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Abstract

Damage detection plays a vital role in the operation of machinery and represents one of the greatest
challenges in the mechanical, aerospace, and aeronautical industries. The wind energy industry, where
wind turbines are subjected to enormous mechanical and aerodynamic loads and extreme environmental
conditions during operation, is one of the industries that can benefit most from this kind of study. The
installation of wind turbines requires significant investments over a long period concerning maintenance
and repairs. In order to reduce these costs and guarantee the integrity and longevity of such structures,
the use of a reliable structural health monitoring system coupled with a robust anomaly detection
methodology is crucial to assess the viability of the investments during their lifespan. Regarding the
subsequent fault detection, numerous machine learning and deep learning techniques have succeeded in a
broad range of applications. This thesis aims to implement algorithms capable of consistently detecting
and assessing faults in two wind turbine blades of different materials. Such techniques as multivariate
Gaussian anomaly detection and anomaly detection autoencoders were successfully incorporated by
recognising deviating patterns from the healthy state to its damaged state in experimentally acquired
data such as modal parameters and frequency response functions. These vibration-based data were
obtained through modal shaker testing, modal hammer testing and pull-and-release testing applying
experimental modal analysis and operational modal analysis.

Keywords: damage detection, wind turbine blade, modal analysis, structural health monitoring,
machine learning.

1. Introduction

1.1 Motivation

1.1.1 Wind energy

The wind is one of the most appealing renewable
energy sources for electricity production, represent-
ing a significant part of the power generation mix in
some countries. For example, in 2017, wind energy
in Portugal accounted for 21.6% of total electric en-
ergy production, covering 24.6% of the annual elec-
tricity demand [17]. Wind energy currently meets
15% of EU electricity demand; by 2030, it is ex-
pected to cover 30% of demand and employ 569,000
people [14].

1.1.2 Wind turbines

Wind turbine blades are not only subject to me-
chanical and aerodynamic loads during operation
but also extreme environmental conditions such as
gusts, icing and lightning strikes. The main rea-
sons for wind turbine (WT) damage are thermal
cycling, sand, bird impacts, leading and trailing

edge erosion, fatigue, moisture intrusion, and me-
chanical failure [14]. The installation of WTs re-
quires significant investments during a minimum of
a 20-year lifespan. To assess the reliability of the
investments during this period, the use of struc-
tural health monitoring (SHM) systems to continu-
ously monitor the condition of WTs is crucial. SHM
can provide relevant information for rescheduling
maintenance tasks and lowering its associated costs.
The maintenance of wind turbine blades involves vi-
sual inspection, which can be dangerous and time-
consuming. Regular WT Operation and Mainte-
nance (O&M) costs are very high, accounting for
20–25% of the total levelized cost of energy (LCOE)
over the turbine’s lifetime. Therefore, developing a
remote blade condition monitoring system is a topic
that the industry is engaged in.

1.2 Topic overview

1.2.1 Damage detection

Damage detected early on can prevent irreversible
structural failures, hence the importance of a ro-
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bust defect detection methodology for ensuring ma-
chinery’s structural integrity and operational safety
while lowering maintenance and repair costs. Reli-
able damage detection techniques are a significant
challenge in the mechanical, aerospace, and aero-
nautical industries. In particular, for the WT in-
dustry, due to the high magnitude of the structures
and respective investments [4, 3].

1.2.2 Structural health monitoring

Structural health monitoring (SHM) refers to a re-
liable system capable of detecting and evaluating
adverse changes in a structure due to damage, or
regular operation [13, 21]. One way of carrying out
this monitoring process is through the extraction
and analysis of vibration-based data [16, 17].

1.2.3 Modal analysis

A general process of SHM based on these methods
involves collecting relevant vibration response data.
Damaged structures will have these modal param-
eters affected due to local discontinuity created by
the fault [8, 10, 19]. Experimental modal analy-
sis (EMA) is a typical technique for estimating the
modal properties of structures that have been used
for many years. This technique assumes that the
user knows both inputs and outputs; however, it is
not always possible to measure both, particularly in
operational conditions. For this reason, the opera-
tional modal analysis (OMA) technique was then
introduced. The OMA approach serves the same
goals as the EMA, but it is more suitable for oper-
ating machines because it relies only on measured
outputs and does not need to know about the input
forces. The estimation of OMA parameters com-
bined with a proper SHM strategy can be used to
track unusual system variations and inform when
unplanned maintenance service is required.

1.2.4 Machine learning

In recent years, advanced computational artificial
intelligence algorithms have achieved large success
in detecting different types of faults [2, 7].

1.2.5 Deep learning

Deep learning (DL) is a subset of ML mainly fo-
cused on artificial neural network algorithms. DL
goes a step further in terms of complexity and
power, representing more complex architectures
and algorithms. Remarkable progress has been
made in the field of DL with emerging applications
for SHM [23, 11] and damage detection. In partic-
ular for damage detection algorithms using autoen-
coders [15, 12, 20]. Also, deep neural networks are
being implemented in the mechanical and aerospace
industries, for instance, in the damage detection of
beam structures, [1], damage assessment in rotating

machinery and motor fault detection [22, 9]. Stud-
ies have also been done for WT fault classification
[18] and autonomous crack detection [5].

1.3 Objectives

• Understand the principles of modal analysis
and perform it using state-of-the-art software;

• Conduct experimental campaigns to collect
vibration-based data from the blades;

• Explore different ML approaches to build a re-
liable and fully automatic damage detection
model;

• Study which experimentally collected features
are more relevant to the performance of fault
detection;

• Compare the developed fault detection algo-
rithms based on accuracy, sensibility and dam-
age assessment capability;

• Assess the applicability of the developed mod-
els in a real-world scenario.

2. Background

2.1 Modal analysis

Modal analysis is a technique for examining a struc-
ture and estimating its dynamic properties such
as natural frequencies, damping ratios, and mode
shapes [6]. Almost all real-world situations can be
modelled as systems with more than one degree of
freedom (DOF).

2.2 Multiple degrees of freedom systems

In the time domain, the equation of motion for an
MDOF system is the same as the equation of motion
for an SDOF system, but it is a matrix equation:

[m]{ẍ}+ [c]{ẋ}+ [k]{x} = {f} (1)

Where [m] is the mass matrix, [c] the damping
matrix and [k] the stiffness matrix of the system.
These matrices have n x n dimension. The vector
x(t) represents the displacement as a function of the
time, and f(t) is the excitation of the system also
as a function of the time. Both have n x 1 dimen-
sion. The equation of motion can be transformed
into the Laplace domain by assuming that all initial
displacements and velocities are zero for all degrees
of freedom:

([m]s2 + [c]s+ [k]){X(s)} = {F (s)} or; (2)

[Z(s)]{X(s)} = {F (s)} (3)

The dynamic stiffness matrix is represented by
[Z(s)]. Inverting this equation results in:

{X(s)} = [H(s)]{F (s)} (4)

Where [H(s)] is the transfer function matrix be-
cause it represents the ratio of the system’s response
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Figure 1: Thesis overview schema.

to the corresponding force input in the Laplace do-
main for each DOF. This matrix contains functions
with complex values. The system characteristic
equation is the determinant of [Z(s)], and its roots
are the system poles, defining the values of the nat-
ural frequencies of the system. The solution for this
problem is based on the eigenvalues of a matrix, so
the first step is to define the equation 3 in the gen-
eral eigenvalue problem formulation. Considering:

[A]=

[
[0] [m]
[m] [c]

]
; [B]=

[
−[m] [0]
[0] [k]

]
(5)

{Y}=
[
s{X}
{X}

]
; {F’}=

[
{0}
{F}

]
(6)

While also taking into consideration that:

(s[m]− s[m]){X} = {0} (7)

(s[A] + [B]){Y } = {F ′} (8)

Equation 8 is the general formulation for the
eigenvalue problem when the force vector is null.
The system’s eigenvalues (λr, with r = 1, ..., n) are
the solutions of the equation 9, calculated for s.∣∣s[A] + [B]

∣∣ = 0 (9)

The number of solutions of this equation is deter-
mined by the system’s degree of freedom, n. In com-
plex conjugate pairs, there are 2n complex-valued
eigenvalues. The damping factor is the real compo-
nent of a pole, and the damped natural frequency is
the imaginary part, as in the SDOF systems. Each
of the system’s eigenvalues is associated with an
eigenvector named mode shape vector, {ψ}r Like
the system poles, they appear in complex conjugate
pairs. The modal vectors contain complex-valued
modal displacements, and the phase of these dis-
placements might differ between elements. On the
equation 3 these vectors make the force vector null
by definition. The transfer function can also be rep-
resented in terms of the system poles since they are
the roots of the system characteristic equation:

[H(s)] =
adj([Z(s)])∏n

r=1E (s− λr) (s− λ∗r)
(10)

=
adj([Z(s)])∏2n
r=1E (s− λr)

(11)

Where E is a constant. Regarding SDOF sys-
tems, the partial fraction expansion theory can be
applied to the expression 11 to obtain the residues,
Ar. The following equation relates them to the
mode shape vectors. For each residue:

[A]r = Qr{ψ}r{ψ}tr (12)

Since the residues [A]r are absolute quantities, it
is possible to deduce from the equation 12 that the
modal vectors are vectors with a scaling factor [A]r.
Each column j of the matrix [A] has enough infor-
mation to produce that matrix unless it coincides
with a modal coefficient ψjr equal to zero. This
occurs because all the columns are proportional to
one another, but if the coefficient is 0, the corre-
sponding row and column will be zero. As a result,
if the excitation point is in a nodal point of one
mode, that mode will not be recognised in experi-
mental modal analysis. The FRF matrix should be
obtained by evaluating the transfer function matrix
along the frequency axis:

[H(j ω)] =
∑n
r=1

(
Qr{ψ}r{ψ}t

r

(jω−λr)
+

Q∗
r{ψ}

∗
r{ψ}

∗t
r

(jω−λ∗
r)

)
(13)

The matrix [H(jω)] has complex values and de-
pends on the input frequency, so its values are not
constants. Taking into account that the FRF is
defined as the output-to-input ratio. When an ex-
citation Fk is applied on k DOF, Hjk(ω) is the re-
sponse Xj for the j DOF. The input force and the
system response (measured in displacement, veloc-
ity, or acceleration) are quantifiable. As a result,
the equation 13 can be used to find the system’s
modal parameters. As previously stated, the FRF
of a MDOF system is the sum of the FRFs of n
SDOF systems.

3. Implementation
3.1 Modal parameter estimation
3.1.1 Titanium wind turbine blade

Given the high stiffness of the titanium blade, the
impact testing had the best performance because it
was the only test capable of exciting all ten modes
highlighted in figure 2 for the analysed bandwidth of
0-800 Hz. For this following analysis of natural fre-
quencies and damping ratios, the FRFs used were
obtained from the impact testing and considering

3



only the bandwidth of 15-800 Hz since it was the
configuration that presented the best results for this
blade, as explained above. Figure 2 shows the sta-
bilisation diagram with the system poles obtained
for a model size of 50 from the Polymax tool of
the Simcenter Testlab. Ten reference normal modes
represented in the figure were selected based on
the stable poles, each corresponding to a peak of
the sum of the 30 FRFs from the ten tri-axial ac-
celerometers. The modal parameters presented in
table 1 correspond to the average natural frequen-
cies and damping ratios of all healthy experimental
runs.
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Figure 2: Ti blade stabilization diagram clustered
with representative poles.

The mode-set selected was compared to itself in
the calculated Auto-MAC in figure 3. Ideally, each
mode should be uniquely observed and have a dif-
ferent shape than the other modes. What can be
observed in the figure, where all the non-diagonal
values of the matrix have correlations below 30%.

Table 1: Ti blade modal parameters.

Mode Natural frequency [Hz] Damping ratio

1 25.969 0.67%
2 56.187 0.89%
3 92.050 0.91%
4 197.803 1.00%
5 241.526 0.97%
6 353.559 0.99%
7 517.906 0.99%
8 541.696 0.86%
9 625.627 0.65%
10 756.772 0.89%

Figure 3: Auto-MAC for a healthy experimental
run of the Ti blade.

Having been defined the reference modes and the

respective natural frequencies of the structure in
the healthy state, the comparison with the dam-
aged state will be made. In the following figure
5, it is represented in blue the frequency range of
all the healthy experimental runs performed with
the respective mean, minimum and maximum val-
ues represented by dashed lines. All points repre-
sented correspond to frequencies from damaged ex-
perimental runs, organised by position on the blade
and magnitude of the mass used.

Figure 4: Mass positions used to perform the dam-
aged experimental runs of the Ti blade.

The first evident conclusion is the deviation from
the healthy reference frequencies for all masses
tested for all the normal modes. The second in-
teresting conclusion to be drawn from the first two
modes of Ti is the almost linear increase of the fre-
quency shift according to the increase of the mass’s
distance to the clamped side of the blade and the
magnitude of the mass itself. This phenomenon
only does not apply to the lowest magnitude mass
of 15.5g, which, despite having sufficient magnitude
to cause an observable deviation, does not have suf-
ficient magnitude to cause a relevant deviation on
par with the other masses so that any pattern can
be observed. The same tendency occurs until the

Figure 5: Natural frequencies of the 1st mode of
the Ti blade.
fourth mode, from which the increase in the fre-
quency shift is no longer related to the position of
the mass in the structure and increases only with
the increment of magnitude. For high-order modes
the frequency distribution starts to be purely ran-
dom.

3.1.2 GFRP wind turbine blade

Both the impact and the shaker testing were able to
detect the fourteen normal modes depicted in fig-

4



ure 8; however, the modal shaker was the one that
did so most consistently throughout all the experi-
mental runs. Figure 7 depicts the clear distinction
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51 4 6 72 3

Figure 6: Mass positions used to perform the dam-
aged experimental runs of the GFRP blade.
between the experimental runs carried out with the
GFRP blade in both healthy and damaged states.

Figure 7: GFRP blade FRFs from healthy vs dam-
aged experimental runs.

The GFRP blade was experimentally tested for
the same frequency spectrum as the Ti Blade (0-
800Hz) to allow for comparisons between the two
under similar circumstances. However, given the
entirely different nature of the two, the GFRP blade
starts presenting inconsistencies for the higher fre-
quencies of the bandwidth. For this reason, only a
smaller, more reliable portion of the spectrum was
considered henceforth. The FRFs used to find the
eigenfrequencies and damping ratios of the GFRP
blade were obtained from the modal shaker testing.
Figure 8 shows the stabilisation diagram, for the
10-650 Hz bandwidth, with the system poles ob-
tained for the model size of 50, where 14 reference
modes were selected based on the stable poles, each
corresponding to a peak of the sum of the FRFs.
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Figure 8: GFRP blade stabilization diagram clus-
tered with representative poles.

The modal parameters presented in table 2 corre-
spond to the average natural frequencies and damp-
ing ratios of all healthy experimental runs. The
mode-set selected was compared to itself in the cal-
culated Auto-MAC in figure 9. After selecting the

Table 2: GFRP blade modal parameters.

Mode Natural frequency [Hz] Damping ratio

1 15.346 0.83%
2 31.437 1.73%
3 47.890 1.51%
4 101.485 1.41%
5 114.879 2.41%
6 137.672 4.47%
7 178.737 1.53%
8 225.382 2.72%
9 247.519 1.50%
10 299.862 1.14%
11 388.350 2.01%
12 457.484 2.02%
13 560.414 2.38%
14 626.092 2.36%

Figure 9: Auto-MAC for a healthy experimental
run of the GFRP blade.

reference modes of the healthy state, the compari-
son to the damaged frequencies can now be made.
As seen for the titanium blade, for the GFRP blade,
it is also possible to confirm the deviation of the
damaged frequencies from the blue frequency band
corresponding to the healthy experimental runs.

Figure 10: Natural frequencies of the 1st mode of
the GFRP blade.

This deviation is evident for all the masses, in-
cluding the smaller percentage ones not analysed
for the titanium blade. However, this deviation is
only evident for most of the masses in positions five
onwards, which correspond to the last third of the
blade, near the tip. The second conclusion about
the increase of this deviation with the approach of
the mass to the tip and the increase of the mass
magnitude, which was verified for the Ti blade, is
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also verifiable for the GFRP blade. The fact that
more mass magnitudes were analysed for this blade
highlights, even more, this linear correlation of the
frequency shift with the mass magnitude and with
the mass position, as it is possible to observe in fig-
ure 10. This tendency, similar to the GFRP blade,
is verified until the fourth mode, where the corre-
lation happens only with the increase in magnitude
and for high-order modes there is no longer any cor-
relation.

3.2 Multivariate Gaussian anomaly detection

The idea behind this methodology is based on the
natural frequency shift of a damaged structure in re-
lation to its healthy state. Therefore the premise is:
if the algorithm can learn the natural frequencies of
a structure in its undamaged state, it should be able
to detect divergent frequencies of the same struc-
ture and consider them as anomalies. As portrayed
in the diagram of figure 13, the algorithm starts by
reading the files from each experimental run, in the
damaged and undamaged state separately, contain-
ing the natural frequencies of the blade.

Figure 11: Multivariate Gaussian distribution ap-
plied to the natural frequencies of the first two nor-
mal modes of the Ti blade.
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Figure 12: MGAD classification applied to the
natural frequencies of the first two normal modes
of the Ti blade.

Each file corresponds to an experimental run con-
taining the eigenfrequencies for every mode. The
process of quantifying how divergent a natural fre-
quency should be to be considered an outlier was
done using a multivariate Gaussian distribution.
For the implementation within the scope of this the-
sis, the features used to perform the multivariate

Gaussian distribution were the natural frequencies
of all the modes for each blade. A visual represen-
tation of this approach can be seen in figures 11 and
12.

3.3 Anomaly detection autoencoders

Select FRF files

Normalize each
accelerometer
direction FRF

Training subset

Undamaged
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Normalize each
accelerometer
direction FRF

Train an autoencoder for each
accelerometer direction

Autoencoder

Threshold
optimization

Individual accelerometer
direction classification

Damaged
structure

Undamaged
structure

Testing subset

Validation subset

Calculate
reconstruction error

Individual file
classification

Figure 14: ADAE methodology diagram.

Another technique developed was the Anomaly De-
tection Autoencoder (ADAE). The ADAE is a semi-
supervised learning approach that involves training
the algorithm with normal features, i.e. data from
the structure in its healthy state and then classi-
fying the rest of the testing dataset based on its
reconstruction error. If the error of a certain point
exceeds an established threshold, it is classified as
an anomaly. As schematically shown in the dia-
gram of figure 14, the algorithm starts by reading
the files from each experimental run, in the dam-
aged and undamaged state separately, containing
the FRFs from the blade. Each experimental run
file has data from the three directions (x, y and
z) of each accelerometer. Considering that ten ac-
celerometers were used, there are three times ten
FRFs, i.e. 30 per experimental run. Then, the data
are normalised along the accelerometer directions
to reduce the experimentally inevitable differences
in data acquisition from run to run. After that, the
data from the selected files are divided into three
subsets. The first one, consisting of one-third of
the healthy data, is used for the training of the
AEs. An AE is trained for each direction of each
accelerometer. The second subset containing one-
third of healthy data and half of the damaged data
is used for the validation process - finding the opti-
mal threshold. Finally, the last subset, also consist-
ing of half of the damaged data and one-third of the
undamaged data is used for testing - classifying the
files based on the threshold found. In figure 15 is
illustrated the fundamental principle of an AE ap-
plied to our use case. At the top of the diagram, in
green, it is represented the input signal correspond-
ing to an FRF in the healthy state and the respec-
tive AE reconstruction, which exhibits an almost
perfect reconstruction, originating only residual er-
ror. While at the bottom, in red, the input signal
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Figure 15: ADAE reconstruction error principle.

of the structure in its damaged state manifests a
significant difference in the AE reconstruction and
corresponding error. For this thesis algorithm im-
plementation, the root-mean-square error (RMSE)
was used to estimate the reconstruction error.

RMSE=

√∑n
i=1

(ŷi−yi)2
n (14)

The following figure 16 show the reconstructions of
the FRFs of the structure in its healthy state, and it
is visible that the reconstruction is near perfect; i.e.,
the output FRF is roughly the same as the input
FRF.
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Figure 16: ADAE FRF reconstructions for
healthy inputs from the GFRP blade.

While in figure 17, it is represented the case for
the input FRFs of the structure in its damaged
state, and the difference in their reconstruction is
evident and significant. In order to give an in-
sight into the distribution of the reconstruction er-
ror along the spectral lines of the FRF, i.e. along its
bandwidth, figure 18 show the RMSE between all
the collected experimental runs and their respective

Figure 17: ADAE FRF reconstructions for dam-
aged inputs from the Ti blade.

output reconstructions for the damaged and healthy
state separately. As expected, it is possible to no-
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Figure 18: Sum of the reconstruction RMSE from
every healthy vs damaged experimental run for one
of the accelerometer directions of the GFRP blade.

tice the RMSE corresponding to undamaged data
remaining approximately null the whole spectrum.
In contrast, the damaged data part remains signif-
icant over the whole bandwidth, with the largest
spikes in the zones near the natural frequencies of
the blade in its original state. The graphs in fig-
ures 19 and 20 shows the variation of RMSE over
the different experimental runs for both healthy and
damaged data. Analogously to what was observed
in section 3.1, where the natural frequencies of the
damaged structure presented a larger deviation for
higher magnitude and masses closer to the tip of the
blade, the same applies to the reconstruction error
of the AEs. It can be seen that for the titanium
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Figure 19: RMSE for the different experimental
runs of the Ti blade.

turbine blade, it is quite simple to define a threshold
value between the errors of the healthy and dam-
aged structure due to the large difference between
the two. Regarding the GFRP turbine blade, the
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Figure 20: RMSE for the different experimental
runs of the GFRP blade.

same is true but only for masses above 4.3g, cor-
responding to 0.6% of the blade mass. For the al-
gorithm to be able to identify damage below those
magnitudes, the thresholding process addressed in
the following subchapter has to be taken into ac-
count. The selection of the reconstruction error
threshold, which defines what points are considered
faults, is one of the most significant challenges when
using ADAEs. For each possible threshold, a corre-
sponding value of true positives and false positives
exists. To facilitate the study of the threshold se-
lection considering both variables at the same time,
a score based on the intersection over Union (IoU)
method defined in equation 15 was used. The auto-
matic threshold selection process was based on the
maximum value of this parameter.

IoU =
TP

TP + FN + FP
(15)

4. Results
4.1 Multivariate Gaussian Anomaly Detection
4.1.1 GFRP turbine blade

In table 3, it is presented the sensitivity study of the
algorithm’s damage detection as a function of the
mentioned variables. On the left are the intervals of
masses, and in opposition, are the intervals of mass
positions (figure 4) considered to reach the corre-
sponding accuracy. For instance, the first column
of the first row of the table corresponds to the algo-
rithm’s accuracy when running, considering all the
damaged experimental runs of the, in other words,
every combination of magnitude and position of the
mass. Since the tests were performed with ten dif-
ferent mass magnitudes in seven different positions,
the algorithm ran with seven times ten, i.e. 70 dif-
ferent files, representing 70 experimental runs of the
blade in the damaged state. On the other hand, the
entry of the last column of the last row corresponds
to the algorithm’s accuracy, taking only into consid-
eration the experimental run with the mass of 35.4g
at position 7. As seen in chapter 3.1, defects in po-
sitions closer to the free extremity of the blade and
higher magnitude lead to higher frequency shifts.
The opposite is true for natural frequencies from
experimental runs with mass positions closer to the
clamped side and lower magnitude, with insufficient
variation in comparison with its healthy state. This

Table 3: MGAD accuracies for the different com-
binations of intervals of magnitude and position of
the GFRP blade.

Mass [g]
Position of the mass on the blade

1 to 7 2 to 7 3 to 7 4 to 7 5 to 7 6 to 7 7

0.4 to 35.4 94.1% 97.8% 95.1% 94.4% 93.8% 92.6% 100.0%
1.0 to 35.4 95.7% 97.7% 94.7% 94.1% 93.3% 92.3% 100.0%
2.1 to 35.4 95.5% 97.5% 94.4% 93.8% 93.1% 92.0% 100.0%
4.3 to 35.4 95.0% 100.0% 100.0% 100.0% 100.0% 91.7% 100.0%
8.1 to 35.4 94.6% 100.0% 100.0% 100.0% 100.0% 91.3% 100.0%

10.4 to 35.4 93.9% 100.0% 100.0% 100.0% 100.0% 90.9% 100.0%
14.8 to 35.4 93.3% 100.0% 100.0% 100.0% 100.0% 90.5% 100.0%
19.5 to 35.4 92.6% 100.0% 100.0% 100.0% 100.0% 90.0% 100.0%
26.5 to 35.4 91.3% 100.0% 100.0% 100.0% 100.0% 89.5% 100.0%

35.4 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

damaged frequency shift will strongly influence the
thresholding process. A high-frequency shift will
result in a more optimal threshold, whereas a low-
frequency shift will result in a poor threshold, which
will be reflected in the algorithm’s accuracy. The
results obtained shown in table 3 validate this rea-
soning.

4.1.2 Titanium turbine blade

As seen for the GFRP WT blade, the worst perfor-
mances are noticed when considering masses of 0.4,
1.0 and 2.1 grams, which correspond to a maximum
of 0.3% of the GFRP blade’s mass. The titanium
WT blade was only tested for masses as light as
0.6% of its total weight. For this reason, given the
results for the GFRP blade, it makes sense that the
results for the Ti blade would be close to the perfect
accuracy, as was the case for the GFRP blade for
most combinations of runs above 0.3% of the total
mass. Which was verified.

4.2 Anomaly detection autoencoders

Contrary to what was seen regarding MGAD, this
algorithm was able to achieve perfect accuracy for
certain configurations when analysing the entire
dataset of masses tested. Thus, those configura-
tions, i.e. AE architectures, will be presented, and
the most optimal for each of the WT blades will
be ascertained. The algorithm architecture and the
tuning of its hyperparameters is one aspect that
significantly impacts its accuracy. The two hyper-
parameters that most affected the final output of
the algorithm were the code size and the maximum
number of epochs. An epoch is a term used in ML
that indicates the number of times that the learn-
ing algorithm will work through the entire training
dataset, and the code size represents the number
of neurons in the hidden layer, i.e. the number of
nodes in the middle layer.

4.2.1 GFRP turbine blade

In table 4, it is shown the study performed for these
two parameters and how they influenced the accu-
racy of the algorithm concerning the GFRP blade
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data. Taking into account that the algorithm exe-
cution time and its computational requirements in-
crease with the increasing of the hyperparameters,
i.e., along the lines and columns of table 4, a pres-
election of the four configurations, which presented
perfect accuracy for the less computational impact
possible, was made.

Table 4: Accuracy comparison of the algorithm
architectures.

Epochs
Code size

1 5 10 20 30 40 50 60

1 97.8% 91.3% 95.7% 89.1% 93.5% 95.7% 93.5% 93.5%
2 95.7% 95.7% 87.0% 87.0% 89.1% 91.3% 89.1% 91.3%
3 97.8% 91.3% 87.0% 87.0% 87.0% 87.0% 91.3% 87.0%
4 91.3% 91.3% 89.1% 89.1% 87.0% 91.3% 87.0% 87.0%
5 89.1% 89.1% 91.3% 91.3% 87.0% 93.5% 87.0% 93.5%

10 93.5% 91.3% 91.3% 91.3% 97.8% 97.8% 97.8% 91.3%
15 100.0% 97.8% 100.0% 97.8% 97.8% 97.8% 97.8% 97.8%
20 95.7% 100.0% 100.0% 97.8% 100.0% 100.0% 95.7% 97.8%
30 100.0% 100.0% 100.0% 97.8% 100.0% 100.0% 100.0% 97.8%
50 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

100 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
200 100.0% 100.0% 97.8% 100.0% 100.0% 100.0% 100.0% 100.0%
300 97.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
500 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
800 100.0% 97.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

1000 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

4.2.2 Titanium turbine blade

Considering that the ADAEs results were
favourable for the GFRP WT blade when analysing
all the tested masses, the same results were ex-
pected for the titanium WT blade since the masses
used in this blade tests were heavier, meaning they
would be easier to detect. This was confirmed with
the perfect accuracy results obtained considering
all the masses and using the minimal configuration
of 1 Epoch and Modal Size 1; the fastest and less
computationally demanding type of AE possible.
Therefore, optimisation analysis as the one done
for GFRP blade architecture is not necessary for
the Ti blade.

5. Conclusions

After all the research work developed through-
out this thesis, it was concluded that implement-
ing ML techniques concerning damage detection on
vibration-based data was successful. The conclu-
sions about the results obtained can be structured
according to the two algorithms developed: MGAD
and ADAEs. Regarding the MGAD, its initial
premise centred on the variation of natural frequen-
cies of a damaged structure was confirmed. How-
ever, with regard to the GFRP blade, this frequency
variation was insufficient for mass positions closer to
the clamped side of the blade and lower magnitude
masses. The heavy reliance on precise modal pa-
rameter estimation is a drawback of MGAD. Con-
cerning the ADAEs results, it can be concluded that
its premise, based in the variation of the FRF of
a damaged structure, was verified and proven to
be quite reliable, enabling the algorithm to detect
all the masses tested in every position of the two

blades. The only aspect to consider that affects the
algorithm’s performance is the architecture and the
optimisation of the hyperparameters.
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