cluster 7 6,5% 

Cluster 8 8,1% 

Cluster 9 4,1% 

Cluster 10 2,6% 

Clusters 
Shrubland 
percentage 

Cluster 1 47,5% 

Cluster 2 11,7% 

Cluster 3 21,6% 

Cluster 4 22,0% 

Cluster 5 6,6% 

Cluster 6 11,6% 

Cluster 7 9,0% 

Cluster 8 7,5% 

Cluster 9 17,1% 

Cluster 10 52,6% 

(a) 

(b) 
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Clusters 
Native forest 

percentage 

Cluster 1 10,2% 

Cluster 2 6,1% 

Cluster 3 6,0% 

Cluster 4 22,0% 

Cluster 5 10,9% 

Cluster 6 7,9% 

Cluster 7 4,9% 

Cluster 8 14,4% 

Cluster 9 8,2% 

Cluster 10 10,8% 

Clusters 
Riparian 

length (meter) 

Cluster 1 70 383 

Cluster 2 112 103 

Cluster 3 218 755 

Cluster 4 135 739 

Cluster 5 70 886 

Cluster 6 109 646 

Cluster 7 81 415 

Cluster 8 257 966 

Cluster 9 23 539 

Cluster 10 29 210 

(d) 

(c) 
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Clusters 
Bio07 

(°C) 

Bio17 

(kg/m2) 

Cluster 1 17,2° 9,8 

Cluster 2 19,4° 9,0 

Cluster 3 23,2° 7,3 

Cluster 4 21,1° 16,8 

Cluster 5 23,9° 11,9 

Cluster 6 26,2° 10,1 

Cluster 7 26,6° 13,2 

Cluster 8 25,3° 16,6 

Cluster 9 25,7° 17,7 

Cluster 10 26,3° 23,1 

(e) 
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