
Classification of Chest X-Ray Images with Deep Neural
Networks for Detecting COVID-19

Inês Vanessa Carneiro Filipe

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Bruno Emanuel da Graça Martins
Prof. Arlindo Manuel Limede de Oliveira

Examination Committee

Chairperson: Prof. João António Madeiras Pereira
Supervisor: Prof. Bruno Emanuel da Graça Martins

Member of the Committee: Prof. Jacinto Carlos Marques Peixoto do Nascimento

June 2022

This work was created using LATEX typesetting language
in the Overleaf environment (www.overleaf.com).

Acknowledgments

I would like to offer my most sincere thank you to my family, my parents, for providing me with the

opportunity and tools to have an education and the guidance to become a better person, and my sister

for her friendship, encouragement and care. I would also like to thank my grandfather, that would have

wished to be here to see this Thesis finished.

I would also like to acknowledge my dissertation supervisors Prof. Bruno Martins and Prof. Arlindo

Oliveira for their endless patience, insight, support and sharing of knowledge that has made this Thesis

possible.

Last but not least, to all my friends and colleagues that supported me through my Bachelor’s and

Master’s with their cooperation in both group projects and in understanding the most various concepts,

thank you for being willing to offer a helping hand.

i

Abstract

This work addresses the task of accurately classifying chest X-ray images, differentiating images from

healthy patients, patients with pneumonia, and patients with COVID-19. Experiments have compared

convolutional and Vision Transformer architectures. The main research objectives focused on assessing

the use of self-attention in neural networks for classifying medical images, testing the Swin Transformer

architecture, and modifying well-known convolutional neural networks based on recent state-of-the-art

models, e.g. as in the ConvNeXT architecture. The modifications included the use of depthwise sepa-

rable convolutions, new activation functions, or inverted bottleneck blocks, among others. While Vision

Transformers are considered the state-of-the-art architecture for image classification, in comparison

convolutional neural networks possess a natural advantage in computer vision tasks involving smaller

datasets, and were thus considered a viable path for this specific task. The experimental results show

that the task of COVID-19 detection in chest X-ray images is complex. While the obtained results were

relatively satisfactory, with an accuracy of over 80%, there were no significant differences in the results

for baseline models, namely conventional convolutional neural networks such as ResNet50, VGG16,

or DenseNet121, and the more advanced models that were studied in this work, namely a variant of

the Swin Transformer and a variant of the ConvNeXT architecture. The ConvNeXT model did provide

a slight performance improvement in the accuracy, macro precision, macro recall, weighted precision,

and weighted recall metrics, but the difference was not significant enough to claim that this model corre-

sponds to an improvement over more conventional architectures for the task.

Keywords

Deep Learning, Computer Vision, COVID-19, Image Classification.

iii

Resumo

Este trabalho aborda a tarefa de classificar de forma exata imagens de raio-X para deteção de COVID-

19, diferenciando imagens de pacientes saudáveis, pacientes com pneumonia, e pacientes com COVID-

19. Experiências compararam redes neuronais convolucionais e Vision Transformers. Os objetivos

principais foram avaliar o uso de self-attention em redes neuronais para classificação de imagens de

contexto médico, testar a arquitetura Swin Transformer, e modificar redes neuronais convolucionais

conhecidas com base em modelos estado-da-arte recentes, e.g. como na arquitetura ConvNeXT. As

modificações incluı́ram o uso de depthwise separable convolutions, novas funções de ativação, bottle-

neck blocks invertidos, entre outras. Embora Vision Transformers sejam consideradas as arquiteturas

de estado-da-arte para classificação de imagens, em comparação as redes neuronais convolucionais

possuem uma vantagem natural em tarefas de visão computacional em situações nas quais os datasets

têm uma dimensão reduzida, e foram deste modo consideradas um caminho viável a seguir nas nossas

experiências. Os resultados experimentais mostram que a tarefa de classificar raios-X do tórax é com-

plexa. Embora os resultados obtidos sejam relativamente satisfatórios, com exatidão superior a 80%,

não houve diferenças significativas nos resultados dos nossos modelos de baseline, nomeadamente

redes neuronais convolucionais tais como a ResNet50, VGG16, DenseNet121, e os modelos estuda-

dos nesta dissertação, uma variante da Swin Transformer e uma variante da ConvNeXT. O modelo

ConvNeXT forneceu uma ligeira melhoria de desempenho em exatidão, macro e weighted precision e

recall, mas a diferença não é suficientemente significativa para afirmar que este modelo se apresenta

como uma melhoria sobre arquiteturas mais convencionais nesta tarefa.

Palavras Chave

Aprendizagem Profunda, Visão Computacional, COVID-19, Classficação de Imagens.

v

Contents

1 Introduction 1

1.1 Objectives . 4

1.2 Methodology . 4

1.3 Results and Contributions . 5

1.4 Thesis Outline . 5

2 Fundamental Concepts 7

2.1 Introduction to Neural Networks . 9

2.2 Convolutional Neural Networks for Image Classification 9

2.2.1 Essential Aspects of Convolutional Neural Networks 9

2.2.2 Residual Connections . 13

2.2.3 Dense Connections . 15

2.3 Transformers for Image Classification . 17

2.3.1 Transformer Architecture . 17

2.3.2 Vision Transformer . 20

2.4 Summary . 22

3 Related Work 23

3.1 Conventional Convolutional Neural Network Models for COVID-19 Detection 25

3.2 Recent Models Created or Adapted for COVID-19 Detection 31

3.3 Summary . 42

4 Model Architectures and Baselines 43

4.1 Models and Training Methods . 45

4.1.1 Baselines . 45

4.1.2 Swin Transformer . 46

4.1.3 ConvNeXT . 46

4.1.4 Training Methods . 47

4.2 Dataset and Metrics Used . 47

4.2.1 COVIDx CXR-3 Dataset . 47

vii

4.2.2 Metrics . 49

4.3 Summary . 51

5 Experimental Evaluation 53

5.1 Results . 55

5.1.1 Training and Testing Accuracy . 55

5.1.2 Confusion Matrices, Precision, Recall, and F1 Score per Class 55

5.1.3 Macro and Weighted Metrics . 56

5.2 Discussion . 57

5.2.1 Dataset and Associated Challenges . 57

5.2.2 Baselines Versus Experimental Models . 58

5.2.3 Epochs and Overfitting . 58

5.3 Summary . 58

6 Conclusions and Future Work 61

6.1 Contributions . 63

6.2 Future Work . 63

Bibliography 65

viii

List of Figures

2.1 Graphical representation of the convolution operation. The input is a 5×5 tensor with zero

padding added, with pw = ph = 1. The kernel is a 3× 3 tensor, and the input feature map

is a 5 × 5 tensor. Given these parameters, if sh = sw = 1, then we can conclude that the

output feature map’s size is 5× 5. 10

2.2 On the left of the figure, a convolution with an input involving multiple channels is repre-

sented. The convolution is performed between the corresponding input and kernel values

of each channel, and then summed. On the right, we see a representation of a convolu-

tion layer with more than one kernel. The convolution is performed on the same input with

different kernels, generating multiple feature maps. 11

2.3 On the left of the figure, we see the pooling operation represented. The operation is

applied on a 3 × 3 window of the input. If sh = sw = 1 then we can conclude that the

feature map’s new size is 3 × 3. On the right we see an example of pooling on a 4 × 4

input, with 2× 2 window, sh = sw = 2, and with the max function. 12

2.4 Architecture of the LeNet5 network. Annotations provide the number of channels and

size of the feature maps, as well as the number of layers for fully-connected layers. The

operations performed at each stage are also specified (convolution, pooling). 12

2.5 Original residual block of the ResNet (left) and residual block with bottleneck (right). . . . 14

2.6 A 5-layer dense block with a growth rate of k = 3. Each layer takes all preceding feature

maps as input. The set of operations represented with Hl corresponds to batch normal-

ization (BN), the ReLU activation and a 3 × 3 convolution (only explicitly represented in

H1). 16

2.7 DenseNet with 3 dense blocks. Convolution and pooling layers between dense blocks are

transition layers that alter the feature map sizes. 16

2.8 Representation of Transformer structure. 19

2.9 Preparation of the input image for the Vision Transformer. ∗ is the [class] embedding. . . . 21

2.10 On the left, the structure of the ViT. On the right, the internal structure of the ViT encoder. 21

ix

3.1 Structure of the VGG19 network. 25

3.2 On the left, we can see the naive Inception module. On the right, we see the Inception

module with dimensionality reductions (bottleneck), used in Inceptionv1. 26

3.3 On the left, we see one of the building blocks of the Inception-ResNet architecture. Note

the residual connection from the input (after ReLU activation) and the summation of the

output of the convolutions and the input. On the right, we can see a representation of the

convolution operation performed by the Xception and MobileNet architectures. 26

3.4 SqueezeNet’s fire module. 30

3.5 COVID-Net’s PEPx module from Wang and Wong (2020). 32

3.6 The COVID-Net architecture from Wang and Wong (2020). 32

3.7 The DenResCov-19 architecture from Mamalakis et al. (2021). 36

3.8 Swin Transformer block pair. 38

3.9 Ilustration of Swin Transformer’s shifted window. 39

3.10 Swin Transformer Architecture (Swin-T variant). 40

4.1 On the left, the ResNet bottleneck block. On the right, the ConvNeXT inverted bottleneck

block. 47

x

List of Tables

3.1 Table of parameters used in the networks evaluated by Apostolopoulos and Mpesiana

(2020). 27

3.2 Table of results for the networks evaluated in Apostolopoulos and Mpesiana (2020). . . . 28

3.3 Confusion matrix of the best-performing networks evaluated by Apostolopoulos and Mpe-

siana (2020). 28

3.4 Results obtained by Narin et al. (2021) with the 3 binary datasets: dataset 1 (COVID-19

and normal), dataset 2 (COVID-19 and viral pneumonia) and dataset 3 (COVID-19 and

bacterial pneumonia). 29

3.5 Results obtained in Minaee et al. (2020). 31

3.6 Number of parameters of each architecture and sensitivity per class in Wang and Wong

(2020). 33

3.7 Positive prediction value (PPV) per class for each architecture tested by Wang and Wong

(2020). 33

3.8 Results for each class for the 4-class CoroNet model from Khan et al. (2020). 35

3.9 Results for each CoroNet model from Khan et al. (2020). 35

3.10 Data in each dataset used by Mamalakis et al. (2021). 37

3.11 Results for each dataset used by Mamalakis et al. (2021). 37

3.12 Results obtained in Le Dinh et al. (2022) . 42

4.2 Dataset sample count per class and data source, rearranged for our experiments. 48

4.1 Dataset sample count per class and data source, with Wang and Wong (2020)’s original

train/test split. 48

4.3 Example of a confusion matrix. 50

5.1 Accuracy results of baselines and studied models. 55

5.2 Confusion matrices of baselines and studied models. 56

5.3 Precision, Recall, and F1 per class for each model. 56

xi

5.4 Macro and Weighted Precision, Recall, and F1 per for each model. 57

xii

1
Introduction

Contents

1.1 Objectives . 4

1.2 Methodology . 4

1.3 Results and Contributions . 5

1.4 Thesis Outline . 5

1

2

The coronavirus disease (COVID-19) is a contagious infection caused by the Severe Acute Respi-

ratory Syndrome Coronavirus 2 (SARS-CoV-2). This disease, firstly identified in December 2019, in

Wuhan, China, has since spread worldwide, originating the ongoing pandemic.

SARS-CoV-2 spreads mainly through small droplets or aerosols from infected people (for example,

from breathing, coughing, or sneezing) entering in contact with other people’s eyes, nose or mouth. At

least one third of infected people remain asymptomatic, while in the remaining cases symptoms begin

one to 14 days after exposure, commonly including fever, cough, fatigue, breathing difficulties, loss of

smell and taste. Around 14% of the symptomatic individuals develop more severe symptoms, such as

dyspnea or hypoxia, and 5% develop critical symptoms, such as respiratory failure or organ dysfunction.

Currently, there are a few tests available to diagnose COVID-19, the most notable one being the

Reverse Transcription-Polymerase Chain Reaction (RT-PCR) test. However, for diagnosing the infection,

the RT-PCR test is complex and expensive, and may be of limited availability. It is then necessary to find

alternative diagnostic techniques to identify infected patients, especially in a disease with high infection

rates.

X-ray imaging is one of the most common techniques used in the medical field for diagnosis. The

ionizing radiation emitted from the machines towards the patients’ bodies is absorbed unevenly by bones

and soft tissues, allowing the creation of two-dimensional images of white (i.e., bones) and black (i.e.,

soft tissues) contrast.

Chest X-rays (CXR) are taken to ascertain the condition of the lungs, heart, and chest wall, and

they are common diagnostic tools in respiratory diseases like influenza and pneumonia, at the same

time also being relatively cheap. As such, with COVID-19 being a disease that affects the respiratory

system and causes pneumonia, it is logical that chest X-rays can be used as part of clinical protocols for

diagnosis: chest X-ray images are collected from patients suspected to have the coronavirus disease,

analyzed by radiologists and, if evidence is found, other tests can be performed.

However, given that CXR of infected people have diverse characteristics, the diagnosis of COVID-

19 requires expert radiologists to analyze the images. In this context, automatic image classification

methods can be valuable for obtaining faster diagnosis, especially with the surge of infected patients.

Modern methods based on deep neural networks are already successful at identifying pneumonia from

X-ray images, rivalling expert radiologists.

Recent studies (Ilyas et al., 2020; Shi et al., 2021; Ulhaq et al., 2020) have reported the use of deep

neural networks for diagnosing COVID-19, and although discriminating between COVID-19 and other

types of pneumonia remains a challenging problem, automatic classification methods can be used to

allocate resources more effectively (e.g. to prioritize the selection of images to be analyzed by expert

radiologists, or to prioritize patients for RT-PCR testing), especially for understaffed and/or underfunded

hospitals.

3

These automatic classification methods often employ convolutional neural networks, but recent de-

velopments have also made vision transformers a viable alternative, achieving state-of-the-art results in

several computer vision tasks.

1.1 Objectives

This Master of Science thesis project aims to explore the use of transformer and deep convolutional

neural network architectures to analyze chest X-ray images and discriminate between healthy patients,

patients with COVID-19, and patients diagnosed with other types of pneumonia. This would be a valu-

able tool in situations where other tests are not readily available, and where radiologists would otherwise

be overworked. To accomplish this, we will use deep learning techniques integrating state-of-the-art de-

velopments in transformer architectures, and convolutional models based on transformer architectures

for computer vision.

Training and testing will be performed with a publicly available dataset, the COVIDx CXR-3 (Wang

and Wong, 2020) dataset, a database of thousands of CXR images of COVID-19 cases, along with

healthy and viral pneumonia images.

1.2 Methodology

The first chapters of this thesis dissertation seek to provide a good theoretical foundation to justify the

reasoning behind the proposed model. For this purpose, we conducted a survey on the current state-

of-the-art methods in the field of computer vision and image classification tasks, with special focus on

studies that applied these methods on X-ray image classification for COVID-19 detection.

After understanding the challenges that we could encounter while performing this task, we sought

to find a model with potential to rival or surpass state-of-the-art results, and a suitable dataset. After

downloading and adapting the dataset for the task ahead, three convolutional neural network baselines

were established (i.e. ResNet (He et al., 2015), VGG (Simonyan and Zisserman, 2015), and DenseNet

(Huang et al., 2018)), and a convolutional neural network inspired by developments in vision transformers

was fine-tuned and tested on the adapted dataset.

The models were implemented in Python, making use of its machine learning libraries, namely Py-

torch1, numpy2, scikit-learn3, transformers4, among others. The source code is available on GitHub5.

1https://pytorch.org
2https://numpy.org
3https://scikit-learn.org/
4https://huggingface.co/transformers
5https://github.com/inesfilipe/COVIDSwinConvNeXT

4

https://pytorch.org
https://numpy.org
https://scikit-learn.org/
https://huggingface.co/transformers
https://github.com/inesfilipe/COVIDSwinConvNeXT

1.3 Results and Contributions

The main idea and contribution of this work is the study of the performance of traditional convolutional

neural network models and state-of-the-art models for COVID-19 chest X-ray image classification. We

evaluate the impact that advancements in architectures for computer vision have on performance for

tasks in a medical context. The models were pre-trained on ImageNet dataset (Deng et al., 2009), and

fine-tuned on the COVIDx CXR3 (Wang and Wong, 2020) dataset.

We find that the task of classifying chest X-rays is complex. While the results obtained were rela-

tively satisfactory, with an accuracy over 80%, there were no significant improvements in results between

our baseline models, conventional convolutional neural networks such as ResNet50 (He et al., 2015),

VGG16 (Simonyan and Zisserman, 2015), DenseNet121 (Huang et al., 2018), and the studied models

in this thesis, a variant of the Swin Transformer (Liu et al., 2021) and a variant of the ConvNeXT (Liu

et al., 2022). The ConvNeXT model did provide a slight performance improvement in accuracy, macro

precision, macro recall, weighted precision and weighted recall metrics, however we considered the dif-

ference to not be statistically significant to claim that the studied model presents itself as an improvement

on conventional architectures for the task.

1.4 Thesis Outline

This dissertation is organized as follows: Chapter 2 introduces fundamental concepts regarding convo-

lutional networks, and popular convolutional architectures, along with concepts regarding transformers,

specifically transformers used for computer vision and image classification. Chapter 3 reviews related

work pertaining to image classification in the context of COVID-19 diagnosis. Chapter 4 details the mod-

els, introduces the dataset and the modifications performed, training methods and metrics employed.

Chapter 5 presents and discusses the results obtained. Chapter 6 presents the conclusions of this

project, and future work that can be performed.

5

6

2
Fundamental Concepts

Contents

2.1 Introduction to Neural Networks . 9

2.2 Convolutional Neural Networks for Image Classification 9

2.3 Transformers for Image Classification . 17

2.4 Summary . 22

7

8

This chapter presents fundamental convolutional neutral network (CNN) and transformer concepts,

explaining the theory behind these models and introducing relevant architectures used for the task of

image classification.

2.1 Introduction to Neural Networks

In neural networks research, several studies have been inspired by what is seen in the real world. For

example, the perceptron, i.e. the basic unit of neural networks, was a model inspired by biological

neurons, like the ones in our brains, according to Rosenblatt (1957). Another example is the case of

convolutional neural networks (CNNs). Studies focusing on cat and monkey visual cortexes (Hubel and

Wiesel, 1959, 1968) noted that they possess neurons that respond individually to small regions of the

visual field, called the receptive field of the neurons. The neurons can have simple or complex receptive

fields, with neurons having complex fields being of higher order, receiving input from neurons with simple

fields.

Hubel and Wiesel’s work inspired the Neocognitron (Fukushima and Miyake, 1982), i.e. a neural net-

work for visual pattern recognition. This model is composed of layers of cells, where each cell receives

input from cells from a limited region of the preceding layer. The cells are able to extract features, going

from local features (such as lines or edges), generally in earlier layers, to more global features in higher

layers.

The LeNet5 (LeCun et al., 1998) model was created from improvements over the Neocognitron

model, and it is considered to be the first CNN. It allowed for character recognition to be performed

without designing features by hand, being more robust towards differences in the input such as size,

slant or positions, compared to fully-connected neural networks, due to the use of local receptive fields,

shared weights, and spatial sub-sampling.

2.2 Convolutional Neural Networks for Image Classification

This section introduces fundamental concepts of convolutional neural networks. We first address essen-

tial aspects of the architecture, followed by residual connection and dense connections.

2.2.1 Essential Aspects of Convolutional Neural Networks

CNNs receive as input n-dimensional tensors, which undergo several operations while traversing the

layers of the network. The typical layers found in all CNNs include convolutional layers, non-linear

projection layers, and pooling layers. The results of the operations of these layers, corresponding to

9

X33X34X35

K31K32K33

0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

00 0 0 0 0

X11X12X13X14X15

X21X22X23X24X25

X31X32

X41X42X43X44X45

X51X52X53X54X55

* =

O11

K11K12K13

K21K22K23

Input Kernel Feature map

Figure 2.1: Graphical representation of the convolution operation. The input is a 5 × 5 tensor with zero padding
added, with pw = ph = 1. The kernel is a 3×3 tensor, and the input feature map is a 5×5 tensor. Given
these parameters, if sh = sw = 1, then we can conclude that the output feature map’s size is 5× 5.

m-dimensional tensors, are the input for a final fully-connected layer, which generates a probability

distribution for a set of classes, in the case of an image classification task.

The primary operation performed by these types of networks is a convolution (Figure 2.1), repre-

sented by the symbol ∗. Given a kh×kw tensor Kij , for a given input tensor X ∈ RH×W , the convolution

of X by K is the tensor O = X ∗K where the coordinates are defined as:

Oij = (X ∗K)ij =

kh∑
h=i

kw∑
w=1

X(i+h−1)(j+w−1)Khw, (2.1)

More intuitively, a kernel K corresponding to a tensor of weights slides along the input, horizontally,

starting at the top left corner, until the top right corner, where it goes back to the left but shifted down,

and continues until it reaches the bottom right of the input. At each step, the dot product between the

kernel and the receptive field (the window of the input covered by the kernel in each step) is computed,

and the result is stored in the output tensor, commonly referred to as the feature map.

The kernel has a height H and weight W , which determine the size of the area of the input over

which the dot product will be performed on, at each step. The kernel also has parameters to define

the amount it shifts in each step: the stride across the width sw, and the stride across the height sh.

Furthermore, the kernel also has a parameter called padding, which corresponds to adding padding on

the width (pw) and on the height (ph) of the input during the convolution, i.e. adding pixels (typically with

value 0) around the borders of the input. This technique allows, for example, for the kernel to not skip

areas at the boundary of the original input due to its size/stride, or to prevent the dimensionality of the

output from being reduced.

Usually, convolution is not only applied to one input matrix, but to a collection of tensors where each

is called a channel. For example, as we can see in Figure 2.2, an input image is represented using

RGB colors, it has 3 channels (red, green and blue), each with its set of pixel values. In this case, the

10

*

*

*

+

*

*

*

... ...

Figure 2.2: On the left of the figure, a convolution with an input involving multiple channels is represented. The
convolution is performed between the corresponding input and kernel values of each channel, and then
summed. On the right, we see a representation of a convolution layer with more than one kernel. The
convolution is performed on the same input with different kernels, generating multiple feature maps.

kernel will also have 3 channels, one for each color channel, and the result of the convolution between

the kernel and the pixel tensor in each channel is summed element-wise. Multiple kernels can be used

to create output feature maps with multiple channels, by concatenating the outputs of each kernel.

Generally, a convolution layer computes the operation between the input and a set of different kernels.

We can say then that the output of a convolution layer with k kernels is a tensor with k channels.

After the convolutions, CNNs also typically involve a non-linear projection, i.e. applying a non-linear

activation function to the output of the convolutional layer (also referred to as the feature map). A few

examples of activation functions are the hyperbolic tangent and the ReLU (Nair and Hinton, 2010).

Another operation that is typically employed in CNNs is the pooling operation, shown in Figure 2.3.

This is similar to the convolution operation, in the sense that it is also applied in steps, with a window

sliding along the layer’s input. However, unlike in convolutions, which have a kernel with weights that

can be changed as the network learns, the pooling operation has no kernel, and performs a function,

which is generally either taking the maximum, the minimum, or the average value within the receptive

field, yielding the corresponding value to the output. This operation reduces the resolution of the feature

map, leading to a reduction of dimensionality (improving training time) and decreasing the sensitivity

to displacements in the input image (shift invariance). Similarly to the convolution layer’s kernels, the

pooling layer has a window size, depth (number of channels) and stride. Additionally, pooling layers also

include the function which they apply.

CNNs, in general, will have several convolutional and pooling layers, feeding the final feature maps

into a fully-connected network. The CNN’s layers process the input by extracting the relevant fea-

tures, and the fully-connected network classifies the image by generating a probability distribution for

all classes with the softmax function. Both the CNN and the fully-connected network are trained simul-

11

X33 X34 X35

X11 X12 X13 X14 X15

X21 X22 X23 X24 X25

X31 X32

X41 X42 X43 X44 X45

X51 X52 X53 X54 X55

O11

Input Downsampled feature map

Operation

max

1 2 2

5

0

0 2

3 6

0

1

2

4 -1 3 1

5 2
4 6

Input

Downsampled
feature map

Figure 2.3: On the left of the figure, we see the pooling operation represented. The operation is applied on a 3× 3
window of the input. If sh = sw = 1 then we can conclude that the feature map’s new size is 3× 3. On
the right we see an example of pooling on a 4 × 4 input, with 2 × 2 window, sh = sw = 2, and with the
max function.

Input image

C1: feature maps
S2: f. maps

C3: f. maps

S4: f. maps C5: layer F6: layer OUTPUT

32× 32

6@28× 28

6@14× 14

16@10× 10

16@5× 5 120 84 10

Convolution Pooling Convolution Pooling Fully connected

Figure 2.4: Architecture of the LeNet5 network. Annotations provide the number of channels and size of the feature
maps, as well as the number of layers for fully-connected layers. The operations performed at each
stage are also specified (convolution, pooling).

taneously using backpropagation.

As mentioned previously, the LeNet5 (LeCun et al., 1998) architecture is a representative of early

CNN architectures, applying the fundamental concepts explained above to classify images of handwrit-

ten digits from the MNIST database. The model, represented in Figure 2.4, is composed of 7 layers: 2

sets of convolutional layers, 2 sets of pooling layers, 2 fully-connected layers, and a softmax classifier.

For the non-linear projections, the sigmoid activation function is applied, and the average function is

performed in the pooling layers.

Following the appearance of LeNet5 (LeCun et al., 1998), further research was made on image

classification using CNNs, leading to results which made the usage of these networks commonplace for

the task.

12

One of the architectures which contributed to this change in paradigm was AlexNet (Krizhevsky et al.,

2012), i.e. the CNN that won the ILSVRC edition of 2012. This was an image classification competition

using a subset of the dataset named ImageNet (Deng et al., 2009), and AlexNet was the first CNN to

win the competition.

Key aspects associated to this model included the use of GPUs for training, making use of their par-

allel processing capabilities, the application of ReLU as the activation function, allowing for a reduction in

training time, and the employment of data augmentation and dropout regularization, reducing overfitting.

Networks with ReLU consistently converged faster than equivalents with other activation functions

(like the hyperbolic tangent) to low error rates. Data augmentation artificially increases the size of the

dataset, transforming the images in the dataset without changing their labels by generating image trans-

lations (cutting random patches of a specific size from the original images) and creating horizontal re-

flections, training the network with both the original and reflected versions, as well as changing the

intensities of the RGB channels. Dropout (Hinton et al., 2012) is a technique that consists of setting the

output of hidden neurons to 0 randomly, with a defined probability (for example, 0.5 probability). This

contributes to reducing the dependency between neurons, forcing them to learn more robust features

and creating a better generalization of the features.

2.2.2 Residual Connections

AlexNet opened the path for further research on image classification with CNNs, with its record-breaking

results. Further hardware advancements allowed for larger and deeper networks to be created, although

certain problems were observed when training very large networks (e.g., in networks with larger depth,

accuracy saturated and decreased rapidly). ResNet (He et al., 2015) attempted to address this problem.

The authors of the ResNet model claimed that, in principle, a deeper model should not perform

worse than a shallow one if the added layers are the identity mapping, with the others being copies of

the shallow model’s layers. However, what was observed was the opposite, signifying that the addition of

more layers did not necessarily lead to better results, and will lead to worse results at a certain threshold.

The authors explored if the observed results were due to the vanishing gradients problem, i.e. the

gradients converged to zero, but they verified that the problem remained even with the use of BN, i.e.

batch normalization (Ioffe and Szegedy, 2015), a method that alters a layer’s inputs to achieve zero

mean and unit variance within each input batch of the training process. This method guarantees that

forward signals do not have zero variance, and ensures that backward gradients do not vanish.

They suggested the introduction of deep residual learning. Considering H(X) to be the underlying

mapping fit by a few of the layers, with X being the input to those layers, and hypothesizing that non

linear layers can approximate any function, then non linear layers can also approximate the function

F(X) := H(X)−X, if H(X) and X have the same dimensions. This means that, instead of attempting

13

conv.
layer

3× 3

conv.
layer

3× 3
+

X F(X) F(X) +X

ReLU

X

ReLU
+

X

ReLU

conv.
layer

1× 1

conv.
layer

1× 1

conv.
layer

3× 3 ReLU ReLU

Figure 2.5: Original residual block of the ResNet (left) and residual block with bottleneck (right).

to approximate the function H(X), the layers can attempt to approximate the function F(X), making

the original function H(X) = F(X) + X. The intuition is that, in the extreme case where the identity

mapping is optimal, then the residual F(X) only needs to be set to zero, instead of approximating the

identity mapping using non linear layers.

In practice, He et al. (2015) suggested the implementation of residual learning through residual

blocks, as seen in Figure 2.5: in every few stacked layers, a shortcut connection is added, i.e. a con-

nection that skips layers. The input of the first convolutional layer of the stack skips to the output of

the last convolutional layer, and element-wise addition is performed with the output of the last layer,

with the activation function of the last layer being applied to the result of the element-wise addition, or

F(X) +X. Batch normalization is performed after every convolution layer and before the application of

the activation function.

These residual blocks can not only address the accuracy degradation, but the vanishing gradient

problem as well, since the error is directly backpropagated through the shortcut connections. This

contributes to solving two of the issues that arise from the increase in network depth.

Additionally, the authors also proposed a building block with modifications in the convolution layers.

Instead of having 2 3 × 3 convolution layers in a block, the modified block (Figure 2.5) has 3 layers of

1× 1, 3× 3 and 1× 1 convolutions. The first 1× 1 layer reduces the dimensionality, while the last 1× 1

layer restores the dimensionality for the element-wise addition with the input, creating a bottleneck on

the 3 × 3 layer. The introduction of the 1 × 1 convolution layers to reduce dimensions (largely used in

the Inception architecture by Szegedy et al. (2015), i.e. the winner of ILSVRC 2014) leads to a smaller

increase in the number of parameters of the network with the increase in depth, and consequently to a

smaller increase in the training time with network depth increase. This bottleneck block design keeps

training times from increasing considerably with the increase in the number of layers in the network.

The previously described building blocks were used to create a set of networks called ResNets, which

were deeper than the state-of-the-art networks at the time. These networks achieved lower training and

14

validation errors than their shallower counterparts. Like the previously mentioned AlexNet, the ResNet

entered and won the ILSVRC competition (2015 edition). The bottleneck block design allowed for the

creation of ResNets with over 100 layers, achieving state-of-the-art results at the time.

2.2.3 Dense Connections

The concept of skip connections from the ResNet architecture was further extended, notably by Huang

et al. (2018) with the proposal of the DenseNet architecture, partly inspired also by Huang et al. (2016),

which explored stochastic depth to successfully train networks with over 1000 layers. Huang et al.

(2016) showed that dropping layers randomly during training produced better performance, indicating

that certain layers in the network can be redundant.

Huang et al. (2018) then introduced dense connectivity, by not only adding direct connections from a

layer l to the layer l+1, but introducing direct connections from layer l to all layers after. In consequence,

where in ResNets, the input of layer l would be:

X l = Hl(X l−1) +X l−1, (2.2)

in the DenseNet proposal the input of layer l is:

X l = Hl([X0,X1, ...,X l−1]), (2.3)

where Hl, in the case of DenseNet, is a composite function comprised of batch normalization (BN),

ReLU activation, and a 3× 3 convolution, where [X0,X1, ...,X l−1] is the concatenation of all of the fea-

ture maps of the previous layers. This design ensures that information is fully preserved in subsequent

layers, unlike in ResNet blocks where features are summed element-wise.

The dense connections maximize information and gradient flows between layers, making them easier

to train: each layer receives direct supervision from the loss function, improving accuracy.

It is important to notice that the concatenation operation cannot be applied on feature maps with

differing sizes, since it interferes with the use of downsampling layers, essential in convolutional net-

works. To overcome this problem, Huang et al. (2018) created dense blocks, represented in Figure 2.6,

in which the layers within are densely connected, much like the residual blocks from ResNet (He et al.,

2015) have residual connections. DenseNets (Figure 2.7) are built with dense blocks interspersed with

transition layers, making the use of downsampling operations viable. Specifically, DenseNet performs

batch normalization (BN) after dense blocks, and has 1 × 1 convolution and 2 × 2 average pooling as

transition layers.

Additionally, the authors introduced a hyperparameter k for the growth rate of the network, which

sets the number of feature maps produced in each layer. If Hl produces k feature maps, then the

15

B
N

-R
eL

U
-C

on
vX0 X1 X2 X3 X4

H1

H2 H3 H4

Figure 2.6: A 5-layer dense block with a growth rate of k = 3. Each layer takes all preceding feature maps as
input. The set of operations represented with Hl corresponds to batch normalization (BN), the ReLU
activation and a 3× 3 convolution (only explicitly represented in H1).

Input

C
on

vo
lu

tio
n

C
on

vo
lu

tio
n

Po
ol

in
g

C
on

vo
lu

tio
n

Po
ol

in
g

Po
ol

in
g

Li
ne

ar

Dense Block Dense Block Dense Block Output

Figure 2.7: DenseNet with 3 dense blocks. Convolution and pooling layers between dense blocks are transition
layers that alter the feature map sizes.

lth layer has k0 + k × (l − 1) input feature maps, with k0 being the number of channels of the input

layer. Notably, Huang et al.’s experiments showed that DenseNets could achieve state-of-the-art results

with ”narrow” layers, or with a relatively low growth rate, proving that this model is parameter efficient:

the combination of dense connections with input concatenation allows for the use of narrower layers.

Each layer has access to unmodified knowledge of previous layers and adds only a small amount of

information, encouraging feature reuse and reducing relearning of redundant feature maps.

Dense blocks can also employ bottleneck layers to increase computational efficiency, like ResNets,

namely by adding a 1× 1 convolution before each 3× 3 convolution layer, reducing the number of input

feature maps. The resulting operations performed are BN-ReLU-Conv(1 × 1)-BN-ReLU-Conv(3 × 3),

instead of BN-ReLU-Conv(3× 3) in the original block. Additionally, the number of feature maps can also

decrease at the transition layers: given the compression factor θ ∈ [0, 1] and a dense block containing

m feature maps, the following transition layer generates θ ·m feature maps. When θ = 1, the number of

feature maps stays unchanged.

State-of-the-art results were obtained in tests for DenseNets with original dense blocks, with growth

rate k = 12 and k = 24. The best results overall, in 3 out of the 4 datasets that were used for tests, were

obtained for DenseNets with bottleneck layers, compression with θ = 0.5 and with growth rate k = 12,

k = 24, and k = 40.

16

2.3 Transformers for Image Classification

In this section we explore an alternative architecture for computer vision tasks, the transformer. We start

by explaining the original concepts behind the architecture, followed by presenting the model applied to

image classification.

2.3.1 Transformer Architecture

The transformer architecture Vaswani et al. (2017) was initially created to tackle machine translation

tasks. It is organized in two different components, an encoder and a decoder. The goal is to map

an input sequence into an output sequence which can be of different lengths. The encoder receives

an input sequence x = x1,x2,x3, . . .xn, which in the task of machine translation is a sequence of

tokens where each token is a representation of a word, and maps each item into a hidden vector h =

h1,h2,h3, . . .hn known as context vector, that represents the item and its context. These context vectors

are provided to the decoder, which uses the new representation to generate an output sequence y =

y1,y2,y3, . . .yn, which in machine translation is a sequence of tokens where each represents a word in

a different language, using the previous output as additional input when generating the current output.

Unlike previous architectures in the field of natural language processing, transformers employ at-

tention mechanisms. Attention provides not only improvements in machine translation tasks but also

in computer vision, with the concept of soft and hard attention. In soft attention, the whole image is

being attended to, and in hard attention, patches of the image are attended to. Additionally, it is also

being used in the form of self-attention, where the model attends to the input sequence itself, in an

attempt that, by focusing on different words, the model is able to understand the internal structure and

connections between the elements of the input.

The self-attention mechanism in the transformer works like the following: the input sequence vectors

are stacked (Equation 2.4) and multiplied by an initial set of weights. The result of these multiplications is

a set of 3 matrices - the query Q (Equation 2.5), the keys K (Equation 2.6), and the V values (Equation

2.7) matrices.

I = Concat(x1,x2, . . . ,xn) (2.4)

Q = I ·WQ (2.5)

K = I ·WK (2.6)

V = I ·W V (2.7)

17

y = Attention(Q,K,V) = softmax

(
QKT

√
d

)
· V (2.8)

The attention is calculated as in Equation 2.8 by first multiplying the query matrix by the transpose

of the keys matrix, and dividing the result by the square root of d, the dimension of the key vectors. This

formula, called the scaled dot product attention, prevents exploding or vanishing gradients. Afterwards,

the result is fed to a softmax function and multiplied by the values matrix, providing the model with the

attention weights that indicate how each token relates to one another in the sequence.

In order to better capture the different relations between the elements of the input sequence, the

authors have also included multi-head attention mechanisms (Equations 2.9, 2.10), i.e. the attention

mechanisms have multiple units calculating the self-attention using different sets of weights for the query,

key, and value matrices, W s
q, W s

k, W s
v, for each head.

heads = Attention(IW s
q, IW

s
k, IW

s
v) (2.9)

MultiHead(Q,K,V) = Concat(head1,head2, . . . ,heads) ·WO (2.10)

The result of the attention heads is then concatenated and multiplied by the matrix WO.

In order to maintain a notion of the different positioning of the elements in the input even when the

model receives input sequence in a concatenated form and processes it simultaneously, each of the

vectors that represent the items in the input sequence have information about their position added,

called positional encoding, as per Equations 2.11 and 2.12.

PE(pos,2i) = sin(pos/100002i/dmodel) (2.11)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (2.12)

The approach of Vaswani et al. (2017) uses sinusoidal functions, where pos is the position of the

element in the input sequence, i is the dimension and dmodel the size of the model encodings. For

example, in a model where dmodel = 4, the resulting positional encoding pe would be of the form

pe =
[
sin

(pos

100000

)
, cos

(pos

100000

)
, sin

(pos

100002/4

)
, cos

(pos

100002/4

)]
=
[
sin (pos) , cos (pos) , sin

(pos
100

)
, cos

(pos
100

)] (2.13)

Equation 2.13 satisfies important criteria: the encoding for each element in the input sequence is

18

unique; distance between any two positions is consistent even when input sequences have different

lengths, the values are bounded (namely in the interval [−1, 1]), and it is deterministic. Additionally,

the authors argue this function makes it possible for the model to attend to relative positions, since any

position can be represented as a linear function of any other position.

After calculating the positional encoding of each element in the input sequence, the positional en-

coding is summed to the vector of the respective element in the input sequence.

I = Concat(x1,x2, . . . ,xn) = Concat(i1 + p1
e, i2 + p2

e, . . . , in + pn
e) (2.14)

We can now understand the overall structure of the transformer architecture.

Add & Norm

Feed-Forward

Multi-Head
Attention

Add & Norm

Add & Norm

Feed-Forward

Masked
Multi-Head
Attention

Add & Norm

Add & Norm

Multi-Head
Attention

Linear

Softmax

Input
Embedding

Output
Embedding

Inputs Outputs (shifted right)

Positional
Embedding

Positional
Embedding

Output Prob.

N ×

× N

Figure 2.8: Representation of Transformer structure.

It consists of an encoder and a decoder of N layers each. The encoder block receives the input

19

sequence (in the first encoder, that input sequence has the positional encoding embedded), and has

two sub-layers: the multi-head self-attention, that outputs the self-attention for the input sequence, and

a fully-connected feed-forward network.

Both of these sub-layers’ outputs are first added to a residual connection and normalized, before

being fed to the next layer/block in the model. The decoder blocks have a similar structure, with the

addition of a multi-head encoder-decoder attention layer between the multi-head self-attention and fully-

connected feed-forward networks, so that the decoder can attend to the input sequence, and the modifi-

cation of the first multi-head self-attention layer, by adding a mask, since the decoder is given the entire

output sequence as input, and without masking, it would have access to the elements of the sequence

it hadn’t yet predicted. The output of the last decoder block is then provided to a linear layer, which

redimensions it to a vector with the dimension of the output space (i.e. the number of words in the

vocabulary for the task of machine translation), and then through softmax, to normalize the scores for

each element in the output space, and the one with the highest score is chosen.

2.3.2 Vision Transformer

The transformer architecture was initially created with the task of machine translation in mind, without

concerns for whether it could be used for tasks such as image classification, where convolutional neural

networks were the gold standard.

To experiment on whether transformers would also be an adequate option for computer vision tasks,

a Vision Transformer (Dosovitskiy et al., 2020) was designed as close as possible to the original Trans-

former design in Vaswani et al. (2017).

The first modification is the input of the transformer. In natural language processing tasks, the input

is a word sequence with positional encodings. In the case of images, the logical input would be the

pixels of an image. However, computing the attention matrix has quadratic complexity, and having every

pixel attend to every other pixel in the input would be too heavy for most hardware.

As such, the authors suggest dividing the input image into fixed size patches, and flattening them.

The flattened patches are sent through a feed-forward layer to obtain a linear patch projection. Then,

a learnable [class] embedding is concatenated to the other patch projections. Like in the original trans-

former model, positional encoding is added to each patch according to its position in the full image

(including the class embedding).

20

1 2 3

4 5 6

7 8 9

1 2 3 4 5 6 7 8 9

Linear Projection of Linear Patches

0 ∗ 1 2 3 4 5 6 7 8 9Patch + Position
Embedding

Figure 2.9: Preparation of the input image for the Vision Transformer. ∗ is the [class] embedding.

Another modification is the removal of the transformer’s decoder. The encoder provides multiple

outputs, but only the learnable [class] output is sent to a multiple layer perceptron head - the other

outputs are ignored. The MLP head then provides the class it deems the image most likely corresponds

to. Additionally, the encoder block layout was rearranged from the original transformer, as can be seen

in Figure 2.10.

0 ∗ 1 2 3 4 5 6 7 8 9

Transformer Encoder

MLP
Head

Class

Norm

MLP

Multi-Head
Attention

Input
Embedding

Norm

L ×
Class

Figure 2.10: On the left, the structure of the ViT. On the right, the internal structure of the ViT encoder.

The ViT achieved or beat state-of-the-art results on various image classification datasets, but only

when trained on very large datasets. Otherwise, the ViT underperformed even when compared to

ResNets. The authors claim it’s expected, since transformers lack the inductive biases inherent to con-

volutional neural networks, and therefore need more data to explicitly learn them.

21

2.4 Summary

This chapter reviewed the fundamental concepts of deep learning by introducing neural networks in

Section 2.1. Fundamentals on convolutional neural networks and transformer architectures for computer

vision were introduced in Section 2.2 and Section 2.3.

22

3
Related Work

Contents

3.1 Conventional Convolutional Neural Network Models for COVID-19 Detection 25

3.2 Recent Models Created or Adapted for COVID-19 Detection 31

3.3 Summary . 42

23

24

This chapter explores related work in the area of image classification for diagnosing COVID-19 from

chest X-ray images. The first section addresses studies using standard CNN architectures, and the

second section covers studies with architectures that were created or that were adapted for this task.

3.1 Conventional Convolutional Neural Network Models for COVID-

19 Detection

Since the beginning of the pandemic, there has been extensive work on techniques to automatically

diagnose COVID-19 using CT scans and chest X-ray images. One of the approaches was to directly

use known architectures for image classification, taking advantage of transfer learning (i.e., making use

of networks trained on a task for which there is much data as the starting point of a model for a second,

different task). We provide an overview of the studies by Apostolopoulos and Mpesiana (2020), Narin

et al. (2021), and Minaee et al. (2020).

Apostolopoulos and Mpesiana (2020) used networks (Table 3.1) that were trained with the ImageNet

dataset: VGGNet (Simonyan and Zisserman, 2015), Inception (Szegedy et al., 2016), Inception-ResNet

(Szegedy et al., 2016), Xception (Chollet, 2017), and MobileNet (Howard et al., 2017).

The VGGNet architecture is a model with interspersed convolutional and max pooling layers, similar

to the AlexNet from the previous section, but deeper and with small receptive fields (i.e. convolutional

layers have kernels with small size, 3×3 or 1×1, enabling it to learn more complex features with a lower

amount of parameters). In the case of VGG19, i.e. the variant chosen by the authors and represented

in Figure 3.1, there are 19 weight layers (16 convolutional layers, and 3 fully-connected layers) and only

3× 3 kernels are used.

C
on

v
3
×

3
64

ch
C

on
v
3
×

3
64

ch

M
ax

Po
ol

in
g

C
on

v
3
×
3

12
8

ch
C

on
v
3
×

3
12

8
ch

M
ax

Po
ol

in
g

C
on

v
3
×
3

25
6

ch
C

on
v
3
×
3

25
6

ch
C

on
v
3
×
3

25
6

ch
C

on
v
3
×

3
25

6
ch

M
ax

Po
ol

in
g

C
on

v
3
×

3
51

2
ch

C
on

v
3
×

3
51

2
ch

C
on

v
3
×

3
51

2
ch

C
on

v
3
×

3
51

2
ch

M
ax

Po
ol

in
g

C
on

v
3
×

3
51

2
ch

C
on

v
3
×
3

51
2

ch
C

on
v
3
×
3

51
2

ch
C

on
v
3
×
3

51
2

ch

M
ax

Po
ol

in
g

Li
ne

ar
40

96
Li

ne
ar

40
96

Li
ne

ar
10

00

S
of

tm
ax

Figure 3.1: Structure of the VGG19 network.

The Inception model is a network built on the premise that the ideal kernel size depends on the

distribution of information in an image, i.e. a larger kernel is preferred for information distributed more

globally, while a smaller kernel is preferred for information distributed locally. The solution suggested by

Szegedy et al. (2016) is to create the Inception module (Figure 3.2), where convolutions with multiple

25

filters of different sizes are performed on the same input, along with max pooling operations, and the

output is concatenated and sent to the next module in the network. Additionally, 1 × 1 convolutions

are added to perform dimensionality reduction. Further versions of the model exist, i.e. Inceptionv2,

Inceptionv3, or Inceptionv4, with improvements to the model, such as refactorization of convolutions

with larger kernels into multiple convolutions with smaller kernels.

Previous
layer

1× 1
Conv

3× 3
Max Pooling

3× 3
Conv

5× 5
Conv

Filter
concatenation

Previous
layer

1× 1
Conv

3× 3
Max Pooling

1× 1
Conv

1× 1
Conv

Filter
concatenation

3× 3
Conv

5× 5
Conv

1× 1
Conv

Figure 3.2: On the left, we can see the naive Inception module. On the right, we see the Inception module with
dimensionality reductions (bottleneck), used in Inceptionv1.

The Inception-ResNet architecture is a model combining the structure of the Inception module with

the residual connections of the ResNet, adding the input of the convolution operations to the output, as

we can see in Figure 3.3. The variant used by the authors is the Inception-ResNetv2.

ReLU

1× 1
Conv

1× 1
Conv

1× 1
Conv

3× 3
Conv

3× 3
Conv
3× 3
Conv

1× 1
Conv

+

ReLU

1× 1
Conv

n× n
Conv

n× n
Conv

n× n
Conv

Pointwise
convolution

Depthwise
convolution

Figure 3.3: On the left, we see one of the building blocks of the Inception-ResNet architecture. Note the residual
connection from the input (after ReLU activation) and the summation of the output of the convolutions
and the input. On the right, we can see a representation of the convolution operation performed by the
Xception and MobileNet architectures.

26

The Xception model applies convolutions differently from the previous models. Instead of performing

convolutions with a filter along all channels and regions simultaneously, the Xception’s convolution (rep-

resented in Figure 3.3) is done separately: first a pointwise convolution, using 1× 1 filters and changing

the number of feature maps, then a depthwise convolution, where the operation is performed between

each channel in the kernel and the input, and the resulting feature maps are concatenated. This means

that the number of connections is smaller, since it is not necessary to perform convolutions over all

channels. Additionally, a few residual connections with 1× 1 convolutions are added.

Finally, the MobileNet architecture is similar to the Xception architecture, utilizing separate depthwise

convolutions as well, yet focused on ensuring accuracy while decreasing the number of parameters when

compared to state-of-the-art architectures.

All of the previous CNNs use the ReLU as activation function. Moreover, all of the networks with

two hidden layers had a dropout layer added to prevent overfitting, and training was conducted for 10

epochs, using 10-fold-cross-validation. Additionally, all networks have a set amount of untrainable layers

(layer cutoff), maintaining the weights from the original model trained with the ImageNet dataset.

Network Parameter Description

VGG19 Layer Cutoff 18
Neural Network 1024 nodes

Inception Layer Cutoff 249
Neural Network 1000

Inception-ResNetv2 Layer Cutoff 730
Neural Network None

Xception Layer Cutoff 120
Neural Network 1000 nodes, 750 nodes

MobileNet Layer Cutoff 10
Neural Network 1000 nodes, 750 nodes

Table 3.1: Table of parameters used in the networks evaluated by Apostolopoulos and Mpesiana (2020).

The dataset used by Apostolopoulos and Mpesiana is a collection of 1427 chest X-ray images from

publicly available repositories (Cohen et al., 2020; Kermany et al., 2018), of which 224 were of COVID-19

confirmed cases, 700 images corresponded to confirmed pneumonia (non-COVID-19), and 504 images

corresponded to normal conditions. The results were obtained for 3-class (COVID-19, pneumonia, nor-

mal) and 2-class (COVID-19, and non-COVID-19) predictions.

27

Network Acc 2-class (%) Acc 3-class (%) Sensitivity (%) Specificity (%)

VGG19 98.75 93.48 92.85 98.75
Inception 86.13 92.85 12.94 99.70
Inception-ResNetv2 84.38 92.85 0.01 99.83
Xception 85.57 92.85 0.08 99.99
MobileNet 97.40 92.85 99.10 97.09

Table 3.2: Table of results for the networks evaluated in Apostolopoulos and Mpesiana (2020).

CNN TP FP TN FN

VGG19 208 15 1189 16
MobileNet 222 35 1169 2

Table 3.3: Confusion matrix of the best-performing networks evaluated by Apostolopoulos and Mpesiana (2020).

The results obtained, shown in Table 3.2 and Table 3.3, in these conditions suggest that VGG19 and

MobileNet achieve the best accuracy and specificity. However, the number of samples per class is un-

even, with a smaller number of COVID-19 confirmed images, which skews these metrics, evident by the

sensitivity presented by Inception, Xception and Inception-Resnetv2 networks, with inadequate sensitiv-

ity (i.e. ratio of true positives among all positive cases) for the task. The authors conclude that MobileNet

outperforms VGG19, since it has similar accuracy and a lower number of false negatives, preventing a

situation where a patient with COVID-19 would spread the virus further due to wrong diagnosis by the

network. However, the dataset used in this study is small, compared to datasets such as the ImageNet

dataset, and it ideally should include a larger proportion of COVID-19 confirmed images.

Ahmed et al. (2021) analyzed a few studies on COVID-19 chest X-ray classification, and concluded

that the use of subsets of train/validation/test images with mixed sources, instead of performing training

and testing using data from different sources, may lead to the high accuracy achieved in some stud-

ies, which indicates that the network may be learning based on confounders instead of actual COVID-

19/pneumonia features.

Narin et al.’s work also evaluated CNNs with transfer learning for COVID-19 prediction. The CNNs

used were ResNet50, ResNet101, ResNet152 (i.e. variants of ResNet with 50, 101, and 152 layers

respectively), Inceptionv3 and Inception-ResNetv2, pre-trained with the ImageNet dataset, providing the

input to a global average pooling layer, a fully-connected layer with ReLU as activation function, and a

fully-connected layer classifying the input between 2 classes with the softmax function.

The dataset used by Narin et al. combined chest X-ray images from publicly available repositories

(Cohen et al., 2020; Wang et al., 2017), with 341 images from COVID-19 patients, 2800 normal images,

and 2772 bacterial and 1493 viral pneumonia images. The dataset was divided in 3 binary datasets:

dataset 1 contained the COVID-19 and normal images, dataset 2 contained the COVID-19 and viral

pneumonia images, and dataset 3 was composed of the COVID-19 and bacterial pneumonia images.

28

Model pre-training was performed with random initialization weights and optimizing the cross-entropy

loss function with the ADAM optimizer (Kingma and Ba, 2017), i.e. an adaptive learning rate optimization

algorithm that adapts the learning rate based on the second moment of the gradients (variance). The

dataset was randomly split into two independent datasets, with 80% of the samples for traning and 20%

of the samples for testing. The training dataset was used for k-fold cross-validation, with 1 ≤ k ≤ 5.

Models Dataset 1

Acc (%) Rec (%) Spe (%) Pre (%)

Inceptionv3 95.4 90.6 96.0 73.4
ResNet50 96.1 91.8 96.6 76.5
ResNet101 96.1 78.3 98.2 84.2
ResNet152 93.9 65.4 97.3 74.8

Inception-ResNetv2 94.2 83.5 95.4 67.7

Models Dataset 2

Acc (%) Rec (%) Spe (%) Pre (%)

Inceptionv3 98.6 99.7 98.3 93.2
ResNet50 99.5 99.4 99.5 98.0
ResNet101 97.1 88.3 99.1 95.6
ResNet152 97.5 90.9 99.1 95.7

Inception-ResNetv2 94.4 92.1 94.9 80.5

Models Dataset 3

Acc (%) Rec(%) Spe (%) Pre (%)

Inceptionv3 97.7 100 97.4 82.4
ResNet50 99.7 98.8 99.8 98.3
ResNet101 94.7 52.5 99.9 98.9
ResNet152 92.8 51.0 98.0 75.5

Inception-ResNet v2 95.3 70.7 98.3 84.0

Table 3.4: Results obtained by Narin et al. (2021) with the 3 binary datasets: dataset 1 (COVID-19 and normal),
dataset 2 (COVID-19 and viral pneumonia) and dataset 3 (COVID-19 and bacterial pneumonia).

The results obtained (Table 3.4) by Narin et al. show that ResNet50 has overall the best performance

across all datasets, achieving the highest or one of the highest accuracies, while also achieving recall,

specificity and precision on par with the other models. However, the datasets used in this study were

again relatively small and unbalanced, compared to datasets like the ImageNet dataset, which is to be

expected due to the nature of the problem: it is not easy to obtain anonymized labeled chest X-ray

images, especially a relatively recent problem such as COVID-19.

The work from Narin et al. also performs training and testing on datasets from the same sources,

which according to Ahmed et al. (2021) may mean that the network is possibly learning based on con-

founders instead of actual COVID-19/pneumonia features. Testing on a dataset that does not include

29

images from the dataset used for training would provide more insight on this matter.

The work by Minaee et al. analyzes the performance of ResNet18 (i.e., the 18 layer variant of

ResNet), ResNet50 (as in Narin et al. (2021)), SqueezeNet, and DenseNet161 (i.e., the 161 layer variant

of DenseNet) for COVID-19 detection on the COVID-Xray-5k dataset.

The SqueezeNet (Iandola et al., 2016) is an architecture designed to have fewer parameters, more

easily fitting GPU memory, while maintaining good performance. It equals AlexNet performance while

being much smaller in size, achieving 0.5MB in size using model compression techniques. The main

building block of the SqueezeNet, represented in Figure 3.4, is a ”fire” module, with a 1 × 1 convolution

for dimensionality reduction, followed by 1× 1 and 3× 3 convolutions.

The COVID-Xray-5k dataset was created by the authors, with chest X-ray images (of both COVID-19

and non-COVID-19 patients) from a publicly available repository (Cohen et al., 2020) and re-labeled by

an expert radiologist, and non-COVID-19 images from the ChexPert (Irvin et al., 2019) dataset. Due

to the scarcity of COVID-19 image samples, data augmentation was performed, flipping, rotating, and

distorting the images slightly. The images were split in 3100 for the test set (3000 non-COVID-19, 100

COVID-19) and 2084 for the training set (2000 non-COVID-19, and 84 COVID-19 samples, increased to

420 after augmentation).

1
×

1
C

on
v

3
×

3
C

on
v

1
×
1

C
on

v

Figure 3.4: SqueezeNet’s fire module.

All of the models were trained using the cross-entropy loss function and using the ADAM optimizer.

Only the last layer of the networks was fine-tuned for the task, with the previous layers maintaining

the weights from training on the ImageNet dataset, since Minaee et al. considered that the number of

COVID-19 samples was too limited to fine-tune all of the layers.

Due to the imbalance in COVID-19 and non-COVID-19 samples, the authors decided to compare

the probability score predicted by the network with a variable threshold to estimate the specificity and

sensitivity of the networks. Other evaluation metrics used were derived from the Precision-Recall curve

(average precision) or from the Receiver Operating Characteristic curve (AUC, i.e. area under the ROC

curve).

30

Model Sensitivity Specificity Average Precision AUC

ResNet18 98%± 2.7% 90.7%± 1.1% 0.869 0.989
ResNet50 98%± 2.7% 89.6%± 1.1% 0.899 0.990
SqueezeNet 98%± 2.7% 92.9%± 0.9% 0.897 0.992
DenseNet161 98%± 2.7% 75.1%± 1.5% 0.863 0.976

Table 3.5: Results obtained in Minaee et al. (2020).

As seen on Table 3.5, at certain thresholds, all of the networks have similar sensitivity, being appar-

ently able to correctly identify patients with COVID-19. A larger variation can be seen in specificity, with

SqueezeNet achieving the best specificity, and with ResNet18 as the runner-up. However, since the

sensitivity and specificity metrics depend on specific thresholds, the average precision and AUC provide

a broader perspective of general performance. Both ResNet18 and SqueezeNet have high average pre-

cision and AUC as well, and were considered by the authors as the two top-performing networks of the

study.

Additionally, the authors employed a technique from Zeiler and Fergus (2013) to visualize the results

of the prediction. More specifically, this method is based on classifying COVID-19 samples with an

N × N square of pixels being occluded, starting from the top-left corner of the image, and comparing

the result obtained with the actual label. If an image is no longer identified as COVID-19 positive, it

is considered that the occluded pixels belong to a region with important characteristics for the network

to detect COVID-19. Otherwise, the region is considered irrelevant for COVID-19 detection. Minaee

et al. compared the results from the visualization with the regions marked by the expert radiologist,

and claimed that the heatmaps generated by this technique agreed with the marked regions. However,

no metric was provided to evaluate how accurate the heatmaps were when compared to the marked

regions.

Minaee et al.’s study also suffers from the same problem as the two previous studies, as explained

in Ahmed et al. (2021). Further testing with a dataset with images from different sources would allow to

check the generalization ability of these models when faced with unseen data.

3.2 Recent Models Created or Adapted for COVID-19 Detection

This section provides an overview and analysis on some studies that have created or adapted existing

models specifically for the task of diagnosing COVID-19.

One the earliest models tailored for this task was the COVID-Net from Wang and Wong (2020), i.e.

a deep CNN that classifies X-rays into 3 classes: no infection, non-COVID-19 infection, and COVID-19

infection.

The COVID-Net architecture makes use of the PEPx module, as seen in Figure 3.5, composed

31

of 2 layers of 1 × 1 convolutions, a layer with a depthwise 3 × 3 convolution, and two other layers

of 1 × 1 convolutions. The 1 × 1 convolutions are used to reduce and expand the input and output

feature maps. The authors argue that this module allows for great representational capacity while being

computationally efficient.

1
×

1
C

on
v

3
×

3
D

ep
th

w
is

e
C

on
v

1
×

1
C

on
v

1
×

1
C

on
v

1
×

1
C

on
v

Figure 3.5: COVID-Net’s PEPx module from Wang and Wong (2020).

This module is incorporated in a deep CNN with several connections between the PEPx modules,

similar to the residual/dense connections in Section 2.2. The module and the architecture (Figure 3.6)

were obtained by machine-driven exploration, starting with an initial prototype and using generative

synthesis (Wong et al., 2018) to identify the optimal architecture. The requirements for the network

related to achieving a sensitivity of at least 80% and a positive predictive value of at least 80% for

COVID-19 positive cases. The rationale used is that these requirements allow for the correct prediction

of COVID-19 cases while reducing the probability of false positives.

in
pu

t

1
×
1

C
on

v

P
E

P
x

P
E

P
x

P
E

P
x

P
E

P
x

P
E

P
x

P
E

P
x

P
E

P
x

P
E

P
x

P
E

P
x

P
E

P
x

P
E

P
x

P
E

P
x

P
E

P
x

P
E

P
x

P
E

P
x

P
E

P
x

fla
tte

n

FC

S
of

tm
ax

1
×

1
C

on
v

1
×

1
C

on
v

1
×
1

C
on

v

1
×

1
C

on
v

Figure 3.6: The COVID-Net architecture from Wang and Wong (2020).

The authors observed that the architecture has long-range connectivity and is heterogeneous, with

diverse kernel parameters. Long-range connections improve the network’s representational capacity

and make it easier to train. However, they note that extensive DenseNet-like connectivity increases

computational complexity and memory overhead. This architecture solves this problem by using the

layer’s results selectively, leveraging the pros and cons of long-range connections. Wong et al. (2018)

note that these characteristics are the result of the machine-driven exploration optimizing the design of

32

the network for the task at hand.

For training, the COVID-Net was first pre-trained on the ImageNet dataset, followed by training on

the COVIDx dataset using the ADAM optimizer. The COVIDx dataset was created by the authors, by

compiling 5 publicly available COVID-19 datasets. It is comprised of 13,975 CXR images (at that time),

with 358 CXR images from COVID-19 patients. Furthermore, data augmentation was performed using

translation, rotation, horizontal flip, zoom, and intensity shift (i.e. shifting the color intensity) operations,

and the training batches are balanced to encourage the presence of images of different infections in

each batch.

Furthermore, the authors tried to address the problem of transparency and explainability of the re-

sults. In critical tasks such as medical applications, it is important to understand how neural networks

have obtained the results, and guarantee that the network is classifying the images using relevant fea-

tures. For that purpose, the authors used GSInquire (Lin et al., 2019), i.e. an explainability method that

is essential for the machine-driven exploration: an inquisitor (I) and a generator (G) pair work together,

with G generating new networks, that I analyzes. The information obtained by I is used to improve

G to generate better networks, as well as to create an interpretation, that can in this case be visualized

relative to the X-ray image.

To analyze the performance of the COVID-Net architecture, the authors compared its performance

with VGG19 and ResNet-50 networks on the COVIDx test dataset, computing accuracy, sensitivity, and

PPV. The ResNet-50 network is a variant of the ResNet, that is 50 layers deep and that utilizes the

bottleneck residual block.

Architecture Parameters (M) Acc. (%) Sensitivity (%)

Normal Non-COVID-19 COVID-19

VGG19 20.37 83.0 98.0 90.0 58.7
ResNet-50 24.97 90.6 97.0 92.0 83.0
COVID-Net 11.75 93.3 95.0 94.0 91.0

Table 3.6: Number of parameters of each architecture and sensitivity per class in Wang and Wong (2020).

Architecture PPV (%)

Normal Non-COVID-19 COVID-19

VGG19 83.1 75.0 98.4
ResNet-50 88.2 86.8 98.8
COVID-Net 90.5 91.3 98.9

Table 3.7: Positive prediction value (PPV) per class for each architecture tested by Wang and Wong (2020).

The results obtained (Table 3.6 and Table 3.7) show that COVID-Net has less parameters and better

accuracy than the other two networks. The author’s proposal also has better sensitivity for non-COVID-

33

19 and COVID-19 cases, and better PPV in all cases, while VGG19 wins in sensitivity in normal cases.

Sensitivity for COVID-Net is superior to 90% in all cases, showing that it can detect many true positives,

and PPV for COVID-19 cases is 98.9%, indicating that very few COVID-19 false positives should be

detected.

It should nonetheless be noted that Ahmed et al. analyzed the datasets used on a variety of net-

works, and observed that Wang and Wong (2020) used a pediatric dataset for the normal/pneumonia

class samples, while the average age of COVID-19 class patients were over 40 years old. This could

mean that the network could be using age specific features to differentiate COVID-19 samples from

other samples. Removing the pediatric dataset from tests could show more truthful results regarding

the network’s ability to classify COVID-19 samples, along with using a separate dataset to test the net-

work’s ability to generalize. Notably, the dataset used is heavily unbalanced, but since the network was

generated by requiring a sensitivity value of at least 80%, the effect in this metric is not noticeable like in

Apostolopoulos and Mpesiana (2020).

Another architecture created for COVID-19 chest X-ray classification is CoroNet (Khan et al., 2020),

i.e. a CNN based on Xception (Chollet, 2017) with modifications. The first part of the model is Xception

itself, 71 layers deep, with an output shape of 5× 5× 2048. This output is provided to a flatten layer that

will output a single vector to a dropout layer, followed by two fully-connected layers, the last of which

providing the prediction of the image’s class using the softmax function.

The authors implemented a main multi-class model to classify images into COVID-19, normal, bacte-

rial pneumonia, and viral pneumonia, as well as 2 modified models: one to classify images into COVID-

19, normal, and pneumonia, and the other to classify into COVID-19 and normal.

The CoroNet was first pre-trained on the ImageNet dataset, to avoid overfitting due to the small size

of the training dataset. The dataset used for fine-tuning the network is a combination of two publicly

available datasets, one of them being (Cohen et al., 2020). At the time, this dataset contained 290

COVID-19 chest X-ray images, 1203 normal chest X-ray images, 660 bacterial pneumonia samples, and

931 viral pneumonia images. Due to the unbalanced number of samples from each class (especially

the COVID-19 samples), random under-sampling was performed, i.e. examples of the majority class

were deleted until the dataset is balanced. After under-sampling, the dataset contained 310 normal,

330 bacterial pneumonia, and 327 viral pneumonia images, along with the COVID-19 samples. The

retraining of the network on the new dataset was performed using the ADAM optimizer with data shuffling

enabled, and 4-fold cross-validation was performed.

As we can see in Table 3.8 and Table 3.9, the performance for non-COVID-19 pneumonia classes is

lower than COVID-19 and normal classes, leading to a lower accuracy overall. However, when combin-

ing the two pneumonia classes into one for the 3-class CoroNet, the accuracy, recall, and F-measure

increase significantly. There’s a further smaller improvement for binary CoroNet.

34

Class Precision (%) Recall (%) Specificity (%) F-measure (%)

COVID-19 93.17 98.25 97.9 95.61
Normal 95.25 93.5 98.1 94.3
Bacterial Pneumonia 86.85 85.9 95 86.3
Viral Pneumonia 84.1 82.1 94.8 83.1

Table 3.8: Results for each class for the 4-class CoroNet model from Khan et al. (2020).

Model Precision (%) Recall (%) Specificity (%) F-measure (%) Accuracy (%)

4-class CoroNet 90.0 89.92 96.4 89.8 89.6
3-class CoroNet 95.0 96.9 97.5 95.6 95.0
Binary CoroNet 98.3 99.3 98.6 98.5 99.0

Table 3.9: Results for each CoroNet model from Khan et al. (2020).

The high recall obtained in this study indicates that a low number of false negatives are produced,

which means that a low number of COVID-19 cases are missed by the model. The authors also tested

the 3-class model on a different dataset from Ozturk et al. (2020), with the same COVID-19 samples but

different normal and pneumonia X-ray images, achieving an overall accuracy of 90% after fine-tuning.

Khan et al. claim that CoroNet’s results are superior compared to results obtained in other studies, by

comparing accuracy to other models. However, since the studies mentioned are not tested in the same

dataset as CoroNet, further studies comparing the networks with the same dataset/similar conditions

would be necessary to confirm this statement. Moreover, comparisons using not only accuracy but

other metrics as well (such as sensitivity and sensibility) would provide further insight. A comparison

with a baseline (such as ResNet or DenseNet) would also have been a good addition to the study.

More recently, Mamalakis et al. (2021) combined the ResNet and DenseNet architectures into a

pipeline to diagnose whether a patient has COVID-19, tuberculosis, pneumonia, or is healthy. The

authors analyzed the performance of DenseNet-121, ResNet-50 and VGG16 on a CT scan dataset, and

verified that although ResNet-50 had better recall, precision, and F1, DenseNet-121 has a better AUC-

ROC. They than hypothesized that the combination of these two networks could result into an accurate,

balanced network.

The resulting architecture (Figure 3.7) contains 4 layers with equal sized kernels from each network,

which have their output concatenated and fed to blocks of convolution and average pooling layers, until

their outputs all have equal dimensions. The results of the redimensioning are then concatenated, and

provided as input to fully-connected layers with dropout in between. The final layer uses the softmax

function for classification.

The authors used three publicly available open-source collections of chest X-ray images (Kermany

et al., 2018; Cohen et al., 2020; Jaeger et al., 2014) to create 4 different datasets, DXR1, DXR2, DXR3,

and DXR4, as shown in Table 3.10. DXR1 is a dataset with pneumonia and healthy cases in pediatric

35

7
×

7
bl

oc
k

14
×
1
4

bl
oc

k

28
×

2
8

bl
oc

k

56
×
5
6

bl
oc

k

Concat ConcatConcat Concat

56
×

56
block

28
×

2
8

block

14
×
1
4

block

7
×

7
block

Conv Conv

Conv Conv

Avg Pool Avg Pool

Avg Pool

Avg Pool

Concat Concat

Concat

Conv

Avg Pool

ConvAvg PoolConv

Avg Pool

flatten

FC

FC

FC with softmax

R
es

N
et

D
enseN

et

Figure 3.7: The DenResCov-19 architecture from Mamalakis et al. (2021).

population from Kermany et al. (2018), while DXR2 is the dataset with cases of COVID-19, pneumonia,

and healthy cases from Cohen et al. (2020). DXR3 is a dataset with images from Cohen et al. (2020)

and Jaeger et al. (2014), showing tuberculosis, COVID-19, pneumonia and healthy cases. Since Cohen

et al. (2020) used a small dataset compared with Jaeger et al. (2014), a few images were randomly

selected from the latter, to make sure DXR3 was balanced. Finally, DXR4 is an extension of the DXR3

dataset, with tuberculosis, COVID-19, pneumonia, and healthy cases from all collections. In this dataset,

there’s some unbalance in the frequency distribution, due to the COVID-19 dataset only having 69 CXR

samples.

Mamalakis et al. performed pre-processing on the images, removing noise and normalizing them by

subtracting the mean value from each pixel in the image and dividing the pixel values by the standard

deviation. Additionally, the images underwent data augmentation techniques such as rotation, width

shift, height shift, and ZCA whitening (Koivunen and Kostinski, 1999), i.e. transforming the pixel data

so that the covariance matrix becomes the identity matrix. The datasets were split into the training and

test set with Monte Carlo cross-validation split, i.e. the images were split randomly between the test and

36

Dataset Healthy Pneumonia Tuberculosis COVID-19

DXR1 1350 3883 - -
DXR2 79 79 - 69
DXR3 79 79 79 69
DXR4 330 300 310 69

Table 3.10: Data in each dataset used by Mamalakis et al. (2021).

training sets multiple times, with 70% of the samples in the training set, and 30% of the images in test

set. The loss function applied was cross-entropy, and the DenseNet-121 and ResNet-50 networks were

pre-trained on the ImageNet dataset.

Metric DXR1 dataset

DenResCov-19 DenseNet-121 ResNet-50 Inceptionv3

Recall (%) 98.12 97.80 97.71 93.32
Precision (%) 98.31 94.62 95.01 90.10
AUC-ROC (%) 99.60 99.10 98.95 92.80
F1 (%) 98.21 96.27 96.34 91.68

Metric DXR2 dataset

DenResCov-19 DenseNet-121 ResNet-50 VGG16

Recall (%) 89.38 83.54 83.53 99.83
Precision (%) 85.28 77.45 73.35 33.38
AUC-ROC (%) 96.51 93.2 92.39 50.07
F1 (%) 87.29 80.37 78.11 49.51

Metric DXR3 dataset

DenResCov-19 DenseNet-121 ResNet-50 VGG16

Recall (%) 59.28 57.71 56.66 66.53
Precision (%) 79.56 74.87 74.00 26.53
AUC-ROC (%) 91.77 89.49 92.12 53.11
F1 (%) 68.09 65.17 64.17 38.00

Metric DXR4 dataset

DenResCov-19 DenseNet-121 ResNet-50 VGG16

Recall (%) 69.70 62.70 62.00 93.69
Precision (%) 82.90 79.35 78.60 27.17
AUC-ROC (%) 95.00 91.00 93.21 54.99
F1 (%) 75.75 70.07 69.51 42.13

Table 3.11: Results for each dataset used by Mamalakis et al. (2021).

The obtained results (Table 3.11) show that across all datasets, DenResCov-19 achieves better preci-

sion, AUC-ROC and F1 than DenseNet-121, ResNet-50 and VGG16/Inceptionv3. In DXR1, DenResCov-

37

19 achieves better recall, although for the other datasets VGG16 obtains a higher recall. Note that per-

formance decreases as the number of classes increase, and that it improves from DXR3 to DXR4, likely

due to the larger dataset.

A more recent work in COVID-19 chest X-ray classification is Le Dinh et al. (2022) which lever-

ages 5 neural networks for differentiating samples of COVID-19, pneumonia, and healthy patients, i.e.

ResNet50 (He et al., 2015), DenseNet121 (Huang et al., 2018), Inception (Szegedy et al., 2015), Swin

Transformer (Liu et al., 2021), and Hybrid EfficientNet-DOLG (Henkel, 2021).

The Swin Transformer (Liu et al., 2021) is a transformer architecture based on the original ViT

(Vaswani et al., 2017). The authors sought to solve some issues of the original transformer architecture.

One of those issues relates to the fact that objects in images can vary greatly in size. In ViT, the patches

are all of the same size, which means that objects of differing sizes may not be captured properly -

a large object can be split in multiple patches, or an object of a small number of pixels may be in a

very large patch. Another issue that arises is that the ViT’s self-attention calculation mechanisms are of

quadratic complexity when compared to the size of the image, which is especially problematic when the

resolution of the different images increases.

The Swin transformer (Liu et al., 2021) attempts to solve these issues by dividing the image in small

patches, and gradually merging neighbouring patches along the transformer layers. It also changes

the blocks in the encoder block to calculate the self-attention in a less computationally intensive way,

reducing the complexity from quadratic to linear on the image size.

LN

W-MSA

LN

MLP

LN

SW-MSA

LN

MLP

zl

zl

zl+1

zl−1

ẑl ẑl+1

Figure 3.8: Swin Transformer block pair.

The transformer block of the original ViT is modified by changing the Multi-Head Self-Attention mod-

ule to a Shifted-Window based Self-Attention. In practice, the self-attention of a patch is not calculated

38

over all patches of the image, but only the neighbouring patches within a window. These windows are

arranged in a non-overlapping manner over all the patches. Additionally, in order to establish connec-

tions across windows while still maintaining the complexity improvements, at each stage there’s pairs

of Swin Transformer blocks, where the second block in a pair calculates the self-attention in a shifted

window from the first block in the pair.

Layer l Layer l + 1

Figure 3.9: Ilustration of Swin Transformer’s shifted window.

Assuming the window size is set to M = 4, and an image has been divided in 8 × 8 patches, then

in the first block the image will have 4 windows, starting from the top left of the image. When the output

of the first block is fed to second block, the windows are displaced by
(⌊

M
2

⌋
,
⌊
M
2

⌋)
. With this approach,

the computations of consecutive Swin Transformer blocks are

ẑl = W-MSA(LN(zl−1)) + zl−1 (3.1)

zl = MLP(LN(ẑl)) + ẑl (3.2)

ẑl+1 = SW-MSA(LN(zl)) + zl (3.3)

zl+1 = MLP(LN(ẑl+1)) + ẑl+1 (3.4)

where LN is the linear normalization and MLP is the multilayer perceptron - also present in the ViT -

W-MSA and SW-MSA are the modified multi-head attention units, and ẑl zl are the outputs of the MSA

unit and MLP of block l, respectively.

Additionally, the model performs patch merging after each stage. Before the first stage, the size of

input is H
4 × W

4 × 48, where H is the height of the original input image, W is the width, and 48 is the

number of pixel values of each 4 × 4 patch, assuming an RGB image, after which each of the patches

is converted into a 1-dimensional vector with linear embedding. After the input goes through the Swin

Transformer blocks, it is in the format H
4 × W

4 × C, where C is the size of the linear embedding. Then

39

Images

P
at

ch
P

ar
tit

io
n

Li
ne

ar
E

m
be

dd
in

g
Swin

Transf.
Block

Stage 1

×2

P
at

ch
M

er
gi

ng

Swin
Transf.
Block

Stage 2

×2

P
at

ch
M

er
gi

ng

Swin
Transf.
Block

Stage 3

×6

P
at

ch
M

er
gi

ng

Swin
Transf.
Block

Stage 4

×2

H
4 × W

4 × 48 H
4 × W

4 × C H
8 × W

8 × 2C H
16 × W

16 × 4C H
32 × W

32 × 8C

Figure 3.10: Swin Transformer Architecture (Swin-T variant).

the first patch merging layer concatenates the features of each group of 2 × 2 neighbouring patches,

increasing the dimensions to H
8 × W

8 ×4C, and a linear layer scales the dimension down to H
8 × W

8 ×2C.

As the input goes through the model, the patch merging layers scale down the first two dimensions by a

factor or 2 and increase the third one also by a factor of 2.

After all of the stages, average pooling followed by normalization convert the output in a representa-

tion with C × 2× 2× 2 embeddings, which are the input of a classifier that will output the correct class of

the input image.

Some other modifications made on the Swin Transformer are the addition of a relative position bias

to each self-attention head, and an optimization when calculating the attention in a shifted window in

situations where there are windows that are smaller than the expected size - instead of adding a padding

to the windows, the patches in the windows are re-arranged, so the total number of windows remains

the same.

As for the Hybrid EfficientNet-DOLG (Henkel, 2021), it is an architecture that combines the Efficient-

Net and DOLG architectures.

The EfficientNet (Tan and Le, 2019) is an improvement on CNNs based on the concept that increas-

ing the accuracy of a CNN involves arbitrarily scaling the network in a specific dimension, i.e. in depth,

width, resolution. Tan and Le introduced a compound scaling method to uniformly scale all dimensions

of a model

40

depth: d = αϕ (3.5)

width: w = βϕ (3.6)

resolution: d = γϕ (3.7)

so that α · β2 · γ2 ≈ 2 (3.8)

α ≥ 1, β ≥ 1, γ ≥ 1 (3.9)

where ϕ is the scaling coefficient that represents the amount of resources available for scaling, and

α, β and γ are hyper-parameters for each scaling dimension, which can be found by performing a grid

search. The resource considered for scaling was the number of FLOPS, i.e. Floating Point Operations

Per Second.

The authors started with a baseline model called EfficientNet, generated using the AutoML MNAS

framework. Once the hyper-parameters are found for ϕ = 1, the hyper-parameters can be fixed, and the

scaling coefficient is increased, creating different scales of EfficientNet, from the B0 to the B7 model.

The largest model, EfficientNet-B7, achieved state-of-the-art results on the ImageNet dataset.

The DOLG architecture (Yang et al., 2021), i.e. Deep Orthogonal Local and Global framework, was

originally created for the task of image retrieval. It is built upon the ResNet architecture, and feeds the

output of the first 3 stages of the ResNet to a global and local branch. The local branch is in charge of

capturing local features, with multi-atrous convolutions and self-attention. The global branch leverages

the fourth stage of the ResNet. The outputs of the branches are fed to an orthogonal fusion module,

which calculates the projection of local features onto global features.

Henkel (2021) created a hybrid of these two models, the Hybrid EfficientNet-DOLG, for landmark

recognition and retrieval, which leverages the structure of the DOLG, and replaces the ResNet model

with an EfficientNet pre-trained on the ImageNet dataset.

The datasets used by Le Dinh et al. combined chest X-ray images from two publicly available repos-

itories (Wang and Wong, 2020; Kermany et al., 2018). The first dataset is COVIDx CXR-3, an updated

version of COVIDx dataset, which contains over 30,000 images. The authors combined the two datasets,

and filtered out some COVID-19 samples from the COVIDx CXR-3 to balance the dataset, followed by

removal of low-quality images and application of data augmentation techniques such as rotation, hori-

zontal flip, brightness change, re-scale, height and width shift.

As for training, the authors employed early stopping with 120 as the maximum number of epochs,

the ADAM optimizer, and Sparse Categorical Cross Entropy, a variant of the cross entropy loss function.

As can be seen in Table 3.12, Swin Transformer has the best precision for the COVID-19 class, Hybrid

EfficientNet-DOLG has the best precision for Pneumonia, while for the Normal class DenseNet121 has

41

Models Precision

COVID-19 Normal Pneumonia Macro-Avg Micro-Avg

DenseNet121 0.98 0.91 0.94 0.94 0.95
ResNet50 0.98 0.83 0.93 0.92 0.94
Inception 0.98 0.83 0.90 0.90 0.92
Swin Transformer 0.99 0.62 0.89 0.83 0.87
Hybrid EN-DOLG 0.98 0.93 0.93 0.95 0.96

Models Recall

COVID-19 Normal Pneumonia Macro-Avg Micro-Avg

DenseNet121 0.98 0.94 0.92 0.95 0.95
ResNet50 0.94 0.96 0.89 0.93 0.93
Inception 0.93 0.88 0.94 0.92 0.92
Swin Transformer 0.70 0.97 0.90 0.86 0.82
Hybrid EN-DOLG 0.97 0.94 0.95 0.96 0.96

Models F1-score

COVID-19 Normal Pneumonia Macro-Avg Micro-Avg

DenseNet121 0.98 0.95 0.93 0.94 0.95
ResNet50 0.96 0.89 0.91 0.92 0.93
Inception 0.96 0.85 0.92 0.91 0.92
Swin Transformer 0.82 0.75 0.90 0.82 0.82
Hybrid EN-DOLG 0.99 0.94 0.94 0.95 0.96

Table 3.12: Results obtained in Le Dinh et al. (2022)
.

the best precision. The Hybrid EfficientNet-DOLG leads in both macro and micro-averaged precision.

When it comes to recall, the Hybrid EfficientNet-DOLG has the best scores for three categories:

Pneumonia, macro and micro-average. For the COVID-19 class, the best performing model was the

DenseNet-121, while Swin Transformer obtained the best recall for the Normal class.

Finally, for the third metric, F1-score, the hybrid EfficientNet-DOLG achieved the best results in the

Pneumonia, macro and micro-average categories once more, as well as the best score for the COVID-19

class, while DenseNet121 achieved the best F1-score for the Normal class.

3.3 Summary

This chapter reviewed the related work on COVID-19 image classification, namely the usage of conven-

tional convolutional neural networks in Section 3.1 and the creation or adaptation of new models for the

task in Section 3.2.

42

4
Model Architectures and Baselines

Contents

4.1 Models and Training Methods . 45

4.2 Dataset and Metrics Used . 47

4.3 Summary . 51

43

44

The goal of this thesis is to analyze chest X-ray images, and discern if they correspond to a healthy

patient, a positive COVID-19 diagnosis, or a positive pneumonia diagnosis. For this purpose we evaluate

the performance of some neural network architectures, and compare them to baselines to better assess

if they present any improvements.

The neural networks we evaluate are the Swin Transformer (Liu et al., 2021), and a convolutional

neural network with improvements based on characteristics presented by vision transformers. We expect

that using more recent architectures and developments in computer vision, the results obtained will also

be an improvement when compared to the baselines.

4.1 Models and Training Methods

This section provides an overview on the baselines and the models explored, as well as the training

methods employed.

4.1.1 Baselines

When creating baselines, we chose conventional neural network models used in other studies for

COVID-19 detection, namely ResNet, VGGNet, and DenseNet.

The ResNet variant we use is ResNet50, which consists of 4 stages, each with 3, 4, 6, 3 residual

bottleneck blocks respectively. Each residual bottleneck block has a residual connection from before to

after the block, and the last residual block of each stage performs a convolutional operation with stride

2, reducing the size of the input in half. The stem cell, i.e. the first operations in the model that define

how the input will be processed from then on, reduces the input size and has a 7 × 7 convolution layer

with stride 2, followed by a pooling operation.

The VGGNet variant we use is VGG16, which has 3 convolutional layers instead of 4 convolutional

layers between pooling operations, thus having 3 less convolutional layers in total than the VGG19

suggested by Simonyan and Zisserman (2015).

The DenseNet variant we use is DenseNet121, which is composed of 4 stages, each with a defined

number of dense blocks (6, 12, 24, and 16, respectively), and followed by a transition layer with a 1× 1

convolution and 2×2 average pool with stride 2 for downsampling, except for the last sequence of dense

blocks, which is followed by the classification layer.

The baseline models used ReLU as the activation function, softmax for classification and cross-

entropy as loss function, and ADAM as optimizer.

45

4.1.2 Swin Transformer

The first model we experimented on is the Swin Transformer by Liu et al., introduced in Chapter 3.

The authors present multiple variations of the architecture, and the one we will be using is Swin-T,

with C = 96, and where each of the 4 stages has [2, 2, 6, 2] Swin transformer blocks, the patches are

4× 4 pixels and the windows span 7× 7 patches.

Similarly to the baseline models, the transformer used softmax for classification and cross-entropy as

loss function. However, instead of ReLU, the activation function used is GELU (Hendrycks and Gimpel,

2016), an activation function based on the cumulative distribution function of normal distribution, and

the optimizer is ADAMW (Loshchilov and Hutter, 2017), a modified version of the ADAM optimizer that

decouples the regularization in the ADAM optimizer from the step calculations.

4.1.3 ConvNeXT

The ConvNeXT (Liu et al., 2022) is a model created with a ResNet (i. e. ResNet50) as starting point.

Then the authors attempt to make modifications to the original ResNet to obtain better results than both

previous convolutional networks and vision transformers like Swin, coupling the modern approaches of

the vision transformers with the natural advantage of convolutional neural networks’ inductive biases.

The first modification the authors made to the model itself was alter the block ratio in each stage

from (3, 4, 6, 3) to (3, 3, 9, 3). Then the ResNet stem cell was replaced by a ”patchify” layer with a size

4 × 4 kernel with non-overlapping convolution (stride 4), simulating the windows in Swin. Additionally,

the convolution operations in the residual blocks were altered to depthwise convolutions, similar to the

self-attention operations which are also calculated per channel. Along with that, to further simulate the

windows in Swin, which are of size 7 × 7, the kernel size of the convolutions in the residual blocks is

changed from 3× 3 to 7× 7

Another important change to the residual blocks are inverted bottlenecks. In the transformer block,

the hidden dimension of the MLP is 4 times wider than the input dimension.

As such the new residual block is composed of 3 layers: a 7 × 7 depthwise convolutional layer, and

two 1× 1 convolutional layers.

The remaining changes in the residual blocks are the usage of less normalization and activation

functions, leaving only the normalization between the depthwise and 1 × 1 layer of a block and the

activation function between the two 1×1 layers, as well as the usage of different normalization/activation

functions altogether: while the original ResNet architecture uses Batch Normalization and ReLU, in the

ConvNeXT these are replaced by Layer Normalization and the smoother GELU activation function.

The last changes performed by the authors are the addition of a 2 × 2 convolution downsampling

layer with stride 2 between stages, simulating the dimension halving after each Swin transformer stage.

46

1× 1, 64

3× 3, 64

1× 1, 256

BN, ReLU

BN, ReLU

BN

256-d

ReLU

d7× 7, 96

1× 1, 384

1× 1, 96

LN

GELU

96-d

Figure 4.1: On the left, the ResNet bottleneck block. On the right, the ConvNeXT inverted bottleneck block.

Similarly to the Swin Transformer, the authors of ConvNeXT also present multiple versions of the

model, and the one we will evaluate is ConvNeXT-T, with C = (96, 192, 384, 768), and where each of the

4 stages has 3, 3, 9, 3 residual blocks.

As in the Swin Transformer model, we used softmax for classification and cross-entropy as loss

function. Additionally, we also used GELU as the activation function and ADAMW optimizer.

4.1.4 Training Methods

All of the models were pretrained on the ImageNet dataset, and fine-tuned with the COVIDx CXR-3

dataset (Wang and Wong, 2020). Fine-tuning was performed for all models for 20 epochs.

Additionally, we used data augmentation and pre-processing methods, namely rotation, horizontal

flip, random crop, and normalization.

4.2 Dataset and Metrics Used

This section presents the dataset and modifications leveraged for training and testing the baselines and

models, along with the metrics used for evaluating them.

4.2.1 COVIDx CXR-3 Dataset

The main dataset that will be used for both training and testing the model is the COVIDx CXR-3

dataset Wang and Wong (2020), available on Kaggle. The dataset is comprised of 30,530 chest X-

47

Train Test

Class COVID-19 Pneumonia Normal COVID-19 Pneumonia Normal

ActualMed 25 0 0 0 0 0
BIMCV-COVID19+ 200 0 0 0 0 0
Cohen 0 0 0 270 52 0
Figure1 24 0 0 0 0 0
RICORD 0 0 0 1096 0 0
RSNA 0 4723 7166 0 880 1019
SIRM 943 0 0 0 0 0
Stony Brook 14132 0 0 0 0 0

Total/Class 15324 4723 7166 1366 932 1019

Total 27213 3317

Table 4.2: Dataset sample count per class and data source, rearranged for our experiments.

rays, combined from various sources (Cohen et al., 2020; Chowdhury et al., 2020; Rahman et al., 2020;

of North America, 2019; de la Iglesia Vayá et al., 2020), of COVID-19, pneumonia, and healthy patients.

Train Test

Class COVID-19 Pneumonia Normal COVID-19 Pneumonia Normal

ActualMed 25 0 0 0 0 0
BIMCV-COVID19+ 200 0 0 0 0 0
Cohen 270 52 0 0 0 0
Figure1 24 0 0 0 0 0
RICORD 896 0 0 200 0 0
RSNA 0 5503 8085 0 100 100
SIRM 943 0 0 0 0 0
Stony Brook 14132 0 0 0 0 0

Total/Class 16490 5555 8085 200 100 100

Total 30130 400

Table 4.1: Dataset sample count per class and data source, with Wang and Wong (2020)’s original train/test split.

The authors provide metadata containing patient ID, filename, class, and data source, in a pair of

suggested train/test split files. However, after proper analysis, some images were incorrectly labelled, i.e.

in COVID-19 datasets, the images were labelled as ”positive” instead of ”COVID-19”. After re-labelling,

we also remarked that the suggested train/test split was 98.69%/1.31%. We deemed that the test split

was too small for our purposes, and reorganized the split to 89.14%/10.86%.

To balance the size of each split, the images from the Cohen and RICORD datasets were transferred

in its entirety to the test split. Our thinking was that, if our models are able to correctly learn what

differentiates images from different images, without relying on confounders, then it should be able to

generalize to data from sources it hasn’t seen while training. Additionally, we further transferred images

from the RSNA dataset, until we achieved a train/test split close to 90/10.

48

4.2.2 Metrics

Evaluation methods are essential in any machine learning project. They not only allow us to assess a

neural network’s performance, but also allow us to compare different models, and decide which ones

are more appropriate for certain tasks. Using different evaluation metrics is important as well, since

different models will have different results for different metrics, and it is the combination of all metrics, or

the combination of specific metrics that are more important for a task, that indicate which are the better

models for the task.

One of the metrics to be considered is the accuracy of the model. Accuracy is the fraction of correct

predictions made by a model. Formally, its definition for a multiclass model is:

accuracy =

∑k
i=1

tpi+tni

tpi+tni+fpi+fni

k
, (4.1)

where k is the number of classes, tpi is the number of true positive cases of class i detected by the

model, tni is the number of true negative cases of class i detected, fpi is the number of false positive

cases of class i detected by the model, and fni is the number of false negative cases of class i detected.

Other metrics often used are precision (or positive predictive value), recall (or sensitivity), and F-

score. Informally, for a given class, the precision corresponds to the amount of positive predictions that

were correct, the recall corresponds to the number of actual positive cases that were detected, and thw

F-score is a combination of the precision and recall metrics. The F-score generally used is F1, which is

a harmonic mean of the precision and recall. The formulas for these metrics are

precisioni =
tpi

tpi + fpi
, (4.2)

recalli =
tpi

tpi + fni
, (4.3)

Fi
1 =

2× precisioni · recalli
precisioni · recalli

(4.4)

where i is the class for which the metrics are being calculated, tpi is the number of true positive

cases of class i detected by the model, tni is the number of true negative cases of class i detected, fpi

is the number of false positive cases of class i detected by the model, and fni is the number of false

negative cases of class i detected. It is also possible to combine these class metrics, as follows

49

precisionM =

∑k
i=1 precisioni

k
, (4.5)

recallM =

∑k
i=1 recalli

k
, (4.6)

FM
1 =

∑k
i=1 Fi

1

k
, (4.7)

where k is the number of classes.

Note that, according to the formulas provided, all of items have equal weight, which means classes

with more elements have more influence in the metric. It is possible to calculate these metrics by giving

the same importance to each class, independently of the number of elements each contains:

precisionweighted =

∑k
i=1 #i · precisioni∑k

i=1 #i
, (4.8)

recallweighted =

∑k
i=1 #i · recalli∑k

i=1 #i
, (4.9)

Fweighted
1 =

∑k
i=1 #i · Fi

1∑k
i=1 #i

, (4.10)

In the previous expressions, weighted means that this metric gives equal weight to each class, while

a macro-level metric, i.e. a metric that gives equal weight to all items, is represented with an M , that we

can see in the expressions 4.5, 4.6, and 4.7.

The aforementioned metrics are often calculated based on a confusion matrix (Figure 4.3), i.e. a

table where the columns and rows correspond to the classes, and each row contains the total number

of the actual samples belonging to a class, while each column contains the total number of samples

predicted to belong to a class.

Predicted Class
A B C

True Class
A 7 1 3
B 1 8 2
C 3 1 9

Table 4.3: Example of a confusion matrix.

50

4.3 Summary

This chapter detailed the baselines and models implemented for the image classification task, along with

associated training method details, the dataset used for experiments, and the evaluation metrics. Section

4.1 presented the baseline models, the Swin Transformer model, and the ConvNeXT architecture, and

Section 4.2 presents the dataset and metrics used in this thesis.

51

52

5
Experimental Evaluation

Contents

5.1 Results . 55

5.2 Discussion . 57

5.3 Summary . 58

53

54

This chapter introduces and analyzes the results obtained in our experiments. First, we present the

the training and test accuracy, followed by the confusion matrices and associated precision, recall and

F1 scores for the baseline and studied models in Section 5.1. Finally, Section 5.2 presents possible

explanations for the results we obtained.

5.1 Results

In this section we present the results we obtained on the chosen baselines and proposed models. We

start by presenting the accuracy, followed by precision, recall and F1 score per class, and finally the

macro and weighted precision, recall and F1 score.

5.1.1 Training and Testing Accuracy

The first models we will analyze are the baselines: ResNet50, VGG16, and DenseNet121.

Model Train Accuracy (%) Test Accuracy (%)

ResNet50 95.5690 88.2122
VGG16 95.5625 88.0916
DenseNet121 95.6508 86.3732
Swin-T 95.0022 85.7401
ConvNeXT-T 96.8073 88.3328

Table 5.1: Accuracy results of baselines and studied models.

From Table 5.1, we can see that the results are not significantly different between each model, with

the DenseNet having the best accuracy in the training set, and the ResNet having the best accuracy in

the test set.

As for the studied models, the ConvNeXT has both the best training and testing accuracy over-

all, while the Swin Transformer has the lowest testing accuracy overall. On the test dataset, the

DenseNet121 and Swin-T slightly underperform in accuracy, with a difference of 2-3% to the other

models.

We also remark that the accuracy on the test set decreases by 7%-11% when compared to the

training accuracy for all models.

5.1.2 Confusion Matrices, Precision, Recall, and F1 Score per Class

The confusion matrices (Table 5.2) provide insight on each baseline model’s performance on the test

dataset, especially when the values are converted into precision, recall, and F1 score for each class.

55

ResNet50 COVID-19 Normal Pneumonia

COVID-19 1140 45 181
Normal 6 989 24
Pneumonia 58 77 797

VGG16 COVID-19 Normal Pneumonia

COVID-19 1126 43 197
Normal 6 965 48
Pneumonia 47 54 831

DenseNet121 COVID-19 Normal Pneumonia

COVID-19 1069 74 223
Normal 11 996 12
Pneumonia 39 93 800

Swin-T COVID-19 Normal Pneumonia

COVID-19 1015 96 255
Normal 0 1006 13
Pneumonia 26 83 823

ConvNeXT-T COVID-19 Normal Pneumonia

COVID-19 1105 54 207
Normal 1 991 27
Pneumonia 42 56 834

Table 5.2: Confusion matrices of baselines and studied
models.

COVID-19 Normal Pneumonia

ResNet50
Precision 0.94684 0.83455 0.88716
Recall 0.89019 0.97056 0.92864
F1 0.79541 0.85515 0.82420

VGG16
Precision 0.95505 0.82430 0.88487
Recall 0.90866 0.94701 0.92744
F1 0.77230 0.89163 0.82769

DenseNet121
Precision 0.95532 0.78258 0.86036
Recall 0.85641 0.97743 0.91292
F1 0.77295 0.85837 0.81342

Swin-T
Precision 0.97502 0.74305 0.84337
Recall 0.84895 0.98724 0.91289
F1 0.75435 0.88305 0.81364

ConvNeXT-T
Precision 0.96254 0.80893 0.87908
Recall 0.90009 0.97252 0.93491
F1 0.78090 0.89485 0.83400

Table 5.3: Precision, Recall, and F1 per class for each
model.

According to these results (Table 5.3), among the baselines we can say that, for the COVID-19 class,

the DenseNet121 has greater precision, and the VGG16 has greater recall; for the Normal class, the

ResNet50 has greater precision, while the DenseNet121 has greater recall; and for the Pneumonia

class, the ResNet50 has greater precision and recall.

However, when compared to the studied models, the Swin Transformer has the greatest precision

for the COVID-19 class, and the greatest recall for the Normal class. As for the ConvNeXT, it has larger

recall for the pneumonia class than the ResNet50 model.

5.1.3 Macro and Weighted Metrics

The metrics per class, after averaged per class (macro) and per sample (weighted), can be used to

evaluate the overall performance of the models.

The macro and weighted metrics (Table 5.4) for each baseline model show that VGG16 has larger

macro and weighted precision, and macro recall, while the ResNet50 has larger weighted recall. When

also analyzing the studied models, we can see that ConvNeXT has larger precision and recall than all

of the other models in both macro and weighted averages, and consequently also a better F1 score.

For the purpose of classification in a medical context, we want to balance precision and recall, to

56

Ma. Precision W. Precision Ma. Recall W. Recall Ma. F1 W. F1

ResNet50 0.87748 0.88689 0.88675 0.88212 0.88000 0.88221
VGG16 0.87867 0.88945 0.88765 0.88092 0.88000 0.88188
DenseNet121 0.86156 0.87369 0.87279 0.86373 0.86224 0.86332
Swin-T 0.85944 0.87429 0.87111 0.85740 0.85663 0.85637
ConvNeXT-T 0.88118 0.89232 0.89210 0.88333 0.88266 0.88356

Table 5.4: Macro and Weighted Precision, Recall, and F1 per for each model.

avoid resources from being wasted and also assuring that the correct treatment is given to patients.

In this case, despite the model with the best precision/recall varying per class, when averaging for all

classes/samples, the model with the best metrics - accuracy, macro/weighted precision, macro/weighted

recall - is the ConvNeXT model. However, the performance difference is not sufficient to declare that

ConvNeXT is the better alternative among all without a doubt.

5.2 Discussion

In this section we analyze the results we obtained in our experiments, and explore issues that may have

affected the performance of our models. First we analyze the dataset used, followed by a comparison

of performance between our baselines and studied models. Finally we address the training methods

employed, and their impact on the performance of our models.

5.2.1 Dataset and Associated Challenges

As mentioned previously, the COVIDx CXR-3 dataset is comprised of over 30,000 chest X-rays. Consid-

ering datasets used in other image classification challenges, such as ImageNet, the size of this dataset

is rather small, even if it is not the smallest dataset when compared to datasets used in other tasks with

potential medical applications, which are particularly difficult to obtain in the first place, due to patient

privacy concerns.

A consequence of this is that there may not be enough data to for the models to learn properly

what characteristics make it possible for radiologists to differentiate between an X-ray of a COVID-19

patient, an X-ray of a pneumonia patient, and an X-ray of a healthy patient. Additionally, there may be

situations where a radiologist would have difficulty diagnosing an X-ray, and the only method to do so

would be through an RT-PCR test. In situations such as these, while it would be significant if a model

could outperform a certified radiologist, it is not expected for a network to do so.

The dataset does not provide information on the origin of the classification label - whether it is from

diagnosis by certified radiologists, or the result of other means of diagnosis. It is also possible that

57

the labelling method is inconsistent and was obtained with different methods, depending on the origin

dataset of the chest X-ray.

It also does not provide information on ethnicity, age, or other characteristics of the patients that

would make models trained on the dataset prone to bias (Cruz et al., 2021). As a consequence, it’s

difficult to consider those characteristics in training to mitigate any potential biases.

Following on the fact that the datasets come from different sources - different hospitals, different orig-

inal resolutions, different X-ray machines - there’s a probability that the results obtained are classifying

the images based not on the diseases’ characteristics, but confounders, such as hospital-specific infor-

mation, or annotations, that are not removed by the transform methods while training. This is particularly

significant when the model needs to differentiate between COVID-19 and Pneumonia/Normal X-rays,

since the data for Pneumonia/Normal is only from one source that is different from all COVID-19 X-ray

sources.

5.2.2 Baselines Versus Experimental Models

The baselines presented performed relatively well for the task. While the idea of adding attention mech-

anisms to models seems like a potential path for improvements in image classification, in practice, the

Swin Transformer did not obtain significant improvements when compared to the baselines. Neither

did the ConvNeXT, a convolutional network that attempts to combine features from both regular convo-

lutional networks and transformer models. Each model has obtained better results than others in the

different metrics analyzed in this thesis, but ultimately no significant differences in performance were

found in either the baseline models, nor the models studied, that could signify an improvement in the

classification task.

5.2.3 Epochs and Overfitting

The approach we used for training limited the number of epochs for all models to 20, to avoid overfitting

on the training set. However, there are no guarantees that overfitting hasn’t occurred before 20 epochs,

or that the models would have suffered overfitting past 20 epochs. It is possible that the models would

have performed better on the test set if training had stopped at an earlier epoch, or if the models had

been allowed a larger number of training epochs.

5.3 Summary

This chapter described the experiments’ results, along with a discussion on the latter. Section 5.1

presents the results obtained with the baselines and the proposed models for the image classification

58

task. Finally, Section 5.2 provides a reflection on the challenges posed by the dataset, a comparison

between the baselines and models, and on the proposed training methods.

59

60

6
Conclusions and Future Work

Contents

6.1 Contributions . 63

6.2 Future Work . 63

61

62

This thesis presented a comparison on various architectures for image classification for COVID-19

detection with chest X-rays. This chapter offers a final review of the main contributions provided by this

work and suggests possible future avenues of exploration to improve the models’ performance.

6.1 Contributions

This thesis provides a study on automatic image classification of chest X-rays with deep neural net-

works, determining whether a patient has COVID-19, pneumonia, or is healthy. Our experiments on the

COVIDx CXR-3 dataset show that the task of classifying chest X-rays is complex. We observed that

both baselines and the studied models performed relatively well, with an accuracy over 80%, and similar

results in the other evaluation metrics. However, there were no significant improvements in our stud-

ied models, Swin-T and ConvNeXT, when compared to our baseline models, ResNet50, VGG16, and

DenseNet121. The ConvNeXT model did provide a slight performance improvement in accuracy and

macro/weighted metrics, however we considered the difference to not be statistically significant to claim

that the studied model presents itself as an improvement on conventional architectures for the task.

6.2 Future Work

The obtained results shown in Chapter 5 highlight the difficulty of neural models in significantly improving

their classification ability. There was no significant increase in the performance of the studied models,

when compared to the baselines. As highlighted in Section 5.2 in chapter 5, this may suggest that:

• The training methods used in this study were not adequate to ascertain whether the performance

obtained is the best performance possible for the models on the used dataset;

• The dataset used, along with its modifications, is not sufficiently representative of the data dis-

tribution, which does not allow the models to learn the characteristics present in the images that

correspond to the purported conditions, and generalize them to unseen data;

• The models studied and associated parameters are a limitation that do not show the full potential

that the architectures possess in this task.

To address the first issue, one possible approach would be to split the training set further into a

training and validation set, and evaluate when the models would be at risk of overfitting based on their

performance on the validation set (Morgan and Bourlard, 1990; Reed, 1993; Prechelt, 2012), with the

consequence that there will be less data available for training the models. Additionally, an early stopping

criteria could be introduced where training would be stopped once performance on the validation set

had decreased.

63

To address the second issue, possible solutions would be to either change the dataset used to one

with further information on possible confounders or information on limitations that could affect the model’s

training (Cruz et al., 2021; Ahmed et al., 2021), or further analyze the current dataset, and adjust the

dataset or training methods according to our findings.

The first option would be ideal, but does not seem feasible with the current publicly available datasets,

which are, for the most part, either small-sized datasets i.e. the Cohen dataset (Cohen et al., 2020), or

collections of various COVID-19/pneumonia datasets, such as the one we used in this thesis (Wang and

Wong, 2020).

The second option would require considerable work, since we would have to analyze the sources

of the collection for characteristics that could prove to be possible confounders. Additionally, we could

employ the method in Minaee et al. (2020) of occluding parts of the images until the models no longer

classified the image as a COVID-19 chest X-ray, or Grad-CAM (Selvaraju et al., 2019), to visualize if the

models were classifying the samples based on information present in the relevant portion of the X-rays.

However, there would be no guarantees that the areas relevant for the model are the areas relevant for

diagnosis without the assistance of expert radiologists or a dataset with the relevant areas labeled.

As for the third issue, multiple approaches could be taken: one such approach would be to use

larger variants of the architectures. We used the ”T” variants of the Swin and ConvNeXT architectures,

which are the smallest available. However, ”B” and larger variants have obtained improved results on

the ImageNet and other datasets, which could indicate they have a better classification ability compared

to smaller versions. However, fine-tuning on larger variants will also require more resources.

Another approach would be to further modernize parameters associated with training, such as the op-

timizer. The optimizer used in this thesis for the proposed models was the ADAMW optimizer (Loshchilov

and Hutter, 2017). More recent alternatives for optimizers have appeared, such as Sharpness-Aware

Minimization (Foret et al., 2020) or SAM, which attempts to find the minimum loss in neighbourhoods

with both low loss and low curvature (hence why its sharpness-aware), or the Surrogate Gap Guided

Sharpness-Aware Minimization (Zhuang et al., 2022) or GSAM, an improvement on the SAM optimizer.

Both optimizers have empirically shown improved model generalization on various datasets.

64

Bibliography

Ahmed, K. B., Hall, L. O., Goldgof, D. B., Goldgof, G. M., and Paul, R. (2021). Deep Learning Models

May Spuriously Classify COVID-19 from X-ray Images Based on Confounders. arXiv 2102.04300.

Apostolopoulos, I. D. and Mpesiana, T. A. (2020). COVID-19: automatic detection from X-ray images

utilizing transfer learning with convolutional neural networks. arXiv 2003.11617.

Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. arXiv 1610.02357.

Chowdhury, M. E. H., Rahman, T., Khandakar, A., Mazhar, R., Kadir, M. A., Mahbub, Z. B., Islam, K. R.,

Khan, M. S., Iqbal, A., Emadi, N. A., Reaz, M. B. I., and Islam, M. T. (2020). Can AI Help in Screening

Viral and COVID-19 Pneumonia? arXiv 2003.13145.

Cohen, J. P., Morrison, P., and Dao, L. (2020). COVID-19 image data collection. arXiv 2003.11597.

Cruz, B. G. S., Bossa, M. N., Sölter, J., and Husch, A. D. (2021). Public Covid-19 X-ray datasets and their

impact on model bias – A systematic review of a significant problem. medRxiv 2021.02.15.21251775.

de la Iglesia Vayá, M., Saborit, J. M., Montell, J. A., Pertusa, A., Bustos, A., Cazorla, M., Galant,

J., Barber, X., Orozco-Beltrán, D., Garcı́a-Garcı́a, F., Caparrós, M., González, G., and Salinas, J. M.

(2020). BIMCV COVID-19+: a large annotated dataset of RX and CT images from COVID-19 patients.

arXiv 2006.01174.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A Large-Scale

Hierarchical Image Database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,

pages 248–255.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,

Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2020). An Image is Worth 16x16

Words: Transformers for Image Recognition at Scale. arXiv 2010.11929.

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B. (2020). Sharpness-Aware Minimization for Effi-

ciently Improving Generalization. arXiv 2010.01412.

65

Fukushima, K. and Miyake, S. (1982). Neocognitron: A Self-Organizing Neural Network Model for a

Mechanism of Visual Pattern Recognition. In Competition and Cooperation in Neural Nets, pages

267–285.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep Residual Learning for Image Recognition. arXiv

1512.03385.

Hendrycks, D. and Gimpel, K. (2016). Gaussian Error Linear Units (GELUs). arXiv 1606.08415.

Henkel, C. (2021). Efficient large-scale image retrieval with deep feature orthogonality and Hybrid-Swin-

Transformers. arXiv 2110.03786.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2012). Improving

neural networks by preventing co-adaptation of feature detectors. arXiv 1207.0580.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam,

H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv

1704.04861.

Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2018). Densely Connected Convolutional

Networks. arXiv 1608.06993.

Huang, G., Sun, Y., Liu, Z., Sedra, D., and Weinberger, K. Q. (2016). Deep Networks with Stochastic

Depth. arXiv 1603.09382.

Hubel, D. H. and Wiesel, T. N. (1959). Receptive Fields of Single Neurons in the Cat’s Striate Cortex.

Journal of Physiology, 148:574–591.

Hubel, D. H. and Wiesel, T. N. (1968). Receptive Fields and Functional Architecture of Monkey Striate

Cortex. Journal of Physiology, 195:215–243.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer, K. (2016). SqueezeNet:

AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. arXiv 1602.07360.

Ilyas, M., Rehman, H., and Nait-ali, A. (2020). Detection of COVID-19 From Chest X-ray Images Using

Artificial Intelligence: An Early Review. arXiv 2004.05436.

Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift. arXiv 1502.03167.

Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., Marklund, H., Haghgoo, B., Ball,

R., Shpanskaya, K., Seekins, J., Mong, D. A., Halabi, S. S., Sandberg, J. K., Jones, R., Larson,

D. B., Langlotz, C. P., Patel, B. N., Lungren, M. P., and Ng, A. Y. (2019). CheXpert: A Large Chest

Radiograph Dataset with Uncertainty Labels and Expert Comparison. arXiv 1901.07031.

66

Jaeger, S., Candemir, S., Antani, S., Wáng, Y. X., Lu, P. X., and Thoma, G. (2014). Two public chest X-

ray datasets for computer-aided screening of pulmonary diseases. Quantitative Imaging in Medicine

and Surgery, 4(6):475–477.

Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L., McKeown, A., Yang,

G., Wu, X., Yan, F., Dong, J., Prasadha, M. K., Pei, J., Ting, M. Y., Zhu, J., Li, C., Hewett, S., Dong, J.,

Ziyar, I., Shi, A., Zhang, R., Zheng, L., Hou, R., Shi, W., Fu, X., Duan, Y., Huu, V. A., Wen, C., Zhang,

E. D., Zhang, C. L., Li, O., Wang, X., Singer, M. A., Sun, X., Xu, J., Tafreshi, A., Lewis, M. A., Xia, H.,

and Zhang, K. (2018). Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep

Learning. Cell, 172(5):1122–1131.

Khan, A. I., Shah, J. L., and Bhat, M. M. (2020). CoroNet: A deep neural network for detection and

diagnosis of COVID-19 from chest x-ray images. arXiv 2004.04931.

Kingma, D. P. and Ba, J. (2017). Adam: A Method for Stochastic Optimization. arXiv 1412.6980.

Koivunen, A. C. and Kostinski, A. B. (1999). The Feasibility of Data Whitening to Improve Performance

of Weather Radar. Journal of Applied Meteorology, 38(6):741–749.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classification with Deep Convolu-

tional Neural Networks. In Proceedings of the 25th International Conference on Neural Information

Processing Systems.

Le Dinh, T., Lee, S.-H., Kwon, S.-G., and Kwon, K.-R. (2022). COVID-19 Chest X-ray Classification

and Severity Assessment Using Convolutional and Transformer Neural Networks. Applied Sciences,

12(10).

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lin, Z. Q., Shafiee, M. J., Bochkarev, S., Jules, M. S., Wang, X. Y., and Wong, A. (2019). Do Expla-

nations Reflect Decisions? A Machine-centric Strategy to Quantify the Performance of Explainability

Algorithms. arXiv 1910.07387.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). Swin Transformer:

Hierarchical Vision Transformer using Shifted Windows. arXiv 2103.14030.

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., and Xie, S. (2022). A ConvNet for the 2020s.

arXiv 2201.03545.

Loshchilov, I. and Hutter, F. (2017). Decoupled Weight Decay Regularization. arXiv 1711.05101.

67

Mamalakis, M., Swift, A. J., Vorselaars, B., Ray, S., Weeks, S., Ding, W., Clayton, R. H., Mackenzie,

L. S., and Banerjee, A. (2021). DenResCov-19: A deep transfer learning network for robust automatic

classification of COVID-19, pneumonia, and tuberculosis from X-rays. arXiv 2104.04006.

Minaee, S., Kafieh, R., Sonka, M., Yazdani, S., and Soufi, G. J. (2020). Deep-COVID: Predicting COVID-

19 From Chest X-Ray Images Using Deep Transfer Learning. arXiv 2004.09363.

Morgan, N. and Bourlard, H. (1990). Generalization and Parameter Estimation in Feedforward Nets:

Some Experiments, page 630–637. Morgan Kaufmann Publishers Inc.

Nair, V. and Hinton, G. E. (2010). Rectified Linear Units Improve Restricted Boltzmann Machines. In

Proceedings of the International Conference on Machine Learning.

Narin, A., Kaya, C., and Pamuk, Z. (2021). Automatic Detection of Coronavirus Disease (COVID-19)

Using X-ray Images and Deep Convolutional Neural Networks. arXiv 2003.10849.

of North America, R. S. (2019). RSNA Pneumonia Detection Challenge. https://www.kaggle.com/c/

rsna-pneumonia-detection-challenge/.

Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., Yildirim, O., and Rajendra Acharya, U. (2020). Au-

tomated detection of COVID-19 cases using deep neural networks with X-ray images. Computers in

Biology and Medicine, 121:103792.

Prechelt, L. (2012). Early Stopping — But When?, pages 53–67. Springer Berlin Heidelberg.

Rahman, T., Khandakar, A., Qiblawey, Y., Tahir, A., Kiranyaz, S., Abul Kashem, S. B., Islam, M. T.,

Al Maadeed, S., Zughaier, S. M., Khan, M. S., and Chowdhury, M. E. (2020). Exploring the effect of

image enhancement techniques on COVID-19 detection using chest X-ray images. arXiv 2012.02238.

Reed, R. (1993). Pruning algorithms-a survey. IEEE Transactions on Neural Networks, 4(5):740–747.

Rosenblatt, F. (1957). The Perceptron, a Perceiving and Recognizing Automaton Project Para. Report:

Cornell Aeronautical Laboratory. Cornell Aeronautical Laboratory.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2019). Grad-CAM:

Visual Explanations from Deep Networks via Gradient-Based Localization. arXiv 1610.02391.

Shi, F., Wang, J., Shi, J., Wu, Z., Wang, Q., Tang, Z., He, K., Shi, Y., and Shen, D. (2021). Review

of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation, and Diagnosis for

COVID-19. IEEE Reviews in Biomedical Engineering, 14:4–15.

Simonyan, K. and Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image

Recognition. arXiv 1409.1556.

68

https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. (2016). Inception-v4, Inception-ResNet and the

Impact of Residual Connections on Learning. arXiv 1602.07261.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and

Rabinovich, A. (2015). Going Deeper with Convolutions. arXiv 1409.4842.

Tan, M. and Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.

arXiv 1905.11946.

Ulhaq, A., Khan, A., Gomes, D., and Paul, M. (2020). Computer Vision For COVID-19 Control: A Survey.

arXiv 2004.09420.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,

I. (2017). Attention Is All You Need. arXiv 1706.03762.

Wang, L. and Wong, A. (2020). COVID-Net: A Tailored Deep Convolutional Neural Network Design for

Detection of COVID-19 Cases from Chest X-Ray Images. arXiv 2003.09871.

Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., and Summers, R. M. (2017). ChestX-Ray8: Hospital-

Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization

of Common Thorax Diseases. arXiv 1705.02315.

Wong, A., Shafiee, M. J., Chwyl, B., and Li, F. (2018). FermiNets: Learning generative machines to

generate efficient neural networks via generative synthesis. arXiv 1809.05989.

Yang, M., He, D., Fan, M., Shi, B., Xue, X., Li, F., Ding, E., and Huang, J. (2021). DOLG: Single-Stage

Image Retrieval with Deep Orthogonal Fusion of Local and Global Features. arXiv 2108.02927.

Zeiler, M. D. and Fergus, R. (2013). Visualizing and Understanding Convolutional Networks. arXiv

1311.2901.

Zhuang, J., Gong, B., Yuan, L., Cui, Y., Adam, H., Dvornek, N., Tatikonda, S., Duncan, J., and Liu, T.

(2022). Surrogate Gap Minimization Improves Sharpness-Aware Training. arXiv 2203.08065.

69

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Objectives
	1.2 Methodology
	1.3 Results and Contributions
	1.4 Thesis Outline

	2 Fundamental Concepts
	2.1 Introduction to Neural Networks
	2.2 Convolutional Neural Networks for Image Classification
	2.2.1 Essential Aspects of Convolutional Neural Networks
	2.2.2 Residual Connections
	2.2.3 Dense Connections

	2.3 Transformers for Image Classification
	2.3.1 Transformer Architecture
	2.3.2 Vision Transformer

	2.4 Summary

	3 Related Work
	3.1 Conventional Convolutional Neural Network Models for COVID-19 Detection
	3.2 Recent Models Created or Adapted for COVID-19 Detection
	3.3 Summary

	4 Model Architectures and Baselines
	4.1 Models and Training Methods
	4.1.1 Baselines
	4.1.2 Swin Transformer
	4.1.3 ConvNeXT
	4.1.4 Training Methods

	4.2 Dataset and Metrics Used
	4.2.1 COVIDx CXR-3 Dataset
	4.2.2 Metrics

	4.3 Summary

	5 Experimental Evaluation
	5.1 Results
	5.1.1 Training and Testing Accuracy
	5.1.2 Confusion Matrices, Precision, Recall, and F1 Score per Class
	5.1.3 Macro and Weighted Metrics

	5.2 Discussion
	5.2.1 Dataset and Associated Challenges
	5.2.2 Baselines Versus Experimental Models
	5.2.3 Epochs and Overfitting

	5.3 Summary

	6 Conclusions and Future Work
	6.1 Contributions
	6.2 Future Work

	Bibliography
	Bibliography

