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Resumo

Existe uma variedade de sistemas transacionais distribuı́dos que diferem nos modelos e mecanis-

mos que utilizam — como escrevem um objeto, que protocolo de controlo de concorrência utilizam para

garantir as propriedades transacionais, e outros. Apesar de existir uma diversidade de modelos entre

diferentes sistemas transacionais, grande parte dos sistemas são construı́dos com apenas um modelo

transacional em mente. Por conseguinte, eles não oferecem qualquer suporte para trocar entre difer-

entes modelos. Adicionalmente, reparámos que a maior parte dos sistemas transacionais partilham um

conjunto de fases que necessitam de ser executadas para garantir o funcionamento das transações.

Dado estes dois aspetos — a falta de mutabilidade e os componentes em comum — propomos uma

framework que modulariza os passos comuns e obrigatórios de sistemas transacionais distribuı́dos com

interfaces genéricas trocáveis. Com o auxı́lio de um ficheiro de configuração, o utilizador consegue tro-

car entre os diferentes modelos de transação em build time. Esta framework foca-se em representar um

grupo variado de sistemas transacionais que são representativos da maioria dos sistemas existentes. A

VTL framework é portada para um sistema onde nós implementamos dois modelos transacionais (pes-

simista e otimista) e os avaliamos. Este procedimento de avaliação consiste em comparar os resultados

de um sistema sem a camada adicional com o mesmo sistema com a camada. Nós demonstramos que

a framework se comporta exatamente da mesma maneira do que os dois modelos transacionais dis-

tribuı́dos, em termos de funcionalidades, apesar de estar dividido em diferentes blocos. Embora os

aspectos de flexibilidade e mutabilidade sejam interessantes, a framework ainda provoca uma redução

de rendimento de 60%.

Palavras-chave: Framework, Framework modular, Transações, Sistemas transacionais dis-

tribuı́dos, Multiplos modelos transacionais.
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Abstract

There is a variety of distributed transactional systems that differ in the models and mechanisms they

employ — how a system writes an object, which concurrency control mechanisms they use to achieve

transactional properties, and more. Despite the variety of the models among different transactional

systems, most systems are designed with a single transactional model in mind. Thus, they provide little

to no support for updating or swapping between different models. Additionally, we noticed that for most

transactional systems, there is a common set of steps that need to be executed in order to begin and

end a transaction. Given these two aspects — the lack of changeability and the shared components —

we propose a framework that can modularize common and mandatory steps of distributed transactional

systems with standard combinable interfaces. This would allow, with the aid of a configuration file, the

user to interchange between different models of transaction at build time. This framework is targeted

at a varied set of existing transactional systems that are representative of almost all existing different

systems. The VTL framework is ported into a system where we implement two of its transactional models

(pessimistic and optimistic) and evaluate them. This evaluation procedure revolves around comparing

the results of the system with and without this additional layer. We demonstrate that the framework

behaves exactly as the two distributed transactional models of the system, in terms of functionalities,

despite the split into different blocks. Although the flexibility and changeability aspects are impressive, it

still translates into a cost of around 60% of the throughput without the framework.

Keywords: Framework, Modular framework, Transactions, Distributed transactional systems,

Multiple transactional models.
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Chapter 1

Introduction

We live in a generation where information is abundant, fast to obtain and highly available. The only

tool that is needed is a device that has access to the internet. People are used to having access to almost

everything on demand, without having to wait noticeable amounts of time. In 2015 a pool by Google

found that roughly 44% of customers would share a bad online shopping experience if the page did not

load within three seconds [24]. Centralized systems are great for new businesses for their simplicity in

the development stages, but its performance is highly dependent on their server components (e.g. CPU,

RAM). In addition, if the service has geographically dispersed users, high delay for users located far

from the server is inevitable. Another issue is that, this solution has only one point of failure, meaning

that, if it is under attack or it crashes, there is no other server to redirect the requests, resulting in

service downtime. Distributing servers, the idea of moving from vertical to horizontal scaling resulted

in a considerable amount of performance boost. It might seem that it is always preferable to distribute

servers, but some companies, ones that can avoid distributing servers (e.g. small companies, clients

geographically close), choose not to. This happens due to known drawbacks: harder to understand for

developers, maintain for engineers, replicate, make data consistent, and more [19].

Simple day-by-day actions: accessing your bank details, watching a Netflix series, scrolling through

your Instagram feed, require the application to access and retrieve the desired information quickly. Ev-

ery system has a massive volume of data stored, and chunks of it are being accessed regularly by

geographically dispersed users. This collection of stored data, is organized in a database where it can

be accessed. Databases can represent the information in different ways: rows and columns, key-value

store, graph, documents and more. A user will send a request to an application, the application will

call the necessary requests to the database to read or change the values that are stored in order to,

satisfy the request introduced by the user. For instance, withdrawing 10 euros from an ATM machine,

the system will access the database and read the desired data item (your account balance) and check

if you have more than what is desired to withdraw. If that is the case, the system will perform a write

operation on the same object to change the original value to a new one (initial balance - 10).

To execute a change in a database, it requires additional steps than just change the desired value.

These steps depend on the guarantees the system provides to the users. Normally, for more critical
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systems, it is essential that the storage system (or database) remains consistent and without anomalies.

In order to have consistency and correction when performing multiple related operations, databases pro-

vide the concept of grouped instantaneous transitions called transactions. Each transaction is composed

by a set of operations that need to be executed in a whole. The execution of a transaction leads from

a consistent state of the database into another consistent state, without allowing intermediate steps to

be visible outside the transaction. More specifically, [1] defined ACID (Atomicity, Consistency, Isolation,

Durability) as a set of properties that must be verified in order to guarantee that any conflict, error, power

outage or other issues, would not compromise the validity of the data. Each transaction is composed

of several statements, but it is treated as just a single one, that can only commit if every operation in

the transaction is successful or otherwise, abort, resulting in undoing the operations of the transaction

(atomicity). A transaction should never bring the database from a valid state to an invalid state (consis-

tency). Each uncommitted transaction is isolated from other ones, as if they were executed sequentially

and not concurrently (isolation). When a commit occurs, it ensures that it will remain committed even in

case of crash (durability). The database system can either execute the transaction, delay it or abort it to

achieve these properties. The concurrency of transactions can be managed by several different ways.

They are called concurrency control protocols and these mechanisms can be done using locks, times-

tamps, having multiple versions of objects and more. Each one of them will influence how the system

behaves, the properties it will guarantee and the efficiency of the system. We will discuss in them in

detail in section 2.2.

Systems that are distributed into several nodes and use transactions to process and execute user

requests, distributed transactional systems, can differ significantly. They might use different concur-

rency control mechanisms with the intent of guaranteeing the ACID properties of the transactions. For

example, Google Spanner uses two-phase locking [11] to obtain exclusive access to a transaction’s

data items, Centiman handles an optimistic concurrency control mechanism [12] to detect concurrent

access to transaction’s data and ecStore adopts a combination of an optimistic concurrency control with

a multiversion mechanism [13] to provide a valid view of the data to the transaction. Isolation levels

are also another aspect that systems normally vary. They consist in defining how is a transaction iso-

lated from others that are executing concurrently. In the lowest isolation level, transactions can read

uncommitted changes (and other consequences), which it is called dirty reads. At the highest isolation

level, unless they are read-only transactions, transaction act like they are executed in sequence instead

of concurrently. This guarantees that no transaction will access changes made by another one before

it has committed. However, the increase of isolation levels will reduce the throughput of the system.

We will discuss isolation levels in more detail in section 2.3. Besides the concurrency control and the

isolation levels, systems also vary in other aspects, such as in the replication scheme, how transactions

are timestamped (using logical clocks, true time, etc), and more.

In computer science there is constant change and evolution, almost everything is coded in a par-

ticular way with the objective of being easily adaptable and understandable. This aspect is vital for IT

businesses, around 85-90% of its software budgets are spent in code evolution [17]. However, regarding

transactional systems, most of them are designed with a single model in mind and provide little to no
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support for updating or re-configuring it [11, 12, 14, 15, 22, 23]. If the user decides to change a particular

aspect of the model being used, most of the time he will just have to change to another system instead of

changing a parameter on the system currently using. Consider the scenario where a user using Google

Spanner [11]. After an analysis, the user verifies that conflicts are rare in their system, and realizes that

an optimistic approach would benefit the system’s performance. Since Google Spanner does not pro-

vide an alternative concurrency control protocol, the user has to change to another system, for example,

Centiman [12] which provides an optimistic concurrency control protocol. Swapping between systems

is expensive due to having the need to reconfigure/re-implement into that transactional system all over

again. There is a huge variety of systems where each one of them explore different sets of properties

(different levels of consistency, different concurrency control mechanisms, and others). System archi-

tects can get overwhelmed with having to choose the most efficient transactional model for their system.

After choosing a model, if they realize that it is not the most efficient one, it might not even be worth it

to swap it, due to all of the work that it is to use an entire different system. In the context of academia,

researchers, when studying transactional models, might need to build all of the desired models from the

ground up, when often they just want to change smalls parts of a whole. It is hard to find solutions that

offer a simple and quick way to swap between several different transactional models.

It is visible the abundance of distributed transactional models and how differently they behave. For

each different model there is almost a distinct way of how an object is written, what to do after the write

of an object, when the transaction commits, waits or aborts, and several other aspects. However, the

steps that each distributed transactional system goes through are essentially the same for all systems.

For instance, all of them need to replicate the data, validate the transaction, timestamp the transaction,

etc. What changes between them is, how each step is done, to whom to replicate, how the replication

is done, how is it timestamped, and more. Given the issues regarding changeability between differ-

ent transactional models, and the common mandatory steps needed to execute transactions for most

distributed transactional systems, we had the idea of creating for each step a generalized library that dis-

tinct protocols implement from and that allow to swap between different implementations with a simple

configuration file or switch case.

Our goal for this thesis is to develop a framework that can modularize common and mandatory

steps of distributed transactional systems with standard combinable interfaces, that allows interchanging

different models of transaction. With this, system architects can simply use existing components, and

explore how varied transactional guarantees can be constructed using these standard building blocks.

For instance, assuming our VTL is added to Google Spanner, in order to change to another concurrency

control mechanism, (to an optimistic locking mechanism) they only have to change the concurrency

control interface, from a 2PL (2-Phase Locking) to a OCC (Optimistic Concurrency Control). In context

of academia, this is absolutely useful, since most of the times when you are building a new transactional

approach, you have to build everything from the ground up, when often you just want to change small

parts of a whole. With the aid of our framework, you can simply do that by changing which interface of

a particular module you want to change. And in case our framework does not yet support a particular

algorithm, you can implement just the algorithm itself without having to implement the complete system.
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1.1 Thesis Outline

In chapter 2, we will elaborate on important details for the understanding of the document, as well

the analysis of a variety of different systems that are representative of a good amount of systems imple-

mented.

In chapter 3, we will demonstrate the architecture of our solution based on the analysis we previously

done of the systems.

In chapter 4, we will address how we chose which system to port, the language and what what we

considered, other important aspects.

In chapter 5, we will discuss the results of the evaluation we obtained from a variety of different tests.

We will compare the results of the system we ported our framework into with the same system prior to

our framework addition.

In chapter 6 we will address the conclusions we made by developing this framework, as well as

interesting future work.
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Chapter 2

Related Work

In this section we will define concepts that are relevant for the understanding of the document, for

example, what a system is, what is an object, and more (2.1). Additionally, we will discuss concurrency

controls (2.2) and briefly describe the isolation levels (2.3). Besides that, we will discuss what steps

are usually necessary for a distributed transaction to occur (2.4). Finally, we are going through some

existing transactional systems (2.5) in order to find components that are present in these systems.

2.1 Concepts

A transactional system allows applications to perform read and write operations on one or more

data items. These operations can be single read/write accesses or can be grouped in a single instan-

taneous transition called a transaction [2]. More commonly, transactional data storage systems, store

data as sequences of multi-field records called tables or as isolated data structures called objects [2].

For simplicity, and without loss of generality, we would refer to data items as objects and will assume

they are identified by a unique key. Read operations can be represented as R(k,v) where k is an object’s

key and v is the returned value. Write operations can be represented as W(k,v) where k is the key and

v is the value being written. We assume that both read and write operations are atomic (instantaneous)

and operate on the whole of the affected object. As objects are accessed during a transaction, they are

added to the transaction’s list of read or written objects, called respectively the read-set and the write-

set [2]. Once the transaction has finished executed with help of a concurrency control mechanism, which

we will discuss in section 2.2, it is ready to finish. For a transaction to finish, it either needs to commit

or abort. If the transaction is decided to be conflict-free by its concurrency control mechanism, then it

will commit. This will turn all the changes of the transaction permanent. On the other hand, in case of

conflict between concurrent executing transactions, at least one of them will have to abort. This means

that, every modification and access that transaction made is reverted and discarded.

Keeping track of multiple transactions executing concurrently, establishing an order and recognizing

dependencies between them can be difficult without using histories. A history H captures the execution

of concurrent transactions, the partial order of events and a version order for each object. Hence,

5



by inspecting the concepts of a history H, we can define the dependencies present between different

transactions that were caught in H.

A dependency between transactions exists when a transaction T2 needs to wait for the commit of

a previous transaction T1 to maintain the correct functioning of the system. In other words, T1 occurs

before T2, thus establishing an ordering between these transactions. Dependencies only appear if at

least one of the transactions perform a write operation of an object that another transaction is accessing,

either for writing or for reading. We are going to talk about three different types of dependencies and

they revolve around on the operations being performed. Considering T1 and T2 as transactions, x1 and

x2 as version of an object x where x1 occurs before x2 [3, 4].

1. Write-dependency - T1 writes x1 and T2 writes x2 where x1 occurs before x2. Therefore, a

dependency from T2 to T1 exists, meaning that T2 can only execute after T1 commits.

2. Read-dependency - T1 writes x1 and T2 reads x1. Transaction T2 can only read the value x1

after it commits, thus it needs to wait for T1.

3. Anti-dependency - T1 reads x1 and T2 writes x2. For transaction T1 to read a value before it gets

changed by transaction T2, then it needs to occur before T2.

Isolation is one of the properties of ACID which requires each transaction to see a consistent state

of the database [2, 5]. Serializability, one of the strongest forms of isolation, is obtainable by executing

every transaction by itself, without any concurrency. Since a transaction will only start once the previous

one has commit, it is impossible for a transaction to not see a consistent state. Meaning that, serialization

gives the best guarantees for this property. Serialization can also be guaranteed in other ways besides

restricting the execution of transactions to one-by-one. Concurrency control mechanisms help provide

serializability and other isolation levels, depending on the system’s requirements. Systems that are not

so strict, might not need serializability, thus they rather loosen the isolation to benefit in performance.

Isolation levels were defined to aid systems in this sense which we will discuss in more detail in section

2.3.

Distributed transactional systems are viewed as more complex transactional systems, they need to

considerate all the aspects of those systems, as well as the details of the particularity of being distributed.

Distinct servers concurrently validating different transactions from separate users can annul one of the

ACID properties, causing inconsistencies in the database. Therefore, the need for concurrency control

is evident for the system. In the next section, we will discuss different protocols that guide the system to

guarantee the ACID properties.

2.2 Concurrency Control

In this section we will discuss alternatives to control the concurrency between transactions.

Pessimistic concurrency control (PCC) consists in data items only being accessed/changed by a

single transaction, if it has obtained the specific lock of that particular data item. For different operations,
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reads and writes, there are different types of locks, a read lock and a write lock, respectively. This

means that, for a transaction to write a particular data item, it first needs to get the write lock of that

data item. For all other transactions that desire to change that same data item (perform a write), they

will have wait for the release of that lock. Once a transaction has obtained the lock and executed the

desired operations, it needs to release the lock, for it to be available for other transactions. However, if a

transaction obtained a read lock for a data item, another transaction can acquire the same read lock for

that data item, due to them not entering in conflict. In other words, multiple transactions reading a data

item that is not being changed, will not result in any inconsistency. In contrast, if a transaction desires to

obtain a write lock, neither a read or a write lock can be obtained [2].

A commonly used protocol is the two-phase locking (2PL) [11] that grants serializability with the use

of locks. Firstly, the growing phase, where the transaction acquires all the necessary locks, given its

read and write set, but can not release locks. After that, the shrinking phase where the transaction can

release locks but can not obtain any new locks. This algorithm also implements fault tolerance with

REDO and UNDO steps, but since fault tolerance is not focused on this thesis, we will not get into detail.

Another widely used mechanism is optimistic concurrency control (OCC) [12, 13]. This protocol

has the goal of avoiding locks any concurrency control when the transaction is executing. In contrast with

the locking mechanism, every step of the transaction is executed without guaranteeing that no conflict

occurs - it is optimistic that no conflicts will happen. Once the transaction has executed every operation

before committing, a validation step needs to occur. This step is responsible for detecting any conflict

and aborting the transaction, undoing every operation, if that is the case. If no conflict is detected, then

it simply commits the transaction.

Multiversion concurrency control (MCC or MVCC) [6] is frequently used [11, 13]. It aims to solve

the problem of transactions having to wait for locks to be released, by discarding the idea of overwriting

data items. For instance, a transaction T1 performs a write on data item W1(K,value1) and commits.

Another transaction will then perform a write on that same data item W2(K,value2). In this scenario,

the value of object with key K will be overwritten and after both transactions commit, it is value2. The

solution of MCC/MVCC consists in instead of overwriting data items, new versions will be created once

a write is committed. The identifier of each version for each data item is normally a timestamp. With

multiple versions stored, if a transaction performs a read operation, the version that is going to be visible

and read, depends on the isolation level implemented [6]. For example, if we are assuming snapshot

isolation, a transaction will observe a state of data as when the transaction started.

2.3 Isolation levels

Isolation levels are defined as the degree which a transaction must be isolated from data modifica-

tions made by other transactions. In other words, it regulates the concurrency level for each transaction,

or how many users can access the data concurrently. Different isolation levels offer different guaran-

tees and consequently, different side-effects to the users. A lower isolation level means the system is

more flexible, a higher number of transaction can happen concurrently, therefore an increased through-
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put is expected. However, a low isolation level causes a bigger number of concurrent side-effects. By

increasing the isolation level it reduces the types of side-effects, however, since only a smaller number

of transactions can access the same object concurrently, transactions will frequently block one another

- reducing the throughput of the system. Transactional systems architects need to take this in consid-

eration and figure if they are willing to reduce their system throughput. Or if the system is not affected

by some of the side-effects, they can exchange these non-concerning consequences in exchange of

throughput [2].

These side-effects were named as phenomena. Three phenomena were defined by SQL ANSI

designers [8]. Given an example of two transactions T1 and T2 that are executing concurrently.

• P1 - Dirty Read. Transaction T1 modifies x. Another transaction T2 then reads x before T1

commits or aborts. If T1 then aborts, T2 has read a data item that was never committed and so

never really existed.

• P2 - Non repeatable or Fuzzy Read. Transaction T1 reads x and then T2 modifies or deletes x

and commits. If T1 then attempts to reread x, it receives a modified value or discovers that the

data item has been deleted.

• P3 - Phantom. Transaction T1 reads a set of data items satisfying some <search condition>.

Transaction T2 then creates data items that satisfy T1’s <search condition>and commits. If T1

then repeats its read with the same <search condition>, it gets a set of data items different from

the first read.

The authors of [3, 4] noticed some flaws of these definitions, so they redefined them. In table 2.1, we

see different phenomena disallowed for different isolation levels. They created these isolation levels by

focusing in serialization graphs, graphs nodes are transactions, and the edges are composed into three

different types, each one represents one distinct type of conflict between two transactions manipulat-

ing the same object - read-dependency, anti-dependency and write-dependency which were previously

defined in section 2.1. For simplicity, we will only describe G0. It states, G0, Write Cycles - A history

H exhibits phenomenon G0 if contains a directed cycle consisting entirely of write-dependency edges

[3, 4]. In other words, by allowing G0, writes performed by T1 can be overwritten by T2 while T1 is still

uncommitted. For some systems this can cause a problem. For example, a transfer of 50$ from one

account x to another account y:

H: r1(x,100) w1(x, 50) r2(x, 50) w2(x, 30) r2(y,0) r1(y,0) w1(y,50) c1 w2(y,20) c2

Account x initially starts with 100$, transaction T1 reads that value and initiates a transfer of 50$ to

another account by removing the amount from x. Meanwhile another transaction T2 starts and wants to

do a transfer to the account y of 20$. It reads the value of account x, removes 20$ and reads the amount

of money of account y. T1 now proceeds to finish his transaction by adding the amount removed from

account x (50$) to account y and commits. T2 then finishes his transaction by writing the amount that its

adding to the previous read value, resulting in the total of 20$, and commits. As we can see, by allowing

G0, these dirty-writes can happen.
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Level Phenomena disallowed Informal Description (Ti can only commit if:)

PL-1 G0 Ti ’s writes are completely isolated from the
writes of other transactions

PL-2 G1
Ti has only read the updates of transactions
that have committed by the time Ti commits
(along with the PL-1 guarantees)

PL-2.99 G1, G2-item
Ti is completely isolated from other transactions
with respect to data items and has PL-2 guarantees
for predicate-based reads

PL-3 G1, G2
Ti is completely isolated from other transactions,
i.e., all operations of Ti are before or after all
operations of any other transaction

Table 2.1: Summary of portable ANSI isolation levels [3, 4]

One non-serializable isolation which is commonly used is snapshot isolation (SI). This levels pro-

vides repeatable reads - each transaction can visualize a snapshot of the database when it starts and

its reads and writes are performed on this snapshot. Meaning that, the writes are not visible to other

transactions and it does not see the writes of other transactions. In other words, it allows to read stale

data by allowing them to read a snapshot of the database that reflects the committed data at the time

the read transaction starts. Consequently, the reads are never blocked by writes, even though they may

read old data that may be dirtied by other transactions that were still running when the snapshot was

taken [2]. Although this leads to a non-serializable history, if the system does not need to guarantee

serializability, it is a reasonable tradeoff between a lower isolation level and a better performance [16].

2.4 Steps of a distributed transaction

From a user requesting a transaction to be executed, to the transaction finishing, numerous steps

need to occur that are common to all systems. These steps might have different names, be aggregated

inside other steps, or even done at different times and order. But they are mandatory in most distributed

transactional systems. We defined them as:

• Preparation. It consists in preparing the execution of the transaction. Before a transaction is

executed, the system might need to timestamp the transaction, replicate it to other nodes, etc.

This phase is where all those operations are done. For example, we will view in section 2.5,

that Calvin needs to timestamp transaction at arrival before they are executed. We consider that

process to belong in the preparation step;

• Execution of all read and write operations requested by that specific transaction;

• Validation. This step consists in approving each operation of a transaction, in the sense of, guar-

anteeing that there are not other conflict concurrent transactions. In other words, it revolves around

mutual exclusion. Different algorithms do this step differently and at different times. Optimistic

[12, 25–27] perform their validation after all operations of a transaction are executed. Pessimistic

protocols [15, 28–31] on the other hand, do this step while they are executing the transaction.
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They guarantee, with the use of mutual exclusion algorithms (locks, for example), that no other

transaction is accessing or writing that particular object. In both algorithms, the outcome of the

validation selects what is done on the next step. If their validation is not approved the transaction

will abort. If the validation is valid, the transaction commits;

• Commit or Abort step is done after the validation of a transaction and it results on the transaction

being committed or aborted. The transaction will commit the changes to the database if it was

successfully validated in the previous step - no conflict was found that negates any property of the

system. As soon as the changes are durable, meaning that in any crash scenario, the changes

done by the transaction will not be lost, the transaction is ready to finish. Alternatively, if some

conflict invalidates a property defined by the system, the system failed to be validated and it is

going to abort. Aborting means that the every modification and access that transaction made is

reverted and discarded. After which, the transaction is ready to finish. For systems that have

automatic retry, they would just jump to the execution step and retry to execute the transaction

again;

• Replication step is essential to propagate the results and the operations that a given transaction

has committed. Some systems even replicate the transaction’s input to replicas [14];

• Finish This step is ran normally after the transaction committed or aborted. It consists in releasing

any resource it still holds (releasing locks for example).

2.5 Existing Systems

Our aim was to choose a varied set of existing transactional systems that are representative of a

variety of different and relevant protocols. We have chosen systems with optimistic concurrency control,

2-phase locking, deterministic locking and multiversion. Besides the concurrency control, we have also

chosen systems that differ on other aspects. Such as, whether the replication is synchronized or not,

does the transaction get timestamped and more.

2.5.1 Calvin: Fast Distributed Transactions for Partitioned Database Systems

Calvin [14] is a transactional scheduling and data replication layer that is designed to run alongside

a non-transactional storage system in order to provide high availability and full ACID transactions. The

data can be partitioned across the storage systems of each node or have a centralized storage system.

Calvin separates the systems into three separate layers of processing as seen in figure 2.1:

1. The sequencing layer is responsible for replication and logs of transactional inputs. More specifi-

cally, it intercepts transactional inputs and places them into a global input sequence. The order of

transactions for all replicas is defined in this sequence ensuring serial equivalence;

2. The scheduling layer schedules the execution of transactions utilizing a deterministic locking

mechanism to guarantee the serial order defined by the sequencing layer;
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Figure 2.1: System architecture of Calvin [14]

3. The storage layer is responsible for the physical data layout and is where transactions access

data using CRUD (create/insert, read, update, and delete) interfaces.

Calvin’s nodes agree on how to handle a particular transaction before they acquire any resources

(locks) and begin executing the transaction. Once this agreement is done, the transaction must be

executed to completion.

The locking manager is partitioned across the entire scheduling layer and each scheduler is respon-

sible for locking records that are located in their respective storage component. It uses the two-phased

locking protocol with added invariants. When a transaction has acquired all the necessary locks accord-

ing to this protocol, it is executed which is is done in five phases: (1) Analyze all the transaction’s read

and write sets; (2) look up the values of all records of the read set that are stored locally; (3) Results

previous looked up are forwarded to nodes that will perform write operations to them; (4) Nodes receive

all the forwarded results; And, finally, (5) execution of all transaction logic.

Calvin also supports a scheme called Optimistic Lock Location Prediction (OLLP) that allows for

transactions that must perform reads in order to determine their full read and write sets, to execute an

unreplicated, low-isolation, read only query that performs all the necessary reads to discover it’s full read

and write set.

Calvin supports both Paxos-based synchronous and asynchronous replication. In both modes nodes

are distributed in replication groups. For the asynchronous mode, all of the replication groups will have

a node designated as master where all transaction requests are forwarded to the other nodes (slaves)

of that group. For the synchronous mode, all sequencers within a group will use Paxos to reach a

consensus for the order of each transaction request.
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2.5.2 Spanner: Google’s Globally Distributed Database

Google Spanner [11] is a scalable, globally distributed database. It evolved from a Bigtable [10]

versioned key-value store to a temporal multiversion database. Spanner uses a new implementation of

a TrueTime API that exposes clock uncertainty. In order to guarantee that that Spanner’s timestamps

will not cross the bounds defined in the implementation (generally, less than 10ms), Spanner will slow

down waiting for the uncertainty to decrease using multiple modern clock references (GPS and atomic

clocks). Every version is timestamped with its commit time, the nodes echo the serialization order which

satisfies external consistent reads and writes, meaning that if a transaction T1 commits before another

transaction T2 starts, then T1’s commit timestamp is smaller than T2’s. True Time API also grants

globally consistent reads across the database at a timestamp.

Spanner is composed by a set of zones. Each one represents a physical location. For every zone

there is a zone master that assigns data to spanservers, location proxies which guide clients to locate

spanservers that contain the desired data, and several span servers that serve data to clients. Each

collection of zones are called universe and have a universe master which displays status regarding all

the zones and a placement driver that manages the automated movement of data across zones. This

architecture is represented in figure 2.2.

Besides previous mention important features, the True Time API also allows a dynamic fine grain

data control of replication configurations (e.g. how far are replicas from each other, which datacenters

contain which data). Each spanserver replicas control a tablet (figure 2.3) which implements a bag of

mappings. Because it is a multiversion system instead of a key-value store, the mapping needs to store

the version, in this case the timestamp, resulting in: (key:string, timestamp:int64) → string

The replication for each tablet is done synchrously using Paxos with pipeline. There is a single

Paxos state machine on top of each tablet. This allows a consistently replicated set of mappings. At

every replica that is a leader of a zone, a spanserver implements the lock table ( which uses two-

phase locking maps ranges of keys to lock states) and a transaction manager to support distributed

transactions (electing a participant leader making the other replicas participant slaves). Regarding

Figure 2.2: System architecture of Spanner [11]
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Figure 2.3: Spanserver Software stack [11]

transactional operations, all of them require synchronization, therefore acquiring locks is mandatory. For

distributed transactions that involve only one spanserver the transaction manager can be bypassed. But

for transactions that involve more than one spanserver different leaders need to coordinate to perform a

two-phase commit. One of the group participants is chosen as the coordinator. The leader of that group

will become the participant leader and the other replicas participant slaves.

Spanner supports read-write transactions and snapshot transactions. For read-write transactions the

transaction timestamp can be assigned at any time when all locks have been acquired. However, for

snapshot transactions, timestamping requires a negotiation phase between all Paxos of all spanservers

involved in the operation. In a read-write transaction, after the client issues reads to the leader replica

of the appropriate group, it needs to complete all reads and buffer all writes and only then two-phase

commit begins. The client then chooses a coordinator group and sends a commit message to each

participant’s leader. All non-coordinator-participant leaders acquire write locks, and choose a prepare

timestamp that must be larger than any timestamps it has previous assigned to transactions. Each

participant notifies the coordinator of its prepared timestamp. The coordinator acquires the write locks

and selects a timestamp for the entire transaction based on previous submitted timestamps of all other

participant leaders. The committed transaction must be greater than all prepared timestamps.

2.5.3 Centiman: Elastic, High Performance Optimistic Concurrency Control by

Watermarking

Centiman is a system for high performance elastic transaction processing in the cloud that provides

full ACID guarantees. It provides serializability on top of a key-value store with an optimistic concurrency

control (OCC) based protocol.

Centiman is composed of a datastore which is a key-value store that can be replicated and/or parti-
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tioned. Any third-party datastore are welcomed as long as they possess a particular get/put API required

for Centiman. It is also composed of clients that issue transactions to one of various processors. Once

a given transaction is associated with a processor, they remain bonded until the end of the lifetime of the

transaction. The processor is responsible for all of the transaction’s needs, for example, send the trans-

action’s read requests to the datastore, cache its writes in a private workspace, assign the transaction a

timestamp and send validation requests to one or more validators. The validators perform the variant

OCC validation where each one of them are responsible for a subset of data. The global master audits

the system performance, governs failure recovery and coordinates elastic scaling.

In this system, the transaction life cycle follows the OCC model. It contains a read phase responsible

to read from the datastore and to write to a private workspace all its operations. In other words, the reads

and writes to be made to the database are saved locally.

Once the transaction has done all its operations (reads and writes), it needs to be timestamped

before it gets validated. In the validation phase is where the decision if the transaction should commit

or abort is done. The last step is, if the transaction successfully commits, a write phase - the writes

performed by the transaction, that were saved locally, are applied in the datastore and replicated.

Due to Centiman’s loosely coupled design, some issues emerged. One of which is that since valida-

tors do not know the global outcome of the validation, if some transaction aborts and a validator believes

it has committed, then future transactions against it will be validated by that same validator. The second

issue is that read-only transactions cannot surpass validation due to Centiman not guaranteeing that a

transaction reads a recent and consistent snapshot. Validation in Centiman, besides being sharded, has

watermarks to solve both these problems. Watermarks are metadata that propagate through the system

containing the timestamp of the latest completed transaction.

Centiman tries to avoid synchronization. The only points of synchronization happen at the start of

the validation to guarantee that transactions respect the time-stamped order entering the validation, and

also at the point where a processor gathers all the outcomes of the validators and reaches a consensus

of either to commit or abort the transaction.

2.5.4 Granola: Low-Overhead Distributed Transaction Coordination

Granola [15] is a transactional coordination infrastructure for building reliable distributed storage

applications where data is located in separate different repositories. It provides transaction ordering,

atomicity and reliability on behalf of storage applications. Since Granola does not interpret operation

semantics, it can support a wide variety of storage systems. Replication is done with a similar alternative

to Paxos, an improved version of Viewstamped replication [9].

Granola is composed of repositories that store data, execute transactions and communicate with

other repositories in order to coordinate transactions. It also contains clients that typically interact only

with repositories. This system implements atomic one-round transactions, meaning that, it only needs

one round of communication between a user and the storage system for its execution. For every set of

operations requested to execute, Granola guarantees that these will be executed atomically in the set of
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repositories. There are three types of one round transactions:

1. Single-repository transactions execute in a single storage node;

2. Coordinated distributed transactions execute atomically across multiple storage nodes and only

commit if all participants vote to commit (usually provided by two-phase commit);

3. Independent distributed transactions execute atomically across a set of nodes without any

agreement because each of the nodes will independently reach the same commit decision.

While in coordinated distributed transactions Granola uses a locking approach, in the other two

types it functions with a timestamp-based coordination mechanism to provide serializability. Clients

publicize timestamp ordering constrains between repositories. Therefore, each repository either runs in

timestamp mode where there are no coordinated transactions executing, or in locking mode where a

repository receives a request for a coordinated transaction.

In timestamp mode, each transaction is assigned a timestamp which defines its global serial order.

A transaction is ordered before any transaction with larger timestamp and if equal, the one with lower

transaction identified (TID) is ordered first. Repositories define the timestamp of the transaction based

on their clock. Servers exchange timestamps with each other before committing in order to ensure that

the same timestamp is assigned.

Considering only distributed transactions - coordinated and independent distributed transactions.

Each independent transaction is executed at the same timestamp at all set of repositories. Each repos-

itory will propose a timestamp for the transaction, sending a commit vote message with the timestamp.

These proposals are exchanged and the highest timestamp proposed is chosen (voting system) and

then the transaction is executed. If the repository receives a conflict vote instead of a commit vote from

one of the repositories, it ceases processing the transaction. A conflict vote means that that repository

is working in locking mode instead of timestamp mode.

In contrast with independent transactions, coordinated transactions require that the repositories

agree whether to commit or to abort. To achieve this, the concurrency is aided by a locking mecha-

nism. These transactions first undergo a prepare phase to acquire the locks and then the timestamps

get voted on like in the timestamp mode.

2.5.5 ecStore: Towards Elastic Transactional Cloud Storage with Range Query

Support

Ecstore [13] is an elastic cloud storage system that can be dynamically deployed in the cloud. In con-

trast with current cloud data serving systems (such as Dynamo and Cassandra), this system supports

transactional semantics across multiple keys. It is divided into three levels, the lowest being a distributed

data structure, the middle level as a replication layer and finally a transactional layer.

The architecture is represented in figure 2.4. In the first level, it is used BATON (BAlance Tree Over-

lay Network) [18], however, any DHT-based structure can be implemented for its distributed structure.

Storage nodes are categorized as a balanced tree structured overlay and each storage node has a data
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Figure 2.4: Stratum architecture of a transactional cloud storage [13]

range whom it is responsible for. This structure is only maintained when nodes are added or removed

and in any other scenario ecStore acts as a range partitioned system. In the middle tier, regarding repli-

cation, BATON is extended to support load-adaptive replication. This means that, it tunes the replication

process based on data popularity.

For the highest layer, in respect to transactions, it is used a combination of multi-version and optimistic

concurrency control scheme. Each transaction has two timestamps, one when the transaction starts and

one when the transaction commits. And since it is a multi-version approach, the object needs to contain

the version, in this case it is the commit timestamp of its most recent update transaction. When an object

needs to be accessed, the most recent version of it that contains a timestamp less than the transaction’s

startup timestamp is returned.

In contrast with traditional optimistic control methods, where transactions need to be validated against

other transactions that have committed during its execution, in ecStore it has two main differences. First

is that, due to this hybrid combination, read-only transactions run against a consistent snapshot of

the database, thus they can commit without being validated. Secondly, for update transactions, the

validation phase uses the version number to verify conflicts among concurrent transactions. This allows

read-only transactions to access the replicas in order to not flood the primary copy. Nevertheless, update

transactions cannot avoid accessing the primary copy of data. In the case of a primary copy failing during

the processing of an update transaction, one of the secondary replicas will take over.

Regarding recovery control, a node can leave the system in two ways, in a safe exit, where it notifies

the appropriate nodes and transferring its roles and data to them. In this circumstance no recovery

is needed. In case of an unsafe departure, ecStore defined two different recovery treatments for two

distinct types of failures. For a short-term failure, when the node rejoins the system, it will verify its logs

for any recent committed transactions that have not been sent to other transaction participants. If that

is the case, the logs and resents. For a permanent failure, another storage node will gather the index

range which the crashed node had. After that the recovery process starts, beginning with recovering the

data of that range from other nodes. The next step consists in checking the transaction logs replicated

in the cluster and forwarding the log records to the involving storage nodes.
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2.6 Discussion of Existing Systems

By analysing the above mentioned systems, it is visible that they share a notable amount of compo-

nents, and that in some of them different mechanisms are used. Before jumping into the architecture

of our solution, first, we must briefly discuss the various different components and mechanisms that are

shared and mandatory in the systems.

Considering timestamping, the portion of the systems discussed timestamp the transaction before

it commits [13–15]. Multiversion approaches also use timestamps in order to identify different object

versions [11, 13]. Calvin [14] uses this timestamp as a concurrency control by pre-ordering the trans-

actions, and executing them in that order. On the other hand, Granola [15] uses this timestamp as a

coordination mechanism to provide serializability for single-repository and independent transactions by

propagating timestamp ordering constrains between repositories. Other systems timestamp transac-

tions at commit time [11–13]. Google Spanner uses real time timestamps with Google True Time API.

Centiman timestamps a transaction right when it is ready to commit to enter the validation step. EcStore

[13] timestamps twice, once at the start of the transaction and on commit time.

All systems need to replicate their objects. In order to do that, they also need to know which nodes

are present in the system and where they have to replicate to. Existing systems might want to replicate

to only a set of nodes or to all of them. In Spanner [11], the applications can choose where to replicate

to. In Granola [15], repositories are replicated using a set of 2f+1 replicas to survive f crashes. Besides

replicating to a different set of nodes, how the replication is done can also vary. Systems might only sup-

port synchronous replication using a consensus protocol like Paxos [11, 15]. In contrast, systems might

only support asynchronous replication [13]. There are systems that even support both synchronous and

asynchronous replication [12, 14].

Another aspect that is present in all distributed transactional systems is the concurrency control.

Various systems use different concurrency control mechanisms: deterministic locking [14, 15], two-

phased locking [11], optimistic control [12] and even a hybrid between optimistic and multiversion [13].

All of them perform the exact same set of operations (read, write, commit, abort, etc) but, as we can

see, they can be done in distinct approaches.

Each of the described steps can be placed into the same boxes independently of the algorithm each

system implements. We represent in Figure 3.1 how for each system, the components are placed into

our modular architecture.
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Chapter 3

Architecture

This chapter will focus on the architecture of our solution in this chapter.

We will begin with a brief explanation of how we split the common phases of different transactional

models into modules, followed by an overview of the variable transactional layer and its components in

a class diagram, in section 3.1. Afterwards, the following section (section 3.2) provides a description of

the data structures we find needed for the architecture of the framework.

In section 3.3, we will delve into the important methods the framework needs, in order to guarantee

the execution of multiple different transactional models.

Having observed a varied set of existing transactional systems that are representative of different

and relevant implementations, as touched upon on section 2.5, we decided that four modules must be

present in every system. They are defined as follows: Group membership (section 3.4), Order (section

3.5), Replication (Section 3.6) and Concurrency Control Manager (Section 3.7).

After a more careful consideration of all of the different modules, it is then possible to discuss how

the communication is done, in section 3.8. Lastly, we will illustrate the flow of a new transaction arriving

into the system we ported to, and observe how the modules interact with each other (section 3.9). We

do this for a optimistic transactional model and for a pessimistic transactional model.

3.1 Architecture: Overview

As previously noted, especially in section 2.6, various different systems possess a variety of common

steps.

Most of the systems need to timestamp transactions, replicate transactions or objects, communicate

with other nodes in the network and manage the concurrency control of the transactions. The route

taken to achieve each and every one of these steps can differ greatly, depending on the protocol the

system has implemented. For example, as we have seen, relating concurrency control, Calvin [14] uses

deterministic locking, while Centiman [12] employs an optimistic concurrency control. It is essential to

note that, even though it exists high variability in distributed transactional systems, there are few options

to aid changeability. In other words, systems normally only have one concurrency control protocols
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implemented [11, 12, 14, 15, 22, 23, 25, 26]. If we conclude it is more beneficial to change to another

protocol, that would prove itself to be quite the task — unless we alternate to another system. We

realized that the steps that most systems share can be generalized into white boxes which we referred

to as modules, hereafter.

Since our goal is to implement a generalized modular framework that is able to represent a wide

group of distributed transactional systems, we had to correspond the mutual phases into different mod-

ules. Each module will be a generalized interface that is always present and most of the time imple-

mented differently depending on the system.

Different systems might use different ways to represent the nodes in the system — ring structures,

tree structures, fully connected network and more [13, 23, 32] . First and foremost, since this is a

framework for distributed systems, it is important to have a component responsible for tracking the

existing nodes in the system. It should also be in charge of initializing the communication between

them. With this in mind, we defined the module group membership (section 3.4) to fulfill these roles.

Secondly, we confirmed that timestamping is crucial and that can be done differently depending on the

distributed transactional system. Additionally, transactions might also be timestamped at different times.

We have seen that for Calvin [14], they timestamp the transaction as it arrives which is then executed

in order based on the arrival times. Thus, we defined an order module (section 3.5) to be responsible

for timestamping transactions and ordering them. The next module we found to be essential, is one

that is in control of replicating objects and transactions to a set of nodes. The structure of the system

dictates to which nodes the replication process is to occur. The process in itself, how it is to be done

(passively or actively), is also dependant on the system, as well as the algorithm. We designated this

module as the replication module (section 3.6). The last module we defined tackles the management

of the concurrency control being used by the system. As we have seen, there is an extensive amount

of distinct concurrency controls. However, since most of them share the same set of operations (all of

them have to read and write operations, commit, abort, release resources, and more), we can represent

them by a single generalized module. This is the Concurrency Control Manager module (section 3.7).

Figure 3.1, summarizes the previously mentioned systems and how each one of them interacts

with each module defined. In addition, a class diagram (Figure 3.2) is also displayed to illustrate the

interaction between the framework and its different modules. The framework contacts every module’s

generic interface. Thus, in instances where one must swap different modules or algorithms, this allows

it do so without having to change anything else, besides a configuration file or class (used to switch

between different implementations).

For instance, suppose we are using a configuration class and want to change the transactional model

from a pessimistic to an optimistic approach. With such a framework, we simply access a configuration

class and change the attribute of the concurrency control to OCC. It will trigger the concurrency control

manager, which will then initialize the optimistic manager and select the appropriate concurrency control

algorithm, at build time.
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3.2 Data Structures

Regarding data structures, it is crucial to fully grasp the concepts of transaction, content, node and

message.

Transaction is an object which contains the write-set and read-set of its operations as well as the

locks the transaction has detained. Each time an operation (read or write) of a particular transaction

occurs, it will add to its read-set or write-set respectively. Whenever a transaction is being replicated,

it includes the replication of both of these sets. This object is also timestamped during the flow of

the execution of a new transaction. Some systems need to store the timestamp of arrival, but all are

required to store when the transaction commits. Both of these timestamping values are stored in the

object transaction.

Content essentially acts as a key/value store. It has a key and a value which corresponds to the

object being stored. For systems that do not use key/value store, one has to convert their structure into

a key/value store. To read and write contents, the operations need to have the content key to access or

update the value of the object.

Node is a simple object which contains the information necessary to contact a particular node (for

example, attributes such as socket ports, ID and more). It also has a list of contents which indicates the

write operations of that particular node. For instance, suppose that node 1 executes a transaction with

only one write operation. After the commit of the transaction, the changes to the database (this write

operation) will get replicated. Every node that receives the replicate message, will add this new modified

object to the list of their node 1, knowing that node 1 updated that particular object. This proves to be

extremely useful if a node crashes, since the nodes that received the replicate messages could take on

the responsibilities of the failed node. The Node object also contains a role enumerator which indicates

if it is a timestamper or only a forwarder. Which indicates if a node is allowed to timestamp transactions.

Timestampers are responsible for timestamping transactions, while forwarders are incapable of doing

so, so they will instead resend the running transactions to a node that has the timestamper role. This

allows two different timestamping models. On the one hand, we have a centralized approach where

there is only one timestamper node and every other node needs to contact it to timestamp it. On the

other hand, alternatively, we can opt for a decentralized approach where every node (or only a particular

set of nodes) are timestampers.

Message is a simple serializable object that is utilized in the communication between different nodes,

for example, in the replication of transactions. It contains the sender and receiver node ids, the transac-

tion to replicate (and its changes to the database) and finally a message type. This message type has

only two values: Replicate and Replicate Writes. The first has the purpose of replicating the transaction

to other nodes, making them capable of running that transaction, if needed. The latter has the intent of

replicating the changes done to the database by that transaction. This message object will be sent from

one node’s communication object to another node’s communication object. We will observe in more

detail how the communication is done in section 3.8.
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Figure 3.2: Architecture class diagram
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3.3 Framework

The framework has two main objectives:

1. To function as a gateway between the system and the different modules;

2. To establish a proper flow depending on the transactional model selected.

To fulfil the first objective we have to understand the system we are porting into, and find where it

executes all the relevant methods to the framework. Then, we must call the respective methods from

the framework. For instance, once we located where a new transaction is created, we had to call the

beginTransaction method from the framework. Additionally, we also had to understand what the system

does once a new transaction arrives, and portray that to the begin transaction method of the framework.

If it timestamps the transaction once it arrives and replicates it, then our begin transaction needs to also

timestamp it and replicate it, in order to comply with the transactional model displayed by the system.

This analysis was essential for every method of the framework interface. We will describe the steps of

how to port the framework into a new system in the next chapter, in section 4.5.

The framework can be seen as a module of the system because like the modules, it should be

specific for every different system and implement from a generic interface. This occurs due to the imple-

mentations of different systems and especially, its transaction models. For instance, a begin transaction

of a locking model might not need (depending on the system) to timestamp the transaction once it ar-

rives. However, in a system like Calvin [14], once the transaction arrives, it needs to be timestamped

and executed in that arrival order (based on the timestamp).

This API contains the necessary methods to guarantee different transactional models:

• beginTransaction(Transaction transaction) - preparation phase of transactions (example: times-

tamp at arrival, replicate at arrival, etc.);

• read(int key, Transaction transaction) - execute a read operation on a existing content object with

a given key, by a transaction;

• write(int key, Object value, Transaction transaction) - execute a write operation on a existing or new

content object with a given key, by a transaction;

• validate(Transaction transaction) - validate the given transaction;

• commit(Transaction transaction) - commit the given transaction;

• abort(Transaction transaction) - abort the given transaction;

• endTransaction(Transaction transaction) - release any resources previous gathered that are still

not released;

• replicate(Transaction transaction) - replicate a given transaction or replicate the changes per-

formed from write operations.
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Besides these methods, which mainly focus on the transaction itself, there are others, focused on

joining both systems:

• initContent() - When the system is starting, while the objects are being created (from a given

database), we need to create the corresponding contents and initialize the concurrency control

mechanism;

• getTransaction(int id) - Whenever the system needs to run a given transaction, we need to know

which transaction it is so we can also execute it. We accomplished that by enumerating the trans-

actions with the same ID as the system, and call this method to return the same transaction;

• addTransaction(int id) - Once a new transaction arrives to the system, we need to add it to our

framework as well, we do that with this method.

3.4 Module: Group Membership

The group membership module focuses on which nodes participate in the system and the roles

they play. We defined two possible roles: timestamper and forwarder. Timestampers are responsible

for timestamping transactions. In contrast, forwarders are incapable of doing so, so they will instead

resend the running transactions to a node that fulfills a timestamper role, in order to timestamp the given

transaction.

As previously explained, this allows different types of timestamping models. A system that needs a

centralized timestamper, for example, Google Spanner [11], only needs one coordinator. This node is

solely responsible for timestamping every transaction, thus, every other node cannot timestamp them.

Therefore, you would classify the coordinator as a timestamper and all the other nodes as forwarders.

For leader election systems, leaders are classified as timestampers and slaves as forwarders. In these

two scenarios, it makes sense to have the system composed by timestampers and forwarders. However,

if you need a fully decentralized system, every node will only have the role of a timestamper.

This module implements an interface that includes four methods:

• getNode(int id) returns the node with the given ID;

• getNodes() returns all nodes of the system;

• getReplicationTargets() returns a list to whom the replication must occur. This list might contain all

of its members or just one node, depending on the protocol;

• getTimeStamper() returns a timestamper of the system.

3.5 Module: Order

This module is responsible for ordering transactions and timestamping them. It might be accessed

to timestamp transactions at different times. It is normal for systems to timestamp only on commit.
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However, some need to timestamp the transactions on arrival to define an execution queue. In other

words, transactions are ordered and then executed in that sequence [14].

This module has an object clock. This object is an interface and it depends on which algorithm

the clock parameter was instantiated. This means that, the order module is independent of the type of

algorithm the clock is launched with (logical clock, real time, etc).

This module implements an interface that includes five methods:

• timestampStartup(Transaction txn) Timestamps the startup of the transaction. We defined startup

of a transaction as the moment when the transaction arrived on the system (beginTransaction()

was executed);

• timestampCommit(Transaction txn) Timestamps the commit of the transaction;

• compareTransactions(Transaction txn1, Transaction txn2) Returns the transaction with has the

smallest startup timestamp;

• lockGet(Content content) For a centralized order module, it might be important to guarantee exclu-

sion. This method obtains the given lock;

• lockRelease(Content content) For the same reason as the above. This method releases the given

lock.

3.6 Module: Replication

The replication module focuses on the interactions regarding replicating transactions between differ-

ent nodes in the system. Some systems might need to replicate the transaction once it arrives to other

nodes in the network, to guarantee that the transaction is executed. Basically, the idea is that, when a

transaction first arrives, a node will be responsible for executing it. We replicate the transaction to other

nodes allowing that, if the node responsible fails, the transaction can be executed by other nodes.

After a transaction commits, systems require that their changes get replicated to other nodes to

guarantee the durability property of that transaction to the database. This grants a feature in which

all nodes that receive the replication message know the changes done to the database. Therefore

an already existing node can now be responsible for the objects that the failed node was previously

accounted for.

Before executing any of the replication methods, the replication module first needs to gather the list of

nodes to where it should replicate. Different algorithms might have different destination nodes (replicate

to only one node, to all nodes, etc.). Group Membership module returns this list with getReplicationTar-

gets() method.

This module exposes two methods:

• replicate(Transaction txn, list <Node>nodes) Replicates the transaction to the given set of nodes.

More specifically, it creates a Message type object, goes to the communication object of each node

and sends the designated transaction to replicate it;
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• replicateResult(Transaction txn, list <Node>nodes) Replicates the committed changes (writes) to

the given set of nodes. More specifically, it creates a Message type object, goes to the commu-

nication object of each node and sends the designated transaction to replicate it the committed

writes.

3.7 Module: Concurrency Control Manager

This module is responsible for managing the resources based on the concurrency control mech-

anism. By observing different systems we concluded that, independently of the concurrency control

mechanism, all of them need to initialize their concurrency control mechanism, execute read and write

operations, validate, commit, abort and finish transactions. If there are several different concurrency

control protocols, we strongly recommend to have a module for each one of these mechanisms.

When creating/importing the database it is important to initialize all necessary concurrency control

mechanisms for each object in the database. For example, create the locks for each object in the

database. Once that is done, operations (reads and writes) will get executed by a transaction, which

will call these read and write methods, respectively. For each operation, this module will gather the

necessary resources and release them if the isolation level selected requires to do so. Besides these

methods, the manager will also call any validate, commit, abort and finish methods. For pessimistic

approaches, the validate method should not be implemented nor called from the designated framework.

All other methods are shared between every concurrency control protocol.

The interface exposes seven methods:

• initContent(int key, Object object) The purpose is to create any necessary mechanism based on

the concurrency control algorithm given every object (content) of the database;

• write(Transaction transaction, int key, Object object) Given a key and object, it will create the

corresponding Content and it will try to write it depending on the concurrency control algorithm. It

will then be added to the write set of the transaction;

• read(Transaction transaction, int key) Just like the write operation, it will try to read a certain object

with the given key accordingly with the concurrency control algorithm;

• validate(Transaction transaction) Guarantees that the transaction can commit successfully. Pes-

simistic algorithms do not necessarily use this method but an abundance of other algorithms use

it;

• commit(Transaction transaction) Once validated, it will then proceed to commit, which basically will

guarantee that every write is committed. For locking mechanisms, they need to release the locks

gathered if not already done (depending on the isolation levels);

• abort(Transaction transaction) It reverts write operations and releases all the resources previous

gathered;
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• finish(Transaction transaction) Once the transaction has either committed or aborted, it will finish,

guarantees that the resources all freed.

We will demonstrate the flow of two different concurrency control protocols, an optimistic and a

pessimistic. These two protocols were implemented and will be described in the next chapter.

3.8 Communication architecture

In a distributed environment it is essential that nodes communicate with each other. We need this

functionality for the replication aspect and in case it is desirable to implement fault tolerance (in the

sense of, the transactions that were about to be executed by a node, are executed by another in case

of crash). Different systems will have the communication done differently, via sockets, via SOAP web

services and other ways. Therefore, we also need to provide a level of flexibility in the communication

interface to allow the implementation of a variety of different mechanisms.

The communication between the nodes of the system rely on the use of the object Message previ-

ously described in 3.2. It basically contains a message type which indicates the receiving node what

kind of operation we are doing. Depending on the message type, the node receiving the message, will

either store a new transaction or store the writes that transaction did.

It is important to remember that, just like in the modules, if a developer does not want the communi-

cation with sockets and instead desires with SOAP web services, the developer only needs to implement

the methods of the interface and the algorithm. The interface of the communication class consists in:

• get(Message msg) This method is ran after receiving a message and it will, depending on the

message type, replicate the transaction or replicate the changes to the database;

• sendMessage(Message msg, interfaceCommunication comm) It will send the message to the com-

munication interface given as argument. It will first serialize it and then send it. If the size is bigger

than the max size, it will split the message and send it in different packets;

• initReceiver(int nodeid, bool isClient) It initializes the receiver part of the communication algorithm

for a specific node. Afterwards it will create a thread that waits for incoming messages;

• initSender(int nodeid, bool isClient) It instantiates the sender part of the communication algorithm

and establishes a connection between two nodes;

• recvTransaction() It consists in waiting for messages to arrive the systems. It is only executed by

the newly created thread in initReceiver().

The initialization of the communication of the nodes (initReceiver() and initSender()) is done when

the Group Membership is creating every node. It will initialize the sender port for every other node of

the system (allowing it to send a message to each node) and initialize the receiver port (to receive a

message from each node). For the messages to arrive the system, each node needs a thread that waits

for messages from all other nodes in the network.
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To help understand the communication process, Figure 3.3 shows how the flow of a message is done.

For this scenario, to aid the explanation of the communication module, we assumed the communication

protocol used was sockets. Suppose that a transaction arrives the system it does all the necessary

operations in the begin transaction and then it calls the replicate method, which contacts the replication

module, executing its replicate method.

Observing the figure, first, it will figure which node is doing the replication and then will contact every

node to whom it needs to replicate (based on the list of nodes returned by group membership module).

A message is created with the sender node ID, receiver node ID, the transaction and the message

type. Afterwards, the node that is doing the replication, will send each message through the method

sendMessage from communication. This method consists in serializing the message and send it via

the senders socket. All nodes are permanently running a thread that is waiting for a message to arrive

(recvTransaction()). Once a receiver node receives a message, it will deserialize the message and run

get(message). This method corresponds to a switch case, where depending on the message type it will

either replicate the transaction or its writes. In this case, the message type was a replicate, meaning

that it will only replicate the transaction. To do so, the framework (from the receiver node) will add the

transaction to the map of transactions of that specific node.

If the message type would be to replicate the writes of the transaction, all the process would be the

same, except on the get method. The message type would be replicateWrites and therefore, the node

running this would add to the list of the sender, the modified contents. Meaning that, once a node writes

something, all other nodes will have that information - node A list of writes, node B list of writes, etc.

3.9 Demonstrate the flow of a new transaction

To consolidate this architecture and help understand how the modules communicate with each other,

we showcase two different execution flows of a new transaction entering a system, one for a pessimistic

protocol and another one for an optimistic one.

Both these examples only occur after the system has done all the necessary setups. For example,

establishing the connection between every node, create/import the database, create all the concurrency

control mechanisms, and more. It is important to remember that, to represent a given transactional

model, we need to have the framework implemented based on that system. For instance, the OCC

transactional model of Deneva [20] is different in comparison to the OCC of Centiman [12]. Thus, to

represent this transactional model of Deneva’s, it is essential to implement all the different modules,

desired algorithms, and the framework.

3.9.1 Flow of the pessimistic transactional model

Following the flow chart of Figure 3.4. Once a new transaction is arrives, the system calls begin

transaction method from the framework. Here the framework views the transaction for the first time,

therefore it starts by adding it to the map of transactions and assign it to a node. A node needs to be
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Figure 3.3: Example of the communication flow
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assigned because there are partitions and only the node responsible for a transaction should timestamp

the transaction, replicate it, etc.

Afterwards, it will check if the node executing is a timestampper (if it has the permission to timestamp

transactions). If it is not a timestampper, then it will retrieve a timestampper. It proceeds to contact the

order module of the timestampper and timestamp the startup of the transaction, this indicates when the

transaction arrived which is used in this protocol. To finish the begin transaction, it will call the replication

module and call replicateTransaction which replicates the transaction. We have seen how the replication

is done in detail in section 4.4.

Once the transaction finished executing the begin transaction it is ready to be executed. The exe-

cution of the transaction is done via the operations the transaction has. Suppose that the transaction

executing has only a read or write operation in this order. The system will execute a read operation and

the framework read method is called. The read method consists in calling the read method from the

concurrency control manager. The manager will execute the read which basically consists in, get the

appropriate lock, adding the read operation to the read-set and return the content the transaction wants

to read (if the lock cannot get accessed, a null content is retrieved, letting the manager know it was not

possible to get the lock - conflict). After the manager receives the content and the read operation was

successful, it will verify if the isolation level is read-uncommitted or read-committed. If the isolation level

is one of them it will release the lock right away, finishing the read method call.

The next operation of the transaction is a write operation. It will call the write method of the frame-

work. It first verifies if it is writing an already existing object or creating a total new one. If it is a new

one, it needs to run method initContent which initialized the necessary concurrency control mechanisms.

Just like the read operation, it will call the write method of the manager which accesses the concurrency

control algorithm and tries to write the content. If the lock is successfully gathered it will add the content

to the write-set and return it. If getting the lock was unsuccessfully, a null content is returned. If the lock

was successfully grabbed, it will verify if the isolation level is read-uncommitted, if it is true it will release

the lock right away, if it is not, then the method is returned and it will only be released in the future.

The transaction is now fully executed and it is ready to commit. Once the system calls the commit

method, the framework will also execute it. It will access the manager and execute the commit method. It

will commit the changes and then release the locks. If this node was the node that started the transaction

(is responsible for) then it will proceed the execution. In addition consists in timestampping the commit,

by accessing the order module. Afterwards it will need to replicate the changes to the database. First,

it needs to get the replication targets (to whom replicate) by contacting the group membership module.

Once the replication targets are gathered it will replicate the writes to them.

The commit is now finished. Before we continue the flow of the commit, lets first imagine that the

transaction needs to abort instead of committing. It would contact the manager module and abort the

transaction, which is composed with releasing every lock and undoing every write to the last modified

write. Once the abort or the commit of a transaction are done, the end transaction method from the

framework is executed. The finish method from the manager will be called. This method will guarantee

that every lock was released and it will clear the list of detained locks of the transaction.
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3.9.2 Flow of the Optimistic transactional model

Observing the flow chart of Figure 3.5, we can see that the flow of both transactional models are

identical for the begin transaction. With this in mind, we will only describe the flow after the begin

transaction is executed. Here we considered that the transaction has also only two operations, one read

operation and one write.

The read operation is executed by calling that method from the framework which calls the read from

the concurrency control manager. This consists in reading it based on the concurrency control algorithm,

which guarantees that a write operation has not occurred before the transaction has started, adds it to

the read-set and returns it. The write operation is similar, it first verifies if it is writing an already existing

object or creating a total new one. If it is a new one, it needs to run method initContent which initialized

the necessary concurrency control mechanisms. Only after this, will the concurrency manager execute

the write operation. The concurrency control algorithm adds it to the write-set, updates the last write

timestamp and returns the content.

The transaction has executed all its operations. Before committing or aborting, it needs to validate

the operations performed and guarantee that no unwanted conflict occurred. The system calls the

validation method of the framework, that proceeds to call the validation of the manager. It will verify if

there is any conflict between concurrent executing transaction, if there is no conflict, the transaction is

now considered to be validated and is waiting for the system to call commit. If a conflict is spotted, the

transaction is not validated and it is aborted right away.

If the system calls an abort of a transaction, it will contact the framework which contacts the manager

and will abort every write executed. If the system calls the validation method, the framework verifies if it

was previously validated (if it is not, then it is validated right away), if it was successfully validated, the

commit will continue. It will call the commit of the manager to make the changes done by the transaction

durable. If this node was the node that started the transaction (is responsible for) then it will proceed the

execution. Just like in the locking model, it needs to timestamp the commit of the transaction, replicate

the changes and finish the transaction to release every resource that it was previously obtained.
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Figure 3.4: Example of a flow of a pessimistic transactional protocol
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Figure 3.5: Example of a flow of a optimistic transactional protocol
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Chapter 4

Implementation

In this chapter we will discuss important aspects to the implementation of the Variable Transactional

Layer (VTL).

Firstly, we will discuss which system we choose to re-implement with the addition of our Variable

Transactional layer (section 4.1).

We will then explain the scope of our solution defining some assumptions and the implementation of

the configuration file in section 4.2 and section 4.3, respectively.

In addition, in section 4.4, we will discuss the two concurrency control protocols we implemented

on the manager module. We will only briefly explain what the algorithms do, due to normally being

implemented already by the system we are adding our layer into.

It is important to note that every Module and algorithm implement an interface that contains methods

that need to be implemented for every different algorithm. For instance, as we will see in section 4.4,

the version class is responsible for the implementation of the algorithm regarding the clocks for times-

tamping. Any clock implementation will have to implement the Clock Interface which contains methods

that different clocks will have to implement. This allows for the ordering module (responsible for ordering

transactions) to call the methods of the interface, independently of the implementation of the clock.

Lastly, we will see how to port the framework into a new system in section 4.5.

4.1 Choosing a system

To demonstrate the potential of our solution, we had to choose the most desirable system to port our

variable transactional layer. A desirable system is one that has multiple transactional models, different

replication protocols, and so on. The alternative of finding one system that contains all these desired

properties, is to port into two different systems that together contain what we desire. We value the first

option more, due to the overhead of learning how the system works, before actually implementing and

porting the framework. Besides valuing these aspects, we also had to take in consideration on what

language the system is coded in and how complex is the code to understand and port our additional

layer into.
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Systems (language) Difficulty (0-10)
Ignite (Java) 3.0

Deneva (C++) 3.6
BadgerDB (GO) 4.8

Table 4.1: Top three lowest difficulty systems.

For every system we considered, we located where the relevant aspects of the framework were

(where the replication occurred, how nodes are represented, concurrency control mechanisms and

everything else). Once located, we decided to attribute a score (0-10) of how complex the system

appeared. In table 4.1 we can observe the top three contestants to port our additional layer into.

Although, the results show that Ignite [23] is the system with lowest score, it only supports multi-

version concurrency control. Thus, we would had to pick an additional system to represent a different

transactional model. The problem was that the other java systems that we considered, had quite bigger

scores comparative to the others. The second on the list is Deneva [20], which represents a wide variety

of different transactional models, plus, it has a decent score difficulty associated. Given these reasons,

we decided to port our framework into Deneva.

4.2 Assumptions

The system we ported our framework into, Deneva [20], has a in-memory distributed database that

is partitioned between the nodes of the system. For every operation (read or write) being executed by

a transaction, the system needs to contact the partition which contains that desired object, and execute

the operation. Once the transaction finished executing all its operations, it is ready to commit or abort

and to finish. To do so, the system needs to contact every partition and commit/abort their changes and

release the resources that they had allocated.

Deneva does not have replication implemented. We had to decide between implementing replication

or adding transaction recovery to our framework to retrieve a previous state in case of aborts. We

opted for a simple replication implementation. How the replication is done was furthered explained at

the replication module section (3.6). By implementing replication we postponed the idea of transaction

recovery in the case of transactions aborting. We know that this feature is essential in almost every

transactional system but yet considered that replication plays a bigger role. It is important to remember

that we implemented a naive way of replication and do not wait for acknowledge messages. We do this

so the values of throughput and latency are not as damaged, allowing us to still compare these results

with the original Deneva.

Just like Deneva, we do not support node failure. However, the replication architecture and imple-

mentation puts us a step closer to supporting node failure. Basically, the idea is that, when a transaction

first arrives, a node will be responsible for executing it. We replicate the transaction to other nodes al-

lowing that, if the node responsible fails, the transaction can be executed by other nodes. Another idea

is that, when a transaction commits, the changes of the database will also be replicated. This grants

a feature that all nodes that receive the replication message, know the changes done to the database
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Figure 4.1: Code block showcasing the switch case and the variable ccAlgo.

and therefore an already existing node can now be responsible for the objects that the failed node was

responsible for.

4.3 Configuration class

Swapping between different protocols, algorithms, and others can be done in several different ways.

Our first option was to do it via reflection with the aid of a configuration file. Once the system would start

running, it would read this configuration file which contains the interfaces of the modules the system

needs to initialize. We did not opt for this idea, due to reflection not being implemented in c++. In

alternative, we used a configuration class. Instead of a file we use variables, instead of reading the file

we execute switch cases.

For instance, observing Figure 4.1, to change from the pessimistic algorithm to thr optimistic, you

only have to change the variable ccAlgo to ’OPTIMISTIC’ and recompile it. The switch case would now

initialize the framework as an optimistic one.

4.4 Implementations of the Interfaces of the algorithms

In this section we will discuss different algorithms that mainly the modules use. Every Module and

algorithm implement an interface that contains methods that need to be implemented for every different

implementation. For instance, as we will see in this section, the version class is responsible for the im-

plementation of the algorithm regarding the clocks for timestamping. Any clock implementation will have

to implement the Clock Interface which contains methods that every different clock will have to imple-

ment. This allows for the ordering module (responsible for ordering transactions) to call the methods of

the interface, independently of the implementation of the clock. As result of this feature, we can change

which type of algorithm or module we are using by simply changing a parameter. Ideally, you would have

a file with this information, but since in C++ reflection is not implemented, we discarded this idea.

For different algorithms we also implemented the idea of having an interface that they implement

from in order to facilitate the changeability of these different algorithms. We think it is important to allow

the user to change three types of algorithms, besides the aspect of the modules. These types are: the
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algorithm of the clock (for transaction to be timestamped), the algorithms of concurrency control and

how transactions communicate with each other (by using sockets or other types).

4.4.1 Clock Implementations

The clock version we implemented is one that Deneva uses and is a variety of different types of

clocks. We could have split them and make each one of them implement the interface and the user

would have the option of choosing which to use, but due to these clocks only appearing to be useful for

Deneva and due to lack of time, we decided to keep them together.

We implemented an enum ’Occured’ with values such as Before, After, Tie, Concurrently. This

enum is used for comparing timestamps. The interface for clock algorithms has methods such as:

• compareClocks(InterfaceClock* clock) it compares the timestamps (next method) of the time of

this clock with the one given as argument.

• compareTimestamps(long ts1, long ts2) based on the timestamps given as arguments it will return

an enum which states if the ts1 has occurred before after or at the same time as ts2.

• incrementVersion(long time) This method is not used in this algorithm. However, it is useful for

clocks that need to increment given a specific time as argument.

• updateClock() it updates the clock, some algorithms will just increment by one the time of the clock,

while other might have another specific approach. In deneva there are four different ways to do

this, we just used one that is basically a true time clock.

• getTime() Returns the time of the given clock. If the clock was not yet updated, it will update it first

and then return the time.

4.4.2 Concurrency Control Implementations

Since Deneva [20] implements a wide variety of different concurrency control algorithms, instead of

having only one module for Deneva we split the concurrency control manager between different con-

currency mechanisms. This means that, there is a concurrency control manager for locking, for an

optimistic concurrency control, etc. We implemented two different transactional models, one using a

pessimistic approach and an optimistic approach. We chose these two due to being highly abundant in

the transactional modules and present in the system we ported to.

4.4.3 Concurrency Control Manager: Locking

This transactional model consists in a pessimistic approach existing a lock associated with every

object in the database. In this case, when the rows of the database are created, the manager will create

the locks and associate them with every object. Since these two approaches will implement the inter-

face Concurrency Control Manager we previously discussed, all the methods need to be implemented

depending on the algorithm.
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Whenever a write or a read operation is performed the corresponding lock will be gathered if avail-

able and will abort otherwise. The locks are released depending on the isolation level selected. Different

isolation levels were only implemented for the pessimistic approach, and they are Read Uncommitted,

Read Committed and Serializability. As discussed previously, in read uncommitted, transactions might

read uncommitted changes made by other transactions (allowing dirty reads - no isolation). This is imple-

mented by releasing the locks right after an operation is done (either read or write). In read committed,

transactions will only read committed changes, although, a transaction might read different values for

the same column at different times. To allow this property we only release the lock right away for read

operations. In the case of a write, it is only released when the transaction is committed or aborted.

Finally, for serializability, every lock (read and write) will be only released at commit and abort.

In this case, since it is a pessimistic approach, the validation method always returns true. It has

another method called releaseLocks with the intent of releasing the resources previous gathered. This

is called dependently on isolation levels but the method finish will always call it to guarantee that a

resource is never locked for ever.

Pessimistic algorithm Implementation

In the locking approach we have an enumerator for the types of lock. It can be none, shared or

exclusive. Whenever an operation is requested, it will run a method to gain control. Based on the

operation (read or write), it will gather a shared or an exclusive lock, respectively. If the lock can be

grabbed, we will perform the read or write and add to the read set or write set. But before changing

the content, we will first store it in a field so we do not lose the previous content to guarantee isolation

or even in case of abort. If the lock is unable to be accessed, then an invalid content is returned to

the manager, letting it know that it was not possible and consequently, aborting the transaction. If the

transaction commits, the previous content that is stored gets deleted. However, if the transaction aborts,

the previous content will become again the current content (undoing the previous write).

4.4.4 Concurrency Control Manager: Optimistic

This transactional model consists in an optimistic approach meaning that every read and write will

be allowed during the execution of the transaction and it will then be validated. Just like in the previous

transactional model, in this it will also need to create a concurrency control object for every object in the

’database’.

Only serializability is supported in this algorithm unlike in the pessimistic approach. Once the transac-

tion is executed, the framework will eventually call the validate method. Once this happens, the manager

will sort by XXX both the read and the write sets. Now it will do a for loop for every operation, get control

of a semaphore (wait if already grabbed by some other thread), validate the operation (read or write)

done and release control of the semaphore. If any of these operations is not valid the transaction has to

abort. The abort consists in undoing the writes the transaction did. If the validation returns valid, then

the transaction is ready to commit.
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Once the framework calls the commit of the transaction, the manager will only have to make the

changes durable. This is explained in more detail in the next section. After the transaction has either

committed or aborted, it is ready to finish.

Optimistic Implementation

Just like in the pessimistic algorithm, whenever a read or write operation is done it needs to add it to

the set (read set or write set). For write operations the idea of storing the previous write is also applied.

Therefore, in case of commit or abort the previous write will get deleted or restored, respectively. The

validation is mainly performed in the manager, here it will only guarantee that that the commit timestamp

of the transaction is bigger than the timestamp of the last write timestamp.

4.5 Porting into a different system

To port the framework to a different system, you need to have the knowledge of the system and know

how a transaction is handled. Every system behaves differently and handles the transactions distinctly.

The first step is to implement the framework corresponding to that system which are basically calls to

methods of the modules. For instance, a begin transaction in a system like Calvin, need to timestamp

the transactions at arrival, therefore, in the framework, it would call the module Order to timestamp the

new transaction. However, in Google Spanner [11], transactions do not need to be timestamped on

arrival, so there will be no call of the module Order in begin transaction method of the framework. You

need to figure out what happens to a transaction for each of the methods of the framework interface.

Besides knowing how a transaction is handled in that particular system, you also need to know where

does the manipulation of the transaction occurs. In other words, you need to locate important operations

done to a transaction and call the respective methods of the framework. These relevant operations are

declared in the framework interface and consist of:

• Begin transaction - once a newly transaction arrives the system.

• End transaction - the transaction already aborted or committed and releases every remaining

resource still in use.

• Read operation - A read operation of a transaction

• Write operation - A write operation of a transaction

• Commit transaction - The commit of a transaction

• Abort transaction - The abort of a transaction

• Validate transaction - The validation of a transaction (if in a locking environment, where validation

is not needed, just return true.

• Replicate transaction - The replication of the transaction

39



• Init content - Where the objects are created of the database

• Add transaction - Add to the list of active transactions.

• Get transaction - Get a given transaction of the active transactions list.

Additionally, the modules are also likely to be distinct from system to system, therefore, it is recom-

mended to implement them given the target system. For example, the replication module, it states how

and to whom does a transaction need to be replicated to. For a system it might need to replicate only to a

set of nodes, while in another system, to every node or to no other node. Another important aspect when

importing the framework to a different system, is if the algorithms it utilizes are already implemented.

For example, the system might need to use logical clocks, which are not yet implemented, in the order

module to timestamp the transactions. In these cases, you have to implement the algorithms in need

and call them in the modules desired.

It is important to note that, the framework, each one of the modules and algorithms have an interfaces

that should be implemented and called from, from the respective modules. This allows to swap between

algorithms by changing a variable on the configuration file. Plus, if there is a change to be made on the

algorithm, everything else is unchanged. However, not every algorithm/module might fit perfectly with

the interface. For example, the interface for the manager of the concurrency control has a method of

validation, even though the locking mechanism does not validate the transaction.

Once the framework, modules, necessary algorithms and calls to the framework are implemented,

the only thing remaining is to add to these different alternatives for to the switch cases in the configuration

class.
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Chapter 5

Evaluation

We will discuss the results of our tests in this section. Since we ported our variable transactional layer

into Deneva, it makes sense to compare each testing result with it. This means that we had to execute

all the scenarios for the system without the additional layer, as well as, the system with the framework

ported into. We will address Deneva without the framework as the original Deneva.

Firstly, we will discuss the correction tests. These tests try to showcase that our framework behaves

exactly as the original Deneva in terms of functionalities, despite the split into different blocks. We

focused on the more complicating scenarios, where transactions are executing concurrently, accessing

and writing the same objects. For different algorithms and isolation levels, we will execute different

operations and make sure our solution and the original Deneva make the same decisions on which

transactions commit and abort.

Secondly, we will evaluate the system with our variable transactional layer in terms of throughput and

latency and compare it with the original Deneva. We will discuss the overhead that our framework brings

in relation with the original implementation. We will vary the amount of servers and the contention levels

for both transactional models. In our evaluation the YCSB benchmark [21] will be used.

We deployed the framework on GSD Cluster hosted at IST-DSI. The amount of nodes will depend

on how many clients and servers were used for each experiment. Each node consists of a CPU of eight

cores with 2.13GHz speed and 40GB of memory. Before each test, table partitions are loaded on each

server. The first 60 seconds is a warm-up period followed by another 60 seconds of measurements with

a load of 10000 open client connections per server.

5.1 Correctness

In this section we will observe and discuss the results of testing the functionalities of the system

according with the transactional models implemented. We will focus on conflicting scenarios between

transactions and observe if the different transactional models behave like they are suppose to, according

with the original Deneva. It is important to note that, we are not validating if the original Deneva or our

framework implemented these protocols correctly. Instead, we desire that our framework represents the
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Figure 5.1: Validation of conflicting scenarios in different protocols implemented by our framework in
regard to the original Deneva in a centralized environment. Two transactions executing concurrently
varying which operations are done, the concurrency algorithm and the isolation levels. We showcase
which transaction commits out of the two, and if the exact same result occurs in the original Deneva.

exact same protocol as the original Deneva.

For this scenario of tests, there will be two transactions executing concurrently. Both of them will

make operations (reads or writes) to the same four objects. To guarantee that the transactions are

executing concurrently, besides being started at approximately the same time, each one of them will

sleep for one second after doing each operation. This means that each transaction will take at least four

seconds to execute. This prevents a transaction to finish quickly before the other one even began.

We have two different transactional models, a pessimistic one and an optimistic one. In the pes-

simistic approach, three different isolation levels are implemented: Reads uncommitted, reads commit-

ted and serializability. In the optimistic approach only serializability is implemented. So we executed

two transactions concurrently, accessing the same four objects and performing different operations at

all of these different isolation levels for both transactional models. In addition, since this is a distributed

partitioned approach, we did these tests for both a non-distributed system (executing only on one server)

and for a distributed system (multiple servers).

Figures 5.1 and 5.2 display two different concurrency control algorithms for transactions and different

isolation levels for each algorithm. We also tested different algorithms and isolation levels for a central-

ized version of the system (Figure 5.1) as well as a distributed approach (Figure 5.2). Two transactions

were executed simultaneously and concurrently. The operations done by each one are represented into

R and W, corresponding into a read operation and a write operation, respectively. These operations are

performed onto the same 4 objects concurrently. For example, each transactions will make an operation

(Read or Write) to objects with identifiers of 1, 2, 3 and 4. It is important to note that, both transactions

are being executed concurrently, but transaction 0 will always execute the given operation right before

transaction 1. In other words, the transaction that obtains the first lock for the first object, will always get

first the lock of the second object and so on. For instance, Transaction0 will read object 0 and sleep for

2 seconds, transaction1 will read object0 and sleep for the same amount (2 seconds). After 2 seconds,

transaction0 will read object1 and sleep again, transaction1 will read object1, sleep, and so forth.
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Figure 5.2: Validation of conflicting scenarios in different protocols implemented by our framework in
regard to the original Deneva in a distributed environment. Two transactions executing concurrently
varying which operations are done, the concurrency algorithm and the isolation levels. We showcase
which transaction commits out of the two, and if the exact same result occurs in the original Deneva.

The columns described as ’Transaction X commit’ indicate whether the respective transaction com-

mitted or aborted in that scenario. If the checkbox is checked, it indicates that it committed successfully

and aborted otherwise. While these two columns describe the interaction of the framework, the penul-

timate column corresponds to the original Deneva. This column indicates, if the box is checked, that

our framework behaves exactly the same as the original Deneva for that scenario. For example, in the

first line, where the algorithm is locking, the isolation level serializable and where both transactions ex-

ecute read operations, we can observe that both transactions commit in our framework. In the original

Deneva column, the box is also checked, this means that the exact same interaction occurs - both trans-

actions commit for the original Deneva. The last column, the observation field, indicates some relevant

information regarding the results obtained.

Given both the Figures 5.1 and 5.2, we can observe that the results are exactly the same if the

servers are distributed or if there is only one (centralized approach). Therefore, we will analyse Figure

5.1, for the subsequent comments. Lets now analyse each concurrency control algorithm and isolation

level.

Pessimistic approach

We can observe that in the pessimistic approach there are three different isolation levels. If the

isolation level is serializability, the highest isolation level, we can view that if both transactions read the

same objects, that both will commit successfully. Although, for the other three scenarios, one transaction

will always abort. In these three scenarios, a transaction can successfully commit if, and only if, it can

gather every lock that it requires before any other transaction executing concurrently. In this scenario,

we considered that the transaction that gathers the first lock for the first object, will always gather first

the lock of the second object and so on. In this particular scenario, the transaction that gathers all the

locks first, will successfully commit and the other transaction will abort.
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For the read committed isolation level we can see the appearance of non-repeatable reads, meaning

that, during the execution of a transaction, reading the same object could read different values. In this

scenario, the locks that are shared (from read operations) are released right after the read operation

is complete. Observing the table 5.1, we can continue to see that both transactions still commit when

both execute read operations. When transaction 0 reads and transaction 1 writes, we can see that both

are allowed to commit. However, when it is the other way around, only the write is allowed to commit.

This occurs due to the read locks now being released right after the operation is executed, while the

write locks are still only being released on commit and abort. This means that, once a transaction has

acquired a write lock, no other concurrently executing transaction can execute any operation on that

object.

For the isolation level of read uncommitted, the transaction are allowed to commit for every sce-

nario. Here, the locks are released immediately after the operation is executed instead of waiting for the

transaction to finish.

Optimistic approach

For the optimistic approach, only serializability is implemented and observed. Just like in the pes-

simistic approach, if both transactions make read-only operations, both will successfully commit. The

rest of the results are quite different from the other transactional model. Analysing the scenario where

the transaction0 performs read operations and transaction1 write operations, we observe that unlike

the pessimistic approach, the transaction that first accesses the object does not commit. In this model,

transactions make all the operations freely and validate the entire transaction at the end. In this case,

transaction0 will not get validated due to another transaction modifying the value that it had accessed.

However, the transaction that modified the value (transaction1), will validate successfully due to other

transactions not conflicting with it. We can briefly say that, for this model, write operations cause conflict

with other transactions accessing the same object, but read operations do not cause conflict. The same

process happens for transaction0 writing and transaction1 reading, the write is allowed to commit, while

the read is not. Lastly, if both transactions write the same objects, none of of them will commit unlike the

pessimistic model.

5.2 Throughput tests

We now present our evaluation and analysis of the two concurrency control protocols, an optimistic

concurrency control and a pessimistic one. Just as for the previous test, we evaluated both the original

Deneva and our variable transactional layer, to then compare the results of the evaluations to highlight

the implications of having a modular framework added to a system. To accomplish this, we focused on

analysing the same aspects that were observed and discussed in Deneva’s document.

We deployed our solution on GSD Cluster hosted at IST-DSI. The amount of nodes will depend on

how many clients and servers were used for each experiment. Each node consists of a CPU of eight

cores with 2.13GHz speed and 40GB of memory. Before each test, table partitions are loaded on each
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Figure 5.4: Contention - Throughput measurements for each protocol varying the skew factor on 8
servers.

server. The first 60 seconds is a warm-up period followed by another 60 seconds of measurements with

a load of 10000 open client connections per server.

The benchmark used in our evaluation was YCSB - The Yahoo! Cloud Serving Benchmark [21]. The

setup was the same as in the Deneva’s Document, single table with a primary key and 10 additional

columns with 100B of random characters. The table is partitioned by the primary key using hash par-

titioning [20]. Each transaction will access ten records that can be either read or write operations that

occur randomly, following a Zipfian distribution tuned by a skew parameter.

5.2.1 Contention

We first measured the influence of increasing the amount of contention in the system by tuning the

skew parameter. Contention occurs when transactions make operations (read or write) to the same

object. In this experiment, we configured the operations into 50% writes and 50% reads in a 8 servers

(and 8 clients) setup.

What is instantaneously noticeable by observing Figure 5.4 is that, the throughput clinically declines

with the increment of the skew parameter. Unlike the original document, we can observe the decline

sooner ( 0.2) than what they represented ( 0.6).

At 0.0 contention, it is surprisingly that our framework shows a higher throughput in both algorithms,

comparatively with their respective original protocols. This occurs due to the latency values which will

be discussed further in the document. At low contention, both OCC protocols perform worse than the

pessimistic protocols due to the overheads of validation. This is described in the Deneva’s document

[20]. However, once some the contention levels increase (at around 0.4) we can see that it overtakes

the deterministic protocol.

At 0.9, when the contention is highest, all of them reach their minimum throughput, as per expected.
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(a) No contention (skew = 0) (b) Medium contention (skew = 0.6)

(c) High contention (skew = 0.7)

Figure 5.5: Scalability - Throughput measurements for each protocol varying the workload and different
cluster sizes.

5.2.2 Scalability

The previous experiment was mainly focused on varying the skew parameter and observing how the

system behaved regardless of the number of nodes. In contrast, we will now vary the number of nodes

and have fixed workloads to evaluate how each protocol scale with more servers. We selected the

same three scenarios as did Deneva: A read-only workload (0% of write operations) with no contention

(skew = 0) - measures the maximum throughput for each protocols, given that there is no contention. A

read-write workload (50% of write operations) with medium contention (skew = 0.6) and High contention

(skew = 0.6).

There are two noticeable properties that stand out by observing the three graphs.

The first aspect is that the addition of the variable transaction layer presents a significant overhead.

In all three scenarios, the framework presents a decrease of throughput of around 60%. There is a big

amount of overhead which we do not have a particular reason for it, we disabled the replication, which

Deneva does not have, to check if it had significant impact in the throughput of our solution, but it did not.

One aspect that might have an impact is how the serialization of the object is done, because Deneva

used a library in Beta to do so, nanomsg, while we used boost serialization. The overhead should not

be this high, another phase of optimization would increase the throughput most definitely.

The second aspect that is instantaneously noticeable is that, with the increase of the amount of

servers, the throughput does not actually increase right away. This is expected due to the latency, and

it is also observed in the original Deneva’s document. In the original Deneva’s document, at a particular
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Figure 5.6: 99th percentile Latency - Latency from a transaction’s first start to its final commit varying
the cluster size.

amount of servers, the throughput will start to increase with the increment of the servers. In their case, it

was around 8 servers, in our case, we could not showcase that shift due to not having enough available

nodes in the GSD cluster.

No contention: By observing Figure 5.5a, we can see that the protocols of our solution have a big

decrease in throughput in comparison with the original Deneva’s protocols. We can also observe that,

the throughtputs are roughly similar independently of the protocol. This happens due to transactions only

reading and not having to stop their execution since there is not contention. The pessimistic approach

having a slight bigger throughput is due to the OCC protocol, implemented by Deneva, having to copy

items for reference during its validation phase.

If we compare these results, while having 8 nodes, with the ones from the previous graph (Figure

5.4), where there is also no contention, we can clearly observe that they are not identical. This occured

due to, in Figure 5.4, there was 50% of write operations, while here it was read-only transactions. If

we compare them two, we can see a tremendously decrease of throughput just by adding writes to the

system, without having any contention whatsoever. For example, OCC Read-Only has the throughput

of 15k transactions per second while OCC Read-Write has 2k transactions per second.

Medium & High contention: Both the medium and high contention graphs look pretty similar. Just

as it was seen in the previous graph, for only 1 server, we can see the overhead of the framework clearly.

But, just like it was shown in the Deneva’s document, the throughput of all the servers decrease with the

increase of servers until a certain point. That point (around 16 servers) we could not showcase due to

not having access to as many nodes in the GSD Cluster. One aspect that should be mentioned is that

the VTL OCC protocol does not have a sudden drop at 4 servers as does the original OCC protocol.

5.2.3 Latency

We will observe and compare the results of the latency of a transaction’s start to its commit, between

the variable transactional layer protocols and original Deneva. We will focus on the 99th percentile, which
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means that 99% of the requests should be faster than the given latency (only 1% of the transactions can

be slower).

In Figure 5.6, we observe that the 99th percentile latency increases with server size as expected.

However, it is not expected to have a noticeable significant gap in latency between the protocols of the

framework and the original Deneva. For example, for 4 servers, while the original OCC has a latency

of 98s and original Pessimistic has 38s, the transactional models implemented by the framework have

a latency of around 10 milliseconds. We realize that the following results might be incorrect. For the

variable transactional layer we were expecting higher levels of latency than the original Deneva, to

help justify the low throughput of the previous examples. A reason that might explain these results is

that, due to the low throughput of the framework, transactions take longer to finish. And since we are

experimenting scenarios of 60s of warm up and 60s of testing, executing transactions that surpass this

time period, will not have their statistics accounted for. With the distribution of the nodes and the partition

of the database, for a transaction to commit, it needs to contact every node it accesses. We assume

that this provokes the transactions to slow down that cause to surpass the experiment time. To test

this hypothesis, we will do an experiment that only finishes once a certain amount of transactions are

finished.
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Chapter 6

Conclusions

This thesis aimed at developing a framework that could incorporate a wide variety of distributed

transactional systems. We researched a variety of distinct distributed transactional systems in order to

determine all the common mandatory steps these systems perform. Knowing what the majority of dis-

tributed transactional systems need, we built an architecture that allows to represent a big part of these

systems. We chose to port our framework into a system that represents a wide range of transactional

protocols, to try to showcase that we can represent an extent amount of protocols with our architecture.

We first demonstrate that our framework behaves exactly as the original Deneva in terms of function-

alities, despite the split into different blocks. Secondly, we observe that, the framework has an overhead

of around 60% in all centralized environments, regardless of the contention between transactions. This

overhead is also observed, in a distributed environment, when there is no contention between transac-

tion (Read-Only transactions). We also view that, when there is contention, the increment of servers

results in a drop of throughput due to the latency of a partitioned system. In the original Deneva’s

document, they showcase that by continuously incrementing the servers, the throughput would start to

increase with the amount of servers. We see that the framework appears to have basically no additional

latency in comparison with original Deneva’s protocols. We justify this by the low throughput of the

framework protocols. Meaning that, the transactions take so much time to commit that they surpass the

duration of the test and are not accounted for. We are aware that 60% of throughput decrease is a lot

and that it is unacceptable for commercial uses.

Since there is an abundance of different distributed transactional models, we believe that having a

modular framework that can interchange between them is needed. Systems architects can simply use

these existing components and swap between protocols, depending on what properties they desire at

the moment. Otherwise, if you have the transactional model intertwined with the structure of the system,

switching to a different protocol might just mean to switch to a complete different system. In context

of academia, this is also useful, since most of the times when you are building a new transactional

approach, you have to build everything from the ground up, when often you just want to change small

parts of a whole. Although we just implemented two different transactional models, our architecture is

able to represent much more protocols.
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6.1 Future Work

For future work we have four main ideas. First, we think that is absolutely essential an optimization

of the framework to increase the throughput levels.

Second, we unfortunately had to skip the implementation of transaction recovery which is absolutely

essential for most distributed transactional systems. Therefore we think the addition of this feature would

help represent a much bigger number of systems.

Third, since we only represented two different transactional models, a pessimistic and an optimistic

one, we are interested in exploring more protocols such as MVCC [6], timestamped based concurrency

control [7], and others.

And finally, we also think that it might be interesting to, depending on the workload being processed,

change the transactional protocol being used at runtime to improve the throughput of the system.
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