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Clustering with Missing Values:
A Deep Learning Approach

Rita Tomás Caveirinha

Abstract—This work focuses on the usage of deep clustering
models, whose research has been growing in recent years due
to their usefulness of its usage across many fields. The goal of
this thesis was to work around the problem of clustering missing
values using deep clustering, which is a fundamental problem to
tackle since in real-world data, such as the profiling of patients by
their progression patterns in neurodegenerative diseases, where
missing values often occur. Yet, after exploring the state-of-the-art
techniques it was concluded that the existence of missing data is
an obstacle to the robustness of the best clustering methodologies
since they are often developed and tested with clean data. In
a similar observation, it was noticeable that the deep learning
architectures with the ability to work with missing data failed to
solve the clustering part of the problem. With that in mind,
this work explored the topic of clustering with missing data
to find the most optimal solution, going through different base
architectures that could potentially handle missing data, and the
most important, introducing a variational autoencoder variation
through the use of a binary mask to better handle missing
data. With the usage of VAE-based architectures, this work
performs clustering in its latent space by using the dimension
reduction functionalities from UMAP, followed by automatic
cluster detection provided by HDBSCAN.

The main contributions of this work are: 1) Offer a novel
approach through deep clustering with missing data, 2) A simple
but effective solution for better robustness when dealing with
missing data, offering similar results to complete data, 3) Auto-
matic cluster detection, 4) Data dependant dynamic architectures.

Index Terms—Deep learning, Clustering, Missing Data, Vari-
ational Autoencoders, UMAP, HDBSCAN, Generative Models,
Deep image clustering.

I. INTRODUCTION

This work focuses on the topic of clustering with missing
values and the creation of a deep clustering model that is
robust to the occurrence of missing data values. The usage
of deep clustering models has been increasing and revealing
itself to be very useful for the study and analysis of the
progress across fields such as medicine, with the in the study
of melanoma detection [4][27], or even degenerative diseases
such as Alzheimer’s or Parkinson’s. [42] [12] [36] Other cases
can also include forest fire detection, [5], [20], or in the
maintainance of automatic systems such as eolic turbines [7],
[35].

However, the problem of missing values in the data occurs
frequently across these fields, [37], [10], sensors and machines
that provide exam results can have failures in sensors, or in
some cases imaging data suffer from the occlusion (an artifact
partially hides the image), or in cases where the data origin
is survey-based, questions often get forgotten or the answers
invalid. The most common ways to solve this problem rely on
simple solutions such as the imputation of values.

Preprocessing of data is always a necessary step but the
existence of missing values can create extra complexity to the
problem since it implies a need for extra steps to deal with
the problem.

Or in the case where the choice is to ignore the missingness,
how much could this missingness affect the goal in mind.
Previous work has been done with great results by approaching
the problem of deep clustering with the usage of generative
models. Yet, most of these advanced deep clustering architec-
tures need complete datasets to achieve good results, which
means that when missing data occurs the results are not as
strong.

This lack of robustness to missing values was, therefore, the
main motivation for the work done, in which it was proposed
to explore the creation of a deep clustering model that is
generative and robust to this problem.

The main goal was to develop a clustering methodology
that can directly tackle datasets with missing values without
requiring the application of listwise deletion methods.

This work starts by analyzing some of the literature on the
mentioned topics, followed by an overview of the architecture
achieved, as well as the ones explored, and finally, an analysis
of the results obtained.

II. RELATED WORK

A. Missing Data

The problem of missing data is present across different
fields, this phenomenon can be considered Missing Completely
At Random (MCAR), Missing At Random (MAR), or Missing
Not At Random (MNAR). One of the approaches for this
problem is through Deletion, where any sample that contains
missing data is discarded. Listwise Deletion, which is when
all the instances with missing data are removed, and Pairwise
Deletion, where the instance is only removed if the needed
variable to the computation is missed (if any other variable is
missed but not being used, it is not removed). These techniques
are used in the assumption that the data is missed completely
at random (MCAR).

Another important approach is Imputation, which is the
replacement of the missing data for a specific value, this can
be applied to continuous variables (numeric) where simple
techniques such as mean or median, may be used to replace the
empty values, or in the instances of categorical data where it
can be both string or numerical values, the replacement with
the most frequent value in that category can be performed.
If there is a high number of missing values in that second
scenario, a special category just for these values can be
created. There are also two ways in which imputation can
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be performed: Single Imputation and Multiple Imputation.
Single Imputation includes techniques such as single value,
similarity, and regression imputation where one value at a time
is imputed. Multiple Imputation consists of calculating the
average of the outcomes across multiple imputed data sets to
account for this. All multiple imputation methods follow three
important steps: 1) imputation, 2) analysis, and 3) pooling.

Many of the commonly used techniques for the handling of
missing data are usually based around performing imputation
before the learning and often use the whole data for the
imputation of a single value, this involves a higher cost and
complexity, especially in situations with high dimensional data
and big data sets. The goal was therefore to find an approach
using deep learning that could be able to handle the missing
data and optimally perform data clustering.

The handling of missing values in a deep learning approach
has been developing at a fast pace recently, and there have
been some fresh ideas quite relevant to the topic such as:
• MIWAE[23] is a technique for the handling of missing

data with deep latent variable models. This approach is
used when the training set contains missing-at-random
data and is based on the importance-weighted autoen-
coder (IWAE) [6] yet it solves the problem of additional
computational overhead due to the missing data. It works
by maximizing a potentially tight lower bound of the log-
likelihood of the observed data

• not-MIWAE [18], from the same authors a similar ap-
proach to MIWAE was created recently, this approach has
a focus on cases where the missing process is dependent
on the missing data since in these cases this needs to be
explicitly modeled and taken into account while doing
likelihood-based inference.

• Variational Selective Autoencoder (VSAE) [16], has a
focus on the task of models for multimodal data imputa-
tion. This model learns only from partially-observed data
and it works by modeling the joint distribution of ob-
served/ unobserved modalities and the imputation mask,
which results in a unified model for various downstream
tasks including data generation and imputation.

• Robust Variational Autoencoders (RVAE) [15], has a
focus on outlier detection and it is a deep generative
model that learns the joint distribution of the clean data
while identifying the outlier cells, and with this allows
for their imputation. RVAE learns the probability of each
cell being an outlier through the balancing of different
likelihood models in the row outlier score, which makes
this model a suitable one for detection in mixed-type
datasets.

• Variational deep embedding with recurrence
(VADER) [3] is a method that relies on a Gaussian
mixture variational autoencoder framework which was
extended to model multivariate time series and directly
deals with missing values.

B. Clustering

The approaches above focus on the deep learning of models
with missing data, often to provide either imputation or

classification, however, they do not approach the clustering
of this data.

The clustering of data is a common important task in
machine learning, however, the focus of this task when missing
data is present has been typically done with classical clustering
techniques, mostly through density-based techniques, such as
DBSCAN, or subspace clustering techniques, which is a base
idea behind HDBSCAN, the method chosen for this work.

With the recent developments of deep learning and with that
deep clustering as well, the concern for the problem of missing
data is still needed. There are many relevant techniques for
deep clustering, which can be divided into:

• AE-based - FFocus on the dimension reduction nature
of autoencoders, which is one of the most significant
algorithms in unsupervised representation learning, work-
ing by learning to efficiently compress data followed
but its reconstruction. This type of approach often uses
a pre-training scheme in which reconstruction loss is
used to initialize parameters before applying/introducing
clustering loss. Some relevant examples include DEC,
DBC, DCN, DEPICT and N2D [38], [22], [39],[14], [24].

• VAE-based - Considered an Autoencoder architecture,
and also with the dimension reduction advantages, but
works in a continuous space and considered a generative
model. Two examples of this include VaDE and GMVAE
[19],[13].

• GAN-based - Generative Adversarial networks, along
with VAEs are labeled as a generative type of model.
GANs are composed of a system of two neural networks:
a generator G, which learns a data distribution and
generates samples, and a discriminator that learns to
distinguish between a sample that came from the training
data and a generated sample from G. The networks are
simultaneously trained and compete against each other
by engaging in a zero-sum game, where one agent’s loss
is the other agent’s gain. A relevant example of this is
InfoGan[9].

• Mixture of Experts-based - is a popular technique for
ensemble models and the relevant idea to this work is
the usage of a Mixture of Autoencoders to perform clus-
tering, it could therefore be inserted in the autoencoder-
based clustering category. This idea is based on a manager
which works as a balancing agent, and a set of experts,
which are independent neural networks. Some relevant
contributions include DAMIC [8] MIXAE [41] and MoE-
VAE [31], which provided building blocks for this work.

However, since these state-of-the-art techniques work
around complete data, it is of big importance to focus the
same ideas on the problem of missing data.

C. Clustering With Missing Data

The approaches above focus on the learning of models with
missing data, often to provide either imputation or classifica-
tion. However, they do not approach the clustering of this data.
In this section, the focus is therefore on the clustering part of
the problem.
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Starting with K-pod [11] is a missing data approach that
works by extending a K-means clustering algorithm to work
with missing data, however since it is a shallow clustering
method is more appropriate for smaller datasets.

Subspace clustering is a big topic in the literature that
works well on high-dimensional data. It extends classical
clustering into finding clusters within different subspaces on
a dataset. By finding clusters that exist in multiple and/or
overlapping subspaces, it allows the algorithms to localize the
most relevant dimensions [26]. Recently there has been some
work that introduces missing data into this type of algorithm.
In particular, [29] offers two methods focusing on the problem
of ”partially observed” data and sees the problem of SCMD
as a generalization of a low-rank matrix completion problem.
Similar ideas can be seen in [28] and [40]

Some work has also been done around the topic of graph
clustering with deep learning models. Due to the great po-
tential of the usage of graphs across different branches of
science, the merge of graph theory with deep learning lead
to the emergence of Graph Neural Networks (GNNs) in the
last years.

The usage of deep learning for multiple graph analysis has
mostly been focused on tasks such as node classification and
link prediction, but there has also been some work approaching
the problem from a clustering point of view. The goal is to
separate the nodes of the graph into different clusters, with the
edge structures of the graph being taken into account, leading
to a result where there are multiple edges within each cluster
and a small number between different clusters.

Variational Graph Auto-Encoders are at the base of most
relevant work in the graph clustering tasks, with the current
state-of-the-art being based on this idea. This solution is built
using a graph convolutional network (GCN) encoder and a
simple inner product decoder. A key feature of this work is
that some missing data was introduced in the data before the
training, through the removal of a percentage of the edges of
the graphs.

This could be an interesting approach to exploring the
problem of missing data since graphs are flexible structures
of data that could also be used to represent data types such as
images or texts, which can be modeled as regularized graphs,
due to their fixed number of neighbors.

The whole idea of applying deep learning to graph data
structures is a whole field per se and even though this type of
work aims mostly at data with more heterogeneous structures,
there is great potential to use the flexible properties of using
graph-structured data.

There has also been some work with multi-view clustering
using missing data, this type of technique has a focus on multi-
view data, which is very common across the field of big data.
The goal of this type of task is to consider data from distinct
feature sets or “views” and retrieve meaningful information
in a way that considers how the data from different views
complement each other and their consensus.

Examples of this include multimedia, where both a video
and an audio signal can be used to represent a media segment,
or when using image data obtained from different devices to
film the same object. In the scope of missing data, comple-

mentary information from the different views can be used to
retrieve the existent missing values.

The ideas analyzed in this section seem to show great
potential in dealing with missing data problems, which also
proves the relevancy of the work being done in this thesis.
They look at the problem however from different lenses,
focusing either on different types of data or being more
developed for classification tasks, such as the case with GNNs.

III. THE ARCHITECTURE

The development of this thesis started with the creation of
an improvement of a standard VAE through the creation of
an AE-based architecture to use as a foundation that could be
able to work with a variety of datasets and that was flexible to
the maximum amount of changes possible. The focus of this
dissertation was on image data, however, this scheme can be
extended to other data such as survey or sensor obtained data,
or even graph-structured data.

With this in mind, the first step was the implementation of
an AE-like architecture built with dynamic blocks, the goal
was that this flexible architecture could be transformed and
adapted into a variety of AE-based architectures by changing
the necessary key features such as its loss function and that it
could also be adjusted into receiving different data, with the
blocks being adapted into the data size.

For the clustering of the data in the latent space of the
AE, with the usage of the UMAP dimensionality reduction
approach, a manifold learning technique that is applied to the
latent space of the autoencoder before a standard clustering
algorithm helped improve the quality of the defined clusters,
hence leading to more accurate results. The chosen shallow
clustering is executed after this step of learning the repre-
sentations of the data. In particular, HDBSCAN clustering is
used, which provides the advantage of automatic detection of
the appropriate number of clusters, and also outlier detection.

These key ideas for the clustering of data, and the dynamic
convolutional blocks were then used as a base and applied to
three different main architectures: 1) a masked variational au-
toencoder, 2) an IWAE - imputed weights autoencoder, [6] an
alternative to the classical VAE that uses a strictly tighter log-
likelihood lower bound derived from importance weighting; 3)
MIWAE, which is based on IWAE but particularly developed
for missing value imputation.

IV. GLOBAL ARCHITECTURE

For the convolutional blocks structure, which can adapt to
accommodate any kind of Autoencoder type of architecture,
a dynamic structure is presented which is dependent on the
data. The order for these convolutional blocks can be seen
represented in figure 1, the reasoning behind their structure
comes from the advantages of using more dynamic architec-
tures by mixing different kernel sizes. Two distinct blocks are
used for this, a general and a specific. In the general block
the more general and significant features of the image are
reconstructed, while in the specific blocks, more particular
features are reconstructed.
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Fig. 1: Diagram Blocks structure that can be aplied to any
Autoencoder architecture

Two of the most common choices for filter sizes are 3x3 or
5x5, mostly due to memory and simplicity concerns. In this
implementation, the choice was two 3x3 blocks, since even
though both have the same receptive field, the chosen one does
not require as many mathematical operations, which leads to
less training time [34] Another important aspect of the blocks
is the usage of Batch Normalization [17] before the activation
function, according to [33].

These blocks can be seen in figure 2.

Fig. 2: Diagram of blocks

Another important factor is the depth of the architecture,
this depth is dependent on the data since it is not an optimal
choice to set the exact same characteristics defined for different
datasets. With that in mind, the depth of the network and the
number of filters are dependent on the image size of the dataset
being used.

Assuming that an image has dimensions DxD, the number
of blocks in the encoder can be calculated by:

NBlocks = log2(D)− 1 (1)

This amount of blocks in the encoder assures that no matter
how big the image is, before the latent space of the encoder
the data is 2x2xF in size, where F is the number of filters
in the last layer of the encoder. The number of general and
specific blocks is given by:

Ngeneral = dNBlocks/2e (2)

Nspecific = NBlocks −Ngeneral (3)

The number of filters is given by multiplying D by two
for each block of the encoder. This provides an approximately

equal number of general and specific blocks in the architecture.
The autoencoder-like architecture can be seen summarized in
figure 3

Fig. 3: Vanilla Autoencoder

This AE-like architecture can accommodate any type of
autoencoder by changing the latent space. Two variations that
were made in this dissertation were transforming it into a
MIWAE and IWAE, two architectures not initially designed
for images or convolutional layers as the ones seen in the
blocks. The main contribution is, however, the adaption of
the VAE loss function to receive a binary mask and with that
overcome the missing data of received images.

Uniform Manifold Approximation and Projection (UMAP)
is a technique for manifold learning used for dimension reduc-
tion that can be used in a similar way to t-SNE for visualization
while being strong at preserving the structure of the data in
smaller dimensions in a fast and efficient way. Due to the
importance of dimension reduction in the field of data science,
this technique is considered a viable choice for its usage in
machine learning. [25] Therefore, for the clustering of the
latent space, the first step was to use UMAP for dimensionality
reduction. In this step, two variations were tested, one where
the parameters were the default ones from the library, and in
an alternative, a dynamic number of neighbors was defined.
This dynamic number of neighbors influences how locally the
data is viewed. The following expression was followed:

n neigh = max{int
(dataset size

300

)
, 100} (4)

After dimensionality reduction with UMAP, a shallow
clustering algorithm is applied. Different solutions could be
applied for this, such as Gaussian Mixture Models (as in [24]),
K-Means (as in [39]), or Hierarchical Clustering. However,
in this thesis the Hierarchical Density-Based Spatial Cluster-
ing of Applications with Noise (HDBSCAN) [2] is chosen.
HDBSCAN is an extension of the DBSCAN algorithm which
transforms it into a hierarchical clustering algorithm. This
algorithm offers some advantages compared to classic shallow
clustering techniques such as K-means and GMM, namely its
ability to automatically detect outliers by creating a different
cluster destined for this type of data point. Another advantage
is the fact that the amount of clusters is detected automatically
according to the data, which is a substantial improvement
versus most deep learning-based clustering solutions where
the number of clusters must be known a-priori.
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With these base characteristics defined in the system, the
architecture could work as a normal VAE by defining its loss
function to do so.

A diagram of the base VAE described in this section can
be seen in figure 3.

A. Masked VAE

One of the main contributions of this dissertation comes
from introducing a binary mask when facing missing values on
the data. In the proposed solution, a variant of a normal VAE
is implemented by changing the loss function of the model.
In this variation, a binary mask from the missing points of
the data is created. With the mask obtained, it is then used as
input along with the images, and in the moment of the loss
calculations, multiplied by the reconstructed image.

The goal of this approach was to modify the reconstruction
loss function to use a binary mask mi ∈ {0, 1}L which
indicates if a certain value is missing. Thus, the loss function,
which corresponds to an MSE, is computed over the observed
values in the following way:

Lrec =
1

N

n∑
i=1

(x′i − x̃i
′)2, (5)

where x′ = x ◦ m represents an element-wise product
between the original input data x and the mask m, and
x̃′ = x̃◦m an element-wise product between the reconstructed
data x̃ and the mask m.

Fig. 4: Masked VAE

This technique aims for the bias introduced by missing data
to be ignored by assigning an error value of zero to the areas
of the images where missing values are observed.

A visual representation of the VAE model adapted to this
idea is represented in figure 4.

The idea of a binary mask was in here introduced in 3
different architectures, but it is a solution scalable to multiple
types of structures that use a compatible loss function.

B. IWAE

Importance Weighted Autoencoders [6], is a similar genera-
tive model to VAE, offering to learn richer representations with
more latent representations. The key difference is that through
importance weighting, the generative model is trained with a
tighter log-likelihood lower bound. This is done through the
generation of multiple ”approximate posterior” samples in the
recognition network, with averaged weights being used.

This model does not focus on missing data or clustering,
however, it is the main base for MIWAE, a model explored

in detail in the next section that adopts this model into
solving the overhead created by missing data. To explore the
fundamental approach to importance weights, some models
were implemented and tested. In all of them, the clustering
above described was applied in the latent space. Two main
implementations are being considered for this analysis: 1) an
implementation of the original IWAE, and 2) An adaptation
of the base VAE from this dissertation’s work with its latent
space transformed and the encoder output changed into re-
turning multiple samples. Since the results from the second
implementation were not satisfactory, the results obtained were
dropped and only the ones from the first implementation were
considered for the final analysis.

The original architecture was tested using the MNIST and
the OMNIGLOT dataset and it was not meant for its usage
with clustering, however, for this work, the same clustering
methodology was used by picking its latent space and per-
forming clustering. Since OMNIGLOT is considered to be
more adequate for one-shot classification tasks, its testing was
discarded since it’s not as relevant for this work.

Fig. 5: Original IWAE

The main reasoning for the study of this specific architecture
comes from another work in the area, in [23], MIWAE was
proposed, used some of the ideas of this solution with a focus
on the problem of missing data, where it is also introduced a
binary mask to the solution.

C. MIWAE

The MIWAE [23] model focuses on the handling of missing
at random data through deep learning. It is based on the
IWAE architecture above, and similar to the idea offered in the
masked VAE, a binary mask is used during the training. In the
original implementation, however, the focus is on continuous
datasets and the model is built with a few dense layers.

To work with this extension of the IWAE architecture, some
alterations were made. This work was focused around using
very simple synthetic numeric datasets, with its main focus
being the imputation of the data. To adapt to the problem of
this work, an AE-like architecture with convolutional blocks
adapted from the one here proposed was implemented. This al-
lowed for the MIWAE architecture to work with convolutional
layers and support image datasets. Since this architecture also
used the idea of a mask for its training, the same logic was
kept.
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V. EXPERIMENTAL RESULTS

1) Datasets used:

• MNIST: A dataset of handwritten digits images with
70000 examples separated into ten classes. Each sample
is a 28x28 grayscale image.

• FMNIST: A dataset of fashion items images with 70000
examples separated into ten classes. Each sample is a
28x28 grayscale image.

• USPS: A dataset of handwritten digits images with 9298
examples separated into ten classes. Each sample is a
16x16 grayscale image.

• Coil: The Columbia Object Image Library (COIL-20)
dataset contains images of 20 objects, and for each of
them there are 72 images captured every 5 degrees along
a viewing circle. Each sample is a 128x128 grayscale
image.

• Cifar10: The CIFAR-10 dataset consists of 60000 32x32
colour images in 10 classes, with 6000 images per class.

To better fit the architecture, the FMNIST and MNIST sam-
ples were padded from 28x28 to 32x32, while The COIL20
dataset was downsampled from 128x128 to 64x54 using an
antialiasing filter.

2) Creation of Patches: For the generation of an alternative
dataset with random missing data, in the initial stages of this
work, this was achieved simply by adding empty patches of
10x10 pixels in random central areas of the image, but it later
evolved into adding a variance in the height and width of
the patches. The reasoning for the focus on the central parts
of the image is that since the most important information
occurs in the center sections of the images, therefore inserting
patches on the edges would not cause a significant impact
on the results, since the inserted patches would be considered
background. Hence, for the selection of the location of the
patch, a margin of 4 pixels in the center of the image is
considered and the starting pixel is obtained from a random
uniform distribution with a range from i=4 to i=width-4 and
j=4 to j=height-4.

Fig. 6: Samples from MNIST dataset with missing data
(substituir por diagrama com os patches

Until the end of this document, the altered datasets will be
referenced as:

• MNIST-Patches: The result of adding random patches to
all instances from the MNIST dataset.

• FMNIST-Patches: The result of adding random patches
to all instances from the FMNIST dataset.

• USPS-Patches: The result of adding random patches to
all instances from the USPS dataset.

• COIL20-Patches: The result of adding random patches to
all instances from the COIL20 dataset.

The datasets with missing values also include the changes
mentioned in the section above, with a resizing of the MNIST
and FMNIST samples from 28x28 to 32x32, and the COIL20
dataset being downsampled from 128x128 to 64x64.

3) Evaluation: Clustering accuracy was used to evaluate
the performance of HDBSCAN and GMM, which measures
the proportion of data points for which the obtained clusters
can be correctly mapped to the correct classes. This mapping
can be obtained using the Hungarian algorithm [21], and the
accuracy is given by:

ACC(ytrue, ypred) = maxT (

∑N
i=1 1(ytrue(i) = T (ypred(i)))

N
),

(6)
where ytrue represents the ground truth labels, ypred the
predicted labels, N is the total number of samples, and finally,
T is the best one-to-one mapping that matches the clustering
indexes to the ground truth labels.

For the HDBSCAN clustering, two different accuracies were
generated, one involving the full data set, and the other one
only taking into account the points that were correctly labeled,
ignoring the outliers.

For a richer analysis of the results, a GMM clustering ac-
curacy was also retrieved from the same embeddings obtained
in the tested models.

Throughout the results shown in this chapter, UMAP was
a constant factor in every clustering calculation, where it
was used on the embedding before running the clustering
algorithm. It is therefore of big importance to first see its
impact when used in different situations. Table I, provides
an analysis of the impact of adding dimensionality reduction
with UMAP when applied to shallow clustering algorithms.

One of the metrics used for this were ARS - Adjusted Rand
index [30], which is a way to measure the similarity of the two
label sets, ignoring permutations and AMI, Adjusted Mutual
Information, which is a way to measure the agreement between
two sets, in this case, the obtained labels and the original
labels. AMI was more recently proposed and works similarly
to Normalized Mutual Information (NMI), which is also often
used in the literature.

In table I, it is possible to see the comparison of the usage of
UMAP in three cases where shallow clustering is being used:
1) Direct application of the K-means algorithm on a flattened
input data, 2) K-means on the embedding obtained from a
VAE, 3) GMM with the embedding obtained from VAE. The
dataset used for this was a complete version of the MNIST
dataset, on the built VAE. For all cases UMAP significantly
improved the results, which provided confirmation to the
advantages of UMAP offered in the literature [24].

With the improvements from dimensionality reduction ob-
tained, the next step was to observe the difference when
performing a density-based clustering algorithm. In the table
II the results from the HDBSCAN algorithm when using full
labels were added, and since the accuracies obtained were
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No UMAP UMAP
ARS AMI ACC ARS AMI ACC

K-means 0.37 0.50 0.53 0.79 0.86 0.82
K-Means + VAE 0.52 0.62 0.65 0.95 0.94 0.98

GMM + VAE 0.83 0.86 0.92 0.96 0.95 0.98

TABLE I: Impact of the usage of UMAP as a dimensionality
reduction method when used along with shallow clustering
methods

similar, throughout the experiments GMM clustering was also
considered.

ARS AMI ACC
VAE + UMAP + GMM 0.96 0.95 0.98

VAE + UMAP + HDBSCAN (Full Labels) 0.95 0.94 0.98

TABLE II: Results from HDBSCAN and GMM clustering.

A. Results of convolutional blocks architecture

The first implementation step was to build a stable archi-
tecture that was able to provide good clustering results in a
complete dataset. Table III presents the clustering results on
the MNIST dataset of the implementation of the VAE with
the dynamic convolutional blocks as described in the section
above.

The first three lines represent the clustering through the
usage of UMAP + HDBSCAN, where the first line shows
that the standard VAE is able to assign 67% of the data points
to a cluster, with a 43% accuracy, while when considering
the whole dataset this accuracy drops to 32%. In the second
column, we can see the first indicator of success by the
noticeable difference in accuracy, which increases to 98%
on both methods of clustering (and with all datapoints being
assigned a cluster).

Basic VAE VAE with Dynamic
Convolutional Blocks

Percentage of labeled points 0.67 1
Accuracy of labeled points 0.43 0.98
Accuracy on full dataset 0.32 0.98

Accuracy of gmm 0.38 0.98

TABLE III: Influence of the dynamic blocks architecture with
MNIST dataset

B. Influence of Patches in Clustering Results

After obtaining a stable architecture providing good results
on complete datasets, the next step was the analysis of the
impact of introducing missing values in the data used for
model training. The first glance into this impact is represented
in table IV, where the clustering results when considering
the full dataset (i.e. including the data points not labeled
in the HDBSCAN algorithm) shows that for all the datasets
where missing data was introduced, a decrease of the accuracy
occurred.

Also considering the same case but considering the labeled
data by the HDBSCAN algorithm, table V show the influence
on the accuracy of the successfully labeled points, as well as

Full image With Patches
Med σ Med σ

MNIST 0.978 0.007 0.914 0.008
FASHION MNIST 0.584 0.009 0.537 0.017

USPS 0.967 0.002 0.873 0.057
COIL20 0.803 0.016 0.759 0.021

TABLE IV: Impact of missing values in the accuracy from
UMAP + HDBSCAN considering the full dataset. For this
experiment the median and standard deviation of 10 runs is
considered.

Full image With Patches
Med σ Med σ

MNIST
Percentage of
labeled points 0.980 0.004 0.90 0.009

Accuracy of
labeled points 0.983 0.0005 0.974 0.001

FASHION MNIST
Percentage of
labeled points 0.73 0.062 0.84 0.017

Accuracy of
labeled points 0.716 0.033 0.609 0.011

USPS
Percentage of
labeled points 0.99 0.009 0.94 0.005

Accuracy of
labeled points 0.973 0.001 0.968 0.001

COIL20
Percentage of
labeled points 0.95 0.029 0.89 0.077

Accuracy of
labeled points 0.834 0.022 0.819 0.066

TABLE V: Impact of missing values in the percentage and
accuracy of HDBSCAN labeled data. For this experiment the
median and standard deviation of 10 runs is considered.

the difference in the percentage of data that the algorithm was
able to assign labels.

For the full dataset, there seems to be a correlation be-
tween the size of the images and the amount of information
contained, for the USPS dataset, where the image sizes were
smaller and the images more simple, the biggest difference
occurred, with a loss of 10% of accuracy, while the smallest
difference can be seen in the COIL20 dataset, the one with
the biggest images size.

For HDBSCAN labeled data the accuracies also dropped,
as well as the percentage of labeled, which can be seen in V

C. Influence of Mask in the results

After the analysis of the impact of adding missing data
analyzed, the next step was to adapt the model to overcome
the problem. This is where the usage of a binary mask in the
model inputs was introduced with its results being shown in
this section. To ensure a more rigorous quality of results, for
each trained instance the results were obtained 10 times, with
a median and a standard deviation being calculated.

The results showed that through the implementation of a
mask on the dynamic VAE, the sensibility to missing data
was softened in most cases.

For the FMNIST-Patches dataset, represented in table VI the
difference can be seen in the accuracy results for GMM with
a difference of 6% and HDBSCAN on the full dataset with
4%. For the subset of labeled data, there seems to be a similar
value, however, the percentage of labeled points also increased,
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which shows that certain data points were now clustered with
the introduction of the mask.

FMNIST-Patches +
Mask

FMNIST-Patches +
No Mask VAE

µ σ µ σ
Percentage of labeled points 0.83 0.029 0.69 0.083
Accuracy of labeled points 0.675 0.009 0.688 0.025
Accuracy on full dataset 0.578 0.008 0.537 0.017

Accuracy of GMM 0.661 0.021 0.607 0.018

TABLE VI: Influence of mask on FMNIST-Patches dataset

On the MNIST-Patches dataset, represented in table VII,
the results align with the observations on the FMNIST-Patches
dataset, the HDBSCAN algorithm improved 2% on the full
dataset, and the percentage of labeled points also increased. In
this case, however, the GMM algorithm showed similar results
for both cases.

MNIST-Patches +
Masked VAE

MNIST-Patches +
Standard VAE

µ σ µ σ
Percentage of labeled points 0.97 0.008 0.9 0.022
Accuracy of labeled points 0.972 0.001 0.974 0.002

Accuracy on full dataset 0.944 0.004 0.922 0.008
Accuracy of GMM 0.968 0.005 0.964 0.001

TABLE VII: Influence of mask on MNIST-Patches dataset

On the USPS-Patches dataset, the impact is shown in table
VIII, the biggest difference can be observed, when applying
the HDBSCAN algorithm on the full dataset. Also, the amount
of labeled points increases with the proposed approach com-
pared to the standard VAE.

USPS-Patches +
Masked VAE

USPS-Patches +
Standard VAE

µ σ µ σ
Percentage of labeled points 0.95 0.006 0.84 0.049
Accuracy of labeled points 0.973 0.001 0.928 0.018

Accuracy on full dataset 0.94 0.005 0.873 0.057
Accuracy of GMM 0.965 0.001 0.955 0.001

TABLE VIII: Influence of mask on USPS-Patches dataset

Finally, for the COIL20-Patches, represented in table IX, the
results do not show improvement of the proposed approach,
with only a slight variation in the results of HDBSCAN.

COIL20-Patches +
Masked VAE

COIL20-Patches +
Standard VAE

UMAP - dynamic parameters µ σ µ σ
Percentage of labeled points 0.94 0.051 0.91 0.037
Accuracy of labeled points 0.879 0.034 0.888 0.026
Accuracy on full dataset 0.847 0.008 0.841 0.017

Accuracy of gmm 0.5 0.0 0.5 0.0

TABLE IX: Influence of mask on COIL20-Patches dataset

D. Alternative misssing values imputation

The VAE needs to have a complete dataset to be able to
train, consequently, the missing pixels were substituted by zero
after obtaining a binary mask, however, the option to simply
replace by other values was still a possibility. Therefore, some

experiments were done with this in mind, focusing on the
alternatives of using 1)an initialization with random values, 2)
the average of the closest pixel imputation and 3) the average
of two closest pixels. In this scenario, the dataset used as an
example is the FMNIST-Patches.

Table X shows the results of this experiment, it can be con-
cluded that replacing these values with zero is the best option,
since not only were the results better when the techniques
looking at neighbors were tested it created a relevant increase
in computational complexity.

HDBSCAN GMMPercentage of
labeled points

Accuracy of
labeled points

Full dataset
acurracy

Random 0.71 0.657 0.526 0.574
Zero 0.83 0.675 0.578 0.661

KNN = 1 0.73 0.656 0.527 0.576
KNN = 2 0.7 0.658 0.520 0.565

TABLE X: Clustering resuls for FMNIST-Patches dataset,
when considering alternative missing values imputation tech-
niques

E. MIWAE and IWAE architectures

For IWAE and MIWAE, two of the implemented archi-
tectures described in the previous section, similar experi-
ments were attempted, where the MNIST and fashion MNIST
datasets were used with and without patches of missing data
added.

The clustering results for the best cases with the VAE and
MIWAE models can be observed in table XI.

VAE - No Mask VAE - MASK MIWAE
med stnd dev med stnd dev med stnd dev

Percentage of labeled points 0.69 0.083 0.83 0.029 0.59 0.1
Accuracy of labeled points 0.688 0.025 0.675 0.009 0.6 0.05

Accuracy on full dataset 0.537 0.017 0.578 0.008 0.49 0.03
Accuracy of GMM 0.607 0.018 0.661 0.021 0.54 0

TABLE XI: Accuracies of FMNIST-Patches on VAE and
MIWAE architectures

For the IWAE architecture, the baseline used was an imple-
mentation available at [1], it showed very satisfactory results
in the complete MNIST dataset, even though it did not surpass
the VAE model proposed in this work. This model also showed
one of the biggest impactful differences in clustering results
when used with missing values, with the accuracy on the
full dataset when using HDBSCAN dropping from 92% to
76%. The introduction of a binary mask showed a slight
improvement as well. Similar conclusions can be drawn for
the FMNIST dataset, see table XIII.

MNIST-Patches MNIST
No mask Mask

Percentage of labeled points 0.75 0.79 0.94
Accuracy of labeled points 0.927 0.924 0.968

Accuracy on full dataset 0.764 0.799 0.924
Accuracy of gmm 0.85 0.85 0.95

TABLE XII: IWAE results on MNIST dataset

Overall the MIWAE and IWAE models did not surpass
the proposed VAE architecture, however, some interesting
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FMNIST-Patches FMNIST
No mask Mask

Percentage of labeled points 0.41 0.48 0.62
Accuracy of labeled points 0.67 0.60 0.62

Accuracy on full dataset 0.35 0.36 0.4268
Accuracy of gmm 0.48 0.47 0.5884

TABLE XIII: IWAE results on FMNIST dataset

IWAE MIWAE VAE
No mask Mask No Mask Mask

Percentage of labeled points 0.41 0.48 0.59 0.69 0.83
Accuracy of labeled points 0.67 0.60 0.6 0.69 0.68
Accuracy on full dataset 0.35 0.36 0.49 0.54 0.58

Accuracy of gmm 0.48 0.47 0.544 0.60 0.66

TABLE XIV: Comparison between clustering results on
FMNIST-Patches betweeen IWAE, MIWAE and VAE

conclusions can be obtained. The overall idea of using multiple
samples seems to show that it is not an optimal path to
approach the problem, but it does show that the usage of a
mechanism to alter the loss function depending on the existing
missing values can significantly improve the results.

F. Image Reconstruction

For the analysis of the reconstruction of images from the
VAE, IWAE, and MIWAE architectures, the visual outputs
obtained were observed and some reconstruction metrics were
retrieved, namely MSE and SSIM, which is often used to
quantify image quality degradation on data compression or
data transmission processes. [32].

However, the biggest observation from the reconstructed
data comes from the actual images obtained.

In the following images, a representation of a) the patched
data that the models received, b) the reconstruction of the
same data when using no mask during training and c) the
same reconstruction when using a binary mask.

The biggest difference can be observed when using the
FMNIST-Patches dataset, figure 7. When using no mask an
interesting phenomenon occurs where the color of the overall
images also changes, this is a sign of how a slight removal
of information can cause a bias in the final results and
reconstructions. When observing the patches in more detail,
which is easier to observe through the FMNIST-Patches due
to the bigger amount of information in each image, it is
possible to see that the patches disappeared almost entirely
in the reconstructed image, although with some information
lost and the color of the whole image is affected.

G. Final Clustering

The final accuracy results for HDBSCAN on full data,
for complete and incomplete datasets, and on the multiple
architectures explored in this dissertation is shown in table
XV. This allows a full observation of the impact of patches
and how the VAE with the usage of a binary mask provides
the best results.

Overall the developed VAE architecture in this work, espe-
cially after introducing the binary mask achieved the goals and
is able to compete with the many different techniques existent
in the literature.

(a) Input (b) No Mask

(c) Mask

Fig. 7: Fashion MNIST reconstructions

Clustering on full
data set FMNIST FMNIST -

Patches MNIST MNIST -
Patches

USPS -
Patches

COIL20 -
Patches

MIWAE 0.42 0.47 0.44 - -
IWAE 0.42 0.35 0.925 0.764 - -

VAE Masked 0.590 0.578 0.98 0.94 0.944 0.811
VAE 0.584 0.537 0.98 0.922 0.873 0.759

MIWAE + VAE 0.52

TABLE XV: Accuracy on full dataset from the implemented
architectures and other architectures in the literature for com-
parison

VI. CONCLUSION

With the increasing growth of data-related fields, missing
data problems is a recurring problem that is fundamental to
approach. In this dissertation, the impact of this obstacle when
performing clustering in deep learning models was analyzed
and verified. Different ideas were studied, tested, and analyzed,
including experiments using imputed weights and multiple
sampling, one of the greatest factors that offered the most
improvements in the results was the usage of a binary mask
in the loss function.

Starting with a simple variational autoencoder that evolved
into a more complex architecture dependent on data and that
through the usage of a binary mask in the loss function, was
able to overcome some of the impact created when missing
data in images was added to the problem.

VII. LIMITATIONS AND FUTURE WORK

Due to the flexibility of the implemented architecture and
the usage of a binary mask when facing missing data problems,
this work could be potentially used to continue researching and
exploring more AE-based architectures. The adaptation of this
idea to other data types could also be a possibility and was
even lightly tested out with simple data.



10

REFERENCES

[1] nbip/iwae: Importance weighted autoencoders in tensorflow 2, reproduc-
ing results from the iwae paper with 1 or 2 stochastic layers.

[2] hdbscan: Hierarchical density based clustering. Journal of Open Source
Software, 2:205, 3 2017.

[3] Deep learning for clustering of multivariate clinical patient trajectories
with missing values. GigaScience, 8, 11 2019.

[4] Melanoma lesion detection and segmentation using deep region based
convolutional neural network and fuzzy c-means clustering. Interna-
tional Journal of Medical Informatics, 124:37–48, 4 2019.

[5] Faroudja Abid. A survey of machine learning algorithms based forest
fires prediction and detection systems. Fire Technology, 57:559–590, 3
2021.

[6] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance
weighted autoencoders. arXiv preprint arXiv:1509.00519, 2015.

[7] Thyago P. Carvalho, Fabrı́zzio A.A.M.N. Soares, Roberto Vita, Roberto
da P. Francisco, João P. Basto, and Symone G.S. Alcalá. A systematic
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[15] Simão Eduardo, Alfredo Nazábal, Christopher K I Williams, and Charles
Sutton. Robust variational autoencoders for outlier detection and repair
of mixed-type data. 2020.

[16] Yu Gong, Hossein Hajimirsadeghi, Jiawei He, Megha Nawhal, Thibaut
Durand, and Greg Mori. Variational selective autoencoder. pages 1–17,
2019.

[17] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. pages 448–
456, 2015.

[18] Niels Bruun Ipsen, Pierre-Alexandre Mattei, and Jes Frellsen. not-
miwae: Deep generative modelling with missing not at random data.
arXiv preprint arXiv:2006.12871, 2020.

[19] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning
Zhou. Variational deep embedding: An unsupervised and generative
approach to clustering. arXiv preprint arXiv:1611.05148, 2016.

[20] Zhentian Jiao, Youmin Zhang, Jing Xin, Lingxia Mu, Yingmin Yi, Han
Liu, and Ding Liu. A deep learning based forest fire detection approach
using uav and yolov3. 1st International Conference on Industrial
Artificial Intelligence, IAI 2019, 7 2019.

[21] H. W. Kuhn. The hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2:83–97, 3 1955.

[22] Fengfu Li, Hong Qiao, Bo Zhang, and Xuanyang Xi. Discriminatively
boosted image clustering with fully convolutional auto-encoders. 2017.

[23] Pierre Alexandre Mattei and Jes Freiisen. Miwae: Deep generative
modelling and imputation of incomplete data. 36th International
Conference on Machine Learning, ICML 2019, 2019-June:7762–7772,
12 2018.
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