
Measuring quantities with analogue-digital systems

Eduardo de Arbués Moreira Castro Skapinakis

Thesis to obtain the Master of Science Degree in

Mathematics and Applications

Supervisor: Prof. José Félix Costa

Examination Committee

Chairperson: Prof. Paulo Mateus
Supervisor: Prof. José Félix Costa

Member of the Committee: Prof. Isabel Oitavem Rocha

March 29, 2022

This work was created using LATEX typesetting language
in the Overleaf environment (www.overleaf.com).

Acknowledgments

I thank my advisor, José Félix Costa, for both the guidance and availability, during the elaboration of

this thesis, and for introducing me to this subject with such care and patience.

I would also like to thank my family for their support and Luís and Beatriz for many helpful conversa-

tions.

i

Abstract

We consider a model of computation in which a physical device, capable of performing measurements,

is coupled with a Turing machine, functioning as an oracle. This interaction, between the machine and

the experiment, is mediated by a protocol, that specifies the experimental precision, and a schedule,

that clocks the number of machine steps during a call to the physical oracle.

We start by studying the class of sets that can be decided using this hybrid model of computation,

in polynomial time, when the schedule is an exponential function and considering three types of experi-

mental precision: infinite, unbounded and finite.

We then introduce Hempel’s theory of measurement, which captures the intuitive notion of a mea-

surement procedure, and present a new axiomatization, which, including the concept of the duration of

an experiment, recovers Hempel’s theory as we allow time to approach infinity. We look at three forms

of physical measurement and prove that, in each case, an experimental apparatus and a process can

be devised to satisfy this axiomatization.

Finally, we study the physical parameters (regarded as real numbers) that can be measured with a

given schedule – the measurable numbers. We consider the case where we allow the schedule to be an

arbitrary (time constructible) function and the case where the complexity of the schedule is to be fixed

a priori. In this last case, we characterize the real numbers that can be measured with two types of

exponential schedules and with a primitive recursive schedule.

Keywords

Digital-analogue computation. Physical oracle. Fundamental measurement. Forms of physical mea-

surement. Measurable numbers. Measurement complexity of a real number.

iii

Resumo

Consideramos um modelo de computação no qual uma experiência física, que permite realizar me-

dições, é acoplada a uma máquina de Turing, funcionando como um oráculo. Esta interacção, entre a

máquina e a experiência, é mediada por um protocolo, que determina a precisão experimental, e um

relógio, que cronometra as transições da máquina durante uma chamada ao oráculo físico.

Começamos por estudar a classe de conjuntos que podem ser decididos por este modelo híbrido, em

tempo polinomial, quando o relógio é exponencial e considerando três tipos de precisão experimental:

infinita, ilimitada e finita.

De seguida, introduzimos a teoria da medição de Hempel, que captura a noção intuitiva de um pro-

cedimento de medição, e apresentamos uma nova axiomatização que, incluindo na medição o conceito

da duração de uma experiência, recupera a teoria do Hempel quando permitimos que o tempo se aprox-

ima do infinito. Observamos três formas de medição física e provamos que, em qualquer um dos casos,

é possível criar um aparato e um procedimento que satisfaçam esta axiomatização.

Finalmente, estudamos os parâmetros físicos (vistos como números reais) que podem ser medidos

com um dado relógio – os números mensuráveis. Consideramos o caso em que o relógio pode ser

uma função arbitrária (construtível no tempo) e o caso em que a complexidade do relógio é fixa à priori.

Neste último caso, caracterizamos os números reais que podem ser medidos com dois tipos de relógios

exponenciais e com um relógio primitivo recursivo.

Palavras Chave

Computação digital-analógica. Oráculo físico. Medição fundamental. Formas de medição física.

Números mensuráveis. Complexidade de medição de um número real.

v

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Organization of the document . 4

2 State of the art 5

2.1 Complexity classes . 5

2.1.1 Probabilistic computation . 6

2.1.2 Non-uniform complexity . 8

2.2 The Smooth scatter machine model . 10

2.2.1 Description and time of the experiment . 11

2.2.2 Communication with the SmSE and measurement algorithms 14

2.2.2.A Infinite and unbounded precision . 15

2.2.2.B Fixed precision . 16

2.2.3 Computational power of the SmSM . 19

2.2.3.A Encoding a function into the wedge vertex position 19

2.2.3.B Boundary numbers . 20

2.2.3.C The error-prone SmSM as a biased coin 24

2.2.3.D Computational power of the error-free SmSM 25

2.2.3.E Computational power of the error-prone SmSM with unbounded precision 28

2.2.3.F Computational power of the error-prone SmSM with fixed precision . . . 31

3 Theory of measurement 33

3.1 Introduction to the theory of measurement . 33

3.1.1 Fundamental measurement . 34

3.1.2 Hempel’s axiomatization of measurement . 36

3.2 Measuring quantities with time . 38

3.3 Limit measurement . 40

3.3.1 The CME as an example . 41

3.4 Three types of measurement . 44

vii

3.4.1 Two-sided type measurement . 45

3.4.2 One-sided type measurement . 46

3.4.3 Vanishing type measurement . 49

3.4.3.A Parallel implementation . 51

3.4.3.B Time-counting implementation . 55

4 Measurable numbers 59

4.1 Numbers that can be measured by the error-free SmSM 60

4.1.1 A characterization of measurable numbers . 60

4.1.2 Measurability, measure theory and decidability . 62

4.2 Measurement as a means to classify real numbers . 64

4.2.1 Measuring with an exponential schedule . 66

4.2.1.A Real numbers with a polynomially bounded expansion 66

4.2.1.B Real numbers with an exponentially bounded expansion 69

4.2.2 The Grzegorczyk hierarchy . 71

5 Conclusion 75

5.1 Summary . 75

5.1.1 Computational results . 75

5.1.2 Fundamental measurement . 76

5.1.3 Measurable numbers . 77

5.2 Future research . 78

5.2.1 Analogue-digital computation . 78

5.2.2 Fundamental measurement . 79

5.2.3 Measurable numbers . 80

Bibliography 81

A Additional proofs 87

A.1 Probabilistic Trees . 87

A.2 Random sequences . 90

A.3 Error propagation . 91

A.4 Busy Beaver . 91

A.5 Extensive quantities . 92

A.6 Time constructible functions . 93

A.7 Analogue computation . 96

viii

List of Figures

2.1 Schematic representation of the SME. 12

2.2 Protocol for the infinite precision case. 14

2.3 Protocol for the unbounded precision case. 15

2.4 Protocol for the fixed precision case. 15

2.5 Shooting cases. 22

3.1 Schematic representation of the CME. 42

3.2 Schematic representation of the TSmSE. 44

3.3 Schematic representation of the photoelectric effect experiment. 47

3.4 Schematic representation of the broken balance experiment. 47

3.5 Schematic representation of the Brewster angle experiment. 50

3.6 Schematic representation of the vanishing balance experiment. 50

3.7 Protocol for the parallel implementation of the infinite precision vanishing type measurement. 52

3.8 Schematic representation of the parallel vanishing TSmSE. 53

3.9 Protocol for the time-counting implementation of the infinite precision vanishing type mea-

surement. 55

5.1 Schematic representation of the rod machine experiment. 79

A.1 Clock for the function g(k) = ck. 94

A.2 Clock for the function f(k) = 2k. 95

A.3 A simple mechanical integrator. 96

ix

x

List of Tables

3.1 Computational results for the parallel implementation of vanishing type experiments. . . . 51

3.2 Computational results for the time-counting implementation of vanishing type experiments. 51

5.1 Computational results . 76

5.2 Characterization of measurable numbers with a fixed schedule complexity. 78

xi

xii

List of Algorithms

2.1 Measurement algorithm for infinite and unbounded precision. 15

2.2 Measurement algorithm for fixed precision, with an error smaller than 2−h. 17

2.3 Oracle simulation. 21

3.1 Measurement algorithm for one-sided type measurement. 48

3.2 Measurement algorithm for parallel vanishing type measurement. 52

4.1 Sweeping measurement algorithm. 63

A.1 Decider for the Halting set . 92

xiii

xiv

List of Abbreviations

A Constant used in the lower bound for the physical duration of an experiment

ak The number of bits until the end of the block uk, i.e., ak = u1 + · · ·+ uk

Am(n, s) The largest possible difference between the acceptance probability of two m-ary trees with

depth n, whose maximum distance is bounded above by s

BB The Busy Beaver function

BBE Broken Balance Experiment

C Constant used in the upper bound for the physical duration of an experiment

C3 The set of Cantor numbers

CME Collider Machine Experiment

D(σ1, σ2) The maximum distance between two probabilistic query trees Tσ1
m,n and Tσ2

m,n

ε A fixed precision equal to 2−q, for some positive integer q. It can also be used to represent

the special word in Σ? which contains no letters, i.e., the empty word

E The set of edges in a query tree

ei The edge connecting a node to its ith child

Em,n The set of edges of Tm,n

En The nth layer of the Grzegorczyk hierarchy

{li}ni=1 The concatenation of the words l1 to ln.

l1 · l2 The concatenation of the words l1 and l2. It might also be denoted by l1l2

lk A left boundary number, i.e., a boundary number such that lk < y

Lm,n The set of inner nodes of Tm,n

xv

l�mn Digits n to m of l

O A class of physical objects, endowed with some attribute, such as mass or length

π A path in the query tree

π[i] The i-th edge belonging to the path π

PR The class of primitive recursive functions

Prot_FP(z) Communication protocol for fixed precision with query z

Prot_IP(z) Communication protocol for infinite precision with query z

Prot_UP(z) Communication protocol for unbounded precision with query z

P (Tσm,n) The acceptance probability of Tσm,n

ql State that the Turing machine is in, after the particle is detected in the left collecting box

qr State that the Turing machine is in, after the particle is detected in the right collecting box

qt State that the Turing machine is in, after a time out has occurred

rk A left boundary number, i.e., a boundary number such that y < rk

ρ(Tm,n) The set of all assignments for the m-ary probabilistic query tree with height equal to n

Σ An alphabet

Σ? The set of all words over the alphabet Σ

SmSE Smooth Scatter Experiment

SmSM Smooth Scatter Machine

T Time schedule

TM Turing Machine

Tm,n The m-ary probabilistic query tree with height equal to n

Tσm,n A query tree Tm,n with assignment σ

TSmSE Two wedge Smooth Scatter Experiment

t(z) Physical time of an experiment performed with a query z

ui The ith child of a node u of a query tree

xvi

uk The number of digits in the k-th group of the binary expansion of a number in (0, 1), where

k ∈ N, u1 ≥ 0 and ui ≥ 1 for i ≥ 2

V The set of nodes in a query tree

VBE Vanishing Balance Experiment

Vm,n The set of nodes of Tm,n

y Vertex position that lies in (0, 1)

z Shooting position of the cannon of the SmSM. It represents both a binary word and the

corresponding dyadic rational

|z| Size of the word z

zi The ith bit of z

z�l The pruning or the padding of the word z, until it has l bits

xvii

xviii

Glossary

Acceptance probability The sum of the probabilities of each accepting
path in the probabilistic query tree.

Accepting path A path in the probabilistic query tree that de-
fines the accepted words.

Accepting state A state of the Turing machine that defines the
accepted words.

Advice function A total function f : N→ Σ∗.
Arity Number of arguments taken by a function or op-

eration.

BCT conjecture For every “reasonable" physical theory, which
supports measurement experiments, the time
intrinsic to a measurement is at least exponen-
tial.

Boundary numbers The real numbers in (0, 1), lk and rk, such that
t(lk) = t(rk) = T (k) and lk < y < rk.

Busy Beaver The total function BB : N→ N, defined by:
BB(0) = 0 and BB(n) is the maximum out-
put for input 0 among all Turing machines with
n states that halt on input 0.

Cantor numbers Set of real numbers x of the form x =∑∞
k=1 xk2−3k, for xk ∈ {1, 2, 4}.

Characteristic function Given a set A ⊆ Σ, the characteristic function
of A is the one which, given an input n, returns
1, if n ∈ A, and 0, otherwise.

Chebyshev’s inequality If X is a random variable, with finite expected
value µ and finite non-zero variance σ2, then,
for any real number t, P (|X − µ| ≥ tσ) ≤ 1/t2.

Cn Given a function f : D ⊂ R → R and a num-
ber n ∈ N, f ∈ Cn if f and all of its derivatives
f (1), . . . , f (n) are continuous.

Comparative concept Given two binary relation L and E over O, we
say that L and E are a comparative concept if
E is an equivalence relation and L is transitive,
E-irreflexive, and E-connected.

Computable We say that a function f is computable if there
exists a Turing machine that, on input x, outputs
f(x) on the output tape.

xix

Computable number A number y for which there exist a Turing ma-
chine capable of printing approximations of y
given any precision.

Decidable We say that a set A is decidable if there exists
a Turing machine that accepts all the words in
A and rejects all the words not in A.

Deterministic Turing machine A Turing machine for which the transition func-
tion is deterministic, i.e., each rule consists in
only one possible action.

DTIME For T : N → N a total function, we define
DTIME(T) as the class of sets that can be de-
cided by a deterministic Turing machine, whose
time is bounded by T .

Dyadic rational A number of the form n/2k where n is an integer
and k is a natural number. Every dyadic rational
has a finite binary expansion.

E-connected Given two binary relation L and E over O, we
say that L is E-connected if, for every a, b ∈ O,
if aEb does not hold, then aLb or bLa holds.

E-irreflexive Given two binary relation L and E over O, we
say that L is E-irreflexive if, for every a, b ∈ O, if
aEb holds, then aLb does not hold.

Efron’s dice A set of four six-sided dice, A0, . . . A3, such
that, for each i = 0, . . . , 3, die Ai is twice as
likely to beat die Ai+1 mod 4.

Equivalence relation A binary relation E over O is an equivalence re-
lation if it is reflexive, symmetric and transitive.
For arbitrary a, b ∈ O, we use the notation aEb
to mean that a is in relation with b.

Linear search algorithm A root-finding method that repeatedly bisects
an interval and then selects the sub-interval in
which a root must lie for further processing.

m-ary query tree A query tree where each internal node has ex-
actly m children.

Mean value theorem If a function f is continuous on the closed in-
terval [a, b] and differentiable on the open inter-
val (a, b), then there exists at least one point
c ∈ (a, b) such that f(b)− f(a) = (b− a)f ′(c).

Measurable number A number y for which there exist a Turing ma-
chine coupled with a physical oracle with at-
tribute y, running a measurement algorithm, ca-
pable of printing approximations of y given any
precision.

Negative binomial distribution The distribution of the number of trials until we
have k successes, where each trial has a prob-
ability of success p.

xx

Non-deterministic Turing machine A Turing machine for which the transition func-
tion is non-deterministic, i.e., each rule consists
in more then one possible action.

Non-uniform complexity class A class that abstracts the infinite set of families
of finite machines, {Cn}n∈N, where each Cn de-
cides a restriction of the problem for inputs of
size n. Nonuniformity arises from the fact that
Cn and Cm are in general unrelated for every n
and m such that n 6= m.

O(f) For a function f , we define O(f) as the class
of functions g, for which there are positive con-
stants C and k, such that g(n) ≤ Cf(n), for all
n ≥ k.

One-sided type experiment An experiment that approximates the unknown
value just from one side, i.e., it approximates
the unknown value, y, either with values from
below or with values from above x, checking if
y < x or if x < y.

Oracle A set used by the Turing machine, that can be
consulted in one time step, querying about set
membership of a word.

Oracle Turing machine A Turing machine with an extra tape, the query
tape, that allows it to communicate with an ex-
ternal device, the oracle.

Pairing function Function that encodes two words in a single
word over the same alphabet.

Physical oracle A set of physical parameters that encodes in-
formation.

Physical time The time needed to conclude the experiment.
Prefix advice function An advice function f such that, for every n, f(n)

is a prefix of f(n+ 1).
Probabilistic query tree A query tree were each branch has a probabil-

ity associated with it.
Probabilistic Turing machine A Turing machine for which the transition func-

tion is probabilistic, i.e., each rule consists in
one or more possible actions with a probability
associated with them.

Probability assignment For n,m ∈ N a probability assignment is a total
function σ : Em,n → [0, 1], such that the sum of
the function σ for the m outcomes of each node
is 1.

Query state A special state, defined for oracle Turing ma-
chines, which the machines enters to perform
an oracle consultation.

Query Tape A special tape, defined for oracle Turing ma-
chines, where the machine can write a word to
be sent to the oracle.

Rejecting state A state of the Turing machine that defines the
rejected words.

xxi

Running time Working time of a Turing machine.

Taylor theorem We consider Taylor’s theorem with the mean-
value forms of the remainder. If f is a function,
n times differentiable near x = a, then f(x) =∑n−1
k=0 f

(k)(a)(x − a)k/k! + hn(x), where, for
some ξ between a and x, hn(x) = f (n)(ξ)(x −
a)n/n!.

Time constructible A function f : N → N is said to be time con-
structible if there exists a deterministic Turing
machine M and a number p ∈ N such that, for
any input word of size n ≥ p, M halts after ex-
actly f(n) transitions.

Time schedule A time constructible function, in the size of the
query, that establishes the time that the ma-
chine must wait for an answer from the physical
oracle. We say “wait constructive T (n) units of
time" to mean "wait for as long as it takes for T
to run on input n“.

Turing machine Abstract computing device, introduced by Alan
Turing, that manipulates symbols on tapes ac-
cording to a set of rules, the transition function.

Two-sided type experiment An experiment that approximates the unknown
value from two sides, i.e., it approximates the
unknown value y with values from above or with
values from below x, checking if y < x and x <
y.

Universal measuring procedure An algorithm for a SmSM, such that, for every
measurable number, y, there exists a time con-
structible schedule T , such that the machine
with T measures y.

Vanishing type experiment An experiment that approximates the unknown
value y from the physical time taken by the ex-
periment.

Ω(f) For a function f , we define Ω(f) as the class
of functions g, for which there are positive con-
stants C and k, such that g(n) ≥ Cf(n), for all
n ≥ k.

xxii

1
Introduction

1.1 Introduction

“The study of (...) computable (...) functions stands at the intersection of three fields: mathematics,

theoretical computer science, and philosophy" (see [37]).

Computation is an interesting and vast field, with applications ranging from Philosophy, namely in the

areas of proof theory and cognition (see [85] and [80]), to Mathematics and Theoretical Computer Sci-

ence. This is not surprising, if one reflects on how profound the concept of an “algorithm" is: what exactly

is an algorithm? How can we thoroughly distinguish an algorithmic procedure from a non-algorithmic

one? And does non-algorithmic imply not implementable? These questions, which, in Mathematics, are

addressed in the field of computability theory, regard the concept of an algorithm. On the other hand,

the classification of algorithms according to their inherent complexity, which is studied in the branch

of complexity theory, is a field which led to the creation of a vast “Zoo" of complexity classes (see [1])

and produced one of the Millennium Problems: the P versus NP problem, introduced by Cook in 1971

(see [30]).

1

Even though algorithms have been around for millennia1, it wasn’t until the 1920’s that mathemati-

cians started dealing with the question of whether or not certain problems have an algorithmic solution.

The issue was raised in 1928, when Hilbert and Ackermann presented the mathematical community

with the Entscheidungsproblem, which had appeared in lectures by Hilbert in the 1920’s, and asked if

there is an algorithm for deciding if a given sentence is logically valid or not (see [74] and [47]). In 1936

Church, Turing2 and Post each published papers characterizing the class of computable functions, thus

reducing a proof of unsolvability to one of a belonging to a class. These definitions were proven to be

equivalent (see [81] and [76]), but it was Turing’s solution that convinced the founders of the subject,

Gödel, Church and Kleene, as the correct definition of computability.

In his paper, which he later corrected in [82], Turing gave the first machine-based model of what it

means for a function to be computable: the Turing machine model. The paper also included a description

of what we now call a universal Turing machine: one with the ability to simulate any other (see [31]).

Now, even though no physical device can emulate a true universal Turing machine, namely since these

are taken to have an infinite or unlimited memory tape, the existence of such a machine lead to the

goal of building a device that could usefully approximate universality, a task which was first successfully

achieved by Zuse in Berlin in 1941. In this thesis we will use the Turing machine as the standard model

of computation.

The assertion that every intuitively computable function can be computed by a Turing machine is

known as the Church-Turing thesis (or Church’s thesis – see [74]), and the study of models of computa-

tion that violate this assertion has been termed, by Copeland and Proudfoot, in 1999, as “hypercomputa-

tion" (see [32]). Some examples of such models are Turing’s O-machines, accelerated Turing machines

and infinite time Turing machines.3 Interestingly, some models of hypercomputation, in a more loose

sense, can also be found in Literature. Take, for instance, Frank Herbert’s science fiction saga, Dune,

in which one of the character, Paul Atreides, the Kwisatz Haderach, is “an intellect whose capacities

surpassed those of the religiously proscribed mechanical computers used by the ancients" (see [46]).

Some hypercomputation models draw their power from physical theories (see [24] and [78]). A

famous example is the neural net model, which, in 1995, Siegelmann proved to compute more than a

Turing machine (see [71]). More recently, Beggs and Tucker introduced an abstracted physical process,

called the scatter experiment, capable of approximating any real number up to any precision, by shooting

particles at a sharp wedge vertex (see [21]). Therefore, if we could couple the experiment with a Turing

machine, we could use the position of the wedge as an advice, to help the machine with a given decision

problem. To understand how this cooperation is achieved, we have to go back to the 1930’s.

1Algorithmic procedures can be traced back as far as the Babylonians (see [39]) and the Egyptians (see [50]). The name
“algorithm" comes from the name of the ninth century Persian mathematician Abu Ja’far Mohammed ibn Mûsâ al-Khowârizm
(see [62])

2The Bank of England has issued a new £50 note featuring Alan Turing.
3It has been argued that accelerated Turing machines do not actually perform hypercomputation (see [70]). For more examples

of models of hypercomputation, see, for example, [60] or [78].

2

In his thesis from 1939, Turing introduced the notion of an oracle machine (see [83]), in which a

standard Turing machine is equipped with an oracle tape, that allows it to query an oracle during the

computation. This notion was later developed by Post, who introduced what he termed the “Turing

reducibility" (see [63], [64] and [75]). Then, using this idea, in [11] and [12] the authors combined a

Turing machine with the scatter experiment from [21], by viewing it as an oracle that the machine would

query by running the physical experiment. With this formalisation, they classified the computational

power of this model using non-uniform complexity classes, which can be characterized by giving a

Turing machine an advice function that depends only on the length of the input.

Since these systems combine a digital component (the Turing machine) and an analogue4 compo-

nent (the experiment), they are said to be analogue-digital, or hybrid.5 Since, unlike the standard oracle

consultation, which is done in a single transition, a consultation of the physical oracle requires the ex-

ecution of a physical experiment, we have to be careful with how the data is communicated between

the analogue and the digital part of the machine and how we should classify the performance of such

models of computation (see [11]). Therefore, the coupling of the Turing machine with the physical oracle

is mediated by “protocols", which define how the data is exchanged between them.

Studying a different experiment in [16], the collider experiment, the authors stated the BCT con-

jecture: for every “reasonable" physical theory, which supports measurement experiments, the time

intrinsic to an experiment is at least exponential.6 This implies a bound on the power of analogue-digital

machines, clocked in polynomial time, which was expressed in [15] as an analogue-digital Church-Turing

thesis: “No possible abstract analogue-digital device can have more computational capabilities in poly-

nomial time than BPP//log?". Note that this bound restricts the computational power of Siegelmann’s

neural net model, which could decide any set in P/poly.

After the initial scatter experiment, a new scatter machine was introduced in [19]: the SmSM, which

coupled a Turing machine with the SmSE. The authors, referring to the original scatter machine, argued

that “the sharp wedge is (...) unrealistic, and, therefore, a model that removes the discontinuity should be

sought". The sharp wedge was then replaced by an arc of a Cn smooth curve, with nth derivative near

the vertex. This change resulted in a hyperbolic time for an experiment to be completed. We will assume

the BCT conjecture and consider the SmSM as the standard model of analogue-digital computation.

In this thesis we will present this model’s computational power, when polynomial time restrictions are

imposed, and see that they can be viewed as ideal technicians, controlling a measurement experiment.

We will see how to make the leap from comparing object in a domain to being able to assign them a

numerical value, using the axiomatization of measurement given by Carl Hempel in [44]. We will then

present the work from [16], in which the time of an experimental call was introduced in the axiomatiza-

4The term analogue comes from the fact that, unlike a digital computer, which has a fixed internal structure, an analogue
computer is programmed by changing its structure until it forms a model (an analogue) of a given problem (see [84]).

5Hybrid machines, such as the ADDAVERTER, were built around the sixties. For a more recent example see [57].
6Other interested reader may refer to [5], where different experiments are analysed and proven to satisfy this statement

3

tion and Hempel’s notion was obtained as a limit concept. We will propose a different axiomatization

of measurement, which arises from a particular way of performing comparisons, and prove that, in the

limit, we can again recover Hempel’s notion of a measurement procedure. As a consequence of intro-

ducing the notion of time in an experiment, we study the numbers whose binary expansion takes a given

amount of time to be obtained. This concept will motivate the definition of a measurable number and the

classification of a real number according to how long it takes to obtain its binary expansion.

Arguments have been raised against the possibility of actually achieving hypercomputation. For

example, Davis remarks the need for non-computable properties, a priori, to be able to “program" a

hyper-machine, and the fact that no finite amount of data is enough to distinguish a computable from a

non-computable sequence (see [35] and [36]). Regarding hybrid models that surpass the Turing barrier,

it is argued in [29] that the models of hypercomputation that draw on the notions of infinite or continuous

“are not materially realisable and so cannot constitute new forms of effective calculability".

As for the SmSM performing hypercomputation, these models fall under the previously presented

critiques, as we can only program a SmSM to decide a non-computable set when we encode a wedge

vertex position into a (necessarily infinite) non-computable real number. However, we are not inter-

ested in performing hypercomputation; instead, we are only concerned with classifying these models’

computational power and the results obtained by viewing them as measurement experiments.

So, to conclude this introduction, why should we be concerned with hypercomputation? On the

side of realisability, even if no hyper-machine can ever be effectively developed, it motivates the study

of different computing paradigms, which may come to avoid the “doomsday for computing" (see [78]).

From the theoretical point of view, we refer to Davis again (see [36]), who, while presenting his critics to

the field, calls it an “inviting subject for theoretical study" and remarks the work by Ord and Kieu in [61],

who were brought together by their common interest in hypercomputation.

As Teuscher and Sipper wrote in [79]: “So, hype or computation? At this juncture, it seems the jury

is still out – but the trial promises to be riveting".

1.2 Organization of the document

In chapter 2 we introduce the SmSM and its computational power, when a polynomial time constraint is

imposed and the time schedule is taken to be an exponential function; chapter 3 regards the study of the

measurement performed by the SmSM from the perspective of fundamental measurement; in chapter 4

we study the concept of a measurable number, classifying certain classes of real number according to

their measurement complexity; finally, in chapter 5, we end with a summary of the content of this thesis

and with a survey of topics for future research.

4

2
State of the art

2.1 Complexity classes

This section serves as a small introduction to complexity classes. The reader is directed to [6] or [7] for

a more thorough exposition of the topic.

An alphabet is any non-empty finite set, which we will represent with the Greek letter Σ. From now

on, Σ will denote the set {0, 1}. We say that the elements of an alphabet are letters, or symbols, and

denote by Σ? the set of all words over Σ, i.e., finite sequences of letters of Σ. The special word which

contains no letters is denoted by ε. A set A ⊆ Σ? is called a language and its characteristic function is

the one which, given a word in A, returns 1, and given a word in Σ? \ A, returns 0. We are interested in

defining algorithms that can implement the characteristic function of a given language.

We define a Turing machine as an abstract object containing: a finite set of tapes, for storing informa-

tion, a transition function, which details how the machine should work, and a finite set of internal states.

Two types of states which play an important role are the initial state, the state where the computation

begins, and the final state, which can be accepting or rejecting and is used to distinguish the inputs

that are to be accepted from those that are not. The transition function, which can be deterministic,

5

non-deterministic, or have its computations determined probabilistically, determines the type of Turing

machine we are working with.

We say that a set is decidable if it can be decided by a Turing machine (the decision criteria depends

on the type of machine we consider). An example of a non-decidable set is the halting set, which consists

of codes of Turing machines that halt on input 0 (see, for example, [37]). We say that a real number y

is computable if there is a Turing machine capable of approximating y to any given any precision. As an

example of a non-computable value, consider the number whose nth binary place is 1 if and only if the

nth program halts on input 0.

Consider a function f : N → N. We say that f is computable if it can be computed by a Turing

machine and time constructible if there is a Turing machine which, for a constant k, halts in exactly f(n)

steps, for every input of length n ≥ k. We define O(f) as the class of functions g, for which there are

positive constants C and k, such that g(n) ≤ Cf(n), for all n ≥ k. We define Ω(f) as the class of

functions g, for which there are positive constants C and k, such that g(n) ≥ Cf(n), for all n ≥ k.

An oracle Turing machine is one that is coupled with an an external device, called an oracle, which

asserts the belonging of a word to a given set. These Turing machines have a new type of state, the

query state, in which the machine writes a binary word in a special tape, the query tape, and sends

it to the oracle. This process of querying and receiving an answer is assumed to be done in a single

transition i.e., in a single step of the computation.

Complexity theory deals with the computational power of Turing machines when a constraint on

resources, such as time or space, is imposed. Usually, we define these constraints with respect to the

length of the machine’s input. For a polynomial constraint, for example, we have the classes P and

PSPACE, depending on whether the constraint is placed in the time or the space available. In the first

case, we say that a set is in P if it can be decided by a Turing machine clocked in polynomial time.

2.1.1 Probabilistic computation

“Making people take an unconventional step requires compelling reasons, and indeed the study of ran-

domized algorithms was motivated by a few compelling examples" (see [42]).

A randomized algorithm is one that has access to a random number generator, like the tossing of a

fair coin, which it can use to decide the next step at several branches of its computations. The interest

in studying such algorithms is that randomness can imply a tremendous decrease in the running time,

although with a cost: the answer may have some probability of being incorrect (see [48] and [58]).

A famous example of an algorithm that relies on randomness is due to Rabin, who, in 1977, devised

a probabilistic version of an algorithm for testing primality. Rabin’s algorithm, instead of running in

O(log4(n)) steps, ran in O(log2(n)) (see [56] and [65]).

We will introduce the concept of a probabilistic Turing machine and present four probabilistic com-

6

plexity classes. These were first defined by Gill, Adleman and Manders and always impose a polynomial

time restriction on the Turing machines that define them (see [41] and [3]).

A probabilistic Turing machine M is a type of non-deterministic Turing machine where each nonde-

terministic step, called a coin-flip step, has two possible next moves. We will make the assumption that

all the computations of a probabilistic Turing machine have the same depth. Let k be the number of

coin-flip steps that occur on branch b, i.e., the depth of branch b. Then, the probability of b is defined as

P (b) = 2−k. The probability of a probabilistic Turing machine M accepting a word w is defined as the

sum of the probability of each accepting branch of M . The probability of M rejecting w is defined as

P (M rejects w) = 1− P (M accepts w).

A word w is considered accepted by a probabilistic machine M if and only if more than half the

computations of M on w end in the accepting final state. Since we suppose that all computations have

the same length, we can state the acceptance criteria as: “the ratio of accepting paths to the total

number of computations is greater than 1/2". The error probability of a probabilistic Turing machine is

the probability of it wrongly accepting or rejecting a word.

We will now define four probabilistic complexity classes, according to the probabilistic Turing ma-

chines that can decide them. These Turing machines are of the “Monte Carlo" type, if they are allowed

to make a mistake, and of the “Las Vegas” type, if the may terminate with the symbol “?", but are not

allowed to make a mistake.1 The first three classes are of the Monte Carlo type and the last of the Las

Vegas type.

Definition 2.1. The class PP, for Polynomial Probabilistic time, is the class of languages accepted by

polynomially clocked probabilistic Turing machines.

The problem with the class PP is that repeating a computation a polynomial number of times may

not be enough to guarantee a given reliability. This happens because an algorithm may have an error

probability which approaches 1/2 as the size of the input increases, so we could potentially require an

exponential number of trials to achieve a fixed error probability (see [48]).

We will thus consider classes for which the error probability, or, in the last case, the probability of

having the result “don’t know", is limited by a constant smaller than 1/2.

Definition 2.2. The class RP, for Randomized Polynomial time (also denoted by R – see [7]), is the

class of languages accepted by polynomially clocked probabilistic Turing machines, which have zero

error probability, for inputs not in the language, and error probability bounded above by some positive

constant ε < 1/2, for inputs in the language.

1For this type of algorithms, we add to the definition of a Turing machine the final state “don’t know". The error probability of
these machines is calculated considering that the result “don’t know" is not an error. We may refer to these machines as 3-output
probabilistic Turing machines.

7

RP-algorithms are known as yes-biased Monte Carlo algorithms, because a “yes" answer is always

correct, but a “no” answer might be incorrect.

Definition 2.3. The class BPP, for bounded-error probabilistic polynomial time, is the class of languages

recognized by polynomially clocked probabilistic Turing machines, whose error probability is bounded

above by some positive constant ε < 1/2.

Definition 2.4. The class ZPP, for Zero-error Probabilistic Polynomial time, consists of the languages

recognized by polynomially clocked 3-output probabilistic Turing machines, with zero error probability,

such that the probability of the outcome being “don’t know" is bounded above by some positive constant

ε < 1/2.

This means that a “yes" or “no" answer will always be correct, but, with a given probability, the

machine may terminate in the state “don’t know".

Proposition 2.5. A set A is in BPP if and only if, for each polynomial p, a polynomial time probabilistic

machine can be constructed, which accepts A with an error probability of at most (1/2)p(|x|).

A set A is in RP if and only if, for each polynomial p, a polynomial time probabilistic machine can be

constructed which accepts A with an error probability of at most (1/2)p(|x|), on inputs in A, and zero error

probability on inputs not in A.

A set A is in ZPP if and only if, for each polynomial p, a polynomial time probabilistic machine can be

constructed, for which return “don’t know" with a probability of at most (1/2)p(|x|), on any input.

Proof. We will only sketch the proof, but the result can be found, for example, in [72] and [42]. The idea

is that, given a probabilistic Turing machine M , we can make another machine M ′ that will simulate M

a polynomial number of times. For the case of BPP, M ′ returns the most often outcome from M . For the

case of RP, M ′ returns “yes", if there is a run from M that returned “yes", and “no", otherwise. Finally, for

the case of ZPP, M ′ returns “don’t know", if every run on M returned “don’t know", and, otherwise, the

“yes" or “no" answer that occurred (which would be unique by definition of ZPP).

Therefore, we can, in polynomial time, reduce the error associated with a probabilistic Turing machine

to a value so small, that it will be more likely for an undetected hardware failure to occur, than for the

program failing due to its inherent error probability.

2.1.2 Non-uniform complexity

A non-uniform complexity class is a way of characterising families {Cn}n∈N, of finite machines, where

each element Cn decides a restriction of some problem to inputs of size n. Non-uniformity arises be-

cause, for n 6= m, Cn may be unrelated to Cm, so there might be no computable way to call upon each

Cn for every possible input size.

8

In 1980, Karp and Lipton introduced the notion of an advice function, which could be used to unify a

non-uniform class under a single algorithm, by providing it with enough additional information (see [49]).

The sequence would thus be divided into a uniform part, given by the program, and a non-uniform part,

given by the advice function. We can see the size of the advice as a measure of the non-uniformity of

a sequence. In this section we will introduce non-uniform complexity classes, by means of an advice

function2, which will be used when classifying the computational power of the SmSM. For a further

reading on the topic see, for example, [9] and Chapter 5 of [7].

Consider the pairing function, 〈., .〉 : Σ?×Σ? → Σ?, which duplicates every symbol in both words and

assigns 01 to the separation symbol. An advice function is a total map f : N → Σ? and a prefix advice

function is an advice function with the extra condition that f(n) is a prefix of f(n+ 1).

We will consider the classes poly and log, of functions whose size is bounded by some polynomial

or logarithmic function, respectively.

Definition 2.6. Let C be a class of languages and F a class of integer-valued functions. The non-uniform

class C/F is defined as the sets B for which there is f ∈ F and A ∈ C such that w ∈ B if and only if

〈w, f(|w|)〉 ∈ A.

So if C is a complexity class, the sets B ∈ C/F are those for which a function in F provides enough

additional information to decide B within the bounds specified by C. Note that we are not saying that the

set B is in C; instead, we are saying that the decision problem “is w in B", is equivalent to the decision

problem “is 〈w, f(|w|)〉 in A", for some A ∈ C.

Examples of such classes are P/poly and P/log, of the sets that can be decided by a Turing machine

clocked in polynomial time, with a polynomial or logarithmic advice function, respectively. Note that, in

this case, allowing for the advice function to be polynomial yields a strict increase in computational

power, i.e., P/log (P/poly. If we consider exp, the set of advice functions bounded in size by functions

in the class 2O(n), then P/exp contains all sets (see [86]).

Definition 2.7. Given a class C and a set of prefix advice functions F , the class C/F? is defined as the

class of sets B for which there is A ∈ C and f ∈ F such that, for every n ∈ N and w ∈ Σ?, with |w| ≤ n,

w ∈ B ⇔ 〈w, f(n)〉 ∈ A.

In some cases the advice and prefix advice classes coincide, but this is not always the case. For

example, P/poly = P/poly?, but P/log? (P/log (see [87]).

For the classes of the form C/F , the advice function is fixed after choosing the Turing machine that

decides a given set A. For the case of probabilistic computation, this means that we first choose a Turing

machine, with an associated error ε, and then find the advice function. We will consider a less restrictive

definition, where we fix the Turing machine after the suitable advice function has been chosen.
2The interested reader is directed to Section 1.2.4 of [42], where both a characterization by means of advice functions and by

means of Boolean circuits are given.

9

Definition 2.8. Given a class C and a set of prefix advice functions F , C//F is the class of sets B, for

which, given a prefix advice function f ∈ F , there is A ∈ C such that, for every word w, with |w| ≤ n, we

have that w ∈ B ⇔ 〈w, f(n)〉 ∈ A.

An example is the class BPP//log?, of sets B for which, given a prefix advice function f ∈ log, there

is a probabilistic Turing machine M and a constant γ < 1/2 such that, for every word w with |w| ≤ n, the

probability of M rejecting 〈w, f(|n|)〉, with w ∈ B, or accepting 〈w, f(|n|)〉, with w /∈ B, is, at most, γ.

While it holds that C/F ⊆ C//F , for any complexity class C and set of advice functions F , it is

unknown whether or not, for the case of probabilistic classes3, the other inclusion must hold. It holds, for

example, that BPP//poly = BPP/poly, but it is still an open problem to know if BPP//log? is contained in

BPP/log? (see [11]).

In this work we are interested in the non-uniform complexity classes P/log? and BPP//log?, which,

since P ⊆ BPP, satisfy the inclusion P/log? ⊆ BPP//log?.4 For both of these classes, we have that the

length of an advice function f(n) is given by adlog(n)e+ b, for some a and b that depend on f (see [8]).5

Finally, it is important to note that these non-uniform complexity classes contain non-decidable sets.

For example, P/poly contains the sparse halting set and P/log contains the halting set defined as

{02n : n codes for a TM that halts on input 0}. However, as shown in [7], there are sets in EXPSPACE,

and therefore decidable, that are not in P/poly. It is also interesting to note that, since we can just

simulate a computable advice within the algorithm, a computable advice can only result in a computable

behaviour, with a possible speed up.

2.2 The Smooth scatter machine model

We are considering a physical oracle that enables a Turing machine to perform a measurement. Of the

three types of measurement presented in [20], one-sided, two-sided and vanishing, we will only study

the two-sided case. One sided and vanishing type measurements have been studied in [13] and [14],

respectively, and will be presented in Section 3.4.

In this section we will describe how the SmSM works and, for each communication protocol be-

tween the digital and analogue component, present its computational power, when a polynomial time

restriction is imposed and the schedule is taken to be an exponential time constructible function. These

computational results, for two-sided type experiments, appeared for the first time in [5] and [13].

3If C is not a probabilistic class, it doesn’t matter if we choose the advice function before or after the Turing machine has been
fixed.

4It is unknown whether or not the reciprocal inclusion holds (see, for example, [6]).
5In reality, the authors consider the size of a logarithmic advice to be just c log(n), for some constant c. However, since adding

a constant does not change the logarithmic size of an advice, our form is equivalent to theirs.

10

2.2.1 Description and time of the experiment

A SmSM combines a digital computation, performed by a Turing machine, and an analogue computation,

performed by the SmSE. The SmSE is setup with a curve that is n times differentiable at its wedge, which

is placed at y ∈ (0, 1), such that the curve is symmetrical with respect to the wedge position. The SmSE

is governed by a fragment of Newtonian mechanics, consisting of the following laws and assumptions:

• Particles obey Newton’s laws of motion in the two dimensional plane;

• collisions between barriers and particles are perfectly elastic, i.e., kinetic energy is preserved;

• the barriers are rigid and do not deform upon impact;

• the cannon projects a particle with a given velocity and direction;

• the detectors are capable of telling if a particle has crossed them.

In order to invoke the SmSE, the Turing machine writes a word z in the query tape and enters the

shooting state: the cannon is aimed at z and an experiment is run. The particle thrown with velocity

v will be reflected off the wedge and the experiment will inform the machine if the particle reached a

collecting box, and, if so, in which collecting box it was detected.

The SmSM is also setup with a protocol, which determines how accurate the positioning of the

cannon is, and a schedule T : N → N, whose time to compute an input k determines how long the

machine waits for an experiment to return an answer. The physical duration of an experiment, when

performed with a query z, is denoted by t(z).

The schedule is intended to represent a physical clock, which counts the duration of an experiment.

We thus make the additional assumption that the unit of physical time we consider, denoted by ∆t,

relates to the physical amount of time of a machine’s step, denote by ∆T , according to an expression of

the form ∆t = h(n)∆T , where n is the nth step of the machine. We will only consider the case where h

is constantly equal to 1, meaning that a machine’s step represents a unit of physical time (e.g. 1µs).

Even though a schedule can be any time constructible function, we will be interested in machines

that operate with an exponential schedule.6 Unless explicitly stated otherwise, the letter y will represent

a wedge vertex (and the real number corresponding to its position) and the letter T a schedule. The

upper collecting box will be called right collecting box and the lower one will be called left collecting box.

A schematic drawing of the SmSE is represented in figure 2.1.

The word placed in the query tape is either 1 or a binary word beginning with 0. We will use zi to

denote the ith bit of z and the letter z to denote both the word z1, . . . , zn ∈ {1} ∪ {0s : s ∈ {0, 1}?} and

the corresponding dyadic rational z1 + 2−1z2 + · · · + 2−n+1zn. We write |z| to denote n, i.e., the size of

z1, . . . , zn, and say that the SmSM is aiming at z. If we know n binary digits of z, we say that we know z

to a precision of 2−n or to an accuracy of 2n. Note that, by padding each query z with a finite number of

6The fact that these functions are time constructible will be discussed in Section 4.2.

11

cannon

0

1

z

cannon aims at dyadic z ∈ (0, 1)

φ
φ

a

b
w

x

y

limit of traverse
of point of wedge

LEFT COLLECTING BOX

RIGHT COLLECTING BOX

Figure 2.1: Schematic representation of the SME.

0’s, we can assume that every query has the same size.

Proposition 2.9. Suppose the shape of the edge of the wedge is given by a function w(x), which is n

times continuously differentiable near x = 0, and that the first non-zero derivative of w, at x = 0, is its

nth derivative. Then, for a position z such that |y− z| is sufficiently small, the SmSE takes an hyperbolic

time to return an answer, i.e., for some A,C > 0, we have:

A

|y − z|n−1
≤ t(z) ≤ C

|y − z|n−1
(2.1)

Proof. Using the (x,w) coordinate system, with the w axis drawn horizontally and the x axis drawn

vertically, the shape of the wedge can be given by a function w(x), which takes a single maximum value

at x = 0, corresponding to the position of the wedge vertex. We denote by y the distance between the

vertex and the zero line of the cannon. Let φ be the angle of incidence of a particle to the normal of the

curve at the point of impact, which has x coordinate x = z − y. If we suppose that x > 0 (the other case

is analogous), then tanφ = −w′(x) and the incident particle travels at an angle 2φ to the horizontal. We

then have:

tan(2φ) =
sin(2φ)

cos(2φ)
=

2 sin(φ) cos(φ)

cos2(φ)− sin2(φ)
=

2 sin(φ)
cos(φ)

1− sin2(φ)
cos2(φ)

=
2 tan(φ)

1− tan2(φ)
= − 2w′(x)

1− w′2(x)

Let a be the distance between the zero line of the cannon and the right collecting box, and let b be

the horizontal distance between the collision point with the curve and the collision point with the right

collecting box. We have that:

tan(2φ) =
a− z
b
⇒ b =

a− z
tan(2φ)

= −(a− z)1− w′2(x)

2w′(x)

Denoting by c the distance between the cannon and the flat part of the wedge, we know that the distance

12

traveled by the particle is given by:

d(x) = c− w(x) +
√

(a− z)2 + b2 = c− w(x) + (a− z)

√
1 +

(
1− w′2(x)

2w′(x)

)2

Since we consider that all the shots are made with the same speed v and t(z) = dist(z− y)/v, we have:

t(z) =
1

v
×

c− w(z − y) + (a− z)

√
1 +

(
1− w′2(z − y)

2w′(z − y)

)2

For the upper bound case, consider that c− w(z − y) ≤ c, a− z ≤ a and 1− w′2(z − y) ≤ 1. Therefore,

we conclude that:

t(z) ≤ 1

v
×

c+ a

√
1 +

(
1

2w′(z − y)

)2
 ≤ 1

v
×
(
c+ a+

a

2w′(z − y)

)
(2.2)

Now suppose that the function w(x) is n ≥ 2 times continuously differentiable near x = 0. Then, as w(x)

has a maximum at x = 0 we have that w′(0) = 0. Now, let n be the order of the first non-zero derivative

of w at x = 0. Then using Taylor’s theorem with remainder, for the function w′, we have that, for some ξ

between 0 and x,

w′(x) =
w(n)(ξ)xn−1

(n− 1)!

whence, for some neighbourhood of x = 0, we have constants D,E > 0 such that D|x|n−1 ≤ w′(x) ≤

E|x|n−1. Finally, from equations 2.2, and considering that w′ has a bounded value in the interval (0, 1),

there is C > 0 such that t(z) ≤ C/|y−z|n−1 (analogously, we can find a lower bound for t(z)). Therefore,

there are constants A,C > 0 such that, for |y − z| close enough to 0,

A

|y − z|n−1
≤ t(z) ≤ C

|y − z|n−1

Note that the result would still be valid if the curve were to be m > n times differentiable, or even

infinitely differentiable, near x = 0. We only require that the first non-zero derivative is the nth derivative.

Remark 2.10. The previous proposition establishes an asymptotic lower and upper bound for the time

of an experiment, which depends on the first non-zero derivative of w. However, as has been remarked

in [5], we can assume, without loss of generality, that n = 2, as the computational power of this model is

13

the same for values of n > 2. We will thus assume that, for some constants A,C > 0,

A

|y − z|
≤ t(z) ≤ C

|y − z|
(2.3)

Moreover, since we are only interested in the asymptotic behaviour of an algorithm, we will use these

bounds as if they were valid for every experiment, as only a finite number of first firings will violate this

assertion.

From now on, the letters A and C will always represent these constants.

We are interested in studying the class of sets that can be decided by the SmSM, when clocked in

polynomial time. We thus have the following definitions.

Definition 2.11. Let B ⊆ Σ? and M be an error-free SmSM, clocked by a polynomial p(n). We say that

M decides B if, for every w ∈ Σ?, M accepts w in, at most, p(|w|) steps, if w ∈ B, and M rejects w in,

at most, p(|w|) steps, if w /∈ B.

Definition 2.12. Let B ⊆ Σ? and M be an error-prone SmSM, with unbounded (fixed) precision, clocked

by a polynomial p(n). We say thatM decides B if there is a constant γ < 1/2 such that, for every w ∈ Σ?,

M satisfies the following condition, with an error probability of γ: if w ∈ B, then M accepts w in p(|w|)

steps; if w /∈ B, then M rejects w in p(|w|) steps.

2.2.2 Communication with the SmSE and measurement algorithms

We consider that our experiment can set the cannon’s position in three different ways, depending on the

protocol that rules the data exchange. For each protocol, we will have to consider a different algorithm

for measuring the position of the wedge vertex. For the error-prone protocols, we will assume that

the position of cannon z′ is chosen uniformly. The reader may refer to [10], where it is proven that this

assumption can be generalized without a change in the computational power of these models. The three

protocols are represented in Figures 2.2, 2.3 and 2.4. A SmSM may be classified as being error-free,

error-prone with unbounded precision, or error-prone with fixed precision, depending on the protocol

with which it is defined.

PROTOCOL PROT_IP(z)

Receive as input a dyadic rationals z of size n;
Run an experiment with the cannon set to z and wait constructive T (n) units of time;
If the particle reaches the left collecting box, return ql;
If the particle reaches the right collecting box, return qr ;
If the particle doesn’t reach one of the collecting boxes in T (n) units of time, return qt.

Figure 2.2: Protocol for the infinite precision case.

14

PROTOCOL PROT_UP(z)

Receive as input a dyadic rationals z of size n;
Run an experiment with the cannon set to z′ ∈ [z − 2−n, z + 2−n] and wait constructive
T (n) units of time;
If the particle reaches the left collecting box, return ql;
If the particle reaches the right collecting box, return qr ;
If the particle doesn’t reach one of the collecting boxes in T (n) units of time, return qt.

Figure 2.3: Protocol for the unbounded precision case.

PROTOCOL PROT_FP(z)

Receive as input a dyadic rationals z of size n;
Run an experiment with the cannon set to z′ ∈ [z − ε, z + ε] and wait constructive T (n)
units of time;
If the particle reaches the left collecting box, return ql;
If the particle reaches the right collecting box, return qr ;
If the particle doesn’t reach one of the collecting boxes in T (n) units of time, return qt.

Figure 2.4: Protocol for the fixed precision case.

From now on, we will denote by z�l the first l digits of z, if z has at least l digits, or z padded with k

zeros such that |z0k| = l, otherwise. We will now present, for each protocol, an algorithm that can be

used to measure the position of the wedge vertex of the SmSM.

2.2.2.A Infinite and unbounded precision

For the infinite precision, and for unbounded precision as well, the only change being the call for the

protocol, we have the measurement Algorithm 2.1. In the case of the unbounded precision, we set the

error of the cannon to be 2−l.

Algorithm 2.1: Measurement algorithm for infinite and unbounded precision.
Data: Positive integer l, representing the desired accuracy;
z0 = 0; z1 = 1; z = 0;
while z1 − z0 > 2−l do

z = (z0 + z1)/2;
s = Prot_IP(z�l) (resp. Prot_UP(z�l));
if s == qr then

z1 = z;

if s == ql then
z0 = z;

else
z0 = z; z1 = z;

return z;

15

Proposition 2.13. Consider a SmSM, with wedge vertex position y and time schedule T , and let s be

the result of Prot_IP(z�l). Then,

• If s = ql (resp. qr), then z�l is smaller (resp. greater) than y;

• if s = qt, then |y − z�l| < C/T (l).

Proof. The first statement is obvious. For the case where a time out occurred, we have:

C

|y − z�l|
≥ t(z�l) > T (l) ⇔ |y − z�l| < C/T (l)

Proposition 2.14. Consider a SmSM with wedge vertex position y and time schedule T , and let s be

the result of Prot_UP(z�l). Then:

• If s = ql, then z�l < y + 2−l;

• if s = qr, then z�l > y − 2−l;

• if s = qt, then |y − z�l| < C/T (l) + 2−l.

Proof. Let z′ be the (uniformly) chosen position by Prot_UP(z�l). Then, z′ ∈ [z�l−2−l, z�l+ 2l]. If s = ql,

then z�l−2l ≤ z′ < y, whence z�l < y+2−l; if s = qr, then z�l+2l > z′ > y, whence z�l > y−2l; if a time

out occurs, then C/|y − z′| ≥ t(z′) > T (l), whence |y − z′| < C/T (l) and |y − z�l| < C/T (l) + 2−l.

Proposition 2.15. Consider a SmSM, with unbounded or infinite precision, with vertex position at y and

time schedule T (l) = D2l, for D ≥ C, running Algorithms 2.1 with input l. We then have:

• The time complexity of the measurement algorithm is O(lT (l));

• with infinite precision, the output of the algorithm is a dyadic rational z, such that |y − z| < 2−l;

• with unbounded precision, the output of the algorithm is a dyadic rational z, such that |y−z| < 2−l+1

Proof. The first statement comes from the fact that the call to the protocol is repeated l times, each

taking O(T (l)) steps. The other statements are an immediate consequence of the halting condition of

Algorithms 2.1. In the infinite precision case, the execution of the algorithm halts when t(z) > T (l),

which happens when |y − z| < C/T (l) ≤ D/T (l) = 2−l. In the worst case of the unbounded precision,

the execution of the algorithm halts when |y − z| < C/T (l) + 2−l ≤ 2−l + 2−l = 2−l+1.

2.2.2.B Fixed precision

For the fixed precision case we have Algorithm 2.2. The idea is to make enough firings to get a result

with a small margin of error. The reason for the different increments of c will become clear in the proof

of Proposition 2.16.

16

Algorithm 2.2: Measurement algorithm for fixed precision, with an error smaller than 2−h.
Data: Positive integer l, representing the desired accuracy;
x = 0; i = 0; ξ = 22l+h;
while i < ξ do

s = Prot_FP(0.1�l);
if s == ql then

c = c+ 2;

if s == qt then
c = c+ 1;

i++;

return c/(2ξ);

The following statement appears for the first time in [11], for the case of the scatter experiment, and

in [5] and [13], for the case of the SmSM and the BBE7, respectively. We present here a more detailed

proof of the result.

Proposition 2.16. Consider an error-prone SmSM, with fixed precision ε = 2−q, wedge vertex position

at y = 1/2− ε+ 2sε, for s ∈ (0, 1) and time schedule T , running Algorithms 2.1 with input l. Then, for an

error probability of δ = 2−h, we have:

• The time complexity of the measurement algorithm is O(22l+hT (l));

• the output of the algorithm is a dyadic rational m, such that |s − m| < 2−l, with error probability

less than 2−h.

Proof. The first statement derives from the fact that the Algorithm 2.2 perform the experiment 22l+h

times, each taking a time bounded by the schedule.

For the second part, our method for guessing digits of s begins by commanding the cannon to shoot

ζ times at z = 1/2(±ε). Note that y ∈ [1/2 − ε, 1/2 + ε], which is the interval with the possible position

of the particle, when we aim at z = 1/2. Denote by η > 0 the value such that the experiment runs out of

time in the interval (y − η, y + η).

• The event z < y happens if z is in the interval [1/2 − ε, y − η], which happens with a probability

p = (y − η + ε− 1/2)/(2ε);

• the event y < z happens with probability q = (1/2 + ε− y − η)/(2ε);

• the event time out happens with probability r = 2η/(2ε).

So, our experiment can be modeled as a multinomial distribution with three categories of success, each

one with the stated probabilities. Denote by α, β and γ the random variables that count how many

times the events z < y, y < z and time out happen, respectively and consider the random variable,

7This experiment will be presented in Section 3.4.2

17

X = (2α+γ)/(2ζ). This way, combining the event z < y and “half" of the event time out into a single one,

X represent the probability that z is smaller than y, including the case where we don’t get a response

due to a time out (recall the increment of c in Algorithm 2.2). Let Y = 2ζX. Then,

Y = 2α+ γ = 2pζ + rζ = ζ

(
2
y − η + ε− 1/2

2ε
+

2η

2ε

)
= ζ

2y + 2ε− 1

2ε
= ζ

4sε

2ε
= 2ζs

V ar(Y) = V ar(2α) + V ar(γ) + 2Covar(2α, γ) = 4V ar(α) + V ar(γ)− 4(αγ − αγ)

We have the values (see, for example, pag. 639 of [51]): α = ζp, γ = ζr, V ar(α) = ζp(1 − p) and

V ar(γ) = ζr(1− r). The product expectation is given by

αγ =
∑
x,y

xyP (α = x, γ = y) =
∑
x,y

xyP (α = x|γ = y)P (γ = y)

=
∑
y

y
∑
x

xP (α = x|γ = y)P (γ = y) =
∑
y

yE(α|γ = y)P (γ = y)

= E(γ · E(α|γ)) = E(γ) · E(α|γ) = ζ(ζ − 1)rp

whence the variation is:

V ar(Y) = 4ζp(1− p) + ζr(1− r)− 4(ζ(ζ − 1)pr − ζ2pr) = ζ(4pq + r(1− r))

= ζ

(
4

(y − η + ε− 1/2)(1/2 + ε− y − η)

4ε2
+
ηε− η2

ε2

)
= ζ

(
−y2 − ηε+ ε2 + y − 1/4

ε2

)
= ζ

(
4sε− 4s2ε− η

ε

)
= ζ

(
4ε(1− s)s− η

ε

)
≤ 4ζ

(
ε(1− s)s

ε

)
≤ 84ζ

Therefore,

X =
1

2ζ
Y = s; V ar(X) =

V ar(Y)

4ζ2
≤ 4ζ

4ζ2
=

1

ζ

Let the number of firings be ζ = 22l+h. Using Chebyshev’s inequality, with t = 2−l/V ar(X), we have:

P (|X − s| > 1/2l) ≤ 22lV ar(X) ≤ 22l

ζ
= 2−h = δ

This inequality gives an upper bound on the probability of reading s to an accuracy of 2` incorrectly.

Then, with ζ = 22l+h experiments, X will approximate s to an accuracy of 2l with an error smaller than

δ = 2−h. The proof is completed by remarking that Algorithm 2.2 calculates the value of X.

8Recall that s ∈ (0, 1), whence s(1− s) ≤ 1.

18

2.2.3 Computational power of the SmSM

In this section we will characterize the computational power of the (error-free and error-prone) SmSM,

when clocked in polynomial time and with an exponential schedule. We will show how to use the wedge

vertex position as an advice function, introduce the concept of a boundary number and present a method

to use the uncertainty from the error-prone protocols to simulate the tossing of a fair coin. Finally, we will

give a characterization of the class of sets that can be decided using this models of computation.

2.2.3.A Encoding a function into the wedge vertex position

In this section we will show how to encode a prefix advice function f into the position of the wedge vertex

of the SmSM. Hence, the problem of using the advice given by f , in the sense of Section 2.1.2, will be

reduced to that of reading digits of the position of the wedge vertex.

Definition 2.17. The set of Cantor numbers, denoted by C3, is the set of real numbers x such that

x =
∑∞
k=1 xk2−3k, where xk ∈ {1, 2, 4}, i.e. the numbers composed of the triples 001, 010, or 100.

The advantage of using this type of numbers is their relation with the set of dyadic rationals, which

we make evident in the following proposition. Its statement appears for the first time in [13]. We present

a shorter proof of the statement, by considering only the worst case for the expansion of y.

Proposition 2.18. For every y ∈ C3 and for every dyadic rational z ∈ [0, 1], with size n, if |y− z| ≤ 2−l−5,

for l ≤ n, the binary expansion of y and z coincide in the first l bits.

Proof. Suppose that y and z differ in the lth bit and that that z < y, meaning that yl = 1 and zl = 0. Then

|y − z| is the smallest if y has the biggest possible amount of zeros after l and the digits of z continue

until n with 1’s. Since y is composed of the blocks 100, 010 and 001, and yl = 1, the smallest difference

is attained when l ≡3 1 and the digits after yl are 00001 Thus, we have two possibilities, depending

on whether the carry in the subtraction up to l + 5 is 1 or 0. If the carry is 1, we have:

|y − z| = 2−l|1.00001 · · · − 0.11111 · · · | = 2−l|0.00001 · · · | > 2−l|0.00001| = 2−l−5

If the carry is 0, we have:

|y − z| = 2−l|1.00001 · · · − 0.11111 · · · | = 2−l|0.00010 · · · | > 2−l−4 > 2−l−5

Analogously, if y < z the smallest distance is attained when z continues until n = |z| with only 0’s and y

is as big as possible. This happens when l ≡3 2, with yl+1 at the end of a 001 block, and the next digits

19

after yl+1 are 100. In any case, we will have:

|y − z| = |z − y| = 2−l|1.000 · · · − 0.1100 · · · | = 2−l|0.01 · · · | > 2−l|0.01| = 2−l−2 > 2−l−5

So, in any case, if y and z aren’t equal in the first l digits, we get that |y − z| > 2−l−5.

Definition 2.19. Given a prefix advice function f : N → {0, 1}?, consider a sequence sn that satisfies

f(n + 1) = f(n)sn+1, for each n ∈ N. We then set the position of the wedge vertex y(f) to the limit of

the sequence yf (n), recursively defined as follows:

yf (0) = 0 · c(f(0))

yf (n+ 1) =

yf (n)c(sn+1) n+ 1 is not a power of 2

yf (n)c(sn+1)001 n+ 1 is a power of 2

where, for s ∈ Σ?, c(s) replaces each 0 and 1 in s with 100 and 010, respectively. The terms 001 work as

separation markers, which we only place after a power of 2.

For example, yf (5) = 0 · c(f(0))c(s1)001c(s2)001c(s3)c(s4)001c(s5). The reason for only marking the

powers of 2 is made evident in the following proposition.

Proposition 2.20. Consider a prefix advice function f ∈ log?. Then, to use the advice function on a

word w, we only need to read a number of digits from y(f) which is logarithmic in the size of w.

Proof. Consider m = dlog |w|e and read the binary expansion of y(f) until m + 1 001’s have been read.

Then, removing the extra 001, we can reconstruct f(2m) which, by Definition 2.8, can be used as an

advice for w.

Now, since f ∈ log?, there are constants L,K such that |c(f(2m))| ≤ L log(2m) + K = Lm + K.

Therefore, we have to read at most Lm + K + 3m = (L + 3)m + K digits of y(f), when we add in the

separators. Then, since m is logarithmic in the size of w, so is the number of digits we have to read.

Thus, given a word w of size n, we will read the digits of y(f) to obtain f(2dlogne), which we will use

as advice for the computations on w.

2.2.3.B Boundary numbers

To find the upper bounds of the computational power of the SmSM, we will create a prefix advice function

which will enable a regular Turing machine to simulate the answer given by the SmSM. This advice

function will be built using boundary numbers, which, for each query size, give enough information to

conclude the result of an experimental call, without having to run the actual experiment.

20

Definition 2.21. Consider a SmSM with vertex position y ∈ (0, 1) and an exponential time schedule T .

For every z ∈ {0, 1}? of size k, we define the left and right boundary numbers, lk and rk, as the two real

numbers in (0, 1) that satisfy the equation t(lk) = t(rk) = T (k), with lk < y < rk.

Since the curve of the SmSM is symmetric, the boundary numbers are equidistant from the wedge

vertex, i.e., |y − lk| = |y − rk|. Note that we are not defining the boundary numbers as being possible

queries for the SmSM; in fact, given that they can take any real value in (0, 1), this might even be

impossible. Instead, we are saying that, if a particle were to be shot at a boundary number, lk or rk,

the experiment would take time T (k) to return an answer. Also, note that we can only guarantee the

existence of lk and rk if T (k) is greater than the time it takes for an experiment to be run with the cannon

aiming at 0 and 1. If we take an increasing schedule, this will happen eventually, so we will assume that

it is always the case, as only a finite number of values violates the assumption.

Now suppose that we want to run an experiment with a query z. We then have three possible

answers: ql, if z < y and t(z) ≤ T (|z|); qr, if z > y and t(z) ≤ T (|z|); qt, otherwise. We thus arrive at

Algorithm 2.3, where we replace oracle consultations by a comparison of the query word with both l|z|

and r|z|. In reality, we will not use the boundary numbers themselves, but dyadic approximations.

Algorithm 2.3: Oracle simulation.
Data: Dyadic rational z, representing the query, boundary numbers l|z| and r|z|;
if z ≤ l|z| then

A transition to the state ql occurs;

if z ≥ r|z| then
A transition to the state qr occurs;

if l|z| < z < r|z| then
A transition to the state qt occurs;

Recall that, when the cannon is aimed at z ∈ (0, 1), the error-prone protocols choose its actual

position, uniformly, in the interval [z − ε, z + ε], where, for either protocol, ε is the error associated with

the firing. We then have the six cases depicted in Figure 2.5.

We are assuming that the cannon has a restriction, so that it only fires in the interval (0, 1). This is

because when a dyadic rational z ∈ (0, 1) is chosen, close enough to either 0 or 1, the interval [z−ε, z+ε]

might no longer be contained in (0, 1). We will thus use the convention that, if the position z′, chosen by

an error-prone protocol, is smaller (resp. greater) than 0 (resp. 1), the experiment immediately returns

ql (resp. qr). For presentation purposes, the shooting cases from Figure 2.5 do not contemplate this

option, of the shooting interval exceeding (0, 1).

Proposition 2.22. Suppose that a SmSM fires a particle query of size k under protocol Prot_UP(z).

Then, knowing k + d bits of lk and rk is enough to approximate the probabilities of having ql, qr or qt,

within an error less than 2−d.

21

0 1ylk rk

1

2

3

4 56

Figure 2.5: Shooting cases.

Proof. Protocol Prot_UP(z) chooses uniformly some z′ ∈ [z − 2−k, z + 2−k], which originates the six

shooting cases from Figure 2.5. In each case, we can calculate the probability of each possible out-

comes in terms of boundary numbers. This representation determines how many digits of the boundary

number we must know, in order to predict the outcome of an experimental call with a given precision.

1. z − 2−k ≤ lk < y < rk ≤ z + 2−k:

P (ql) = P (z′ ∈ [z − 2−k, lk]) =
lk − z + 2−k

z + 2−k − (z − 2−k)
=

lk − z
2× 2−k

+
1

2
= 2k−1(lk − z) +

1

2

P (qt) = P (z′ ∈ (lk, rk)) =
rk − lk

z + 2−k − (z − 2−k)
=

rk − lk
2× 2−k

= 2k−1(rk − lk)

P (qr) = P (z′ ∈ [rk, z + 2−k]) =
z + 2−k − rk

z + 2−k − (z − 2−k)
=

z − rk
2× 2−k

+
1

2
= 2k−1(z − rk) +

1

2

2. z − 2−k ≤ lk ≤ z + 2−k ≤ rk:

P (ql) = 2k−1(lk − z) + 1/2; P (qt) = 2k−1(z − lk) + 1/2; P (qr) = 0

3. lk ≤ z − 2−k ≤ rk ≤ z + 2−k:

P (ql) = 0; P (qt) = 2k−1(rk − z) + 1/2; P (qr) = 2k−1(z − rk) + 1/2

4. z − 2−k < z + 2−k ≤ lk:

P (ql) = 1; P (qt) = 0; P (qr) = 0

5. rk ≤ z − 2−k < z + 2−k:

P (ql) = 0; P (qt) = 0; P (qr) = 1

6. lk ≤ z − 2−k < z + 2−k ≤ rk:

P (ql) = 0; P (qt) = 1; P (qr) = 0

22

Take, for example, the expression P (ql) = 2k−1(lk − z) + 1/2 and let a = lk − z and b = 2k−1. Note

that, for a precision of 2−k−d, there is no error associated with the approximations of z, 2k−1, or 1/2.

Then, by Proposition A.7 from the Appendix, we have:

|∆P (ql)| ≤ a|∆b|+ b|∆a|+ |∆a||∆b| = b|∆a| ≤ 2k−1(|∆lk|+ |∆z|) = 2k−1|∆lk|

Thus, if we know k + d bits of lk and rk, we can approximate the P (ql) with a precision of 2−d.9 The

other cases are analogous.

Note that, even though a comparison between z ± 2−k and a finite number of bits of lk and rk is

not enough to uniquely determine which case is valid, this does not affect the validity of the predictions.

Suppose, for example, that z − 2−k < lk�k+d and that z + 2−k = rk�k+d, where we assume that each

dyadic rational has been padded to have a precision of k + d. Then, we can either have z + 2−k < rk or

z + 2−k = rk, depending on whether or not the rest of the expansion of rk has only zeros, which means

that both cases 1 and 2 are possible. We see that, either way, we have the following approximations:

P (ql)1 = 2k−1
(
lk�k+d − z

)
+ 1/2 = P (ql)2

P (qt)1 = 2k−1
(
rk�k+d − lk�k+d

)
= 2k−1

(
z + 2−k − lk�k+d

)
= 2k−1

(
z − lk�k+d

)
+ 1/2 = P (qt)2

P (qr)1 = 2k−1
(
z − rk�k+d

)
+ 1/2 = 2k−1

(
z + 2−k − rk�k+d

)
= 0 = P (qr)2

Where, for s = ql, qt, qr, P (s)i is the approximation of P (s) using the expression from case i.

Proposition 2.23. Suppose that a SmSM fires a particle query of size k under protocol Prot_FP(z), with

precision ε = 2−q. Then, knowing q + d bits of lk and rk is enough to approximate the probabilities of

having ql, qr or qt, within an error less than 2−d.

Proof. The proof is analogous to that of Proposition 2.22. Protocol Prot_FP(z) chooses uniformly some

position z′ ∈ [z − 2−q, z + 2−q], which originates the six possible shooting cases represented in figure

2.5. Then, we can determine the probability of having ql, qr, or qt in terms of the boundary numbers.

This allows us to determine how many digits of the boundary numbers we must know, in order to predict

the outcome with a given precision. Therefore, knowing q + d bits of lk and rk allows us to approximate

the probabilities within an error less than 2−d.

We will now prove that, if an assumption is made on the physical duration of an experimental call, we

can calculate approximations of the boundary numbers using the position of the wedge vertex.

9In reality, we only need to know k − 1 + d bits of the boundary number to approximate the probabilities to a precision of 2−d.
We consider k + d to simplify the calculations.

23

Proposition 2.24. If we assume that the time of the experiment is of the form10 t(z) = 1/|y− z|, then, if

we have d+ 1 bits of y, we can compute the boundary numbers with an error less than 2−d.

Proof. Suppose that the SmSM writes a query z of size k. Then, considering the explicit time, as the

boundary numbers satisfy the properties lk < y < rk and t(lk) = t(rk) = T (k), we have:

1

|y − lk|
= T (k) ⇔ y − lk =

1

T (k)
⇔ lk = y − 1

T (k)

Analogously, rk = y + 1/T (k).

Thus, given approximations to y, we can obtain approximations of lk and rk. Since the schedule T

is internal to the Turing machine, the only error associated with 1/T (k) comes from the truncation we

make to match the precision of y, a truncation in which we might discard non-zero digits.

Suppose we have d+ 1 bits of y. Then, by computing d+ 1 bits of 1/T (k), the error associated with

lk or rk is bounded by 2−d−1 + 2−d−1 = 2−d (see Section A.3). Therefore, knowing d+ 1 bits of y allows

us to compute the boundary numbers with an error less than 2−d.11

2.2.3.C The error-prone SmSM as a biased coin

To calculate the lower bounds for the computational power of the error-prone SmSM, we will use the

fact that the randomness in the firing of the cannon, given by the error associated with the error-prone

protocols, can be used to simulate the tossing of a fair coin, which the SmSM will be able to use to

simulate random algorithms. In this section we prove that, with the bounded and unbounded precision

protocols, the SmSM can be used to simulate the tossing of a biased coin, which, in turn, can be used

to simulate the tossing of a fair one, up to a given probability of error (see Section A.2).

Since these results will regard the lower bounds for the computational power of the SmSM, we will

make the assumption that the machine has been setup a non-dyadic y and has a schedule of the form

T (k) = D2k, for D > C. The first restriction is to ensure that we will not fire at y; the reason for the

second will be made evident in the following proposition.

Proposition 2.25. Consider an error-prone SmSM with unbounded precision and with an exponential

schedule T (k) = D2k, for D > C. Then, the size of the interval [lk, rk] is smaller than the size of the

shooting interval [z − 2−k, z + 2−k], for any dyadic rational z of size k.

Proof. For any dyadic rational z of size k, the size of the shooting interval is z+2−k− (z−2−k) = 2−k+1.

10We can see that the result is still valid if the experimental time is of the form t(z) = D/|y − z|n, for a constant D > 0 and a
degree n > 0. We would just have to calculate d+ 1 digits of y and n

√
D/T (k).

11Note that, since T (k) is polynomial in the size of the input, so is the time taken to perform this calculation.

24

Now, consider the boundary number lk. From inequality 2.3, we have:

t(lk) ≤ C

|y − lk|
⇔ |y − lk| ≤

C

D
2−k

Then, since the left and right boundary numbers are equidistant, we have that rk − lk ≤ C/D2−k+1,

whence the interval [lk, rk] shrinks faster than the shooting interval.

The following statement appears for the first time in [11]. We will prove it by making use of the

probabilities calculated in Proposition 2.22.

Proposition 2.26. Given an error-prone SmSM with unbounded precision and an exponential schedule

T (k) = D2k, for D > C, there is a dyadic rational z, such that the outcome of Prot_UP on z is a random

variable that produces ql with probability δ = 2k−1(lk − z) + 1/2.

Proof. Consider an error-prone SmSM in the statement’s conditions and let z be a query of size k

such that z − 2−k > 0 and y ∈ (z − 2−k, z + 2−k). Then, since the interval [lk, rk] shrinks faster than

[z− 2−k, z+ 2−k], it must be contained in it, whence we will have the first shooting case from Figure 2.5.

Then, by Proposition 2.22, the probability of Prot_UP(z) returning ql is δ.

Proposition 2.27. Given an error-prone SmSM with fixed precision ε = 2−q and an exponential sched-

ule T (k) = D2k, for D > C, there is a dyadic rational z, such that the outcome of Prot_FP on z is a

random variable that produces ql with probability δ = 2q−1(lk − z) + 1/2.

Proof. The proof is analogous to that of Proposition 2.26. Consider a dyadic query z of size k, such that

2−k < ε, y ∈ (z− 2−k, z+ 2−k) and z− 2−k > 0. Then, the probability of Prot_FP(z) returning ql is δ.

Therefore, when working with the error-prone protocols, we can use the SmSM as the tossing of

a biased coin. Given Proposition A.6 from the Appendix, we know that this is enough to simulate the

tossing of a fair one, up to a given probability of failure.

2.2.3.D Computational power of the error-free SmSM

In this section we will characterize the class of sets that can be decided by an error-free SmSM, clocked

in polynomial time and with an exponential schedule.

Proposition 2.28. If B ∈ P/log?, then there is an error-free SmSM, clocked in polynomial time and with

an exponential schedule, that can decide B.

Proof. Let B ∈ P/log?. Then, there is a prefix advice function f ∈ log and a Turing machine M , clocked

in polynomial time, that can decide B using the advice f . Recall that, since f is logarithmic, there are

constants a and b such that, for each n ∈ N, f(n) = adlog(n)e + b. Therefore, given the encoding

25

described in Definition 2.19 and the process described in Proposition 2.20, we have to calculate l =

3(adlog(n)e+ b) + 3(dlog(n)e+ 1) digits of y(f) to read f(n), where n is a power of 2.

Consider an error-free SmSM M with the wedge vertex at y(f) and schedule T (l) = D2l, for D > C.

We can then use Algorithm 2.1, with input l + 5, whose outcome, by Proposition 2.15, will be a dyadic

rational m with |y(f) −m| < 2−l−5. Then, given Proposition 2.18, y(f) and m will coincide in the first l

bits, whence we can recover f(n) from m.

Since the precision to run the experiment is logarithmic in the size of the input, the time taken to

obtain the required digits from the wedge vertex will be polynomial, as desired.

Proposition 2.29. If a set B is decided by an error-free SmSM, clocked in polynomial time and with an

exponential schedule, then B ∈ P/log2?.

Proof. Suppose that B is decidable by an error-free SmSM M , clocked in polynomial time and with an

exponential schedule T . Since T is exponential and M is clocked in polynomial time, we conclude that

the size of the oracle queries grows at most logarithmically in the input size. This means that, for any

word w with size n, there exist constants a and b such that, during the computation, M only queries the

oracle with words of size less or equal to l = adlog(n)e + b.12 Given this, we consider a prefix advice

function f such that f(n) encodes the concatenation of boundary numbers needed to answer all the

queries of size l. Thus f(n) encodes

l1�1#r1�1#l2�2#r2�2# . . .#lm�m#rm�m#

The prefix advice function f is such that |f(n)| = 2l + 2
∑l
i=1 i ∈ O(l2) = O(log2(n)). Therefore, to

decide B in polynomial time, with the prefix advice f ∈ log2, we simulate M on the input word and

use Algorithm 2.3 to replace the calls to Prot_IP (z) by a comparison with the part of the boundary

numbers given by f(n). Thus, given the advice function f , we can decide B in polynomial time, whence

B ∈ P/log2?.

We will now prove that we can fully characterize the computational power of the error-free SmSM, if

we assume that it has a schedule satisfying T (k) ∈ Ω(2k).13 The idea is that, under this assumption,

successive boundary numbers will be close enough together that we can use rk and lk to obtain rk+1

and lk+1, using just a constant amount of additional information.

Proposition 2.30. Given a SmSM with time schedule T (k) ∈ Ω(2k), it is possible to define a linear prefix

advice function f , such that f(n) encodes all the boundary numbers with size up to n.

12This is why we consider a different form for the size of a logarithmic advice (recall the comment at the end of Section 2.1.2).
13If, instead of working with the time given by innequality 2.3, we kept the degree n in the expression for the duration of an

experiment, the restriction on the schedule would be T (k) ∈ Ω(2kn).

26

Proof. If the time schedule associated with a SmSM is T (k) ∈ Ω(2k), there are constants D, k0 ∈ N

such that, for all k ≥ k0, T (k) ≥ D2k. Let c ∈ N be such that 2c > C/D. Then, given the time from

inequality 2.3 and the definition of boundary numbers, we have that, for each k ≥ k0:

t(rk) ≤ C

|y − rk|
⇒ T (k) ≤ C

|y − rk|
⇒ D2k ≤ C

|y − rk|
⇒ |y − rk| ≤

C

D
2−k < 2−k+c

t(lk) ≤ C

|y − lk|
⇒ |y − lk| ≤

C

D
2−k < 2−k+c

We will consider truncations of the boundary numbers as the concatenation of two words, i.e., rk�k =

xkzk and lk�k = vkwk, where xk and vk have size k − c, and zk and wk have size c. Note that, since

rk cannot have a tail composed solely of 1’s, rk − 2−k+c is smaller than xk. Therefore, we have that

y − 2−k+c < rk − 2−k+c < xk ≤ rk < y + 2−k+c, whence |y − xk| < 2−k+c and |y − vk| < 2−k+c.

Now, we will show how to obtain xk+1 and vk+1 from xk and vk, respectively. In the following para-

graph, assume l to be a positive integer smaller than k − c. If xk = . . . 10l, then, as |y − xk| < 2−k+c,

y�k−c can either be . . . 10l or . . . 01l. In this case, since |y−xk+1| < 2−k+c−1, xk+1 must end in one of the

following: xk+1 = . . . 10l1, xk+1 = . . . 10l0, xk+1 = . . . 01l1, or xk+1 = . . . 01l0. Similarly, if xk = . . . 01l,

then yk�k−c can either be . . . 01l or . . . 01l−10 and xk+1 can be one of four possibilities as well. Therefore,

even though xk might not be a prefix of xk+1, the latter can be obtained from xk by using two bits to

determine which of the four cases is the correct one. The result is analogous for the case of vk and vk+1.

Given this fact, we define the advice function inductively as follows:

• If n < k0, then f(n) = l1�1#r1�1 . . . ln�n#rn�n#;

• if n = k0, then f(k0) = f(k0 − 1)##xk0
#zk0

#vk0
#wk0

#;

• if n > k0, then f(n) = f(n − 1)#b11b12#zn#b21b22#wn# , where bij are the bits that allow us to

obtain xn and vn from xn−1 and vn−1, respectively.

Therefore, we can always recover rk or lk from f(n), for any k < n. Before the double marker, the values

are written explicitly in f(n); if n = k0, then, by concatenating xk0 with zk0 and vk0 with wk0 , we get the

desired values; if n > k0, we can obtain ln and rn by concatenating the two bits from the sequence to

then zn or wn, respectively.

Finally, since zk and wk have a constant size, |f(n)| is asymptotically linear in n.

Proposition 2.31. If a set B is decided by an error-free SmSM, clocked in polynomial time and with an

exponential schedule T (k) ∈ Ω(2k), then B ∈ P/log?.

Proof. The proof is analogous to that of Proposition 2.29, but using the advice described in Proposition

2.30. Since this function is linear in the size of the queries, and therefore logarithmic in the size of the

input, we achieve the desired result.

27

Thus, we have proved the following result.

Proposition 2.32. A set B is decided by an error-free SmSM, clocked in polynomial time and with an

exponential schedule T (k) ∈ Ω(2k), if and only if B ∈ P/log?.

It is an open problem to know if in the above proposition holds without the schedule restriction.

2.2.3.E Computational power of the error-prone SmSM with unbounded precision

In this section we will characterize the class of sets that can be decided by an error-prone SmSM,

clocked in polynomial time, with unbounded precision and with an exponential schedule.

Proposition 2.33. If B ∈ BPP//log?, then there exists an error-prone SmSM, clocked in polynomial

time, with unbounded precision and an exponential schedule, that decides B.

Proof. Let B ∈ BPP//log?. Then, there is a prefix advice function f ∈ log, a probabilistic Turing machine

M , clocked in polynomial time p, and a constant γ1 < 1/2 such that, for every word w of size ≤ n, the

probability of M making a mistake is smaller than γ1. We need to prove two things: that the SmSM can

be used to simulate the advice function f and the tossing of a fair coin; this simulation can be done in

polynomial time in the size of the input, with an error bounded by a constant smaller than 1/2.

Consider a SmSM with an exponential time schedule T (k) = D2k, for D > C, and wedge vertex at

y(f), as described in Definition 2.19, and, once more, consider l = 3(adlog(n)e + b) + 3(dlog(n)e + 1),

which we choose due to the use of the markers and the function c in the encoding of y(f). Then, by

Propositions 2.15 and 2.18, if we use Algorithm 2.1 with input l+ 6, the outcome will be a dyadic rational

m which will will coincide with y(f) in the first l bits.

Now, by Propositions 2.26 and A.6, there is a dyadic rational z that can be used to produce a se-

quence of fair coin tosses of size p(n) with a probability of failure of γ2, which we choose to be such that

γ1 +γ2 < 1/2. Thus, after using the SmSM as an oracle to compute f(2dlog(n)e) (recall Proposition 2.20),

the SmSM uses the vertex to generate a sequence of fair coin tosses of size p(n), which it uses to guide

its computation on 〈w, f(2dlog(n)e)〉. We will prove that this process has an associated error probability

bounded by γ1 + (1− γ1)γ2 ≤ γ1 + γ2 < 1/2.

We can separate the computation done by the SmSM into three steps: The part where we find l

digits of y(f), which has no associated error, the part where we do the coin tossing, with an error of

γ2, and the simulation of M , which has an associated error of γ1. From the possible coin tosses done

in step 2, a fraction γ2 of these will have an error, and the rest will actually be fair coin tosses. Of the

computations that follow from the fair coin tosses, a fraction γ1 will have an error, and, in the worst case,

all the computations that follow from the biased coin tosses will have an error as well. Then, the overall

fraction of wrong computations is bounded by γ1 + (1− γ1)γ2 < γ1 + γ2 < 1/2.

28

To conclude, note that, by Proposition 2.15, running the experiment takes time O(lT (l)), which, since

l is logarithmic in the size of the input, amounts to a polynomial time. Encoding 〈w, f(2dlog(n)e)〉 also

takes polynomial time and so does the generation of the fair coin tosses. Therefore, the time for the

whole computation is polynomial in the size of the input.

Now, to prove the upper bound, we will construct an advice function that provides the Turing machine

with approximations of the left and right boundary numbers, thus enabling it to simulate the outcome of

an experiment. To know how many digits from the boundary numbers are necessary, for the experiment

to be simulated up to a given precision, we will use Proposition 2.22.

Proposition 2.34. If B is decidable by an error-prone SmSM, clocked in polynomial time, with un-

bounded precision and an exponential schedule, then B ∈ BPP//log2?.

Proof. Suppose that B is decidable by a SmSM M , with unbounded precision, in polynomial time O(na).

Since M on w takes polynomial time in n = |w|, and each experiment takes an exponential time to run,

the size of each oracle query must be bounded above by bdlog(n)e + c, for some constants b and c.

The number of queries to the oracle cannot exceed the running time of the machine, so the probabilistic

query tree of M has a depth of at most αna, for some constant α. Let γ be the error probability of M

and let d > 0 be such that 2d > 2α/(1/2− γ).

We will simulate the behaviour of M using Algorithm 2.3, in which we replace an experimental call

with a comparison between the query and a truncation of the boundary numbers.

By Proposition 2.22, if we use k+d+adlog(n)e bits of lk and rk, we can approximate the probabilities

of all queries with precision 2−d−adlog(n)e, for every 1 ≤ k ≤ bdlog(n)e+c. Now, we use Proposition A.5 of

Section A.1 to see that, with a precision of 2−d−adlog(n)e, the simulation we make of M has an accepting

probability differing from M ’s in, at most, 1/2− γ.14 We then have:

A3(αna, 2−d−adlog(n)e) ≤ (3− 1)× αna × 2−d−adlog(n)e =
2αna

2d × 2adlog(n)e

≤ 2αna

2d × 2log(na)
=

2αna

2d × na
=

2α

2d
< (1/2− γ)

Considering β = max{a, b} and x = dlog(n)e, we have:

bdlog(n)e+ c ≤ βx+ c

k + d+ adlog(n)e ≤ bdlog(n)e+ c+ d+ adlog(n)e ≤ d+ c+ 2βx

Using the notation l�mn to mean the digits n to m of l, and l1 · l2 to denote the concatenation of l1 and l2,

we recursively define the following prefix advice function, which encodes approximations to the boundary

14As in Definition A.4, Am(n, s) denotes the maximum difference of acceptance probability amongst m-ary trees with depth n,
whose branches have probabilities differing in, at most, s. In this case, we have 3-ary query trees.

29

numbers lk and rk, for 1 ≤ k ≤ βx+ c, with a precision of d+ c+ 2βx digits:

• f(0) = l1�d+c#r1�d+c#l2�d+c#r2�d+c# . . .#lc�d+c#rc�d+c

• f(x+1) = f(x)·
{
lk�

d+c+2β(x+1)
d+c+2βx+1 #rk�

d+c+2β(x+1)
d+c+2βx+1

}βx+c
k=1

·
{
lk�d+c+2β(x+1)#rk�d+c+2β(x+1)

}β(x+1)+c

k=βx+c+1

So f(x+ 1) contains:

• The value of f(x);

• 2(βx+ c) blocks of size 2β, with approximations of lk and rk, for k = 1, . . . , βx+ c;

• 2β blocks of size d+c+2β(x+1), with approximations of lk and rk, for k = βx+c+1, . . . , βx+c+β.

This way, each new value of f increases the accuracy of the boundary numbers that have been previ-

ously written and adds part of new boundary numbers. Notice that, at f(x), we will have approximations

of rk and lk, for k ≤ β(x− 1) + c, with a precision of d+ c+ 2βx. For example:

f(1) = l1�d+c#r1�d+c#l2�d+c#r2�d+c# . . .#lc�d+c#rc�d+c

#l1�
d+c+2β
d+c+1 #r1�

d+c+2β
d+c+1 # · · ·#lc�d+c+2β

d+c+1 #rc�
d+c+2β
d+c+1

#lc+1�d+c+2β#rc+1�d+c+2β# · · ·#lc+β�d+c+2β#rc+β�d+c+2β

A Turing machine can read from f(x) the 2(βx + c) (nonsequential) blocks and update, at the same

time, the approximations of lk and rk, for k = 1, . . . , βx+ c, with d+ c+ 2βx digits of precision. Analysing

the advice function f , we can conclude that:

|f(x)| = 2(β(x− 1) + c)(d+ c+ 2βx) + 2β(d+ c+ 2βx) +

x∑
i=0

(2(βi+ c))− 1 = O(x2)

Since we only consider x at most logarithmic in the input size, n, we have that |f(dlog(n)e)| = O(log2(n)).

Thus, the advice function g(n) = f(dlog(n)e) provides approximations of lk and rk, for 1 ≤ k ≤

bdlog(n)e+ c, with at least k + d+ adlog(n)e bits of precision, as desired.

Therefore, to decide B in polynomial time, using the prefix advice f ∈ log2, we construct a Turing ma-

chine M ′ that simulates M on the input word, but, whenever M queries the oracle with z, M ′ compares

the query z with approximations of the boundary numbers l|z| and r|z|, with a precision of 2−d−adlog(n)e.

Then, M ′ simulates a path in the probabilistic query tree, representing the oracle consultation, by tossing

a coin d+adlog(n)e times. After simulating a path, the machine M ′ proceeds as M . Since the difference

in the probability of acceptance is bounded by 1/2 − γ, M ′ gives a wrong answer with probability less

than γ + (1/2− γ) = 1/2.15

Since M runs in polynomial time and comparing query words with boundary numbers and computing

15Note that the same argument applies to showing that the error probability of M ′ is indeed bounded above by some constant
δ < 1/2.

30

probabilities can be done in polynomial time as well, we conclude that B is decidable in polynomial time,

in the size of the input, with advice g(n) = f(dlog(n)e).

We will now prove that, if we make the assumption from Proposition 2.24, regarding the duration

of an experiment, we can lower the previous upper-bound to BPP//log?, thus achieving a complete

characterization.

Proposition 2.35. If B is decidable by an error-prone SmSM, clocked in polynomial time, with un-

bounded precision and an exponential schedule, then, considering explicit time of the form t(z) =

1/|y − z|, we have that B ∈ BPP//log?.

Proof. We resume to the proof of Proposition 2.34, providing now the advice function that solves the

problem is in log?. All variables and constants are as in the proof of Proposition 2.34.

Consider the error-prone SmSM M , clocked in polynomial time and with an exponential schedule T .

By Proposition 2.34, we know that B can be decided by a probabilistic Turing machine, M ′ in polynomial

time, if given access to an advice function f of size O(log2(n)), which contains the first d+ c+ 2βx bits

of li and ri for 1 ≤ i ≤ βx+ c. We consider another function g, defined recursively as follows:

• g(0) = y�d+c

• g(x+ 1) = g(x) · y�d+c+2β(x+1)
d+c+2βx+1

We can use g(x) to get the first d + c + 2βx bits of y, whence, by the Proposition 2.24, we can use the

approximations of y to compute the approximation of all lk and rk, for 1 ≤ k ≤ bx + c, with d + c + 2βx

bits of precision. We can see that |g(x)| = (d + c + 2βx) + x = O(x), which, since x will be, at most,

logarithmic in the size of the input, implies |g(dlog(n)e)| = O(dlog(n)e).

Thus, we define a probabilistic Turing machine M ′′ that, on input w, simulates M ′ on w, but, instead

of using the advice f(|w|), uses the advice g(|w|). Since we can recover the information of f from g

in polynomial time and M ′ takes in polynomial time as well, we conclude that our Turing machine can

decide B in polynomial time.

Thus, we have proved the following result.

Proposition 2.36. A set B is decidable by a error-prone SmSM, clocked in polynomial time, with un-

bounded precision and an exponential schedule, with explicit time of the form t(z) = 1/|y − z|, if and

only if B ∈ BPP//log?.

It is an unknown if the above proposition holds, without the assumption of the explicit time form.

2.2.3.F Computational power of the error-prone SmSM with fixed precision

In this section we will characterize the class of sets that can be decided by an error-prone SmSM,

clocked in polynomial time, with fixed precision and with an exponential schedule. The proof of the

31

upper bound is analogous to the proof for the unbounded precision case (Propositions 2.34 and 2.35),

so we will only give the proof for the lower bound.

Proposition 2.37. If B ∈ BPP//log?, then there exists an error-prone SmSM, clocked in polynomial

time, with fixed precision and an exponential schedule, that can decide B.

Proof. The proof is similar to that of Proposition 2.33, but using the measurement algorithm for the fixed

precision protocol. The main difference is that now there is an error associated with the measurement.

Let B ∈ BPP//log?. Then, there is a prefix advice function f ∈ log, a probabilistic Turing machine

M , clocked in polynomial time p, and a constant γ1 < 1/2 such that, for every word w, of size ≤ n,

the probability of M making a mistake is bounded by γ1. Consider a SmSM with an exponential time

schedule T (k) = D2l, for D > C, and wedge vertex at y = 1/2 − ε + 2y(f)ε, as described in Definition

2.19. The different placing of the wedge is due to proposition 2.16. Consider γ2 and γ3 such that

γ1 +γ2 +γ3 < 1/2. The value γ2 will be associated with the error in the coin tossing and γ3 with the error

in the measurement algorithm.

Define l = 3(adlog(n)e + b) + 3(dlog(n)e + 1). Then, by Proposition 2.16, using Algorithm 2.2, with

input l+ 5 and an allowed error of γ3, will yield a dyadic rational m such that |y(f)−m| < 2−l−5, with an

error smaller than γ3. Therefore, by Proposition 2.18, we can use m to compute l bits of f(2dlog(n)e) with

an error of γ3. By Propositions 2.27 and A.6, there is a dyadic rational z that can be used to produce a

sequence of fair coin tosses of size p(n), with a probability of failure of γ2. Thus, after using the SmSM as

an oracle to compute f(2dlog(n)e) with an error of γ3, the SmSM uses the vertex to simulate a sequence

of fair coin tosses of size p(n), which it uses to guide its computation on 〈w, f(2dlog(n)e)〉.

The three steps in the computation have an associated error of γ1, γ2 and γ3, respectively, so, in the

worst case, the fraction of wrong computations is γ1 + (1− γ1)γ2 + (1− γ)(1− γ2)γ ≤ γ1 + γ2 + γ3 < 1/2.

Running the experiment takes O(22l+hT (l)), by Proposition 2.16, which, since l is logarithmic in the

size of the input, amounts to a polynomial time. Encoding 〈w, f(2dlog(n)e)〉 also takes polynomial time and

so does the generation of the fair coin tosses, whence the time for the whole computation is polynomial

in the size of the input.

Proposition 2.38. If B is decidable by an error-prone SmSM, clocked in polynomial time, with fixed

precision ε = 2−q and an exponential schedule, then B ∈ BPP//log2?.

Proposition 2.39. A set B is decidable by an error-prone SmSM, clocked in polynomial time, with fixed

precision ε = 2−q and an exponential schedule, with explicit time of the form t(z) = 1/|y − z|, if and only

if B ∈ BPP//log?.

It is an open problem to know whether or not the above proposition holds without the assumption of

the explicit time form.

32

3
Theory of measurement

In this chapter we will analyse the infinite precision measurement algorithms from a fundamental mea-

surement point of view. We will start by introducing the notion of fundamental measurement, as seen

by Campbell and Hempel, and present the axiomatization of measurement given by Hempel in [44],

together with some immediate results in this theory. We will then present the axiomatization of mea-

surement given in [16], where the duration of an experiment is take into account, and Hempel’s notion is

recovered as we allow the duration of an experiment to tend to infinity.

We will propose a new axiomatization of measurement, which arises from making comparisons using

only dyadic rationals, and prove that, once more, we can recover Hempel’s notion as a limit concept. We

will see that the three types of infinite precision measurements identified in [20], two-sided, one-sided

and vanishing, can be made to satisfy this axiomatization.

3.1 Introduction to the theory of measurement

“Measurement consists in the assignment of numerals to things or properties. But not every assignment

of numerals is measurement" (see [27]).

33

In this section we will introduce the notion of quantities and the possibility of measuring them. We

divide measurement into two types: fundamental measurement, which presupposes no prior metrical

scales, and derived measurement, which is the determination of a metrical concept by means of oth-

ers.1 Properties that can be measured by means of fundamental measurement are termed fundamental

magnitudes, as opposed to derived magnitudes.

We divide quantities into extensive, such as mass or length, and intensive, such as temperature

or density. Extensive quantities are those whose measure is proportional to the amount of substance

present, under a certain way of combining objects. In 1951 Suppes gave an axiomatization for these

quantities, which we present in Section A.5, from the Appendix.

We can also classify a quantity as to being additive or non-additive. A quantity is termed additive if

the measured of combined objects is the sum of their respective measure; it is termed non-additive if

that is not the case.

Campbell and Jeffreys argue that the only properties that can be measured fundamentally are those

that are both additive and independent2 in combination (see [27]). Hempel also writes “(...) perhaps the

only-type of fundamental measurement used in the physical sciences is illustrated by the fundamental

measurement of mass, length, temporal duration (...)" (see [44]). All the experiments we consider and

that are presented, for example, in [4], are measuring such quantities.

3.1.1 Fundamental measurement

According to Hempel, a physical measurement is divided into three stages: classification, comparison

and quantification. During the classificatory phase, objects in a domain are sorted according to sim-

ilarities regarding a given aspect. As Hempel writes in [44], “A classificatory concept represents (...)

a characteristic which any object (...) must either have or lack". The chosen characteristic is termed

an attribute which, should its meaning be precise, will divide the domain into two distinct classes. In a

comparative phase, the objects in a class are compared as to having more, less or the same, of the

chosen attribute. This comparison is done by means of observations of events, such as the tilting of a

balance scale, which, in this case, indicates that one object weights more than the other. Finally, during

a quantitative phase, the attributes are scaled by means of a map M , from objects to a number system.

Hempel gives a brief survey of the advantages offered by non-classificatory concepts, namely by

the quantitative concept (see [44] – pag. 56). One advantage is that, by means of metrical concepts,

it is often possible to differentiate between object that share the same classification. The introduction

of metrical terms also makes it possible to formulate general laws, expressed in the form of functional

relationships between different quantities.

1Consider, for example, the definition of density in terms of mass and volume.
2Independence here means that the measure of an object cannot interfere with the measure of another one.

34

From now on we will denote by O a class of physical objects, endowed with some attribute (or

property), such as mass or length, and consider our number system to be the real numbers. Thus, a

measurement of an attribute, in the sense of Hempel, will be a map M : O → R that satisfies a set of

conditions (see Definition 3.2).

To sort and compare attributes, Hempel proposes a comparative concept, which is witnessed by an

instrument, or experimental apparatus. This experiment has to be able to implement two comparative

predicates, E and L, over the set O. These predicates have the semantics that aEb, if a and b are

identical in their measured attribute, and aLb, if the measurement of a, regarding the chosen attribute,

is less than that of b.

Definition 3.1. Let L and E be two binary relations. We define the following concepts:

• L is E-irreflexive if, for every a, b ∈ O, if aEb holds, then aLb does not hold;

• L is E-connected if, for every a, b ∈ O, if aEb does not hold, then aLb or bLa holds;

• E and L are a comparative concept , if E is an equivalence relation and L is transitive, E-irreflexive,

and E-connected.

We can thus use a comparative concept to develop a “schema of ordered strata" (see [28]). We

place each object into its equivalence class, regarding the equivalence relation E , and then place these

classes into a serial order, according to the relation L.

Now consider, for example, that our domain consist of 6-sided dice, with each side having any integer

value, and that we compare two dices according to which one has the highest probability of producing a

greater value. Then, Efron’s dice provide a counter example to the transitivity of the relation L (see, for

example, [69]). Thus, we will not be able to use this concept of comparison to assign a numerical value

to each dice, in a way that can be considered a measurement. Something that is worth remarking is

that, with this same domain, we might be able to attain a comparative concept, by sorting dice according

to some other criteria, like the weight of a dice; the key aspect here is that we cannot produce a metrical

concept, whose value will reflect the notion of one dice beating another one.

Definition 3.1 gives a first set of conditions under which a property is amenable to fundamental

measurement. However, as Campbell writes in [26], “(...) the possession of order alone will not enable a

property to be measured, except possibly by the use of previously established systems of measurement

for other properties." He argues that for a property to be measurable as a fundamental magnitude, “(...)

a physical process of addition should be found for it" (see [26]).

The significance of addition is made evident when we introduce the notion of a standard. As Camp-

bell states in [26], “(...) the fixing of the weight of one body fixes uniquely the weight of all others, and

yet the process of measuring weight does not involve the measurement of any other magnitude". So it

seems that, in order for the measurement of a property not to depend on prior metrical concepts, it must

35

be an additive property.

If this “first law of addition", as Campbell called it, is satisfied, the principle of fundamental measure-

ment is quite simple. Consider the example of mass. We start by fixing a standard object, whose weight

we set to 1.3 Then, given an object a, we say that its weight is n if a balance scale achieves equilibrium

with a on one side and n instances of the unit on the other.

This notion of standards, seen also in [45] (pag. 63), when Hempel refers to the International Pro-

totype Kilogram, and in [28] (pag. 64), when Carnap demands that a measurement determines when

to assign “zero" and "one" to an object4, is captured here by identifying a sub-structure of O, consisting

of a standard object, called the unit, to which we attribute the measure 1, together with all its multiples

and submultiples: this substructure we call the toolbox of standards. If the quantity we are measuring

satisfies the “first law of addition", we can assign a standard measure to every objects in the toolbox,

using only the concept of natural numbers and multiplication. If experimental equality is achieved with 3

instances of a and 2 instances of the unit, we say that the measure of a is 2/3.

Campbell states an extra criteria for fundamental measurement, which he termed the “second law of

addition". It says: “The magnitude of a system produced by the addition of bodies A, B, C, . . . depends

only on the magnitude of those bodies and not on the order or method of their addition;" (see [26]).

This is a generalization of the following condition: if a1 and a2 are experimentally equal to b1 and b2,

respectively, then so it their respective physical additions. Considering the example of weight, Campbell

states a condition under which the second law of addition is implied by the first one: “The second law of

addition will be true if the system which will balance a given combination of bodies in a pan is the same

however those bodies are placed in the pan and if, when we add to each of the previously balanced pans

one of a pair of bodies of equal weight, the pans will remain balanced." So the way we place objects to

be compared has to be irrelevant, and the addition of equal objects cannot introduce inequalities in the

measurement. This condition seems to depend more on the physical experiment, than on the nature of

the quantity being measured, and is always verified by our ideal experiments.

3.1.2 Hempel’s axiomatization of measurement

In the previous section we presented a set of criteria under which a property is amenable to fundamental

measurement. Now, we will present Hempel’s definition of when a given assignment from objects to

numbers is to be considered a measurement. We will also derive some simple facts of this theory,

corresponding to intuitive properties of a measurement.

3Note that this choice is, essentially, arbitrary. If we choose a different unit, we will obtain the same measurement, up to a
constant.

4As Carnap points out, while these values are usually 0 and 1, this is not necessarily the case. As an example, he refers to
the centigrade scale, in which the second standard is 100 degrees. Note that, when we measure temperature with a thermometer,
fixing these standard will uniquely determine the temperature of any other object, because we have already established the
metrical concept of length.

36

Definition 3.2. Let L and E be comparative concepts on the set O of objects. Suppose there is an

experimental apparatus to witness these relations. Then, the map M : O → R is a measurement map if

the following axioms are verified:

• If aEb holds, then so does M(a) = M(b);

• if aLb holds, then so does M(a) < M(b).

The previous axiomatization allows to prove simple results. In the following propositions, always

assume that E and L are a comparative concept in O.

Proposition 3.3. For every a, b ∈ O, one and only one of the following statements holds: aEb, aLb, or

bLa.

Proof. First, to prove that at least one of the events holds. If aEb holds, then we are done. Otherwise,

since L is E-connected and aEb does not hold, then aLb or bLa holds. Now suppose that aEb. Then,

since E is an equivalence relation we also have that bEa, which, since L is E-irreflexive, means that aLb

and bLa do not hold. If aLb holds, then, since L is E-irreflexive, aEb doesn’t hold. Also, if bLa were

to hold, then, by the transitivity of L, we would have aLa. Thus, it would contradict the fact that L is

E-irreflexive, since aEa, by E ’s reflexive property. The proof for when bLa is analogous to the previous

case.

Proposition 3.4. The converse of the axioms in Definition 3.2 hold, i.e., for any a, b ∈ O:

• If M(a) = M(b) holds, then so does aEb;

• if M(a) < M(b) holds, then so does aLb.

Proof. The proof is done by contradiction. Suppose that aEb doesn’t hold. Then, either aLb or bLa must

hold, which, by the second axiom, implies that either M(a) < M(b) or M(b) < M(a) holds, whence

M(a) = M(b) can’t hold. The other proof is analogous.

Proposition 3.5. For every a, b ∈ O, aEb if and only if, for every u ∈ O, (aLu ⇔ bLu) and (uLa ⇔ uLb).

Proof. Suppose that aEb and let u ∈ O. We will only prove that aLu ⇒ bLu, since the other implications

are analogous. Suppose that aLu, which, since L is E-irreflexive, implies that aEu doesn’t hold. Hence,

given that E is an equivalence relation, bEu can’t hold either, meaning that, since L is E-connected,

either bLu or uLb must hold. However, if uLb holds, then, since L is transitive, aLb would also hold,

which would contradict the fact that aEb, whence bLu.

Suppose that, for every u ∈ O, (aLu ⇔ bLu) and (uLa ⇔ uLb). By Proposition 3.3, we either

have that aEb, aLb or bLa. Suppose that aLb is the case. Then, bLb would hold as well, which is a

contradiction. Analogously, it is impossible for bLa to hold, so aEb must be the case.

37

Proposition 3.6. For every a, b ∈ O, if aEb and bLc then aLc.

Proof. Suppose that aLc is not the case. Then, by Proposition 3.3, we must have that either aEc or cLa.

If aEc, then, since E is an equivalence relation, bEc, which contradict the fact that bLc. If, on the other

hand, cLa, then, given that L is a transitive relation, we also have that bLa, which contradict the fact that

aEb.

3.2 Measuring quantities with time

In this section we will present the work done in [16], where Hempel’s comparative concept is seen as a

“limit" of relations with an indexation by a real parameter t > 0, which represents the physical duration

of an experiment. This axiomatization sees the introduction of a constant K, which arises form the non-

linearity of the duration of an experiment, as one approaches the unknown quantity, and the assumption

that two objects a and b are compared by running an experiment with query a and unknown object b.

In [16], the authors give the example of the CME5 as an experiment that can satisfy this axiomatization.

Definition 3.7. A collection of relations {Et}t>0 in O × O is said to be a timed equivalence relation if

there is a non-negative constant K ≤ 1 such that:

• For every t > 0, Et is reflexive;

• {Et}t>0 is timed symmetric, i.e., for every t > 0 and a, b ∈ O, if aEtb, then bEtKa;

• {Et}t>0 is timed transitive, i.e., for every t > 0 and a, b, c ∈ O, if aEtb and bEtc, then aEtKc;

• for every t, t′ > 0 if t < t′ , then aEt′b ⇒ aEtb.

Definition 3.8. Two collections of binary relations {Et}t>0 and {Lt}t>0 determine a timed comparative

concept for the elements of O, if:

• For every t > 0 and a, b ∈ O, exactly one of aEtb, aLtb, bLta holds;

• {Et}t>0 is a timed equivalence relation;

• {Lt}t>0 is timed transitive, i.e., for every t > 0, there is a constant K ≤ 1 such that, for every

a, b, c ∈ O, if aLtb and bLtc, then aLtKc;

• for every t, t′ > 0, if t < t′ , then aLtb implies that aLt′b.

From now on we will use the notation Et and Lt to mean both the class of relations and a particular

relation in the class. The meaning will be clear in the context.

We can assign any labeling to the possible outcomes of an experiment. For the case of the SmSM,

for example, the outcomes are labeled ql, qt and qr.

5The specification of the experiment can be found in [16]. We will give a brief description of the CME in Section 3.3.1.

38

Definition 3.9. We say that an experimental apparatus, with a given labeling of events, witnesses the

relations Et and Lt if, whenever the experiment is done with arbitrary objects a, b ∈ O, the label of each

outcome, in time t, implies one and only one of the relations aLtb, bLta, or aEtb.

Definition 3.10. Let Et and Lt be timed comparative relations on a set O, of objects, witnessed by some

experimental apparatus. Then, M : O → R is a measurement map if, for any time t > 0, whenever aLtb

holds, so does M(a) < M(b).

Definition 3.11. An apparatus, witnessing a timed comparative concept Et and Lt, satisfies the separa-

tion property for a measurement map M : O → R if, for every objects a, b ∈ O, whenever M(a) < M(b)

holds, then so does aLtb, for some time bound t > 0.

Note the relation between Definitions 3.10 and 3.11. Together, they say that M(a) < M(b) if and only

if there is a time t, such that the relation aLtb is satisfied.

We will now see how to recover Hempel’s notion of a comparative concept and a measurement map,

as a “limit" of a timed comparative concept and a map satisfying Definitions 3.10 and 3.11.

Definition 3.12. Given a timed comparative concept Et and Lt, we define the relations Elim and Llim as

follows:

• aElimb if, for every time bound t, aEtb;

• aLlimb if there is a time bound t such that aLtb.

Proposition 3.13. Suppose there is physical apparatus witnessing a timed comparative concept Et and

Lt and that a measurement map is defined, in the sense of Definition 3.10, such that the apparatus

satisfies the separation property. Then, in the sense of Hempel, Elim and Llim are a comparative

concept and M is a measurement map.

Proof. We will prove that Hempel’s axiomatization holds for these “limit" relations:

• Elim is reflexive: Trivial, since each Et is reflexive;

• Elim is symmetric: If aElimb, then aEtb for every time bound t. Then, for every time bound, bEtKa,

which implies that bEta, for every time bound, whence bElima;

• Elim is transitive: Same argument as before, since each Et is timed transitive;

• Llim is transitive: If aLlimb and bLlimc, then aLtb and bLt′c, for some time bounds t, t′. We can

assume that t < t′, which implies that aLt′b. From here, we conclude that aLt′Kc, which concludes

the proof;

• Llim is Elim-irreflexive: If Elim holds, then for every time t, aEtb holds, whence we can never have

one of the events that determines Llim;

39

• Llim is Elim-connected: If aElimb doesn’t hold, then there is t such that aEtb doesn’t hold. The

proof is completed by remarking that each Lt is Et connected;

• If aElimb then M(a) = M(b): If M(a) < M(b), then, by the separation property, there is a bound t

such that aLtb holds, meaning that aEtb doesn’t hold, which implies that aElimb doesn’t hold;

• If aLlimb then M(a) < M(b): If aLlimb, then there is a bound t such that aLtb. Since M is a

measurement map, we will have M(a) < M(b).

3.3 Limit measurement

In this section we will consider a different way of performing comparisons. Instead of comparing two

object a, b ∈ O directly, we will compare them by running two experiments with the same query: one with

unknown quantity a and the other with unknown quantity b.6 This procedure is inspired by the SmSM,

in which one of the objects in an experiment, the query, is necessarily in a dyadic position. Therefore,

unlike the case of the CME, where we can compare the mass of any two objects by colliding one with the

other, we can’t set the position of the cannon to an arbitrary real value. Note that an axiomatization of

measurement for this second type of experiment, in which the attribute of one of the objects is a dyadic

rational, is also applicable to experiments of the first type; we can always ignore the fact that we can

compare objects directly and perform comparisons using only dyadic rationals.

For this axiomatization, the time parameter t will have a discrete set of possible values, which are

determined by the time the experimental apparatus waits to receive an answer, i.e., by the machine’s

schedule. We will assume that we are always working with machines defined with an increasing sched-

ule.7 Given this particular way of performing a comparison, we can assume that the constant K, intro-

duced in the previous section, is equal to one. We will support this claim by showing that the CME can

be made to satisfy this axiomatization. We will skip the initial formalism from the previous section and

use the notation Et and Lt, straightaway, to denote both a relation indexed in time and a collection of

relations.

Definition 3.14. Two collections of binary relations Et and Lt determine a limit timed comparative con-

cept for the elements of O, if, for every t > 0 and a, b, c ∈ O, the following hold:

• Exactly one of aEtb, aLtb, bLta holds;

• Et is reflexive and symmetric;
6This methodology is in conformity with the example given by Carnap to compare the temperature of two objects: “We simply

place the thermometer in contact with body a, wait until there is no longer any change in the height of the test liquid, then mark
the level of the liquid. We apply the thermometer in the same way to object b." (see [28] pag. 64)

7Recall Definition 3.12. If we worked with a non-increasing schedule, we would not be able to let the parameter t increase
arbitrarily.

40

• Lt is transitive;

• if aLtc holds, there is a time T such that, if aET b holds, then bLT c holds as well;

• if aLtb holds, then there is an order T after which aLt′b holds, for any t′ ≥ T .

We define a measurement map and the relations Elim and Llim as in Definition 3.12.

Proposition 3.15. Suppose there is physical apparatus witnessing a limit timed comparative concept Et
and Lt and that a measurement map is defined, in the sense of Definition 3.10, such that the apparatus

satisfies the separation property. Then, in the sense of Hempel, Elim and Llim are a comparative concept

and M is a measurement map.

Proof. The proof is very similar to that of Proposition 3.13, the only differences being in showing that

Elim and Llim are transitive.

Suppose that aElimb and bElimc hold, and that there is some time bound t, such that aLtc holds as

well. Then, there is a time T such that, if aET b holds, then bLT c holds as well. The contradiction is

achieved by noticing that, by definition of Elim, aET b will necessarily hold, regardless of how large T is.

Now suppose that aLlimb and bLlimc are verified. Then, there are time bounds t, t′, such that both

aLtb and bLt′c hold. This means that there are orders T, T ′, after which these relations are always

satisfied. Then, for t′′ ≥ max{T, T ′}, both aLt′′b and bLt′′c will hold, whence so will aLt′′c. By definition,

this implies that aLlimc is verified.

One might wonder if the last condition of Definition 3.14 can be replaced with “for every t > 0, if

aLtb holds, then aLt′b holds as well, for some t′ > t." This definition would just ensure that aLt′b holds

infinitely often, after some bound T . However, if that were the case, we wouldn’t be able to ensure that

a t′′ exists, such that both aLt′′b and bLt′′c are satisfied, in the proof that Llim is a transitive relation.

As a final remark, we clarify the thought process behind defining a limit timed comparative concept.

The idea is to start with an ideal comparative concept, in the sense of Hempel, through which we

wish to assign a numerical value to the elements of our domain, and an experimental apparatus, design

to compare objects according to this concept (consider for example, the balance scale, which compares

weights). Our relations indexed in time t, will then be defined through the ability of the experimental

apparatus to witness that two objects are different, according to that ideal concept, in time t. We will

say that aLtb if, using our experimental apparatus, we are able to tell that aLb, in time t, and that aEtb,

if that is not the case. In the limit, i.e., in the sense of Definition 3.12, we recover the ideal comparative

concept we wanted to define.

3.3.1 The CME as an example

In this section, following the work from [16], we prove that the CME can be used to define a limit timed

comparative concept, when comparisons are performed by running two experiments with the same

41

query. Figure 3.1 contains a schematic depiction of the CME.

Before the collision

b
vb

a

After the collision

b
v′b

a
va

Figure 3.1: Schematic representation of the CME.

We start with a particle a, at rest and with unknown mass ma, at which we fire another particle b, with

a dyadic massmb. The collision between the two particles is assumed to be elastic and one dimensional.

We can have the following outcomes: if ma > mb, b moves backwards after the collision; if ma < mb, b

moves forward; if ma = mb, b comes to rest and a is projected forward with speed vb. We setup detectors

to the left and to the right of the masses, which signal when the test mass b crossed them. Note that, the

more mb approaches ma, the more time it will take for b to cross a flag. As for the case of the SmSM,

we define the CME with a time constructible schedule T , which determines how much time the machine

waits for an experiment to be completed. We will always assume that this schedule is increasing, i.e.,

that a greater input precision will result in a greater waiting time.

To perform a comparison between a and b we will run two experiments with a single dyadic query of

mass z. Therefore, there will be 9 possible overall responses, 3 from each experiment, depending on

whether or not the test particle crossed a detector and, if so, which one. We will identify the responses

ql, qt and qr with the mass at which a particle was fired. For example, qat will mean that we fired a particle

with mass z towards a and the outcome was a time out.

Definition 3.16. We say that aEtb if, for every dyadic mass z, firing a particle with mass z yields the

same result from both experiment, in time t. We say that aLtb if there is a dyadic rational z such that,

when a particle with mass z is fired, we get one of the following results in time t: (qar , qbl), (qar , qbt), or (qat ,

qbl). In this case, we say that z witnesses the relation aLtb.

When we say that the outcome of an experiment was in time t, we mean that an experiment was ran

with a query z such that t = T (|z|).

Proposition 3.17. If there is t > 0, such that aLtb holds, then a is lighter than b.

Proof. Let z be the dyadic rational that witnesses the relation aLtb. If the outcome is (qar , q
b
l), then

ma < z and z < mb, whence ma < mb; if we get (qar , q
b
t), then ma < z and mb is closer to z than ma,

whence ma < mb; if the outcome is (qat , q
b
l), the argument is analogous to the previous case.

We will now prove that Et and Lt are a limit timed comparative concept.

Proposition 3.18. Given a time t and a, b ∈ O, one and only one of the relations aLtb, bLta, or aEtb will

hold.

42

Proof. If aEtb doesn’t hold, then there is a dyadic mass z such that the result of the two experiments is

different in time t. This implies that one of the events that determine aLtb or bLta will happen.

Now, to see that only one of the events can happen. Suppose aEtb is the case. Then, every firing

yields the same result in time t, whence none of the cases that determine aLtb or bLta can happen. If, for

example, aLtb holds, aEtb is excluded by definition and, since a is lighter than b, bLta can’t happen.

Proposition 3.19. For every t > 0, Et is reflexive and symmetric.

Proof. To see that Et is reflexive, we just have to observe that, if we setup both experiments with the

same unknown mass a, then we will always get the same answer from both experiments, for every time

t. The fact that Et is symmetric comes from the fact that we can juts change the order of the experiments

and the results will stay the same.

Proposition 3.20. For every t > 0, Lt is transitive.

Proof. Suppose that aLtb and bLtc hold, and let z be the witness of the relation aLtb. Then, if we setup

two experiments, with unknown vertices a and c, z will be a witness of aLtc. If the answer from firing

with mass z towards a was qar , the answer from firing towards b must have been qbt or qbl . Then, since c

is heavier than b, the result of running the experiment with a and c can only be either (qar , q
c
l) or (qar , q

c
t);

if, on the other hand, we got (qat , q
b
l), when firing with mass z, we will have (qat , q

c
l) when firing wit mass

z, since c is heavier than b.

Proposition 3.21. For every t > 0 and a, b, c ∈ O, if aLtc holds, there is a time T such that, if aET b

holds, then bLT c holds as well.

Proof. Suppose that aLtc holds, which implies that ma < mc. Suppose that aET b holds, for T = T (k),

where k is the precision required to perform firings towards a and b, with queries in the interval (ma, (ma+

mc)/2), with at least one answer different from a time out. Then, since the queries are heavier than ma,

we must have gotten the answer (qar , q
b
r), for some query z ∈ (ma, (ma +mc)/2). This means that, if we

setup two experiments, with b and c, firing with mass z will yield the answer (qbr, q
c
l), whence the relation

bET c will hold.

Proposition 3.22. If aLtb holds, for t > 0, there is an order T after which aLt′b holds, for every t′ ≥ T .

Proof. Consider a dyadic rational z, that witnesses the relation aLtb. Then, since a lighter than b, there

is another dyadic rational z′ such that ma < z′ < mb. Since the experimental time of firing with mass z′

towards a and b is finite, we can pad z′ with enough zeros8, obtaining a query z′′, such that T = T (|z′′|)

is greater than both experimental times. We will thus have a witness for the relation aLT b. For any time

greater than T , we can just use the same query, but padded with more zeros.
8Note that there doesn’t have to be a computable way of knowing the number of zeros that have to be padded to z′; we just

require that such a number exists.

43

Remark 3.23. Note that this order T is achieved, at most, when there is a query z for which the outcome

is (qar , q
b
l). For any time order above T , an experiment with that same query will always yield the answer

(qar , q
b
l).

These propositions, together, imply the following result.

Proposition 3.24. The relations Et and Lt, as defined in 3.16, are a limit timed comparative concept.

3.4 Three types of measurement

In this section we will prove that the three types of experiments, two-sided, one-sided and vanishing,

can be used to satisfy the axiomatization we presented. As pointed out in [20], these three types of

experiments lead to three forms of comparison: signed comparison, if both aLb and bLa can be tested,

threshold comparison, if either aLb or bLa can be tested, and vanishing comparison, if we can only test

the predicate (aLb or bLa).

To represent each type of experiment, we will use a SmSE with some alterations in the collecting

boxes. We will assume that a SmSM is always defined with an increasing schedule. The idea to

define the relations Et and Lt is to run two experiments, each with a vertex in a different position.

We will represent the two experiments as a single one, by introducing the TSmSE, whose schematic

representation is presented in figure 3.2. The experiment works as the regular SmSE, with the difference

that the cannon, placed between the two curves, shoots a particle to the left and another to the right.

a

bcannon

z

LEFT COLLECTING BOX

RIGHT COLLECTING BOX

Figure 3.2: Schematic representation of the TSmSE.

In this case, the set O, of objects, is the wedge vertices that can be used to setup the TSmSE, and

the time parameter t will mean the possible waiting times of an experiment, which, determined by the

machine’s schedule, is assumed to be increasing. Unless explicitly stated otherwise, assume that the

TSmSE is setup with the vertex a on the left and b on the right.

44

3.4.1 Two-sided type measurement

For the case of two-sided type measurement, the TSmSE is built from two regular SmSE. Instead of

the TSmSE having four collecting boxes, its two collecting boxes are assumed to be able to distinguish

if the particle that crossed them was shot towards a or b. We will index the possible oracle responses

(ql, qt, qr) in the vertex where the response came from.

Definition 3.25. We say that aEtb if, for every dyadic position z, firing the cannon at z yields the same

result from both sides, in time t. We say that aLtb if there is a dyadic rational z such that, when the

cannon fires at z, we get one of the following results in time t: (qar , qbl), (qar , qbt), or (qat , qbl). In this case,

we say that z witnesses the relation aLtb.

Since the CME is a two-sided type experiment, the proof that the relations defined in 3.25 are a limit

timed comparative concept is analogous to the proof presented in Section 3.3.1. Thus, we will only state

the final result.

Proposition 3.26. The relations Et and Lt, as defined in 3.25, are a limit timed comparative concept.

To measure a vertex, we successively compare it with vertices in dyadic positions. Hence we can

fix one of the vertices of the TSmSE and set the other to a dyadic position. However, since we per-

form comparisons by setting the cannon to a dyadic position, this experiment is reduced to running a

measurement algorithm in the regular SmSE.

Definition 3.27. We define the measurement map M as the function which, given a vertex y, suc-

cessively runs Algorithm 2.1, with increasing input precision, and returns the limit of the sequence of

generated dyadic rationals.

Recall the notion of the toolbox of standards, presented in Section 3.1. In the case of the SmSM,

the standards correspond to vertices in dyadic positions, which we represent by dyadic positions of the

cannon. We are thus measuring an arbitrary vertex by successively comparing it with standard objects.

We will consider that Algorithm 2.1 has been changed so that, when a time out occurs, instead of

setting z0 and z1 to z, the value of the variables is saved. This means that the next iteration of the

algorithm can start with this same assignment, instead of setting z0 and z1 to their default values again.

Note that, for the case of a wedge vertex in a dyadic position, this will mean that, after a certain point,

all the approximations experimental calls with result in a time out.

We will now prove that the map M converges to the exact position of any vertex. Since this will be

the case for the three types of measurements, we will state the result in a more general manner, so that

it applies to every situation.

45

Proposition 3.28. Let P be an algorithm for the SmSM, for which a greater input precision corresponds

to an output with a smaller distance to the wedge vertex y.9 Suppose that a map M : O → R is defined

as in Definition 3.27, as a “limit" of P . Then, given a vertex y, M(y) will converge to the exact position of

y.

Proof. If, during the measurement procedure, there is always an iteration such that a time out does not

occur, each such successive call to P will result in a better approximation of y, so the outputted queries

will converge to the exact position of the vertex.

Now suppose that, after a given iteration with a query z, all the experimental calls yield a time out. If

y is not in the dyadic position z, the experimental time of firing at z towards y is finite. This means that,

for a given input precision l, the waiting time of the machine T (l) will surpass the time of the experiment,

whence a time out will not occur. Thus, if, at a given time, all the queries result in a time out, y must be

in the dyadic position given by the queries (which differ only in the number of padded zeros.)

Proposition 3.29. The map M is a measurement map.

Proof. Suppose that there is t > 0 such that aLtb is the case. Then, since a is to the left of b, the fact

that M(a) < M(b) holds is implied by Proposition 3.28.

Proposition 3.30. The measurement map satisfies the separation property 3.11.

Proof. Suppose that a, b ∈ O are such that M(a) < M(b).

Consider the case where a is a dyadic rational (the other case is solved analogously). Then, after a

certain point, the approximations zai , given by the measurement map defined in 3.27, will be constantly

equal to a. Then, since M(a) < M(b), the result of firing at z = a towards b will have to be ql, for a z

padded with enough zeros. This z will be a witness of the relation aLtb, for t = T (|z|).

Now consider the case where neither a nor b is a dyadic rational and let z be a dyadic rational, such

that M(a) < z < M(b). Then, for a certain query z′, equal to z, but padded with enough zeros, the result

of firing at z′ towards a and b must be qr and ql, respectively. This z′ will be a witness of the relation

aLtb, for t = T (|z′|).

3.4.2 One-sided type measurement

For the case of one-sided, or threshold, type measurement, we can only make one type of comparison:

either “less than" or "more than". This type of experiment was studied in depth in [13].

Consider, for example, the photoelectric effect experiment, depicted in Figure 3.3, in which we wish to

find the minimum frequency (threshold) after which a photon, shot towards a metallic surface, will cause

9Since we only consider increasing schedules, this condition is verified by each type of experiment’s measurement algorithm.

46

an electron to be ejected. Since we only get a response whenever the light beam frequency exceeds

the threshold frequency, the photoelectric experiment is a one-sided type experiment.

- - - -

f1

e−

METALLIC SURFACE

ELECTRON DETECTOR

Figure 3.3: Schematic representation of the photoelectric effect experiment.

To better visualize this type of measurement, consider the BBE, shown in Figure 3.4, in which a

pressure sensitive stick signals that the balance scale has tilted to one side, but a rigid block prevents

the other side of the balance from moving downwards.

z y

Rigid block

O

h

Figure 3.4: Schematic representation of the broken balance experiment.

Clearly, we can only tell if z > y, which is indicated by the pressure sensitive stick being triggered.

The computational power of this type of experiment, when running in polynomial time and with an

exponential schedule, is the same as for the case of the two-sided type measurement and is summarized

in Table 5.1 (see [13]).

In terms of the SmSE, we have a one-sided type measurement if only one of the collecting boxes is

functional. We will study the case where the left one works, which means that the oracle responses will

either be ql, meaning that z < y, or qt, which implies that y is either very close to z, or smaller than z.

We will call this model one-sided SmSE.

Analogously to the measurement algorithm performed by the regular SmSM, we have Algorithm 3.1

to approximating the binary expansion of an unknown position y.

To define the semantic of Et and Lt we will setup a one-sided TSmSE using two one-sided SmSE.

This means that the right collecting box of the TSmSE is not functional and the left collecting box is able

to tell if the particle that crosses it was shot towards a or b. We thus have four possible outcomes from

an experiment: (qal , q
b
l), (qal , q

b
t), (qat , q

b
l),or (qat , q

b
t). The first case, for example, happens when we get a

signal from both a’s and b’s left collecting box.

47

Algorithm 3.1: Measurement algorithm for one-sided type measurement.
Data: Positive integer l, representing the desired accuracy;
z0 = 0; z1 = 1; z = 0;
while z1 − z0 > 2−l do

z = (z0 + z1)/2;
s = Prot_IP(z�l);
if s == ql then

z0 = z;
else

z1 = z;

return z;

Definition 3.31. We say that aEtb if, for every dyadic position z, firing the cannon at z yields the same

result from both sides, in time t. We say that a bLta if there is a dyadic rational z such that, when the

cannon fires at z, we get the result (qat , q
b
l) in time t. Clearly, if aLtb holds, a is to the left of b.

We will now see that Et and Lt are a limit timed comparative concept. The proofs are analogous to

the two-sided case.

Proposition 3.32. Given a time t and a, b ∈ O, one and only one of aLtb, bLta and aEtb will hold.

Proof. If aEtb doesn’t hold, then there is a dyadic rational z such that the result of the experiment is

either (qal , q
b
t) or (qat , q

b
l), whence aLtb or bLta will happen.

Now, to see that only one of the events can happen. Suppose aEtb is the case. Then, every firing

yields the same result in time t, whence none of the cases that determine aLtb or bLta can happen. If, for

example, aLtb holds, aEtb is excluded by definition and, since a is to the left of b, bLta can’t happen.

Proposition 3.33. For every t > 0, Et reflexive and symmetric.

Proof. See the proof of Proposition 3.19.

Proposition 3.34. For every t > 0, Lt is transitive.

Proof. Suppose that aLtb and bLtc hold, and let z be the witness of the relation aLtb. Then, if we setup

two experiments, with unknown vertices a and c, z will be a witness of aLtc. Since the result of firing at z

towards a and b must have been (qat , q
b
l) and c is farther from z than b is, the result of firing at z towards

a and c must be (qat , q
c
l), whence aLtc will hold.

Proposition 3.35. For every t > 0 and a, b, c ∈ O, if aLtc holds, there is a time T such that, if aET b

holds, then bLT c holds as well.

Proof. Suppose that aLtc holds, and let z be the dyadic rational that produced the outcome (qat , q
c
l).

48

Suppose that aET b holds, for T = T (k), where k is the precision required to perform firings in the

interval (a, (a + c)/2), such that the result from c is ql, and let z ∈ (a, (a + c)/2). Then, since z is to the

right of a, we will have the outcome qat , since the right collector isn’t functional, whence, since aEtb holds,

we will also have the outcome qbt from firing at z towards b. Since we got qcl from the query z, we have

the outcome (qbt , q
c
l) in time T , whence bET c will hold.

Proposition 3.36. If aLtb holds, for t > 0, there is an order T after which aLt′b holds, for every t′ ≥ T .

Proof. Consider a dyadic rational z, that witnesses the relation aLtb. Then, since a is to the left of b,

there is another dyadic rational z′ such that a < z′ < b. Since the experimental time of firing at z′ towards

a and b is finite, we can pad z′ with enough zeros, obtaining a query z′′, such that T = T (|z′′|) is greater

than both experimental times. We will thus have a witness for the relation aLT b. For any time greater

than T , we can just use the same query, but padded with more zeros.

These propositions, together, imply the following result.

Proposition 3.37. The relations Et and Lt, as defined in 3.31, are a limit timed comparative concept.

Definition 3.38. We define the measurement map M as the function which, given a vertex y, suc-

cessively runs Algorithm 3.1, with increasing input precision, and returns the limit of the sequence of

generated dyadic rationals.

Proposition 3.39. The map M is a measurement map.

Proof. See the proof of Proposition 3.29.

Proposition 3.40. The measurement map satisfies the separation property 3.11.

Proof. Suppose that a, b ∈ O are such that M(a) < M(b).

Consider the case where a is a dyadic rational (the other case is solved analogously). Then, after a

certain point, the approximations zai , given by the measurement map defined in 3.27, will be constantly

equal to a. Then, since M(a) < M(b), the result of firing at z = a towards b will have to be ql, for a z

padded with enough zeros. This z will be a witness of the relation aLtb, for t = T (|z|).

Now consider the case where neither a nor b is a dyadic rational and let z be a dyadic rational, such

that M(a) < z < M(b). Then, for a certain query z′, equal to z, but padded with enough zeros, the result

of firing at z′ towards a and b must be qt and ql, respectively. This z′ will be a witness of the relation

aLtb, for t = T (|z′|).

3.4.3 Vanishing type measurement

Vanishing type measurement occurs when we can test the predicate z 6= y, but can’t distinguish z < y

from y < z. This type of measurement was studied in [14].

49

Consider, for example, the Brewster angle experiment, first suggested as an example of a vanishing

type experiment in [18]. The goal of this experiment is to measure Brewster’s angle, the angle of inci-

dence of polarized light on an insulating surface, at which the electric vector of the reflected light has no

component in the plane of incidence (see [23]).10

The experimental apparatus consists of a surface, a projector and a light detector, that reacts when

it has absorbed energy above a threshold limit. We send a light beam into the surface, with a certain

incidence angle ϕ, and await a response from the light detector (see figure 3.5).

(incident ray) (reflected ray)

(transmitted ray)

O
X

Z

~Ei,⊥ ~Er,⊥

~Et,⊥

ϕ

ψ

~Ei,‖ ~Er,‖

~Et,‖

Figure 3.5: Schematic representation of the Brewster angle experiment.

The electric field is perpendicular to the direction of propagation and can be decomposed into com-

ponents parallel (subscript ‖) and perpendicular (subscript ⊥) to the plane of incidence. Let Ei,‖ and

Ei,⊥ denote the components of the incident ray, Er,‖ and Er,⊥ the components of the reflected ray, and

Et,‖ and Et,⊥ the components of the transmitted ray. The black circle denotes the normal component

pointing forward and the white circle denotes the normal component pointing backwards

In this type of experiment, we cannot infer any information about the Brewster angle ϕB , simply by

sending a ray with desired angle ϕ. This is because, as ϕ approaches ϕB , the intensity of the electric

field decreases to 0, either if ϕ < ϕB , or if ϕ > ϕB .

Consider the simpler example of the VBE, depicted in Figure 3.6, in which the pressure sensitive

sticks signal that the balance has tilted to one side, but not to which one. Clearly, we can tell if z 6= y, if

the pressure sensitive is triggered, but have no way of distinguishing z < y from z > y.

z y
O

Figure 3.6: Schematic representation of the vanishing balance experiment.

10A visualization of the Brewster angle experiment can be found in https://micro.magnet.fsu.edu/primer/java/
polarizedlight/brewster.

50

https://micro.magnet.fsu.edu/primer/java/polarizedlight/brewster
https://micro.magnet.fsu.edu/primer/java/polarizedlight/brewster

In terms of the SmSE, we have a vanishing type measurement if both collecting boxes are functional,

but the SmSE doesn’t distinguish between a signal that arrived from the left or from the right collect-

ing box. This means that the oracle responses will either be that the particle has crossed one of the

collecting boxes or that there was a time out. We will call this model vanishing SmSM.

The idea behind measuring an unknown quantity, testing only the predicate of innequality, is to run

the experiment with two queries, to see which of them took the longest to return an answer. This will be

the one that is the closest to the unknown value.

Two ways of performing vanishing type measurement are introduced in [14]: on one hand, we can

setup two experiments in parallel, with the two possible queries, and wait to see which one took the

longest; on the other hand, we can use just one experiment and count the experimental time for each

query, performing a comparison afterwards. Their respective computational power, when running in

polynomial time, is presented in Tables 3.1 and 3.2 (see [14]).

Infinite Unbounded Bounded

Lower bound P/poly P/poly BPP//log?

Upper bound P/poly P/poly BPP//log?

Table 3.1: Computational results for the parallel implementation of vanishing type experiments.

Infinite Unbounded Bounded

Lower bound P/log? BPP//log? BPP//log?

Upper bound P/poly P/poly BPP//log?

Upper bound − BPP//log? −
Exponential T

Table 3.2: Computational results for the time-counting implementation of vanishing type experiments.

3.4.3.A Parallel implementation

For this implementation, we assume that we can always distinguish the two events from one another.

Although an unfeasible assumption, “we are willing to consider it because it will provide us with some

interesting results later on" (see [14]). We thus have the Protocol 3.7, which, given a time constructible

schedule T , attempts to signal the machine which particle arrived first.

We use Algorithm 3.2 to approximate the position of the unknown vertex with a given precision l.

51

PROTOCOL COMPARE_IP(z1, z2)

Receive as input two dyadic rationals z1 < z2 of size n;
Run two experiments, one for each query, and wait constructive T (n) units of time;
Check which experiment finished first;
If it’s the first experiment, return “first";
If it’s the second, return “second";
If neither instance calls back, return “time out".

Figure 3.7: Protocol for the parallel implementation of the infinite precision vanishing type measurement.

Algorithm 3.2: Measurement algorithm for parallel vanishing type measurement.
Data: Positive integer l, representing the desired accuracy;
z0 = 0; z4 = 1; z2 = (z0 + z4)/2;
while z4 − z0 > 2−l do

z1 = (z0 + z2)/2; z3 = (z2 + z4)/2;
s1 = compare_IP(z1�l, z2�l); s2 = compare_IP(z2�l, z3�l);
if s1 == “second" then

z2 = z1; z4 = z2;
else

if s2 == “first" then
z0 = z2; z2 = z3;

else
if s1 == “first" then

if s2 == “second" then
z0 = z1; z4 = z3;

else
return z2;

else
return z2;

return z2;

To define the semantic of Et and Lt we will setup two parallel vanishing TSmSE, one for each query,

using four vanishing SmSE. This apparatus is depicted in Figure 3.8.

In the example form Figure 3.8, the query z1 takes the longest to arrive at a collecting box, for the case

of a, but, for the case of b, is the first query to return an answer. Thus, the outcome of the experiment

will be (“second",“first"). To avoid a heavy notation, we will not index the outcomes in the vertex from

which they were obtained. The first term in the outcome will refer to the vertex a and the second to the

vertex b.

Definition 3.41. We say that aEtb if, for every pair of dyadic rationals z1 < z2, running the protocol

compare_IP(z1, z2) yields the same answer in time t. We say that aLtb if there is a pair of dyadic

rationals z1 < z2 such that, when we run the protocol compare_IP(z1, z2), we get one of the following

results in time t: (“second",“first"), (“second", “time out"), or (“time out",“first").

52

a

b
cannon

z1

LEFT COLLECTING BOX 1

RIGHT COLLECTING BOX 1

a

bcannon

z2

LEFT COLLECTING BOX 2

RIGHT COLLECTING BOX 2

Figure 3.8: Schematic representation of the parallel vanishing TSmSE.

Proposition 3.42. If there is t > 0, such that aLtb holds, then a is to the left of b.

Proof. Let (z1, z2) be the queries that witness the relation aLtb. If the result was (“second",“first"), then

a is closer to z1 and b is closer to z2; if the result was (“time out",“first"), then b is farther from z1 than a

is; finally, if the outcome is (“second", “time out"), then a is farther from z2 than b is.

We will now prove that Et and Lt are a limit timed equivalence relation.

Proposition 3.43. Given a time t and a, b ∈ O, one and only one of aLtb, bLta and aEtb will hold.

Proof. Suppose that aEtb doesn’t hold. Then, there is a pair of queries (z1, z2) that yield a different

answer from a and b, whence one of the options that define the relations aLtb or bLta will hold.

If aEtb holds, then the other relations are trivially not verified. If aLtb holds, then aEtb is excluded by

definition and bLta can’t happen due to the fact that a is to the left of b (Proposition 3.42).

Proposition 3.44. For every t > 0, Et reflexive and symmetric.

Proof. See the proof of Proposition 3.19.

Proposition 3.45. For every t > 0, Lt is transitive.

Proof. Suppose that aLtb and bLtc, and let (z1, z2) be the witnesses of the relation aLtb. Then, if we

setup the experiment with vertices a and c, (z1, z2) will witness aLtc as well, since c could only be further

away from a than b is. Suppose, for example, that the answer to compare_IP(z1, z2), between a and b,

was (“time out",“first"). Then, since c is to the right of b, the experimental time of shooting at z1 towards

c will be smaller than that of shooting at z1 fired towards b. Thus, the outcome of compare_IP(z1, z2),

between a and c, can only be (“time out",“first") as well.

Proposition 3.46. For every t > 0 and a, b, c ∈ O, if aLtc holds, there is a time T such that, if aET b

holds, then bLT c holds as well.

53

Proof. Suppose that aLtc holds, whence, by Proposition 3.42, a is to the left of b. Let T = T (k) be the

precision required to fire both z1 and z2 in the interval (a, (a + c)/2). With enough zeros padded, the

answer from firing at c will be “first" and the answer from a will be “second". Thus, if aET b, the answer

from firing at b will also be “second", whence, if we setup the experiment with b and c and fire at z1 and

z2, we will have the outcome (“second",“first"). Thus, if aET b holds, bLT c will hold as well.

Proposition 3.47. If aLtb holds, for t > 0, there is an order T after which aLt′b holds, for every t′ ≥ T .

Proof. If the relation aLtb is witnessed by some queries (z1, z2), then a is to the left of b. Then, we can

find two queries (z′1, z
′
2) within a and b, for which a sufficient padding will yield the answer (“second",“first")

from an experimental call. This will also be true for any time above T = T (|z′1|) = T (|z′2|).

These proposition, together, imply the following result.

Proposition 3.48. The relations Et and Lt, as defined in 3.41, are a limit timed comparative concept.

Definition 3.49. We define the measurement map M as the function which, given a vertex y, suc-

cessively runs Algorithm 3.2, with increasing input precision, and returns the limit of the sequence of

generated dyadic rationals.

The approximations given by M , in this case, are given by the middle query z2. Note that, if a vertex

is in a dyadic position, it can be that the two queries will arrive at the exact same time to a collecting box.

In this case, we could stop the algorithm and return an answer right away, but we will treat this event as

if it where a time out and proceed with the measurement.

Proposition 3.50. The map M is a measurement map.

Proof. See the proof of Proposition 3.29.

Proposition 3.51. The measurement map satisfies the separation property 3.11.

Proof. Suppose that a, b ∈ O are such that M(a) < M(b).

Consider the case where b is a dyadic rational (the other case is solved analogously), and consider

z1 ∈ (a, b). Then, since M(a) < M(b), the result of firing at (z1, z2) towards a will have to be “second",

for a z2 equal to b with enough zeros padded. This pair (z1, z2) will be a witness of the relation aLtb, for

t = T (|z1|) = T (|z2|), since it will produce the outcome (“second",“time out").

Now consider the case where both a and b are non-dyadic and let z1 < z2 be dyadic rationals, such

that M(a) < z1 < z2 < M(b). Then, with z′1 = z1 and z′2 = z2, but padded with enough zeros, the result

of firing at (z′1, z
′
2), towards a and b, must be “second" and “first", respectively. These queries will be

witnesses of the relation aLtb, for t = T (|z′1|) = T (|z′2|).

54

3.4.3.B Time-counting implementation

For this implementation, we have to use the assumption that it is possible for two experiments to con-

sume the same number of machine steps. We thus introduce Protocol 3.9, which, for a time constructible

schedule T , attempts to signal which query took the least amount of discrete time to return an answer.

PROTOCOL COMPARE_IP(z1, z2)

Receive as input two dyadic rationals z1 < z2 of size n;
Run an experiment with the query z1 and wait constructive T (n) units of time, counting the
number of steps it takes to receive an answer;
Store this value in a variable T1. If the result was a time out, let T1 = T (n) + 1;
Do the same for the query z2, defining a variable T2;
If T1 < T2, return “first”;
If T1 > T2, return “second”;
If T1 = T2 > T (n), return “time out”;
If T1 = T2 ≤ T (n), return “indistinguishable”.

Figure 3.9: Protocol for the time-counting implementation of the infinite precision vanishing type measurement.

If the result is “first", then y is closer to z2 than to z1; if it’s “second", then y is closer to z1 than to

z2; if it’s “time out", then both z1 and z2 are too close to y to get an answer within the specified waiting

time; finally, the outcome “indistinguishable" can occur either because the time of both experiments was

the same, or because the difference between them was to small to be distinguished by the machines

discrete measure of time.

As pointed out in [14], this implementation has a different notion of imprecision associated with

it, which originates from the way we count time. If we don’t make the assumption that all machine

transitions take the same amount of physical time, then, when we count T1 steps, the actual time taken

for the experiment may not be in (T1 − 1, T1]. To formalize this consideration, a new kind of precision

was defined: time precision. Given a map g : N→ N and a query z, the number of machine transitions

counted, when an experiment is ran with z, is a natural value T1, uniformly sampled in [dte− g(|z|), dte+

g(|z|)], where t represents the actual experimental time. If g(n) = 0, we have a full precision, which is

the only case that we will consider. The complexity classes from Table 3.2 were obtained using a time

precision g, computable in polynomial time.

To measure with this implementation, we have to deal with the possibility of getting the answer

“indistinguishable", which happens if the physical time of a machine’s step is greater than the time

difference between the two queries. To get around this problem, we will only consider time functions that

satisfy the inequality t′(z) ≥ f(z)/(y − z), for some function f that increases as z approaches y.11 We

thus have the following result, which ensure that, if the two queries lie on the same side relative to the

unknown vertex, the difference in times will increase as they approach the unknown vertex.

11Note that this condition is satisfied, for example, by the time form t(z) = 1/|y − z|, given in Proposition 2.24.

55

Proposition 3.52. Consider a SmSM with vertex y and queries z1, z2. Suppose that z1 and z2 are on

the same side relative to y, that both |y− z1| and |y− z2| are bounded by 2−k and that |z2− z1| = 2−k−2.

Then, we have that |t(z2)− t(z1)| ≥ f(z1)/4.

Proof. Suppose that z1 < z2 ≤ y (the other case is analogous). Then, applying the mean value theorem,

we have that, for some ξ ∈ (z1, z2):

|t(z2)− t(z1)| = |z2 − z1||t′(ξ)| ≥
|z2 − z1|
|y − ξ|

f(ξ) ≥ |z2 − z1|
|y − z1|

f(z1) ≥ 2−k−2

2−k
f(z1) =

f(z1)

4

Thus, we know that, after some point, the answer “indistinguishable" will only occur when the wedge

vertex is in between the two queries. To deal with the problem of obtaining “indistinguishable" in the

first iterations, even when y is not within the queries, we can begin the measurement in a sub-interval

of (0, 1), small enough so that this does not happen. The specification of this sub-interval only requires

a finite amount of information, so it can be hard-wired into the machine. We can thus measure with a

variation of Algorithm 3.2, by replacing the first two if statements, s1 == “second" and s2 == “first", with

s1 == “second" or “indistinguishable" and s2 == “first" or “indistinguishable", respectively.

To define the semantic of Et and Lt we will setup a vanishing TSmSE using two vanishing SmSE.

This means that both collecting boxes of the TSmSE work, but only to say which particle crossed them,

not which collecting box was crossed.

Note that, at step k, we have y within an interval of size 2−k, which we divide in four, thus having

queries whose distance to each other is 2−k−2. Given this fact, together with Proposition 3.52, and

the subsequent discussion on hardwiring an interval into the machine, we will assume that the answer

“indistinguishable" will only occur if the vertex is in between the two queries.12 Moreover, it will only occur

if the distance from the vertex to both queries is so similar, that the machine isn’t able to tell them apart.

This enables us to exclude the case where the answer is “indistinguishable", from one side, and “time

out", from the other. If, for example, shooting at (z1, z2) towards a yields the response “indistinguishable"

and z2 produces a time out when shot towards b, then b is closer to z2 than a is, whence the we must

have the outcome “first" from firing at (z1, z2) towards b.

Definition 3.53. We say that aEtb if, for every pair of dyadic rationals z1 < z2, running the protocol

compare_IP(z1, z2) yields the same answer from both sides, in time t. We say that aLtb if there is a pair

of dyadic rationals z1 < z2 such that, when we run the protocol compare_IP(z1, z2), we get one of the

following results in time t: (“second",“first"), (“second", “time out"), (“second", “indistinguishable"), (“time

out",“first"), or (“indistinguishable",“first").
12Note that we are essentially assuming that we have prior information about the position of each vertex, which allows us to

specify the mentioned interval.

56

Proposition 3.54. If there is t > 0, such that aLtb holds, then a is to the left of b.

Proof. We just have to justify the cases where we have “indistinguishable", since the others have been

covered in Proposition 3.42. Let (z1, z2) be the queries that witness the relation aLtb. If the result was

(“indistinguishable",“first"), then a’s distance to both z1 and z2 is very similar, but b is closer to z2 than to

z1; if the result was (“second", “time out"), then a is farther from z2 than b is; if the result was (“second",

“indistinguishable"), then b’s distance to both z1 and z2 is very similar, but a is closer to z1 than to z2. In

every case, we can conclude that a is to the left of b.

Proposition 3.55. Given a time t and a, b ∈ O, one and only one of aLtb, bLta and aEtb will hold.

Proof. Suppose that aEtb doesn’t hold. Then, there is a pair of queries (z1, z2) that yield a different

answer from a and b, whence one of the options that define the relations aLtb or bLta will hold.

If aEtb holds, then the other relations are trivially not verified. If aLtb holds, then aEtb is excluded by

definition and bLta can’t happen due to the fact that a is to the left of b (Proposition 3.54).

Proposition 3.56. For every t > 0, Et is reflexive and symmetric.

Proof. See the proof of Proposition 3.19.

Proposition 3.57. For every t > 0, Lt is transitive.

Proof. Suppose that aLtb and bLtc, and let (z1, z2) be the witnesses of the relation aLtb. Then, if we

setup the experiment with vertices a and c, (z1, z2) will witness aLtc as well, since c could only be

further away from a than b is. Suppose, for example, that the answer to compare_IP(z1, z2), between

a and b, was (“second",“indistinguishable"). Then, since c is to the right of b, the experimental time of

shooting at z1 towards c will be smaller than that of shooting at z1 fired towards b. Thus, the outcome

of compare_IP(z1, z2), between a and c, can only be (“second",“indistinguishable") or (“second",“first"),

whence the pair (z1, z2) will be a witness of the relation aLtc, for t = T (|z1|) = T (|z2|).

Proposition 3.58. For every t > 0 and a, b, c ∈ O, if aLtc holds, there is an time T such that, if aET b

holds, then bLT c holds as well.

Proof. Suppose that aLtc holds, whence, by Proposition 3.54, a is to the left of b. Then, there are

dyadic rationals z1 < z2 in the interval (a, (a + c)/2), for which firing towards c will yield the result

“first" and firing towards a will result in “second". Thus, if aET b, firing at b will also yield be “second",

whence, setting up the experiment with vertices b and c, and queries z1 and z2, we will have the outcome

(“second",“first").

Proposition 3.59. If aLtb holds, for t > 0, there is an order T after which aLt′b holds, for every t′ ≥ T .

57

Proof. If the relation aLtb is witnessed by some queries (z1, z2), a is to the left of b. Then, we can find

two queries (z′1, z
′
2) within a and b and with a sufficient padding of zeros, which will yield the answer

(“second",“first") from an experimental call. This will also be true for any time above T = T (|z′1|).

These proposition, together, imply the following result.

Proposition 3.60. The relations Et and Lt, as defined in 3.53, are a limit timed comparative concept.

Definition 3.61. We define the measurement map M as the function which, given a vertex y, succes-

sively runs Algorithm 3.2, the time-counting version, with increasing input precision, and returns the limit

of the sequence of generated dyadic rationals.

Proposition 3.62. The map M is a measurement map.

Proof. See the proof of Proposition 3.29.

Proposition 3.63. The measurement map satisfies the separation property 3.11.

Proof. See the proof of Proposition 3.51.

58

4
Measurable numbers

In 1986, Geroch and Hartle introduced the notion of a measurable number , which, as a computable

number arises in mathematics, would arise from a physical theory (see [40]). These numbers were

defined as the real values y, for which a technician, given an abundance of unprepared raw materials,

and an allowed error ε, would be able to perform an experiment, under a finite set of instructions, yielding

ultimately a rational number within ε of y.

Comparing the definitions of measurable and computable numbers, the technician is analogous to

the Turing machine, the instructions to the machine’s code, and the abundance of unprepared raw

materials to demanding that the memory tape of the Turing machine should start blank.

However, the definition of a measurable number didn’t take into account the time it would take for

the experiment to run, which was only done by Beggs, Costa and Tucker in [17]. It also didn’t require

that an actual measurement be performed; one could ask the technician to build a computer and write

a program to successively output the digits of any computable number.

59

4.1 Numbers that can be measured by the error-free SmSM

In this section we will present, in greater detail, the work done in [17], where the class of measurable

numbers is defined with a Turing machine as the technician1 and the two-sided error-free SmSE as the

experiment. We will give a precise characterization of this set of numbers, explore its density in the

interval (0, 1) and provide two results regarding the undecidability of asserting whether or not a number

is measurable.

4.1.1 A characterization of measurable numbers

We will define a measurable number as one that can be measured by the SmSM. Note that this is

a universal definition, amongst measurement experiments defined with a schedule, regardless of the

validity of the BCT conjecture. If a real number y is measurable by an experiment with a sub-exponential

experimental time, should such an experiment exist, we can always measure y with the SmSM, using a

greater schedule.

Definition 4.1. We say that a real number y ∈ (0, 1) is measurable if there exists a SmSM M , with

vertex y and a time constructible schedule T , such that M , knowing n− 1 digit of y, outputs its nth digit

in time T (n), i.e., without timing out.2

Recall the measurement maps from previous section (see, for example Definition 3.27), which were

defined as an “extension" of a linear search algorithm.3 To have a measurement map, according to

Hempel, we had to allow them to keep running, even when the outcome of an experiment was a time

out. This means that we have no way of knowing when we will actually attain another bit of the binary

expansion of the wedge vertex; in the worst possible case, we can have a time out forever.

We thus make a distinction between the numbers that we can obtain using the SmSM, in the limit,

and the numbers that we can measure. The difference lies in the fact that, in the second definition, we

know how much time it will take to obtain the next digits of y. Note that, if the number of time outs is finite,

we can replace the schedule with another one, still time constructible, such that no time out occurs.

We consider time constructible schedules, instead of just computable, to capture the idea of a phys-

ical clock that counts the time of an experiment as it’s being performed. As any computable function is

bounded above by some time constructible one (see, for example, Lemma 2.3 of [7]), this assumption

doesn’t restrict our class of measurable numbers.

Definition 4.2. A Turing machine M is said to be a universal measuring procedure for the SmSE if, for

1We thus encode, in our model of measurement, the recursive structure of experimental actions.
2We assume that, for each output z, an experiment is run with the cannon aimed at z. This is to ensure that the measurement

comes from the physical experiment itself and not from a calculation done internally by the machine.
3We will drop the expression “extension" and just refer to the measurement map as linear search algorithm.

60

every measurable number y, there exists a time constructible schedule T , such that M , equipped with

T , measures y.

Note the difference between this definition and the one from a measurable number. In Definition 4.1,

every measurable number has an associated Turing machine and schedule that witnesses its measura-

bility. In Definition 4.2, however, it is demanded that a single Turing machine measures every measurable

real number, by only changing its schedule.

Remark 4.3. For the results that follow, it will be useful to consider the following presentation for a

non-dyadic real y ∈ (0, 1), where u1 ≥ 0 and ui ≥ 1, for every i ≥ 2:

y = 0 · 1 . . . 1︸ ︷︷ ︸
u1

0 . . . 0︸ ︷︷ ︸
u2

1 . . . 1︸ ︷︷ ︸
u3

. . . (4.1)

If y is a dyadic rational, this form is valid up to a certain point, after which all the digits of y are 0.

Proposition 4.4. Consider an error-free SmSM M , with a time constructible schedule T and unknown

wedge vertex position at a non-dyadic y, written according to Pattern 4.1. If y is measurable by some

program, then the sequence uk is bounded by a computable function.

Proof. Define ak = u1 + · · · + uk. Then, the digit at the end of the block labelled by uk is in the akth

position. Denote by y±k the first ak digits of y, but one having the last digit equal to 0 and the other

having the last digit equal to 1. Then, to determine all digits up to the akth digit, any program must have

successfully run the experiment with a query z in the intervals [y−k , y[and]y, y+k].

If y�ak = y+k , then uk is a block of 1’s and y − y−k has ak − 1 zeros, followed by a one and the rest of

y. Hence, |y − y−k | ≥ 2−ak and |y − y−k | ≤ 2−ak+1. Analogously, we can prove a similar inequality for y+k ,

using the fact that the next block is a block of zeros. We then have:

2−ak ≤ |y − y−k | ≤ 2−ak+1

2−ak+1−1 ≤ |y − y+k | ≤ 2−ak+1 (4.2)

If, on the other hand, y�ak = y−k , we have the following inequalities:

2−ak−1 ≤ |y − y−k | ≤ 2−ak

2−ak+1 ≤ |y − y+k | ≤ 2−ak+1+1 (4.3)

To determine the first ak digits of y, the strictest bounds occur in the interval]y, y+k]. Since no time

61

out can ever occur, the schedule will have to, at least, satisfy the following (see inequalities 4.3 and 2.3):

T (ak) ≥ t(y+k) ≥ A

|y − y+k |
≥ A2ak+1−1

We then have:

2uk+1 = 2ak+1−ak = 2−ak2ak+1 ≤ 2−ak+1T (ak)/A

⇒ uk+1 ≤
⌈

log

(
T (u1 + · · ·+ uk)

A

)⌉
− (u1 + · · ·+ uk) + 1

This inequality establishes a computable relation between uk+1 and its previous terms, so uk is bounded

by a computable function.

Proposition 4.5. Consider a SmSM with unknown wedge vertex position at a non-dyadic y, written

according to Pattern 4.1. If the sequence uk is bounded by a computable function, then y is measurable

by the linear search algorithm.

Proof. Suppose that the sequence uk is bounded by a computable function and, as in the proof of

Proposition 4.5, define the sequence ak. Then, since the strictest bound is in the interval]y, y+k], when

y�k = y+k (see Inequality 4.2), the longest experimental time is, at most, C2ak+1+1.

Since the sequence uk is bounded by a computable function, so is the sequence ak, whence we can

find a schedule that will satisfy T (k) ≥ C2ak+1+1.

We then have the following result.

Proposition 4.6.

• A non-dyadic y ∈ (0, 1), written according to Pattern 4.1, is measurable if and only if the sequence

uk is bounded by a computable function.

• The Turing machine equipped with the linear search algorithm is a universal measuring procedure.

4.1.2 Measurability, measure theory and decidability

In this section we examine the class of measurable numbers and show that, in the sense of measure the-

ory, almost all numbers are measurable. We also show, however, that there is an uncountable number of

non-measurable numbers and that measurable numbers are, in a finite amount of time, indistinguishable

from non-measurable ones.

We start by introducing Algorithm 4.1, which, for input k > 0, attempts to find y to k binary places.

Proposition 4.7. Let y ∈ (0, 1) and k > 0. Then, there is a set Fk, of measure 2−k, such that, if y /∈ Fk,

the SmSM can measure y to k binary places.

62

Algorithm 4.1: Sweeping measurement algorithm.
Data: Positive integer k, representing the desired accuracy;
p = 1;
while p ≤ 2k do

s = Prot_IP(p/2k);
if s == qr then

return p/2k;

p = p+ 1;

return p/2k;

Proof. Let k ∈ N and define the following set:

Fk =
⋃

0≤p≤2k

[
p

2k
− 1

22k+1
,
p

2k
+

1

22k+1

]
∩ (0, 1)

Then, for every y /∈ Fk, and z = p/2k, for 1 ≤ p ≤ 2k, we have that |z − y| ≥ 1/22k+1, so t(z) ≤ C22k+1.

Therefore, Algorithm 4.1, with input k and schedule T (k) = D22k+1, for D ≥ C, will never produce a

time out, whence it will be able to determine the first k binary places of y. The proof is completed by

observing the following:

|Fk| =
∑

0≤p≤2k

(
p

2k
+

1

22k+1

)
−
(
p

2k
− 1

22k+1

)
=

∑
0≤p≤2k

1

22k
=

1

2k

Proposition 4.8. With probability 1, a real numbers in (0, 1) is measurable.

Proof. Define the sets B =
⋂
n≥0

⋃
k≥1 Fn+k and A = (0, 1) \ B, where each Fn+k is defined as in the

proof of Proposition 4.7. Since the measure of each Fn+k is 2−k−n, the measure of
⋃
k≥1 Fn+k is 2−n,

whence B is a measure zero set and A has measure one.

Now, let y ∈ A. Then there is n ≥ 0 such that y /∈ Fn+k, for every k ≥ 1. Therefore, if we setup the

SmSM with the schedule T (k) = D22(k+n)+1 = D22k+(2n+1), for D ≥ C, Algorithm 4.1, on input k, will

not fail to measure y to k binary places. Then, y is measurable by the program P , which, defined with

the schedule T (k) = D22k+(2n+1), successively calls Algorithm 4.1, with increasing precision k.4

Note that the set A, from the proof of Proposition 4.8 does not contain any dyadic rationals. Indeed,

let a = p/2r be a dyadic rational, with 0 < p < 2r, and let k ≥ 0. If k < r, then a ∈ Fn+k, where n = r−k;

if k ≥ r, then a ∈ Fk.5

Proposition 4.9. There are uncountably many values y ∈ (0, 1) that are not measurable by the SmSM.
4It is important to note that, for the measurement to succeed, we would need to know a priori the order n, required to setup the

appropriate schedule.
5For every t ≤ r and q < 2t, it holds that q/2t ∈ Fr . Indeed, by taking p = q2r−t < 2r , we have that q/2t = p/2r ∈ Fr .

63

Proof. Proposition 4.6 implies that any real number y ∈ (0, 1), written according to Pattern 4.1, such that

the sequence uk is not bounded by a computable function, is not measurable by any Turing machine

using the SmSE as an oracle. Then, any y ∈ (0, 1), written according to Pattern 4.1, for which uk is either

BB(k) or BB(k + 1), where BB is the Busy Beaver function (which is not bounded by any computable

function – see Section A.4), is not measurable by the SmSM. The proof is completed by remarking that

there is an uncountable number of real values in the above condition.

We conclude by asserting the undecidability of the property of measurability.

Proposition 4.10. There is no program running on a Turing machine, using the SmSE as an oracle, that

can decide, in a finite amount of time, if a number is measurable.

Proof. Recall that, by Proposition 4.6, a real number, written according to Pattern 4.1, is measurable if

and only if uk is bounded by a computable function.

In a finite amount of time, a SmSM can only find a finite number of digits of y. Then, a continuation of

the already calculated digits, using the Busy Beaver construction from Proposition 4.9, is indistinguish-

able from a continuation that is bounded by a computable function. Thus, a finite number of digits is not

enough to distinguish a measurable from a non-measurable number.

4.2 Measurement as a means to classify real numbers

Consider a real number y ∈ (0, 1), written according to Pattern 4.1, and let ak = u1 + · · ·+ uk. From the

proof of Propositions 4.4 and 4.5, we have:

• If y is measurable with a schedule T , the sequence uk satisfies

uk+1 ≤
⌈

log

(
T (u1 + · · ·+ uk)

A

)⌉
− (u1 + · · ·+ uk) + 1 (4.4)

• If the sequence uk is bounded by a computable function, y is measurable with a schedule satisfying

T (k) ≥ C2ak+1+1

This relationship allows us classify a real number according to its measurement complexity, by con-

sidering the time complexity of the schedule with which we can measure it (if it exists).

Recall Proposition 2.9, where we showed that, for a query z close enough to y, the duration of an

experiment call satisfies the inequality

A

|y − z|n−1
≤ t(z) ≤ C

|y − z|n−1

64

When considering the complexity class of a schedule, the constants A and C will become irrelevant, so

we will set them to 1. The degree n would also introduce a multiplicative constant in the schedules, so

we will set it to 2, thus considering that the experimental time is given by

t(z) =
1

|y − z|

We can interpret this assumption as a classification of real numbers, when being measured with a scatter

machine whose curve has the shape of a parabola, or forget about these physical interpretations and

regard the conversion between the sequence uk and the schedule T as an abstract operator.

We will characterize numbers that can be measured with two types of exponential schedules and

prove that there is an infinite number of complexity classes, which make up the Grzegorczyk hierarchy,

that are closed for the operation of, given a bound on uk, obtaining a schedule to measure a vertex y.

The reciprocal property is only achieved when we reach the class of primitive recursive functions.

To obtain a bound on the expansion of a vertex y, knowing the schedule with which we can measure

it, we will consider a different way of constructing the schedule, than the form given in Proposition 4.5.

Suppose that we have a function g, which, for an input n, representing a binary place, returns the

block uk where n is. Then, since every binary place in the same block will yield the same experimental

duration, we can measure y with any schedule satisfying T (n) ≥ 2ag(n)+1+1.

However, since the sequence uk is not necessarily computable, but bounded by a computable func-

tion, we might not be able to compute the function g, as defined above. Instead, we will consider that g

gives the block where n would be, should each block be given by the computable function that bounds

uk. It’s expression can be thus given by g(n) = bb−1n c + 1, where b−1 is the inverse of b, the function

that bounds a, when its expression is thought of as that of a real valued function. We will thus use a

schedule T such that, for each k ≥ 1,

T (k) ≥ 2bg(k)+1+1 (4.5)

Before moving on, we will present some results regarding time constructibility. Together with the exam-

ples from Section A.6, from the Appendix, these will imply the time constructibility of the schedules from

the next section. The first two results can be found, for example, in [33], and the last one is an adaptation

of Example 8 from [52].

Proposition 4.11. The class of time constructible functions is closed under composition.

Proof. Let Mf and Mg be two deterministic Turing machines that witnesses the time constructibility of

two function f and g.

We start by constructing a machine M ′, which incorporates the finite control of Mg and Mf and

contains an extra tape. It starts by simulating Mg, writing a symbol for every transition that it performs

65

(first, the symbol 0̇, and then a 0 for each transition).

When M ′ reaches the accepting state of Mg, the machine’s head writes in the additional tape the

last 0 and the simulation of Mf begins, giving it, as input, the sequence of g(n) 0’s, from right to left.

However, constructed as above, M ′ writes its g(n) first steps, simulating Mg, and then f(g(n)) steps,

by simulating Mf , i.e., it perform g(n) + f(g(n)) transitions. To solve this problem, we interchange the

simulation of Mg with the simulation of Mf . When Mf is supposed to read the input, we simulate another

step of Mg and account it a the input being given to Mf .

Thus altered, M ′ witnesses the time constructibility of the function f ◦ g.

Proposition 4.12. The class of time constructible functions is closed under sum and product.

Proof. Let Mf and Mg be two deterministic Turing machines that witnesses the time constructibility of

two function f and g. In both cases, we construct a machine M ′ which writes, in a new tape, in parallel

with the computation of the original machine, a copy of the input in the form 0̇0 . . . 0 of size n, where n is

the size of the input.

In the case of addition, the accepting state ofMf is fused with the initial state ofMg. The simulation of

Mg is done by reading 0̇0 . . . 0 as the input, from right to left. M ′ will thus perform f(n) +g(n) transitions.

For the case of the product, note that f(n)× g(n) = f(n) + g(n) + (f(n)− 1)× (g(n)− 1)− 1. Thus,

M ′ starts by calculating f(n) and g(n), in f(n) + g(n) transitions, to two different tapes, marking the first

and last three symbols in each of them. Then, it performs (f(n)−1)×(g(n)−1) transitions, by traversing

the tape with f(n)− 1 symbols g(n)− 1 times, halting one transition before the end.

Proposition 4.13. For p ∈ (0, 1) a rational number and c ≥ 1, the function f(k) = k + cbkpc is time

constructible.

Proof. Let p ∈ (0, 1) be a rational number and c ≥ 1. Kobayashi’s proof that f(k) = k + bkpc is time

constructible makes use of Theorem 5.2, also from [52], and implies that g(k) = k + h(bkpc) is time

constructible, when h is as well.6 Then, to achieve the desired result, we only have to consider h(n) = cn,

which, by Proposition A.11, from the Appendix, is time constructible.

4.2.1 Measuring with an exponential schedule

4.2.1.A Real numbers with a polynomially bounded expansion

In this section we will characterize the complexity of measuring a real number, written according to

Pattern 4.1, whose sequence uk is bounded above by a polynomial.

6Note that, according to our definition, h(n) = n is not, indeed, time constructible, since a machine requires, at least, n + 1
transitions to read the input and move to the accepting state. We can solve this problem by marking the last bit of the input, but
this is not necessary, as the schedules we construct in the proof of Proposition 4.16 are built with a constant c greater than 1.

66

Proposition 4.14. Consider a real number y ∈ (0, 1), written according to Pattern 4.1. Then, the

sequence uk is bounded by a constant, if and only if y is measurable with a schedule T (k) ∈ O(2k).

Proof. “⇒"

Suppose that the sequence uk is bounded by a constant c ∈ N. Then, for every k ≥ 1, ak ≤ ck,

whence the function g is given by g(k) = bk/cc+ 1. Then, given Inequality 4.5, fixing d = 2c+ 1, we can

measure y with the following schedule:

T (k) = 2k+d ≥ 2cbk/cc+2c+1 = 2c(bk/cc+2)+1 = 2bg(k)+1+1

“⇐"

Now, if the vertex y is measurable with a schedule of the form T (k) = 2k+d, for some constant d,

then, given Inequality 4.4, the sequence uk will satisfy

uk+1 ≤ dlog (T (u1 + · · ·+ uk))e − (u1 + · · ·+ uk) + 1

= (u1 + · · ·+ uk) + d− (u1 + · · ·+ uk) + 1 = d+ 1

which concludes the result.

Note that, even with this restriction on the expansion of uk, of it being bounded by a constant, we still

need an exponential schedule to measure the vertex y.

Proposition 4.15. There is an uncountable numbers of values that can be measured with a schedule

T (k) ∈ O(2k).

Proof. Consider the set of Cantor numbers, introduced in Section 2.2.3.A. Since, for any y ∈ C3, the

sequence uk is bounded above by c = 4, we can measure any number in C3 with a schedule of the form

T (k) = 2k+2·4+1 = 2k+9.

Another way of obtaining this result is by using the fact that the distance by between a dyadic rational

z, of size k, and any cantor number, is greater than 2−k−10 (Proposition 6.1 of [13]). We thus have that,

for every query z, of size k, t(z) ≤ 1/|y − z| < 2k+10, which defines, once again, a schedule in O(2k).

We will now present two results, which, together with the previous one, characterize the schedules

with which we can measure a real number with a polynomially bounded expansion.

Proposition 4.16. Let y ∈ (0, 1) be a real number, written according to Pattern 4.1. Then, if uk

is bounded by a polynomial of degree m − 1, for m ≥ 2, y is measurable with a schedule T (k) ∈

O(2k+O(bk(m−1)/mc)).

67

Proof. Suppose that the sequence uk is bounded by a polynomial βkm−1, for some constant β ∈ N and

m ≥ 2. Then, there is some α ∈ N, such that, for every k ≥ 1,

ak = u1 + · · ·+ uk ≤ β + . . . βkm−1 ≤ 7αkm

Thus, the function g is given by g(k) = b m
√
k/αc+ 1, so we can measure y with any schedule satisfying

T (k) ≥ 2bg(k)+1+1 = 2α(b
m
√
k/αc+2)m+1

= 2αb
m
√
k/αcm+α

∑m−1
i=0 (mi)b

m
√
k/αci2m−i+1

Note that, for any 1 ≤ i ≤ m− 1, b m
√
k/αci2m−i is bounded above by b m

√
kcm−12m−1. Then, by setting

c = α2m−1
m−1∑
i=1

(
m

i

)
= α2m−1(2m − 2)

and e = 2m + 1, we can measure y with the following schedule:

T (k) = 2k+cbk
1−1/mc+e ∈ O(2k+O(bk1−1/mc))

Proposition 4.17. If a real number y ∈ (0, 1), written according to Pattern 4.1, is measurable with a

schedule T (k) ∈ O(2k+O(bk(m−1)/mc)), for m ≥ 2, the sequence uk is bounded by a polynomial of degree

m− 1.

Proof. Let T (k) = 2k+cbk
1−1/mc+e, for some constants c, e ∈ N and m ≥ 2, and let q = (m− 1)/m. Then,

setting d = e+ 1 and q = (m− 1)/m, the sequence uk is bounded by the (real) sequence vk, defined as

vk+1 = log
(

2k+c(v1+···+vk)q+e
)
− (v1 + · · ·+ vk) + 1

= (v1 + · · ·+ vk) + c(v1 + · · ·+ vk)q + e− (v1 + · · ·+ vk) + 1

= c(v1 + · · ·+ vk)q + d

Now, let α = 1/cmm, k ≥ 2, and set sk = v1 + · · ·+ vk. We will consider two cases.

Suppose that si ≥ α(i + 1)m, for every i ≤ k − 1. Then, by the mean value theorem, there is

ξi ∈ (si−1, si), for each i ≥ 2, such that,

δvi = vi+1 − vi = c(v1 + · · ·+ vi)
q − c(v1 + · · ·+ vi−1)q = csqi − cs

q
i−1 = cqξ

−1/m
i vi

7Summing over a polynomial of degree m− 1 gives a polynomial of degree m.

68

Now, since ln(x+ 1) ≤ x, for any x > −1, we have that

δ ln(vi) = ln(vi+1)− ln(vi) = ln

(
vi+1

vi

)
= ln

(
vi+1 − vi

vi
+ 1

)
= ln

(
δvi
vi

+ 1

)
≤ δvi

vi
= cqξ

−1/m
i

Summing over the previous expressions, we get

ln(vk+1)− ln(v1) =

k∑
i=1

δ ln(vi) ≤
k∑
i=1

cqξ
−1/m
i ≤ cq

k∑
i=1

1

s
1/m
i−1

Then, we have that

ln(vk+1) ≤ cq
k∑
i=1

1

s
1/m
i−1

+ ln(d) ≤ cq
k∑
i=1

1

(αim)1/m
+ ln(d) =

cq

α1/m

k∑
i=1

1

i
+ ln(d)

≤ 8 c(m− 1)

mα1/m
(ln(k) + 1) + ln(d) = (m− 1) (ln(k) + 1) + ln(d)

whence

vk+1 ≤ de(m−1)k(m−1)

Now suppose that there is some i ≤ k − 1, such that si < α(i + 1)m. Then, since si+1 = si + vi, the

value of si+1 is smaller than it would be, if si ≥ α(i + 1)m. This will also be true for all the subsequent

si’s, for i ≤ k − 1. Thus, vk+1, in this scenario, is necessarily smaller than the vk+1 from the previous

case, which we already showed to be bounded by de(m−1)k(m−1).

Together, these propositions imply the following result.

Proposition 4.18. Let y ∈ (0, 1) be a real number, written according to Pattern 4.1, and m ≥ 1. Then,

uk ∈ O(km−1), if and only if y is measurable with a schedule T (k) ∈ O(2k+O(bk(m−1)/mc)).

4.2.1.B Real numbers with an exponentially bounded expansion

In this section we will characterize the complexity in measuring a real number, written according to

Pattern 4.1, whose sequence uk is bounded above by an exponential function.

Proposition 4.19. Let y ∈ (0, 1) be a real number, written according to Pattern 4.1, and β ≥ 1.

• If uk ∈ O(2βk), then y is measurable with a schedule T (k) ∈ O(22
2βk);

• if y is measurable with a schedule T (k) ∈ O(22
βk), then uk ∈ O(2βk).

8Recall that ln(k) ≤ Sk ≤ ln(k) + 1, where Sk is the kth partial sum of the harmonic series.

69

Proof. For the first statement, suppose that uk ≤ α2βk, for some constants α, β ∈ N. Then,

ak ≤ α2β
(

1 + · · ·+ 2β(k−1)
)

=
α2β

2β − 1

(
2βk − 1

)
In this case, the function g is given by

g(k) =

⌊
log2

(
(2β − 1)k

α2β
+ 1

)
/β

⌋
+ 1

Then, we can measure y with any schedule satisfying

T (k) ≥ 2bg(k)+1+1 = 2α2
β

(⌊
log2

(
(2β−1)k

α2β
+1

)
/β

⌋
+2

)
+1

Therefore, we can use the following schedule to measure y:

T (k) = 2α2
β

(
log2

(
(2β−1)k

α2β
+1

)
/β+2

)
+1 = 2α2

2β (2β−1)k

α2β
+α22β+1 = 22

β(2β−1)k+α22β+1 ∈ O(22
2βk)

For the second statement, let y be measurable with a schedule of the form T (k) = 22
βk+e, for some

constants β and e. Then, the sequence uk will bounded by vk, defined by

vk+1 =
⌈
log
(

22
β(v1+···+vk)+e

)⌉
− (v1 + · · ·+ vk) + 1

= 2β(v1 + · · ·+ vk) + e− (v1 + · · ·+ vk) + 1

= (2β − 1)(v1 + · · ·+ vk) + e+ 1

Let k ≥ 1, d = e+ 1 and set sk = v1 + · · ·+ vk. Then,

vk+1 − vk = (2β − 1)sk + d− (2β − 1)sk−1 − d = (2β − 1)vk

Thus, vk = d2β(k−1) ∈ O(2βk).

We thus have the following characterization, which expresses the closure of the exponential class to

the operations of obtaining a schedule and an expansion on uk.

Proposition 4.20. Let y ∈ (0, 1) be a real number, written according to Pattern 4.1. Then uk ∈ 2O(k), if

and only if y is measurable with a schedule T (k) ∈ 2O(k).

Moreover, Propositions 4.19 and 4.8 imply the following result.

Proposition 4.21. The set of real numbers in (0, 1), written according to Pattern 4.1, whose binary

expansion uk is bounded by (n+ 1)2k, for some n ≥ 0, is a measure one set.

70

Proof. By the proof of Proposition 4.8, a real number y ∈ (0, 1), with binary expansion given by uk, can

be measured with the schedule T (k) = 22k+2n+1 with probability one, for some n ≥ 0. As in the proof of

the second statement of Proposition 4.19, set d = (2n + 1) + 1 = 2(n + 1). Then, with probability one,

the sequence uk is bounded by vk = 2(n+ 1) · 2k−1 = (n+ 1)2k, which concludes the result.

4.2.2 The Grzegorczyk hierarchy

In this section we will present an infinite number of classes of functions, which make up the Grzegorczyk

hierarchy, and prove that a sequence uk, bounded by a function in the nth level of the hierarchy, implies

a schedule, at most, in that same level. We will only list some properties of these classes of functions.

The reader is directed to [34], [67], or [59], for a more detailed exposition to this topic.

In the base of the hierarchy we find the elementary functions, first introduced by Kálmar in 1943.

Definition 4.22. The class E of elementary functions is the smallest class containing zero, sucessor,

projections and cut-off subtraction, which is closed under composition, bounded sum and bounded

product.

Consider the m-times iterated exponential, denote by 2[m](x), defined recursively as 2[0](x) = x and

2[m+1](x) = 22
[m](x). If f(x) is an elementary function, then there is some k ∈ N such that, for every x,

f(x) ≤ 2[k](x). Moreover, we can characterize the elementary functions as

E =
⋃
n≥1

DTIME(2[n](k)) = DTIME(2k) ∪ DTIME(22
k

) ∪ · · ·

Due to this fact, it is argued that E contains all effectively computable functions (see [25]).

To construct the Grzegorczyk hierarchy, originally defined in [43], we will consider the function hn(x),

defined recursively as h0(x) = x+ 1 and hn+1(x) = h
[x]
n (x).

Definition 4.23. For n ≥ 3,9 we define the nth level of the Grzegorczyk hierarchy, denoted by En, as the

smallest class containing zero, successor, projections, cut-off subtraction and the function hn−1, which

is closed under composition, bounded sum, and bounded product.

We list three properties of this hierarchy in the following proposition.

Proposition 4.24.

• Each level of the Grzegorczyk hierarchy is properly contained in the next one;

• the union of all the levels of the Grzegorczyk hierarchy gives the class PR, of primitive recursive

functions;10

9Note that h0(x) = x+ 1, h1(x) = 2x and h2(x) = x2x are all elementary functions.
10This class of functions will be defined ahead.

71

• a function is in En, if and only if it can be computed in time En.

Given the closure properties that each level of the hierarchy satisfies, we have the following result.

Proposition 4.25. Let n ≥ 3 and let y ∈ (0, 1) be a real number, written according to Pattern 4.1, whose

sequence uk is bounded by a function in En. Then, y is measurable with a schedule in En.

Proof. Suppose that uk is bounded by a function in En. Then, given that En is closed for bounded sum,

the sequence bk, that bounds above ak, is also in En, whence so is T (k) = 2bk+1+1. Thus, there is a

schedule in En with which we can measure y.

Recall the class of elementary functions. If one considers that E contains all effectively computable

functions, then this result implies that, if uk is bounded by an effectively computable function, then we

can measure y with an effectively computable schedule.

Now, to introduce the class of primitive recursive functions, we need to introduce the operator of

primitive recursion. Consider two functions g and h, of arity n and n+ 2, respectively. Then, we define a

function f , through primitive recursion, as{
f(x1, . . . , xn, 0) = g(x1, . . . , xn)

f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y))

We thus define the class of primitive recursive functions as the smallest class containing zero, suc-

cessor and projections, which is closed for composition and primitive recursion.

Indeed, the class of primitive recursive function is closed for a sort of primitive recursion where f is

defined to depend on all its previous values. The proof of closure, which can be found, for example, in

Lemma 3.1.8 of [73], is done using the technique of course-of-values recursion.

Proposition 4.26. A real number y ∈ (0, 1), written according to Pattern 4.1, is measurable with a

primitive recursive schedule if and only if the sequence uk is bounded by a primitive recursive function.

Proof. The first implication is a consequence of Proposition 4.25 and the fact that each level of the

Grzegorczyk hierarchy is contained in the class of primitive recursive functions.

For the second implication, suppose that y is measurable with a primitive recursive schedule T .

Then, Inequality 4.4 imposes a primitive recursive bound on the sequence uk.

Note that the reasoning above does not apply for a specific layer of the Grzegorczyk hierarchy.

Indeed, we have the following results.

Proposition 4.27. If a real number y ∈ (0, 1) is measurable with the elementary schedule T (k) = 22
k

,

then Inequality 4.4 is not enough to guarantee that the sequence uk is bounded by an elementary

function.

72

Proof. Given the schedule T (k) = 22
k

, Inequality 4.4 implies that uk is bounded by the sequence vk,

defined as

vk+1 =
⌈
log
(

2[2](v1 + · · ·+ vk)
)⌉
− (v1 + · · ·+ vk) + 1 = 2v1+···+vk − (v1 + · · ·+ vk) + 1

We will prove by induction that, for each k ≥ 2, vk ≥ 2[k−2](2). The inequality is trivially true for k = 2,

so consider an arbitrary k ≥ 2.

vk+1 = 2v1+···+vk − (v1 + · · ·+ vk−1 + 2v1+···+vk−1 − (v1 + · · ·+ vk−1) + 1) + 1

= 2v1+···+vk − 2v1+···+vk−1 ≥ 2vk + 2v1+···+vk−1 − 2v1+···+vk−1

= 2vk ≥ 22
[k−2](2) = 2[k−1](2)

Thus, since h(k) = 2[k−2](2) is not an elementary function11, so isn’t the sequence vk. Therefore,

using only the relationship given by Inequality 4.4, we cannot guarantee that that there is elementary

bound on the sequence uk.

Proposition 4.28. Let y ∈ (0, 1) be a real number, written according to Pattern 4.1, whose sequence uk

is bounded by 2[k−2](2).12 Then, y is measurable with a schedule T (k) ∈ 2O(2k).

Proof. If uk is bounded above by 2[k−2](2), then

ak = u1 + · · ·+ uk ≤ 1 + 2[0](2) + · · ·+ 2[k−2](2) =: bk

First, we will show that bk ≤ 2[k−1](2)− 1. For k = 2 the inequality is trivially verified, so let k ≥ 2. Then,

bk+1 = bk + 2[k−1](2) ≤ 2[k−1](2)− 1 + 2[k−1](2) = 2× 2[k−1](2)− 1 ≤ 2[k](2)− 1

Let k = bm, for some m ≥ 1. Then,

2bg(k)+1+1 = 2bm+1+1 = 2bm+2[m−1](2)+1 ≤ 22
[m−1](2)+2[m−1](2)

= 22×2
[m−1](2) = 22×2

2[m−2](2)

≤ 22×2
k

Note that, if k is such that bm ≤ k < bm+1, then g(k) will also be m, whence the above inequality will

hold for any k. Thus, we can measure y with the schedule

T (k) = 22×2
k

∈ 2O(2k)

10This equality is only valid for k ≥ 2, as v0 is not defined.
11Recall the statements after Definition 4.22.
12For k = 1, set 2[k−2](2) to 1.

73

We can thus find an elementary schedule for which we cannot guarantee an elementary bound on

the sequence uk, and a non-elementary bound on uk for which we cannot find an elementary schedule.

This shows that the reciprocal result from the one in Proposition 4.25 is not verified for the class of

elementary functions. It is also interesting to remark that, unlike the cases from section 4.2.1, in which

the bound on uk is smaller than the schedule which which we can measure the vertex, the bounds in the

previous cases are greater than the schedules.

74

5
Conclusion

5.1 Summary

5.1.1 Computational results

Following the work from [5], we started this thesis by presenting a model of computation, the Smooth

Scatter Machine (SmSM), in which a Turing machine is coupled with a physical experiment, the Smooth

Scatter Experiment (SmSE), exchanging data with it according to a protocol, that determines the exper-

imental precision, and a schedule, a time constructible function that determines the amount of time that

the Turing machine waits for an answer from the physical experiment. This information exchange is akin

to the one between a Turing machine and an oracle, the difference lying in the fact that, in this case, the

answer from the physical oracle takes some amount of physical time to be obtained (see Section 2.2.1).

Considering three possible protocols, error-free, error-prone with unbounded precision and error-

prone with fixed precision, we constructed an algorithm that the Turing machine could run to approximate

the position of a wedge vertex (see Section 2.2.2), thus obtaining information to use as an advice

to carry out some computational task. We then classified the class of sets that can be decided by

75

the SmSM, when clocked in polynomial time and with an exponential schedule, achieving a complete

characterization when making an assumption on the schedule, for the error-free case (see Section

2.2.3.D), and on the physical duration of an experiment, for the error-prone cases (see Sections 2.2.3.E

and 2.2.3.F).

The lower bounds were obtained by encoding the information given by an advice function in a real

number, corresponding to the position of the wedge vertex (see Section 2.2.3.A), and the upper bounds

were obtained by introducing the concept of a boundary number, which, when given to a Turing machine

by means of an advice function, can be used to simulate (or approximate) the outcome of the physi-

cal experiment (see Section 2.2.3.B). We summarize the results obtained in Table 5.1. The first row

represents the protocol that rules the data exchange.

Infinite Unbounded Bounded
P/log? BPP/log? BPP/log?

Lower Bound Proposition 2.28 Proposition 2.33 Proposition 2.37

P/log? BPP//log2? BPP//log2?
Upper Bound Schedule in Ω(2k) Proposition 2.34 Proposition 2.38

Proposition 2.31

BPP/log? BPP/log?
Upper Bound - Proposition 2.35 Proposition 2.39

Explicit time

Table 5.1: Computational results

Note that, if P is strictly contained in BPP, the error in the cannon’s precision leads to an increase

in computational power (see Section 2.1.2), which happens because we can explore the error-prone

protocols to simulate the tossing of a fair coin, thus being able to simulate probabilistic algorithms (see

Sections 2.2.3.C and 2.1.1).

5.1.2 Fundamental measurement

Having established a measurement procedure, the linear search algorithm, we looked at the error-free

SmSM from the perspective of fundamental measurement. We introduced the notion of a fundamental

magnitude, which differs from a derived one in that it can be measured without the need for prior met-

rical concepts1, and presented Campbell and Jeffreys’ work from [27], on determining which quantities

are fundamental, and Hempel’s work from [44], on the axiomatization of a fundamental measurement

procedure (see Section 3.1). If an attribute is extensive (see Section A.5), additive and independent, it is

amenable to fundamental measurement. Introducing the notion of a comparative concept, represented

by two relation, E and L, which assert equality and innequality over objects of a domain O, respectively,

1A derived magnitude, such as density, is obtained by first measuring other quantities, such as volume and mass, and perform-
ing some algebraic operation on the results.

76

we get a first workable definition of when a map from object to numbers, is a measurement. An applica-

tion M : O → R is a measurement map if, for any objects a, b ∈ O, M(a) = M(b), whenever aEb, and

M(a) < M(b), whenever aLb (see Section 3.1.2).

Now, recall that, in the case of the SmSM, we determine the outcome of an experiment by the

observant of an event, which indicates that one quantity is greater than another (see Section 2.2.2). The

absence of an event can either mean that the quantities being compared are equal, or that the duration

of the experiment exceeded the time given by the machine’s schedule. This notion of the duration of an

experiment, which, taking the BCT conjecture, increases, at least, exponentially, as our approximations

approach the unknown quantity we want to measure (see Sections 1.1 and 2.2.1), is not present in

Hempel’s axiomatization. Thus, after the work from [16], we presented a new axiomatization, which,

considering the ability of an experiment to witness innequality between two objects, in time t, recovers

Hempel’s notion of a measurement procedure as time is allowed to approach infinity (see Sections 3.2

and 3.3).

Following [20], we introduced and exemplified three types of physical measurement: two-sided, if

we can test when x < y and x > y, one-sided, if we can only test whether x < y or x > y, but not

both, and vanishing, if we can only assert that x 6= y, but can’t distinguish which is the greatest. We

presented alterations that could be made to the error-free SmSM, so that it would represent each form

of measurement, and proved that, in each case, our axiomatization could be satisfied (see Section 3.4).

5.1.3 Measurable numbers

Considering the two-sided error-free SmSM, we continued the work from [17], introducing the notion of

a number that can be obtained and that of a number that can be measured. In the second case, we

demand that a time constructible schedule exists, such that, when obtaining successive approximations

of the position of the wedge vertex (or whatever object we are measuring), no time out occurs (see

Section 4.1.1). We gave a precise characterization of these measurable numbers, presented two results

regarding their density in the interval (0, 1) and showed that, in a finite amount of time, a measurable

number is indistinguishable from a non-measurable one (see Section 4.1.2). A real number in (0, 1),

written according to Pattern 4.1, is measurable if and only if the sequence uk is bounded by a com-

putable function. As a consequence, no dyadic rational can be measured by the SmSM. This makes

our definition of measurability more strict than Geroch and Hartle’s, for whom any computable number

should be measurable. The difference lies in the fact that, in Geroch and Hartle’s definition, the tech-

nician didn’t actually have to measure an object; it was only required that he preformed an experiment,

yielding ultimately an approximation of that number.

We finished by characterizing the measurement complexity of classes of real numbers, by deter-

mining the time complexity of the schedule with which we can measure them (see Section 4.2). We

77

considered real numbers with a polynomial and exponentially bounded expansion (see Section 4.2.1)

and with an expansion bounded by some function in a given layer of the Grzegorczyk hierarchy (see

Section 4.2.2). For a real number y ∈ (0, 1), written according to Pattern 4.1, we summarize the re-

sults obtained (Propositions 4.18, 4.20 and 4.26) in Table 5.2. The first row represents the order of the

function bounding uk; the second row represents the time complexity of the schedule with which we can

measure the vertex y.

Bound on uk O(km−1) 2O(k) PR

Time complexity of T (k) O(2k+O(bk(m−1)/m)c)) 2O(k) PR

Table 5.2: Characterization of measurable numbers with a fixed schedule complexity.

Moreover, if uk is in the nth level of the Grzegorczyk hierarchy, then y can be measured with a

schedule, at most, in that same level. The reverse property is not verified, which we showed by giving

an elementary schedule with which we can measure a real number, whose expansion is not bounded

by any elementary function (see Section 4.2.2).

5.2 Future research

In this section we will present future topics of research, which arise from unresolved problems presented

in this thesis.

5.2.1 Analogue-digital computation

It is still an open problem to achieve a complete characterization for the computational power of the

SmSM, without making an assumption on the time complexity of the schedule, for the error-free case,

and on the physical duration of an experiment, for the error-prone cases (see Sections 2.2.3.E and

2.2.3.F). These problems were posed, originally, in [13].

Recall that the results from Figure 5.1 are only applicable to measurement experiments, which gives

a strong restriction on the behaviour of an analogue component (see, for example [84]), that interact with

a Turing machine under specific protocols (these were studied in a more general setting in [10]). We

argue that, in the end, reading the information from a physical experiment will always involve some form

of measurement, which has to be accounted for when classifying the complexity of an algorithm (see,

for example, the end of Section 2.2 of [22]), but we still don’t have a full knowledge on how an analogue

component might boost computation.

78

The third topic relates to the duration of a measurement experiment. Consider, for example, the

experiment depicted in Figure 5.1, in which the cannon shoots a particle towards a metal rod with length

y. If the cannon is able to shoot adimensional particles, we are able to tell, for a query z, in a fixed amount

of time, whether z > y or z ≤ y. The experiment would then break the BCT conjecture. Moreover, it

wouldn’t fall into any of the three forms of physical measurement we presented, of signed, threshold, or

vanishing type comparison. We can thus investigate what (possibly “unreasonable") assumptions can

be made in order for the BCT conjecture to be violated and how the experiments we obtain fit into the

axiomatization we have developed.

cannon

z

y

Metal rod with length y

LE
F

T
C

O
LL

E
C

T
IN

G
B

O
X

R
IG

H
T

C
O

LL
E

C
T

IN
G

B
O

X
Figure 5.1: Schematic representation of the rod machine experiment.

5.2.2 Fundamental measurement

We still don’t know if there is an intensive quantity that is amenable to fundamental measurement. Mea-

surement, as we have constructed here (see the end of Section 3.1.1) seems to only apply to extensive

quantities, but we don’t know if this is a fundamental property, or just a consequence of our procedure.

Hempel writes: “Obviously, an intensive characteristic (...) is not capable of fundamental measurement

by reference to some mode of combination which is governed by simple theoretical principles; but it may

well be amenable to some alternative type of fundamental measurement" (see [44]).

Regarding the time counting implementation of the vanishing type measurement, we made the as-

sumption that we could hardwire into the machine some finite amount of information, which would allow

us to get around the problem of getting the answer “indistinguishable" (see Section 3.4.3.B). We don’t

know if we can drop this assumption and still have a measurement satisfying our axiomatization, or if a

generalization has to be made to also include the case of the time counting implementation.

Regarding measurement with errors, we don’t know if it’s possible to satisfy, in the limit, Hempel’s

axiomatization, when we use the error-prone protocols and, if not, if there is probabilistic theory of mea-

surement2 that the error prone cases can satisfy, or even a more general theory, that would encompass

both the error-free and the error-prone cases.

2Probabilistic theories of measurement have been proposed, for example, in [38], [68] and [55].

79

5.2.3 Measurable numbers

First, we have not yet found a way to classify the measurement complexity of real numbers whose

expansion is bounded by an arbitrary (possibly non-computable) function – we only achieved a complete

characterization for polynomial, exponential and primitive recursive bounds (see Section 4.2). Such a

classification would result in a hierarchy of real numbers, according to their measurement complexity. It

would also enable the identification of complexity classes that are closed for the operations of obtaining

a schedule from a bound and a bound from a schedule. We can see, from Table 5.2, that the class

of exponential and of primitive recursive functions are examples of such classes, but we don’t know

if these are two of a kind of if more examples can be found. Next, although we showed that, with

probability one, a real number has a measurement complexity bounded above by O(22k), we still have

no idea behind measuring sets of real numbers with different measurements complexities. Still in the

topic of measurement complexity, recall Proposition 4.28, where we gave an example of a vertex, with

an expansion given by uk, which we could measure with a schedule T (k) smaller than uk.3 This seems

to be because, as the duration of an experiment is the same for every binary places in the same block

uk, the schedule only has to grow fast enough to “catch up" to 2bg(k+1)+1 in the beginning of a block

(recall Inequality 4.5). However, we don’t know if this property will be verified for greater bounds, or if we

can find a smallest and greatest bound on uk for which this “swap" is verified.

Secondly, is still unknown whether or not we can define the class of (non) measurable numbers in

an inductive manner. We know, from [4], that this set is not closed, for example, under addition, so one

would first have to find operations for which a closure property is verified.

The final topic is about the possibility of defining the “smallest" quantity that cannot be measured

(or, analogously, the greatest quantity that can be measured). Recall that the real number y, whose

expansion uk is given by the busy beaver function, is not measurable by the SmSM (see Proposition

4.9). However, this would also be true if we considered an expansion of the form uk = BB(k) − 1,

so there are non-measurable real numbers with a smaller expansion than y’s. Then, considering some

ordering of functions, what is the smallest expansion uk that yields a non-measurable number? The

Busy beaver gives an upper bound for this expansion, but we still don’t know if a minimum can be found.

If it can, it would define a sort of digital quantum.4

3Recall that the k from uk has a different meaning than the k in T (k). In the first case, it refers to the kth block; in the second,
to the kth binary place of the expansion of y.

4Quantum: “The minimum amount by which certain properties, such as energy or angular momentum, of a system can change.
Such properties do not, therefore, vary continuously, but in integral multiples of the relevant quantum." (see [54])

80

Bibliography

[1] S. Aaronson. Complexity zoo. https://complexityzoo.net/Complexity_Zoo, 2012. Accessed:

2021-05-05.

[2] S. Aaronson. The Busy Beaver frontier. ACM SIGACT News, 51:32–54, 09 2020.

[3] L. M. Adleman and K. L. Manders. Reducibility, randomness, and intractability (abstract). In J. E.

Hopcroft, E. P. Friedman, and M. A. Harrison, editors, Proceedings of the 9th Annual ACM Sym-

posium on Theory of Computing, May 4-6, 1977, Boulder, Colorado, USA, pages 151–163. ACM,

1977.

[4] T. Ambaram. Theory of two-sided experiments. Master’s thesis, Instituto Superior Técnico, 2014.

[5] T. Ambaram, E. Beggs, J. F. Costa, D. Poças, and J. V. Tucker. An analogue-digital model of compu-

tation: Turing machines with physical oracles. In A. Adamatzky, editor, Advances in Unconventional

Computing, Volume 1 (Theory), volume 22 of Emergence, Complexity and Computation, pages

73–115. Springer, 2016.

[6] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge University

Press, 2009.

[7] J. Balcázar, J. Días, and J. Gabarró. Structural Complexity I. Springer-Verlag, 2nd edition, 1988,

1995.

[8] J. Balcázar and M. Hermo. The structure of logarithmic advice complexity classes. Theoretical

Computer Science, 207(1):217–244, October 1998.

[9] J. Balcázar and U. Schöning. Logarithmic advice classes. Theor. Comput. Sci., 99:279–290, 06

1992.

[10] E. Beggs, P. Cortez, J. F. Costa, and J. V. Tucker. Classifying the computational power of stochastic

physical oracles. Old City Publishing, Inc., 2018.

81

https://complexityzoo.net/Complexity_Zoo

[11] E. Beggs, J. F. Costa, B. Loff, and J. V. Tucker. Computational complexity with experiments as

oracles. Proceedings of the Royal Society, Series A (Mathematical, Physical and Engineering

Sciences), 464(2098):2777–2801, 2008.

[12] E. Beggs, J. F. Costa, B. Loff, and J. V. Tucker. Computational complexity with experiments as

oracles II. Upper bounds. Proceedings of the Royal Society, Series A (Mathematical, Physical and

Engineering Sciences), 465(2105):1453–1465, 2009.

[13] E. Beggs, J. F. Costa, D. Poças, and J. V. Tucker. Oracles that measure thresholds: The Turing

machine and the broken balance. Journal of Logic and Computation, 23(6):1155–1181, 2013.

[14] E. Beggs, J. F. Costa, D. Poças, and J. V. Tucker. Computations with oracles that measure vanishing

quantities. Mathematical Structures in Computer Science, 2017.

[15] E. Beggs, J. F. Costa, D. Poças, and J. V. Tucker. An Analogue-Digital Church-Turing Thesis.

International Journal of Foundations of Computer Science, 25(4):373–389, 2014.

[16] E. Beggs, J. F. Costa, and J. V. Tucker. Computational Models of Measurement and Hempel’s Ax-

iomatization. In A. Carsetti, editor, Causality, Meaningful Complexity and Knowledge Construction,

volume 46 of Theory and Decision Library A, pages 155–184. Springer, 2010.

[17] E. Beggs, J. F. Costa, and J. V. Tucker. Limits to measurement in experiments governed by algo-

rithms. Mathematical Structures in Computer Science, 20(06):1019–1050, 2010.

[18] E. Beggs, J. F. Costa, and J. V. Tucker. The Turing machine and the uncertainty in the measurement

process. In H. Guerra, editor, Physics and Computation, P&C 2010, pages 62–72. CMATI – Centre

for Applied Mathematics and Information Technology, University of Azores, 2010.

[19] E. Beggs, J. F. Costa, and J. V. Tucker. The impact of models of a physical oracle on computational

power. Mathematical Structures in Computer Science, 22(5):853–879, 2012.

[20] E. Beggs, J. F. Costa, and J. V. Tucker. Three forms of physical measurement and their computabil-

ity. The Review of Symbolic Logic, 7(4):618–646, 2014.

[21] E. Beggs and J. V. Tucker. Experimental computation of real numbers by Newtonian machines.

Proceedings of the Royal Society, Series A (Mathematical, Physical and Engineering Sciences),

463(2082):1541–1561, 2007.

[22] E. Blakey. Factorizing RSA keys, an improved analogue solution. New Gener. Comput., 2009.

[23] M. Born and E. Wolf. Principles of Optics. Electromagnetic Theory of Propagation, Interference and

Diffraction of Light. Pergamon Press, 1964.

82

[24] O. Bournez and A. Pouly. A survey on analog models of computation. CoRR, abs/1805.05729,

2018.

[25] W. S. Brainerd and L. H. Landweber. Theory of computation. John Wiley & Sons, Inc., 1974.

[26] N. R. Campbell. Physics: The Elements. Cambridge University Press, 1920.

[27] N. R. Campbell and H. Jeffreys. Symposium: Measurement and its importance for philosophy.

Proceedings of the Aristotelian Society, Supplementary Volumes, 17:121–151, 1938.

[28] R. Carnap. Philosophical Foundations of Physics. Basic Books, 1966.

[29] P. Cockshott, L. Mackenzie, and G. Michaelson. Physical constraints on hypercomputation. Theo-

retical Computer Science, 394(3):159–174, 2008.

[30] S. A. Cook. The complexity of theorem-proving procedures. In M. A. Harrison, R. B. Banerji, and

J. D. Ullman, editors, Proceedings of the 3rd Annual ACM Symposium on Theory of Computing,

May 3-5, 1971, Shaker Heights, Ohio, USA, pages 151–158. ACM, 1971.

[31] S. B. Cooper. Computability Theory. Chapman & Hall, 2004.

[32] B. J. Copeland and D. Proudfoot. Alan Turing’s Forgotten ideas in Computer Science. Scientific

American, 280(4):98–103, 1999.

[33] J. F. Costa. Turing machines as clocks, rulers and randomizers. Boletim da Sociedade Portuguesa

de Matemática, 67:121–153, 2012.

[34] N. Cutland. Computability. Cambridge University Press, 1980.

[35] M. Davis. The myth of hypercomputation. In C. Teuscher, editor, Alan Turing: the life and legacy of

a great thinker, pages 195–212. Springer, 2006.

[36] M. Davis. Why there is no such discipline as hypercomputation. Applied Mathematics and Compu-

tation, 178(1):4–7, July 2006.

[37] H. B. Enderton. Computability theory: An introduction to recursion theory. Academic Press, 2010.

[38] J.-C. Falmagne. A probabilistic theory of extensive Measurement. Philosophy of Science,

47(2):277–296, 1980.

[39] D. Fowler and E. Robson. Square root approximations in old babylonian mathematics: Ybc 7289 in

context. Historia Mathematica, 25(4):366–378, 1998.

[40] R. Geroch and J. B. Hartle. Computability and physical theories. Foundations of Physics,

16(6):533–550, 1986.

83

[41] J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on Computing,

6:675–695, 1977.

[42] O. Goldreich. Computational Complexity. Cambridge University Press, 2008.

[43] A. Grzegorczyk. Some classes of recursive functions. Rozprawy Matematyczne, 4, 1953.

[44] C. G. Hempel. Fundamentals of Concept Formation in Empirical Science. International Encyclope-

dia of Unified Science II, 7, 1952.

[45] C. G. Hempel. Fundamentals of concept formation in empirical science. International Encyclopedia

of Unified Science, 2(7), 1952.

[46] F. Herbert. Dune Messiah. Putnam Publishing, 1969.

[47] D. Hilbert and W. Ackermann. Principles of mathematical logic, volume 69. Chelsea Publishing

Company, 1950.

[48] S. Homer and A. L. Selman. Probabilistic Complexity Classes, pages 225–246. Springer US, 2011.

[49] R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes. In

Proceedings of the twelfth annual ACM symposium onTheory of computing (STOC 1980), pages

302–309. ACM Press, 1980.

[50] V. J. Katz and A. Imhausen. The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A

Sourcebook. Princeton University Press, 2007.

[51] R. B. Kellogg. CRC Standard Mathematical Tables and Formulae (Daniel Zwillinger,ed.), volume 38.

Chapman & Hall, 1996.

[52] K. Kobayashi. On proving time constructibility of functions. Theoretical Computer Science, 35:215–

225, 1985.

[53] P. Kropitz. Problém Busy Beaver. Master’s thesis, Univerzita Karlova, Matematicko-fyzikální fakulta,

2011.

[54] J. Law and R. Rennie. A dictionary of physics. OUP Oxford, 2015.

[55] R. Michelini and G. Rossi. Measurement uncertainty: a probabilistic theory for intensive entities.

Measurement, 15(3):143–157, 1995.

[56] G. L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer and Systems

Science, 13:300–317, 1976.

84

[57] J. W. Mills. The nature of the extended analog computer. Physica D: Nonlinear Phenomena,

237(9):1235–1256, 2008.

[58] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and Proba-

bilistic Analysis. Cambridge University Press, 2005.

[59] P. Odifreddi. Classical Recursion Theory II. Studies in Logic and the Foundations of Mathematics.

North Holland, 1999.

[60] T. Ord. Hypercomputation: computing more than the Turing machine. Master’s thesis, The Univer-

sity of Melbourne, 2002.

[61] T. Ord and T. D. Kieu. On the existence of a new family of diophantine equations for ω. Fundam.

Informaticae, 56(3):273–284, 2003.

[62] R. Penrose. The Emperor’s New Mind. Oxford University Press, 1989.

[63] E. Post. Recursively enumerable sets of positive integers and their decision problems. Bulletin of

the American Mathematical Society, 50(5):284–316, 1944.

[64] E. Post. Degrees of recursive unsolvability. Bulletin of the American Mathematical Society, 54:641–

642, 1948.

[65] M. O. Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory, 12(1):128–138,

1980.

[66] T. Radó. On non-computable functions. Bell System Tech. J., 41(3):877–884, 1962.

[67] H. Rose. Subrecursion - function and hierarchies. Oxford University Press, 1984.

[68] G. B. Rossi. A probabilistic theory of measurement. Measurement, 39(1):34–50, 2006.

[69] C. M. Rump. Strategies for rolling the Efron dice. Mathematics Magazine, 74(3):212–216, 2001.

[70] O. Shagrir. Supertasks do not increase computational power. Natural Computing, 11(1):51–58,

2012.

[71] H. T. Siegelmann. Computation Beyond the Turing Limit. Science, 268(5210):545–548, April 1995.

[72] M. Sipser. Introduction to the Theory of Computation. Thomson, Course Technology, 1996, 2006.

[73] C. Smorynski. The incompleteness theorems. In Studies in Logic and the Foundations of Mathe-

matics, volume 90, pages 821–865. Elsevier, 1977.

[74] R. I. Soare. Computability and recursion. Bull. Symb. Log., 2(3):284–321, 1996.

85

[75] R. I. Soare. Turing computability and information content. Philosophical Transactions of the Royal

Society A, 370:3277–3304, 2011.

[76] J. Stillwell. Emil Post and his anticipation of Gödel and Turing. Mathematics Magazine, 77(1):3–14,

2004.

[77] P. Suppes. A set of independent axioms for extensive quantities. Portugaliæ Mathematica,

10(2):163–172, 1951.

[78] A. Syropoulos. Hypercomputation: computing beyond the Church-Turing barrier. Springer Science

& Business Media, 2008.

[79] C. Teuscher and M. Sipper. Hypercomputation: hype or computation? Comunications of the ACM,

45(8):23–24, 2002.

[80] P. Thagard. Computational philosophy of science. MIT press, 1993.

[81] A. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings

of the London Mathematical Society, 42:230–265, 1936.

[82] A. Turing. On computable numbers. Proceedings of the London Mathematical Society, 43:544–546,

1937.

[83] A. Turing. Systems of Logic Based on Ordinals. PhD thesis, Princeton University, NJ, USA, 1939.

[84] B. Ulmann. Analog and Hybrid Computer Programming. De Gruyter Oldenbourg, 05 2020.

[85] T. van Gelder. What might Cognition be if not Computation? The Journal of Philosophy, 92, 07

1995.

[86] P. Verbaan. The Computational Complexity of Evolving Systems. PhD thesis, Utrecht University,

Netherlands, 2006.

[87] R. Whyman. Physical computation, p/poly and p/log. In A. A. Abbott and D. C. Horsman, editors,

Proceedings of the 7th International Workshop on Physics and Computation, PC 2016, Manchester,

UK, 14 July 2016, volume 214 of EPTCS, pages 41–52, 2016.

86

A
Additional proofs

A.1 Probabilistic Trees

In this section we present the work from [10], regarding the relationship between a probabilistic tree and

an error-prone SmSM. The idea is that a run over an error-prone SmSM can be represented by a rooted

tree, where each edge represents a deterministic part of the computation and each vertex represents

the execution of a query over the SmSE. As the oracle is stochastic, there is a probability associated

to each outcome of the oracle. Thus, we can assign probabilities to the edges of the query tree. The

main result of this section, proposition A.5, will tell us how much we have to bound the edge difference

between two probabilistic trees, so that their respective acceptance probabilities aren’t too far apart.

Definition A.1. A probabilistic query tree is a rooted tree (V,E, ν), where:

• V is the set of vertices, representing the configurations of a SmSM during the query state;

• E is the set of edges, representing deterministic parts of the computation;

• ν ∈ V is the configuration of the machine in the first time it reaches the query state.

Vertices with no children represent accepting or rejecting configurations.

87

Definition A.2. An m-ary query tree is a probabilistic query tree where each inner node has exactly

m children. Note that the behaviour of an SmSM can be modeled by a 3-ary query tree, since, af-

ter the shooting state, there are only three possible options: qr, ql, or qt. We denote by Tm,n =

(Vm,n, Em,n, νm,n) an m-ary probabilistic query tree with depth n.

Let Lm,n ⊂ Vm,n be the set of inner nodes of Tm,n. Every u ∈ Lm,n has exactlym children u1, . . . , um,

to which it is connected through m edges, e1, . . . , em. Probability assignments for the the edges of a

probabilistic query tree Tm,n are total functions σ : Em,n → [0, 1], such that, for every u ∈ Lm,n, the

probability of the computations following to one of it’s children adds up to 1, i.e., σ(e1) + · · ·+ σ(em) = 1.

The set of all assignments over Tm,n is denoted by ρ(Tm,n). We denote by Tσm,n a query tree Tm,n

with assignment σ. If π is a path over Tσm,n, the probability of the SmSM following this path is given by

the product of the probability of each edge, i.e., P (π) = Πn
i=1σ(π[i]), where π[i] is the ith edge of the

path π. The sum over the probabilities of each accepting path gives the acceptance probability of the

m-ary tree with depth n and assignment σ. We denotes this probability by P (Tσm,n).

Definition A.3. Take m,n ∈ N and σ1, σ2 ∈ ρ(Tm,n). The maximum distance between the two proba-

bilistic query trees Tσ1
m,n and Tσ2

m,n is defined as D(σ1, σ2) = max{|σ1(e)− σ2(e)| : e ∈ Em,n}.

Definition A.4. We will denote by Am(n, s) the maximum possible difference between acceptance

probabilities of two m-ary trees with depth n, whose maximum distance is bounded above by, s, i.e.,

Am(n, s) = max
{
|P (Tσ1

m,n)− P (Tσ2
m,n)| : σ1, σ2 ∈ ρ(P (Tm,n)) ∧ D(σ1, σ2) ≤ s

}
.

Proposition A.5. For any m,n ∈ N and s ∈ [0, 1], Am(n, s) ≤ (m− 1)ns.

Proof. The proof follows by induction on n. For n = 0, the tree has depth zero, which means that the

machine does not consult the oracle. We then have that P (Tσm,0) = P (Tσ
′

m,0) = 0, if the leaf in rejecting,

and P (Tσm,0) = P (Tσ
′

m,0) = 1, if it is an accepting one. Therefore, Am(n, s) = 0.

Now suppose the result is true for n and consider the probabilistic tree Tm,n+1 with m outgoing edges

e1, . . . , em and depth m + 1. Each edge ei is incident in a node Tm,n(i), for i = 1, . . . ,m respectively.

Consider probability assignments σ, σ′ ∈ ρ(Tm,n+1) such that D(σ, σ′) ≤ s. We then have:

P (Tσm,n+1) = σ(e1)P (Tσm,n(1)) + · · ·+ σ(em)P (Tσm,n(m))

P (Tσ
′

m,n+1) = σ′(e1)P (Tσ
′

m,n(1)) + . . . σ′(em)P (Tσ
′

m,n(m))

88

As σ(em) = 1− σ(e1)− · · · − σ(em−1), we can write:

|P (Tσm,n+1)− P (Tσ
′

m,n+1)| = |σ(e1)P (Tσm,n(1)) + · · ·+ σ(em)P (Tσm,n(m))

− σ′(e1)P (Tσ
′

m,n(1))− · · · − σ′(em)P (Tσ
′

m,n(m))|

= |σ(e1)P (Tσm,n(1)) + · · ·+ (1− σ(e1)− · · · − σ(em−1))P (Tσm,n(m))

− σ′(e1)P (Tσ
′

m,n(1))− · · · − σ′(em)P (Tσ
′

m,n(m))|

= |σ(e1)(P (Tσm,n(1))− P (Tσm,n(m)))

+ · · ·+ σ(em−1)(P (Tσm,n(m− 1))− P (Tσm,n(m))) + P (Tσm,n(m)))

− σ′(e1)P (Tσ
′

m,n(1))− · · · − σ′(em)P (Tσ
′

m,n(m)|

= |(σ(e1)− σ′(e1))(P (Tσm,n(1))− P (Tσm,n(m))

+ · · ·+ (σ(em−1)− σ′(em−1))(P (Tσm,n(m− 1))− P (Tσm,n(m))

+ P (Tσm,n(m)) + σ′(e1)(P (Tσm,n(1))− P (Tσ
′

m,n(1))))

+ · · ·+ σ′(em−1)(P (Tσm,n(m− 1))− P (Tσ
′

m,n(m− 1))

− (σ′(e1) + · · ·+ σ′(em−1))P (Tσm,n(m))− σ′(em)P (Tσ
′

m,n(m))|

Now, as σ′(e1) + · · ·+ σ′(em−1) = 1− σ′(em), we have:

|P (Tσm,n+1)− P (Tσ
′

m,n+1)| = |(σ(e1)− σ′(e1))(P (Tσm,n(1))− P (Tσm,n(m)))

+ · · ·+ (σ(em−1)− σ′(em−1))(P (Tσm,n(m− 1))− P (Tσm,n(m)))

+ σ′(e1)(P (Tσm,n(1))− P (Tσ
′

m,n(1))))

+ · · ·+ σ′(em)((P (Tσm,n(m))− P (Tσ
′

m,n(m)))|

Using the induction hypothesis, and since the difference of the probabilities lies within [−1, 1] and each

|σ(ei)− σ′(ei)| is bounded by s, we conclude that:

P (Tσm,n+1)− P (Tσ
′

m,n+1)| ≤ |σ(e1)− σ′(e1)|+ · · ·+ |σ(em−1)− σ′(em−1)|

+ σ′(e1)Am(n, s) + · · ·+ σ′(em)Am(n, s)

≤ (m− 1)s+Am(n, s) ≤ (m− 1)s+ (m− 1)ns = (m− 1)(n+ 1)s

Hence, Am(n+ 1, s) ≤ (m− 1)(n+ 1)s.

89

A.2 Random sequences

In Section 2.2.3.C we proved that the error-prone SmSM can be used to simulate the tossing of a biased

coin. In this section, we show that this is enough to simulate the tossing of a fair one, up to a given

probability of error.

Proposition A.6. Given a biased coin with probability of heads q ∈ (δ, 1 − δ), for some 0 < δ < 1/2,

and a real number γ ∈ (0, 1), we can simulate, with a probability of failure smaller than γ, a sequence of

independent fair coin tosses of length n, by doing a linear number of biased coin tosses.

Proof. The method to simulate one fair toss is to toss the biased coin twice. If the result is HT, we output

H; if the result is TH, we output T; otherwise, we toss the coin twice again and repeat the process. The

probability of the process halting in one step is r = q(1 − q) + (1 − q)q = 2q(1 − q) and the probability

of having to toss again is s = 1− r. This process is repeated until one of the first two cases occur, and

then the whole method is repeated n times. We will denote the total number of tosses by Tn, which is

a random variable given by negative binomial distribution, with mean1µ = ns/r + n = n/r and variance

σ2 = ns/r2.

Now, using Chebyshev’s inequality, with t = ηn/σ, for some value η, we have:

P (|Tn − µ| ≥ ηn) ≤ σ2

η2n2
=

s

η2nr2
≤ 1

η2nr2

If we take η ≥ 1/r
√
γ, we will have that P (|Tn − µ| ≥ ηn) ≤ γ/n ≤ γ, for any n. Then, Tn will only be

greater than µ+ ηn with probability bounded above by γ, whence, up to a probability of failure of γ, the

total number of times the algorithm runs is

µ+ nη =
n

r
+

n

r
√

1− γ
=
n

r

(
1 +

1

r
√

1− γ

)

Since r = 2q(1 − q), and, for each time the algorithm runs, we toss a coin twice, we get that the total

number of coin tosses is

2 · n

2q(1− q)

(
1 +

1√
1− γ

)
=

n

q(1− q)

(
1 +

1√
1− γ

)

which is linear in n.

1We add n to the mean of Tn for the variable to count the time until n successful tosses, not just the standard waiting time until
success.

90

A.3 Error propagation

In this section we present two results regarding error propagation, which are used when proving the

upper bounds for the SmSM (see Section 2.2.3).

Proposition A.7. Let x be a quantity we measure and ∆x the absolute error associated with its mea-

surement. We then have:

• If x = a± b, |∆x| ≤ |∆a|+ |∆b|;

• if x = a× b, |∆x| ≤ a|∆b|+ b|∆a|+ |∆a∆b|.

Proof. Suppose that x = a+ b. Then,

x+ ∆x = (a+ ∆a) + (b+ ∆b) = (a+ b) + (∆a+ ∆b)

⇒ ∆x = ∆a+ ∆b

⇒ |∆x| ≤ |∆a|+ |∆b|

Now suppose that x = a× b. Then,

x+ ∆x = (a+ ∆a)(b+ ∆b) = ab+ a∆b+ b∆a+ ∆a∆b

⇒ ∆x = a∆b+ b∆a+ ∆a∆b

⇒ |∆x| ≤ a|∆b|+ b|∆a|+ |∆a∆b|

A.4 Busy Beaver

In this section we present a non-computable function, the Busy Beaver, first introduced by Radó in 1962

(see [66]), which is used in section 4.1.2, when proving the existence of non-measurable numbers. The

interested reader is directed to [2], for a further discussion on the Busy Beaver.

We define the Busy Beaver function as the one which, given a non-zero input n, returns the biggest

finite number of transitions that a Turing machine with n states can perform, when running on input 0.

We will denote this function by BB and define BB(0) = 0.

Proposition A.8. The Busy Beaver is not computable.

Proof. Suppose that BB is a computable function. Then, we can decide if a Turing machine M with n

states halts on input 0, by simulating it for BB(n) steps. We will prove that this implies that we can solve

91

the halting problem.

Given a machine M and an input w, we can create another machine Mw, which, on input 0, simulates

the behaviour of M on input w. Then, denoting by |Mw| the number of states of Mw, we can use

Algorithm A.1 to decide the Halting set. Therefore, since the Halting set is undecidable, the Busy Beaver

cannot be a computable function.

Algorithm A.1: Decider for the Halting set
Input: z;
if z is not the pairing of a specification of a Turing machine M and a word w then

Reject z;

Assemble Mw and run it for BB(|Mw|) steps;
if Mw is in a halting state then

Accept z;
else

Reject z;

Proposition A.9. The Busy Beaver is not bounded above by any total computable function.

Proof. If there existed such a total computable function f , we could remake Algorithm A.1, using f

instead of BB, for the number of transition to run. This would give a computable decider of the Halting

set.

In fact, it can be proven that the Busy Beaver dominates every total computable function. Consider,

for example, that the current champion forBB(6), when defined using 1-tape, 2-symbol Turing machines,

was found by Kropitz in 2011 (see [53]), who presented a 6-state Turing machine that runs for more than

7.4× 1036534 steps, a value greater than the estimated number of protons in the observable universe.

A.5 Extensive quantities

“Philosophers have divided quantities (...) into two kinds. Intensive quantities are those which can merely

be arranged in a serial order; extensive quantities are those for which a natural operation of addition or

combination can also be specified" (see [77]).

In this section we will present Patrick Suppes’ axiomatization for extensive quantities. The proof that

the quantities in this thesis, such as mass and length, satisfy this axiomatization is straightforward.

To axiomatize extensive quantities, Suppes considers an ordered triple 〈K,Q, ∗〉, where K is an non-

empty set of object with some attribute, Q is a binary relation that compares objects according to that

attribute and ∗ is a binary function that combines two objects in K into one.

92

Definition A.10. We say that 〈K,Q, ∗〉 is a system of extensive quantities if the following axioms are

verified:

• If x, y ∈ K, then x ∗ y ∈ K;

• if x, y, z ∈ K, xQy and yQz, then xQz;

• if x, y, z ∈ K, then (x ∗ y) ∗ zQx ∗ (y ∗ z);

• if x, y, z ∈ K and xQy, then x ∗ zQz ∗ y;

• if x, y ∈ K and not xQy, then there is a z ∈ K such that xQy ∗ z and y ∗ zQx;

• if x, y ∈ K, then not x ∗ yQx;2

• if x, y ∈ K and xQy, then there is a positive integer n such that yQnx.3

In the case of mass, for example, we can define K as the toolbox of standards, ∗ as the “gluing"

of two objects and Q as L, the relation that asserts that an object has less mass than another. Thus

defined, the triple 〈K,Q, ∗〉 is a system of extensive quantities. Moreover, mass is clearly an additive

and independent property (see Section 3.1.1).

A.6 Time constructible functions

In this section we will show how to construct deterministic Turing machines that witness the time con-

structibility of two functions and of their composition. These constructions, which serve to provide an

intuition for Proposition 4.11 and 4.12, rely on “dance" cycles, in which the machine traverses the input

from left to right and right to left as many times as necessary, to halt after the right amount of transitions.

Recall that, by definition, we only have to prove that the machine halts in the right amount of transi-

tions for inputs of size bigger than a given order.

Proposition A.11. For c ≥ 2, the function g(k) = ck is time constructible.

Proof. We present the following Turing machine which, for any input of size k ≥ c, halts in exactly ck

steps. Between p1 and pk−1, we repeat the transition from pk−2 to pk−1.

The Turing machine has three tapes: the first receives the input; the second is a working tape, which

will do the machine’s “dances"; the third tape, also a working tape, will store the value of c.

The value stored in the third tape, before entering the dance cycle, is, in reality, c− 1, and not c. This

is because part of the first k transitions of ck = (c− 1)k + k is used to read the input.

Thus, the machine writes k−1 symbols in the third tape, while it copies the input to the second tape,4

2This condition excludes elements with measure 0. For the case of mass, we are excluding the existence of an object with zero
weight.

3For x ∈ K, we define 1x := x and nx := (n− 1)x ∗ x, for an integer n > 1.
4This is the part where it is required that the input size is larger than c.

93

qa

q1q2

pk

pk−1

...

p1

p0

0, 1;t;t → R; 0̇, R; 0̇, R

0, 1;t;t → R; 0́, R; 0, R

0, 1;t;t → R; 0, R; 0, R

t; ;→ R; 0̇, L;N

0, 1; ;→ R; 0, R;N

; 0;→; 0̀, L;L

; 0̇; 0 →;L;L

; 0, 0́, 0̀; 0 →;R;N

; 0, 0́; 0̇ →;R;N

; 0̀; 0̇ →; ;

; 0̇; 0 →;R;L

; 0, 0́, 0̀; 0 →;L;N

; 0, 0̀; 0̇ →;L;N

; 0́; 0̇ →; ;

Figure A.1: Clock for the function g(k) = ck.

which takes up k + 1 transitions, and then enters the dance cycle, moving the reading head of the third

tape one step to the left every time it completes a dance.

Each cycle, except the last, consumes k transitions, so, when the machine enters the last cycle, it

will have performed k+ 1 + (c− 2)k = (c− 1)k+ 1 transitions. In the last cycle, due to the marking of the

penultimate symbol, which is either 0̀ or 0́, the machine only performs k − 1 transitions, which makes up

a total of (c− 1)k + 1 + k − 1 = ck transitions overall.

Proposition A.12. The function f(k) = 2k is time constructible.

Proof. To prove the result, we present the following Turing machine:

In this case, we have setup the Turing machine for it to halt in 2k transitions, for any k. The particular

cases of k ∈ {0, 1, 2} are handled by the states p0 to q1.

For inputs of size greater or equal than 3, the machine performs a cycle of k− 2 steps. Note that, for

k ≥ 2, we have that

2k = 20 + 21 +

k−1∑
i=2

2i + 1

The first two terms account for the transitions from p0 to q1; the last term accounts for the transition to

the accepting state.

94

qa

p0 p1 p2 q1

q2 q3

0;t;t → R; 0̇;N

t;t;t → N;N;N

0; 0̇;t → N;N;N

t; 0̇;t → N;N;N

0; 0̇;t → R;N; 0̇, N

0; 0̇; 0̇ → R;R;R

t; 0̇; 0̇ → N;N;N

; 0; 0̇ → N;L;N

;t; 0̇ → N;L;N

;t; 0 → N; 0, R;L

;t;t →; 0, R;L

; 0;→ N;R; 0, R

Figure A.2: Clock for the function f(k) = 2k.

The sum is calculated by the cycle. The machine copies the second tape into the third (rewriting the

values written in it) and then copies the third tape to the right of the last symbol in the second one, thus

duplicating, in each step of this cycle, the previous value.

The halting condition is the reading of the first cell with t in the input tape, simultaneously with the

reading of 0̇ in the second and third tapes. Before the step is executed for the first time, two of the

symbols of the input have already been read.

Consider, for example, that the machine is run with input 3. Before the cycle, 3 transitions are per-

formed and all the symbols of the input are read; when the machine reaches the state q1, the beginning

of the cycle, there is a 0̇ in each working tape; during the cycle a 0 is written to the right of the 0̇, in the

second tape, and its reading head goes back 2 steps; overall, the cycle performs 4 transitions. When the

cycle ends, the reading head is in the beginning of the second tape, marked with a 0̇, and 1 transition to

the accepting state is performed. The machine thus performs a total of 8 transitions.

Proposition A.13. For c ≥ 1, the function h(k) = 2ck is time constructible.

Proof. For c = 1, the result is reduced to the previous proposition. For c ≥ 2 we will follow the steps

given in Proposition 4.11 to construct a machine that witnesses the time constructibility of f ◦ g = h. Let

Mg and Mf be the Turing machines given in the previous propositions and consider a Turing machine

M ′, with 7 tapes. M ′ starts by simulating Mg, writing a symbol in the last two tapes for each transition

that Mg performs (first a 0̇ in each tape and then 0’s for each transition). While this simulation is going

on, M ′ simulates Mf , from p1 to q1 to setup the conditions to simulate the exponential. Now, each time

the simulation of Mf is in q1, M ′ simulates another step from Mg and performs a dance of Mf . When

this process ends, M ′ performs an extra 3 transitions.

M ′ will thus simulate the exponential as if it had received as input ck, the number of transition that

95

Mg performs, which, since the transitions from p0 to q1 are performed with the simulation of Mg, amounts

to 2ck − 3 steps. With 3 final transitions M ′ performs a total of h(k) steps.

A.7 Analogue computation

Throughout this thesis we considered only the analogue computation performed by a measurement

experiment. In this section we provide a small example of an analogue computer that is capable of

performing integration. The interested reader is directed to [84] for a further reading on analogue and

hybrid computation.

An analogue computer is one whose structure creates an analogy of a given problem. The oldest

known device of this sort is the Antikythera mechanism, built around 100 B.C., and discovered in 1900,

which produced a mechanical analogue for the study of celestial mechanics. In the early 20th century,

analogue computers, such as the Oslo Analyzer, built in 1938, were developed to perform integration and

solve differential equations. Figure A.3 (adapted from [84]) contains a schematic depiction of a simple

mechanical integrator.

Motor

Input f Output F

Wheel

Figure A.3: A simple mechanical integrator.

The mechanism contains a motor that drives all the mechanical parts. A function f is read in the

input panel and its vertical component determines the radial position of a wheel, placed on the surface

of a rotating disk. If we set the disk to have angular velocity ω, the velocity of the wheel, at time τ , is then

given by f(τ) ·ω. The vertical component of F (x) is determined by the turning distance of the wheel, so,

in the interval [0, T], under ideal conditions, the device implements the operation

ω

∫ T

0

f(τ)dτ

Analogue computation thus provides an efficient way of performing tasks that might be complicated

to carry out analytically, which gives a very interesting aspect to explore in hybrid computation: the ability

to divide a task in two parts; one to be solved by the analogue and the other by the digital component.

96

Index

Acceptance criteria

Error-free SmSM, 14

Error-prone SmSM, 14

Accuracy, 11

Advice function, 3, 9

Altered SmSM

One-sided, 47

Vanishing, 51

Analogue computer, 96

Analogue-digital computation, 3

BCT conjecture, 3, 60, 79

Boundary numbers, 21

Busy Beaver, 64, 80, 91

Cantor numbers, 19, 67

Church-Turing thesis, 2

Coin toss

Biased, 24, 90

Fair, 90

Random algorithm, 6

Comparative concept

One-sided, 48

Two-sided, 42, 45

Vanishing

Parallel, 52

Time-counting, 56

Complexity of a real number, 64

Exponentially bounded expansion, 70

Grzegorczyk hierarchy, 72

Polynomially bounded expansion, 69

Primitive recursive functions, 72

Computable number, 59

Digital quantum, 80

Duration of an experiment

Assumption, 13

Hyperbolic, 12

Efron’s dice, 35

Entscheidungsproblem, 2

Error propagation, 91

Experiment

Brewster angle, 50

Broken Balance, 47

Collider Machine, 42

Parallel Two wedge Smooth Scatter, 53

Photoelectric effect, 47

Rod machine, 79

Smooth Scatter Machine, 12

Two wedge Smooth Scatter, 44

Vanishing Balance, 50

Experimental apparatus, 35

Explicit time, 23

97

Fixed precision, 32

Unbounded precision, 31

Extensive quantities, 34

Suppes’ axiomatization, 92

Grzegorczyk hierarchy, 71

Elementary functions, 71

Halting set, 6, 92

Hempel’s Axiomatic

Comparative concept, 35

Measurement map, 37

Three stages of a physical measurement,

34

Hybrid computation, 3, 96

Hypercomputation, 2

Intensive quantities, 34

Limit measurement, 40

Comparison, 40

Recovering Hempel’s notion, 41

Timed comparative concept, 40

Timed parameter, 40

Lower bound

Fixed precision, 32

Infinite precision, 25

Unbounded precision, 28

Measurable numbers, 60

Characterization, 62

Decidability, 64

Geroch and Hartle, 59

Measure theory, 62, 63

Non-measurable numbers, 63

Measurement algorithm

One-sided, 48

Two-sided, 15

Fixed precision, 17

Infinite precision, 15

Unbounded precision, 15

Vanishing

Parallel, 52

Time-counting, 56

Measurement map

One-sided, 49

Two-sided, 45

Vanishing

Parallel, 54

Time-counting, 58

Measuring quantities with time, 38

Measurement map, 39

Recovering Hempel’s notion, 39

Separation property, 39

Timed comparative concept, 38

Timed equivalence relation, 38

Timed parameter, 38

Mechanical integrator, 96

Non-uniform complexity classes, 3, 8

Oracle, 3

Oracle Turing machine, 3, 6

Physical theory, 11

Precision, 11

Prefix advice function, 9

Encoding, 20

Logarithmic, 10

Presentation of a non-dyadic real number, 61

Primitive recursive functions, 72

Primitive recursion, 72

Probabilistic complexity classes, 6

Probabilistic tree, 87

Probabilistic Turing machine, 7

98

Protocol, 3

Fixed precision, 15

Infinite precision, 14

Parallel, 52

Time-counting, 55

Unbounded precision, 15

Scatter experiment, 2, 17

Schedule, 11

Schedule restriction, 26

Smooth Scatter Experiment, 3

Smooth Scatter Machine, 3

Time constructible functions

Examples, 93

Properties, 65

Time precision, 55

Toolbox of standards, 36, 45

Turing machine, 2, 5, 11

Type of Measurement

One-sided, 46

Two-sided, 45

Vanishing, 49

Parallel, 51

Time-counting, 55

Universal measuring procedure, 60, 62

Universal Turing Machine, 2

Upper bound

Fixed precision, 32

Infinite precision, 26, 27

Unbounded precision, 29, 31

99

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Glossary

	1 Introduction
	1.1 Introduction
	1.2 Organization of the document

	2 State of the art
	2.1 Complexity classes
	2.1.1 Probabilistic computation
	2.1.2 Non-uniform complexity

	2.2 The Smooth scatter machine model
	2.2.1 Description and time of the experiment
	2.2.2 Communication with the SmSE and measurement algorithms
	2.2.2.A Infinite and unbounded precision
	2.2.2.B Fixed precision

	2.2.3 Computational power of the SmSM
	2.2.3.A Encoding a function into the wedge vertex position
	2.2.3.B Boundary numbers
	2.2.3.C The error-prone SmSM as a biased coin
	2.2.3.D Computational power of the error-free SmSM
	2.2.3.E Computational power of the error-prone SmSM with unbounded precision
	2.2.3.F Computational power of the error-prone SmSM with fixed precision

	3 Theory of measurement
	3.1 Introduction to the theory of measurement
	3.1.1 Fundamental measurement
	3.1.2 Hempel's axiomatization of measurement

	3.2 Measuring quantities with time
	3.3 Limit measurement
	3.3.1 The CME as an example

	3.4 Three types of measurement
	3.4.1 Two-sided type measurement
	3.4.2 One-sided type measurement
	3.4.3 Vanishing type measurement
	3.4.3.A Parallel implementation
	3.4.3.B Time-counting implementation

	4 Measurable numbers
	4.1 Numbers that can be measured by the error-free SmSM
	4.1.1 A characterization of measurable numbers
	4.1.2 Measurability, measure theory and decidability

	4.2 Measurement as a means to classify real numbers
	4.2.1 Measuring with an exponential schedule
	4.2.1.A Real numbers with a polynomially bounded expansion
	4.2.1.B Real numbers with an exponentially bounded expansion

	4.2.2 The Grzegorczyk hierarchy

	5 Conclusion
	5.1 Summary
	5.1.1 Computational results
	5.1.2 Fundamental measurement
	5.1.3 Measurable numbers

	5.2 Future research
	5.2.1 Analogue-digital computation
	5.2.2 Fundamental measurement
	5.2.3 Measurable numbers
	Bibliography

	Bibliography
	Appendix A

	A Additional proofs
	A.1 Probabilistic Trees
	A.2 Random sequences
	A.3 Error propagation
	A.4 Busy Beaver
	A.5 Extensive quantities
	A.6 Time constructible functions
	A.7 Analogue computation
	Index

