
NLP Applied To Portuguese Consumer Law
NUNO CORDEIRO, Instituto Superior Técnico, Portugal
JOÃO DIAS∗ and PEDRO SANTOS∗, INESC-ID, Portugal
As citizens, each and every one of us should know their rights and obligations,
especially in a day to day context such as when we pose as a consumer. As
of yet, the Portuguese Consumer law is not accessible to the point of being
able to insert a sentence written in natural language in a search engine
and getting a clear response without first having to scroll through multiple
search results. This type of barrier is also what keeps the common citizen
from consulting the legislation, especially given the amount of jargon used
in legal documents and their structure, which can be difficult to navigate.
To solve this issue, we introduce Legal Semantic Search Engine (LeSSE), an
information retrieval system that uses a hybrid approach of semantic and
syntactic information retrieval techniques, based on the Quin system created
by Samarinas et al.

ACM Reference Format:
Nuno Cordeiro, João Dias, and Pedro Santos. 2022. NLP Applied To Por-
tuguese Consumer Law. 1, 1 (May 2022), 10 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
The Official Portuguese Gazette (Diário da República) is tasked with
the publication of all laws and norms of the Portuguese Republic.
Currently, it is exclusively published electronically at DRE1 by the
INCM as a public service that offers universal and free access to all
of its content and functionalities. The DRE is composed of a vast
set of publications, from which procedures, norms, applications and
rules are derived. This online resource currently provides access
to all of the Portuguese legislation, as well as services that allow
citizens to find the norms and procedures that are inherent to their
search.

The current searchmethodology used in the search engine created
for the Portuguese Consumer Law allows a search for legislation that
is based on literal keyword search (articles are chosen according to a
comparison between the literal keywords in their text and the ones
that the user inputs as a search query) which poses some limitations
on the accuracy of the results.
With this challenge in mind, our main goal was to engineer a

system capable of searching through the Portuguese Consumer Law
by providing a query in NL and returning a set of results, in the
form of segments of text, with their corresponding information such
as the title of the act and its article.
∗Both authors contributed equally to this research.
1https://dre.pt/dre/home

Authors’ addresses: Nuno Cordeiro, Instituto Superior Técnico, Lisbon, Portugal; João
Dias; Pedro Santos, INESC-ID, Portugal.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
XXXX-XXXX/2022/5-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 RELATED WORK

2.1 Information Retrieval
Information Retrieval is the procedure in which a system retrieves
information from a collection of resources when given a requirement
(usually an expression or a query). This task can be applied to
numerous domains and is an important aspect of our day-to-day
lives.

2.1.1 Traditional Approaches to Legal Information Retrieval. Legal
Information Retrieval (LIR) is a specific type of Information Retrieval
and, therefore, requires different approaches to the way the text
is searched. Usually, legal documents are written in a very formal
language but search queries written by regular citizens tend to
be in a more informal language. This type of imbalance creates a
mismatch of vocabulary that damages search if not attended to.
When we look back from LIR into the broad spectrum of Infor-

mation Retrieval, other options appear. These options do not have a
focus on the legal subject but rather on generic text documents. In
spite of the particularities of legal documents, such as the connec-
tions between different documents, for instance, we can also look at
legal articles as text documents — therefore expanding the field of
research. When we do this, we are met with several other studied
alternatives.

TheOkapi BM25 [Robertson et al. 1994], or rather just BM25 is one
of those alternatives and it is widely used as an information retrieval
ranking algorithm. This algorithm is still used today by search
engines to determine the relevance of entries to the searched query,
along with TF-IDF (Term frequency - inverse document frequency),
on which it relies, as we will see.

BM25 is a bag-of-words retrieval algorithm, which is defined by
the representation of text as a set (or bag) of words while disre-
garding their syntax or context. The most popularized version of
BM25, introduced in TREC 1994 (a conference on text retrieval) is
the following:
Given a query 𝑄 , containing keywords 𝑞1, 𝑞2, ..., 𝑞𝑛 , the BM25

score of a document 𝐷 is defined as:

𝑠𝑐𝑜𝑟𝑒 (𝐷,𝑄) =
𝑛∑︁
𝑖=1

𝐼𝐷𝐹 (𝑞𝑖) ·
𝑓 (𝑞𝑖 , 𝐷) · (𝑘1 + 1)

𝑓 (𝑞𝑖 , 𝐷) + 𝑘1 · (1 − 𝑏 + 𝑏 · |𝐷 |
𝑎𝑣𝑔𝑑𝑙

)
(1)

where 𝑓 (𝑞𝑖 , 𝐷) is the term frequency of 𝑞𝑖 in the document 𝐷 , 𝑘1
and 𝑏 are optimization parameters, |𝐷 | is the length of the document
𝐷 in words and 𝑎𝑣𝑔𝑑𝑙 is the average document length in the set of
documents. 𝐼𝐷𝐹 (𝑞𝑖) is the inverse document frequency of the term
𝑞𝑖 . It is used as a weight function and it is defined as:

𝐼𝐷𝐹 (𝑞𝑖) = 𝑙𝑜𝑔
𝑁 − 𝑛(𝑞𝑖) + 0.5
𝑛(𝑞𝑖) + 0.5

(2)

where 𝑁 is the cardinality of the set of documents and 𝑛(𝑞𝑖) is the
number of documents that carry the term 𝑞𝑖 .

, Vol. 1, No. 1, Article . Publication date: May 2022.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Cordeiro, et al.

In a paper [Gain et al. 2019] released for the COLIEE workshop
in 2019, this algorithm was used to retrieve legal information based
on query search. In the third task (first task of statute law) of the
competition, they used the BM25 function to derive the score of
each document based on a searched query. It delivered promising
results but was still not able to be set apart from other information
retrieval techniques — their results were not largely separated.
Representation models are one of those alternative information

retrieval techniques and their goal is to process information in the
documents and queries in order to represent them in a different
way. There are three main groups of representation models. The set-
theoretic models are the ones that aim to represent documents and
queries as sets of words. In this group we find the standard boolean
model, which was mentioned previously in the context of legal
information retrieval. It is one of the most simple and inexpensive
representation models available.

Then we have the algebraic group of models, that represent docu-
ments and queries as embeddings with the objective of defining the
similarity between documents and queries based on their vectors.
Finally, we have the probabilistic models where the similarities

between documents and queries are given by probability of text
usage and relevance. In this category we can fit language models,
which are a very specific case that has been expanded given their
importance in NLP tasks. We will approach systems of this kind in
the next subsection.

2.2 Natural Language Processing Approaches to Semantic
Textual Similarity

2.2.1 Sentence-BERT. A team of researchers fromUbiquitous Knowl-
edge Processing Lab (UKP) developed a system, Sentence-BERT [Reimers
and Gurevych 2020], heavily based on the BERT model that has av-
eraged promising results in all of the SemEval2 editions from 2012 to
2016, especially when compared to BERT’s averaged embeddings or
CLS embeddings — and even when compared to USE and Infersent.
(See 1).

Fig. 1. Spearman rank correlation c between the cosine similarity of sen-
tence representations and the gold labels (label that classifies two sentences
on the basis of their similarity) for various STS tasks. Performance is re-
ported by convention as c x 100. STS12-STS16: SemEval 2012-2016, STSb:
STSbenchmark, SICK-R: SICK relatedness dataset. [Reimers and Gurevych
2020]

Sentence-BERT, or SBERT, is essentially a modified pre-trained
BERT model that uses siamese and triplet network structures in
order to extract sentence embeddings that are semantically relevant.

The system trains by encoding two sentences in the siamese way,
i.e., running two identical networks adjusted with the same param-
eters on two different inputs — in this case two BERT networks
2an international workshop on semantic evaluation (http://alt.qcri.org/semeval2020/)

receive each a sentence to encode. These encodings are then passed
through a pooling process that the team behind SBERT found to
have a better performance with a mean agreggation strategy, as
opposed to a max or [CLS] vector strategy. Like we have seen previ-
ously, it consists of averaging the token embeddings of a sentence.
That way, all of the token embeddings that BERT outputs are joined
into one vector, consequently joining a layer of the size of the se-
quence of tokens into one output. Finally, both sentence encodings
are then compared by calculating their cosine similarity. The whole
process is depicted in the diagram in 2.

Fig. 2. SBERT architecture for STS tasks. [Reimers and Gurevych 2020]

The training is done using a combination of two datasets — the
SNLI [Bowman et al. 2015] and the Multi-Genre NLI [Williams et al.
2018]. The SNLI has a body of 570,000 sentence pairs annotated with
the labels contradiction, entailment and neutral. MultiNLI contains
430,000 sentence pairs and covers a range of genres of spoken and
written text.

When developing SBERT, the UKP team compared the perfor-
mance of different metrics in the evaluation of each sentence pair
similarity. They experimentedwith themost used one, cosine-similarity,
but also tried to use negative Manhattan and Euclidean distances.
After the experiments, they concluded that the metric used, be-
tween the three, wasn’t relevant given that the results were roughly
the same. Therefore, they continued to use cosine-similarity as the
metric of STS.

They also considered using a regression function that maps sen-
tence embeddings to similarity scores but refrained from doing so
given the resource exhaustion that would occur.
When comparing the performance of SBERT, in STS tasks, two

different strategies of training were used — Unsupervised and Su-
pervised Learning. For the unsupervised approach, SBERT only
retained the knowledge that it had gained with the pre-training
from BERT (based off of Wikipedia) and NLI data. To evaluate this

, Vol. 1, No. 1, Article . Publication date: May 2022.

NLP Applied To Portuguese Consumer Law • 3

system, three datasets were used — STS tasks 2012-20163, the STS
benchmark [Cer et al. 2017] and the SICK-Relatedness [Marelli et al.
2014] datasets. These three datasets include labels for sentence pairs
that define, on a scale of 0 to 5, how semantically related they are.
SBERT was able to outperform both InferSent and USE on most of
the datasets, with the exception of the SICK-R dataset, in which USE
gained an edge due to its training on a variety of diverse datasets
that seemed to better fit the data in SICK-R. The results can be seen
in 1.

For the supervised learning, SBERTwas fine-tuned on the training
set of the STS benchmark dataset using cosine similarity as the
metric for sentence embedding similarity alongside a mean squared
error loss function to assess the quality of each prediction. This
dataset has proven to be very popular in the evaluation of supervised
datasets given the quality of the sentence pairs and its dimensions
— it is composed of 8628 sentence pairs that are divided into three
categories (captions, news and forums).
Apart from the fine-tuning done only on STSb, another exper-

iment was done by training on the NLI dataset first and then the
STSb. This latter option resulted in a considerable improvement.
In the paper it was also found that using RoBERTa, a BERT based
language model, (instead of BERT) did not make much difference in
the final results. These findings are displayed in 3.

Fig. 3. Evaluation on the STS benchmark test set. SBERT was fine-tuned
on the STSb dataset, SBERT-NLI was pretrained on the NLI datasets, then
fine-tuned on the STSb dataset. [Reimers and Gurevych 2020]

3http://alt.qcri.org/semeval2020/

2.3 Quin
Quin [Samarinas et al. 2021] is a fact-checking system that was
developed during the outbreak of COVID-19 with the purpose of
providing the public with an automated fact-checking system ca-
pable of examining the veracity of claims surrounding the topic
of COVID-19. It was later repurposed as a general fact-checking
system, capable of verifying open-domain claims.
Quin works in three stages (see 4) — in the first, the query goes

through a BM25 sparse retriever, from which the top scoring 500 re-
sults are extracted. In the second stage, parallel to the first, the query
is encoded using QR-BERT, a BERT model specifically designed to
work in the context of question answering, trained with a large
dataset constructed using NLI. After the query is encoded, it goes
through a Faiss index to search for the passages that best resemble
the query in semantic value, using a cosine similarity function to
compare between embeddings, and the best 500 results are extracted
from this stage.

The union set of the results from stages 1 and 2 are then used in
the third and final stage, where these go through a relevance classi-
fier, that is essentially a BERT model fine-tuned on a large dataset
of query-passage pairs that applies a linear transformation to the
embedding of the [CLS] token in order to retrieve a score from each
query-result pair in the union set. These results are then reordered
according to the score attributed by the relevance classifier, and this
is the final order used to display the results in the search engine.

Fig. 4. Diagram of the architecture of Quin. [Samarinas et al. 2021]

This system is very relevant to our problem, given that the moti-
vation is somewhat analogous to ours, albeit in a different context,
and it combines traditional information retrieval with a NLP-based
approach that is capable of assisting a traditional keyword search
with a semantic component, hence the reason we decided to base
our system off of this approach.

3 LEGAL SEMANTIC SEARCH ENGINE
The goal of this thesis is to introduce a system thatmerges a common
document retrieval technique with semantic search abilities on the
Portuguese consumer law. In this chapter, we will start by looking at

, Vol. 1, No. 1, Article . Publication date: May 2022.

4 • Cordeiro, et al.

LeSSE, a search engine we specifically created to answer questions
on the topic of Portuguese consumer law that uses state-of-the-art
search techniques, and is based on Quin [Samarinas et al. 2021].
This system was developed for this thesis in the context of the

project Descodificar a Legislação, a research collaboration between
INESC-ID and INCM. The goal of this project was to make the Con-
sumer Law more accessible and understandable by the Portuguese
citizens. This was done by combining popular document retrieval
techniques with the recent advancement of Machine Learning and
NLP to provide semantic search capabilities to the search system.
This chapter starts with an overview description of the system,

that will broadly explain the pipeline step by step. Then, we will
address each system component in a more detailed way, as well as
the training process for the language model used in some of the
components. Ultimately, we have a description of how the results
are selected, organized and presented to the user.

Fig. 5. LeSSE

3.1 System Overview
Our system takes a hybrid approach, in which it combines a tradi-
tional (syntactic) information retrieval algorithm with a semantic
search. The syntactic search allows the users to search for literal
terms, such as names or titles included in the legislation, and the
semantic search assists in case the answer contains juridical jargon
that the user did not use in the query. The semantic search is able
to identify synonymous words and expressions that the user may
be interested in. A visual description of the system architecture can
be found in Figure 5.

First, the system starts by pre-processing all of the law documents
(acts) before any search is to be initiated. This will save time and

resource exhaustion since all of the acts will be used in each search,
therefore avoiding repetitive computations, given that they are
always stored in the database. The search query will also undergo
pre-processing, but since the queries will be inevitably different
each time a search is performed, it is done during search time.
The pre-processing is the same for the acts and the query with

the exception of one step — the acts go through text segmentation
first, in which the text of each act is separated into segments, which
are pieces of text separated by line breaks, and each one of them
contains information about its location in the document (e.g. chapter
3, section 2, article 24) so that they can be later referenced in the
results.

After that, both the segments and the query go through Semantic
and Syntactic Pre-Processing — two distinct text processing steps
that are needed to prepare the segments and the query for the Se-
mantic Extraction and Syntactic Similarity, respectively. It is worth
mentioning that the pre-processing is done at different stages for
the segments and the query. The segments are pre-processed when
the system is started and the query is pre-processed during runtime,
right after it is inserted into the search engine.

After the semantic pre-processing is complete, we move on to the
semantic extraction, which is the step in which the segments and
the query are encoded into embeddings.
With the segment embeddings that were generated, a search

index is created and stored locally in the server that hosts the search
service. This allows the similarity search to be more efficient, and
given the persistent nature of the corpus, the index won’t need to
suffer changes as long as the corpus does not change.

Additionally, before the system is up and running, the segments
are used to create a structure that holds each word present in the
segments (every word in the corpus), that is used by the syntactic
similarity algorithm (BM25) to determine a syntactic similarity score
for each pair of segment-query.
Once all of this is complete, the system is then ready to receive

a query. In search time, the query goes through the syntactic pre-
processing and is then used to calculate a similarity score for each
segment. The 20 segments with the highest scores are selected. Con-
secutively, the query also goes through the semantic pre-processing,
before being converted into an embedding, that is afterwards used
to perform a search in the index that was created with the segments.
The search index returns the scores of semantic similarity between
each segment and the query, based on the similarity of their corre-
sponding embeddings, and, at that point, the 50 segments with the
best scores are selected.

In the final stage, the 50 best segments from the semantic search
index and the 20 best segments from the syntactic similarity search
are then united into a single set, but since the scores from the
syntactic and semantic searches are on different scales and are not
comparable, the results are then passed on to a trained semantic
similarity model that assigns each result pair with a score that
signifies its similarity to the initial query. Ultimately, the results are
ordered according to these scores and returned to the user.

, Vol. 1, No. 1, Article . Publication date: May 2022.

NLP Applied To Portuguese Consumer Law • 5

3.2 Semantic Pipeline
3.2.1 Semantic Pre-Processing. As opposed to the pre-processing
done for the syntactic search, the one that is used for the semantic
search does not involve any of the steps mentioned prior, but instead
rests on the Bert Tokenizer from the Hugging Face4 library.

3.2.2 Semantic Encoder. After the semantic pre-processing, we are
left with segments (and a query) that are prepared to be received
by the Semantic Encoder, which will then generate segment embed-
dings off of those segments.
Semantic Encoder is, in its core, BERTimbau [Souza et al. 2020],

a BERT model trained on the BrWaC [Wagner Filho et al. 2019], a
large corpus that was constructed using the Brazilian Portuguese
Web as a source. For the purpose of simplifying the fine-tuning
and evaluation, we have used BERTimbau Base (BERT-Base) with
hidden size 768.
BERT-Large, with hidden size 1024, is known to present better

results than BERT-Base, but since fine-tuning it requires more com-
putational power, BERT-Base came as the best choice in terms of
time, performance and computational limitations.
In this step, the ultimate goal is to create a segment embedding,

but since BERT only generates token embeddings we will be using
the average embedding strategy to generate a segment embedding
out of all the tokens in it. Therefore, once BERTimbau finishes
embedding the tokens in the segment, all of the token embeddings
are then averaged into a single segment embedding array.

Once this has been done, the embedding array is then normalized.
This is a requirement for the Faiss [Johnson et al. 2019] index that
we are using and it also facilitates the selection of a fixed threshold
for the maximum cosine distance between arrays, since these dis-
tances will then be comprised between 0 and 1 after the arrays are
normalized.
For the purpose of adjusting the Semantic Encoder to the vo-

cabulary used in the law documents and the queries (European
Portuguese, formal language in the law documents and informal —
sometimes formal — in the queries), we had to fine-tune the model
in order to teach it to recognize popular semantic pairs between
queries and law segments. To do this we used the Trainer5 class
from the Hugging Face library, providing a training and evaluation
loop for PyTorch, optimized for Hugging Face Transformers classes.

To train the Semantic Encoder we used the Manual Annotations
dataset on a task of sequence classification. The model was trained
for 1 epoch, at an initial learning rate of 7.40546e-05, weight decay
0.244911, with a training batch size of 32 per GPU (a total of 64,
considering the training was done on two GPUs).

Sincewe are using the Base version of BERTimbau in the Semantic
Encoder, with hidden size 768, the generated segment embeddings
are feature vectors with 768 dimensions (features).

After the creation of all of the segment embeddings, they are then
stored in a Faiss search index for future use (every time a search
query is received).

The reason why we opted for BERTimbau as opposed to M-BERT
is because of the way these models were trained. M-BERT was
trained for multiple languages, including Portuguese, but in a much
4https://huggingface.co
5https://huggingface.co/transformers/main_classes/trainer.html#transformers.Trainer

more modest way compared to other languages since the corpus
is proportional to the available source material in each language.
And since M-BERT needed to be trained in various languages, the
trade-off was between number of languages included and the size
of the training corpus for each language. Given that M-BERT was
specifically designed to be pre-trained in multiple languages, its
performance cannot be compared to the one from a model that was
specifically trained in one language solely.

3.2.3 Semantic Search Index. After every segment in the corpus is
encoded, they are added to a Faiss Search Index. The Index being
used is the IndexFlatIP — providing an exact search for inner product.
Since there is no index that provides an exact search based on
the cosine similarity of the arrays, we chose the inner product
considering that the cosine similarity is simply the inner product
between normalized vectors — and that is why all of the embeddings
are normalized before entering the index, in the final stage of the
Semantic Encoder.
The Faiss library possesses two functions that easily allow us

to convert the index in memory to a binary file when it is created
(write_index) and read that binary file and bring the index back to
memory upon the initialization of the search system (read_index).
This is convenient given that the creation of the index is a task that
takes quite a few minutes (20-30) to complete, and would be a waste
of time to repeat it every time the system initializes.

After the query is encoded into an embedding, it is then used to
search for the 50 arrays that are closest to it (in cosine similarity).
We then use a threshold of 0.5 to eliminate any array that had a score
below significant — these arrays represent the segments that are
not relevant to the query that was searched. The remaining arrays
— the ones with a score above 0.5 — are the ones that represent
segments that are relevant to the query, and these segments will go
to the latter stage in the system — the Semantic Classifier.

3.3 Syntactic Pipeline
3.3.1 Syntactic Pre-Processing. Before forwarding the query to the
syntactic similarity search, the query needs to be processed in order
for it to be recognized even when it is not written in the same way
that it exists in the dictionary, due to various concerns.
The syntactic similarity search that is used in the system is the

BM25 algorithm, which uses a bag-of-words strategy. Essentially, it
means we need to divide a phrase into words. The words belonging
to the query are therefore compared with the words in the dictionary
(corpus/segments) and, for two words to be considered the same,
they must share every Unicode6 character in the same order.

In the syntactic similarity search, the words of each segment and
query are used to calculate a similarity score. For two words to be
considered the same they have to be be exactly the same — that is,
they must share every unicode character in the same order. When
two words are compared by the algorithm, one starting with upper
case, and the other with lower case, they are deemed unequal.
Because of this constraint, the syntactic search must follow a

syntactic pre-processing that consists of five main steps:

6https://home.unicode.org

, Vol. 1, No. 1, Article . Publication date: May 2022.

6 • Cordeiro, et al.

NLTKWord Tokenization: Using the NLTK word tokeniza-
tion tool for the Portuguese language, each segment and
query is separated into tokens, which are words defined in
the NLTK Portuguese dictionary. This helps us construct the
bag-of-words necessary for the BM25 algorithm, and is es-
pecially helpful in recognizing a word that is separated by a
hyphen, for instance, which would have been viewed as two
single words by a simple space-separator.

Removal of Punctuation: Since the previous step does not
remove punctuation, every punctuation character is removed
so that it does not count as a word. Otherwise, the segments
and the query could be compared using, for instance, the
number of commas that they contain, which is not our goal.

Word Lowering: Words that contain uppercase letters are lower-
cased so they can be identified as being the same word. This
ensures that when the user submits a search query that mis-
takenly includes an uppercase letter in the wrong place, the
words in the query can be identified as belonging to the cor-
pus.

Stop-Word Removal: In order to perform a relevant keyword
search on the corpus, the segments of the corpus and the
query need to go through a process of stop-word removal
since, by definition, they offer no additional meaning to the
sentences. To do this, we use the NLTK Portuguese stop-
word dictionary to remove all of the irrelevant words. In this
corpus of stop-words, there exist words such as: a, ao, aos,
aquela, aquelas, among many others. The process of removal
is quite simple and it involves keeping only the words in the
segments/query that are not present in the corpus of stop-
words. This a major step in the text processing since words
such as de appear a lot in the Portuguese language, and the
similarity between two phrases (a segment and the query)
should not be judged by their amount of des, which provide
no contextual information about the phrase.

Unidecode: This last step ensures that every word in the seg-
ments and the query do not have any special characters such
as é, à, ç, among others. It also ensures that the algorithm is
able to recognize every word that the user typed with a miss-
ing accent. Every word goes through the function unidecode
from the Unidecode7 library.

3.3.2 Syntactic Search. Following the Syntactic Pre-Processing, the
processed segments and the query will go to the Syntactic Search,
where the query will be compared to the segments, on a syntactic
level. For this purpose, we perform a BM25 text search using the
BM25Okapi8 class from the rank_bm25 python library but, before
any search is done, at the initialization stage of the search system,
the BM25Okapi object is initialized using the corpus, i.e., all of the
segments in the corpus that have been pre-processed. Since it only
takes a few seconds, there is no need to store the binary object in
memory and it is done during loading time, every time the system
loads.

7https://github.com/avian2/unidecode
8https://pypi.org/project/rank-bm25/

3.3.3 Semantic Classifier. At this stage, the segments that were
chosen from the Semantic and the Syntactic Searches are collected
into a set of segments that will be reordered by the Semantic Clas-
sifier, which is none less than a BERTimbau model trained in the
same way that the one in Semantic Encoder is fine-tuned. However,
their purposes are separate — the Semantic Encoder uses a base
BertModel class to generate the embedding for each sentence and
then they are compared in the search index based on their cosine
similarity whereas the Semantic Classifier uses a BertForSequence-
Classification class and the semantic similarity score is calculated
by applying a softmax function to the logits that are returned by
the model, upon receiving both sentences (segment and query) as
input.

The Encoder + Search Index combination is used at a stage where
comparison speed needs to be high, since we need to compare the
query to every single segment in the corpus. At a later stage, in the
Semantic Classifier where, at most, we have 70 segments, we are
allowed to use a BertForSequenceClassification model to compare
the query to the final segments and classify them in the order of
relevance.

3.4 Results Selection and Presentation
The final results are shown in the following manner: The acts are
ordered according to the sum of the scores of its segments, in a
descending order. Thus, the act with the highest sum of its segments’
scores is at the top of the results list. In each act, the ordering of
the articles follows the same strategy — the articles in each act are
ordered according to the sum of its segments’ scores.

In Figure 6 we have an example of the results interface where we
searched for the query terms "benefícios fiscais" and it returned an
act in first place named Decreto de Aprovação da Constituição, and
inside it two articles, Artigo 103º and Artigo 85º.

Fig. 6. Search Results Example

3.5 Model Training
As previously stated, the language model that was used for both the
Semantic Classifier and Semantic Encoder was a BERTimbau base
model fine-tuned on the annotations dataset. For this fine-tuning
task, we were able to use a machine with 2 NVIDIA GeForce RTX
3090 GPUs, each with 24GB of memory and 10496 cores.

Prior to training, we ran a hyper-parameter optimization in order
to optimize the learning capabilities of the model and its perfor-
mance on unseen data. We did this by using a function in the Trainer

, Vol. 1, No. 1, Article . Publication date: May 2022.

NLP Applied To Portuguese Consumer Law • 7

class from the HuggingFace python library, which we also used to
train the model. This class provides an API for feature-complete
training in PyTorch, which simplifies much of the process and ab-
stracts the researcher from the training loop, focusing on the op-
timization process. The API also supports distributed training on
multiple GPUs/TPUs, which was beneficial to us since we used 2
GPUs instead of just one, and we would like them to be used in
parallel to guarantee that the training process finishes faster.

3.5.1 Hyperparameter Optimization Techniques. In practice, hyper-
parameter optimization is nothing but a search for the set of param-
eters that optimize the training process and maximize (or minimize)
the validation metrics, which in our case are the validation accuracy
and loss. Usually, hyperparameter optimization can be done using
various techniques, but the three most commonly used ones are
Hand Tuning, Random (or Grid) search and Bayesian search.
These three techniques, however, possess two downsides. The

first downside is the time it takes to find the hyperparameters that
optimize the performance of the model. With Hand Tuning, the
researcher must try a set of hyper parameters by training the model
with that set and then evaluate the performance of the model. The
researcher must keep this cycle until they are satisfied with the
performance of the model. This task can take a lot of time, and can
sometimes even take weeks or months to reach the perfect set of
hyper parameters.
Bayesian Optimization is a technique that automates the hand

tuning process by using the Bayes theorem to make changes to the
hyper parameters at the end of each training run, which makes it a
sequential training optimization, and therefore it can also become a
very slow process.

Fig. 7. Bayesian Optimization

In Grid Search, a set of neural networks are trained independently
in parallel and, at the end, the hyperparameters from the model
with the highest performance are selected. The number of different
combinations of hyperparameters can go around the dozens or
even hundreds, which means that dozens or hundreds of models
will be trained and only a small fraction of those will have a high
performance. This, in turn, means that most of the models that were
trained will not be used and, therefore, a high amount of computer
resources were wasted training them — making this the second
downside to using one of the most commonly used optimization
techniques.
PBT [Jaderberg et al. 2017] is an optimization technique that

combines Grid search and Hand Tuning. PBT starts in the same
way of Grid Search — by training a set of models with random
hyperparameter values — but instead of training the set of models
independently, it allows the models to share information with each
other and reconfigure their training hyperparameters according to
the most promising models.

Fig. 8. Grid Search

Given these advantages, we decided to optimize the hyperparam-
eters by using a PBT algorithm that was available as a scheduler
option with the same name, in the Ray Tune library, that is inte-
grated into the Trainer class function hyperparameter_search.

Fig. 9. PBT

3.5.2 Model Optimization and Training. In order to find out which
type of data would train the model in the best way possible for
this task, we studied the use of 4 datasets for the Consumer Law
Corpus — Manual Annotations, ICT, Semantic Pairs and Manual
Annotations + Semantic Pairs — and for the Retirement Corpus we
used 2 datasets, Manual Annotations and Semantic Pairs.
To choose which training dataset would return the best results

we followed the same evaluation procedure for all of them. We first
divided the datasets into 3: The training set, used to train the model;
the validation set, that was used to evaluate the performance of the
model during training; and the test set, which was used to evaluate
the performance of the model on unseen data (different from the
validation set), after the training is complete.

The Manual Annotations dataset was divided into 2 subsets —
training and validation/test. Since we did not have many golden
labels, we decided to split the dataset cautiously, prioritizing the
validation/test set given that these sets had to have manually anno-
tated queries, in order to check the real performance of the system.
The validation and test sets are the same one given the same rea-
son (not enough manual annotations). Instead of using percentages
to split the dataset, we used the number of queries in the dataset
— 100 for the validation/test sets, and the remaining (221) for the

, Vol. 1, No. 1, Article . Publication date: May 2022.

8 • Cordeiro, et al.

training set. We chose this query-split approach as opposed to a tra-
ditional percentage-split approach, given that, if we had chosen to
divide to set according to traditional percentages, such as 80-10-10
(training-validation-test), we would have only had 32 queries to test
the performance of the system, which is just not enough, given that
there are plenty of topics in the consumer law domain and, with 32
queries, the probability of covering all of those topics is very low.
The other datasets (ICT and Semantic Pairs) were also divided

into 2 subsets — training and validation — but in this case following
percentages, 80% and 20%, respectively. The reason why we didn’t
divide these datasets into 3 was because we only needed one test set
to test all the models, and we chose the annotations dataset because
that was the most reliable since it included manual annotations
created by experts, therefore the veracity of those annotations is
guaranteed, as opposed to the ones automatically generated, which
might not be correct.

Before the division, every dataset is shuffled in order to guarantee
that every training batch is representative of the dataset, as a whole.
If we did not shuffle the data, we would risk creating batches that
have similar data, which would set off the gradient estimate and,
therefore, lead the training of the model in the wrong direction.
Then, we ran a hyperparameter optimization for each dataset

separately. This step was necessary due to the scale and diversity
of data present in each dataset. A selection of parameters and their
model performance are displayed in Table 1. The final training
hyperparameters were chosen according to the accuracy, while
monitoring the loss value which is calculated with a Cross Entropy
loss function. This function is defined as:

𝑙𝑜𝑠𝑠 = −𝑤𝑦 · log
exp(𝑥𝑦)∑𝐶
𝑐=1 exp(𝑥𝑐)

· 𝑦 (3)

where 𝑥 is the input, 𝑦 is the target,𝑤 is the weight and 𝐶 is the
number of classes, which in our case is 2 (0 — not relevant, and 1 —
relevant).

Table 1. Example of Training Hyperparameters for Manual Annotations of
the Consumer Law Corpus

Weight
Decay

Learning
Rate

Training
Batch
Size

Per GPU

Epochs Validation
Accuracy

Validation
Loss

0.261884 2.42913e-
05

32 4 0.837746 0.934985

0.244911 7.40546e-
05

32 1 0.843621 0.634938

0.204092 9.25682e-
05

16 1 0.84328 0.638671

0.261884 1.61942e-
05

32 4 0.83131 1.09068

0.0596527 9.41399e-
05

16 1 0.818426 0.500694

4 PERFORMANCE OF LESSE IN THE PORTUGUESE
CONSUMER LAW

The primary purpose of the evaluation was to compare the perfor-
mance of LeSSE in the Portuguese Consumer Law corpus to the
baseline, BM25. After choosing the best model from each training
session with the different datasets, we compared their performance
on the same test set. In the following table, we present the accuracy
results for the different combinations of search algorithms and train-
ing datasets used. The accuracy is divided into 4 categories (TOP 1,
3, 5 and 12) — each TOP 𝑥 category represents the percentage of test
queries that the system got right in the first 𝑥 results. And so, for
instance, this means that the Baseline system was able to fetch at
least one of the correct results, in the first 3 search results, in 70.0%
of the test queries (TOP 3/Baseline). The accuracy is measured by
comparing the act in the result with the act in the golden label.
The third column shows the results obtained with the LeSSE

system without fine-tuning (training) the model. Despite the fact
that these results are not the best, this option manages to achieve
a better result than the baseline. The fourth column shows the
performance of LeSSE when the models were trained using the
Manual Annotations dataset, and these are the best results achieved,
especially when comparing with the baseline.

Table 2. LeSSE Accuracy in the Portuguese Consumer Law

Accuracy (%)

Results Measure Baseline
(BM25)

LeSSE
No Training Trained

with
Manual
Anno-
tations

TOP 1 42.0 44.0 55.0
TOP 3 70.0 74.0 89.0
TOP 5 71.0 88.0 96.0
TOP 12 75.0 95.0 99.0

The reason why all the accuracy percentages in Table 2 are whole
numbers is because the test set from the consumer law corpus had
100 query-answer pairs. So, for instance, this would mean that the
baseline search algorithm (BM25) got the first result right in 42 out
of the 100 test queries (TOP 1, Baseline (BM25)).
After comparing the different iterations of the system for the

Consumer Law context, we chose the best configuration based on
the TOP 3 measure, which was deemed more relevant in the search
task.

5 PERFORMANCE OF LESSE IN THE ABSENCE OF
MANUAL ANNOTATIONS

The second evaluation sought to answer whether the LeSSE would
be ready to answer questions correctly when there would be no
manual annotations or jurists to annotate them. This was a relevant
question to pose, since there may come a scenario where there are
no manual annotations available for a specific domain in the Por-
tuguese Law, as it is the case now for any domain other than the

, Vol. 1, No. 1, Article . Publication date: May 2022.

NLP Applied To Portuguese Consumer Law • 9

ones we have worked with — Consumer Law and Retirement Law.
To prevent this issue, we studied the option of using automatically
generated annotations, by following two generation techniques —
ICT and Semantic Pairs generation. Additionally, we also tried a
mixed configuration of Manual Annotations and Automatic Annota-
tions (Semantic Pairs) to see whether it improved upon the Manual
Annotations configuration. And so, upon training LeSSE with these
automatically generated datasets, we compared their performance
against the Baseline.

Table 3. Testing Accuracy with Automatic Annotation Datasets

Accuracy (%)

Results Measure
LeSSE

Trained with
Automatic Annotations

ICT
Dataset

Semantic
Pairs

Manual Annotations
+

Semantic Pairs
TOP 1 45.0 51.0 50.0
TOP 3 76.0 77.0 88.0
TOP 5 84.0 90.0 96.0
TOP 12 95.0 95.0 98.0

In Table 3, the fifth column presents the accuracy results of LeSSE
when trained with the ICT dataset. Despite not being the best in
the bunch, it managed to surpass LeSSE when no fine-tuning was
done (when comparing TOP3), and it also showed a significant
improvement over the baseline. This means that it could be a good
option when there are no manual annotations to fine-tune on, since
it is relatively fast and inexpensive to generate.
The sixth column contemplates the results from training with

Semantic Pairs, automatically generated from the corpus. When
comparing with the manual annotations dataset in the TOP3 cate-
gory, training with this dataset did not improve the performance
of the model, but it did perform better than LeSSE when trained
with the ICT dataset. It also showed to be far superior the baseline,
and even scored higher than LeSSE with no training, which was
indicative that it could be useful in a scenario where there are no
annotations. The generation of this dataset was the product of a
master thesis from another student, and it required the help from
two linguists that annotated the segments with syntactic and se-
mantic functions of the words and expressions, so its generation
was slower and more expensive than the ICT one.

Mixing the manual annotations with the semantic pairs did not
show an improvement over the manual annotations, and we con-
cluded that it had to do with the incongruousness of the data —
the manual annotations were quite different from the automatic
ones in terms of topics covered, but also in format (the manual ones
were more naturally written than the automatic ones), and that
created an inconsistent dataset which was not as fit for training as
the manual annotations themselves. Another issue with this mixing
strategy comes from the fact that the datasets are not balanced in
terms of quantity — the automatic annotations far surpassed the
manual ones, since those were easier to generate, and that created

an imbalance. However, it still managed to score higher than all
the other configurations in the TOP3 category (apart from manual
annotations), so it could prove to be quite useful when there are not
enough manual annotations to cover all of the topics in the domain,
or the quantity of annotations is just not enough.

6 PERFORMANCE OF LESSE IN A DIFFERENT LAW
DOMAIN

In addition to the Consumer Law domain, another challenge was
defined in the Descodificar a Legislação project, which was to make
the developed system work with another law corpus (another law
domain). This task functioned as a test to see how well LeSSE would
work when dealing with another domain or subdomain of the Por-
tuguese Law. For this purpose, we were provided with a few anno-
tations on the domain of Retirement Law (Estatuto da Aposentação)
and applied the same methodology that we had done for the Con-
sumer Law corpus. The annotation dataset consisted of 111 queries
pointing to 298 segments. This dataset was split similarly to the one
used in the consumer law domain, by using a set number of queries
for the validation and test sets (the same set for both, due to lack
of annotations) and the remaining queries were used for training.
In this case, we used 32 queries for the validation and test sets, and
the remaining 79 for training.
In Table 4, we are presented with the results of the experiment,

homologous to the one done for the Consumer Law domain, with
the exception of the way in which the accuracy is measured. In the
consumer law domain, the accuracy is measured by comparing the
act in the result with the act in the golden label, but in this domain
we only have 2 acts, which would automatically mean that there is
a 50% chance that a random answering search system would get the
right result. Since there is no relevance to that kind of metric, we
decided to measure the accuracy on the article level — we compared
the article in the result with the one on the golden label — and this
led to a more fair comparison between domain performances.

Table 4. LeSSE Accuracy in the Retirement Law

Accuracy (%)
Results
Measure

Baseline
(BM25)

LeSSE

No Training
Trained with

Manual
Annotations

Trained with
Automatic
Annotations

(Semantic Pairs)
TOP 1 43.8 43.8 46.9 40.6
TOP 3 50.0 68.8 78.1 71.9
TOP 5 50.0 75.0 90.6 84.4
TOP 12 50.0 75.0 90.6 84.4

The results obtained from this experiment were much the same
— that is, the manual annotations were the best dataset to train on,
since it far surpassed the others in any category of accuracy and
the automatic annotations (in this case Semantic Pairs were used)
proved to be the second best option, with the exception of the TOP1
category, in which it did not score as high as the others, but it was
compensated by the other accuracy scores.

, Vol. 1, No. 1, Article . Publication date: May 2022.

10 • Cordeiro, et al.

7 CONCLUSION
The proposal of this project was to create a search system that would
connect the Portuguese citizens to their Consumer Law by modify-
ing how the search was made. The current Portuguese Consumer
Law search engine works by searching keywords in the articles. Our
improved version combines a more refined keyword search with a
semantic search. For the keyword search we used a well established
algorithm called BM25, in its original version, and for the semantic
search we used a BERT language model, in a tailored pipeline.
In order to produce the desired results, the language model had

to be trained on a corpus that included legislative jargon. This was
an important step to ensure that the model would be able to create
the right relations between similar words that it had not seen in the
pre-training stage (first training with an extensive corpus). It was
also important since the pre-training was done using a Brazilian
Portuguese corpus, and because we needed it to be able to recognize
the European Portuguese vocabulary, it had to be fine-tuned on an
European Portuguese corpus.

The training corpus was constructed with the help of jurists from
INCM, who annotated questions extracted from the DRE search
database with passages from the Portuguese Consumer Law. This
allowed us to pair questions with segments (smallest fragment of
text in this context) from those passages and those were used, not
only to train the model, but also to evaluate its performance during
the training stage and to test after it had been trained.

We also tried training the model on other corpora to see how they
would influence the performance and how the search engine scaled
by training with automatically generated annotations. We observed
that LeSSE is quite capable of achieving a high performance when
trained with manual annotations (89.0% TOP3 accuracy), especially
when compared to the Baseline (70.0%). We also observed that, in the
absence of manual annotations the system was able to perform quite
well, scoring 76.0% and 77.0%, when trained with an ICT dataset
and a Semantic Pairs dataset, respectively.

Ultimately, we also tested the performance of LeSSE in a different
law domain. We used a few annotations from the Retirement Law
Corpus, which is a smaller corpus than the one originally used
(Consumer Law), but, despite having less annotations to train and
test on, the experiment proved that the system is fit to work on any
domain of the Portuguese law, scoring 78.1% TOP3 accuracy and a
decent 71.9% when trained with automatic annotations (in lack of
manual ones).

ACKNOWLEDGMENTS
This work was funded by a partnership between INESC-ID and
INCM, in the context of my masters thesis.

REFERENCES
Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D.Manning. 2015.

A large annotated corpus for learning natural language inference. In Conference
Proceedings - EMNLP 2015: Conference on Empirical Methods in Natural Language
Processing. https://doi.org/10.18653/v1/d15-1075 arXiv:1508.05326

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. 2017.
SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual
Focused Evaluation. In Proceedings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017). Association for Computational Linguistics, Vancouver,
Canada, 1–14. https://doi.org/10.18653/v1/S17-2001

Baban Gain, Dibyanayan Bandyopadhyay, Tanik Saikh, and Asif Ekbal. 2019. IITP in
COLIEE@ ICAIL 2019: Legal Information Retrieval using BM25 and BERT. Compe-
tition on Legal Information Extraction/Entailment 2019 (2019).

Max Jaderberg, Valentin Dalibard, SimonOsindero,WojciechMCzarnecki, JeffDonahue,
Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. 2017.
Population based training of neural networks. arXiv preprint arXiv:1711.09846
(2017).

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity search
with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

M. Marelli, S. Menini, M. Baroni, L. Bentivogli, R. Bernardi, and R. Zamparelli. 2014. A
SICK cure for the evaluation of compositional distributional semantic models. In
Proceedings of the 9th International Conference on Language Resources and Evaluation,
LREC 2014.

Nils Reimers and Iryna Gurevych. 2020. Sentence-BERT: Sentence embeddings using
siamese BERT-networks. In EMNLP-IJCNLP 2019 - 2019 Conference on Empirical
Methods in Natural Language Processing and 9th International Joint Conference on
Natural Language Processing, Proceedings of the Conference. https://doi.org/10.18653/
v1/d19-1410 arXiv:1908.10084

S E Robertson, S Walker, K Sparck Jones, and M M Hancock-Beaulieu. 1994. Okapi at
TREC-3. Proceedings of the Third Text REtrieval Conference (1994).

Chris Samarinas, Wynne Hsu, and Mong Li Lee. 2021. Improving Evidence Retrieval
for Automated Explainable Fact-Checking. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies: Demonstrations. 84–91.

Fábio Souza, Rodrigo Nogueira, and Roberto Lotufo. 2020. BERTimbau: Pretrained
BERT Models for Brazilian Portuguese. Intelligent Systems Lecture Notes in Computer
Science (2020), 403–417. https://doi.org/10.1007/978-3-030-61377-8_28

Jorge A. Wagner Filho, Rodrigo Wilkens, Marco Idiart, and Aline Villavicencio. 2019.
The BRWAC corpus: A new open resource for Brazilian Portuguese. In LREC 2018 -
11th International Conference on Language Resources and Evaluation.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. 2018. A broad-coverage
challenge corpus for sentence understanding through inference. In NAACL HLT 2018
- 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies - Proceedings of the Conference. https:
//doi.org/10.18653/v1/n18-1101 arXiv:1704.05426

, Vol. 1, No. 1, Article . Publication date: May 2022.

https://doi.org/10.18653/v1/d15-1075
https://arxiv.org/abs/1508.05326
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/d19-1410
https://doi.org/10.18653/v1/d19-1410
https://arxiv.org/abs/1908.10084
https://doi.org/10.1007/978-3-030-61377-8_28
https://doi.org/10.18653/v1/n18-1101
https://doi.org/10.18653/v1/n18-1101
https://arxiv.org/abs/1704.05426

	Abstract
	1 Introduction
	2 Related Work
	2.1 Information Retrieval
	2.2 Natural Language Processing Approaches to Semantic Textual Similarity
	2.3 Quin

	3 Legal Semantic Search Engine
	3.1 System Overview
	3.2 Semantic Pipeline
	3.3 Syntactic Pipeline
	3.4 Results Selection and Presentation
	3.5 Model Training

	4 Performance of LeSSE in the Portuguese Consumer Law
	5 Performance of LeSSE in the Absence of Manual Annotations
	6 Performance of LeSSE in a Different Law Domain
	7 Conclusion
	Acknowledgments
	References

