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Rotating axisymmetric objects amplify incoming waves by superradiant scattering. When enclosed
in a cavity, the repeated interaction of a confined field with the object may trigger superradiant
instabilities. Rotating binaries are ubiquitous in physics, and play a fundamental role in astrophysics
and in everyday life instruments. Such binaries may be prone to superradiant phenomena as well,
but their inherent complexity makes it challenging to study how exactly such instabilities can be
triggered. Here, we study a binary of two absorbing objects (mimicking black hole binaries, blades of
an helicopter, etc) revolving around a common center, and show that superradiant instabilities do
occur, on expected timescales and frequency range. Our results provide the first demonstration that
superradiance also occurs for highly asymmetric systems, and may have a wealth of applications in
fluid dynamics and astrophysics. Extrapolating to astrophysical black holes, our findings indicate
that compact binaries may be used as interesting particle detectors, depositing a fraction of their
energy into putative new fundamental ultralight degrees of freedom.

I. INTRODUCTION

Energy extraction through superradiance is a funda-
mental process in physics. For objects with internal struc-
ture, superradiance is a thermodynamic necessity, and
follow from the laws of thermodynamics [1–4]. A rigorous
study of superradiance is possible for translational motion,
where it can be associated to processes such as the Vavilov-
Cherenkov process, the critical speed for superfluidity or
superradiance in Mach shocks.

In a pioneering work, Zel’dovich showed that rotating,
axisymmetric bodies can also amplify radiation, where
now superluminality is replaced by the condition that the
rotational velocity Ω of the object exceed the rotational
velocity ω/m of the constant-phase surface of the wave [1,
2, 4],

ω < mΩ , (1)

where we assume a monochromatic wave of frequency ω
and azimuthal number m. Zel’dovich had in mind astro-
physical applications, in particular energy extraction from
rotating black holes (BHs). The field has since bloomed:
BH superradiance is now a well-studied subject [4], and
the investigation of analogue systems has led to the first
laboratory measurement of superradiant amplification [5].
In the last few years, superradiance from astrophysical
BHs has been recognized as an exciting mechanism to
probe new fundamental light fields, possibly a component
of the elusive dark matter [4, 6–10]. Thus, rotational
superradiance is now a tool to do particle physics with
massive, astrophysical objects.

Axisymmetry plays a key role in our understanding
of rotational superradiance, but a plethora of setups of
interest are not axially symmetric. This includes astro-
physical binaries bound by the gravitational interaction
and evolving via gravitational-wave emission, or Earth-
bound systems, such as spinning blades encountered in a
variety of machinery [11]. Can superradiant instabilities

occur in such non axisymmetric binary systems? If so, on
which timescales?

II. SETUP

To answer these questions, we model the internal de-
grees of freedom of a binary in a simple yet general way.
Being dissipation a key ingredient for superradiance [4],
we follow Zel’dovich’s work [1] and consider the “dissipa-
tive” Klein-Gordon equation

□Ψ = α
∂Ψ
∂t

, (2)

to describe the dynamics of a scalar degree of freedom in
Minkowsky spacetime. The parameter α > 0 describes
absorption on a time-scale τ ∼ 1/α, should the object be
at rest in an inertial frame.

Model (2) was used as well to model absorption in
rotating stars and compact objects [16], where it was
shown that in the context of BH physics, α ∼ 1/M (with
M the BH mass) is the only meaningful choice, and allows
to recover known results in BH superradiant scattering [4,
16]. Recently, the model above was in fact used to study
superradiance by binary BHs, within an effective field
theory approach, with α ∼ 1/M [17, 18]

Outside the “absorbing” region, the dynamics of the
scalar are simply given by □Ψ = 0. For a single
spinning cylinder, superradiance was demonstrated by
Zel’dovich [1] for the model (2), and in Refs. [3, 12] for
sound or electromagnetic waves hitting a cylinder of cer-
tain impedance or conductivity, respectively (see the re-
view [4]). Here we want to generalize these results to
binary systems.

The study of superradiant scattering is challenging be-
cause the amplification factors are typically very small.
However, the effect can be amplified by placing the sys-
tem in a cavity, leading to an exponential cascade of
energy extraction [1, 19–22]. We take a binary system of
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two absorbing cylinders revolving around each other at
frequency Ω and at an orbital separation R0. Mathemati-
cally, we can model the problem via Eq. (2) by assigning
the absorption α the values,

α(t, r) =


α0 if (r − Rorbit)2

< R2
a

α0 if (r + Rorbit)2
< R2

a
0 otherwise

, (3)

where Rorbit defines the orbital radius of the two bodies
and Ra = 2M is taken to be their radius (for definiteness,
with a view on astrophysical compact binaries).

Because we eventually would like to extrapolate to
gravitational systems, we take the Ω and the orbital
radius to be related through Kepler’s law. We take the
orbital radius to be given by Rorbit = R0 cos(Ωt)ex +
R0 sin(Ωt)ey, where Ω is taken to be the nonrelativistic
orbital period

Ω =

√
2M

R3
0

. (4)

In the above equation, like throughout our discussion, we
have used geometrized units G = c = 1.

A schematic diagram of our setup is shown in Fig. 1.
Although we focus on equal mass binaries, the model can
easily be generalized. Note also that previous results con-
cerning a single rotating cylinder can be accommodated
setting R0 = 0 (with Ω a free parameter).

FIG. 1. Schematic view of our computational domain, with
the respective absorption regions (in black) and reflecting
boundary condition at the cavity location, r = Rc. Thus,
we consider a binary of equal objects, each with the same
radius Ra = 2. They revolve around the geometric center on
a circular orbit of radius R0 with frequency Ω given by (4).

Even with a simple model as this, it is computationally
expensive to explore the problem in (3 + 1) dimensions
so we focus on a (2 + 1) scenario. Since nothing intrinsic

TABLE I. Initial conditions considered for the gaussian
pulse (6). For the single rotating absorbing region we al-
ways used the same initial conditions (model SA). For the
binary scenario we considered two sets of parameters whose
main difference is the azimuthal mode m (models BA).

Model A r0 σ ω m
SA 3.5 15 2.0 0.1 2
BA1 3.5 15 2.0 0.045 2
BA2 5.0 35 3.5 0.045 1

exists about lower dimensional spacetimes, we expect
our results to have a counterpart in higher dimensions.
We cannot, however, exclude the possibility that the
confining geometry here considered plays a role in the
dynamics of our system. Secondly, the generality of the
model allows us to draw conclusions about a broader type
of systems where the main feature is the clear lack of
axial symmetry and thus understand the signature of the
system’s geometry in a confined field.

To ease our discussion, we will refer to the single ab-
sorption region scenario (R0 = 0) as the SA model while
the general binary system (R0 ̸= 0) as the BA model.

The governing Eq. (2) was numerically integrated with
the aid of BhAbs (Black Hole Absorption Solver) numerical
package. This specifically designed code was written in the
Julia Programming language [23] and is freely available
in Ref. [24].

Equation (2) is only valid in the frame where the ab-
sorbing regions are static so that one needs to perform a
coordinate change to the lab frame. This is easily done
through the coordinate change φ → φ − Ωt. Doing so,
the governing Eq. (2) can then be written as a set of two
first order differential equations

∂tΨ = Π , ∂tΠ = ∇2Ψ − α [Π + Ω∂φΨ] , (5)

with the boundary condition ∂tΠ = 0 imposed at the
cavity radius Rc.

For the integration of this set of equations, our code
implements the method of lines on a Cartesian grid with
second-order accurate operators for the discretization of
the spatial derivatives, and time integration performed
with a fourth order Runge-Kutta scheme provided by
the DifferentialEquations.jl Julia package [25]. The
boundary condition is imposed by setting the field to
zero at the grid points that sit outside the defined cav-
ity. For a detailed discussion of the numerical methods
and the convergence of our code, we refer the reader to
appendix A.

For all simulations presented, we take as the initial
field configuration a purely ingoing quadrupolar Gaussian
wave pulse,

Ψ(t = 0, r) ≡ Ψ0 = A cos 2φ sin ωr e− 1
2 ( r−r0

σ )2
,

Π(t = 0, r) = ∂rΨ0 ,
(6)

where r0, σ, ω represent the initial radius, width and
frequency of the pulse, respectively. For our simulations
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we considered the three distinct values for these quantities
shown in Table I. Due to the linearity of Eq. (2), the
overall amplitude can be set arbitrarily.

The energy density of the field inside the cavity

ϵ = 1
V

∫ [
(∂tΨ)2 + |∇Ψ|2

]
dx , (7)

was calculated using standard cubic interpolation (Simp-
son’s 3/8 rule).

The single cylinder scenario allows us to obtain ana-
lytical expressions for the growth rate of a field confined
inside the cavity so that a comparison with the numerical
simulations is possible. This comparison is presented in
Sec. III. The binary case does not gift us with such grace
and we restrict ourselves to a purely numerical analysis
of the simulations. These results are presented in Sec. IV.

Throughout this manuscript we take

M = 1 , Ra = 2 , α = 10 . (8)

The first is a choice of scale. The second is chosen with
an eye on astrophysical compact binaries (and as we said
we will focus exclusively on setups with Ra = 2M) and
the third is an arbitrary choice (inspired again by BH
physics [16]). These are only meant to be representative
and to ease the discussion of our numerical results.

III. ISOLATED OBJECTS: SCATTERING AND
SUPERRADIANCE

When there is a single spinning cylinder (i.e., R0 = 0),
an analytical solution of Eq. (2) can be obtained in terms
of Bessel functions. In polar coordinates (t, r, φ), we can
use the usual field ansatz

Ψ(t, r, φ) = ϕ(r)√
r

e−iωt+imφ , (9)

to show that superradiance occurs in this type of system.
As Zel’dovich pointed out in [1], performing a Lorentz
transformation to the frame at a distance Ra from the
origin and rotating with velocity Ω, the dissipation term
of Eq. (2) (for the ansatz decomposition above) becomes

α
∂Ψ
∂t

→ iαΓ (ω − mΩ) Ψ (10)

where Γ = (1−v2)−1/2 is the Lorentz factor and v = RaΩ
is the instantaneous linear velocity of the frame. When
the superradiant condition (1) is satisfied, the effective
absorption parameter becomes negative, leading to am-
plification of the field.

Using the same ansatz for the solution and performing
the angular coordinate change, the radial component ϕ
can be seen to satisfy

∂2ϕ

∂r2 +
(

ω2 + iα(ω − mΩ) − m2

r2 + 1
4r2

)
ϕ = 0 . (11)

This transformed version of the Bessel equation allows us
to write the general solution for the field as

Ψ(t, r, φ) = [AJm (βαr) + BYm (βαr)] e−iωt+imφ , (12)

where Jm and Ym denote the Bessel functions of the first
and second kind, respectively, and β2

α = ω2 + iα(ω −
mΩ). The whole domain solution consists then of two
separate versions of (12), one for each region defined that
satisfy the appropriate boundary conditions. The general
solution must be regular at the origin, be continuously
differentiable on the whole domain, and vanish at the
cavity radius. This last constraint will force our field to
be confined inside the cavity and hence take a particular
set of natural frequencies. If, however, we remove this last
condition, we are able to study how waves are scattered
off the absorbing region.

A. Scattering amplitudes

Having no outer boundary means that the field is not
confined near the absorbing region. We are thus interested
in finding solutions that take the form of a scattering
problem,

Ψ(r → ∞) ∼ A+eiωr + A−e−iωr , (13)

at spatial infinity, with A± the amplitude of the outgoing
and incoming waves, respectively. To satisfy this condi-
tion our solution outside the absorbing region should be
written as

Ψ(t, r, φ) =
[
A+ϕ+

m (ωr) + A−ϕ−
m (ωr)

]
e−iωt+imφ ,

(14)
where ϕ+

m = Jm +iYm and ϕ−
m = Jm −iYm are the Hankel

functions of the first and second kind respectively.
Using the two solutions forms (12) and (14) for the re-

spective regions and requiring continuity at the absorbing
region surface we find,∣∣∣∣A+

A−

∣∣∣∣2
=

∣∣∣∣ (ϕ−
m)(Jα

m)′ − (ϕ−
m)′(Jα

m)
(ϕ+

m)(Jα
m)′ − (ϕ+

m)′(Jα
m)

∣∣∣∣2

, (15)

where primes stand for derivative with respect to the
radial coordinate and the functions Jα

m = Jm(βαr) and
ϕ±

m = ϕ±
m(ωr) are evaluated at the boundary radius Ra.

Figure 2 displays the amplification factor Aωm =
|A+/A−|2 − 1 in terms of the parameter ϖ = ω/mΩ
for a specific set of parameters. For all frequencies below
the superradiant condition (ϖ < 1) this amplification
factor is positive. The frequency at which Aωm peaks is
usually close to the threshold frequency mΩ, becoming
ever so close to this value as the absorption parameter α is
increased. Note that some of the curves correspond to su-
perluminal regimes (ΩRa > 1). The behaviour of the scat-
tering amplitudes is very similar to that of sound waves
scattering off a uniform cylinder of a given impedance [12]
and in fact a clear connection between the two models
can made. We show how exactly in the main thesis text.
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FIG. 2. Amplification factor Aωm = |A+/A−|2 − 1 for the SA
model with α = 10.0, as function of the frequency parameter
ϖ = ω/mΩ, for different angular velocity Ω and an impinging
“quadrupolar” (m = 2) wave. The radius of the cylinder
is Ra = 2, so that some of the configurations are actually
superluminal.

B. Cavity modes

When the reflecting boundary condition (Ψ = 0) is
imposed at the cavity radius Rc, our scattering problem
turns into an eigenvalue one. Working out the associ-
ated algebra allows us to turn the problem of finding the
characteristic frequencies into the eigenvalue equation

Gm(ω) = 0 , (16)

where Gm is a ratio of linear combinations of Bessel
functions Jm and Ym and their derivatives. The actual
expression is lengthy and so we refrain from displaying it
here.

For a given set of parameters (Ra, Rc, Ω, α, m), the
roots of Gm correspond to the allowed eigenfrequencies

ω = ωR + iωI ,

that are in general complex-valued. The growing modes
are characterized by a positive imaginary part ωI > 0,
corresponding to field configurations that grow exponen-
tially in time Ψ ∼ eωI t. Roots whose imaginary part is
negative (ωI < 0) correspond to modes damped in time.

Several other remarks should also be made about the
actual dependence of the roots on the chosen parame-
ters. Of main interest to us is the location of the eigen-
frequency corresponding to the fastest growing mode.
This corresponds to the root with largest imaginary part,
max(ωI) ≡ ωmax

I and will thus dominate the dynamics of
the system over large timescales. In terms of the absorp-
tion parameter, we found that the dependence of ωmax

I
with α is roughly linear for small values of α ∼ 0 − 20.
Due to the large size of the parameter space, however,
we refrain from attempting to write down a universal law
for this behaviour and simply state that this linearity

seems to be general in this and similar systems. In partic-
ular, this behaviour is also observed for slowly rotating
stars [16].

One important remark is that all azimuthal modes
are decoupled. This is readily seen by the fact that our
boundary conditions have no azimuthal dependence and
hence allow the solutions (12) to evolve independently
with the growth rates obtained from the roots structure
of the associated Gm.

The dependence of the instability rate on the cavity
size is also interesting, We find that the maximum in-
stability growth rate for a specific rotating cylinder is
roughly proportional to the travel time of a pulse inside
the cavity τ = (Rc − Ra)−1. On physical grounds this
is expected since the growth rate of the field should be
proportional to how often the pulse interacts with the
inner region; nevertheless this overall behavior is interest-
ing, as each individual mode must also be sensitive to the
amplifying region itself [4]. Interestingly, this behaviour
is also observed in the case of an actual BH enclosed in
a cavity in (3+1) dimensions but has, to the best of our
knowledge, never been pointed out before.

C. Numerical Comparison

Our analytical findings can be corroborated by com-
parison against the numerical time integration of Eq. (5).
We consider for this a single absorption region (R0 = 0)
and several values of Rc and Ω.

Figure 3 features snapshots of the field configuration
at three distinct instants of the numerical evolution for
a particular simulation where instability of the cavity
against superradiance is observed. As time goes by the
amplitude of the scalar field increases exponentially. No-
tice that on the rightmost panel the system evolved for
∼ 200 revolutions, still a modest number.

The lack of mode mixing mentioned before can be easily
confirmed by performing an azimuthal mode decomposi-
tion of the field at a given radius,

Ψ(t, r, φ) =
∑
m

Ψm(t, r) cos(mφ).

The evolution of the Fourier coefficients Ψm are shown
in Fig. 4 where the field components can be seen to grow
exponentially in time, Ψm ∼ eγt.

The azimuthal mode of the initial pulse is easily seen to
dominate the dynamics throughout the simulation with a
(numerical) growth rate γ that is in accordance with the
analytical value for ωmax

I (cf. caption in Fig. 4).
The existence of higher harmonics cannot be completely

mitigated due to the Cartesian nature of our numerical
grid, but their low amplitude makes the lack of mode
mixing evident. The growth rate of these modes was also
seen to agree with the analytical values. The lower m
modes have larger instability rates and thus – even when
triggered from noise – will eventually grow to dominate
the dynamics.
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FIG. 3. Snapshots of field configuration for three distinct simulation times for an initial Gaussian pulse of the form presented
in (6) with the initial conditions presented in Table I (SA model). The cavity has a radius Rc = 38 and the absorbing cylinder
is rotating with constant angular velocity Ω = 0.35. As explained in the text, the angular pattern corresponds to that of a
quadrupolar m = 2 mode, and the rotation of the cylinder excites predominantly a radial mode with overtone k = 5 (k = 0 is
the fundamental mode), hence with six nodes, as can be seen in the radial profile.

FIG. 4. Mode decomposition of the field at a radius of r =
30 for an initial Gaussian pulse of the form (6) with the
parameters presented in Table I (SA model) in a cavity with
radius Rc = 38. The absorbing cylinder is rotating with
angular velocity Ω = 0.35. The dashed black line depicts
the analytically obtained growth rate of the fastest growing
mode. The numerically obtained frequency of the field is
ω = 0.5560 + 0.000677i. See also Fig. 5.

The agreement of the real part of the numerically ob-
tained frequency (ωR) with the analytical one can also be
tested by performing a late time Fourier analysis of the
field displacement at a fixed point inside the cavity. This
analysis is summarized in Fig. 5 where one can clearly see
the superposition of the several cavity natural frequencies
whose imaginary part is positive. Again, note that the
fastest growing frequency is not the one closest to the su-
perradiant threshold. In the particular scenario depicted,

FIG. 5. Comparison of the real part of the SA model eigen-
frequencies with the numerical data for the simulation whose
parameters are presented in Table I (SA model). The top
plot represents the analytical eigenfrequencies in the complex
plane. The bottom one depicts the Fourier analysis of the field
displacement at r = 20 for the time interval ∆t = [3000, 4000].
Note that all roots with positive imaginary part lie below the
superradiant threshold (red solid line).
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it corresponds to the 6th Bessel overtone. This can be
confirmed visually in Fig. 3 by counting the number of
nodes in the radial direction.

The growth rate of the energy density of the field in-
side the cavity, Eq. (7), was also seen to agree with the
expected growth rate ϵ ∼ e2ωI t.

As expected as well, amplification of the field is not
always observed [20]. As already pointed out, the exis-
tence of a lower limit on the size of our cavity for which
amplification can occur is confirmed by our numerical
simulations. The exact value for this size can be obtained
from the eigenvalue equation (16). However, a rough
estimate can be obtained by noting that the real part of
the roots of Gm is very close to the roots of Jm(ωRc), i.e,
to the eigenfrequencies of an empty cavity. This implies
that the threshold for amplification of the (m, k)-th mode
is given by

Rc >
jm,k

mΩ , (17)

where jm,k is the kth zero of the m-mode Bessel function
of the first kind. For a given m, the absolute minimal
value of Rc for amplification to occur is simply jm,0/(mΩ).

When Rc ≫ Ra the excited modes inside the cavity
correspond to slightly perturbed empty cavity modes due
to the presence of the small absorbing region. This esti-
mate agrees exactly with the results for the amplification
of scalar fields by a rotating BH inside a cavity [20].

IV. BINARIES AND CAVITY RESONANCES

For the BA model, no analytical expression exists for
the eigenfrequencies, and we resort solely to the numerical
integration of Eq. (5) with the appropriate boundary
conditions. The numerical convergence of our results is
demonstrated in Appendix A.

Our main results are summarized in Figs. 6-9, and are
consistent with the excitation of superradiant instabilities
in trapped binary systems. This is, to our knowledge, the
first solid evidence for such a phenomenon. One example
is shown in Fig. 6, where the field configuration inside
the cavity is presented for three distinct simulation times.
The initial conditions are similar to those used for the SA
model in the previous section (see Table I).

The evolution of the field (its different azimuthal com-
ponents) at a given radius can be seen in Fig. 7. Here
as well, we observe amplification of the field. As in the
previous scenario, the initial mode of the field (m = 2)
dominates the dynamics of the system. The dashed line
in Fig. 7 corresponds to a linear fit to this mode at late
times. The growth rate observed for the specific set of
parameters depicted is γ ∼ 1.32 × 10−4 – an order of
magnitude below the rate for a relatively fast spinning
single absorbing region (see Fig. 4).

To compare the SA model presented in the last section
with the binary one here, however, we need to choose an
appropriate set of parameters. With the aim of discussing

TABLE II. Comparison of the m = 2 eigenfrequencies for
the BA and SA models (with Ra = 4 for the latter, intended
to describe astrophysical systems with the same total mass)
inside a cavity of size Rc = 57, rotating with the same
angular speed Ω. For the binary, Ω corresponds to R0 = 7.15.
The BA eigenfrequency was obtained numerically while the
SA is obtained analytically by solving (16).

Model Ω ωR + iγ
SA 0.07397 0.0901 + (8.719 × 10−6)i
BA 0.07397 0.0898 + (1.320 × 10−4)i

astrophysical scenarios, we consider a single absorption
region with Ra = 4 rotating with the same angular veloc-
ity as the binary and inside a cavity of the same size. The
comparison of the eigenfrequencies for the two scenarios
is shown in Table II.

The real part of the field frequency ωR for both cases
is very close. In fact, both configurations excite the first
fundamental mode of the cavity. A natural interpreta-
tion is that the excitation of a lower energetic cavity
mode is mainly caused by a lower frequency of the driv-
ing perturber, and not necessarily by a different problem
geometry. However, the relation between the radial sep-
aration of the binary (a measure of asymmetry) and its
orbital velocity (4) makes this a subtle question to which
we shall return at the end of this section. The problem’s
different geometry, nonetheless, seems to be evident when
evaluating the growth rate of the modes. From Table II,
the growth rates differ by an order of magnitude. The
binary system allows the excitation of the same low energy
mode on much shorter timescales.

Physically, for the same angular velocity, the large sepa-
ration between the two absorbing regions allows the points
within them to be moving much faster, hence allowing
a larger angular momentum transfer between the binary
and the field. This is the first feature where the geome-
try of the problem clearly affects the field configuration –
larger growth rates for lower energetic field modes.

The geometry of the system also affects the field dy-
namics through the coupling of different azimuthal modes.
As in the SA model, Fig. 7 shows us that the initial
mode of the pulse dominates the dynamics throughout
the simulation. However, its evolution is accompanied by
equal-parity modes (m = 0, 4, . . .) that grow on similar
timescales.

As before (see Sec. III), the presence of higher odd
harmonics cannot be fully mitigated. Despite this, their
low amplitude makes it evident that only even modes
get coupled to the initial pulse. This type of coupling is
present in similarly asymmetric systems (see Appendix ??)
and, although we have focused our analysis on initially
quadrupolar (m = 2) field configurations, simulations
with an initially m = 1 pulse also couple with equal
parity modes (m = 3, 5, . . .) and have typically higher
growth rates than the even modes.

As mentioned before, the geometrical configuration of
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FIG. 6. Snapshots of field configuration for three distinct simulation times for an initial Gaussian pulse of the form presented
in (6) with the initial conditions presented in Table I (BA1). The cavity has Rc = 57 and the two absorbing cylinders are in a
circular orbit of radius R0 = 7.15. The orbital period is T ≈ 85. Note that one could expect frequencies close to ≲ mΩ to be
excited and hence – based on Fig. 5 – that the fundamental mode is excited to higher amplitude. This expectaction seems to be
supported by the radial profile of the scalar field. See also the main text and Table II.

FIG. 7. Mode decomposition of the field at a radius of r = 20.0
for the simulation depicted in Fig. 6 (see Table I for initial
configuration parameters). The initial field azimuthal mode
is m = 2. The generation of higher, even-parity harmonics is
observed from the first interaction with the binary. The dashed
black is a linear fit to the m = 2 curve at late times (shifted
upwards). The initial interaction generates other harmonics
with the same parity (m = 0, 4, . . .) that seem to follow the
same growth rate. Odd parity modes (m = 1, 3, . . .) are also
present but grow from the numerical noise and have growth
rates larger than even modes.

the system and the perturbation frequency due to the
presence of an absorbing region are intrinsically connected,
making the orbital frequency play a crucial but nontriv-
ial role in the long term behaviour of the field’s energy
content.

To better understand the growth rate dependence on

FIG. 8. Energy growth rate dependence on the orbital radius
of the two equal mass binary inside two different cavities
(note the factor two in the axis, since the growth rate should
be twice as large as that of the field itself). The top plot
refers to a cavity of radius Rc = 95 while he bottom one to
one with Rc = 58. Dots represent the numerically obtained
energy growth rates, while the dashed line corresponds to a
quadratic spline. The vertical lines represent the radii defined
by Eq. (18). The initial pulse parameters are presented in
Table I. We used the BA1 (BA2) initial pulse parameters for
the bottom (top) plot.

the orbital radius of the binary we performed a large
number of simulations sweeping a range of orbital radii.
The dependence can be seen in Fig. 8 for two cavity sizes
Rc = 58 and Rc = 95. The smaller cavity links with
the simulation of Figs. 6 and 7 for which an initially
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TABLE III. The m = 1 eigenfrequencies, extracted from late
time Fourier analysis for Rc = 95. Compare the real part
of the frequencies with the first two cavity eigenfrequencies
j1,0/Rc = 0.040333 and j1,1/Rc = 0.738483. Note that R0 =
7.1, 8.44 excite the same cavity mode with j1,0/Rc = 0.040333.

R0 2Ω ωR + iγ
6.19 0.1837 0.07390 + (9.503 × 10−4)i
7.10 0.1495 0.04034 + (6.531 × 10−4)i
8.44 0.1154 0.04034 + (5.475 × 10−4)i

Gaussian m = 2 pulse was used for the field’s initial
configuration. For the larger cavity, we took instead a
pulse with azimuthal number m = 1.

The dashed vertical lines correspond to the orbital radii
for which the perturbing frequency 2Ω (note the symmetry
of the problem), matches the natural cavity ones, i.e, for
which 2Ω = jm,k/Rc. Explicitly we have

Rm,k =
[

2
(

2Rc

jm,k

)2
]1/3

. (18)

The Keplerian, cavity and scalar frequency are shown in
Table III.

The smaller cavity scenario (bottom panel in Fig. 8)
displays a very clean behaviour over the orbital values
considered. As one approaches the resonant R2,1 ≈ 7.1 or-
bit, the growth rate behaves in a oscillatory manner with
overall larger amplification rates. This behaviour is not
observed for the second resonant orbital value. Instead,
the growth rate plunges towards zero as one approaches
it from lower (higher) orbital radii (frequencies). Remark-
ably, the R2,1 line roughly marks the transition between
exciting the k = 1 radial mode (for R0 ≲ R2,1) and excit-
ing the fundamental k = 0 mode (for R2,1 ≲ R0 ≲ R2,0).
For larger radii, the binary has a lower orbital frequency
than the lowest cavity mode and the field never gets
amplified.

This seemingly “clean” behaviour contrasts with the
rather intricate dependence the same value has for a larger
cavity (top figure). When Rc increases, Eq. (18) indicates
that more resonant orbits are expected to exist in a given
interval of orbital radii. Small peaks in growth rate can
be seen at the resonant radii, but a large increase in
growth rate is not observed at the specified orbits but
always at slightly smaller orbits. Also, despite observing
the excitation of higher k-modes as the orbit is shrunk,
no clear transition exists as one crosses the resonances.
The fundamental k = 0 mode dominates the simulation
at all timescales for almost all the probed range of radii.
The exceptions seem to occur at the resonance orbits
where in fact the associated mode seems to be excited. It
is also important to note that the rightmost resonance
at R1,1 ≈ 11.2 does not correspond to the lowest cavity
eigenmode and thus, the growth rate falls below zero
much before we reach the limit imposed by (18).

The reason for the behaviour above is not entirely clear

but two things should be mentioned. First, the width of
each peak is much smaller than the radius of the binary
cylinders (Ra = 2). The complex behaviour may be
due to the interior freedom of the field in each region.
Secondly, the excitation of the fundamental mode (k = 0)
for the larger cavity points to a nontrivial connection
between different k-modes (as the fundamental mode
may be draining energy from the more energetic ones).
This last point may also relate to the geometry of the
system, since now different modes are coupled. Even if
the frequency of the perturber matches that of the field,
the positions of the regions with respect to the cavity
mode profile may avoid a proper excitation of the mode.

Finally, perhaps the most important point to retain
is the fact that growth rates are large and remain large
even when the orbital radius varies by a factor two. This
property could be important for astrophysical systems or
for Earth-bound experiments.

V. APPLICATION TO BLACK HOLE PHYSICS

In the landscape of General Relativity, BHs are the
most well known and visited landmark. They appear as
solutions to Einstein field equations and describe vacuum
spacetimes with a one-way membrane – the horizon – that
endows any BH with a natural dissipative mechanism.
Besides having very rich phenomenology by themselves,
recent interest has sprouted in the area of BH interactions
with scalar fields. This interest comes hand in hand with
the problem of understanding the nature of the large
amount of nonvisible matter we know must permeate our
universe [26, 27] – dark matter.

Although the nature and properties of this exotic kind
of matter remain a mystery, ultra-light bosonic fields –
fuzzy dark matter – have shown to be promising con-
tenders [28, 29]. The fuzzy nature of such fields and their
weak coupling to the Standard Model makes it extremely
hard to probe their properties if not through gravity. BHs,
with their extreme gravitational fields, are thus the perfect
lab to probe the nature of such Dark Matter candidates.

As previously mentioned, superradiance is intrinsically
related to dissipative systems. Thus BHs are prone to
superradiance. In confining spacetimes, such as asymp-
totically anti-de Sitter spacetimes, spinning BHs are thus
unstable since they behave effectively as BHs in a box,
exactly the same setup we studied above [21, 22].

Spinning BHs may be unstable if new, light bosonic
degrees of freedom exist. In this case, BHs would spin-
down while growing a bosonic “cloud” in their exterior [4,
8, 30, 31]. This particularly interesting mechanism allows
a rotating BH to transfer energy to the surrounding field
provided that condition (1) is satisfied. The mechanism is
similar to the one we studied above, but now confinement
is provided by the mass of the bosonic field. The transfer
of energy from the rotating BH to the surrounding field
is prone to leave clear observational marks [6] that can
be used to place strict limits on the mass of ultralight
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bosons [8].
BH binaries, just like single BHs, present us with an

intrinsic dissipation mechanism in the form of an event
horizon and so, the natural question arises: are BH bi-
naries, even if composed of nonspinning BHs, prone to
similar superradiant phenomena?

The timescales involved together with the nontrivial
geometry of a BH binary and radiation losses through
gravitational-wave emission make the problem challenging
to describe [32, 33]. Due to the inherent complexity
of binary BH spacetimes, the question of if, how and
when this phenomenon is relevant in actual astrophysical
scenarios remains unanswered. However, superradiance in
BH binary systems was previously shown to occur through
an effective field theory approach to the problem [17].

We would like to use our findings above and dwell on
BH systems. We will thus extrapolate our results to
BH binaries by promoting α ∼ 1/M as has been argued
before [16]. We should first mention that this substitution
yields sensible results: for a single spinning absorbing
body, a cavity radius Rc = 38 and angular velocity Ω ∼
0.5, the typical amplification scales are of order γ ∼
10−3 − 10−4. This rate is around one order of magnitude
larger than the rate of a (3+1) BH bomb with similar
cavity radius and BH spin [19, 20] with corresponding
parameters. This quick-and-dirty comparison shows that
the dissipative model of this work reproduces, within
an order of magnitude the correct timescales of a three-
dimensional, spinning BH enclosed in a cavity.

These results should find a natural application in anti-
de Sitter spacetimes. Single spinning BHs were shown
to be unstable against superradiant phenomena [4, 21,
22, 34, 35]. Our results indicate that so are binaries, but
leave open the nonlinear evolution of such systems.

In an astrophysical context, one should worry about a
few issues, one of them being the cavity size and orbital
radii. We did not probe the dynamics of the field for
orbital radii smaller than R0 = 6 since, even without an
exact metric, the last stable orbit (LSO) of an equal mass
BH binary (BHB) has been evaluated at 2PN order [36]
to be RLSO ≈ 5.718. After crossing this point, the BHB
plunges, making at most a few orbits and then merging
into a rotating BH. In this late regime as well, we expect
our model to not correctly model the physical system due
to the high curvature of the spacetime near the binary.
However, the presence of fields can, in principle, affect
the late stage dynamics of a plunging BHB.

The LSO value of an equal mass BHB also places a
constraint on the smallest possible cavity size for amplifi-
cation to occur. In Sec. IV we seeked orbital radii that
excited the fundamental modes of a fixed sized cavity.
Our result was that of Eq. (18). Turning the question
around, we can fix the orbital radius of the BA model and
ask what are the cavity sizes for which amplification is en-
hanced. Like before, we equate the perturbing frequency
to the cavity natural ones, jm,k/Rc. We thus obtain

Rm,k
c = jm,k

2Ω = jm,k

2

√
R3

0
2 . (19)

The above expression represents (for a given orbital radius
R0) the threshold cavity size for the amplification of the
(m, k)-mode. The absolute threshold for the amplification
of the fundamental m-mode is given by Rc > Rm,0

c .
For a BHB in the LSO, we have 2Ω ∼ 0.2 and the

crude estimate allows us to say that no amplification
is expected for cavities smaller than Rc ∼ 24.7. Note
that the threshold radius matches exactly the single BH
threshold for the m = 2 case.

Figure 9 displays the dependence of the growth rate on
the cavity size for a fixed orbital radius of R0 = 7.1. The
dashed lines display the cavity sizes Rm,k

c for the m = 1
mode.

The numerically obtained growth rates for the energy
field show that in fact, when the frequency of the BHB
model matches that of a cavity natural mode, these seem
to be larger. It is also evident that our crude estimate of
the smaller cavity size for amplification to occur matches
the numerics. Note the mild dependence of the instability
rate on the cavity size Rc: at large Rc the local peaks
behave as ∼ 1/Rc, in agreement with the rate for a
spinning BH enclosed in a cavity in (3+1) dimensions.

The observation of superradiant instabilities in such
systems is prone to leaving clear observational signatures
in both statistical and dynamical studies. In the former
class, the loss of energy due to to superradiance may
compete with that due to gravitational radiation. For
equal mass binaries in a circular orbit, the rate at which
the orbital energy Eorb = M2/(2R0) is radiated away is
given by [37]

2Mγgrav = Ėgrav

Eorb
= −64

10

(
M

R0

)4
. (20)

For a orbit of radius R0 = 8.4, 2γgrav = −1.29 × 10−3.
For the same orbital radius, the growth rate of a scalar

FIG. 9. Energy growth rate dependence on the cavity radius for
the BA with R0 = 7.1. The vertical dashed lines correspond
to the resonant cavity (19). The initial pulse parameters
are given in Table I. The envelope of the local peaks scale
approximately as ∼ 1/Rc. The local behavior has a steeper
dependence. For example, around the first local peak, we find
γ ∝ R−5

c . The initial pulse considered has the BA1 set of
parameters presented in Table I.
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field with azimuthal number m = 1 inside a cavity of size
Rc = 95 (top panel of Fig. 8), has an associated value of
2γ = 5.2 × 10−4 – a rate of comparable magnitude even
in the late stages of inspiral.

Unlike what Eq. (20) implies, the behaviour of the en-
ergy loss to superradiance has a more complex dependence
on the orbital radius R0 (see Fig. 8). The existence of
radii for which the energy transfer between the binary and
the scalar field is more effective, might lead to accelerated
plunging of the BHB and give rise to a de-phasing of
the GW signals observed when compared with the GW
templates. The question of how this signature can be dis-
tinguished from other mechanisms (see, e.g., Refs. [38–40])
depends on the actual parameters and must be tackled
on an individual basis.

VI. DISCUSSION

We provided robust evidence that binaries are also
prone to robust superradiant scattering phenomena. The
binary model considered, albeit simple, retains the main
geometrical features of many instruments, or laboratory
setups. It could describe for example the physics of spin-
ning blades, such as kitchen blenders, or physics associ-
ated with helicopter blades. Our model can also describe
astrophysical systems, such as BHs or compact stars, and
is thus a good starting point to understand the signature
left on a bosonic field interacting with such systems.

The two-dimensional model for a single absorbing re-
gion, discussed in Sec. III behaves in a similar manner to
what is observed in actual (3+1) systems, such as rotating
cylinders interacting with sounds waves or electromag-
netic waves [3, 12], or even a BH-bomb type scenario [20].
As pointed out before, the main difficulty in mapping the
toy model to the actual scenario lies in choosing a “cor-
rect” value for the absorption parameter α. Our analysis
has shown that the amplification factor of the confined
scalar field with a single absorbing region depends lin-
early on the absorption parameter α. Note that all our
simulations take α = 10 but the linear behaviour of the
growth rate allows us to extrapolate to lower values of this
parameter. This linearity was also observed in other sce-
narios [16], and is consistent with the relation α → 1/M
in BH systems.

Our main result, however, is the observation of super-
radiant instabilities triggered by the presence of moving
disconnected bodies inside a cavity. Our result hints at
the possibility that superradiant amplification can occur
in BH binaries. The formation and growth of these field
configurations can itself radiate gravitationally. The fact
that, naturally, BHBs excite lower energetic modes, makes
these systems perfect candidates for detection in future
detectors aimed at detecting low frequency GW signals
[41]. One of the main scientific objectives of such detec-
tors is the placement of strict constraints in the mass of
ultralight bosonic fields. Although we have considered
massless scalars, the confining cavity is usually taken as a
robust mean of modeling the natural size of scalar clouds

around BHs [42].
The confinement of the field may also arise due to

density gradients in the interstellar medium [43] (but see
also Ref. [44]). In this scenario, the pressure exerted
on the cavity walls (the interstellar medium) can play
a crucial role in the dynamics of astrophysical objects.
The details of such interaction, however, require a better
knowledge of the nature of the scalar matter and we
refrain from commenting on this any further.

Appendix A: Convergence analysis

FIG. 10. Convergence analysis of the simulation shown in
Fig. 6 in the main text, for the energy density inside the
cavity (left panel) and average energy growth rate inside the
cavity (right panel). Results are consistent with 2nd order
convergence.

The finite difference methods employed for the simula-
tions should approximate the continuum solution of the
problem with an error that depends polynomially on the
grid spacing h,

f = fh + O(hn) , (A1)

where n is the convergence order. Since we use 2nd-
order accurate operators, we expect to see 2nd order
convergence. This can be easily tested by running the
same configuration for three different resolutions and
calculating the Q-factor

Q = hn
c − hn

m

hn
m − hn

f

= fhc
− fhm

fhm
− fhf

, (A2)

where hc, hm and hf refer respectively to coarse, medium
and fine grid resolutions. We ran the configuration pre-
sented in Fig. 6 with the resolutions hc = 0.4013M ,
hm = 0.3008M and hf = 0.24048M and evaluated the
energy content of the field inside the cavity at each iter-
ation. For this set of resolutions the expected Q-factor
for 2nd order convergence is Q ≃ 2.16. The results are
summarized in Fig. 10, and are consistent with 2nd-order
convergence.
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