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Resumo

Estudamos os efeitos da desordem de Aubry-André e desordem de Anderson para um modelo de um

supercondutor topológico bidimensional com um campo magnético externo. São estudados os casos de

um supercondutor de emparelhamento tipo p e um supercondutor não centrossimétrico com mistura de

emparelhamentos de tipo p e s e com acoplamento spin-órbita de Rashba. Revemos as propriedades

topológicas do sistema sem desordem, que dependem da direção do campo magnético (perpendicular

ou paralelo ao plano do supercondutor). O sistema desordenado é estudado tanto no espaço real como

num espaço misto. Quando o campo magnético é paralelo, estudamos os efeitos de quasi-desordem e

desordem, aplicada tanto nas fronteiras como no interior do supercondutor, e discutimos os seus efeitos

na localização do sistema, densidade de estados e nas funções de onda, numa abordagem no espaço

real. Ainda no espaço real mostramos que, para um campo magnético perpendicular, a introdução

de quasi-desordem leva ao aparecimento de novas regiões topológicas, caracterizadas por um valor

inteiro do número de Chern. Numa abordagem no espaço misto, identificamos novos regimes com o

aparecimento de novas bandas planas de Majorana e também novos estados de fronteira de Majorana

unidirecionais, com a introdução de quasi-desordem. Mostramos que as bandas planas de Majorana

têm uma fase Berry quantizada de ı e indentificamo-la como um invariante topológico. Duas transições

topológicas são identificadas e os valores dos expoentes crı́ticos z e  são obtidos. A natureza fractal

dos estados é discutida tanto para desordem de Anderson como para desordem de Aubry-André.

Palavras-chave: Quasi-desordem, supercondutor topológico, bandas planas de

Majorana, número de Chern, expoentes crı́ticos, multifractali-

dade
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Abstract

We study the effects of Aubry-André disorder and Anderson disorder in a model of a two-dimensional

topological superconductor with an applied external magnetic field. The cases of a p-wave supercon-

ductor and a noncentrosymmetric superconductor with mixed p- and s-wave pairing and Rashba spin

orbit coupling are studied. We review the topological properties of the clean system, which depend on

whether the applied magnetic field is perpendicular or parallel to the plane of the superconductor. The

disordered system is studied both in real space and in a mixed space. When the applied magnetic field

is parallel, we study both edge and bulk quasi-disorder and Anderson disorder and discuss the effects

on the localization of the system, density of states, and direct effect on the wave functions, on a real

space approach. Also on a real space approach we show that, for a perpendicular magnetic field, the

introduction of quasi-disorder leads to the appearance of new topological regimes, characterized by an

integer value of the Chern number. In a mixed space approach we identify new regimes with the appear-

ance of new Majorana flat bands and also new unidirectional Majorana edge states, as quasi-disorder

is introduced. We show the Majorana flat bands have a quantized Berry phase of ı and identify this as

a topological invariant. Two topological transitions are identified and the values of the critical exponents

z and  are obtained. The fractal nature of the eigenstates is discussed both for Anderson disorder and

Aubry-André disorder.

Keywords: Quasi-disorder, topological superconductor, Majorana flat

bands, Chern number, critical exponents, multifractality

ix



x



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 Introduction 1

1.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Fundamental Concepts 5

2.1 Topology in condensed matter physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Berry Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Chern Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Edge states and the bulk-edge correspondence . . . . . . . . . . . . . . . . . . . . 7

2.1.4 The SSH model and the winding number . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Bogoliubov-de Gennes equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Superconducting pairing term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Particle-Hole Symmetry and Majorana fermions . . . . . . . . . . . . . . . . . . . 11

2.2.4 The Kitaev toy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Disordered systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Participation Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Multifractality of wave functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Scaling properties near a phase transition . . . . . . . . . . . . . . . . . . . . . . . 14

3 Clean two-dimensional topological superconductor 17

3.1 Model Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Superconductor under a perpendicular magnetic field . . . . . . . . . . . . . . . . . . . . 19

3.3 Superconductor under a parallel magnetic field . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Winding Number and Majorana Flat Bands . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 Domain of Flat Band Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.3 Unidirectional Majorana Edge States . . . . . . . . . . . . . . . . . . . . . . . . . . 28

xi



4 Disordered two-dimensional topological superconductor 31

4.1 Quasi-disorder and Anderson disorder effects in real space . . . . . . . . . . . . . . . . . 32

4.1.1 Edge disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.2 Bulk disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.3 Quasi-disorder induced topology: Chern number . . . . . . . . . . . . . . . . . . . 47

4.2 Quasi-disorder and Anderson disorder effects in mixed space . . . . . . . . . . . . . . . . 53

4.2.1 Energy spectra evolution and density of states . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Quasi-disorder induced Majorana Flat Bands . . . . . . . . . . . . . . . . . . . . . 59

4.2.3 Scaling of the density of states: critical exponents . . . . . . . . . . . . . . . . . . 62

4.2.4 Fractal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Discussion, conclusions and future work 73

Bibliography 77

A Symmetry Classification of Topological Systems 85

B Numerical Methods 87

B.1 Recursive Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.2 Chern Number in real space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

C Evolution of energy spectra with a quasi-periodic potential 93

xii



List of Tables

4.1 Values of the critical exponents –C;1 and –C;2 for the system sizes {76; 100; 175; 200; 400; 800}. 61

4.2 Values of z and  obtained numerically for the topological transition in the clean case. . . 64

4.3 Values of z and  obtained numerically for the topological transitions in the disordered case. 67

A.1 The symmetry classes of single particle Hamiltonians, in terms of time reversal-symmetry,

particle-hole symmetry, chiral symmetry, and number of dimensions. The presence of

symmetry is denoted by “+1” or “-1” depending on whether the symmetry operator squares

to +1 or -1. ”0” denotes the absence of symmetry. The last three columns indicate the

type of topological invariant that characterizes the system with regards to the dimension

d . Table taken from [91]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xiii



List of Figures

2.1 Top: Dispersion relations for different values of t0 and t1: a) t0 = 1; t1 = 0:6; b) t0 = t1 = 1;

c) t0 = 0:6; t1 = 1. Bottom: The corresponding paths of the endpoints of the vectors h(k)

as k sweeps the Brillouin zone. Image adapted from [65]. . . . . . . . . . . . . . . . . . . 8

3.1 Scheme of a two-dimensional system in a cylinder geometry with a) an applied perpen-

dicular magnetic field, b) an applied parallel magnetic field. . . . . . . . . . . . . . . . . . 18

3.2 Phase diagram for the Chern number as a function of — and Bz , with t = 1 and a) ∆s = 0,

a) ∆s = 0:3. (Note that the gap-closing points are independent of d , but the phase diagram

is only valid are in a regime where |d | > |∆s |.) . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Phase diagram for the winding numbers I(ky = 0; ı) as a function of — and Bz , with t = 1

and ∆s = 0 and for d > 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Phase diagram for (Bz ; By > 0) for the Chern number obtained numerically at — = 0,

— = 1 and — = −3:5 for ∆s = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Bulk energy spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Energy spectrum evolution for a system with 76 sites in y and edges at y = 0 and y = 75

for different values of By vs. absolute value of the winding number W and normalized

Berry phase ‚=(2ı) as a function of kx . The values of the parameters are t = 1, d = t=6,

— = 3d − 4t and By = d (left), By = 2d (middle), By = 3d (right). . . . . . . . . . . . . . . 25

3.7 a) Domain of MFBs (shaded region) for By vs. kx for the parameter values t = 1, d = t=6,

— = −3:5. b) Closeup of a) in the region By ∈ [−1; 1]. The three dashed lines represent

the values By = d (blue), By = 2d (red) and By = 3d (red) which correspond to the values

of By of the energy spectra presented in figure 3.6. . . . . . . . . . . . . . . . . . . . . . . 27

3.8 Domain of MFBs (shaded region) for By vs. kx . The graphs a), b) and c) have Bx = 0

while the graphs d), e) and f) have Bx ̸= 0, represented by red dashed lines. The values

of the parameters are a) t = 1; — = 3; d = 0:2; Bx = 0. b) t = 1; — = 0; d = 0:3; Bx = 0.

c) t = 1; — = −2; d = 0:1; Bx = 0; d), e) and f) are the same as a), b) and c), respectively,

except for d) Bx = 0:7, e) Bx = 1, f)Bx = 1:3. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.9 Left: Energy spectrum for a system with 76 sites in y and edges at y = 0 and y = 75 for the

parameter values t = 1, d = t=6, — = 3d − 4t, By = 4d , ¸ = 0:2d . Right: representation

of the unidirectional edge modes in the superconductor with a cylindrical geometry. . . . . 29

4.1 Typical edge states of the clean system, at t = 1, d = t=6, — = −3:5 and a) By = 0:5d , b)

By = 3:5d , c) By = 4d , ¸ = 0:2d;∆s = 0:3d . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xiv



4.2 a) IPR averaged over the lowest 10 positive energy states and highest 10 negative energy

states, vs. Anderson edge disorder strength – (Type I). b) IPR averaged over the remain-

ing states vs. disorder strength –. The results are averaged over 10 disorder configurations. 33

4.3 Disordered edge states for t = 1, d = t=6, — = −3:5, By = 4d , ¸ = 0:2d and ∆s = 0:3d ,

subject to Anderson edge disorder. The wavefunctions have energies a) E = 8× 10−4, b)

E = 8× 10−4 and c) E = 9× 10−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Disordered edge states for t = 1, d = t=6, — = −3:5, By = 4d , ¸ = 0:2d and ∆s =

0:3d , subject to Anderson edge disorder. Here the states are shown at fixed values of x ,

perpendicularly to the direction of the edges, showing the impact of edge disorder on the

bulk layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 a) IPR averaged over the lowest 10 positive energy states and highest 10 negative energy
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1
Introduction

1.1 State of the art

The search and study of topological properties of matter has proved fruitful in recent years in research in

materials science and condensed matter physics. Superconductors have long been a focus of interest

due to their promising applications. Superconductors with intrinsic topological properties, in particular,

have recently attracted theoretical and experimental interest due to phenomena associated with surface

or edge Majorana modes, which appear from an interplay between topology and bulk-boundary corre-

spondence [1–3]. These Majorana zero modes emerge with non-Abelian exchange statistics and are

sought after due to their promising expected applications in quantum computing, being candidates for

the building blocks of a quantum qubit [4, 5].

It has been theoretically predicted that Majorana states appear as flat dispersion bands in gapless

superconducting phases, such as in the dxy+p-wave pairing noncentrosymmetric superconductor in two

dimensions with preserved time-reversal symmetry [6, 7], or for a p-wave topological superconductor

in two dimensions, with broken time reversal symmetry by an applied magnetic field parallel to the

two-dimensional plane of the system [8]. Flat bands also emerge on the surface of three-dimensional

noncentrosymmetric superconductors, with spin-orbit coupling and which preserve time-reversal sym-

metry [9, 10]. It is predicted that flat bands can increase the critical temperature for superconductivity,

and even give rise to room-temperature superconductivity. The difference between an isolated flat band

and a flat band with band touchings has also been recently discussed [11]. It was shown that isolated

flat bands are not needed to achieve a higher superconducting temperature, and that band touchings

can actually increase it.

There are several possibilities for the experimental detection of Majorana states in condensed matter

systems. Examples of the fundamental signatures which make their detection possible are an expected

zero-bias peak in the conductance, tunneling processes, and thermal metal-insulator transitions [1]. A

well known possibility for the experimental realization of Majorana modes envolves proximity induced

superconductivity [12], through superconductor-semiconductor heterostructures [13] in which a semi-

conductor is placed on top of a superconductor. An experimental realization involving a nanowire device

[14] provided experimental evidence of the existence of Majorana zero modes. Localized zero energy
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edge modes were also detected experimentally [15], using scanning tunneling microscopy, in a ferro-

magnetic chain placed on top of a conventional s-wave superconductor, and these were understood as

Majorana modes.

The study of perturbations in condensed matter systems, namely through the introduction of disorder,

is a central issue, which appears as a double edged sword. On one hand, introducing disorder can

destroy some phases and their properties, preventing their experimental observation. In this sense,

the study of their robustness becomes crucial. On the other hand, disorder can by itself lead to new

phenomena or stabilize previously existing phases. One type of disorder that has been attracting interest

in the research field is quasi-periodic disorder. The Aubry-André model [16] is the best known example

of a one-dimensional quasi-periodic system, and describes a chain subject to a quasi-periodic potential

which is incommensurate with the lattice. Unlike the case of Anderson disorder [17], the quasi-periodic

potential induces a delocalization-localization transition for a finite value of quasi-disorder strength. At

the transition point, the system has fractal properties, with the energy spectrum of the model giving rise

to the well known Hofstadter butterfly [18], and the system exhibiting critical wavefunctions. Localization

by the effect of incommensurability is also found in other systems, for example in coupled Aubry-André

chains or two-dimensional lattices subject to Aubry-André potentials [19], or in Moiré-type systems [20,

21]. Moiré systems, in which two incommensurate lattices are connected, or in which layers of lattices

are put in contact and rotated, have been getting increasing interest. A noticeable example of a system

of such type is the two dimensional twisted bilayer graphene [22–26].

Besides localization, several interesting phenomena are found in systems with a quasi-periodic na-

ture, in transport, critical behaviour, and topological properties [27–32]. Results regarding the interplay

between quasi-periodic disorder and topology suggest that the two can coexist. One dimensional quasi-

periodic optical lattices have been predicted to host topological phases usually assigned to two dimen-

sions, with the appearance of edge states [30]. Quasicrystals were shown, not only theoretically but

also experimentally, to also exhibit topological properties and edge states [31] which are topologically

protected in one dimension by topological invariants assigned in higher dimensions. Some possible

experimental realizations of quasi-periodic systems include setups of ultracold atoms [33, 34], optical

lattices [35, 36] or photonic systems [31, 37].

An example of the study of coexisting quasi-disorder and superconductivity, which is remarkable

in the context of this work, is the one dimensional Kitaev chain with Aubry-André modulation [38–44].

The introduction of p-wave pairing in the Aubry-André model leads to the appearance of a region of

critical (fractal) states. Remarkably, the transitions between localized and critical regimes have been

studied and were found to deviate from the known Aubry-André universality class [40, 41]. A model of

a topological superconductor, consisting in a one dimensional wire with spin orbit coupling, subject to a

magnetic field and in contact with a bulk superconductor, was also studied with a quasi periodic-potential.

It was found that topological regions appear [45] for finite values of the quasi-periodic potential.

While the study of quasi-disorder in topological superconductors is still in expansion, the effects of

uncorrelated disorder have been more widely studied. In particular, since the edge of real materials can

be intrinsically disordered, and taking into account the bulk-edge correspondence in topological super-
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conductors, the study of edge disorder becomes a topic of interest. Superconductors without inversion

symmetry have been studied both in weak and strong non-magnetic and magnetic edge disorder [46]. It

was found that edge states are robust against against weak and moderately strong non magnetic disor-

der, but vulnerable for magnetic disorder, which can also lead to the appearance of new, weakly localized

in-gap states. Another topic of interest is the study of possible stabilization, destruction or induction of

topological phases in superconductors. For instance, it is found that a two dimensional superconductor

with spin-orbit coupling and in the presence of a magnetic field can have induced or changed topological

order in the presence of randomly displaced magnetic impurities with orientational correlation [47].

In this work we study a model of a two-dimensional superconductor with spin triplet p-wave pairing,

or mixed p and s-wave pairings with Rashba spin-orbit coupling, in the presence of a magnetic field

which breaks time reversal symmetry. Some materials which are candidates for realizing triplet pairing

superconductivity include Sr2RuO4 [48], UPt3 [49] and CuxBi2Se3 [50]. In the presence of s-wave pairing

and Rashba spin orbit coupling, the model describes a noncentrosymmetric superconductor, of which

are examples CePt3Si [51], CeIrSi3 [52] and CeRhSi3 [53]. In the noncentrosymmetric regime the break-

ing of inversion symmetry allows for the mixture of spin-triplet and spin-singlet pairings. This mixing is

expected to lead to novel phenomena such as higher than usual values of the upper critical field [54,

55].

The clean model has been studied and is known to possess diverse topological properties. If time-

reversal symmetry is preserved, the model displays gapless Majorana edge states and is characterized

by a Z2 invariant. The observed properties when time-reversal symmetry is broken by an external

magnetic field are found to be very dependent on its direction in relation to the two-dimensional super-

conducting plane. If the magnetic field is such that it is perpendicular to the plane of the superconductor,

the model has a rich phase diagram indexed by the Chern number [56]. When the magnetic field is

parallel to the plane of the system, interesting phenomena, such as Majorana flat bands or Majorana

unidirectional states, appear on phases with a gapless bulk [8]. We are interested in studying the effects

of quasi-disorder in these regimes, on topological and localization properties. Besides Aubry-André

disorder, we will also consider Anderson disorder as a comparison to the effects of quasi-periodicity.

1.2 Thesis outline

The rest of the thesis is organized as follows:

• In chapter 2, the concepts fundamental to the work are briefly discussed. We go over some of

the basics of topology, superconductivity and some theoretic and analytical aspects of disordered

systems.

• In chapter 3 the model for the clean superconductor (without disorder) is presented, and the

phenomena observed first under a perpendicular and secondly under a parallel magnetic field are

discussed. This chapter reviews results that have already been established. Exceptions are the

observed dependence of the Chern number on a magnetic field with simultaneous parallel and
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perpendicular contributions, and the regions where Majorana flat bands appear under a parallel

magnetic field, which are new obtained results.

• In chapter 4, the results obtained for the disordered model are presented. The chapter is divided

in two main sections. In section 4.1 the superconductor is studied on a real space approach.

– In section 4.1.1 we introduce edge disorder in the real space system. The cases of Anderson

edge disorder and Aubry-André edge disorder are analyzed, the IPR is obtained and the

effect on the edge states is discussed.

– In section 4.1.2 the case of bulk disorder is considered, and three types of disorder are taken

into account: Anderson disorder, Anderson disorder uniform in the x direction, and Aubry-

André disorder uniform in the x direction. The IPR is obtained and the low energy wavefunc-

tions are studied. The density of states (DOS) is obtained with the Recursive Green’s Function

(RGF) method in the various regimes (details of the numerical method are presented in the

appendix section).

– In section 4.1.2 we study the same types of bulk disorder on the system under a perpendicular

magnetic field and obtain the Chern number in real space (details of the numerical method

are presented in the appendix section). We show that quasi-disorder leads to the appearance

of topological phases in new regimes.

In section 4.2 the model is studied in a mixed space and under a parallel magnetic field.

– In 4.2.1 we show and discuss the evolution of the energy spectra and density of states when

Anderson disorder or Aubry-André disorder are introduced.

– Quasi-disorder induced Majorana flat bands (MFBs) are studied in section 4.2.2. The Berry

phase is obtained numerically using twisted boundary conditions and we show it is quantized

in the MFB regime. The contribution of the flat bands to the DOS is discussed and two

topological transitions are presented.

– In 4.2.3 a scaling analysis near the identified phase transitions is made. We briefly discuss a

topological transition in the clean system and derive the values of the critical exponents. We

then obtain the critical exponents for the identified transitions in the quasi-disordered case

and show that the critical exponents deviate from the known universality classes.

– In 4.2.4 we obtain the IPR and discuss the nature of the wavefunctions, distinguishing be-

tween single-fractal and multifractal regimes, for Anderson and Aubry-André disorder. We

make a study for different system sizes and see the tendency in the thermodynamic limit.

• We conclude in chapter 5, and possible future directions are discussed.
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2
Fundamental Concepts

2.1 Topology in condensed matter physics

In a broad sense, topology is a mathematical field which aims to study whether objects can be continu-

ously deformed into each other. In condensed matter physics, our ”objects” are actually Hamiltonians or

states which we aim to classify in different topological classes. In general topological properties are clas-

sified by finding a number - topological invariant - that does not change under a continuous deformation

of the geometry of the system in parameter space and thus characterizes the topology [4]. A transition

between different topological regimes always implies a closing of the bulk gap (as long as interaction

effects are not considered). If two Hamiltonians describing gapped systems can be deformed into each

other without ever closing the bulk gap, such systems are said to be topologically equivalent.

2.1.1 Berry Phase

Let us suppose we have a system described by a Hamiltonian H(R) which depends on a set of param-

eters R. The eigenstates |  n⟩ obey the Schrödinger equation

H(R) |  n⟩ = En(R) |  n⟩: (2.1)

The Berry connection An(R) is defined as

An(R) = i ⟨ n(R) | @R n(R)⟩ (2.2)

and measures the rate of change of the wavefunctions with regards to the set of parameters R (vanishing

if @R |  n(R)⟩ = 0). The Berry connection is a gauge-dependent quantity. If we perform a transformation

|  n(R)⟩ → eiffin(R) |  n(R)⟩ in the eigenstates then An(R) must transform as An(R) → An(R)−@Rffin(R).

The Berry phase ‚n can be written as the line integral of the Berry connection over a path in parameter

space:

‚n =

Z
C
An(R) · dR. (2.3)
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Defining Ri and Rf as the initial and final points on a certain path (not neccessarily closed), we can

see that for the same phase transformation of the eigenstates defined above, the Berry phase would be

changed by ffi(Rf) − ffi(Ri). In the case of a closed path, in which Rf = Ri, the phase transformation is

required to be single valued, as it was noted by Berry [57] and thus we must have ffi(Rf) − ffi(Ri) = 2ın

with n an integer. Therefore, in a closed path C, the Berry phase is a gauge-invariant quantity.

In general, the Berry phase can take any real value. In the presence of certain symmetry constraints,

the Berry phase can become quantized to 0 or ı and carry topological information (at the value of ı).

This quantization can happen in the presence of inversion or chiral symmetries, also leading to the

quantization of polarization [58].

2.1.2 Chern Number

The Chern number was understood as a topological invariant in condensed matter physics by Thouless,

Kohmoto, Nightingale and den Nijs (and thus is also called the TKNN integer), when the mathematical

relation between the Hall conductivity and the Chern number was found for the integer quantum Hall

effect [59]. Earlier, von Klitzing, Dorda, and Pepper had made the important experimental discovery [60]

that for a two-dimensional, non interacting electron gas in a strong magnetic field, the Hall conductivity

is quantized in units of e2=h:

ffxy =
e2

h
; (2.4)

with  an integer. It was later shown that the integer  is actually related to the (total) Chern number, as

ffxy =
e2

h

X
n

C(n) (2.5)

where C(n) denotes the Chern number of the n-th band. Equation 2.5 is also called the TKNN formula.

Let us then turn to the definition of the Chern number. Before defining it, we must first introduce

another relevant (gauge-invariant) quantity, the Berry curvature:

Ωn = ∇R ×An(R): (2.6)

If the parameter space has some periodicity in R, then we can write

Z
C
An(R) · dR =

Z
S
Ωn(R) · dS (2.7)

where S is a surface enclosed by the path C, (being also the system’s unit cell). The Chern number of

the n-th band is then defined as

C(n) =
1

2ı

Z
S
Ωn(R) · dS: (2.8)

The total Chern number C is obtained by summing equation 2.8 over the filled energy bands, and a

finite value of C signals the system has a topological nature. The Chern number requires time-reversal
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symmetry breaking to have a nonzero value, and remains constant as long as the gap in the bulk energy

of the system is open. If the gap closes, and then opens with a new value of C, a topological transition

occurs.

2.1.3 Edge states and the bulk-edge correspondence

In addition to characterizing the phases by topological invariants, there are surface or edge modes

resulting from the topology that may appear. Physically, a finite system will have a singularity at the

boundary stemming from the difference in topological nature between the system and its environment,

which results in the appearance of gapless edge states localized at such boundaries [61, 62]. It is then

said that a bulk-edge correspondence exists, since the nontrivial topology of the bulk is revealed at the

edges. A variety of such states exist, depending on the symmetries and dimension of the systems [63].

2.1.4 The SSH model and the winding number

The Su-Schrieffer-Heeger (SSH) model, which was developed to illustrate the behaviour of electrons in

a polyacetylene molecule [64], is a remarkable example of a simple topological system where the bulk-

edge correspondence can be easily visualized. In this section we present the dimerized model briefly

and introduce an important topological invariant of one-dimensional systems with chiral symmetry, the

winding number.

The SSH model describes a one dimensional lattice where each unit cell has two sites, A and B, with

the intracell and intercell hopping terms differing in amplitude. The tight-binding Hamiltonian is given by

[65] :

H = t0

NX
n=1

(|n; A⟩⟨n; B|) + t1

N−1X
n=1

(|n + 1; A⟩⟨n; B|) + h.c. (2.9)

where t0 and t1 are the intracell and intercell hoppings, respectively, and the states |n; A⟩ or |n; B⟩

describe the sites A or B in the cell n. By considering a periodic one dimensional chain and performing

a Fourier transform to momentum space, we obtain the Bloch Hamiltonian

H(k) =

0@ 0 t0 + t∗1 e
−ik

t∗0 + t1e
ik 0

1A ; (2.10)

from which we can obtain the eigenvalues

E(k) = ±|t0 + t∗1 e
−ik | = ±

q
t20 + t21 + 2t0t1 cos(k) if t0, t1 ∈ R: (2.11)

There are therefore two bands, one at positive and other at negative energy, and the spectrum has a

gap as long as t0 ̸= t1. The energy spectrum is shown in figure 2.1 for some values of t0 and t1. To

simplify, t0 and t1 are taken to be real. The cases of t0 > t1 and t0 < t1 are symmetric in the bulk energy

spectrum which can be easily seen by inspection of equation 2.11, but are topologically distinct. This

can be observed by either investigating the eigenstates in the real space description of a chain with open

boundary conditions or by calculating a topological invariant of the Hamiltonian. In fact, it can be noted
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that the Hamiltonian belongs to the BDI class according to the symmetry classification (see Appendix A)

and thus a topological invariant can be defined for d = 1. The Hamiltonian respects a chiral symmetry,

and thus for a unitary matrix S obeys

SH(k)S† = −H(k): (2.12)

In the SSH model the matrix S coincides with the third Pauli matrix, ffz .

The Hamiltonian matrix of a general two band system takes the form:

H(k) = h0ff0 + h(k) · ff: (2.13)

If the said system respects a chiral symmetry as in 2.12, then the Hamiltonian can be rotated to an

off-diagonal base, through the same transformation that diagonalizes the chiral matrix S:

H(k) =

0@ 0 h(k)

h∗(k) 0

1A : (2.14)

A topological invariant, known as winding number, can then be calculated as:

W =
1

2ıi

Z 2ı

0

dk
d

dk
log h(k): (2.15)
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Figure 2.1: Top: Dispersion relations for different values of t0 and t1: a) t0 = 1; t1 =
0:6; b) t0 = t1 = 1; c) t0 = 0:6; t1 = 1. Bottom: The corresponding paths of the
endpoints of the vectors h(k) as k sweeps the Brillouin zone. Image adapted from
[65].

For the SSH model h0 = hz = 0, and h(k) = (hx ; hy ; 0) with hx = t0 + t1 cos (k) and hy = t1 sin (k)

such that h(k) = hx − ihy in 2.14. As k sweeps through the Brillouin zone, the vector h(k) describes a

closed path in the (hx ; hy ) plane. The winding number W counts how many times this path circles the

origin. The winding number is then 0 in the case where the intracell hopping dominates over the intercell

(|t1| > |t0|) and 1 otherwise (|t1| < |t0|), as can be seen in figure 2.1. In the insulating phase, the path of

h(k) always avoids the origin. For a general two-band insulator the path is not necessarily a circle, but

must be a closed loop because of the periodicity of the bulk momentum space Hamiltonian. To change
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the value of the winding number, we need to either close the bulk gap (by deforming the path through the

origin in the (hx ; hy ) plane) or break the chiral symmetry of the system (lifting the path out of the (hx ; hy )

plane). The chiral symmetry assures the path of the h(k) vector stays in the (hx ; hy ) plane.

Let us now turn again to the real space description to illustrate how the non trivial topology is mani-

fested in the edges [61, 62]. A stationary state |n⟩ = (an bn)
T with energy E obeys the equations:

Ean = t0bn + t∗1bn−1;

Ebn = t1an+1 + t∗0an:
(2.16)

Considering a semi-infinite chain starting at n = 0, the system admits a zero energy state if:

an =

„
− t

∗
0

t1

«n
a0; bn = 0; (2.17)

where n ≥ 0. The state is localized at the left edge and decays along the chain, living in the A sublattice.

This is only possible if |t1| > |t0|, coinciding with the topological phase characterized by W = 1. If we

instead consider a semi-infinite chain ending at n = N, for n ≤ N there is a zero energy state which

exists in the B sublattice:

bn

„
− t0
t∗1

«N−n
bN ; an = 0: (2.18)

Thus for a large finite chain two localized zero energy states exist in the topological phase, and each

of them occupies a different sublattice space, A or B. This is a simple example of the bulk-boundary

correspondence; if |t1| < |t0| then the localized edge states are not present in the system.

2.2 Superconductivity

Superconductivity has been widely studied ever since its experimental discovery in 1911 [66]. The phe-

nomenology behind it was first understood in 1950 by Ginzburg and Landau, which developed a theory

based on symmetry considerations [67]. Shortly after, in 1957, Bardeen, Cooper, and Schrieffer (BCS)

developed a theory which could explain the microscopics of superconductivity [68]. The theory relies on

the fact that electrons can interact in an attractive way through lattice distortion, forming Cooper pairs.

Topological superconductors are superconductors which have a superconducting bulk and topologically

protected gapless boundary states.

2.2.1 Bogoliubov-de Gennes equations

Let us consider a general description of a superconductor in k-space. In terms of the creation c†k;¸ and

annihilation ck;˛ field operators, where ¸, ˛ denote spin projections, the effective Hamiltonian can be

written as

H =
1

2

X
k;¸;˛

“
c†k¸; c−k¸

”
H4×4(k)

0@ ck˛

c†−k˛

1A (2.19)

9



with

H4×4(k) =

0@ E¸˛(k) ∆¸˛(k)

∆†
¸˛(k) −Et¸˛(−k)

1A : (2.20)

In this expression E¸˛(k) denotes the normal state Bloch Hamiltonian, and ∆¸˛(k) is the superconduct-

ing pairing term. Both terms are 2× 2 matrices due to the sum in the spin indices. Also,
“
ĉ†k¸; ĉ−k¸

”
is a

short notation for the vector
“
ĉ†k↑; ĉ

†
k↓; ĉ−k↑; ĉ−k↓

”
, and the operators obey the usual fermionic statistics:

{ĉ†k¸; ĉk′˛} = ‹¸˛‹kk′ ;

{ĉ†k¸; ĉ
†
k′˛} = {ĉk¸; ĉk′˛} = 0:

(2.21)

The Bogoliubov-de Gennes equations [69] are obtained by requiring that an operator ‚̂(k) that de-

stroys an excitation with energy E obeys [‚̂;H] = E‚̂. The operator ‚̂(k) then diagonalizes the Hamil-

tonian, and describes the excitations of quasiparticles called the Bogoliubov quasiparticles. ‚̂(k) and

‚̂†(−k) are defined by [61]

‚̂(k) =
X
¸

h
u∗¸(k)ĉk¸ + v∗¸(k)ĉ

†
−k¸

i
;

‚̂†(−k) =
X
¸

h
u¸(−k)ĉ†−k¸ + v¸(−k)ĉk¸

i (2.22)

and from imposing the commutation relations with H, we obtain the the Bogoliubov-de Gennes equa-

tions:

Eu—(k) =
X
¸

[E—¸u¸(k) + ∆—¸(k)v¸(k)] ;

Ev—(k) =
X
¸

ˆ
∆†
—¸(k)u¸(k)− E∗

—¸(−k)v¸(k)
˜
:

(2.23)

The operator ‚̂(k) annihilates the ground state of a superconductor,

‚̂(k)|0⟩ = 0 (2.24)

implying that the negative energy states are fully occupied.

2.2.2 Superconducting pairing term

The pairing term ∆¸˛(k), which we will now write as ∆(k), is related to the electron interaction, and it

describes the simultaneous creation or destruction of two particles. The pairing potential obeys ∆(k) =

−∆T (−k) which is required from the nature of fermionic interactions (equation 2.21).

For singlet pairing, i.e when the Cooper pair is in a singlet state, then ∆ must be even in k, and
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therefore antisymmetric in spin space. In terms of a even function  (k) we can write

∆(k) = i f̂fy (k) =

0@ 0  (k)

− (k) 0

1A : (2.25)

On the other hand, for triplet pairing, the pairing term must be odd in k. Then the matrix ∆ will be

symmetric in the spin indices, and using an odd vectorial function d(k), we may write [70]

∆(k) = i(d(k) · f̂f)f̂fy

=

0@ −dx(k) + idy (k) dz(k)

dz(k) dx(k) + idy (k)

1A : (2.26)

The symmetry of Cooper pairs is then classified into spin-singlet even-parity and spin-triplet odd-

parity, and even or odd pairing refers to the orbital part of the amplitude. s-wave and d-wave pairings

belong to the first case and p-wave pairing is included in the latter. In systems which are noncentrosym-

metric, the inversion symmetry is broken and it is possible to have parity mixing in the pair potential

∆(k), which takes the form

∆(k) = i ( (k) + d(k) · f̂f) f̂fy : (2.27)

2.2.3 Particle-Hole Symmetry and Majorana fermions

A Bogoliubov-de Gennes Hamiltonian H(k) obeys a particle-hole symmetry, or charge conjugation op-

eration. This symmetry expresses the redundancy of the Hamiltonian in the sense that the components

of the vector
“
ĉ†k¸; ĉ−k¸

”
are not independent and that the positive and negative energy states come in

pairs. Mathematically, this symmetry can be expressed by:

PH(k)P† = −H∗(−k) (2.28)

where P coincides with the first Pauli matrix operating in particle-hole space. The particle-hole symmetry

implies that for a wavefunction Ψ(k) with energy E, the state PΨ∗(−k) has energy −E [61]. Thus, for a

non degenerate state with E = 0, we have Ψ(k) = PΨ∗(−k), and this implies for the excitation operators

2.22 that:

‚(k) = ‚†(−k): (2.29)

In this case, the excitation then describes a Majorana mode, since the creation and annihilation operators

coincide.

2.2.4 The Kitaev toy model

Let us now turn to a real space description and use Kitaev’s model for a one-dimensional p-wave su-

perconductor [71] to illustrate how isolated Majorana modes can arise in topological superconductors.

The creation and annihilation fermionic operators ĉ†j and ĉj at a local site j can be written in terms of

Majorana operators ‚̂j;1 and ‚̂j;2 as
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8<: ĉj = 1
2 (‚̂j;1 + i‚̂j;2);

ĉ†j =
1
2 (‚̂j;1 − i‚̂j;2):

(2.30)

Mathematically, the fermionic operators ĉ†j and ĉj are split into their real and imaginary parts. Inverting

equation 2.30 is is possible to see that the operators are hermitian and satisty the relations

{‚̂i ; ‚̂j} = 2‹i j : (2.31)

The model introduced by Kitaev describes a one dimensional chain of spinless fermions with p-wave

pairing, and its Hamiltonian reads

H = −—
NX
j

ĉ†j ĉj − t
N−1X
j

“
ĉ†j ĉj+1 + ĉ†j+1ĉj

”
−∆

N−1X
j

“
ĉ†j+1ĉ

†
j + ĉj ĉj+1

”
(2.32)

where — is the chemical potential, t is the hopping parameter and ∆ is the pairing amplitude. By rewriting

the Hamiltonian 2.32 in terms of the Majorana operators 2.30, and taking the parameter values — = 0,

t = ∆, the resulting Hamiltonian is given by

H =
N−1X
j

‚̂j;2‚̂j+1;1: (2.33)

It is possible to see that the operators ‚̂1;1 and ‚̂N;2 are absent from the rewritten Hamiltonian. There

are therefore two zero energy Majorana modes that emerge localized at the ends of the Kitaev chain,

reflecting the topological nature of the phase. These states are present as long as |—| < 2t (where the

bulk gap remains open) [61, 62]. The two Majorana operators ‚̂1;1 and ‚̂N;2 can be combined in a new

non-local fermionic operator,

c̃N =
1

2
(‚̂N;2 + i ‚̂1;1) ; (2.34)

which can be occupied with a zero energy cost, making the ground state two-fold degenerate, corre-

sponding to the cases of an even or odd number of electrons [72].

2.3 Disordered systems

Disorder effects may have several origins: impurities, quasi-periodic potentials, lattice distortions, among

others. Some types of disorder are random and unavoidable in real life materials, while others can

be introduced artificially. In any case, disordered systems are responsible for interesting and exotic

phenomena that do not happen in ordered systems. The most remarkable is perhaps the localization

of wavefunctions in disordered systems with broken translational invariance [73]. In such cases, the

presence of disorder causes wavefunctions to be localized, which means that for a given energy and

disorder strength, the quantum states can be either localized or delocalized (extended) - and therefore a

transition exists between localized and metallic phases, which is known as an Anderson transition [74].

Different types of trivial systems were grouped in three main universal Anderson transition classes
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(coinciding with the Wigner–Dyson random matrix theory description), in which the spin rotation and time

reversal symmetries are the two criteria. These are the unitary (systems with broken time reversal sym-

metry), the orthogonal (systems which preserve time reversal symmetry and spin rotation symmetry)

and the symplectic classes (systems with broken time reversal symmetry and preserved spin rotation

symmetry) [17]. These classes are also called class A, AI and AII, respectively (see Appendix A). The

dimension of the system d is also an important criteria to classify a system’s response to static disorder

[47]. In one dimensional systems, d = 1, all states are localized for any finite value of uncorrelated dis-

order. An important exception exists at correlated spatial disorder, such as the case of a quasi-periodic

Aubry-André potential [16] where intermediate regimes for which wavefunctions are not extended states

but are also not fully localized - critical states - appear. For two dimensional systems, d = 2, the be-

haviour is found to be very dependent on the symmetry class. In systems that respect both time reversal

and spin rotation symmetries (orthogonal class), results show that the system is composed only of lo-

calized states in the presence of disorder. For d = 2 systems with time reversal symmetry but no spin

rotation symmetry (symplectic class), there is a region of extended states, and a delocalized-localized

Anderson transition is present for some value of the disorder strength. For broken time reversal symme-

try (unitary class), there is one critical state for which the localization displays a linear divergence with

the system size. If both TRS and spin rotation symmetries are broken, this behaviour is found not only

for one state, but for a band of states, which can be extended or display critical behaviour. For d = 3

there is a region in energy space of extended states, separated from the localized region by a mobility

edge which moves as a function of the disorder strength.

It is important to note that this initial classification coinciding with the Wigner-Dyson classification is

incomplete, and it is now understood that there exist more symmetry classes of disordered systems.

A complete symmetry classification includes seven additional classes, characterized by the chiral or

particle hole symmetries [75]. In other cases, the system’s response to disorder may also depend on

the type of disorder itself, making the symmetry classification insufficient.

2.3.1 Participation Ratio

The participation ratio is a useful quantity to quantify the localization of wavefunctions. For a given

eigenstate labelled by m, we define the participation ratio (PR) as

PRm =
1P

i | mi |
4 (2.35)

where  mi denotes the amplitude of the eigenstate m at site i . If a state is perfectly localized, thenP
i | mi |

4 = 1 and PRm = 1. If a state is perfectly delocalized such that it is evenly distributed over N

sites then we can expect
P

i | mi |
4 = 1

N
and PRm = N. Sometimes it can be more useful to work with

the inverse participation (IPR) ratio, which is just the inverse of the quantity defined in equation 2.35:

IPRm =
X
i

| mi |
4 (2.36)
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so that for perfectly localized states IPRm ∼ 1 and for delocalized states IPRm ∼ 1=N. For large

systems (N → ∞) we can see that IPRm → 0 for delocalized states.

Finally, we note that the (inverse) participation ratio is a specific case of a wider definition, a general-

ized (inverse) participation ratio

IPRm(q) =
X
i

| mi |
2q (2.37)

PRm(q) =
1P

i | mi |
2q (2.38)

with q = 2.

2.3.2 Multifractality of wave functions

One of the effects of Anderson transitions is the emergence of multifractality, which is characterized by

fluctuations of eigenstates. These fluctuations are manifested in the generalized inverse participation

ratio (Equation 2.37), which, at criticality, behaves as [76, 77]

IPR(q) ∼ Lfi(q) (2.39)

where L is the system size and the exponent fi(q) is defined in terms of a generalized dimension D(q) as

fi(q) = D(q)(q − 1). In a metallic phase, D(q) = d and for an insulating phase D(q) = 0. Wavefunction

multifractality is characterized by a q dependent value of D(q), whereas the cases of a constant D(q)

are single fractals [17]. Some important aspects can be derived [77] regarding the behaviour of the

functions fi(q) and D(q):

• fi(q) is monotonically increasing and has a negative curvature:

dfi(q)

dq
> 0;

d2fi(q)

dq2
≤ 0: (2.40)

• D(q) is positive, monotonically decreasing and bounded by its value at infinity, D(q → ±∞):

dD(q)

dq
≤ 0; 0 ≤ D∞ ≤ D(q) ≤ D−∞ (2.41)

• fi(q) has slopes which are asymptotically constant and obtained from the values of D(q) at infinity.

2.3.3 Scaling properties near a phase transition

Near a critical point where the characteristic length of the system diverges, the density of states follows a

behaviour which is found to be universal. In this section, we follow references [78] and [79]. The number

of states N below an energy E in a d-dimensional system with size L is a function of the (dimensionless)

parameters L=‰ and E=E0:
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N (E; L) = f

„
L

‰
;
E

E0

«
; (2.42)

where ‰ and E0 are the characteristic length and energy scales, which are related by the dynamical

exponent z as E0 ∼ ‰−z . The density of states per unit volume, ȷ(E), is given by

ȷ(E) =
1

Ld
dN (E; L)

dE
(2.43)

and using equation 2.42 and the relation between E0 and ‰, we obtain

ȷ(E) =
1

LdE0
f ′(E; L) ∼ ‰z

Ld
f ′(E; L): (2.44)

The number of states N (E; L) should be proportional to Ld , and we can write

N (E; L) = (L=‰)dg(E‰z); (2.45)

where g is the part of the function f (equation 2.42) that depends explicitly on E. Inserting equation 2.45

on 2.44 gives

ȷ(E) =
‰z

Ld
f ′(E; L) = ‰z−dg ′(E‰z) = ‰z−dg ′(|E|‰z); (2.46)

where the last equality comes from the fact that ȷ(E) must be symmetric around E = 0. Around a critical

point, the length scale ‰ diverges. Defining the distance to a critical point –C as ‹ = |–−–C |
–C

, ‰ is expected

to diverge as ‰ ∼ ‹− , so that around the critical point ȷ(E) can be written as

ȷ(E) = ‹(d−z)g ′(|E|‹−z); (2.47)

and right at the critical point (where ‹ = 0) the dependence on ‰ should be lost, so that ȷ(E) behaves as

ȷ(E) ∼ |E| dz −1: (2.48)

The dynamical critical exponent z and the correlation length exponent  also dictate the closing of

the bulk gap. Near a quantum phase transition, as a critical point –C is approached, the gap behaves as

[80]

∆ ∼ |–− –C |z ; (2.49)

thus the dominant term in the parameter – has an exponent z. If the gap closes at a value of momentum

k0, at the value of the critical parameter –C the dominant term in the dispersion relation obeys

E(– = –C) ∼ |k − k0|z : (2.50)
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3
Clean two-dimensional topological superconductor

3.1 Model Hamiltonian

We start by presenting the model for a two-dimensional superconductor, with spin-orbit coupling, an

external magnetic field, and with both spin triplet p-wave pairing and spin singlet s-wave pairing. In

momentum space, the BdG Hamiltonian matrix is written as

H(k) =

0@ ‰(k) + B · ff ∆(k)

∆†(k) −‰T (−k)− B · ff∗

1A (3.1)

in a basis (c†k; c−k) = (c†k↑; c
†
k↓; c−k↑; c−k↓) with c†ks (cks ) the creation (annihilation) operator for an electron

with momentum k = (kx ; ky ) and spin s. In the BdG Hamiltonian, ‰(k) = ›kff0 + s · ff, where ›k =

[−2t (cos kx + cos ky )− —]ff0 is the kinetic term, with t the nearest-neighbour hopping integral and — the

chemical potential, s ·ff = −¸(− sin ky ; sin kx ; 0) ·ff = −¸ [− sin kyffx + sin kxffy ] is the spin-orbit term with

s the spin-orbit vector. The term B · ff describes the Zeeman coupling of the electrons with an external

magnetic field B and ∆̂(k) = [∆s + d(k) · ff] (iffy ) is the superconducting gap function. The pairing vector

is chosen as d = d(− sin ky ; sin kx ; 0). The simultaneous existence of s and p-wave terms is possible in

the noncentrosymmetric regime with a nonzero spin-orbit term, which breaks the parity symmetry.

It is also of interest to write the Hamiltonian in real space. We can define c†rs(crs) the creation

(annihilation) operator for an electron at site r = (x; y) 1 of a square lattice, with spin s, such that

crs =
1√
N

P
k e

−ik·rcks with N = Nx × Ny the total number of sites and Nx and Ny the number of sites in

the x and y directions, respectively. The Hamiltonian then reads

H = HK +HSO +HZ +HSC (3.2)

with HK the kinetic term, HSO the spin-orbit term, HZ the Zeeman term and HSC the superconducting

term. In real space these can then be written as, respectively,

HK = −2t
X
rs

X
êr

“
c†r+êrs

crs + c†r−êrs
crs

”
− —

X
rs

c†rscrs (3.3)

1We note that throughout this work we will use x and y as discrete variables, ranging from 0 to Nx − 1 or Ny − 1, respectively.
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HSO =
¸

2

X
r

“
c†r+êx↑cr↓ − c†r−êx↑cr↓ + i

“
c†r−êy↑cr↓ − c†r+êy↑cr↓

”
+ H.c.

”
(3.4)

HZ =
X
rss ′

(B · ff)ss ′c†rscrs ′ (3.5)

HSC = ∆s

X
r

“
c†r↑c

†
r↓ + H.c.

”
+
d

2

X
r

“
c†r+êx↑c

†
r↑ − c†r−êx↑c

†
r↑ + i

“
c†r−êy↑c

†
r↑ − c†r+êy↑c

†
r↑

”
+ H.c.

”
: (3.6)

The case of study is that of a system with periodic boundary conditions along the x direction and

open boundary conditions in the y direction, such as in a cylinder geometry, as represented in figure

3.1. In this case, we can also write the Hamiltonian in a mixed space, where a Fourier transform to the

reciprocal space is only done in the x direction.

Bx

ByBz

a) b)
Figure 3.1: Scheme of a two-dimensional system in a cylinder geometry with a) an
applied perpendicular magnetic field, b) an applied parallel magnetic field.

To write the Hamiltonian in such way, we define cks = 1√
Ny

P
y e

ikyyckx ;y ;s and [81]

H(kx ;y) =
X
kx ;y

“
c†kx ;y ;↑c

†
kx ;y ;↓c−kx ;y ;↑c−kx ;y ;↓

”
Ĥ(kx ;y)

0BBBBBB@
ckx ;y ;↑

ckx ;y ;↓

c†−kx ;y ;↑

c†−kx ;y ;↓

1CCCCCCA : (3.7)

Ĥ(kx ;y) is a 4× 4 matrix that can be written as

Ĥ(kx ;y) =

0@ Â B̂

Ĉ D̂

1A ; (3.8)
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with Â, B̂, Ĉ and D̂ given by

Â =

0@ −2t cos kx − —+ Bz − t”+ i¸ sin kx +
¸
2i”− + Bx − iBy

i¸ sin kx +
¸
2i”− + Bx + iBy −2t cos kx − —− Bz − t”+

1A ; (3.9)

B̂ =

0@ id sin kx +
d
2i”− ∆s

−∆s id sin kx − d
2i”−

1A ; (3.10)

Ĉ =

0@ −id sin kx +
d
2i”− −∆s

∆s −id sin kx − d
2i”−

1A ; (3.11)

D̂ =

0@ 2t cos kx + —− Bz + t”+ −i¸ sin kx +
¸
2i”− − Bx − iBy

i¸ sin kx +
¸
2i”− − Bx + iBy 2t cos kx + —+ Bz + t”+

1A ; (3.12)

and c†y”±cy = c†ycy+1 ± c†y+1cy .

When B = 0, the system respects the time-reversal symmetry (TRS) T = (ff0 ⊗ iffy )K and the

particle-hole symmetry (PHS) P = (ffx ⊗ ffo)K, with K the complex conjugate operator, such that

P−1H(k)P = −H∗(−k)

T −1H(k)T = H∗(−k)
(3.13)

and T 2 = −1, P2 = 1. Therefore the Hamiltonian belongs to the DII symmetry class, and if |d | > |∆s |

the system has a nontrivial Z2 number, displaying gapless counter-propagating Majorana edge states

(MESs) [8, 56].

We are interested in studying the system when the external magnetic field is finite, therefore in

regimes where the time-reversal symmetry T is broken. However, the system exhibits different topolog-

ical properties whether the applied magnetic field is perpendicular or parallel to the system, as will be

now discussed.

3.2 Superconductor under a perpendicular magnetic field

First we consider the case in which the external magnetic field is perpendicular to the system, B =

(0; 0; Bz) (figure 3.1 a) ). The eigenvalues of the Hamiltonian are given by

E(k) = ±
r
›2k +∆2

s + B2
z + (d · d) + (s · s)± 2

q
∆2
s (d · d+ B2

z ) + ›2k(s · s+ B2
z )− 2∆s›k(d · s) + [(d× s)z ]:

(3.14)

For the present choice of the vectors d and s, [(d × s)z ] = 0. The gap of the system closes when the

lowest energy band’s gap closes. This happens when

›2k +∆2
s + B2

z + (d · d) + (s · s) = 2
q
∆2
s (d · d+ B2

z ) + ›2k(s · s+ B2
z )− 2∆s›k(d · s); (3.15)
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which is equivalent to

›2k +∆2
s = B2

z +

„
1 +

“¸
d

”2«
(d · d);

›kdd = ∆s¸d:

(3.16)

When d ̸= 0 this is verified when either

›k =
∆s

d
¸ ∧

„
1 +

“¸
d

”2«
[d · d−∆2

s ] + B2
z = 0 (3.17)

or

›2k +∆2
s = B2

z ∧ d = s = 0: (3.18)

If the magnetic field Bz is zero, only the equations 3.17 can be verified. If Bz is finite and d > ∆s

the equations 3.17 can not be verified for any values of k, and we can only have gapless points when

equations 3.18 are met. Since d and s are zero at k = (0; 0); (0; ı); (ı; 0); (ı; ı), we have a gap closing

if one of the equations is satisfied:

(−4t − —)2 +∆2
s = B2

z ; —2 +∆2
s = B2

z ; (4t − —)2 +∆2
s = B2

z : (3.19)

Equations 3.19 define the boundaries between regions in which the system has different topological

properties. At the gap closing points the system undergoes topological transitions between phases with

different Chern numbers. Two phase diagrams are presented in figure 3.2 for the values ∆s = 0 and

∆s = 0:3.
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Figure 3.2: Phase diagram for the Chern number as a function of — and Bz , with
t = 1 and a) ∆s = 0, a) ∆s = 0:3. (Note that the gap-closing points are independent
of d , but the phase diagram is only valid are in a regime where |d | > |∆s |.)

The regimes with a Chern number of zero and Bz < 2, |—| < 4t exhibit edge states, besides hav-

ing C = 0. This can be explained by one additional topological invariant. Let us then define it. The

Hamiltonian obeys a particle hole symmetry P = (ffx ⊗ ff0) with

PH(k)P† = −H∗(−k): (3.20)
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For the values ky = 0 and ky = ı, the Hamiltonian obeys H∗(−k) = H(k) and thus anticommutes with

P, {H(k);P} = 0. Therefore the basis which diagonalizes P anti-diagonalizes the Hamiltonian, and we

may write

H(kx) =

0@ 0 q(kx)

q†(kx) 0

1A
ky=0;ı

(3.21)

with the matrix q(kx) given by

q(kx) =

0@ −›k − Bz + id sin kx ∆s − i¸ sin kx

−∆s + i¸ sin kx −›k + Bz + id sin kx

1A ; (3.22)

where ›k = [−2t (cos kx ± 1)− —] for ky = 0 or ı, respectively. We can then define a winding number

I(ky ) as [82]

I (ky ) =
1

4ıi

Z ı

−ı
dkx tr

ˆ
q−1(kx)@kxq(kx)− q†−1(kx)@kxq

†(kx)
˜
; ky = 0; ı: (3.23)

The phase diagram for I(0) and I(ı) is presented in figure 3.3.
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Figure 3.3: Phase diagram for the winding numbers I(ky = 0; ı) as a function of —
and Bz , with t = 1 and ∆s = 0 and for d > 0.

The additional winding number I(ky ) carries information about the edge states in the system. It is

found that for a cylindrical system with OBC along the x direction and PBC along the y direction the

number of zero-energy edge states at ky = 0 or ky = ı coincides with the respective absolute value of

I(ky ). This result translates to the case which is discussed in this work (OBC along y and PBC along x),

since the energy spectrum in 3.14 remains unchanged for the transformation kx ↔ ky for [(d× s)z ] = 0.

Therefore, the winding numbers I(0) and I(ı) can successfully predict the number of edge states at

kx = 0 or kx = ı, respectively. In figure 3.3, we see that for some phases the Chern number is zero

but either I(0) or I(ı) are equal to 2, and the phase is topologically nontrivial. Gapless edge states will

emerge inside such phases, despite being characterized by C = 0, in contrast with the regions where

the Chern number is zero and I(ky = 0; ı) = 0. In this case, there are no gapless edge states.

We now briefly turn to the discussion of an added parallel magnetic field, while inside the phases
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depicted in figure 3.2 for ∆s = 0, to discuss the robustness of the edge states. If a magnetic field in

the y direction is added, By , the winding numbers I(0) and I(ı) become meaningless since the relation

H∗(−k) = H(k) is broken. However, for an added magnetic field in the x direction, Bx , I(ky ) remains

well defined. In a system with PBC in y and OBC in x , the added magnetic field in the y direction,

By , destroys the edge states by opening a gap at zero energy, while the edge states are found to be

robust under a magnetic field in the x direction. In this case the gapless edge states are protected by

the topological invariant I(ky ), as is discussed in ref. [56]. Let us now turn to the geometry of interest,

a cylinder geometry with PBC in x and OBC in y . An added magnetic field By still forbids the definition

of I(ky ), but keeps the zero-energy edge states at kx = 0 and kx = ı stable, while a magnetic field in

the x direction destroys such states. Hence I(ky ) is only useful to understand the gapless edge states

in the present problem geometry if B = (0; 0; Bz), which is understandable since an added parallel

magnetic field breaks the invariance of the bulk energy spectra under the transformation kx ↔ ky . This

also suggests that the gapless edge states in the present problem geometry should be protected by an

analogous winding number defined from the same symmetry, say, I(kx), reflecting the behaviour of the

edge states under By or Bx . However, the relation H∗(−k) = H(k) is broken for any value of kx , making

it impossible to define an invariant in the same way as I(ky ).

Despite the fact that I(ky ) loses its meaning if any magnetic field By is applied, this is not true for the

Chern number. Figure 3.4 shows the phase diagram for the Chern number as a function of Bz and By at

three different values of —. It was found that in this case the Chern number depends only on the value

of
q
B2
y + B2

z . Also note that the diagram only concerns values of Bz > 0, excluding the points where

Bz = 0 and By ̸= 0.
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Figure 3.4: Phase diagram for (Bz > 0; By ) for the Chern number obtained numeri-
cally at — = 0, — = 1 and — = −3:5 for ∆s = 0.
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3.3 Superconductor under a parallel magnetic field

Now let us consider the case in which the applied magnetic field is parallel to the system, B = (Bx ; By ; 0).

Taking now the s-wave term ∆s and the spin-orbit term ¸ to be zero, the eigenvalues of the Hamiltonian

are given by

E(k) = ±
r
d · d+ ›2k + B · B± 2

q
›2k(B · B) + (B · d)2: (3.24)

The gap closing points E(k) = 0 are the solutions of the equation

d · d+ ›2k + B · B = 2
q
›2k(B · B) + (B · d)2; (3.25)

which is equivalent to the two equations being simultaneously satisfied

d · d+ ›2k = B · B;

(B · B)(d · d) = (B · d)2:
(3.26)

Equations 3.26 simplify if we consider the magnetic field aligned with one of the axes. Let us take the

magnetic field aligned with the y direction, B = (0; By ; 0). In this case, the second equation simplifies to

sin ky = 0 which implies the bulk gap will close at ky;0 = nı; n ∈ Z, provided there are values of kx that

satisfy the equations

d2 sin2 kx + (−2t(cos kx ± 1)− —)2 = B2
y : (3.27)

Considering the geometry of the problem (figure 3.1) is mostly interesting to study the case where B

is aligned in the y direction, since there will be gap closings along the kx axis.

In figure 3.5 the bulk energy spectrum is presented for several parameter values with B = (0; By ; 0).

a)

b)

b) c)

Figure 3.5: Bulk energy spectrum for t = 1, d = t=6, — = 3d − 4t and a) By = d , b)
By = 2d , c) By = 3d for kx ∈ [−ı=2; ı=2] and for the energy range E ∈ [−d; d ].
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3.3.1 Winding Number and Majorana Flat Bands

Let us consider a generic parallel magnetic field of the form B = (Bx ; By ; 0). In this case the system

no longer respects time-reversal symmetry. We can, however, take kx as a fixed parameter of the

Hamiltonian and find a set of symmetries that are only satisfied in the y direction. It is found that the

Hamiltonian respects the symmetries

T −1
ky

H(kx ; ky )Tky = H(kx ;−ky )

P−1
ky

H(kx ; ky )Pky = −H(kx ;−ky )
(3.28)

where Tky = (ffz ⊗ ffz)K and Pky = (ffy ⊗ ffy )K are, respectively, defined as a ”time-reversal-like”

symmetry and a ”particle-hole-like” symmetry (here K is the complex conjugate operator) [8] with T 2
ky

=

P2
ky

= 1. From these we can define a third chiral-like symmetry, Sky = TkyPky :

S−1
ky

H(kx ; ky )Sky = −H(kx ; ky ): (3.29)

Since we have that T 2
ky

= P2
ky

= 1, the Hamiltonian belongs to the BDI symmetry class and, since

the problem is effectively reduced to one dimension, the system can be characterized by an integer

topological invariant. We can then take a similar approach to what is done to define I(ky ) in the case

B = (0; 0; Bz), by writing the Hamiltonian in the basis where Sky is diagonal. The Hamiltonian then takes

the anti-diagonal form

H̃kx (ky ) =

0@ 0 Akx (ky )

A†
kx
(ky ) 0

1A (3.30)

with

Akx (ky ) =

0@ −›k d sin ky + id sin kx + iBy − Bx

−d sin ky + id sin kx − iBy − Bx −›k

1A : (3.31)

We can now define a quantity „(ky ) for which we can calculate a winding number, W:

z(ky ) = e i„(ky ) =
Det [Akx (ky )]

|Det [Akx (ky )]|
; (3.32)

and the winding number is obtained as

W = − i

ı

Z ky=ı

ky=0

dz(ky )

z(ky )
=

=
i

ı

»
log

„
sgn(M(ky = 0))

sgn(M(ky = ı))

«– (3.33)

with

M (kx ; ky ) = [—+ 2t (cos kx + cos ky )]
2 + d2 sin2 kx − B2

y + B2
x : (3.34)

From equation 3.33 it is found that |W| = 1 in the regimes where M (kx ; ky = 0) and M (kx ; ky = ı)

have opposite signs, M (kx ; ky = 0)M (kx ; ky = ı) < 0. In the regimes with |W| = 1 the system has
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a topological nature and Majorana flat bands appear, as is shown in figure 3.6. We can also see from

equation 3.34 that M (kx ; ky = 0) and M (kx ; ky = ı) can only have opposite signs if |By | > |Bx |, which

means this is a necessary condition for the appearance of MFBs.

By = d By = 2d By = 3d

Figure 3.6: Energy spectrum evolution for a system with 76 sites in y and edges
at y = 0 and y = 75 for different values of By vs. absolute value of the winding
number W and normalized Berry phase ‚=(2ı) as a function of kx . The values of
the parameters are t = 1, d = t=6, — = 3d − 4t and By = d (left), By = 2d (middle),
By = 3d (right).

The chiral-like symmetry that protects the flat bands is broken by either a non-zero s-wave pairing

term ∆s or a non-zero spin-orbit term ¸. A finite perpendicular magnetic field Bz is also found to break

the chiral-like symmetry. This means that, while a broken time-reversal symmetry is necessary for MFBs

to exist, the magnetic field must be in-plane with the system, and also subject to the condition |By | > |Bx |

(if we consider OBCs in the y direction and PBCs in the x direction).

Besides being characterized by a nontrivial value of the winding number W, the regimes with Ma-

jorana flat bands also reveal a quantized value of the Berry phase. The Berry phase is calculated

numerically by discretizing the Brillouin zone in N points in the y direction, with ky ∈ [−ı; ı]. For each
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fixed value of kx , a link variable is defined as U(kyi ) = det [U(kyi )], with U(kyi ) a matrix with elements

Un;m(kyi ) =  ∗
n(kyi ) m(kyi+1) (3.35)

where the indices n and m take values between 1 and N with N = 4 being the size of the Hamiltonian

matrix (equation 3.1) and the number of eigenvectors, denoted by  , for each pair (kx ; ky ). The Berry

phase can then be calculated as [65, 83]

‚ = −i
NX
i=1

logU(kyi ): (3.36)

It was shown in [8] that MFBs induce a nearly quantized zero bias conductance (ZBC) in a junction

between a normal lead and a p-wave superconductor. When By is such that the gap closes and MFBs

appear, the ZBC becomes nearly quantized at a value of 2e2

h
Nc , with Nc = 4, where Nc is the number

of channels in the normal lead. This result was obtained in the presence of on-site Gaussian disorder,

suggesting robustness of MFBs against perturbations.

3.3.2 Domain of Flat Band Existence

As stated above, flat bands appear in the regime where M (kx ; ky = 0)M (kx ; ky = ı) < 0 with M (kx ; ky )

given by equation 3.34. We will now prove that, while we will consider a reduced parameter range, the

appearance of zero-energy bands is not exclusive to the latter.

From equation 3.34, we can note that we always have M (kx ; ky = 0) < M (kx ; ky = ı) if — <

−2t cos kx and M (kx ; ky = 0) > M (kx ; ky = ı) if — ≥ −2t cos kx . So the conditions for the flat bands to

exist can be summarized in (with B̃2 = B2
y − B2

x and |By | > |Bx |):

• (1) — ≥ 2t

M (kx ; ky = 0) > 0 ∧M (kx ; ky = ı) < 0 ⇔

[—+ 2t (cos kx + 1)]2 + d2 sin2 kx − B̃2 > 0 ∧ [—+ 2t (cos kx − 1)]2 + d2 sin2 kx − B̃2 < 0 ⇔

[—+ 2t (cos kx + 1)]2 + d2 sin2 kx > B̃2 ∧ [—+ 2t (cos kx − 1)]2 + d2 sin2 kx < B̃2 ⇔

[—+ 2t (cos kx + 1)]2 + d2 sin2 kx >B̃
2 > [—+ 2t (cos kx − 1)]2 + d2 sin2 kx

(3.37)

• (2) — ≤ −2t

M (kx ; ky = 0) < 0 ∧M (kx ; ky = ı) > 0 ⇔

[—+ 2t (cos kx − 1)]2 + d2 sin2 kx − B̃2 > 0 ∧ [—+ 2t (cos kx + 1)]2 + d2 sin2 kx − B̃2 < 0 ⇔

[—+ 2t (cos kx − 1)]2 + d2 sin2 kx >B̃
2 > [—+ 2t (cos kx + 1)]2 + d2 sin2 kx

(3.38)
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• (3) −2t < — < 2t

([—+ 2t (cos kx + 1)]2 + d2 sin2 kx >B̃
2 > [—+ 2t (cos kx − 1)]2 + d2 sin2 kx)

∨

([—+ 2t (cos kx − 1)]2 + d2 sin2 kx >B̃
2 > [—+ 2t (cos kx + 1)]2 + d2 sin2 kx)

(3.39)

For the set of parameters t = 1, d = t=6, — = 3d − 4t = t
2 − 4t = − 7

2 t, which will we consider

several times throughout this work, we have — < −2t cos kx for all kx ; therefore we are in the region of

the second inequality, and we can plot the values of B̃ vs kx for which we will have flat bands at a certain

region of kx :

a) b)

Figure 3.7: a) Domain of MFBs (shaded region) for By vs. kx for the parameter
values t = 1, d = t=6, — = −3:5. b) Closeup of a) in the region By ∈ [−1; 1]. The
three dashed lines represent the values By = d (blue), By = 2d (red) and By = 3d
(red) which correspond to the values of By of the energy spectra presented in figure
3.6.

Since the Majorana flat bands are topologically characterized by a nonzero winding number, equa-

tions 3.37, 3.38 and 3.39 also define the regions where the superconductor is in a nontrivial regime

with |W| = 1. Furthermore, since MFBs can only appear in a gapless phase, equations 3.37, 3.38 and

3.39 also define regimes of the superconductor where the bulk is gapless as a function of the in-plane

magnetic field. In figure 3.8 some other examples are presented, as a function of By , for zero and finite

Bx (represented by a red dashed line).
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a) b) c)

d) e) f)

Figure 3.8: Domain of MFBs (shaded region) for By vs. kx . The graphs a), b) and
c) have Bx = 0 while the graphs d), e) and f) have Bx ̸= 0, represented by red
dashed lines. The values of the parameters are a) t = 1; — = 3; d = 0:2; Bx = 0. b)
t = 1; — = 0; d = 0:3; Bx = 0. c) t = 1; — = −2; d = 0:1; Bx = 0; d), e) and f) are the
same as a), b) and c), respectively, except for d) Bx = 0:7, e) Bx = 1, f)Bx = 1:3.

3.3.3 Unidirectional Majorana Edge States

As discussed above, the chiral-like symmetry Sky is broken by either a finite value of the spin orbit term

¸ or the s-wave pairing term ∆s . When these terms are introduced, for a certain range of the magnetic

field By , the Majorana flat bands will acquire a slope and give origin to unidirectional edge modes. Figure

3.9 shows the energy spectrum for t = 1, d = t=6, — = 3d − 4t, ¸ = 0:2d and ∆s = 0:3d , and a visual

representation of the unidirectional edge modes in the superconductor along with the magnetic field By .

As in the case of MFBs, unidirectional MESs induce a nearly quantized ZBC in a junction between a

normal lead and a p-wave superconductor, at a value of 2e2

h
since there is only one zero energy edge

mode in a MES regime [8]. Note that the edge modes create a right moving current on the edges that is

balanced by a left moving current on the bulk, so that the net current of the system is zero. Since this is

only possible for a gapless system, the unidirectional MESs can only appear if the bulk is gapless.

28



By

Figure 3.9: Left: Energy spectrum for a system with 76 sites in y and edges at y = 0
and y = 75 for the parameter values t = 1, d = t=6, — = 3d−4t, By = 4d , ¸ = 0:2d .
Right: representation of the unidirectional edge modes in the superconductor with
a cylindrical geometry.
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4
Disordered two-dimensional topological superconductor

We now add disorder to the model described in chapter 3. The real space Hamiltonian is now written as

H = HK +HSO +HZ +HSC +HD (4.1)

where HD is a new term describing the disorder, given by

HD = −
X
rs

Λ(r)c†rscrs : (4.2)

Λ(r) is the disorder term, and we consider disorder of two types:

1. Anderson disorder, where the disorder is random at each site and the random values vary (with

equal probability) within an interval:

Λ(r) ∈ [−–; –]: (4.3)

2. Aubry-André disorder, where the disorder term is a quasi-periodic potential of the form:

Λ(r) = – cos(2ı¸f (r) + ffi) (4.4)

with f (r) a function of the lattice sites, ¸ =
√
5−1
2 the inverse golden ratio, and ffi a phase between

0 and 2ı.

It will also be of interest to study the system in a mixed space, where the Hamiltonian is written as in

equation 3.7. If disorder is introduced the matrix Ĥ(kx ;y) is modified as

Ĥ(kx ;y) → Ĥ(kx ;y) +

0@ Ê 0

0 F̂

1A (4.5)

where Ê and F̂ are 2× 2 matrices given by

Ê =

0@ −Λ(y) 0

0 −Λ(y)

1A ; F̂ =

0@ Λ(y) 0

0 Λ(y)

1A (4.6)

and Λ(y) is the disorder term which can be of the form of either equation 4.3 or equation 4.4, with the

exception that the potential can only vary in the y direction.

31



4.1 Quasi-disorder and Anderson disorder effects in real space

The effects of Aubry-André and Anderson disorder are studied in a real space system. Different spatial

configurations are considered: the case of disorder that is only localized at the edges, as well as disorder

that is introduced in all space. The numerical study of the disordered system in real space involves a

diagonalization of a matrix of size (4× Nx × Ny )× (4× Nx × Ny ) for each disorder configuration.

4.1.1 Edge disorder

The case where disorder is localized at the edges is especially interesting if we aim to disturb the edge

states that appear in the various regimes. We consider disorder localized at y = 0 and y = Ny and

varying along the x direction, with (Nx × Ny ) being the system size. A system with 41× 41 = 1681 sites

(with Nx = Ny ) is studied, and we consider periodic boundary conditions along x and open boundary

conditions along y .

Two types of disorder are considered:

• Type I: Anderson disorder, such as in equation 4.3;

• Type II: Aubry-André disorder such as in equation 4.4 but where the potential is modulated in the

x direction, such that

Λ(x; y = 0; Ny ) = – cos(2ı¸x + ffi): (4.7)

Here we limit ourselves to the cases where the magnetic field B is aligned in the y direction and

consider either p-wave pairing symmetry or combined s and p-wave pairings when the spin-orbit term is

finite. We take the fixed values t = 1; d = t=6; — = 3d − 4t, and consider three cases in detail: the case

in which a magnetic field By = 0:5d is added, such that the system is in a phase with a gapped bulk but

gapless edge states; an added magnetic field of By = 3:5d , where the system has a gapless bulk and

is in the MFB regime; and the noncentrosymmetric case with By = 4d and added s−wave pairing and

spin-orbit terms, ∆s = 0:3d and ¸ = 0:2d , where the system has a gapless bulk and MESs.

E = 7 × 10−4E = 1.3 × 10−3E = 4.7 × 10−3a) b) c)

Figure 4.1: Typical edge states of the clean system, at t = 1, d = t=6, — = −3:5
and a) By = 0:5d , b) By = 3:5d , c) By = 4d , ¸ = 0:2d;∆s = 0:3d .
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Anderson edge disorder

In figure 4.2 the values of the IPR averaged over the lowest 10 positive energy states and highest 10

negative energy states for the three parameter cases described above are shown in a), and the average

value of the IPR for the remaining states is shown in b). Note that as disorder is introduced level

crossings will occur, hence the ten lowest energy states will not necessarily be the same as disorder is

increased. At some point we can have crossings with bulk states which collapse to lower energies. From

inspection of the wavefunctions this effect was found to be negligible in the considered range, and this

distinction allows us to see how the edge localized, lower energy states are affected differently from the

average of the bulk system. From b) we see that the bulk states, and the system as a whole, are almost

unaffected by the introduced edge disorder. Also, from calculations of the DOS (not shown here) we see

that the DOS remains almost constant, with only a slight increase at zero energy. This is in agreement

with the result in b) showing the bulk states are not greatly affected from disorder at the edges. As it

can be confirmed in figure a), the localization happens mostly on lower energy states. From figure a) we

also see that for the system with By = 0:5d the low energy states become more localized with increased

disorder in relation to the states in the MFB and MESs regimes, which appear to be more robust at

higher values of disorder.

a) b)

Figure 4.2: a) IPR averaged over the lowest 10 positive energy states and highest
10 negative energy states, vs. Anderson edge disorder strength – (Type I). b) IPR
averaged over the remaining states vs. disorder strength –. The results are aver-
aged over 10 disorder configurations.

In figure 4.3 we show three wavefunctions which represent low-energy edge states at three different

values of disorder, a) – = 0:5, b) – = 1:0, and c) – = 2:7. These states are shown for the noncentrosym-

metric case, with t = 1, d = t=6, — = −3:5, By = 4d , ¸ = 0:2d and ∆s = 0:3d . We also show the

wavefunctions at the fixed values of y which correspond to the edges, y = 0 and y = 40. For the case in

a) with – = 0:5 we see that the state already lost its periodic modulation along the edges, which is easily

seen in the cuts at y = 0 and y = 40. In b) we see an intermediate state, and in c) the state is already

mostly localized on the edge at y = 40. We found that initially the edge states follow a similar behaviour

in both edges. At higher values of disorder the states become significantly more localized in only one

edge. It is equally likely for the states to localize at either edge, since it depends on the random disorder

configuration. Note that the figures in a), b) and c) do not necessarily correspond to the evolution of the

same state.
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Figure 4.3: Disordered edge states for t = 1, d = t=6, — = −3:5, By = 4d ,
¸ = 0:2d and ∆s = 0:3d , subject to Anderson edge disorder. The wavefunctions
have energies a) E = 8× 10−4, b) E = 8× 10−4 and c) E = 9× 10−4.
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Figure 4.4: Disordered edge states for t = 1, d = t=6, — = −3:5, By = 4d , ¸ = 0:2d
and ∆s = 0:3d , subject to Anderson edge disorder. Here the states are shown at
fixed values of x , perpendicularly to the direction of the edges, showing the impact
of edge disorder on the bulk layers.

In the clean system the edge states are localized at both edges but decay exponentially (although
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with zeros at some sites) towards the bulk in the y direction, while being either constant or with a periodic

modulation in the x direction (in which the system obeys periodic boundary conditions), as is seen in

figure 4.1. The introduced disorder is modulated along the x direction on the edges, therefore we expect

localization to happen on the edge layers in a way that is reminiscent of a periodic system subject to

Anderson disorder in one dimension. One question to ask is what effect the edge disorder will have in

the y direction. From figure 4.3 we see that the subsequent layers are also affected by the edge disorder.

Particularly, in figure 4.3 b), at the values of x in which the wavefunction becomes more localized at the

edges, the same effect is seen on the next layers. In c), there is some contribution of the state on the

bulk for the values of x not corresponding to that in which the wavefunction becomes more localized at

the edges. In figure 4.4 we show the evolution of edge states with disorder for the noncentrosymmetric

case, taking fixed values of x and for a) – = 0, b) – = 0:5, c) – = 2:5. At – = 0 we see the typical

decay towards the bulk. Note that for bigger system sizes we expect this decay to happen closer to the

edges and with less penetration on the bulk layers. In b), for – = 0:5, we see that the localization of the

wavefunction along the edge affects the remaining layers. Taking the wavefunction at E = 4×10−3 (blue),

we see that at – = 0:5 it remains localized on the edges for x = 10, but for x = 20 the contribution of

the wavefunction drops not only at the edge but also at the layers towards the bulk. For higher values of

disorder, as in c) – = 2:5, we see that the modulated decay seen previously no longer remains, and that

for values of x at which no localization occurs on the edges, the contribution on the bulk can increase.

See for instance the wavefunction in c) at E = 4:2 × 10−3 (blue), where at x = 10 the wavefunction at

y = 40 (edge) and the next layer is nearly zero, but the contribution increases for the subsequent layers.

Aubry-André edge disorder

a) b)

Figure 4.5: a) IPR averaged over the lowest 10 positive energy states and highest
10 negative energy states, vs. Aubry-André edge disorder strength – (Type II). b)
IPR averaged over the remaining states vs. disorder strength –. The results are
averaged over 10 disorder configurations.
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Figure 4.6: Disordered edge states for t = 1, d = t=6, — = −3:5, By = 4d , ¸ = 0:2d
and ∆s = 0:3d subject to Aubry-André edge disorder. The wavefunctions have
energies a) E = 2:8× 10−3, b) E = 1:7× 10−3, c) E = 9× 10−4.
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Figure 4.7: Disordered edge states for t = 1, d = t=6, — = −3:5, By = 4d , ¸ = 0:2d
and ∆s = 0:3d , subject to Aubry-André edge disorder. Here the states are shown at
fixed values of x , perpendicularly to the direction of the edges, showing the impact
of edge disorder on the bulk layers.
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In figure 4.5 we show the averaged values of the IPR as before, for a) lower energy states and b)

remaining states. Once again, the IPR of the bulk states remains nearly constant, in contrast with the

lower energy states. However, the behaviour is different from the case where Anderson disorder was

introduced at the edges. Here, the lowest energy states seem mostly unaffected (with constant IPR) until

a certain threshold value of disorder. This threshold effect is more prominent in the case with By = 0:5d .

In the two remaining cases the edge states begin to localize at lower values of disorder strength, but are

more robust at higher values.

Figure 4.6 shows three wavefunctions which represent low-energy edge states at three different

values of disorder, a) – = 0:5, b) – = 1:2, and c) – = 2:8. These states are shown for the noncen-

trosymmetric case, with t = 1, d = t=6, — = −3:5, By = 4d , ¸ = 0:2d and ∆s = 0:3d . In the numerical

simulations the same value of ffi was considered at both edges, and, accordingly, the behaviour is mir-

rored, with the edge states staying localized at both edges for high disorder values. For – = 0:5 the state

as a whole is mostly unaffected, and the effect of the quasi-periodic disorder is seen on the edge layers.

In b), for a higher value of disorder of – = 1:2 the state becomes more localized, both along the edges

and along the y direction. In c) for – = 2:8 the state localizes at several values of x along the edges,

and also appears to localize along y . An effect on the bulk layers is also seen, and figure 4.7 allows us

to look into it with more detail. As in the Anderson edge disorder case, we show the evolution of edge

states with disorder for the same noncentrosymmetric case, taking fixed values of x and for a) – = 0, b)

– = 1:5, c) – = 2:5. The wavefunctions at – = 0 are the same as those considered in figure 4.4. In b),

for – = 1:5 and at x = 10, the states become more localized towards the edges. For the wavefunction

at E = 3:3 × 10−3, at x = 20, there is a slight increase of the wavefunction on the bulk layers near the

edge. In c), we see that the wavefunctions localize at the edges for x = 10. At x = 20 we see that, while

at the edges and the immediately following layers the value of the wavefunctions is nearly zero, there is

a significant contribution on the subsequent bulk layers.

4.1.2 Bulk disorder

We now consider cases were disorder is introduced in the whole system, that is, when the disorder term

is present in every site. A system with 41 × 41 = 1681 sites (with Nx = Ny ) is studied. Three types of

disorder are considered:

• Type III: Anderson disorder, such as in equation 4.3;

• Type IV: Anderson disorder, such as in equation 4.3 but where the potential varies randomly only

in the y direction and is uniform in the x direction;

• Type V: Aubry-André disorder such as in equation 4.4 but where the potential is modulated only in

the y direction and is uniform in the x direction, such that

Λ(x; y) = – cos(2ı¸y + ffi): (4.8)
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Anderson bulk disorder

a) b)

Figure 4.8: a) IPR averaged over the lowest 10 positive energy states and highest
10 negative energy states, vs. Anderson disorder strength – (Type III). b) IPR av-
eraged over the remaining states vs. disorder strength –. The results are averaged
over 10 disorder configurations.

Figure 4.8 shows the IPR for a) lower energy states and b) remaining states, as a function of Anderson

disorder strength – on all space (Type III). From figure b) we see that the average IPR follows a nearly

exponential behaviour as a function of disorder, IPR ∼ exp{–}. Comparing figures a) and b) we see

that the lowest energy states appear to be more robust if compared with the average response of the

system. However, it is necessary to look at the wavefunctions to have a better insight of the disorder

effects on the lowest energy states. Figure 4.9 shows three wavefunctions which represent low-energy

states at three different values of disorder, a) – = 0:9, b) – = 1:5, and c) – = 2:5. These concern the

noncentrosymmetric case, with t = 1, d = t=6, — = −3:5, By = 4d , ¸ = 0:2d and ∆s = 0:3d .

λ = 0.9a) b) λ = 2.5c)

λ = 2.5

λ = 1.5

Figure 4.9: Disordered states for t = 1, d = t=6, — = −3:5, By = 4d , ¸ = 0:2d
and ∆s = 0:3d subject to Anderson disorder (Type III). The wavefunctions have
energies a) E = 2:86× 10−4, b) E = 4:1× 10−5 and c) E = 2:91× 10−3.

The figure shows low energy states which become increasingly more localized inside the bulk. From

inspection of the wavefunctions we see that the edge states quickly lose their structure for low values of

disorder. However, the effect is mostly that of spreading the states towards the bulk. In this case the IPR

is not a good measure of the survival of the edge states because they do not become quickly localized,

but they are destroyed in the sense that they are removed from the edges. At – = 2:5 the state in figure

c) is mostly localized around a site but still has some contributions throughout the bulk.
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Figure 4.10 shows the total density of states of the system obtained with the RGF method, for – = 0

(no disorder), – = 0:5, – = 1:5 and – = 2:5. We see that in all cases there is a large increase of the

density of states around zero energy, with a monotonic behaviour. This increase makes the considered

fixed interval of eigenstates around zero energy more susceptible to level crossings with the bulk, and in

this case the evaluation of figure 4.8 a) must be taken with care.

b)a) c)

Figure 4.10: Total density of states, for the energy range E ∈ [−4:5; 4:5] obtained
with the Recursive Green’s Function method for several values of Anderson dis-
order strength – (Type III). The values of the parameters are a) By = 0:5d , b)
By = 3:5d , c) By = 4d; ¸ = 0:2d;∆s = 0:3d . The DOS is obtained for an average
of 20 initial random states and disorder configurations, and for a value of ” = 0:08
(equation B.11).

Anderson bulk disorder with x periodicity

We now considered a uniform modulation of Anderson disorder in the x direction, that is, we introduce

a disordered potential which is random along y but is constant along x (Type IV disorder). This example

serves as an intermediate between the previous case in which random disorder was introduced in all

space, and the next case in which disorder is quasi-periodic along y and constant along x . Introducing

periodicity along x also allows us to make a connection to the analogous system in a mixed reciprocal

space (kx ; y) which will be the focus of the second part of the work.

a) b)

Figure 4.11: a) IPR averaged over the lowest 10 positive energy states and highest
10 negative energy states, vs. Anderson disorder strength – (Type IV). b) IPR av-
eraged over the remaining states vs. disorder strength –. The results are averaged
over 10 disorder configurations.

Figures 4.11 a) and b) show the IPR of the lowest energy states and of the remaining states, re-

spectively. Contrarily to the previous case, there is no significant difference between the localization

39



behaviour of the lowest energy states and the bulk-averaged IPR. From b) we see that the average IPR

follows a nearly linear behaviour as a function of disorder, as IPR ∼ –. This contrasts with the nearly

exponential behaviour found previously. In figure 4.12 we show a comparison of the IPR averaged over

the whole system for a) Anderson disorder (Type III) and b) Anderson disorder with x periodicity (Type

IV), as well as fits to functions of the form a) y = C1 exp{C2x} and b) y = C1x + C2.

a) b)

Figure 4.12: a) Average IPR of the whole system for Anderson disorder and fits of
functions of the form y = C1 exp{C2x} in the range – ∈ [1:5; 3]. b) Average IPR of
the whole system for Anderson disorder with x periodicity and fits of functions of
the form y = C1x + C2 in the range – ∈ [0:5; 3].

In a) the fit is done to the range – ∈ [1:5; 3] and gives the values (C1; C2) = (5:6 × 10−4; 1:13) for

By = 0:5d and By = 3:5d , and (C1; C2) = (3:6 × 10−4; 1:22) for By = 4d , ¸ = 0:2d , ∆s = 0:5d . For

– > 1:5 the IPR follows an exponential behaviour closely, while for – < 1:5 there is a deviation from

it. Noticeably, the cases with different values of By are superimposed, while the noncentrosymmetric

case with spin-orbit coupling and added s-wave pairing has a consistently lower IPR, both in the clean

system and as disorder is increased. This behaviour is observed in any considered disorder case,

and suggests that the average localization properties of the system are independent of the value of

the applied magnetic field, but depend on the values of ¸ and ∆s . In b), the fit is done to the range

– ∈ [0:5; 3] and gives the values (C1; C2) = (4:4 × 10−3; 5 × 10−5) for By = 0:5d and By = 3:5d1 and

(C1; C2) = (2:8×10−3; 1:4×10−4) for the noncentrosymmetric case. For – < 0:5 there is a deviation from

the linear behaviour.

1As the cases of By = 0:5d and By = 3:5d have essentially the same behavior apart from small fluctuations the fits were done
to the average of the IPR values.
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b)a) c)

Figure 4.13: Total density of states of the system, for the energy range E ∈
[−4:5; 4:5] obtained with the Recursive Green’s Function method for several val-
ues of Anderson disorder strength – (Type IV). The values of the parameters are a)
By = 0:5d , b) By = 3:5d , c) By = 4d; ¸ = 0:2d;∆s = 0:3d . The DOS is obtained for
an average of 20 initial random states and disorder configurations, and for a value
of ” = 0:08 (equation B.11).

In figure 4.13 the density of states obtained with the RGF method is shown for the three cases of the

parameter values considered for the clean system (– = 0) and for the disorder values – = 0:5, – = 1:5

and – = 2:5. The behaviour differs from that seen on the true Anderson disorder case in 4.10. The

behaviour in a) also differs from that in b) and c). In the latter the DOS around zero energy shows an

increase for higher values of disorder while for the first case it decreases, in relation to the clean case.

Let us now look at the system’s wavefunctions. In figure 4.14 we show low enegy states for the values

of t = 1, d = t=6, — = −3:5 and By = 3:5d (MFBs regime). The edge states are mostly robust to low

values of disorder, as seen in figure a) for – = 0:4. In this case a state which was previously symmetric

around both edges becomes more localized near the edge in y = 0. As – increases slightly we find

that the states are removed from the edges and start to localize inside the bulk. This happens around

– ≈ 0:6. These then become increasingly more localized along y , as we see in b) for – = 1:6. For high

values of disorder, as in c) for – = 2:5, some states become almost completely localized along y , while

staying periodic along x . Note that, as disorder removes states from the edges, there is no opening of

the bulk gap.

a) b) c) λ = 2.5λ = 0.4 λ = 1.6

Figure 4.14: Disordered states for t = 1, d = t=6, — = −3:5 and By = 3:5d ,
subject to Anderson disorder with x−periodicity (Type IV). The wavefunctions have
energies a) E = 3:07× 10−3, b) E = 4:79× 10−3 and c) E = 2:61× 10−3.
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Aubry-André bulk disorder

We now consider Aubry-André bulk disorder (Type V disorder). We consider a modulation along y and

a potential which is uniform along x . Figures 4.15 a) and b) show respectively the IPR of the lowest

energy states and of the remaining states. We see no significant differences in behaviour between a)

and b). As in the case of Aubry-André edge disorder, we see again a threshold behaviour, but here on

the whole system: there is a clear change around – ≈ 2 in b), with a sharp increase in the IPR.

a) b)

Figure 4.15: a) IPR averaged over the first 10 positive energy states and last 10
negative energy states, vs. quasi-disorder strength – (Type V). b) IPR averaged
over the remaining states vs. quasi-disorder strength –. The results are averaged
over 10 disorder configurations.

The behaviour found for the IPR in figure b) resembles some known results. For the one-dimensional

Aubry-André model, the system undergoes an extended-localized transition at – = 2t, after which the

average IPR shows a marked increase. For the one dimensional p-wave superconductor with an Aubry-

André potential the transition point changes to – = 2(t+d) (when the chemical potential is taken as zero),

where d is the pairing amplitude, and the average IPR also follows a similar behaviour [43]. However,

for a finite value of the chemical potential, the sudden increase in the IPR is found for – < 2(t + d) [44].

In this sense, our result seems to agree: the p−wave pairing potential is taken as d = t=6 and we see

a transition for – < 2(t + d) = 7t=3 ≈ 2:33. A similar behaviour is also found for a two dimensional

model of a square lattice (without superconductivity) [19] with a quasi-periodic potential modulated both

in the x and y directions. In figure 4.15 b), we see a slow increase of the IPR before – ≈ 2. This differs

from the aforementioned examples, where this increase is not as clearly seen. This could be due to the

appearance of critical wave functions in this range which contribute to an increase of the average IPR.

Before the large increase of the IPR, some of the bulk wavefunctions do appear to have a critical nature

(in the y direction, staying periodic in the x direction).
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Aubry-André

(1) (1) (1)

(2) (2) (2)

(3) (3) (3)

Figure 4.16: Total density of states of the system, for the energy range E ∈
[−0:5; 0:5], obtained with the Recursive Green’s Function method for several val-
ues of –. Each column concerns the case of a) Anderson disorder (Type III), b)
Anderson disorder with x periodicity (Type IV) and c) Aubry-André disorder (Type
V), and each row concerns the parameter values (1) By = 0:5d , (2) By = 3:5d , (3)
By = 4d; ¸ = 0:2d;∆s = 0:3d . The DOS is obtained for an average of 20 initial
random states and disorder configurations, and for a value of ” = 0:02 (equation
B.11).
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b)a) c)

Figure 4.17: Total density of states of the system, for the energy range E ∈
[−4:5; 4:5] obtained with the Recursive Green’s Function method for several val-
ues of Aubry-André disorder strength – (Type V). The values of the parameters are
a) By = 0:5d , b) By = 3:5d , c) By = 4d; ¸ = 0:2d;∆s = 0:3d . The DOS is obtained
for an average of 20 initial random states and disorder configurations, and for a
value of ” = 0:08 (equation B.11).

In figure 4.16 a close-up of the region closer to zero energy E ∈ [−0:5; 0:5] is presented, for a lower

value of ”, and for all the considered disorder cases side-by-side to allow a clear comparison. Each

column concerns each bulk disorder type - a) Anderson disorder, b) Anderson disorder with x periodicity,

c) Aubry-André disorder, and each column concerns each parameter set - (1) By = 0:5d , (2) By = 3:5d ,

and (3) By = 4d; ¸ = 0:2d;∆s = 0:3d . For (1) the bulk gap of the clean system, which is located around

E ∈ [−0:044; 0:044], is highlighted. In this case, with quasi-disorder, we see first that the DOS increases

slightly at – = 0:5 around zero energy. For – = 1:5 there is a further increase and for – = 2:5 the value

decreases, with the system being actually gapped. This is not seen in figure 4.16 because of the high

value of ” considered. In cases (1) and (2) for quasi-disorder we see the same non monotonic behaviour

in which the DOS around zero energy first decreases and then increases with disorder.

Figure 4.17 shows the density of states for the energy range E ∈ [−4:5; 4:5], for – = 0 (clean system),

– = 0:5, – = 1:5 and – = 2:5.

λ = 0.9a) b) λ = 2.5c)λ = 1.7

Figure 4.18: Disordered states for t = 1, d = t=6, — = −3:5 and By = 0:5d ,
subject to Aubry-André disorder (Type V). The wavefunctions have energies a) E =
5:44× 10−3, b) E = 1:34× 10−3 and c) E = 3:23× 10−2.
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Figure 4.19: First positive energy state for a system of size 41 × 41 vs. disorder
strength of the quasi-periodic potential with ffi = 0, for the system with open bound-
ary conditions along y (green) and periodic conditions along y (black). The values
of the parameters are t = 1, d = t=6, — = −3:5 and By = 0:5d .

In figure 4.18 we show some of the low energy states at different values of –, for the parameters

t = 1, d = t=6, — = −3:5 and By = 0:5d . In the clean system this corresponds to the case with a gapped

bulk but gapless edge states. In agreement with the results obtained for the IPR, the edge states appear

to be robust to low values of disorder. In 4.18 a), for – = 0:9, the state is not removed from the edge,

although we see some critical-like behaviour on the bulk. In b), for – = 1:7 there is a deviation from

the edges and instead of localizing at the edges the states localize in the subsequent layers, however

the states are not completely removed from the edges. In c), for – = 2:5 the states become nearly

completely localized along y and there are no edge states on the system. As stated previously, we know

that for higher values of disorder a bulk gap opens, so we no longer expect edge states at such values.

By looking at the energy spectrum of the system with OBC and PBC along y , we can understand

where disorder destroys the edge states in this case. Figure 4.19 shows the lowest positive energy

state for the system with periodic boundary conditions in y (black) and periodic boundary conditions in y

(green). Around – ≈ 1:8 the energy of the lowest state in the OBC system is lifted and becomes higher

than that of the system with PBC. This signals the opening of the bulk gap around this disorder value.

For higher values of disorder the edge states are no longer present in the system, which can be seen

from the fact that the energy lowest positive energy state of the OBC becomes nearly identical to that of

the system of PBC (the first positive state coincides with the first positive bulk state). This effect (opening

of a gap as disorder is increased) is not seen for the other considered parameter values, a magnetic field

of By = 3:5d or a magnetic field of By = 4d , Rashba spin orbit coupling ¸ = 0:2d and s-wave pairing

∆s = 0:3d . In this case the lower energy states are not lifted to higher energies. This does not mean

that the edge states remain robust to the perturbations, but only that there is no opening of the bulk gap

(remembering these last two cases are gapless phases in the clean system).
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b) c)

Figure 4.20: Example of wavefunctions with Aubry-André disorder (Type V), at a
fixed value x = 8, for the system of size 41× 41. a) Extended wavefunction at E =
0:28, – = 0, b) critical wavefunction at E = 0:51, – = 1:6, c) localized wavefunction
at E = 0:32, – = 2:5.

In figure 4.20 we show bulk states at different values of – and for a fixed value of x = 8: an extended

state in a), a critical state in b) and a localized state in c). For some values of – the states show a

critical-like behaviour, as is shown for – = 1:6. Note that the critical or localized behaviour is only seen

along y , the direction in which the disorder potential is modulated. Along x the states remain periodic

(extended) as in 4.18.

46



4.1.3 Quasi-disorder induced topology: Chern number

We now want to investigate the effects of quasi-disorder on the system with an applied magnetic field in

the perpendicular direction, B = (0; 0; Bz). We consider Anderson and Aubry-André disorder modulated

along y and uniform in x , corresponding to disorder of Types IV and V as discussed in Section 4.1.2.

To classify the topological nature of the system the Chern number is calculated in real space. The

numerical method is detailed in Appendix B.

a) Anderson Aubry-André
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Figure 4.21: Phase diagrams of a system with 20x20 sites, indexed by the Chern
number C, for several values of disorder strength – and perpendicular magnetic
field Bz . Obtained for the average over 10 disorder configurations. The values of
the parameters are t = 1, d = 0:6 and — = 0 (top), d = 0:6 and — = 1 (middle),
d = 1=6 and — = 3d − 4t = −3:5 (bottom).

Figure 4.21 shows six phase diagrams for three different values of — and d (in all cases, t is kept

constant and equal to 1) obtained for a system with size 20× 20, for a) Anderson disorder and b) Aubry-

André disorder, both uniform in the x direction. At – = 0, we observe the transitions between different

Chern numbers consistent with figure 3.2 at the respective values of —.

When Anderson disorder is introduced in the system the topological regimes are destroyed as the

disorder strength is increased. From the phase diagrams we see that some values of Bz are more

robust than others, particularly the values which are halfway inside the topological phases of the clean
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system, while the values near the phase boundaries are more vulnerable to the introduced disorder.

Unexpectedly, at low values of magnetic field, we see some small traces of topology appear as disorder

is increased for values of Bz where the Chern number was previously zero.

Let us now turn to the right panels of the figure, where quasi-periodic disorder is introduced. We

obtain phase diagrams with new topological regions. Different types of transitions are illustrated. In the

diagram for — = 0 and d = 0:6 (top) we see the appearance of a phase characterized by C = 2 around

Bz ∈ [0:2; 0:5]. Noticeably, in the clean system no phase with C = 2 exists. For — = 1 and d = 0:6

(middle), we see the appearance of two small regions with C = 1, that however seem to be averaged

out. In the approximate range of Bz ∈ [0:3; 1:3] there is also a reentrant topological region with C = −1.

Inside this range, for Bz < 1, we have topological transitions C = 0 → C = −1 with increasing –. For

Bz ∈ [1; 1:3], there is a transition C = −2 → C = −1. At — = −3:5, d = 1=6 (bottom) a new region with

C = −1 emerges for Bz ∈ [0:1; 0:9]. Inside this range, for Bz < 0:5 a transition C = 0 → C = −1 happens

with increasing –. For Bz ≥ 0:5 there is a previous transition from C = 1 to C = 0. A close-up of the

region with C = −1 is presented in figure 4.22 for a system of size 40 × 40. Transitions from C = 0 to a

finite value of C also happen at higher values of the magnetic field. This is evident in the case of — = 0

for Bz > 4 and in the case — = 1 for Bz > 5. For a small region of Bz , with the increase of – we see a

reentrant topological phase in a new region.

Furthermore, the topological phases show an interesting response to the increase of quasi-disorder.

There is a clear difference in robustness for different values of Bz as quasi-disorder is increased, which

originates the seemingly effect of “peaks” and “valleys” in the phase diagram, respectively at more robust

and more vulnerable values of Bz .

C-1

1
0

Figure 4.22: Phase diagram of a system with 40x40 sites, indexed by the Chern
number C, for several values of disorder strength – and perpendicular magnetic
field Bz . Obtained for the average over 10 disorder configurations. The values of
the parameters are t = 1, d = t=6, — = −3:5.
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It is important to note that here the regimes with low magnetic field and C = 0 correspond to regimes

with I(ky ) ̸= 0 before disorder is introduced (as – assumes a finite value, I(ky ) becomes ill-defined

since the translational symmetry in the system is lost). As discussed in section 3.2, in some regions

the system has gapless edge states which are explained by a finite value of I(ky ) although the Chern

number is zero. This means that the reentrant topological phases with C ̸= 0 at low magnetic field come

from phases that were nontrivial at – = 0 due to I(ky ) (except in the case of — = 0). This could possibly

explain some of the topological transitions at small values of Bz as quasi-disorder is introduced, and

also the appearance of some topological regions at roughly the same values of Bz in the Anderson case

(as it can be observed in the diagrams for — = 1 and — = −3:5). On the other hand, we note that the

Anderson disorder considered in 4.21 has periodicity in x , as in the considered case of the Aubry-André

potential. Thus it could be the case that the appearance of small regions of topology at low magnetic

field in the Anderson case, similarly to the Aubry-André case, are a result of this added modulation in

x , instead of being related to the invariant I(ky ). Also, when quasi-disorder is introduced in the system,

transitions C = 0 → C ̸= 0 are also observed for values of high magnetic field in regions where I(ky ) is

zero in the clean case. This behaviour can not be justified by the value of I(ky ), which is zero at high

values of Bz before disorder is introduced. This type of transition is also not observed with Anderson

disorder with x periodicity.

a) b)Anderson Aubry-André

a) b)

C

-1

0

1

0

-1-2

Figure 4.23: Phase diagrams of a system with 20x20 sites, indexed by the Chern
number C, for a) Anderson disorder (without x periodicity) with t = 1, d = 0:6, — = 1
and b) Aubry-André disorder with t = 1, d = t=6, — = 4:5.

To further understand the influence of introducing x periodicity in the Anderson potential and of the

finite value of I(ky ) we considered the cases in figure 4.23. Figure 4.23 a) shows the diagram for

the parameter values t = 1, d = 0:6 and — = 1 with Anderson disorder with no added periodicity.

We see that a weak topological region at low magnetic fields also appears, in the regime in which

previously I(ky ) ̸= 0, showing that this effect is independent of the modulation of the disorder potential.

Unexpectedly, comparing figure 4.23 a) and the middle panel of figure 4.22 a), we see that the topological

phases are more robust to Anderson disorder that is completely random on all space if compared with

Anderson disorder with introduced x periodicity. In figure 4.23 b) Aubry-André disorder is introduced in

the system with parameters t = 1, d = 1=6, — = 4:5. In this case, the regimes at low magnetic field have

both a Chern number and a value of I(ky ) of zero in the clean system. Contrary to what happens for

— = −3:5 (figure 4.21 b), bottom panel), where we see the emergence of a new region with C = −1, no

new topological region appears.
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We now want to see how the different critical values of – scale with the system size. The transitions

at fixed values of Bz and — are now considered for the quasi-periodic disorder case. The results are

presented in figure 4.24 for the system sizes 20×20, 30×30 and 41×41 and for — = 0, d = 0:6, Bz = 0:4

(left), — = 1, d = 0:6, Bz = 1:1 (middle) and — = −3:5, d = 1=6, Bz = 0:3 (right). In all cases, t = 1. The

results show that within the system size range considered the critical values show little variation, and the

transitions become more sharp as the size increases. This therefore suggests that the phase diagrams

in figure 4.21 obtained for a system size 20 × 20 should remain valid for larger systems and the phase

boundaries should become more defined.
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Figure 4.24: Values of the Chern number C vs. quasi-disorder strength – for the
system sizes 20×20, 30×30 and 41×41 and for the parameter values t = 1, — = 0,
d = 0:6, Bz = 0:4 (left), — = 1, d = 0:6, Bz = 1:1 (middle) and — = −3:5, d = 1=6,
Bz = 0:3 (right). The results were averaged over 10 disorder configurations (10
random values of ffi in the quasi-periodic potential).

It is also of interest to see how the non trivial topology is manifested in the system with open boundary

conditions. Figure 4.25 shows two in-gap states for the topological phase at the values — = 1, d = 0:6

and Bz = 1:1, for a system of size 41 × 41 with PBC in x and OBC in y . The states are presented for

a value of – = 1:1 but are illustrative of the typical states that are found within this phase. The state on

the left (1) is a negative in-gap energy state which is localized only on the left edge and is an example

of an edge state at finite energy. On the right, the first positive energy state (2) has a value of energy

of about 10−6. Taking into account the size of the system considered, it is likely that this represents a

zero energy state that should tend to a true value of E = 0 as the system size is increased. There are

two such states inside the gap, and they remain in the system throughout the phase characterized by

C = −1, becoming slightly more localized as the disorder strength is increased. Interestingly, we see

that this state is not truly localized at the edges, but rather sharply localized close to the edges. Also, the

state is localized at both edges simultaneously. This behaviour is consistent throughout the topological

phase.
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Figure 4.25: In-gap states at the topological phase with C = −1 for — = 1, d = 0:6,
Bz = 1:1, and – = 1:1; ffi = 0 in the quasi-periodic Aubry-André potential. The left
panel (1) shows a state at E = −4:45× 10−2 (top) and a one-dimensional cut of the
wavefunction at x = 20 (bottom). The right panel (2) shows a state at E = 4:1×10−6

(top) and a one-dimensional cut of the wavefunction at x = 20 (bottom). The middle
panel locates the value of – within the topological phase (top) and locates the states
(1) and (2) in the energy spectrum of the system (bottom).

We can now look at the transition from C = 0 to C = −1 that is depicted in the right panel of figure

4.24. Figure 4.26 shows two in-gap states for the topological phase at the values — = 1, d = 0:6 and

Bz = 1:1, for a system of size 41 × 41 with PBC in x and OBC in y . We see that this case differs from

the previous one since the in-gap states are poorly localized on the edges and show some oscillations

along the bulk. This behaviour is verified throughout the whole topological region. There appears to be a

lack of a clear bulk-edge correspondence, in the sense that the topological properties are not as clearly

manifested in the edges as would be expected. Nevertheless, there is still some localization, which also

appears to be not exactly at the edge layer but at the subsequent ones. It is important to note, however,

that the lack of bulk-edge correspondence can be a finite size effect, and that in the thermodynamic limit

the contributions of the wavefunctions towards the bulk can become smaller.
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Figure 4.26: In-gap states at the topological phase with C = −1 for — = −3:5,
d = 1=6, Bz = 0:3, and – = 1:05; ffi = 0 in the quasi-periodic Aubry-André potential.
The left panel (1) shows a state at E = 10−3 (top) and a one-dimensional cut of the
wavefunction at x = 20 (bottom). The right panel (2) shows a state at E = 5× 10−2

(top) and a one-dimensional cut of the wavefunction at x = 20 (bottom). The middle
panel locates the value of – within the topological phase (top) and locates the states
(1) and (2) in the energy spectrum of the system (bottom).
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We can look at what happens to the edge states as disorder is introduced in a case with finite I(ky )

and Chern equal to zero in the clean system. In figure 4.27 the lowest positive energy state of the system

is shown for — = −3:5, d = 1=6, and Bz = 0:3 as a function of quasi-disorder strength, –, for ffi = 0 in the

quasi-periodic potential. The phases with C = 0 are represented in green and the phases with C = −1

are represented in blue. The first phase with C = −1 is the phase illustrated in figure 4.26 for the value

– = 1:1. Looking at the system’s energy spectrum, we see that for low values of disorder there is no gap

opening, and the low energy edge states remain in the system. As disorder is introduced, I(ky ) loses

its meaning due to the broken translational invariance of the system, so in this sense the states are no

longer expected to be topologically protected. However, it is also possible that a real-space calculation of

I(ky ) (as with twisted boundary conditions) could show that the invariant remains quantized, protecting

the edge states as disorder is increased.
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Figure 4.27: First positive energy state for a system of size 41 × 41 vs. disorder
strength of the quasi-periodic potential, for the case ffi = 0, and for the parameters
— = −3:5, d = 1=6, and Bz = 0:3 The phases with C = 0 are represented in green,
and the phases with C = −1 are represented in blue.
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4.2 Quasi-disorder and Anderson disorder effects in mixed space

We now want to study disorder in a mixed space (kx ; y) such that the Hamiltonian is written as in equation

3.7 and modified according to equations 4.5 and 4.6. Disorder of Type IV (Anderson disorder) and Type

V (Aubry-André quasi-periodic potential) are considered. In both cases the disorder term depends on

y and is the same for all kx . The numerical study of the system now involves the diagonalization of a

matrix of size (4× Ny )× (4× Ny ) for each value of kx and for each disorder configuration.

4.2.1 Energy spectra evolution and density of states

Anderson disorder

In figure 4.28 the energy spectra evolution for the parameter values t = 1, d = t=6, — = 3d − 4t, a)

By = 0:5d , b) By = d , c) By = d , ¸ = 0:2d , ∆s = 0:5d and d) By = 4d , ¸ = 0:2d and ∆s = 0:3d are

shown, for several values of disorder strength –. 2 Figure 4.29 shows the results for the density of states

of the corresponding cases a)-d) of figure 4.28. Here the DOS is obtained from exact diagonalization of

the system with size Ny = 76. It is such that a number of states N(∆E) is obtained for an energy interval

∆E centered at an energy E, and normalized by the system size, as:

ȷ(E) =
N(∆E)

Ny × Nk
; (4.9)

where Ny is the number of y sites and Nk is the number of kx points.

Figure 4.28 a) shows a case where the system has gapless edge states and the bulk gap is not closed

by By , hence we are outside the shaded region depicted by figure 3.7. As – is increased, the edge states

lose their structure and the bulk gap is closed. Accordingly, there is an increase in the density of states

at E = 0 and around zero energy as it can be seen in figure 4.29 a). Case b) corresponds to a gapless

phase with both edge states and a range of kx supporting Majorana flat bands. As disorder is increased,

the bulk remains gapless and there is a sharp increase in the density of states at zero energy, as the

bulk states come from finite energies to lower energies. The sharp peak in the DOS observed at E=0

is reminiscent of the characteristic behaviour of a two-dimensional disordered D class superconductor

in the thermal metal regime [84] in which the density of states displays a logarithmic divergence at zero

energy. One important remark is that the flat band states in b) are not lifted by Anderson disorder to

finite energies. This is also verified for regimes with a higher value of By . This result is in accordance to

what was observed in ref. [8] for Gaussian on-site disorder. In c), a finite value of spin-orbit coupling and

of s-wave pairing are added to b), and the model describes a noncentrosymmetric superconductor. The

time reversal-like symmetry Tky is preserved but the particle hole-like symmetry Pky is broken. There is

an exception at the points (kx ; ky ) = (nı;mı) with m; n ∈ Z where the symmetry remains valid. As a

result, the energy spectrum for a fixed value of momentum loses the symmetry around E = 0, except

at kx = 0, where the symmetry is preserved. This also leads to a breaking of the chiral-like symmetry

2Note that, in any case, as disorder is increased the superconductivity may eventually be destroyed. However, we do not take
this into account here, and the superconducting pairing parameters d and ∆s are imposed and taken as fixed values.
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Sky which protects the flat bands, and they are lifted to a finite energy. As disorder is introduced in the

system in c), the edge states are destroyed and the considered energy range gets filled with bulk states,

but the tilt of the spectrum is preserved. As a result, the flat bands which were previously lifted to finite

energies do not collapse to zero energy. For high values of – the density of states exhibits two peaks

which result from the inclination of the bulk energy spectrum.

Figure 4.28: Energy spectra evolution with Anderson disorder for a) By = 0:5d , b)
By = d , c) By = d , ¸ = 0:2d , ∆s = 0:5d , d) By = 4d , ¸ = 0:2d , ∆s = 0:3d .

In figure 4.28 d), the system also describes a noncentrosymmetric superconductor with mixed p and

s-wave pairings. The values of the p-wave pairing and spin orbit term are kept constant in relation to

case c), but the s-wave pairing term is decreased from ∆s = 0:5d to ∆s = 0:3d and the magnetic field

is increased from By = d to By = 4d . The system is in the regime where unidirectional MESs appear.

The spectrum acquires a tilt in the opposite direction if compared to c), which is a result of the increased

magnetic field. The Majorana edge states are robust to small values of disorder strength (as it can be

seen in the figure for – = 0:4) but as disorder increases the structure of the band is lost, as bulk states

fill the lower energy values. This differs from case c) where the tilt of the spectrum is preserved even at
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higher values of disorder. In d) as disorder is increased there is at first an increase in the value of the

DOS at zero energy, which then decreases for higher values of disorder. This can be seen in figure 4.29

d). For – > 1:8 the density of states becomes nearly constant in the considered range of E ∈ [−0:4; 0:4].

c) d)

b)a)

Figure 4.29: Density of states evolution with Anderson disorder for E ∈ [−0:4; 0:4],
for the parameter values a) By = 0:5d , b) By = d , c) By = d , ¸ = 0:2d , ∆s = 0:5d ,
d) By = 4d , ¸ = 0:2d , ∆s = 0:3d .

Aubry-André disorder

We now consider the same parameter values but with added Aubry-André disorder. Figures 4.30 a)-d)

portrait the main results found.

Figure 4.30 a) shows a case where the system has gapless edge states and the bulk gap is not

closed by By , hence we are outside the shaded region depicted by figure 3.7 and there are no flat

bands before introducing quasi-disorder. These edge states remain robust for small values of the quasi-

periodic potential strength (– < 0:8). Around – = 1:2 the bulk gap is closed and a new flat band appears,

which then splits in two and disappears as a gap opens in the system for around – = 1:8. Figure 4.31

shows the DOS for some values of disorder –. The appearance of MFBs leads to an increase of the

density of states at zero energy, as it can be seen in figure 4.31 a) for the value of – = 1:4. At higher

values of disorder, the system is gapped and the DOS at E = 0 goes to zero. The reopening of the gap

contrasts with what was found for Anderson disorder in figure 4.28 a), where the bulk remains gapless

as disorder is increased. Figure 4.32 shows the edge states of the clean system in a), and in b) the

zero energy states inside the flat band that appears with increased disorder. In the two cases the states

appear localized at both edges simultaneously. While the edge states of the clean system are localized

symmetrically on both edges, the flat band states lose this symmetry and localize more near one of the

edges. Near the edge on which a given state appears less localized, there is also a deviation from the
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edge, and the state mostly localizes on the subsequent sites in y .

Figure 4.30: Energy spectra evolution with Aubry-André disorder for a) By = 0:5d ,
b) By = d , c) By = d , ¸ = 0:2d , ∆s = 0:5d , d) By = 4d , ¸ = 0:2d , ∆s =
0:3d . A more detailed evolution of the spectra, as well as more cases with different
parameter values, can be found in Appendix C.

In figure 4.30 b) the clean system is in a gapless phase with both edge states and MFBs in the

range where kx is nontrivial. The edge states appear once again to be robust up until around – ≈ 0:8.
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However, the MFBs which are present at – = 0 are more robust if compared with the edge states, with

the band staying at zero energy but the initial range of kx hosting flat bands decreasing as – increases.

Simultaneously, flat bands appear for new values of kx , as it can be seen in the figure for – = 1:4, and

accordingly, the density of states at zero energy increases. Note however that the behaviour of ȷ(E = 0)

is not monotonic, as is the case in a). At higher values of disorder there is a collapse of states to lower

energies and the density of states exhibits a peak at E = 0 which is reminiscent of the behaviour found

for Anderson disorder (figure 4.29). Contrary to what is observed in a) for a lower magnetic field, there

is no opening of the bulk gap for larger values of –. When quasi-periodic disorder is introduced, it was

seen that a gap will only open for larger values of – if the bulk was gapped prior to introducing disorder,

as in a), otherwise the bulk will remain gapless.

The cases c) and d) introduce spin-orbit coupling ¸ and s-wave pairing, and as before, the model

describes a noncentrosymmetric superconductor with mixed p and s-wave pairings. Case c) seems to

have a similar evolution to b), except that the spectrum has a tilt resulting from the symmetry breaking

that comes with the added spin orbit and s-wave terms. Instead of new flat band regimes, new unidirec-

tional edge states appear. Unlike what happens for Anderson disorder, at high values of – a gap opens

for values of kx around kx = 0 (although the bulk as a whole remains gapless). This is reflected in the

density of states, that drops around E = 0 for higher disorder values. Similarly to what was observed for

Anderson disorder, the tilt of the energy spectrum is preserved as disorder increases.

Figure 4.31: Density of states evolution with Aubry-André disorder for E ∈
[−0:4; 0:4], for the parameter values a) By = 0:5d , b) By = d , c) By = d , ¸ = 0:2d ,
∆s = 0:5d , d) By = 4d , ¸ = 0:2d , ∆s = 0:3d .
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Figure 4.32: a) Edge states of the clean system with size Ny = 200 and magnetic
field By = 0:5d , at kx = 0 (zero energy state) and kx = 0:02ı (finite energy state). b)
Flat band zero energy states of the quasi-disordered system at By = 0:5d , – = 1:4.

In d) the clean system possesses unidirectional edge states. When a certain value of disorder is

reached, ”flipped” unidirectional states appear in the system. This is seen clearly in 4.30 d) for the

values of – = 1:2 and – = 1:4, as a band with negative slope appears for values of kx around kx = 0. At

– = 1:2 there is a coexistence of unidirectional ”flipped” left-moving edge modes (with negative slope)

around kx = 0 and right-moving edge modes (with positive slope) for higher (absolute) values of kx . As

discussed in section 3.3.3, a backflow current that balances the current on the edges is created on the

bulk: extra right or left moving modes will appear depending on the net current on the edges. Figure 4.33

shows a) a undirectional state of the clean system and b) a ”flipped” state at – = 1:2. Both wavefunctions

are localized at both edges simultaneously and the disordered state is nearly symmetric on both edges,

contrasting with the flat band states presented in 4.32. For – > 1:2 the structure of the right-moving

unidirectional states starts to be lost. At higher values of disorder the energy spectrum acquires a tilt in

the opposite direction to that of the clean system.
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Figure 4.33: a) MES for E = 0, kx = 0 and with no disorder, for a system with
Ny = 200 and parameters corresponding to figure 4.30 d). b) State at E = 0, kx = 0
with quasi-periodic potential of strength – = 1:2 and a random value of ffi. The state
has a flipped velocity, as is seen in the energy spectrum.
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4.2.2 Quasi-disorder induced Majorana Flat Bands

We want to investigate if the MFBs that arise in the presence of the quasi-periodic potential have a

topological nature, such as in the case of the MFBs in the ordered system, as discussed in Section 3.3.1.

One possibility is to calculate the winding number W in real space. An approach suitable for disordered

systems is discussed in [85–87] and involves a reformulation of the k-space expression to real-space,

to calculate a ”non-commutative” winding number. This is done by writing the chiral symmetry matrix S

in a real-space representation and writing the real-space Hamiltonian H in an anti-diagonal block form.

The key point of this approach is the geometrical calculation of a commutator between the anti-diagonal

block and the position operator. This however was not implemented here. Instead, since the Berry phase

was found to be quantized to a value of ı in the clean system in the region of MFBs, we calculate it here

for the disordered case.

The Berry phase is obtained in real space using twisted boundary conditions, similarly to the ap-

proach to the calculation of the Chern number (Appendix B). Considering a twisted boundary phase „y

we have:

‚ = i

Z 2ı

0

d„y ⟨Ψ(„y ) |
@

@„y
Ψ(„y )⟩ (4.10)

where Ψ denotes the ground-state many body wavefunction, which is given by the Slater determinant of

the single particle wavefunctions. We can represent the ground state wavefunction by an M × N matrix

Ψ„y where N is the number of sites in y andM is the number of occupied states (negative energy states).

Numerically, the twist variable is discretized into L points between 0 and 2ı, such that „y is constrained

to take the values „y;n = 2ı
L
n, with n an integer that goes from 0 to L − 1. A link variable can then be

defined as U(„y;n) = det
ˆ
Ψ†

„y;nΨ„y;n+1

˜
, and the Berry phase is obtained as

‚ = −i
LX
n=1

logU(„y;n): (4.11)

The results for two sets of parameters are presented in figures 4.34 and 4.35. Similarly to the ordered

case, the MFBs that arise in the presence of the Aubry-André potential reveal a ı-quantized Berry

phase. Figure 4.34 concerns the case of By = 0:5d where the system has a bulk gap previously to

introducing the quasi-periodic potential and hence a transition to a ı-quantized Berry phase occurs. For

– = 1:4 (left) we have a single band that then splits in two (middle) and at – = 1:8 (right) the Majorana

flat band has dissapeared as the gap reopens and the Berry phase is zero for all kx . Figure 4.35 is the

case of By = d where the spectrum was already gapless but the quasi-periodic potential causes the

appearance of new regions with MFBs. Similarly to the case of By = 0:5d the center band splits in two

with a gap opening at kx = 0. Figures 4.34 and 4.35 are obtained for random values of ffi in the Aubry-

André potential. It was verified that the regimes of kx for which the Berry phase becomes ı-quantized

are independent of ffi, and the MFBs appear for any value of ffi.
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Figure 4.34: Energy spectrum evolution for a system with 76 sites in y for different
values of – vs. Berry phase normalized by 2ı as a function of kx , for a random
value of ffi in the quasi-disorder potential. The values of the parameters are t = 1,
d = t=6, — = 3d − 4t, By = 0:5d and – = 1:4 (left), – = 1:6 (middle), – = 1:8 (right).
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Figure 4.35: Energy spectrum evolution for a system with 76 sites in y for different
values of – vs. Berry phase normalized by 2ı as a function of kx , for a random
value of ffi in the quasi-disorder potential. The values of the parameters are t = 1,
d = t=6, — = 3d − 4t, By = d and – = 1:4 (left), – = 1:6 (middle), – = 1:8 (right).

To quantify the induced bands at zero energy and study the transition to a ı-quantized Berry phase,
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we use the concept of Majorana pair density. This is defined as [88]

ȷ‚ =
N‚
Nk

(4.12)

where Nk is the number of discrete points of kx taken inside the interval [−ı; ı], and N‚ is the number of

such points which support MFBs at the edges. Numerically it is more convenient to consider the number

of kx points for which the Berry phase is quantized to ı, Nı, since it was found that Nı = N‚ . A transition

from ȷ‚ = 0 to ȷ‚ ̸= 0 then signals a transition from a trivial to a topological regime (ı-quantized Berry

phase). Figure 4.36 a) shows the evolution of ȷ‚ as a function of the quasi-disorder strength – for the

case t = 1, d = t=6, — = 3d − 4t and By = 0:5d (figure 4.30 a) ), for the range – ∈ [1; 2] with a step 0:01

in –. Outside this range, ȷ‚ remains zero. A transition ȷ‚ = 0 → ȷ‚ ̸= 0 occurs between – = 1:22 and

– = 1:23 at a certain critical value –C;1. The value of ȷ‚ grows until 1:49± 0:01 when the flat band splits

in two and the behaviour of ȷ‚ changes, with an abrupt change in the sign of the second derivative.

A second transition occurs between 1:79 and 1:8, at a critical value –C;2, where ȷ‚ becomes zero. It

is understood that both transitions should be continuous in the limit Nk → ∞, where ȷ‚ would grow

continuously from zero. In figure 4.36 b) the density of states at zero energy ȷ(E = 0) (normalized by

the system size) is shown, for the same parameters and system size as in figure 4.36 a), along with the

corresponding contribution for the zero energy density of states which comes from the MFB, ȷ(E = 0)‚ .

Inside the topological phase, which is highlighted, we can see that the finite value of ȷ(E = 0) observed

for the system with OBC comes almost entirely from the presence of flat bands.

Figure 4.36: a) Values of ȷ‚ for the case t = 1, d = t=6, — = 3d − 4t and By = 0:5d
(figure 4.30 a) ) vs. quasi-disorder strength –. Obtained for a system with 76 sites
in y . b) Value of the DOS at E = 0 for the same parameter values as in a), vs.
quasi-disorder strength –, and the contribution for ȷ(E = 0) which comes from the
Majorana flat bands in the corresponding regime.

Ny –C;1 –C;2
76 1:225± 0:005 1:800± 0:005
100 1:215± 0:005 1:775± 0:005
175 1:230± 0:005 1:805± 0:005
200 1:220± 0:005 1:800± 0:005
400 1:230± 0:005 1:805± 0:005
800 1:225± 0:005 1:805± 0:005

Table 4.1: Values of the critical exponents –C;1 and –C;2 for the system sizes
{76; 100; 175; 200; 400; 800}.
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Table 4.1 shows the values of –C;1 and –C;2 for several system sizes. These values were obtained

for random values of the phase ffi in the Aubry-André potential, and the uncertainty is taken as the

minimum interval considered between values of –. It is found that the values of the critical points show

little variation with the system size.

4.2.3 Scaling of the density of states: critical exponents

A detour to the clean case

Let us first briefly consider the clean system, without disorder. For the clean case, it is possible to obtain

the values of the dynamical exponent z and of the critical exponent  analytically, for the transition that

occurs as By is increased, corresponding to a transition from a winding number of 0 to 1 or a Berry

phase of 0 to ı. Here we consider the case of — < −2t (such that the topological phase is within the

region described by equation 3.38). At the topological transition to a gapless phase, the gap closing

points in kx , kx;0, are given by

kx;0 = ± arccos

»
−2(t—+ 2t2)

−d2 + 4t2

–
+ 2nı; n ∈ Z: (4.13)

The values of ky for which the gap closes are given by ky;0 = nı, n ∈ Z (general solution). In this case

the transition happens at ky;0 = 2nı, n ∈ Z. The gap closes at a critical value of the magnetic field, ByC ,

which, fixing ky = ky;0, is defined from the value of kx;0 as

B2
yC = [—+ 2t (cos kx;0 + 1)]2 + d2 sin2 kx;0: (4.14)

We can now first expand the expressions for the bulk energy, 3.24, around kx;0 to find the dependence

of the energy on kx . There are four energy bands, but the two middle bands (which have a lower

energy, in absolute value) dictate the closing of the bulk gap. Close to the critical point, we assume

B2
y ∼ [—+ 2t (cos kx + 1)]2 + d2 sin2 kx . We only need to consider the first positive energy band, which

as a function of kx , and taking ky = ky;0 simplifies to:

E+(kx) =
q
z1 − 2

√
z2 (4.15)

with

z1 = 2¸; z2 = ¸2 (4.16)

and

¸ = [—+ 2t (cos kx + 1)]2 + d2 sin2 kx : (4.17)

Expanding E+(kx) around kx;0 shows E+(kx) ∝ (kx − kx;0), implying a value of the dynamical exponent

z = 1 for the transition, according to equation 2.50.
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We can now take kx = kx;0 and see how the gap closes as a function of By . We find

E+(kx = kx;0) =

r
B2
yC + B2

y − 2
q
B2
yCB

2
y = ||ByC | − |By || : (4.18)

Therefore at kx = kx;0 the gap vanishes linearly, with an exponent z = 1, according to equation 2.49.

Since z = 1, this implies  = 1, and

z = 1;  = 1: (4.19)

We can now investigate if numerical and analytical results agree in the case of the trivial-topological

transition. To do this, the results for the density of states at the first transition (0 → ı) and around it are

obtained for a system of size Ny = 400. From equations 4.13 and 4.14 it is obtained that for the usual

values of t, d and —, the critical value of By;C for the first transition is By;C ≈ 0:1097. By inspection of the

energy spectrum at the critical value of By we can see that we should seek a typical scaling behaviour

of the density of states around E ∈ [0; 0:025]. This can be seen in figure 4.37, as outside this range, bulk

states which do not contribute to the closing of the bulk gap will be accounted for in the DOS. This is

not only seen from the energy spectrum but also from a change in the behaviour of the density of states

at low energies. At the critical point the DOS is expected to behave according to equation 2.48. A fit is

done to a function of the form

(C1|E|)
d
z −1 (4.20)

where d = 2 and C1 is a constant.

Figure 4.37: a) Density of states ȷ(E) at the critical value of the magnetic field,
By;C , and fit of a function of the form of equation 4.20 to the energy range E ∈
[0:005; 0:025] (black dashed line). Obtained for a system with PBC with size Ny =
400, and using a number of kx points Nk = 629. b) Energy spectrum for the same
parameter values and the same system size as in a), with PBC. The energy region
E ∈ [−0:025; 0:025] is highlighted.

In figure 4.37 a) the density of states ȷ(E) at the gap closing point is presented for low energies, as

well as the bulk spectrum in 4.37 b). Both figures are obtained for the system with periodic boundary

conditions. The value of z obtained was of z = 1:08± 0:07, which corresponds to a deviation of 8% from

the analytical result of z = 1. Also, we can note in figure 4.20 a) that the value of the density of states at
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zero energy, ȷ(E = 0), is not zero, which is not accounted for in equation 4.20. 3

Now we are interested in obtaining the value of  numerically. For values of By close to the critical

point, which correspond to small values of ‹, a collapse of the scaled values of the DOS according to

equation 2.47 is expected. This should hold for small values of ‹ and also for energy values close to

zero energy. From here the value of  can be estimated. We take values of By > By;C , where the energy

spectrum becomes gapless, as for By < By;C the system is in a gapped phase.

B y = 0.10979
B y = 0.1098
B y = 0.1099
B y = 0.11
B y = 0.111
B y = 0.11105
B y = 0.1115
B y = 0.112
B y = 0.113

Figure 4.38: Density of states for E ∈ [0:02; 0:09] and several values of By close to
the critical value, By;C , scaled according to equation 2.47 for z = 1:08 and  = 0:95.

The results for the scaled density of states for several values of By close to the transition point are

presented in figure 4.38, for the values z = 1:08 and  = 0:95. There is a good agreement with the

analytical results and the gap closing exponent remains close to one, with z = 1:026.

By;C z 
0.1097 1:08± 0:07 0:95± 0:05

Table 4.2: Values of z and  obtained numerically for the topological transition in
the clean case.

Aubry-André: numerical determination of z and 

Going back to the disordered case, we now want to investigate the scaling properties around the topo-

logical transitions (0 → ı) and (ı → 0). A numerical approach is now necessary. First, to estimate the

values of the dynamical exponents z for both transitions, the density of states is obtained at the critical

values of disorder obtained in the previous section for the system size Ny = 800. The values of t, d , —

and By remain constant and only the value of the quasi-disorder strength, –, is varied.

Figures 4.39 and 4.40 show the density of states at the critical points –C = 1:225 and –C = 1:805,

respectively, along with the bulk spectra. A region of interest, where a characteristic behaviour of ȷ(E)

3At the gap closing point, the DOS calculated for the interval around zero energy will have a small contribution of the bulk states
of lowest absolute finite energy. Since in the thermodynamic limit and exactly at the critical point ȷ(E = 0) should be zero the
choice was made as to exclude the point E = 0 from the fit.
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should be seen, is found close to zero energy for E ∈ [−0:025; 0:025]. This is seen both in the graphs

of ȷ(E) and by inspection of the energy spectra. Figures 4.39 a) and 4.40 a) show a fit of the density of

states according to equation 4.20, again excluding the point ȷ(E = 0). We obtain for the first transition

at –C;1 = 1:225 a value of the dynamical critical exponent z = 1:27± 0:04 and for the second transition at

–C;2 = 1:805 a value of z = 1:23± 0:03.

Figure 4.39: a) Density of states ȷ(E) at the critical value of the disorder strength,
–C;1 = 1:225, and fit of a function of the form of equation 4.20 to the energy range
E ∈ [0:005; 0:025] (black dashed line). Obtained for a system with PBC with size
Ny = 800, and using a number of kx points Nk = 629 and averaged over 10 disorder
configurations. b) Energy spectrum for the same parameter values and the same
system size as in a), with PBC and ffi = 0 in the quasi-periodic potential. The energy
region E ∈ [−0:025; 0:025] is highlighted.

Figure 4.40: a) Density of states ȷ(E) at the critical value of the disorder strength,
–C;2 = 1:805, and fit of a function of the form of equation 4.20 to the energy range
E ∈ [0:005; 0:025] (black dashed line). Obtained for a system with PBC with size
Ny = 800, and using a number of kx points Nk = 629 and averaged over 10 disorder
configurations. b) Energy spectrum for the same parameter values and the same
system size as in a), with PBC and ffi = 0 in the quasi-periodic potential. The energy
region E ∈ [−0:025; 0:025] is highlighted.

We now want to determine the value of . We take values of – inside the topological (gapless) phase,

– > 1:225 and – < 1:805, and obtain the density of states close to zero energy.
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b)a)

Figure 4.41: Density of states for E ∈ [0:005; 0:025] and several values of – close to
the critical values, a) –C;1 = 1:225 and b) –C;2 = 1:805, scaled according to Equation
2.47 for a) z = 1:27,  = 0:95 and b) z = 1:23,  = 1:00.

In figure 4.41 we show the results for scaled the density of states for: a) values close to the first

transition at –C;1 = 1:225, and b) values close to the second transition at –C;2 = 1:805. The density of

states shows a collapse for a) z = 1:27,  = 0:95 and b) z = 1:23,  = 1:00. Since a bigger system size is

considered in relation to what was studied in the clean case we achieve a better agreement in behaviour

of the density of states and expect these numerical results to be more accurate.

The quantum phase transitions in the disordered regime are therefore in a different universality class

than that of the clean case, which was found to behave with z =  = 1. The obtained values also differ

significantly from the known results for the Anderson or the Aubry-André transitions in one dimension,

the first belonging to an universality class with with  = 2 and z = 2=3, and the second case with critical

exponents  = 1 and z = 2:375 [89]. Recent results show that for a one dimensional system with p-wave

superconductivity subject to an Aubry-André potential the quasi-disorder driven transitions also deviate

from the normal Aubry-André class. For the localized-critical transition line and when the p-wave pairing

term is finite, the correlation length exponent was obtained as  = 0:997 and the dynamical exponent

as z = 1:373 in [40], and as  = 1:000, z = 1:388 in [41]. Note, however, that the referred results are

for d = 1 while we are studying a two dimensional system, and also concern systems with no applied

magnetic field. Up to numerical errors, the values of  obtained for the disordered driven transitions

coincide with that of the Aubry-André transition; nevertheless the value of z deviates from that of the

known classes, which suggests these transitions belong to novel universality classes. The identified

transitions, where MFBs appear as a result of a quasi-disorder induced gap closing, and the subsequent

opening of the bulk gap, are found to happen for other values of the imposed parameters. Taking —, t

and d at the same fixed values, as long as By < By;C (when the bulk is gapless) with By;C is defined as

in equation 4.14) the same type of transitions will take place with the increase of –. It is likely that the

obtained values apply to the whole transition line in the (–,By ) phase diagram space, and that the fixed
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value of By does not confer any loss of generality. It is important to note, however, that the bulk gap will

not close as a result of increased quasi-disorder if the applied magnetic field in the y direction is zero.

This can be seen in the appendix figure C.1.

–C z 
1.225 1:27± 0:04 0:95± 0:05
1.805 1:23± 0:03 1:00± 0:05

Table 4.3: Values of z and  obtained numerically for the topological transitions in
the disordered case.
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4.2.4 Fractal analysis

As discussed in Chapter 2, the scaling of the generalized IPR can be used to obtain information about

the fractal nature of the wavefunctions, through the values of the exponent fi(q) defined in equation 2.39,

and the generalized dimension D(q). Here kx is taken at fixed values, such that system is reduced to an

effective one dimension. The IPR as a function of q is calculated and averaged within a certain energy

range. We fix the parameters t = 1, d = t=6, — = 3d − 4t and By = 0:5d and consider both the cases of

Aubry-André disorder and Anderson disorder.

Anderson disorder

First we want to study the Anderson disorder case. We consider bulk states at low energies, and exclude

the edge states. For states within a fixed energy range E ∈ [0:05; 1] the IPR is obtained and averaged

over, for several system sizes. The number of states in each disorder configuration varies, but we know

the states are within the selected range. For each value of q, and each value of disorder strength, the

averaged value of the IPR is fitted to a function of the form

IPR(q) = CLfi(q) (4.21)

where L is the system size, which here corresponds to the number of sites in y , Ny , and C is a constant.

The sizes of the system considered are L ∈ {75; 100; 150; 175; 200; 255; 275; 400; 475; 600; 675; 800} and

we fix the values of kx .

a) b)kx = 0.02π kx = 0.2π

Figure 4.42: Results of fi vs. q, for several values of Anderson disorder strength, –,
for a) kx = 0:02ı and b) kx = 0:2ı. The IPR is averaged for the states within the
energy range E ∈ [0:05; 1].

Figure 4.42 shows the values of fi(q) for kx = 0:02ı and kx = 0:2ı, for several values of disorder

strength – and considering all the values within the interval for the system size, L. The results are

obtained for states within the energy range E ∈ [0:05; 1]. We recall that in the clean system the bulk gap

is of the order of E ≈ 0:04 (although the value of the gap is not the same for each kx ). One thing that
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can be immediately noticed is that for the clean system, – = 0, the values of fi(q) closely follow the line

fi(q) = (q − 1), indicating that D(q) is q−independent and equal to 1. This is the expected behaviour

of the clean system (taking a fixed kx where the system is reduced the one dimension) and reveals that

the bulk states are extended in the y direction. For higher values of disorder, fi(q) approaches the line

fi(q) = 0, where D(q) = 0, suggesting the states are localized and possess a single-fractal nature, with

D(q) being close to zero for all q. For other values of disorder strength, starting at – = 0:1, fi(q) does

not follow a behaviour characteristic either of D(q) = 1 or D(q) = 0. In order to take a conclusion, it is

necessary to evaluate fi(q) as the system size tends to infinity. To do this, several subintervals of L are

considered, to which a fit of equation 4.21 is done:

L1 = {75; 100; 150; 175; 200; 255; 275; 400; 475; 600; 675; 800};

L2 = {150; 175; 200; 255; 275; 400; 475; 600; 675; 800};

L3 = {200; 255; 275; 400; 475; 600; 675; 800};

L4 = {275; 400; 475; 600; 675; 800}:

(4.22)

Figure 4.42 corresponds to a fit to interval L1. It is found that for the values – = 0:1 and above, as larger

values of L are considered, the curves fi(q) approach fi(q) = 0. This not only suggests a single fractal

nature but also a localization of the bulk states in the thermodynamic limit for small values of disorder.

It is known that for one dimensional systems all states are localized for any finite value of uncorrelated

disorder. By taking kx at a fixed value, we are also reducing the problem to an effective one dimension

and this suggests that the states will become localized along the y direction for small values of disorder

as the system size tends to infinity. With the simplification of studying the system at a fixed value of kx

we can only take conclusions about the nature of the states along the y direction in real space.

k x = 0.02 π

k x = 0.2 π

Figure 4.43: Values of fi at different values of q and disorder strength –, for kx =
0:02ı (●) and kx = 0:2ı (▲). The IPR is averaged for the states within the energy
range E ∈ [0:05; 1].
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In figure 4.43 several values of fi(q) are presented, for different values of disorder strength –, obtained

with fits of the IPR for the several values of the system size in 4.22. For – = 0 the values of fi(q) follow

the values of q − 1 for any interval of L. On the other hand, for finite values of disorder strength – ̸= 0,

fi(q) tends to higher values if q < 1 and for lower values if q > 1 as the system size is increased, which

is consistent with a single-fractal behaviour.

Aubry-André disorder

We take the same system sizes and intervals and the same fixed values of kx and introduce Aubry-André

quasi-periodic disorder. Figure 4.44 shows the values of fi(q) for kx = 0:02ı and kx = 0:2ı, for several

values of quasi-disorder strength – for the size interval L1. The results are obtained for states within

the energy range E ∈ [0:05; 1]. Unlike the previous case with Anderson disorder we see that the results

differ for each kx , and that for some values of disorder strength fi(q) follows the line q − 1 closely until

some value of q where the behaviour suddenly changes.

a) b)kx = 0.02π kx = 0.2π

Figure 4.44: Results of fi vs. q, for several values of quasi-periodic disorder
strength, –, for a) kx = 0:02ı and b) kx = 0:2ı. The IPR is averaged for the
states within the energy range E ∈ [0:05; 1].

Figure 4.45 shows the values of fi(q) fitted for the considered size intervals. It is seen that for lower

values of q, fi remains at the values defined by the equation fi(q) = D(q)(q−1) with D(q) = 1. However,

at higher values of q, this behaviour changes. Contrary to the case in 4.43, there is no clear tendency

of fi(q) at increased system sizes, and the behaviour also depends on the value of q. This deviation

from the D(q) = 1 line is verified as soon as disorder is introduced, and suggests the system is in a

multifractal regime. From inspection of 4.44 and of the corresponding values of fi(q) at larger system

sizes, we identify a transition to a single-fractal phase around – ∈ [2:0; 2; 1]. Note that this does not

coincide with the identified value of – for the topological-trivial transition. Figure 4.46 illustrates the

phases of the system. Examples of a) an extended, b) a critical, and c) a localized state, are shown.

Note that between figures a), b) and c) the scale of the y axis changes by a factor of 10.
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k x = 0.02 π

k x = 0.2 π

Figure 4.45: Values of fi at different values of q and disorder strength –, for kx =
0:02ı (●) and kx = 0:2ı (▲). The IPR is averaged for the states within the energy
range E ∈ [0:05; 1].
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Figure 4.46: Example of wavefunctions on the different phases, at a fixed value
kx = 0:02ı, for a system with 200 sites in y . a) Extended wavefunction at E = 0:63,
– = 0, b) critical wavefunction at E = 0:67, – = 1:6, c) localized wavefunction at
E = 0:7, – = 2:6. Obtained for random values of ffi in the quasi-periodic potential.
Note that for each figure the scale of the y axis changes by a factor of 10.
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5
Discussion, conclusions and future work

In this work we studied a model of a two-dimensional topological superconductor in the presence of a

magnetic field. We introduced disorder and quasi-disorder in the system with the aim of studying the

effects on topological and localization properties.

The system was first studied on a real space approach, and under a parallel magnetic field. We

discussed the case where Anderson disorder is added to the edges, and then the case of Aubry-André

edge disorder. For both cases, we obtained the result that the IPR of the bulk states remains nearly

constant, and the system as a whole is essentially unaffected, while the edge states significantly localize.

For the lowest energy states, the behaviour of the IPR as a function of – is different for Anderson or

Aubry-André edge disorder: in the first case, it grows continuously (meaning the states continuously

localize) as disorder is increased; in the second case, we see a threshold behaviour where the states’

IPR remains nearly constant until a certain value of –, after which the IPR shows a significant increase.

In both cases, we find that the lowest energy states for By = 0:5d are more vulnerable to the edge

disorder in the sense that the IPR shows a bigger increase compared with the other parameter sets

considered. We also showed that the local edge disorder affects the modulation of the lowest energy

wavefunctions on the bulk layers near the edges.

We then studied the cases of bulk disorder, with three different spatial configurations: Anderson

disorder, Anderson disorder with x periodicity and Aubry-André disorder, modulated in the y direction

and with x periodicity. In the first case (Anderson disorder), we found that the average IPR of the system

increases with an exponential behaviour as a function of – for – > 1:5. We also observed that the IPR

of the lowest energy states increases less than the average IPR of the system. From observation of the

wavefunctions, we saw that the lowest energy states are removed from the edges and localize inside

the bulk. In the second case (Anderson disorder with x periodicity), we found that the average IPR of

the system differs greatly from the previously considered case, increasing linearly as a function of – for

– > 0:5, and the behaviour of the lowest energy states’ IPR shows no significant difference from that of

the average IPR. The low energy states are removed from the edges for around – = 0:6 and the states

become increasingly localized in the y direction, remaining periodic in the x direction. For Aubry-André

disorder, the behaviour of the average IPR of the system reveals the existence of two different regimes.

In the fisrt the average IPR shows a slow increase with –, and in the second the IPR greatly increases.

The transition between two regimes is located around – = 2. In this case, the edge states are robust to
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the introduction of disorder, in the sense that they remain localized at or near the edges. For the case

that was looked into with more detail, of By = 0:5d , we found that the edge states are removed around

– = 1:8, with an opening of the bulk gap. As disorder is increased, the states become sharply localized

in the y direction. Also in this case, the bulk states present a critical-like behaviour in the y -direction, for

intermediate values of disorder. For higher disorder values, – > 2, the states become localized in the y -

direction while still maintaining a periodic behaviour in the x direction. In any disorder case considered,

we found that the average IPR behaves in the same way for By = 0:5d or By = 3:5d as a function of –.

For the case with By = 4d , with added spin-orbit coupling ¸ = 0:2d and singlet s-wave pairing ∆s = 0:3d

the system has a different behaviour with a value of the average IPR which is consistently lower for all

disorder cases.

The real space system was also studied under a perpendicular magnetic field Bz with introduced

Anderson and Aubry-André disorder with periodicity in the x direction. We observed that the response

of the topological phases of the system differ to the introduced types of disorder, and that quasi-disorder

induces topological phases in new regions of Bz , characterized by integer values of the Chern number

C. The critical points at these phase boundaries were shown to not change significantly as the system

size increases, allowing us to conclude that the obtained phase diagrams should apply to bigger system

sizes. Two of these new topological regimes were looked into with more detail, and they were found to

be qualitatively different. Although both phases are characterized by a Chern number C = −1, one was

found to show sharply localized edge states, while the other phase appears to lack a clear bulk-edge

correspondence in the sense that the modes are not as sharply localized as expected, and have a finite

contribution inside the bulk. However, the size of the system considered is a constraint that can not be

neglected since the absence of sharply localized states can be a finite size effect. For some low values

of magnetic field we also found that both x-periodic Anderson disorder and true completely random

Anderson disorder induce some small regions of topology, in a region of magnetic field for which, in

the clean system, the Chern number is zero and I(ky ) is different from zero. In the same regions, new

topological regions appear for added quasi-disorder. These observed phenomena were hypothesized

to be related to the invariant I(ky ). In the scope of this discussion we showed that the introduction of

quasi-disorder does not remove the edge modes that in the clean system are protected by I(ky ) when

C = 0.

We also studied the system in a mixed (kx ; y ) space with an applied parallel magnetic field. The clean

superconducting system is known to possess flat bands in the gapless regime. At the corresponding

values of kx these have a winding number W of 1, which is defined from reducing the two dimensional

system to an effective one dimension. We showed that these are also characterized by a ı-quantized

Berry phase at the same values of kx . From the definition of winding number W we also obtained the

expressions for the topological regions of the superconductor. These coincide with the gapless phases

with Majorana flat bands.

We have shown that the introduction of quasi-disorder in the system induces gapless phases. For the

p-wave system subject to a parallel magnetic field this leads to new regimes with Majorana flat bands.

This is not only true for phases with a gapless bulk but also for gapped phases, where quasi-disorder
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closes the bulk gap and Majorana flat bands appear. We then obtained the Berry phase with twisted

boundary conditions and concluded that the quasi-disorder induced MFBs also have a quantized Berry

phase of ı. For the noncentrosymmetric superconductor with added s-wave superconducting pairing

and Rashba spin orbit coupling, we found that new regimes with unidirectional Majorana edge states

appear. In particular, we showed that for a phase where right-moving unidirectional edge states were

present in the system, the introduction of quasi-disorder leads to the appearance of edge modes in the

opposite moving direction, and for a certain quasi-disorder range these modes coexist in the system.

The identification of the quasi-disorder induced flat bands with a Berry phase with a quantized value

of ı allowed us to identify and study two topological transitions in detail, for the p-wave superconductor

with a parallel applied magnetic field By . The two critical points were identified and studied by obtaining

the density of induced Majorana bound states in relation to kx points. We found that the values of the

critical points show almost no variation with the system size for systems bigger than 76 sites in y . The

values of the dynamical critical exponents and correlation length critical exponents were obtained as z =

1:27± 0:04 and  = 0:95± 0:05 for the first critical point –C;1 = 1:225, and z = 1:23± 0:03,  = 1:00± 0:05

for the second critical point –C;2 = 1:805, which puts this transition in a novel universality class. We

then investigated the fractal nature of the wavefunctions by calculating the values of fi(q) from the IPR

values at several values of disorder, at the same parameter values as those in which the topological

transitions were studied. From the behaviour as the thermodynamic limit is approached, we concluded

that the introduction of quasi-disorder induces multifractality in the system, and, accordingly, we see

the appearance of critical states. A transition to a single-fractal regime was identified for – ∈ [2:0; 2:1].

The same analysis was made for the system with Anderson disorder. The behaviour of fi(q) as the

system size tends to infinity suggests that the introduction of Anderson disorder will drive the system to

a localized, single-fractal phase (in the thermodynamic limit).

We remark that, recently, it was shown that multifractality can enhance not only the critical tempera-

ture but also the superconducting pairing amplitude [90]. The difference between isolated flat bands and

flat bands with band touchings was also recently discussed [11] and it was shown that flat bands with

band touchings greatly increase the critical temperature for superconductivity. Taking this into account

and our results it is suggested that quasi-disorder can, in this case, surge as a possible way to en-

hance superconductivity and, with the appearance of flat bands with band touchings, contribute towards

a higher value of the critical temperature.

Future work

Some interesting topics could be addressed in the future:

• When the real space system was studied, we considered the modulation of the quasi-periodic

disorder potential in the y direction. Another idea could be to study a potential which is introduced

at an angle in relation to the edges and study the localization properties as a function of such

angle.

• As a complement to the study of the effects of quasi-disorder on the superconductor under a
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perpendicular magnetic field, and to the obtained Chern numbers, it would be interesting to search

for a real-space definition of the invariant I(ky ). Defining I(ky ) in real space, as with twisted

boundary conditions, would allow us to understand if this invariant protects the edge states that

remain when C = 0, as disorder is introduced.

• In the study of the system in a mixed (kx ; y) space, the clean and quasi-disorder induced flat bands

were found to have a quantized Berry phase of ı. A question that was raised is whether the flat

bands in the disorder regime also have a quantized winding number of 1. A future task would then

be to implement the winding number in a real space description following the methods described

in [85–87].

• It would be interesting to study the transport properties of the edge states in the regimes where

quasi-disorder induces MFBs, and also in the new regime with unidirectional edge states. For the

flat bands that are induced by a magnetic field in the clean system, the ZBC was calculated and

found to be quantized [8]. It would be interesting to see if this holds for the quasi-disorder induced

MFBs, particularly since they share the topological properties with MFBs on the clean system. It

would also be interesting to obtain the results for the ”flipped” Majorana edge states that appear

with the increase of quasi-disorder, especially in the regime where we found unidirectional edge

states in both directions in the system.

• Finally, we identified a quasi-disorder driven topological transition and obtained two critical points

of –. In reality there are two transition lines (–,By ), which would be interesting to obtain, as well as

the critical exponents along these transition lines.
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model withp-wave superfluidity”, Physical Review B 2016, 93, DOI 10.1103/physrevb.93.

104504.

[39] J. Fraxanet, U. Bhattacharya, T. Grass, D. Rakshit, M. Lewenstein, A. Dauphin, “Topological

properties of the long-range Kitaev chain with Aubry-André-Harper modulation”, Physical Review
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A
Symmetry Classification of Topological Systems

The topological symmetry classification of one, two and three-dimensional systems with respect to time-

reversal symmetry, particle hole symmetry and chiral symmetry is presented [91, 92]. This classification

determines whether the system possesses a topological invariant, and the type of topological invari-

ant, which can be an integer (Z) or a Z2 quantity. For the corresponding operators T , P and S, for a

Hamiltonian H(k) defined in momentum space, the symmetries are such that the following relations are

satisfied:

• Time-reversal Symmetry (TRS)

T H∗(−k)T † = H(k) (A.1)

• Particle Hole Symmetry (PHS)

PH(k)P† = −H∗(−k) (A.2)

• Chiral Symmetry (CS)

SH(k)S† = −H(k) (A.3)

TRS PHS CS d = 1 d = 2 d = 3
Standard A (unitary) 0 0 0 − Z −

(Wigner-Dyson) AI (orthogonal) +1 0 0 − − −
AII (symplectic) −1 0 0 − Z2 Z2

Chiral AIII (chiral unitary) 0 0 1 Z − Z
(sublattice) BDI (chiral orthogonal) +1 +1 1 Z − −

CII (chiral symplectic) −1 −1 1 Z − Z2

BdG D 0 +1 0 Z2 Z −
C 0 −1 0 − Z −

DIII −1 +1 1 Z2 Z2 Z
CI +1 −1 1 − − Z

Table A.1: The symmetry classes of single particle Hamiltonians, in terms of time
reversal-symmetry, particle-hole symmetry, chiral symmetry, and number of dimen-
sions. The presence of symmetry is denoted by “+1” or “-1” depending on whether
the symmetry operator squares to +1 or -1. ”0” denotes the absence of symmetry.
The last three columns indicate the type of topological invariant that characterizes
the system with regards to the dimension d . Table taken from [91].
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B
Numerical Methods

B.1 Recursive Green’s Function

The Recursive Green’s Function (RGF) method allows the calculation of the density of states (DOS)

of the system in a way that is more computationally efficient than the direct calculation from the exact

diagonalization of the Hamiltonian. The method was first developed by Haydock [93], based on the

Lanczos method [94]. The idea is to construct a basis which tridiagonalizes an Hamiltonian H, and then

use a continued fraction expansion to compute the Green’s function, and then the density of states [95].

To construct the tridiagonal basis, we go through an iteractive procedure:

• We start with an initial normalized state | 1⟩ for which we will obtain the local density of states

(LDOS).

– Compute a1 as a1 = ⟨ 1|H| 1⟩.

– Define a new state | ̃2⟩, orthogonal to | 1⟩, as | ̃2⟩ = H| 1⟩ − a1 | 1⟩.

– Obtain the norm of | ̃2⟩, b1 =
q
⟨ ̃2 |  ̃2⟩ and normalize the state, | 2⟩ = 1

b1
| ̃2⟩.

• All the other iteractive steps are identical and can be summarized as:

an = ⟨ n|Ĥ| n⟩

| ̃n+1⟩ = Ĥ| n⟩ − an| n⟩ − bn−1| n−1⟩

bn =

q
⟨ ̃n+1 |  ̃n+1⟩

| n+1⟩ =
1

bn
| ̃n+1⟩

(B.1)

After N steps, we obtain the tridiagonal basis {|  1⟩ |  2⟩ :::; |  N⟩} and the sets of coefficients {an}

and {bn} which are, respectively, the diagonal and off-diagonal elements of the Hamiltonian representa-

tion H̃ in the new basis, which has a size N × N.

The Green’s function is obtained as

G(E) = (E −H)−1 (B.2)
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and in terms of the Hamiltonian H̃ in the new tridiagonal basis, we can write

G̃(E) = (E − H̃)−1 =

0BBBBBBBBB@

E − a1 −b1
−b1 E − a2 −b2

−b2
. . . . . .
. . . . . . −bN−1

−bN−1 E − aN

1CCCCCCCCCA

−1

: (B.3)

We can now obtain ⟨ 1|G̃(E)| 1⟩ ≡ G̃1(E), which defines the Green’s function for the initial state | 1⟩.

From equation B.3 we obtain a continued fraction representation

G̃1(E) =
1

E − a1 − b21

E−a2−
b22

E−a3−:::
b2
N−1

E−aN

: (B.4)

It should be verified that as N → ∞, G̃1(E) tends to the real solution for G1(E). However, performing

an exceedingly large number of iterations is not practical. Also, it is verified that the values of an and

bn converge relatively quickly to asymptotic values. This allows us to introduce a cutoff, a terminator

(T (E)), to compute B.4:

G̃1(E) =
1

E − a1 − b21

E−a2−
b22

E−a3−:::
b2
N−1

E−aN−T (E)

: (B.5)

The correct form of T (E) depends on the band structure of the system [96]. For the case of one energy

density band, where an and bn converge to the values a∞ and b∞, the terminator obeys

T (E) =
b2∞

E − a∞ − T (E)
: (B.6)

Keeping only the solution for which T (E) tends to zero as E → ∞, we obtain for T (E):

T (E) =
(E − a∞)−

p
(E − a∞)2 − 4b2∞
2

: (B.7)

This corresponds to a density of states for a single band with boundaries at E = a∞ ± 2b∞. The shape

of the band will depend on the form of the recursion coefficients {an} and {bn}.

If the case is such that the system has two energy bands and a gap, the recursion coefficients will

converge to two sets of alternate values, a1;∞, a2;∞ and b1;∞, b2;∞. The terminator will then obey:

T (E) = b21;∞

»
E − a1;∞ −

b22;∞
E − a2;∞ − T (E)

–−1

; (B.8)
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which gives

T (E) =
(E − a1;∞)(E − a2;∞) + b21;∞ − b22;∞

2(E − a1;∞)

−

s»
(E − a1;∞)(E − a2;∞) + b21;∞ − b22;∞

2(E − a1;∞)

–2
− b21;∞

(E − a2;∞)

(E − a1;∞)
:

(B.9)

After writing the Hamiltonian in a tridiagonal basis and computing the Green’s function, we want to

obtain the density of states. The density of states projected on state |r⟩ (local density of states, LDOS,

on site r) of the local site basis is given by

ȷr(E) =
X
m

|⟨ m | r⟩|2‹ (E − Em) ; (B.10)

where the sum goes over all eigenstates | m⟩ of the system with corresponding eigenvalues Em. The

projected density of states is related to the Green’s function by

ȷr(E) = − 1

ı
lim
”→0

»
Im

fi
r

˛̨̨̨
1

E + i” −H

˛̨̨̨
r

fl–
=

1

ı
lim
”→0

[ImGr(E + i”)] =
1

ı
GRr (E) (B.11)

with Gr(E) ≡ ⟨r|G(E)|r⟩ and where GRr (E) is the retarded Green’s function.

The total density of states (DOS) can be obtained by summing and averaging over all the projected

density of states on all sites of the system,

ȷ(E) =
1

N

NX
r=1

ȷr(E): (B.12)

In translational invariant systems, it is sufficient to compute the LDOS. However, if this is not the case,

summing over all local sites as in equation B.12 can be time-consuming and thus an alternative is

needed. A solution is to create a state |ffi⟩ which is a linear combination of all the local states |r⟩, where

each has a random contribution ffir:

|Φ⟩ =
X
r

ffir|r⟩: (B.13)

The values of ffir are assumed to be real and are constrained so that the state |Φ⟩ is normalized. The

density of states can then be obtained by going through the iteractive procedure for several random initial

states |Φ⟩ which correspond to different sets of random variables {ffir} [97]. This approach is particularly

useful for disordered systems.

B.2 Chern Number in real space

When disorder is introduced in a system, since the translational invariance is broken, it is not possible

to perform calculations in momentum space (a direct transformation between real and reciprocal space

no longer exists). In this case, we need to use twisted boundary conditions in real space [97–99]:
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 „n(r + Niai ) = ei„i „n(r) (B.14)

where „ = („1; „2) defines the space of twists and each component „i takes values between 0 and 2ı,

the vectors ai are the basis vectors of the lattice, and  „n(r) = ⟨r| „n⟩.

To perform the calculation we must use the ground-state wavefunction of the many body system,

| Ψ„⟩, which is given by the Slater determinant of the single particle wavefunctions |  „n⟩ on M occupied

states:

| Ψ„⟩ =
MY
n=1

c†n|0⟩ =
MY
n=1

|  „n⟩: (B.15)

Noting that we can write the single-particle wavefunctions |  „n⟩ as an expansion in terms of the basis

| ri ⟩ as |  „n⟩ =
P

ri
’n;„ri | ri ⟩, we can represent the ground state wavefunction as a matrix Φ„ of the

expansion coefficients:

Φ„ =

0BBBBBB@
’1;„
r1 ’2;„

r · · · ’M;„
r

’1;„
r2 ’2;„

r2 · · · ’M;„
r

...
...

...

’1;„
rN ’2;„

rN · · · ’M;„
rN

1CCCCCCA (B.16)

with N = N1 × N2 the total number of sites.

We can then write the Berry connection in the space of twists as

An(„) = i
˙
Ψ„ | @„Ψ„

¸
: (B.17)

The integral in equation 2.8 is now taken in a surface S in the space of twists where the variables „1 and

„2 are discretized into L1 and L2 points, such that they are constrained to take the values „i = 2ı
Li
n, with

n an integer that goes from 1 to Li . Equation B.17 can be simplified if we consider the sum of the flux of

individual plaquettes on the surface S with L = L1 × L2 points. In this case, the Chern number becomes

C =
1

2ı

LX
l=1

arg
`˙
Ψ„l | Ψ„l+1

¸ ˙
Ψ„l+1 | Ψ„l+1+2

¸ ˙
Ψ„l+1+2 | Ψ„l+2

¸ ˙
Ψ„l+2 | Ψ„l

¸´
(B.18)

and the overlap between two states | Ψ„⟩ and | Ψ„′⟩ with different values „ and „′ of the twist variable is

given by:

⟨Ψ„ | Ψ„
′
⟩ = det[Φ†

„Φ„′ ]: (B.19)

It is then possible to rewrite equation B.18 in its final form:

C =
1

2ı

LX
l=1

arg(–l) (B.20)
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where {–l} are the eigenvalues of the matrix product

LY
l=1

Φ†
„l
Φ„l+1Φ

†
„l+1Φ„l+1+2Φ

†
„l+1+2Φ„l+2Φ

†
„l+2Φ„l : (B.21)

This procedure is useful but time consuming, since it is necessary to perform the diagonalization

of the Hamiltonian L times, one for each value of the periodic boundary conditions. It was shown [98]

that the method can be simplified further, and it is only required to perform one diagonalization of the

Hamiltonian with periodic boundary conditions.

The Chern number can then be calculated in the same way as in equation B.20, but the eigenvalues

are obtained from the diagonalization of the matrix (with dimensions M ×M):

F = Cq0q1Cq1q2Cq2q3Cq3q0 (B.22)

where q0, q1, q2 and q3 define the corners of a plaquette in momentum space,

q0 = (0; 0);q1 = (2ı=N1; 0);q2 = (0; 2ı=N2);q3 = (2ı=N1; 2ı=N2) (B.23)

and the matrices Cqq′ are given by

Cmnq;q′ =
X
r i

`
ffim;„=0
r i

´∗
e i(q−q

′)·r iffin;„=0
r i (B.24)

with {ffi„=0
r } the set of eigenvectors obtained from the diagonalization of the Hamiltonian with periodic

boundary conditions („ = 0) in real space.
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C
Evolution of energy spectra with a quasi-periodic potential

A more detailed evolution of the obtained energy spectra discussed in chapter 4 with Aubry-André disor-

der is presented, as well as more examples. The figures are presented for sequential values of – where

– is the strength of the quasi-periodic potential defined as Λ(y) = – cos(2ı¸y + ffi), with ¸ the inverse

golden ratio. Here we take ffi = 0.

The cases shown in figure 4.30 a)-d) correspond, respectively, to figures C.2, C.3, C.5 and C.6.

Figures C.1 and C.4 are not discussed previously in the thesis but also concern the parameter values

t = 1, d = t=6, — = 3d − 4t, as in the main considered cases. In figure C.1 the system has no magnetic

field, and the bulk gap does not close as disorder is increased. In figure C.4 the system has an added

magnetic field in the y direction of By = 3d .
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Figure C.1: Energy spectrum evolution for a system with 76 sites in y and edges at
y = 0 and y = 75 for different values of – as a function of kx , for ffi = 0 in the quasi-
periodic potential. The values of the parameters are t = 1, d = t=6, — = 3d − 4t,
By = 0.
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Figure C.2: Energy spectrum evolution for a system with 76 sites in y and edges at
y = 0 and y = 75 for different values of – as a function of kx , for ffi = 0 in the quasi-
periodic potential. The values of the parameters are t = 1, d = t=6, — = 3d − 4t,
By = 0:5d .
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Figure C.3: Energy spectrum evolution for a system with 76 sites in y and edges at
y = 0 and y = 75 for different values of – as a function of kx , for ffi = 0 in the quasi-
periodic potential. The values of the parameters are t = 1, d = t=6, — = 3d − 4t,
By = d .
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Figure C.4: Energy spectrum evolution for a system with 76 sites in y and edges at
y = 0 and y = 75 for different values of – as a function of kx , for ffi = 0 in the quasi-
periodic potential. The values of the parameters are t = 1, d = t=6, — = 3d − 4t,
By = 3d .
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Figure C.5: Energy spectrum evolution for a system with 76 sites in y and edges at
y = 0 and y = 75 for different values of – as a function of kx , for ffi = 0 in the quasi-
periodic potential. The values of the parameters are t = 1, d = t=6, — = 3d − 4t,
By = d , ¸ = 0:2d , ∆s = 0:5d .
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Figure C.6: Energy spectrum evolution for a system with 76 sites in y and edges at
y = 0 and y = 75 for different values of – as a function of kx , for ffi = 0 in the quasi-
periodic potential. The values of the parameters are t = 1, d = t=6, — = 3d − 4t,
By = 4d , ¸ = 0:2d , ∆s = 0:3d .

96


	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	State of the art
	Thesis outline

	Fundamental Concepts
	Topology in condensed matter physics
	Berry Phase
	Chern Number
	Edge states and the bulk-edge correspondence
	The SSH model and the winding number

	Superconductivity
	Bogoliubov-de Gennes equations
	Superconducting pairing term
	Particle-Hole Symmetry and Majorana fermions
	The Kitaev toy model

	Disordered systems
	Participation Ratio
	Multifractality of wave functions
	Scaling properties near a phase transition


	Clean two-dimensional topological superconductor
	Model Hamiltonian
	Superconductor under a perpendicular magnetic field
	Superconductor under a parallel magnetic field
	Winding Number and Majorana Flat Bands
	Domain of Flat Band Existence
	Unidirectional Majorana Edge States


	Disordered two-dimensional topological superconductor
	Quasi-disorder and Anderson disorder effects in real space
	Edge disorder
	Bulk disorder
	Quasi-disorder induced topology: Chern number

	Quasi-disorder and Anderson disorder effects in mixed space
	Energy spectra evolution and density of states
	Quasi-disorder induced Majorana Flat Bands
	Scaling of the density of states: critical exponents
	Fractal analysis


	Discussion, conclusions and future work
	Bibliography
	Symmetry Classification of Topological Systems
	Numerical Methods
	Recursive Green's Function
	Chern Number in real space

	Evolution of energy spectra with a quasi-periodic potential

