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Abstract
We consider a model of computation in which a physical device, capable of performing measurements,
is coupled with a Turing machine, functioning as an oracle. This interaction, between the machine and
the experiment, is mediated by a protocol, that specifies the experimental precision, and a schedule,
that clocks the number of machine steps during a call to the physical oracle.
We start by studying the class of sets that can be decided using this hybrid model of computation, in
polynomial time, when the schedule is an exponential function and considering three types of experi-
mental precision: infinite, unbounded and finite.
We then introduce Hempel’s theory of measurement, which captures the intuitive notion of a measure-
ment procedure, and present a new axiomatization, which, including the concept of the duration of an
experiment, recovers Hempel’s theory as we allow time to approach infinity. We look at three forms of
physical measurement and prove that, in each case, an experimental apparatus and a process can be
devised to satisfy this axiomatization.
Finally, we study the physical parameters (regarded as real numbers) that can be measured with a
given schedule – the measurable numbers. We consider the case where we allow the schedule to be
an arbitrary (time constructible) function and the case where the complexity of the schedule is to be
fixed a priori. In this last case, we characterize the real numbers that can be measured with two types
of exponential schedules and with a primitive recursive schedule.

Keywords: Digital-analogue computation. Physical oracle. Fundamental measurement. Forms of
physical measurement. Measurable numbers. Measurement complexity of a real number.

1. Introduction
In this thesis, following the work from [1], we consider a model of computation, the Smooth Scatter
Machine (SmSM), in which a Turing machine is coupled with a physical experiment, the Smooth Scatter
Experiment (SmSE), querying it as physical oracle by running the physical experiment. When a particle
is shot at a position z and arrives at the right (left) collecting box, we know that the vertex is to the left
(right) of z. Performing consecutive firings allows us to determine (or estimate) the position of y. We
use the SmSE to boost the computational power of the Turing machine by encoding information that the
Turing machine can use in the position of y. Figure 1 contains a schematic depiction of the SmSE.
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Figure 1: Schematic representation of the SME.
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We present the computational power of the SmSM, when polynomial time restrictions are imposed,
and see that they can be viewed as ideal technicians, controlling a measurement experiment. We study
how to make the leap from comparing object in a domain to being able to assign them a numerical
value, presenting the work from Campbell and Jeffreys in [5], to classify fundamental magnitudes, and
Hempel’s work from [6], regarding the axiomatization of measurement. We then present the work from
[2], in which, considering the physical duration of an experiment, a new axiomatization of measurement
was introduced, which recovered Hempel’s as a limit concept. We propose a different axiomatization of
measurement, which arises from performing comparisons using only dyadic rationals, and prove that,
in the limit, we can again recover Hempel’s notion of a measurement procedure. As a consequence
of introducing the concept of time in an experiment, we study the time complexity required to measure
a real number. This motivates the definition of a measurable number, as one that can be measured
using some time constructible schedule, and the classification of a real number according to the time
complexity of the schedule required to measure it.

2. Background
To classify the computational power of the SmSM, when polynomial time restrictions are imposed, we
consider the following non-uniform complexity classes.

Definition 2.1. The class P/log⋆ consists of sets B for which there is a prefix advice function f ∈ log

and a Turing machine M , running in polynomial time, such that, for every word w with |w| ≤ n, w ∈ B if
and only if M accepts ⟨w, f(|w|)⟩.

Definition 2.2. The class BPP//log⋆ consists of sets B for which, given a prefix advice function f ∈ log,
there is a probabilistic Turing machine M , running in polynomial time, and a constant γ < 1/2, such that,
for every word w with |w| ≤ n, the probability of M rejecting ⟨w, f(|n|)⟩, with w ∈ B, or accepting
⟨w, f(|n|)⟩, with w /∈ B, is, at most, γ.

A SmSM combines a digital computation, performed by a Turing machine, and an analogue compu-
tation, performed by the SmSE. To invoke the SmSE, the Turing machine writes a word z in the query
tape and enters a shooting state: the cannon is aimed at z and an experiment is run. We consider three
protocols that rule the data exchange between the Turing machine and the SmSM: error-free, if the po-
sition of the cannon can be set without any error, error-prone with unbounded precision, if the error in
the position of the cannon can be arbitrarily small (but non-zero), and error-prone with fixed precision, if
the error in the positioning of the cannon is a fixed value. We classify a SmSM according to the protocol
with which is its defined.

For this work, we can assume that running the experiment with a query z and unknown vertex position
y takes a physical time that is bounded by the following inequalities, for A,C > 0:

A

|y − z|
≤ t(z) ≤ C

|y − z|

To measure the vertex with the infinite and unbounded precision protocols, we use Algorithm 2.1. To
measure the vertex with the fixed precision protocol we use Algorithm 2.2, in which we perform enough
firings to estimate the position of the vertex with a given accuracy.

Algorithm 2.1: Measurement algorithm for infinite and unbounded precision.
Data: Positive integer l, representing the desired accuracy;
z0 = 0; z1 = 1; z = 0;
while z1 − z0 > 2−l do

z = (z0 + z1)/2;
s = Prot IP(z⇃l) (resp. Prot UP(z⇃l));
if s == qr then

z1 = z;

if s == ql then
z0 = z;

else
z0 = z; z1 = z;

return z;
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Algorithm 2.2: Measurement algorithm for fixed precision, with an error smaller than 2−h.
Data: Positive integer l, representing the desired accuracy;
x = 0; i = 0; ξ = 22l+h;
while i < ξ do

s = Prot FP(0.1⇃l);
if s == ql then

c = c+ 2;

if s == qt then
c = c+ 1;

i++;

return c/(2ξ);

To achieve a characterization of the computational power of the error-free SmSM, we have to make
the assumption that it is setup with a schedule T (k) ∈ Ω(2k). For a complete characterization for the
error-prone cases, we have to assume that the physical duration of an experiment is given by an expres-
sion of the form t(z) = 1/|y − z|. Then, depending on the protocol being used, we have the following
classification of the computational power of the SmSM, in polynomial time and with an exponential
schedule.

Infinite Unbounded Bounded

Lower bound P/log⋆ BPP//log⋆ BPP//log⋆

Upper bound P/log⋆ BPP//log2⋆ BPP//log2⋆
Schedule in Ω(2k)

Upper bound − BPP//log⋆ BPP//log⋆
Explicit time

Table 1: Computational results.

3. Theory of measurement
3.1. Fundamental measurement
We consider a set O, of physical objects, endowed with some attribute, such as mass or length, and an
experimental apparatus, which compares the objects in O according to that attribute. The following two
definitions are found in [6].

Definition 3.1. Let L and E be two binary relations:

• L is E-irreflexive if, for every a, b ∈ O, if aEb holds, then aLb does not hold;
• L is E-connected if, for every a, b ∈ O, if aEb does not hold, then aLb or bLa holds;
• E and L are a comparative concept, if E is an equivalence relation and L is transitive, E-irreflexive,

and E-connected.

The relations L and E are intended to represent, respectively, that an object has less or the same
amount of the chosen attribute than another.

Definition 3.2. Let L and E be comparative concepts on the set O of objects. Suppose there is an
experimental apparatus to witness these relations. Then, the map M : O → R is a measurement map if
the following axioms are verified:

• If aEb holds, then so does M(a) = M(b);
• if aLb holds, then so does M(a) < M(b).

Following the idea from [2], we propose a new axiomatization of measurement, which, indexed in a
parameter t, representing time, recovers Hempel’s notion as time is allowed to increase arbitrarily.

Definition 3.3. Two collections of binary relations Et and Lt determine a limit timed comparative concept
for the elements of O, if, for every t > 0 and a, b, c ∈ O, the following hold:
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• Exactly one of aEtb, aLtb, bLta holds;
• Et is reflexive and symmetric;
• Lt is transitive;
• if aLtc holds, there is a time T such that, if aET b holds, then bLT c holds as well;
• if aLtb holds, then there is an order T after which aLt′b holds, for any t′ ≥ T .

Definition 3.4. Let Et and Lt be limit timed comparative relations on a set O, of objects, witnessed by
some experimental apparatus. Then, M : O → R is a measurement map if, for any time t > 0, whenever
aLtb holds, so does M(a) < M(b).

Definition 3.5. An apparatus, witnessing a limit timed comparative concept Et and Lt, satisfies the
separation property for a measurement map M : O → R if, for every objects a, b ∈ O, whenever
M(a) < M(b) holds, then so does aLtb, for some time bound t > 0.

Definition 3.6. Given a limit timed comparative concept Et and Lt, we define the relations Elim and Llim

as follows:

• aElimb if, for every time bound t, aEtb;
• aLlimb if there is a time bound t such that aLtb.

Proposition 3.7. Suppose there is physical apparatus witnessing a limit timed comparative concept Et
and Lt and that a measurement map is defined, in the sense of Definition 3.4, such that the apparatus
satisfies the separation property. Then, in the sense of Definitions 3.1 and 3.2, Elim and Llim are a
comparative concept and M is a measurement map.

3.2. Three types of measurement
Consider O the set of vertices with which we can setup the SmSM. To perform comparisons between
vertices a, b ∈ O, we setup two experiments, one with unknown vertex a and the other with unknown
vertex b, comparing each of them by performing experiments with only dyadic rational positions. We will
represent these two experiments as a single one: the Two Wedge Smooth Scatter Experiment.
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Figure 2: Schematic representation of the TSmSE.

By changing the capabilities of the collecting boxes, we can make it so this experiment perform each
of the three from of comparison identified in [4]: signed comparison, if both aLb and bLa can be tested,
threshold comparison, if either aLb or bLa can be tested, and vanishing comparison, if we can only test
the predicate (aLb or bLa).

Proposition 3.8. For signed, threshold and vanishing type comparison,it is possible to define relations
Et and Lt which, together with the respective TSmSE and the linear search algorithm, satisfy the axiom-
atization from Definitions 3.6 and 3.5.

4. Measurable numbers
Following the work from [3], we introduce the class of measurable numbers, presenting some properties
of this class. We then use the concept of measurability to classify a real number according to the time
complexity of the schedule required to measure it.

Definition 4.1. We say that a real number y ∈ (0, 1) is measurable if there exists a SmSM M , with
vertex y and a time constructible schedule T , such that M , knowing n− 1 digit of y, outputs its nth digit
in time T (n), i.e., without timing out.
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We consider the following form of a non-dyadic real y ∈ (0, 1), where u1 ≥ 0 and ui ≥ 1, for every i ≥ 2:

y = 0 · 1 . . . 1︸ ︷︷ ︸
u1

0 . . . 0︸ ︷︷ ︸
u2

1 . . . 1︸ ︷︷ ︸
u3

. . . (1)

Proposition 4.2.

• A non-dyadic y ∈ (0, 1), written according to Pattern 1, is measurable if and only if the sequence
uk is bounded by a computable function.

• A non-dyadic y ∈ (0, 1), whose sequence uk is bounded by a computable function, can be mea-
sured by the Turing machine equipped with the linear search algorithm.

Proposition 4.3. With probability 1, a real numbers in (0, 1) is measurable, but there is an uncountable
set of non-measurable real numbers.

We study four types of bounds on the sequence uk, of a real number y: the class of polynomials, of
exponential functions, of function in a given layer of the Grzegorczyk hierarchy and of primitive recursive
functions. For a real number y ∈ (0, 1), written according to Pattern 1, we summarize the results obtained
in Table 2. The first row represents the order of the function bounding uk; the second row represents the
time complexity of the schedule with which we can measure the vertex y.

Bound on uk O(km) 2O(k) PR

Time complexity of T (k) O(2k+O(⌊k(m−1)/m⌋)) 2O(k) PR

Table 2: Characterization of measurable numbers with a fixed schedule complexity.

Moreover, if uk is in the nth level of the Grzegorczyk hierarchy, then y can be measured with a
schedule, at most, in that same level. The reverse property is not verified, which we show by giving an
elementary schedule with which we can measure a real number, whose expansion is not bounded by
any elementary function.

5. Conclusions
This work regarded the measurement of quantities by means of an analogue-digital system. We started
by studying the class of sets that can be decided by the SmSM, when polynomial time restrictions
are imposed, observing that there is a limitation as to how much a physical experiment can boost the
computational power of a Turing machine. Many questions remain unanswered in this topic, such as
whether or not it is possible to achieve full characterizations as the one presented in Table 1, without
making the previously mentioned assumptions, and if we obtain the same computational classes when
we do not restrict the interaction between the Turing machine and the physical world to a measurement
experiment with one of the three presented protocols.

We then studied the measurement performed by the error-free SmSM from the perspective of fun-
damental measurement, presenting a new axiomatization of measurement, with an indexation in a time
parameter, and proving that the three forms of physical measurement identified in [4] can be represented
by an experiment that will satisfy this axiomatization. As future work in this area, we suggest that the
same study be conducted with the error-prone protocols, either by proving that it is possible to satisfy, in
the limit, Hempel’s axiomatization, or by considering a new axiomatization for measuring with errors.

We concluded with the study of the class of numbers that can be measured by the SmSM, presenting
the characterization of this class given in [3]. We then considered sub-classes of measurable numbers
that can be measured with a schedule with a given time complexity, achieving the characterizations form
Table 2. This work has just begun and there is still a lot to explore, such as the possibility to create a
hierarchy of the set of real numbers according to their measurement complexity.
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