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Byte-addressable Persistent Memory (PM) technologies present a new par-
adigm for interacting with non-volatile memory, allowing applications to
access PM directly and with much lower latency than before. Unfortunately,
the combination of PM with Hardware Transactional Memory (HTM) has
been far from trivial to implement due to the volatile nature of CPU caches,
requiring the use of software instrumentation and techniques like Shadow
Paging (SP) to guarantee durable HTM to PM. The commercial release of
Intel Optane DC PM and the support for systems with Enhanced Asynchro-
nous DRAM Refresh allows for CPU caches to be considered persistent as
well, greatly simplifying the model for durable HTM. However, the use of
software instrumentation techniques like Shadow Paging can still provide
significant benefits for durable HTM solutions by taking advantage of the
higher performance and lower latency of DRAM. This dissertation presents
and evaluates a new solution based on the use of DRAM shadow paging
for architectures with PM and durable CPU caches in order to improve
performance and throughput.
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1 INTRODUCTION

Persistent storage options for computing systems have tradition-
ally been limited to mass storage devices such as hard disk drives
(HDD) and solid-state drives (SSD), whose performance is orders
of magnitude slower than volatile main memory (DRAM). These
mass storage devices are not directly accessible to applications and
instead require the use of Application Programming Interfaces (API)
provided by the Operating System (OS), along with costly serial-
ization and deserialization processes to translate the data between
its volatile representation and a format that can be stored on non-
volatile devices.

The emergence of new byte-addressable Persistent Memory (PM)
technologies like Intel Optane DC Persistent Memory opened the
door to a new paradigm for interacting with non-volatile memory.
These new PM technologies offer performance that is closer to
DRAM and can be connected to the processor’s memory bus.

The development of concurrent applications that can take advan-
tage of these new PM technologies has led to significant attention
in research into the implementation of Persistent Transactional
Memory in systems equipped with PM and HTM.
However, HTM’s reliance on volatile CPU caches means that

committed transactions cannot be guaranteed to be atomically per-
sisted to PM due to the possibility of remaining in the cache. It is
thus required to complement transactions with complex software
instrumentation in order to ensure durable HTM.

This approach of combining transactions with additional software
instrumentation in order to guarantee atomicity and durability has
been successfully utilized by state-of-the-art approaches such as
NV-HTM[1], DudeTM[2], cc-HTM[3], Crafty[4], and SPHT[5].
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One technique that is particularly notable is the use of Shadow
Paging (SP)[1; 2; 5] in combination with Write-Ahead Logging
(WAL), which is used in all these solutions, with the exception of
Crafty. With this technique updates are performed on local private
copies rather than directly over the original data, allowing easier
modification without the issue of consistency constraints. The orig-
inal data is then replaced by the shadow copy, making the updates
durable.
More recently, the introduction of new persistence domains for

computing systems with small amounts of reserve power, such
as Intel Extended Asynchronous DRAM Refresh (eADR), offered
the possibility of treating CPU caches as non-volatile. In this new
environment, HTM transactions that deal exclusively with PM data
are able to rely entirely on hardware-level instructions without
the need for any additional instrumentation in order to ensure
durability.

However, despite offering performance that is significantly faster
than persistent mass storage devices, current PM modules still have
higher latency and slower write speeds than DRAM. It can thus be
desirable to use an algorithm that makes use of DRAM in order to
increase performance and reduce latency while taking advantage of
HTM and the new eADR persistence domain for persistence[6].
Shadow Paging is a possible solution for achieving this goal.

However, existing durable HTM solutions based on Shadow Paging
have been designed for an ADR environment and are thus more
computationally expensive than necessary in eADR. These solutions
include mechanisms which are no longer required and do not take
into consideration particular idiosyncracies of eADR environments,
such as the possibility of flush operations being used to improve the
performance of write operations.

2 BACKGROUND AND RELATED WORK

2.1 Persistent Memory

The advent of byte-addressable PM technologies has the potential
to revolutionize the way in which data-intensive applications are
developed. When compared to DRAM, these new technologies have
significantly higher storage density, lower power consumption, and
the ability to retain their contents for extended periods of time in the
absence of power. Additionally, unlike traditional NVMmass storage
devices, these new technologies are byte-addressable and connect
directly to the computer’s memory bus, allowing applications to
address them directly without the need for translation steps to
serialize and deserialize between representations or to go through
any Operating System APIs.
However, despite the groundbreaking new features, these new

persistent memory technologies also have notable drawbacks. La-
tency times for write operations are significantly higher than for
read operations, which may cause serious performance degrada-
tion in write-intensive applications. There is finite write endurance,
meaning that there is a limited number of times each bit may be
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written before failure. And finally, bandwidth and performance are
still limited compared to DRAM.

2.1.1 Intel Optane Persistent Memory. Intel Optane is the first, and
currently the only, PM technology commercially available on the
market. Optane DC memory is available in two different formats:
as an NVMe SSD storage module that connects to the PCIe bus just
like all other NVM mass storage devices, and in a DIMM format,
which uses the physical DDR4 packaging and memory bus. It is this
latter format, Optane DC, that is of most interest for PM applications,
allowing it to be byte-addressable andmuch closer to DRAM in terms
of latency. Optane DC PM offers a latency of up to about 350 ns,
several orders of magnitude lower than the typical 10,000–100,000
ns latency of NAND-based SSDmass storage devices, but still higher
than the 10–20 ns latency range for DDR4 DRAM[7].

However, despite the dramatic improvement in terms of latency,
the bandwidth performance of Intel Optane, especially in terms of
write operations, is still significantly worse than DRAM and closer
to SSD mass storage devices[8].
Intel advertises a write endurance of 60 drive writes per day

for an average lifetime of 5 years. While this level of endurance is
significantly higher than the write endurance of NAND-based SSD
mass storage devices, it can still become problematic when used as
main memory in write-intensive applications[8].

2.1.2 Persistence Domains. One of the ideas that are central to
computing systems with PM devices is the concept of a Persistence
Domain (PD); the definition of the region of a computing system that
is able to guarantee persistence. Once data reaches the PD, it can
be guaranteed to have been persisted and recoverable upon system
restart. The PD is not just limited to PM devices though; it may also
include volatile devices that are able to hold state for long enough
to be able so that it can be guaranteed to reach a persistent device.
Intel Optane DC PM supports two different persistence domains,
Asynchronous DRAM Refresh (ADR) and Enhanced Asynchronous
DRAM Refresh (eADR).

In an ADR environment, the system has enough reserve energy to
flush the memory controller’s Write Pending Queue (WPQ) to PM.
This means that it is sufficient for the application data to reach the
memory controller in order to guarantee that it can be considered
persistent under ADR.

In an eADR domain, computing systems have a higher amount of
reserve energy than in ADR which, in addition to providing enough
power to flush the memory controller’s WPQ, also have enough
power to allow the system to execute the required instructions to
guarantee that CPU caches are also flushed to PM. The inclusion of
the CPU caches in the eADR persistence domain brings significant
advantages over ADR to the PM programming model. In an ADR
environment data becomes visible to other cores via the CPU L3
cache layer before it has a chance to reach thememory controller and
become persistent. It is also necessary for applications to explicitly
flush caches in order for a store to become persistent. In an eADR
environment, it is no longer necessary for applications to flush the
caches in order to ensure persistence, and data becomes persistent
before it becomes visible to other cores through the L3 cache layer.
This offers the opportunity to simplify the programming model for
durable HTM transactions by allowing durable HTM transactions to

be executed entirely without the need for software instrumentation
since values on the CPU cache can now be considered persistent.

2.2 Transactional Memory

The concept of a transaction was initially developed for database
systems that needed to perform a set of operations that could ma-
nipulate data atomically in order to allow concurrent access to the
data without sacrificing consistency. Database transactions guaran-
tee this by ensuring 4 essential properties: atomicity, consistency,
isolation, and durability (ACID)[9].
These properties are also essential in the context of parallel and

concurrent programming where critical sections of code need to be
executed sequentially and in isolation. This can be ensured through
the use of locks, but lock-based programming is difficult to tune and
notoriously known for being prone to programming errors[10; 11].
Global or coarse-grained locks are easier to implement, but can
seriously degrade performance and restrict parallelism. Fine-grained
locking allows for better parallelism and performance but is complex
to implement and prone to errors that can be difficult to identify.

2.2.1 Hardware Transactional Memory. Transactional Memory im-
plemented at the hardware level does not require the instrumen-
tation of read and write operations. Instead, it relies on the cache
coherence protocol to achieve atomicity and isolation without suf-
fering from the high costs and overheads of instrumentation. This
allows for better performance but alsomeans that currently available
HTM implementations are considered best-effort[12; 13]. Best-effort
HTM is limited by cache capacity and cannot handle transactions
that are too large to fit in the private CPU cache.

2.3 Combining Transactional Memory with Persistent

Memory

The use of byte-addressable persistent memory technology enables
applications to access and modify durable state without the need for
an intermediate layer like the OS filesystem API, but still requires
developers to ensure that modifications to the data are consistently
applied to PM in the event of a failure. This is especially true when
trying to guarantee the failure-atomicity of multiple operations that
should either all be persisted together, or none should be persisted
at all[14].

2.3.1 Shadow Paging. Shadow Paging allows for updates to be
performed out-of-place. Instead of performing the update directly
on the original object, it first creates a private copy of the object so
that persistent updates can be applied to it without disturbing or
modifying the original object. Since these private objects are local,
they can be modified without worrying about the order of persist
instructions. When a transaction is about to commit, the original
objects are then replaced with the updated copies.

This approach presents two significant advantages in the context
of PM. Private copies are stored in DRAM and are able to take ad-
vantage of its lower latency, allowing for better write performance,
especially in the case of hot objects that are overwritten multiple
times. A second advantage is that it can help improve the write en-
durance of PM systems by absorbing repeated overwrites in DRAM
before issuing a single write operation to PM.
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2.4 Durable HTM Solutions

In this section I illustrate an approach to durable HTM through the
use of Shadow Paging by presenting SPHT[5], a state-of-the-art
solution in durable HTM that combines Shadow Paging with Write-
Ahead Logging and illustrates an approach used by a larger group
of solutions, like DudeTM[2] and cc-HTM[3].

2.4.1 SPHT. SPHT, proposed by Daniel Castro et al. [5], builds on
the concepts utilized in NV-HTM[1] and introduces novel mecha-
nisms aimed at improving scalability during transaction processing
and recovery. It addresses scalability challenges connected with
redo logging by introducing a new highly scalable commit protocol
that amortizes the cost of ensuring immediate durability[15] across
multiple concurrent transactions.
The architecture for SPHT is comprised of 2 main processes:

• The transaction executer, which is comparable to the work-
ing process fromNV-HTM. It spawnsmultipleworker threads
responsible for executing the transactions and creates a
shadow copy of the persistent heap shared by all threads
and serves as a working snapshot that transactions access
directly. Updates performed by HTM transactions on the
working snapshot are not immediately written to the persis-
tent heap and are thus still volatile.

• The log replayer, which spawns the replayer threads respon-
sible for replaying the durably committed logs and updating
the persistent heap.

Similarly to NV-HTM, each worker thread has its own private
durable redo log used to track updates performed by each transac-
tion. Since the results of a transaction can remain in the cache, the
redo log needs to be explicitly flushed to persistent memory after the
HTM commit. Once the redo log has been persisted, a timestamped
commit marker is used to mark the transaction as durable.
SPHT takes advantage of the observation that at a high thread

count, multiple transactions are likely to be concurrently attempting
to commit. It takes advantage of this by ensuring the immediate
durability of all transactions that are trying to commit through a
single update of the persistent global marker with the timestamp of
the most recent durable transaction. Just like NV-HTM, SPHT uses
physical clocks to establish the order of transactions.
After an HTM commit, SPHT allows threads to flush their logs

out of order, without considering thread synchronization. However,
those logs cannot be marked as durable yet since they may depend
on logs from other threads that may not yet have been flushed. It
overcomes this by ensuring that each thread transaction waits for
all threads with earlier timestamps to finalize persisting their logs.
During this waiting phase, it also determines which transaction in
the commit phase has the highest timestamp. If there is a transaction
with a higher timestamp, the current transaction avoids updating
the global marker. Only the transaction with the highest timestamp
updates the global marker, which reduces the number of updates
and flushes to the marker. This marks all transactions with earlier
timestamps as durable.
SPHT also improves the scalability of log replay by employing

2 novel ideas, a log-linking mechanism that spares the replayer
threads from the cost of having to determine which transaction

should be replayed next, and parallelization of the log replay process
in a Non-Uniform Memory Access (NUMA) aware fashion.

3 SPHT-EADR

The study of the state of the art presented in Section 2 shows that
ensuring persistence in an ADR environment requires complex soft-
ware instrumentation in order to guarantee that values do not re-
main lingering in volatile cache. The introduction of the new eADR
domain in which caches can be considered durable means that it
is now possible to implement durable HTM without the need for
complex software instrumentation in order to identify which cache
lines have been modified and guarantee they have been persisted.
However, even though it is now possible to guarantee persistence
entirely through HTM without the need for any additional software
instrumentation, PMmodules still suffer from finite write endurance
and higher access latencies, particularly regarding write operations.
Thus, it can still be beneficial to use some of these software tech-
niques, such as shadow paging, in order to improve performance by
taking advantage of the lower latency and higher performance of
DRAM.

3.1 Study of Current Off-the-Shelf Approaches

The introduction of eADR leaves open the question of how to de-
velop applications that are able to take advantage of this new persis-
tency domain. Given that caches can now be considered persistent,
one possible approach would be to avoid the use of software in-
strumentation techniques and rely entirely on existing HTM mech-
anisms. Another possible approach would be to use an existing
state-of-the-art solution like SPHT[5], which was designed with
ADR in mind, but can also be used in an eADR environment.

3.1.1 Pure HTM Approach. A pure HTM approach has the advan-
tage of the simplicity of implementation, operating directly on the
data stored in PM. It relies on mechanisms provided by the hard-
ware without the added complexity of software instrumentation
to ensure data has been persisted. However, even though it is now
possible to guarantee the persistence of a successful transaction
entirely through mechanisms provided by the hardware, it is still
not possible to guarantee progress by relying exclusively on these
mechanisms.

HTM is still a best-effort synchronization mechanism[12; 13] and
requires a software-based fallback path in order to ensure progress.
This fallback path can be implemented in the form of a Single Global
Lock (SGL) that is used whenever a transaction repeatedly aborts
over a pre-configured number of times. The SGL causes any con-
current transactions to be aborted, ensuring there are no conflicts
with other transactions. Since this mechanism is implemented via
software and memory access is performed directly on PM, any write
operations made inside the SGL fallback path are written directly
to PM. If an SGL transaction fails or aborts after having performed
any write operations, those partial changes will still be present in
PM, violating the principle of atomicity and leading to an incorrect
system state. This requires the use of additional instrumentation to
maintain consistency.
A possible solution for this problem when operating directly

on PM is the use of an undo log used to track write operations
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Algorithm 1 SGL with Undo Log

Persistent Variables
1: 𝑝𝑢𝑛𝑑𝑜𝐿𝑜𝑔 []

Thread Local Volatile Variables
2: 𝑣𝑆𝐺𝐿

3: function beginTx
4: while !CAS(&𝑣𝑆𝐺𝐿, 0, 1) do ⊲ Take SGL
5: waitPrecedingTXs ⊲Writing the SGL causes an HTM abort
6: createUndoLog ⊲ Creates a new undo log
7: function write(addr, val)
8: prevVal← ∗addr ⊲ Save previous value
9: undoLogWrite(addr, prevVal) ⊲ Log previous value PM
10: ∗addr← val ⊲ Execute write
11: function commitTx
12: clearUndoLog ⊲ Undo log no longer necessary
13: SGL← 0 ⊲ Release SGL, needs memory barrier

performed by an SGL transaction. In case of a failure or an aborted
transaction, this undo log can be used to revert changes that had
already beenwritten to persistentmemory and restore the consistent
state of the system before that SGL transaction had been initiated.
The algorithm for this is shown in Algorithm 1. As far as it was
possible to determine, this thesis is the first work that implements
and evaluates HTM for eADR using an instrumented fallback path.

3.1.2 Using SPHT. Even though SPHT was designed for an ADR
environment and doesn’t take advantage of the durable caches in-
troduced with eADR, it can still be used in this new environment.
All the properties SPHT guarantees in ADR are also enforced in
the eADR environment. This approach is more complex and does
not provide any benefits over executing in an ADR environment,
but can potentially provide better performance due to the use of
shadow paging in DRAM.

3.1.3 Comparative Study. A small comparative study of both these
approaches was conducted in order to determine the feasibility of
each solution and to determine if existing state-of-the-art solutions
can still provide any benefits over the simpler approach of using
pure HTM mechanisms with a software fallback path to ensure
progress. The test for the study was performed with a synthetic
benchmark in which each transaction generates a total of 5 read
and 5 write operations at random over a uniform persistent heap.
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This study was conducted on an Intel Xeon processor with 12
cores and 24 threads; more detailed specifications for the machine
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are available in Section 4.1. The tests were performed with a syn-
thetic benchmark in which each transaction generates a fixed num-
ber of read and write operations at random over a uniform 1 GB
persistent heap space in which each thread accesses its own private
memory pool and all results are the average of 10 runs of each test.

In a first scenario, shown on Figure 1 and Figure 2, the workload
is comprised of small transactions with a mixed access pattern
in which each transaction generates a total of 5 read and 5 write
operations. These results show that even though SPHT does not take
advantage of the durable caches offered by the eADR environment,
it still provides a significant advantage in throughput and scalability
over the HTM approach, which is limited by the bandwidth capacity
of the PM module.
In a second scenario, shown on Figure 3 and Figure 4, the work-

load is comprised of large transactions with a read-intensive access
pattern in which each transaction generates a total of 45 read and
5 write operations. Latency times for write operations are signif-
icantly higher than for read operations in currently available PM
modules[7]. A read-intensive access pattern could help avoid perfor-
mance degradation in the HTM+SGL solution, but the results show
that SPHT still provided a significant throughput and scalability
advantage over HTM+SGL operating directly on PM.

These results show that the software instrumentation techniques
used in state-of-the-art solutions like SPHT still provide benefits
over operating directly on PM and motivate the need to develop a
new solution that improves on existing state-of-the-art solutions by
taking advantage of the new possibilities introduced with eADR.

3.2 Overview of SPHT

As mentioned previously, SPHT was originally developed for an
ADR environment in which caches are considered volatile. This
required the mechanisms described below, which can be seen in
Algorithm 2, in order to ensure immediate durability and visibility
of changes across threads.

3.2.1 Log Commit Marker. Each worker thread in SPHT has a pri-
vate durable redo log that is used to log updates performed by each
transaction. However, since caches are volatile, the updates per-
formed by a transaction commit may still be lingering in volatile
cache and not considered durable. This requires explicit flushing of
the redo log to PM after the HTM commit terminates successfully.
Since the log is only persisted after the transaction commits, SPHT
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makes use of a durable timestamped log commit marker to indicate
the transaction is considered durable.

3.2.2 Wait for Preceding Transactions. One of the key ideas used in
SPHT in order to overcome scalability limitations is to amortize the
cost of ensuring immediate durability across multiple transaction
commits. When multiple transactions are concurrently trying to
commit, SPHT is able to ensure immediate durability for all of them
through a single update of the durable log commit marker by writing
the timestamp of the most recent durable transaction.
However, since SPHT allows threads to flush logs out of order,

flushing the transaction log for a given thread is not enough for
that transaction to be considered durable. At that point, there may
still exist preceding transactions with lower timestamps that are
not yet marked as durable, but whose changes may already have
been observed by other threads. In order to solve this issue, each
thread shares the timestamp of the most recent transaction along
with whether the logs for that transaction have been persisted. Once
the logs have been flushed the transaction enters a phase in which
it scans the timestamps of the other threads and waits until all
transactions with lower timestamps have been persisted. Only once
all transactions with lower timestamps have finished flushing their
logs can it be considered safe for a transaction to mark itself as
durable.
It is also during this waiting phase that threads identify which

transaction has the most recent timestamp and will be responsible
for updating and flushing the log commit marker.

3.2.3 Flush Transaction Log. When flushing cached logs to persis-
tent memory, SPHT needs to perform calculations to determine if
it is safe to flush the cache without the possibility of generating
partial log writes to PM. If the full log and commit marker fit in a
single cache line, it is safe to flush that cache line. However, if they
occupy more than a single cache line, it is necessary for SPHT to
flush the earlier cache lines and ensure the consistency of cache
pages before flushing the commit marker to persistent memory.

3.3 SPHT Simplified for eADR

The introduction of durable caches in eADR has significant im-
plications for the durability of redo logs, which was the primary
motivator behind the previously described mechanisms. Since logs
can now be considered durable in cache, it’s no longer necessary
to ensure they have been flushed to persistent memory before the
transaction itself can be considered durable. The transaction can
now be considered durable as soon as it commits successfully, ren-
dering the global log marker unnecessary.
Likewise, it is now possible to consider preceding transactions

with an earlier timestamp to be durable without the need to share
whether their logs have been flushed to persistent memory or not.
Any transaction with an earlier timestamp will have successfully
committed and written their logs either to persistent memory or to
cache, which is now considered durable. This means it is no longer
necessary for transactions with an earlier timestamp to wait for any
preceding transactions.

Algorithm 2 Original SPHT
Shared Volatile Variables

1: 𝑣𝑡𝑠 [N], 𝑣𝑚𝑎𝑟𝑘𝑒𝑑 [N], 𝑣𝑖𝑠𝑈𝑝𝑑 [N]

Persistent Variables
2: 𝑝𝑤𝑟𝑖𝑡𝑒𝐿𝑜𝑔 [N], 𝑝𝑚𝑎𝑟𝑘𝑒𝑟

Thread Local Volatile Variables
3: 𝑣𝑡𝑠′, 𝑣𝑠𝑘𝑖𝑝𝐶𝐴𝑆

4: function beginTx
5: 𝑣𝑖𝑠𝑈𝑝𝑑 [𝑚𝑦𝑇𝑖𝑑 ] ← false
6: 𝑣𝑠𝑘𝑖𝑝𝐶𝐴𝑆 ← false
7: unsetPersBit(𝑣𝑡𝑠 [𝑚𝑦𝑇𝑖𝑑 ]) ⊲ Logs are not persistent
8: 𝑣𝑡𝑠 [𝑚𝑦𝑇𝑖𝑑 ] ← rdtscp ⊲ lower bound of final ts
9: htm_begin ⊲ begin hw tx
10: function write(addr, val)
11: logWrite(addr, val) ⊲ log to PM, no flush
12: ∗addr← val ⊲ execute write
13: function commitTx
14: 𝑣𝑡𝑠′ ← rdtscp ⊲ store physical clock to local var.
15: htm_commit ⊲ commit hw transaction
16: 𝑣𝑡𝑠 [𝑚𝑦𝑇𝑖𝑑 ] ← 𝑡𝑠′ ⊲ Externalize the final timestamp
17: if isReadOnly then ⊲ Read-only txs...
18: setPersBit(𝑣𝑡𝑠 [𝑚𝑦𝑇𝑖𝑑 ]) ⊲ ...unblock the others
19: return ⊲ ...and return immediately
20: 𝑣𝑖𝑠𝑈𝑝𝑑 [𝑚𝑦𝑇𝑖𝑑 ] ← true ⊲ Mark as update tx
21: logCommit(𝑝𝑤𝑟𝑖𝑡𝑒𝐿𝑜𝑔 [𝑚𝑦𝑇𝑖𝑑 ], 𝑡𝑠′) ⊲ Flush tx log.
22: setPersBit(𝑣𝑡𝑠 [𝑚𝑦𝑇𝑖𝑑 ]) ⊲ Signal logs are durable
23: waitPrecedingTXs
24: updateMarker
25: function waitPrecedingTXs
26: for 𝑡 ∈ [0..𝑁 − 1] do
27: ⊲Wait until prec. txs have flushed their logs
28: while 𝑣𝑡𝑠 [𝑡 ] < 𝑣𝑡𝑠 [𝑚𝑦𝑇𝑖𝑑 ] ∧ ¬isPersBit(𝑣𝑡𝑠 [𝑡 ]) wait
29: ⊲ If any update tx with large ts exists...
30: if 𝑣𝑡𝑠 [𝑡 ] > 𝑣𝑡𝑠 [𝑚𝑦𝑇𝑖𝑑 ]∧ 𝑣𝑖𝑠𝑈𝑝𝑑 [𝑡 ] then
31: 𝑣𝑠𝑘𝑖𝑝𝐶𝐴𝑆 ← true ⊲ this tx can skip the CAS
32: function updateMarker
33: ⊲ Is it needed to and am I responsible for updating 𝑝𝑚𝑎𝑟𝑘𝑒𝑟?
34: if 𝑝𝑚𝑎𝑟𝑘𝑒𝑟 < 𝑣𝑡𝑠 [𝑚𝑦𝑇𝑖𝑑 ] ∧ ¬𝑣𝑠𝑘𝑖𝑝𝐶𝐴𝑆 then
35: val← 𝑝𝑚𝑎𝑟𝑘𝑒𝑟
36: while val < 𝑣𝑡𝑠 [𝑚𝑦𝑇𝑖𝑑 ] do
37: val← CAS(𝑝𝑚𝑎𝑟𝑘𝑒𝑟 , val, 𝑣𝑡𝑠 [𝑚𝑦𝑇𝑖𝑑 ])
38: if (CAS was successful) then
39: flush(

𝑝𝑚𝑎𝑟𝑘𝑒𝑟 )
40: 𝑣𝑚𝑎𝑟𝑘𝑒𝑑 [𝑚𝑦𝑇𝑖𝑑 ] ← 𝑣𝑡𝑠 [𝑚𝑦𝑇𝑖𝑑 ] ⊲ Signals 𝑝𝑚𝑎𝑟𝑘𝑒𝑟 is flushed.
41: return
42: while true do ⊲Wait till flush of 𝑝𝑚𝑎𝑟𝑘𝑒𝑟
43: for 𝑡 ∈ [0..𝑁 − 1] do ⊲ ...is complete
44: if 𝑣𝑚𝑎𝑟𝑘𝑒𝑑 [𝑡 ] ≥ 𝑣𝑡𝑠 [𝑚𝑦𝑇𝑖𝑑 ] then return

Additionally, the process of flushing logs to persistent memory,
along with determining which cache lines need to be flushed, is no
longer necessary.
These changes allow the algorithm for SPHT-eADR to take ad-

vantage of the new possibilities introduced in eADR and to be sig-
nificantly simplified in comparison to the original version of SPHT,
as shown in Algorithm 3.

3.3.1 Maintaining Flushes. Even though flush operations are no
longer required to ensure the persistence in an eADR environ-
ment, they may still be beneficial for performance by proactively
removing cache lines containing data which no longer has temporal
locality[16], as is the case with log entries for transactions that have
already been committed. This is shown on Line 17 of Algorithm 4

Given that changes lingering in cache can be considered persistent
and that the version of SPHT optimized for eADR no longer needs
to maintain a commit marker, it is possible to flush redo logs using
an out-of-order operation like clwb or clflushopt without the
need to issue a memory fence and wait for the flushes to finish.
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Algorithm 3 SPHT-eADR

Persistent Variables
1: 𝑝𝑤𝑟𝑖𝑡𝑒𝐿𝑜𝑔 [N]

Thread Local Volatile Variables
2: 𝑣𝑖𝑠𝑈𝑝𝑑𝑎𝑡𝑒

3: function beginTx
4: htm_begin ⊲ Begin hw tx
5: function write(addr, val)
6: 𝑣𝑖𝑠𝑈𝑝𝑑𝑎𝑡𝑒 ← true
7: logWrite(addr, val) ⊲ Log to PM, no flush
8: ∗addr← val ⊲ Execute write
9: function commitTx
10: if isUpdate then
11: logCommit(𝑝𝑤𝑟𝑖𝑡𝑒𝐿𝑜𝑔 [𝑚𝑦𝑇𝑖𝑑 ], rdtscp) ⊲ No flush required
12: htm_commit ⊲ SGL commit needs a memory barrier

Algorithm 4 SPHT-eADR with Flushes

Persistent Variables
1: 𝑝𝑤𝑟𝑖𝑡𝑒𝐿𝑜𝑔 [N]

Thread Local Volatile Variables
2: 𝑣𝑖𝑠𝑈𝑝𝑑𝑎𝑡𝑒 , 𝑣𝑡𝑥𝐿𝑜𝑔𝑆𝑡𝑎𝑟𝑡 , 𝑣𝑡𝑥𝐿𝑜𝑔𝐸𝑛𝑑

3: function beginTx
4: 𝑣𝑡𝑥𝐿𝑜𝑔𝑆𝑡𝑎𝑟𝑡 ← logNextPos() ⊲ Record starting log position
5: 𝑣𝑡𝑥𝐿𝑜𝑔𝐸𝑛𝑑 ← txLogStart
6: htm_begin ⊲ Begin hw tx
7: ∗addr← val ⊲ Execute write
8: function write(addr, val)
9: 𝑣𝑖𝑠𝑈𝑝𝑑𝑎𝑡𝑒 ← true
10: logWrite(addr, val) ⊲ Log to PM, no flush
11: 𝑣𝑡𝑥𝐿𝑜𝑔𝐸𝑛𝑑 ← logNextPos() ⊲ Update current log position
12: ∗addr← val ⊲ Execute write
13: function commitTx
14: if isUpdate then
15: logCommit(𝑝𝑤𝑟𝑖𝑡𝑒𝐿𝑜𝑔 [𝑚𝑦𝑇𝑖𝑑 ], rdtscp)
16: htm_commit ⊲ SGL commit needs a memory barrier
17: flushCache(txLogStart, txLogEnd) ⊲ Flush cache for updated log section

3.4 Implementation of SPHT-eADR

SPHT-eADR exposes PM to the application via a persistent heap
created by memory-mapping the persistent data stored in a PM-
aware filesystem into the application address space[17] using the
host Operating System (OS). Being based on SPHT, SPHT-eADR
follows the same architecture with two main processes (Transac-
tion Executers and Log Replayers) that were earlier described in
Section 2.4.1. The transaction executor process memory-maps a per-
sistent heap into its address space using Copy-on-Write provided
by the OS which creates a shadow copy of the persistent heap. The
process also spawns multiple worker threads that share access to
this shadow copy. Changes to the shadow copy are not transmitted
back to the persistent heap. Instead, worker threads track updates
through private redo logs, implemented with a circular buffer, which
contains an ordered sequence of transactions and timestamps. These
logs can eventually be replayed in order to propagate changes back
to the persistent heap. Transactions in SPHT-eADR utilize the un-
derlying support for HTM and switch to a fallback Single Global
Lock software-based commit mechanism when a transaction fails a
pre-configured number of times. When this fallback mode is acti-
vated, all concurrent hardware-based transactions are immediately
aborted.

4 EXPERIMENTAL EVALUATION

This chapter presents the results of an experimental evaluation of
SPHT-eADR, a new solution based on SPHT and optimized for an
eADR environment (previously described in Section 3.3), and seeks
to answer the question of whether shadow paging and software
instrumentation techniques used by state-of-the-art solutions like
SPHT can still be used to improve performance given the availability
of eADR. The performance of SPHT-eADR was compared to the
standard version of SPHT and an almost pure HTM mechanism
with a software fallback path to ensure progress, as well as different
versions of SPHT-eADR with preemptive flushing of logs with low
temporal locality. These solutions were evaluated using synthetic
benchmarks with no contention, STAMP, and TPC-C.

4.1 Experimental Settings

All experiments were conducted in a dual-socket system using a
single Intel Xeon Gold 5317 3.00 GHz 3rd Generation Intel Xeon
Scalable processor with 12 cores and 24 hardware threads, equipped
with 128 GB of DRAM (4x 32 GB) and 512 GB of Intel Optane DC
PM 200 (4x 128 GB) with interleaved access and configured in App
Direct mode. These experiments evaluate the performance of:
• HTM+SGL: plain HTM with a software fallback using a

single global lock;
• SPHT[5]: original version of SPHT developed for an ADR

environment;
• SPHT-eADR: new solution based on SPHT and optimized

for an eADR environment; see Section 3.3;
• SPHT-eADR-Flush: a version of SPHT-eADR with logic to

flush the redo log after a successful commit; see Section 3.3.1.
All described solutions make use of HTM and fall back to SGL when
a transaction fails after 10 retries. All results are the average of 10
runs.
The synthetic benchmark is configured with a 1 GB heap space

which is split into private memory pools for each thread, ensuring
that there are no conflicting transactions. Before beginning the
execution of the benchmark, memory pages are pre-touched in
order to simulate a long-running process. Each iteration of the test
runs for 5 seconds and each transaction generates a pre-configured
number of read and write operations to random memory addresses
within the memory pool for each thread. This benchmark evaluates
the performance of the various solutions in scenarios where every
transaction is able to be executed concurrently without incurring
conflicts in order to evaluate the scalability and possible bottlenecks
for each solution.

STAMP[18] is a benchmark suite designed for transactional mem-
ory systems and includes transactional applications that, even though
they were not originally designed with PM in mind, could still
be able to benefit from crash-tolerance in a PM system. STAMP
was previously used to test SPHT, along with several other related
solutions[1; 3; 4; 19] in the same field.

Although the STAMP benchmark suite includes 8 different bench-
marks, this evaluation does not consider the Bayes application, as it
is known to provide unstable performance results[5; 20].
TPC-C[19] is a well-known benchmark that is widely used to

evaluate database and transactional systems. The benchmark is
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composed of five transactions: three update transactions (NewOrder,
Payment, and Delivery), and two read-only transactions (Status
Order and Stock Level). This evaluation implemented three of these
transactions, Payment, New Order, and Delivery. New Order and
Delivery are transactions that contain item accesses dependent on
other previous accesses.

4.2 Flushing Approach
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This synthetic benchmark experiment compares the throughput
and breakdown of committed and aborted transactions of the regu-
lar version of SPHT, SPHT-eADR without flushes, and SPHT-eADR
with flushes using a balanced workload in which each transaction
performs 5 read and 5 write operations. The test was repeated using
both clwb and clflushopt operations in order to implement the
log flushing phase taking place after transaction commit in these
solutions. The clflushopt instruction flushes data out of the CPU
cache and invalidates it whereas clwb flushes the data without
invalidating the cache lines. This allows for evaluating not just the
impact of preemptively flushing logs to PM but also determining
whether cache invalidation has any negative effect. Figure 5 and
Figure 6 show the throughput of the 3 solutions using clflushopt
and clwb, respectively. SPHT-eADR and SPHT-eADR with flushes
have similar throughput curves, scaling well up to the number of
physical cores. Once Hyper-Threading is used, the curve flattens
and throughput stays almost constant. The version with flushes
performs noticeably better than the version without flushes, indi-
cating that preemptively flushing data with low temporal locality
does provide a performance boost. We argue that this increases the
effectiveness of the caching layer by asking the hardware to flush
log data that is unlikely to be reaccessed shortly thereafter. The
original version of SPHT scales more linearly up to 24 threads but
at much lower throughput levels. The results of the tests with clwb
and clflushopt are similar, indicating that invalidating the cache
lines for the redo logs, which have low temporal locality, does not
have a negative effect on performance.
Figure 7 and Figure 8 show the breakdown of committed and

aborted transactions for the solutions, with committed transactions
being split into HTM or SGL commit mechanisms. With this work-
load, the abort rate is very low, only growing a bit at higher thread
counts. However, it is worth noting that even though the throughput
of the original version of SPHT is lower, it does have a lower abort
rate than SPHT-eADR and SPHT-eADR with flushes. The higher
throughput of SPHT-eADR means that more write requests reach
the write-pending queue of the PM module, generating more aborts.
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4.3 Evaluating SPHT-eADR

4.3.1 Synthetic Benchmark. This experiment includes 6 variations
of the synthetic (no contention) benchmark, covering a variety of sce-
narios encompassing all combinations of small or large transactions
(10 or 50 memory accesses) with read-intensive, write-intensive,
or mixed access patterns. The lack of conflicts in this case also al-
lows for the evaluation of scalability and identification of possible
bottlenecks for each solution.
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SPHT-eADR has the best performance in read-intensive applica-
tions (see Figure 9 and Figure 10), reaching 2–3x the throughput
performance of SPHT and 4x the throughput of HTM+SGL. SPHT-
eADR with flush operations performs very close to SPHT-eADR,
but flushing does not present an advantage in these applications.
All versions of SPHT only generate log entries for write operations.
As such, it is expectable for flushing the logs to have a small impact
here given the small amount of memory generated by logs in cache.
With a mixed access pattern (see Figure 13 and Figure 14) ap-

plications start to give SPHT-eADR with flushing an advantage,
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performing better than all other solutions. Write operations are no-
ticeably slower though, causing the throughput for each application
to reduce significantly compared to the read-intensive application
performing the same number of operations. Again, SPHT-eADR
and SPHT-eADR with flushes reach roughly 2x the performance of
SPHT and 3–4x that of HTM+SGL.
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In contrast with read-intensive applications, write-intensive ap-
plications give SPHT-eADR with flushes a significant advantage
in performance, albeit mostly at lower thread counts. Throughput

for SPHT-eADR peaks at 8–12 threads, and declines noticeably af-
ter that, particularly in applications with a combination of large
transactions and write-intensive access patterns.
The original version of SPHT has lower peak throughput but

does not suffer from degraded performance with a high number of
threads due to the waiting mechanism used in the commit phase
which helps maintain a lower number of aborted transactions at
higher thread counts.
Overall, taking these results as a whole, it is possible to see that

HTM+SGL reaches a plateau early on with just a few threads and
does not scale further, being limited by the higher latency of PM
when compared to DRAM. The new versions of SPHT-eADR and
SPHT-eADR with flushes scale better and reach much higher peak
throughput with a lower number of cores. However, performance
degrades with a higher number of threads, especially for large and
write-intensive workloads.
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4.3.2 STAMP Benchmark. GENOME (see Figure 21) is a medium
contention benchmark and not very favourable towards scalability,
given that there is a high likelihood of generating conflicts between
transactions, as can be seen on Figure 22 by the abort rate of over
80%. SPHT-eADR (with and without flushes) performed the best in
this benchmark and reached peak throughput at 12 threads. The
results for all solutions are quite closely correlated, which may be
due to the high number of aborts causing most transactions to be
committed via the SGL.
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INTRUDER (see Figure 23) is also a contention-prone benchmark
that is not favourable to scalability. SPHT-eADR (with and without
flushes) reaches 1.5–2x higher peak throughput than other solutions,
but degrades quickly as the number of threads increases due to a
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corresponding increase in the number of aborts, as can be seen on
Figure 24. The original version of SPHT stays significantly lower in
terms of maximum throughput but scales more gracefully to a large
number of threads without degrading performance.
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Fig. 27. Throughput for
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HTM+SGL performs very favourably with KMEANS LOW (see
Figure 25) and KMEANS VLOW (see Figure 27), both in terms of
throughput and abort rate, achieving over 2x the throughput in
KMEANS LOW when compared to all the versions of SPHT and
SPHT-eADR. This can be explained by the fact that HTM+SGL has a
much lower abort rate at lower thread counts and is able to commit
via the HTM path most of the times. In KMEANS VLOW the slow-
down is not as large as in KMEANS LOW, with all solutions reaching
their peak throughput at 12 threads and stabilizing when additional
HyperThreading threads are added. Looking at the committed and
aborted transaction breakdown in Figure 26 and Figure 28 it is possi-
ble to see that the number of aborted transactions increases with the
number of threads in KMEANS LOW and stays stable in KMEANS
VLOW, with the exception of the original version of SPHT that starts
getting more aborted transactions at high thread counts. HTM+SGL
is able to maintain a much lower abort rate in this case.

Both SSCA2 and VACATION LOW (see Figure 29 and Figure 31)
are low-contention benchmarks that are favourable to HTM. This
can be seen on Figure 30 which shows that SSCA2 has a 100%
commit rate entirely through HTM, without falling back to SGL.
All tested solutions scale smoothly up to 24 threads, but these are
the benchmarks where both versions of SPHT-eADR show the best
scalability, reaching 2x the peak throughput of HTM+SGL and 1.2x
of SPHT without any degradation in performance at higher thread
counts.

0 5 10 15 20 25
Threads

500

1000

1500

2000

2500

3000

3500

4000

Th
ro

ug
hp

ut
 (k

TX
s/

s)

SSCA2

SPHT
SPHT-eADR+Flush
SPHT-eADR
HTM+SGL

Fig. 29. Throughput for

SSCA2 benchmark

1 2 4 6 8 10 12 16 20 24
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
 c

om
m

its
 a

nd
 a

bo
rts

HTM (SPHT)
SGL (SPHT)
Aborts (SPHT)

HTM (SPHT-eADR+Flush)
SGL (SPHT-eADR+Flush)

HTM (SPHT-eADR)
SGL (SPHT-eADR)

HTM (HTM+SGL)
SGL (HTM+SGL)

Fig. 30. Breakdown of com-

mitted (via the HTM and SGL

paths) and aborted transac-

tions for SSCA2 benchmark

0 5 10 15 20 25
Threads

0

500

1000

1500

2000

2500

3000

Th
ro

ug
hp

ut
 (k

TX
s/

s)

VACATION_LOW
SPHT
SPHT-eADR+Flush
SPHT-eADR
HTM+SGL

Fig. 31. Throughput for VACA-

TION LOW benchmark

1 2 4 6 8 10 12 16 20 24
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
 c

om
m

its
 a

nd
 a

bo
rts

HTM (SPHT)
SGL (SPHT)
Aborts (SPHT)

HTM (SPHT-eADR+Flush)
SGL (SPHT-eADR+Flush)

HTM (SPHT-eADR)
SGL (SPHT-eADR)

HTM (HTM+SGL)
SGL (HTM+SGL)

Fig. 32. Breakdown of com-

mitted (via the HTM and SGL

paths) and aborted transac-

tions for VACATION LOW

benchmark

0 5 10 15 20 25
Threads

150

200

250

300

350

400

450

Th
ro

ug
hp

ut
 (k

TX
s/

s)

YADA
SPHT
SPHT-eADR+Flush
SPHT-eADR
HTM+SGL

Fig. 33. Throughput for YADA
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Fig. 34. Breakdown of com-
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paths) and aborted transac-

tions for YADA benchmark

YADA (see Figure 33) is another contention-prone benchmark that
generates large transactions, providing an unfavourable running en-
vironment for HTM with a high percentage of aborted transactions,
visible in Figure 34. Both versions of SPHT-eADR perform signifi-
cantly better than SPHT, but peak throughput is reached at around
8 threads and performance degrades significantly after that. This is
to be expected from a contention-prone benchmark like YADA.

4.3.3 TPC-C Benchmark. Figure 35 and Figure 36 show the results
of TPC-C implemented with the three update transactions: New Or-
der, Payment, and Delivery and configured with 32 warehouses, 95%
payment, 3% delivery, and 2% new order transactions. Both versions
of SPHT-eADR, with and without flushes, perform very similarly,
scaling very well up to 12 threads with 1.5x the throughput of SPHT
but degrading rapidly from thread 13 on, once HyperThreading is
in use. The original version of SPHT scales very favourably in this
test, however. It does not reach the same maximum throughput that
SPHT-eADR is able to reach at 12 threads, but it continues scaling
upwards even with HyperThreading due to the waiting mechanism
used in the commit phase. Figure 36 shows that the number of
aborted transactions increases with the number of threads for most
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solutions, with the exception of SPHT which generates a lower
percentage of aborted transactions with higher thread counts.

1 2 4 6 8 10 12 16 20 24
Threads

0.5
1.0

1.5
2.0

2.5
3.0

Th
ro

ug
hp

ut
 (M

TX
s/

s)

SPHT
SPHT-eADR+Flush
SPHT-eADR
HTM+SGL

Fig. 35. Throughput for TPC-

C

1 2 4 6 8 10 12 16 20 24
Number of threads

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d 
 c

om
m

its
 a

nd
 a

bo
rts

HTM (SPHT)
SGL (SPHT)
Aborts (SPHT)

HTM (SPHT-eADR+Flush)
SGL (SPHT-eADR+Flush)

HTM (SPHT-eADR)
SGL (SPHT-eADR)

HTM (HTM+SGL)
SGL (HTM+SGL)

Fig. 36. Breakdown of com-

mitted (via the HTM and SGL

paths) and aborted transac-

tions for TPC-C

5 CONCLUSION

Having revisited and studied these proposals, this dissertation in-
troduced SPHT-eADR, a new solution for durable HTM optimized
for systems with durable caches that makes use of DRAM shadow
paging techniques.
This approach had not yet been studied in an eADR environ-

ment, but the experimental evaluation of SPHT-eADR shows that
it significantly improves on the performance of previous state-of-
the-art solutions by providing higher performance and fewer over-
heads, reaching 2–3x the throughput performance of SPHT and 4x
the throughput of HTM+SGL in synthetic (no contention) bench-
marks and 1.5x the throughput of SPHT and 2x the throughput of
HTM+SGL at similar thread counts on TPC-C.

5.1 Future Work

One topic that was approached during the execution of this disser-
tation was the issue of support for large heap allocation in systems
that make use of DRAM shadow paging. Most state-of-the-art sys-
tems are limited by the size of the DRAM pool available, causing
them to either fail or drastically degrade performance once that
limit is reached due to the cost of the operating system swapping
memory in and out to disk. The main strategy that has been con-
sidered in the literature and is utilized by DudeTM[2] consists of
paying the cost for restoring the content on page-in, when a page
fault occurs. However, there are unexplored regions and alternative
approaches that seem interesting and can potentially improve per-
formance, such as shifting the cost to the page-out event instead,
avoiding overheads on page-in events during execution.
Another future avenue of research would be the prevention of

performance degradation at higher thread counts, which could be
addressed with the introduction of rate-limiting or some other form
of back-off mechanism. One interesting path would be how to auto-
matically determine the amount of rate-limiting or back-off time re-
quired to prevent performance degradation at higher thread counts
without hurting performance at lower thread counts, borrowing
ideas from previous literature in the area of self-tuning[21; 22].
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