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Resumo

A detecção de dano desempenha um papel vital no funcionamento da maquinaria e representa um

dos maiores desafios nas indústrias mecânica, aeroespacial e aeronáutica. A indústria da energia

eólica, onde as turbinas eólicas são sujeitas a enormes cargas mecânicas e aerodinâmicas e condições

ambientais extremas durante o seu funcionamento, é uma das indústrias que mais pode beneficiar com

este tipo de estudo. A instalação de turbinas eólicas requer investimentos significativos durante um

longo perı́odo no que diz respeito a manutenção e reparações. De forma a reduzir estes custos e

garantir a integridade e a longevidade de tais estruturas, a utilização de um sistema de monitorização

de saúde estrutural fiável, associado a uma metodologia robusta de detecção de defeitos, é crucial para

avaliar a viabilidade dos investimentos durante a sua vida útil. Para a posterior deteção de defeitos,

inúmeras técnicas de machine learning e deep learning foram bem sucedidas numa vasta gama de

aplicações.

Esta tese visa implementar algoritmos capazes de consistentemente detectar e avaliar falhas em

duas pás de turbina eólica de material diferente. Técnicas como multivariate Gaussian anomaly detec-

tion e anomaly detection autoencoders foram incorporadas com sucesso através do reconhecimento de

padrões de desvio do estado saudável para o seu estado danificado em dados adquiridos experimen-

talmente, tais como parâmetros modais e funções de resposta em frequência. Estes dados de vibração

foram obtidos através de ensaios com um shaker modal, ensaios com um martelo modal e ensaios de

pull-and-release aplicando análise modal experimental e análise modal operacional.

Palavras-chave: deteção de dano, pá de turbina eólica, análise modal, monitorização de

saúde estrutural, machine learning, deep learning.
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Abstract

Damage detection plays a vital role in the operation of machinery and represents one of the greatest

challenges in the mechanical, aerospace, and aeronautical industries. The wind energy industry, where

wind turbines are subjected to enormous mechanical and aerodynamic loads and extreme environmen-

tal conditions during operation, is one of the industries that can benefit most from this kind of study. The

installation of wind turbines requires significant investments over a long period concerning maintenance

and repairs. In order to reduce these costs and guarantee the integrity and longevity of such struc-

tures, the use of a reliable structural health monitoring system coupled with a robust anomaly detection

methodology is crucial to assess the viability of the investments during their lifespan. Regarding the

subsequent fault detection, numerous machine learning and deep learning techniques have succeeded

in a broad range of applications.

This thesis aims to implement algorithms capable of consistently detecting and assessing faults in

two wind turbine blades of different materials. Such techniques as multivariate Gaussian anomaly de-

tection and anomaly detection autoencoders were successfully incorporated by recognising deviating

patterns from the healthy state to its damaged state in experimentally acquired data such as modal pa-

rameters and frequency response functions. These vibration-based data were obtained through modal

shaker testing, modal hammer testing and pull-and-release testing applying experimental modal analysis

and operational modal analysis.

Keywords: damage detection, wind turbine blade, modal analysis, structural health monitoring,

machine learning, deep learning.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Wind energy

The wind is one of the most appealing renewable energy sources for electricity production, representing

a significant part of the power generation mix in some countries. For example, in 2017, wind energy in

Portugal accounted for 21.6% of total electric energy production, covering 24.6% of the annual electricity

demand [1]. In Europe, there is currently 205 GW of wind energy capacity. An additional 88 GW of net

capacity will be added in Europe in the next five years, bringing the total capacity to 277 GW. Moreover,

by 2030, the EU will have installed 323 GW of wind energy. Wind energy currently meets 15% of EU

electricity demand; by 2030, it is expected to cover 30% of demand and employ 569,000 people [2].

European countries will begin implementing their 2030 National Energy and Climate Plans (NECPs)

toward the 32% renewables target by the end of 2020. Wind energy will play a critical role over the

coming years, allowing many European countries to continue decarbonising their power systems and

transforming their energy systems in a cost-effective way [3].

Figure 1.1: European annual gross wind energy capacity installations per country according to WindEu-
rope’s scenario [3].
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1.1.2 Wind turbines

Wind turbines are not only subject to mechanical and aerodynamic loads during operation but also

extreme environmental conditions such as gusts, icing and lightning strikes. The main reasons for wind

turbine (WT) damage are thermal cycling, sand, bird impacts, leading and trailing edge erosion, fatigue,

moisture intrusion, and mechanical failure [2].

The installation of WTs requires significant investments during a minimum of a 20-year lifespan. To

assess the reliability of the investments during this period, the use of structural health monitoring (SHM)

systems to continuously monitor the condition of WTs is crucial. SHM can provide relevant information

for rescheduling maintenance tasks and lowering its associated costs.

Figure 1.2: Horizontal axis wind turbine (HAWT) farm.

The maintenance of WT blades involves

visual inspection, which can be dangerous

and time-consuming. For horizontal axis

wind turbines (HAWTs), standard scheduled

maintenance can be performed twice a year

and take up to 24 hours. In case of failure,

unscheduled maintenances can be up to five

times more expensive [4]. Regular WT Op-

eration and Maintenance (O&M) costs are

very high, accounting for 20–25% of the total

levelized cost of energy (LCOE) over the turbine’s lifetime. High maintenance and repair costs raise the

cost of energy, making wind energy less competitive [2, 5]. The average failure rate of an offshore WT

is around eight times per year, and the blades are the fifth most common cause of failure, accounting

for 6.2% of the failures (after the pitch and hydraulic system, auxiliary components, generator, and gear-

box) [6]. In addition, around 3,800 WT blades are failing every year, representing 0.54% of the estimated

700,000 blades in operation worldwide [7]. The structural repair of a single wind blade can cost up to

$30,000, and the price of a new blade is, on average, around $200,000 [2]. Therefore, developing a

remote blade condition monitoring system is a topic that the industry is engaged in.

(a) (b)

Figure 1.3: Wind turbine blade assembly (a) and maintenance (b).
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1.2 Topic overview

1.2.1 Damage detection

Damage detected early on can prevent irreversible structural failures, hence the importance of a robust

defect detection methodology for ensuring machinery’s structural integrity and operational safety while

lowering maintenance and repair costs. Reliable damage detection techniques are a significant chal-

lenge in the mechanical, aerospace, and aeronautical industries. In particular, for the WT industry, due

to the high magnitude of the structures and respective investments [8–11].

Structural health monitoring

Structural health monitoring (SHM) can be defined as the acquisition, validation and analysis of technical

data to facilitate life-cycle management of decisions. More broadly, it refers to a reliable system capable

of detecting and evaluating adverse changes in a structure due to damage, or regular operation [7, 12,

13]. One way of carrying out this monitoring process is through the extraction and analysis of vibration-

based data [1, 14–17].

Modal analysis

A general process of SHM based on modal analysis involves collecting relevant vibration response data

from sensors attached to the surface undergoing an excitation from which is extracted modal information

such as natural frequencies, damping ratios and mode shapes. Damaged structures will have these

modal parameters affected due to local discontinuity created by the fault [18–22].

Experimental modal analysis (EMA) is a typical technique for estimating the modal properties of

structures that have been used for many years. This technique assumes that the user knows both inputs

and outputs; however, it is not always possible to measure both, particularly in operational conditions.

For this reason, the operational modal analysis (OMA) technique was then introduced.

The OMA approach serves the same goals as the EMA, but it is more suitable for operating machines

because it relies only on measured outputs and does not need to know about the input forces. The

estimation of OMA parameters combined with a proper SHM strategy can be used to track unusual

system variations and inform when unplanned maintenances are required. Considerable modal analysis

research has already been done for WTs [4, 23–26].

1.2.2 Machine learning

In recent years, advanced computational artificial intelligence algorithms have achieved large success

in detecting different types of faults [13, 27]. Fault detection using machine learning (ML) focuses on two

main areas: anomaly detection and fault classification. While anomaly detection algorithms primarily

focus on detecting whether or not an anomaly exists on the specimen, fault classification takes a step

further in identifying both an anomaly and the type of anomaly that occurred [28]. The use of ML
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techniques requires prior feature engineering. The choice of features and classifier has a significant

impact on the performance of these damage detection algorithms. Furthermore, choosing and pre-

processing fixed or hand-crafted features necessitates prior knowledge, expertise and may also require

a substantial amount of computational power, which may limit their use in real-time analysis [29].

Deep learning

Deep learning (DL) is a subset of ML mainly focused on artificial neural network algorithms. DL goes

a step further in terms of complexity and power, representing more complex architectures and algo-

rithms such as deep neural networks, convolutional neural networks, and recurrent neural networks.

As opposed to what was stated about ML, these techniques can learn a transformation or sequence of

transformations from raw data, which does not imply better results than ML.

Figure 1.4: Deep learning as a subset of machine learning in the context of artificial intelligence.

Over the last few years, remarkable progress has been made in the field of DL with emerging ap-

plications for SHM and damage detection [30, 31]. The development of such DL techniques can be

traced back to image recognition and signal analysis, where a large number of architecture designs for

artificial neural networks have been created and successful results achieved [32–34]. In particular for

damage detection algorithms using autoencoders [35–40]. Also, deep neural networks are being im-

plemented in the mechanical and aerospace industries, for instance, in the damage detection of beam

structures, [29, 41], damage assessment in rotating machinery and motor fault detection [28, 42–44],

psychoacoustic analysis [45, 46], and other non-engineering applications [47]. Furthermore, feature

extraction techniques have been employed to images generated from time-signals for SHM applica-

tions [46, 48, 49]. Studies have also been done for WT fault classification [50] and autonomous crack

detection [51].
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1.3 Objectives

• Understand the principles of modal analysis;

• Conduct experimental campaigns to collect vibration-based data from the blades;

• Perform modal analysis using state-of-the-art software;

• Explore different ML approaches to build a reliable and fully automatic damage detection model;

• Study which experimentally collected features are more relevant to the performance of fault detec-

tion;

• Compare the developed fault detection algorithms based on accuracy, sensibility and damage

assessment capability;

• Assess the applicability of the developed models in a real-world scenario.

Natural
frequencies

FRFs

Pull-and-release
testing

Impact testing

Shaker testing Accuracy

Sensibility

Experimental data Modal Analysis Damage Detection

Fault assessment

Anomaly
Detection

Autoencoders

Machine Learning

Gaussian
Anomaly
Detection

AMPS
Polymax

Natural
frequencies

Mode shapes

Modal
tracking

script

Figure 1.5: Thesis overview schema.
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1.4 Thesis outline

The structure of this thesis is divided into five parts: a theoretical introductory part; a section about the

experimental campaigns; a chapter regarding the post-processing of the experimental data; a section

about the used ML techniques; and a final chapter with the relevant conclusions.

Firstly, section 2 introduces the theoretical concepts on which this thesis was based, namely modal

analysis and the two ML algorithms used for damage detection.

Secondly, chapter Modal parameter estimation presents the two structures analysed: the titanium

and glass-fiber reinforced plastic (GFRP) WT blades, as well as the experimental setups used to acquire

the respective vibration-based data.

Thirdly, the post-processing and analysis of the modal parameters collected for the two blades are

explained in section Modal parameter estimation.

In fourth place, chapter 5 shows in detail the ML algorithms used, their methodologies and results.

Finally, the general conclusions of the work and possible future improvements to be made are men-

tioned in the final chapter 6.
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Chapter 2

Theoretical background

2.1 Modal analysis

When it comes to engineering design, structural vibration issues are one of the most critical concerns.

This emphasises the importance of being able to predict and monitor the vibration levels during oper-

ation. As a result, a thorough understanding of each system’s dynamic behaviour is essential. Modal

analysis is a technique for examining a structure and estimating its dynamic properties such as natural

frequencies, damping ratios, and mode shapes [52].

Almost all real-world situations can be modelled as systems with more than one degree of freedom

(DOF). With that in mind, the elementary concept of single degree of freedom (SDOF) systems will be

introduced, followed by the presentation of multiple degrees of freedom (MDOF) systems.

2.1.1 Single degree of freedom systems

The analysis of an oscillatory system’s free response, or its behaviour when no external forces are

applied, allows the modal parameters to be determined, which are, for an SDOF situation, the natural

frequency !n and the damping ratio ⇠.

Figure 2.7 illustrates a basic model for a viscously damped SDOF system composed of a mass m,

a stiff spring k, and a damper with a damping coefficient c. The mass displacement is represented by

x(t), and the external force applied to the system is represented by f(t), both as a function of time.

Figure 2.1: Single degree of freedom system.
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The equilibrium of forces (balance of inertial, damping, elastic, and external forces) in this case is:

mẍ(t) + cẋ(t) + kx(t) = f(t) (2.1)

Where ẋ and ẍ are, respectively, the velocity and acceleration of the system.

Considering that there is no displacement neither velocity in the initial moment, i. e. x(0) = 0 and

ẋ(0) = 0, and applying the Laplace Transform, the equation 2.1 can be written as:

(ms
2 + cs+ k)X(s) = F (s) (2.2)

Where s represents the Laplace domain. Using Z as the dynamic stiffness of the system, it comes:

Z(s)X(s) = F (s) (2.3)

Replacing Z(s) by H(s) = Z
�1(s) the result is:

X(s) = H(s)F (s) (2.4)

H(s) is the system’s transfer function, and it relates the input force F to the output displacement X.

In general, a system’s transfer function is a complex-valued function that can be defined as the ratio

between the Laplace Transform of the output (system response) and the input (system excitation), with

zero initial conditions.

Going back to the equation 2.2 it is possible rewrite H(s) in terms of the system dynamic properties:

H(s) =
1
m

s2 + c
ms+ k

m

(2.5)

The roots of the system characteristic equation which is the denominator of the equation 2.5 repre-

sent the system poles. They are calculated using the following formula:

�1,2 = � c

2m
±
r⇣

c

2m

⌘2
� k

m
(2.6)

Given that the proposed system is conservative, i.e. it has no damping (c = 0), the positive solution

of the equation 2.6 is:

!n =

r
k

m
(2.7)

Where !n is the undamped natural frequency of the system.

The critical dumping, c0, is obtained by equaling the term under the square root in the equation 2.6

to zero.

c0 = 2m

r
k

m
(2.8)
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The damping ratio ⇠ can also be used to define the system’s damping in a dimensionless manner.

This is the percentage of critical damping of the system:

⇠ =
c

c0
(2.9)

The damping ratio value is used to classify systems because it determines their type of response. A

system with ⇠ = 0 has no damping. The system is underdamped when the damping ratio is between

0 and 1. If the damping coefficient is equal to the critical damping (⇠ = 1) it is classified as critically

damped. The system is overdamped when the damping ratio is higher than one. Real-world systems

with no active damping mechanism are normally underdamped, with a damping ratio of less than ten

per cent (⇠ < 0.1). As a result, all systems analysed from now on will be considered underdamped.

Going back to the equation of motion of the system (2.1) and solving it in the time domain:

x(t) = x1e
�1t + x2e

�2t (2.10)

Where �1 and �2 are solutions of the homogeneous equation defined by the equation 2.6. That

equation has two complex conjugate roots as a solution:

�1 = �1 + j!1 and; �
⇤
1 = �1 � j!1 (2.11)

With �1 being the damping factor and !1 the damped natural frequency, also called resonance.

Knowing this, the transfer function defined by equation 2.5 can be written as:

H(s) =
1
m

(s� �1)(s� �
⇤
1)

(2.12)

According to partial fraction expansion theory:

H(s) =
A1

(s� �1)
+

A
⇤
1

(s� �
⇤
1)

with; A1 =
1
m

j2!1
(2.13)

Where A1 and A
⇤
1 are the residues.

The previous concepts in the Laplace domain (s) may be rearranged in the frequency domain. The

Frequency Response Function (FRF) is the transfer function analysed along the frequency axis j! (when

� = 0):

H(p)|p=j! = H(!) =
A1

(j! � �1)
+

A
⇤
1

(j! � �
⇤
1)

(2.14)

It is possible to disregard the effect of the complex conjugate part and simplify the FRF expression
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2.15 for frequencies close to the resonance frequency (! ⇠= !1).

H(!) =
A1

(j! � �1)
(2.15)

According to the physic quantity used to measure the system response, there are three different

types of FRFs [53]. The receptance is the function calculated in terms of the displacement relative to the

input force. It can also called dynamic compliance. The FRF is referred to as mobility when measured

in terms of velocity relative to force. When using the acceleration to measure the response, the FRF is

called accelerance or inertance. Figure 2.2 depicts the typical behaviour of the FRF compliance near

the resonance frequency for both the real and imaginary parts. A resonance peak is characterised in an

FRF by a 0 in the real part, a peak in the imaginary part and a shift in phase of 180 degrees.

Figure 2.2: Real and imaginary part of a receptance function.

2.1.2 Multiple degrees of freedom systems

Problems with only one degree of freedom are extremely limited and nearly impossible to encounter in

a real-world scenario. Hence, the concepts presented in the previous section 2.1.1 will be extended to

systems with n degrees of freedom, where n > 1. In the time domain, the equation of motion for an

MDOF system is the same as the equation of motion for an SDOF system, but it is a matrix equation:

[m]{ẍ}+ [c]{ẋ}+ [k]{x} = {f} (2.16)

Where [m] is the mass matrix, [c] the damping matrix and [k] the stiffness matrix of the system.

These matrices have n x n dimension. The vector x(t) represents the displacement as a function of the

time, and f(t) is the excitation of the system also as a function of the time. Both have n x 1 dimension.

The equation of motion can be transformed into the Laplace domain by assuming that all initial
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displacements and velocities are zero for all degrees of freedom:

([m]s2 + [c]s+ [k]){X(s)} = {F (s)} or; [Z(s)]{X(s)} = {F (s)} (2.17)

The dynamic stiffness matrix is represented by [Z(s)]. Inverting this equation results in:

{X(s)} = [H(s)]{F (s)} (2.18)

Where [H(s)] is the transfer function matrix because it represents the ratio of the system’s response

to the corresponding force input in the Laplace domain for each DOF. This matrix contains functions with

complex values.

The system characteristic equation is the determinant of [Z(s)], and its roots are the system poles,

defining the values of the natural frequencies of the system. The solution for this problem is based on

the eigenvalues of a matrix, so the first step is to define the equation 2.17 in the general eigenvalue

problem formulation. Considering:

[A] =

2

4 [0] [m]

[m] [c]

3

5 ; [B] =

2

4�[m] [0]

[0] [k]

3

5 ; {Y } =

2

4s{X}

{X}

3

5 and; {F 0} =

2

4{0}

{F}

3

5

While also taking into consideration that:

(s[m]� s[m]){X} = {0} (2.19)

(s[A] + [B]){Y } = {F 0} (2.20)

Equation 2.20 is the general formulation for the eigenvalue problem when the force vector is null.

The system’s eigenvalues (�r, with r = 1, ..., n) are the solutions of the equation 2.21, calculated for s.

���s[A] + [B]
��� = 0 (2.21)

The number of solutions of this equation is determined by the system’s degree of freedom, n. In

complex conjugate pairs, there are 2n complex-valued eigenvalues. The damping factor is the real

component of a pole, and the damped natural frequency is the imaginary part, as in the SDOF systems.

Each of the system’s eigenvalues is associated with an eigenvector named mode shape vector, { }r
Like the system poles, they appear in complex conjugate pairs. The modal vectors contain complex-

valued modal displacements, and the phase of these displacements might differ between elements. On

the equation 2.17 these vectors make the force vector null by definition. The transfer function can also be
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represented in terms of the system poles since they are the roots of the system characteristic equation:

[H(s)] =
adj([Z(s)])Qn

r=1 E (s� �r) (s� �⇤r)
=

adj([Z(s)])
Q2n

r=1 E (s� �r)
(2.22)

Regarding SDOF systems, the partial fraction expansion theory can be applied to the expression

2.22 to obtain the residues, Ar. The following equation relates them to the mode shape vectors. For

each residue:

[A]r = Qr{ }r{ }tr (2.23)

Since the residues [A]r are absolute quantities, it is possible to deduce from the equation 2.23

that the modal vectors are vectors with a scaling factor [A]r. Each column j of the matrix [A] has

enough information to produce that matrix unless it coincides with a modal coefficient  jr equal to zero.

This occurs because all the columns are proportional to one another, but if the coefficient is 0, the

corresponding row and column will be zero. As a result, if the excitation point is in a nodal point of

one mode, that mode will not be recognised in experimental modal analysis. The FRF matrix should be

obtained by evaluating the transfer function matrix along the frequency axis:

[H(j!)] =
nX

r=1

✓
Qr{ }r{ }tr
(j! � �r)

+
Q

⇤
r{ }⇤r{ }⇤tr
(j! � �⇤r)

◆
(2.24)

The matrix [H(j!)] has complex values and depends on the input frequency, so its values are not

constants. Taking into account that the FRF is defined as the output-to-input ratio. When an excitation Fk

is applied on k DOF, Hjk(!) is the response Xj for the j DOF. The input force and the system response

(measured in displacement, velocity, or acceleration) are quantifiable. As a result, the equation 2.24 can

be used to find the system’s modal parameters. As previously stated, the FRF of a MDOF system is the

sum of the FRFs of n SDOF systems.

2.1.3 Modal assurance criterion

The modal assurance criterion (MAC) is one of the most often used strategies for comparing modal

vectors quantitatively [54]. The development of the MAC was modelled after the development of the

conventional coherence calculation coupled with frequency response function computation. The MAC,

like ordinary coherence, is a statistical indicator. This least squares-based form of linear regression

analysis produces a more sensitive indicator to the largest difference between comparative values and

a modal assurance criterion unaffected by small changes or small magnitudes. This criterion was first

used in modal testing in conjunction with The Modal Scale Factor as an additional confidence factor

when evaluating the modal vector from various excitation locations. The numerator of each term in an

FRF matrix expressed in partial fraction expansion form corresponds to the matrix of residues or modal
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constants. The MAC is calculated as the normalised scalar product of the vectors {'A} and {'X}. The

resulting scalars are arranged into the MAC matrix:

MAC(r, q) =

���{'A}Tr {'X}q
���
2

⇣
{'A}Tr {'A}r

⌘⇣
{'X}Tq {'X}q

⌘ (2.25)

Where the form of coherence function can be recognized, indicating the casual relationship between

{'A} and {'X}. The modulus in the numerator is taken after the vector multiplication, in this case,

resulting in the squared absolute value of the sum of product elements. In addition, an equivalent

formulation is:

MAC(A,X) =

���
Pn

j=1 {'A}j {'X}j
���

⇣Pn
j=1 {'A}2j

⌘⇣Pn
j=1 {'X}2j

⌘ (2.26)

The criterion has been used to quantify the accuracy of detected mode shapes as a Mode Shape

Correlation Constant. For complex modes of vibration:

MAC(r, q) =

���{ A}Tr { X}⇤q
���
2

⇣
{ A}Tr { A}⇤r

⌘⇣
{ X}Tq { X}⇤q

⌘ (2.27)

The MAC assumes values between 0 when there is no consistent correspondence and 1 when

representing a consistent correspondence. Small numbers imply poor resemblance between the two

shapes, whereas values greater than 0.9 show consistent correspondence.

2.1.4 Experimental modal analysis

There are four possible approaches to analyse the vibrational behaviour of a system: analytically, using

a finite element model, or through experimental modal analysis (EMA) and operational modal analysis

(OMA).

The analytical method of conducting the modal analysis is to solve the equations that describe the

system’s dynamic because they can be written in terms of mass, stiffness, and damping matrices. One of

the problems with this method is that very often (almost always for complex structures), it is not possible

to build these matrices. Without them, it is impossible to calculate modal parameters analytically.

Another option is to use system models, which could be finite element models or modal models.

Within the field of modal analysis, there is the OMA where the estimation of the modal parameters

is done without knowing the input forces, and experimental modal analysis where both input and out-

put forces are known. Regarding EMA, these measurements can be used to calculate the frequency

domain ratio between the output and the input, resulting in the Frequency Response Function (FRF).

EMA is based on the idea that these functions can be written in terms of modal parameters: natural

frequency, damping ratio, and mode shapes [55]. The FRFs are complex frequency domain functions,
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Figure 2.3: EMA schema.

having both magnitude and phase information. The

FRFs, can have the form of output acceleration, veloc-

ity or displacement over input force and describe how

the structure moves at each measurement location per

unit force at the input location using the input force as a

reference. The resonance and damping information for

all system modes is contained in the FRFs. Individual

modes are chosen, the system’s modal model is gen-

erated, and individual FRFs are synthesised from the

modal model used for curve-fitting. The mode shapes

for each of the identified modes can then be generated

using the synthesised FRFs. One relevant feature of

EMA is that it allows for the calculation of modal par-

ticipation factors after the input force has been mea-

sured, and each mode shape can be properly mass-

normalised or arbitrarily scaled [56].

2.1.5 Operational modal analysis

Another modal analysis method is to measure the structure’s response during its operation to determine

the modal parameters. Operational modal analysis (OMA) is the term for this method, also known as

output only modal analysis, because it is a method that does not require a measured external input to

excite the structure. Thus, it can be used to monitor the condition of structures in operation for fatigue

or fault detection and failure assessment, avoiding the interruption for measurements, relying solely on

the structure’s own ambient excitation. It is especially beneficial when the forces cannot be quantified

or when exciting a structure is challenging [57]. This is the main advantage of this method. Another

benefit of performing OMA is testing the structure in a real-world situation, challenging to replicate in a

lab setting, making it a more realistic approach. Figure 2.4 illustrates the OMA concept, which depicts a

WT excited by the wind. The purpose of OMA is, without knowing the input U, to be able to identify the

structure H, from a dynamic perspective, by only studying the measured output signals of Y.

Figure 2.4: OMA concept applied to a wind turbine.
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The principle of OMA, like EMA, is to create a mathematical model of the system’s dynamic properties

and use it to calculate its modal parameters. A curve-fitting technique is used to extract them. The model

establishes the relation between the inputs [F ] (excitation applied to the system) and the outputs [F 0]

(system reactions to that excitation) in different points of the structure using frequency-domain functions.

These functions are rearranged into the system transfer matrix, [H], and are designated auto-power

spectra and cross-power spectra. Since the input forces are not quantified in operational tests, the main

difference between OMA and EMA is how this matrix is constructed. The input is known and measured

in EMA; thus, the procedure is developed in a deterministic framework. However, the input is unknown

and unmeasured in OMA; therefore, the procedures used are stochastic [58]. The concept underlying

the OMA technique is to consider that the input forces are randomly dispersed in the space around the

object and are in the form of white noise, knowing only the system’s output during the test. This indicates

that the input signal has the same magnitude across all frequencies in the bandwidth studied. With this

Figure 2.5: Output matrix Y equal to the system matrix H, for white noise input.

assumption, the system’s responses contain all the information needed to characterise the system’s

dynamic, allowing the modal parameters to be extracted from a mathematical model generated solely

by measuring the output. The FRFs cannot be calculated in this manner, as they are when using EMA,

but the frequency information can still be extracted. The correlation functions are calculated using the

structure’s measured responses. These are time-domain functions that can be used as a statistical tool

to identify recurring patterns in a signal that may be hidden inside a seemingly random signal. They can

be used to compare a signal to itself in a delayed version with increasing time lags. Those functions

are referred to as autocorrelation function (ACF). According to the level of correlation, this comparison

returns a value between -1 and 1. When the signal contains periodic information, this number will be

high at particular time lags. If the structure is excited with a random signal, increasing the delay between

the signals should cause the correlation values to fall until they reach zero. The ACF will retrieve the

common periodicities of the compared signals, which can then be translated to the frequency domain.

The cross-correlation function works with the same principle as the ACF; the only difference is that it

compares the signal to a reference signal rather than a delayed version of itself. This function extracts the

common periodicities of responses obtained at two different points. One reference location is sufficient

for OMA, but it is also possible to specify multiple measurement points as a reference. The system’s

measured response in different points of the structure is then used to calculate autocorrelation and

cross-correlation functions and the common periods between the various measurements. These data

is in the time domain; thus, it is converted to the frequency domain using the discrete Fourier transform
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of the correlation functions. Correlograms are the functions that come from this procedure, and they

display the dominant frequencies that are common across all measurement locations. These are power

spectra functions (PSDs), which measure the signal’s power content at each frequency, and the peaks

may be calculated using curve-fitting technology, similarly to EMA.

(a) Experimental modal analysis. (b) Operational modal analysis.

Figure 2.6: Summary of EMA vs OMA processes [56].

2.1.6 Testing procedures

Usually, while performing experimental modal analysis, it is impossible to measure the whole FRF matrix

due to practical constraints. The number of modes observed during the testing is less than the number

of outputs (number of points where the response is measured), which is also less than the number of

degrees of freedom of the system [55].

Different types of inputs and outputs can be used to calculate the experimental FRFs. In most

mechanical system tests, the inputs are in the form of force, while the outputs are acceleration, velocity,

or displacement. A modal impact hammer or a modal shaker can apply force to the structure and

quantify it. The method for measuring the response depends on the application. If the goal is to measure

acceleration, the best approach is to utilise accelerometers. A laser Doppler vibrometer can be used

for measuring the surface velocity [59], and string pots or Digital Image Correlation (DIC) [60] are two

options for measuring displacements. The force spectrum of the excitation applied to the test object

should be flat relative to frequency, meaning that the signal should excite all frequencies equally. This
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way, the peaks in the response correspond to the system’s natural frequencies. While using the hammer,

the correct tip selection must be taken into account to stimulate the structure properly. The FRFs are

normalised to the input force since they are all calculated with the same reference. Hence, the peaks

of this function are the structure’s resonant frequencies. It is common to calculate the FRFs numerous

times and average them using the estimator method that best suits the test objectives to get more

accurate modal parameter data. The coherence function is estimated to check the repeatability of each

FRF since it indicates how much of the output is due to the input in the FRF and can be used as an

indicator of the FRF’s quality. The coherence is a number that ranges from 0 to 1. The measurements

Figure 2.7: Example of an experimental testing procedure for the acquisition of vibration-based data.

are not repeatable when 0 or close to it, indicating that something is wrong with the setup. On the other

hand, a coherence near 1 suggests that the FRF’s amplitude and phase are consistent. The fact that

the FRF can be replicated does not guarantee that the results will be identical. Structures are never

entirely linear, and there are always extrinsic elements that influence experimental processes, such as

instrumentation noise. Consequently, the results of repeated measurements will never be precisely the

same. Therefore, estimators are required to calculate the average of the results and determine which is

more accurate. The amplitude ratio (H) of the input to the output of FRFs is calculated using estimators;

H1, H2, and HV are the most widely used. The H1 considers that all excitation measurements are

accurate because there is no noise on the input and all of the noise is on the system’s output. The

estimator H2 assumes that there is no noise on the output, only in the input. Despite needing more

processing effort, the HV estimator is better than the previous two since it takes into consideration noise

on both the input and output. After obtaining the FRFs for the structure, the natural frequencies and

damping ratios must be calculated. Different strategies can be utilised to estimate modal parameters in

the frequency domain, but throughout this thesis, the algorithm used was the Polymax [61].
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2.2 Machine learning

In this chapter, some introductory concepts of Machine Learning (ML) will be presented, as well as the

algorithms used in this thesis project: multivariate Gaussian anomaly detection and anomaly detection

autoencoders.

The practical use of an ML algorithm includes two phases. The algorithm is trained in the first phase,

and then it is used to create predictions in the second phase. The training entails a set of data from

which the algorithm will learn a specific task, while the testing involves a set of data to be analysed by

the algorithm, which will then output a prediction that can be applied for a variety of purposes.

Data

Algorithm

Training
subset

Testing
subsetTraining

Prediction

Figure 2.8: Machine learning algorithm process.

Supervised, unsupervised, semi-supervised, and reinforcement learning are the four main types of

learning algorithms. Supervised and unsupervised learning algorithms were used in this thesis. The

way the algorithm learns is the main difference between them. Below is a more detailed explanation of

these types of learning [62, 63].

Supervised learning

The algorithm will be given labelled data, which means that the data from which it learns will have input

features and labelled outputs for which the algorithm’s predictions will be useful. The goal is for the

algorithm to construct a function that correctly classifies the labelled outputs of the training set based

on the input features while simultaneously being robust enough to classify unseen data appropriately.

Furthermore, supervised learning can be divided into classification and regression problems based on

the algorithm’s prediction constraints.

Concerning classification, the training data is labelled for a certain number of finite classes. As

a result, the algorithm’s predictions are limited to these classes. An example of classification is the

categorization of spam and non-spam emails.

Regarding regression, the prediction values are on a continuous interval; therefore, they can be

different from the training set’s labels. The price prediction of a house based on input characteristics like
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its size or its number of rooms is a perfect illustration of a regression problem.

Linear regression, logistic regression, neural networks, and support vector machines are some ex-

amples of supervised learning techniques.

Unsupervised learning

The algorithm will be fed with unlabelled data containing only input features from which the algorithm

should find structure in the data. This is accomplished through clustering algorithms, which put training

examples with similar properties into the same cluster—for example, market segmentation algorithm

training or astronomical data analysis. Unsupervised learning methods include algorithms like k-means,

principal component analysis, hierarchical clustering, and self-organizing maps.

Semi-supervised learning

The algorithm will work with a small amount of labelled data and a large amount of unlabeled data. Semi-

supervised learning falls between unsupervised learning (with no labelled training data) and supervised

learning (with only labelled training data). It is a particular case of weak supervision. Speech analysis is

a classic example of the value of semi-supervised learning models.

Reinforcement learning

Reinforcement learning is an ML training strategy that rewards desirable behaviours while penalising

undesirable ones. A reinforcement learning agent can perceive and comprehend its environment, act,

and learn through trial and error. Autonomous driving and personalised recommendation systems are

examples of reinforcement learning.

(a) Artificial neural network architecture. (b) K-means clustering.

Figure 2.9: Representation of a) supervised learning and b) unsupervised learning algorithms.
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2.2.1 Multivariate Gaussian anomaly detection

Gaussian anomaly detection is a type of ML algorithm frequently used when the datasets contain a

relatively imbalanced number of examples between each class. It is primarily used to solve unsuper-

vised learning problems, but it also includes some characteristics of supervised learning. The lack of a

generally balanced number of instances per class is the primary reason for using such techniques as

supervised learning. As a result, supervised learning algorithms like neural networks cannot be trained

on an unbalanced set because they will be biased to classify the class with the most training samples.

For example, the training of algorithm of a credit card fraud detection or a spam email classification.

The last example is better suited to supervised learning because there are enough positive instances

for an algorithm to classify them appropriately. One of the anomaly detection algorithms used in this

thesis involves fitting the dataset to a multivariate Gaussian distribution. In order to differentiate train-

ing instances that correspond to anomalies from training examples that reflect common and acceptable

values, a Multivariate Gaussian Distribution is fitted to the training set’s characteristics, and a threshold

selection process obtains the optimum threshold.

Multivariate Gaussian distribution

The density estimation p(x) for a Multivariate Gaussian distribution is defined by Equation 2.28.

p(x, µ,⌃) =
1

(2⇡)n/2|⌃|1/2
exp(�1

2
(x� µ)T⌃�1(x� µ)) (2.28)

Where the mean vector of a feature’s distribution (µ 2 Rn) is:

µ =
1

m

mX

i=1

x
(i) (2.29)

And the covariance matrix (⌃ 2 Rn⇥n) is defined by:

⌃ =
1

m

mX

i=1

(x(i) � µ)(x(i) � µ)T (2.30)
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Figure 2.10: Illustration of the marginal and joint probability of a bivariate Gaussian distribution.
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The shape, width, and orientation of the threshold boundary or contours will change as ⌃ varies.

Nevertheless, ⌃ will always be a symmetric matrix. The graphics below show how the µ and ⌃ param-

eters affect the probability density of this distribution. An example of only two features was explored in

order to plot this variation in a 3D plot. The distribution with a null mean vector and covariance matrix

equal to the identity matrix, which will be used as a reference, is shown in figure 2.11.

µ =

2

4 0

0

3

5; ⌃ =

2

4 1 0

0 1

3

5

Figure 2.11: Multivariate Gaussian distribution for an identity covariance matrix and a null mean vector.

The variance of the features is measured by the ⌃ covariance matrix. Hence, reducing the diagonal

values will diminish the diameter of the distribution. Furthermore, because the integral of the volume

under the surface is 1, the height of the distribution will increase, as shown in figure 2.12.

µ =

2

4 0

0

3

5 ⌃ =

2

4 0.5 0

0 0.5

3

5

Figure 2.12: Multivariate Gaussian distribution for a covariance matrix with the diagonal values de-
creased.
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Increasing the diagonal values of ⌃, on the other hand, will increase the variance, and therefore the

distribution will become flatter and wider, as shown in figure 2.13.

µ =

2

4 0

0

3

5 ⌃ =

2

4 2 0

0 2

3

5

Figure 2.13: Multivariate Gaussian distribution for a covariance matrix with the diagonal values in-
creased.

The following examples illustrate the effect of the mean vector µ and unequal values in ⌃’s diagonal.

In comparison to the reference, the second entry of µ was adjusted to 1. As a result, the distribution’s

centre, i.e. the yellowest part was shifted to the point (0, 1) as can be seen in the 2D plot of the figure

2.14.

µ =

2

4 0
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3

5 ⌃ =

2
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3

5

Figure 2.14: Multivariate Gaussian distribution for a covariance matrix with first entry decreased and a
unit value in the second entry of the mean vector.

The first value of the covariance matrix was altered in both figures 2.14 and 2.15. The variance of

the first feature was decreased in figure 2.14, while the variance of the first feature was increased in
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the figure 2.15. As a result, the width of the distribution was decreased and increased in relation to the

axis representing the first feature (x1 axis). The 2D plots highlight this occurrence. Furthermore, as

previously stated, when the width of the distribution narrows, the height rises because the integral of the

volume under the surface must remain constant at 1. It can also be seen that these distributions are

no longer circular when compared to the previous plots of figures 2.11, 2.12 and 2.13. As a result, the

capability of a multivariate Gaussian distribution to form non-circular borders as opposed to a standard

Gaussian distribution has been demonstrated.
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Figure 2.15: Multivariate Gaussian distribution for a covariance matrix with first entry increased and a
unit value in the second entry of the mean vector.
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Figure 2.16: Multivariate Gaussian distribution for a covariance matrix with positive non-diagonal entries
and the two entries of the mean vector changed.
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The figures 2.16 and 2.17 depict the mean vector µ with two distinct values, which leads to the

distributions’ centres moving in both the x1 and x2 axes, as evidenced by the respective 2D plots. The

non-diagonal values of the ⌃ matrix were also studied for the case of 0,5 and -0,8. Both non-diagonal

values must be equal since the covariance matrix must be symmetric. The difference in the sign of these

matrix entries varies the orientation of the distributions, as is evidenced in the 2D plots of 2.16 and 2.17.

µ =

2

4 �1

1

3

5 ⌃ =
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Figure 2.17: Multivariate Gaussian distribution for a covariance matrix with negative non-diagonal en-
tries and the two entries of the mean vector changed.

When the magnitude of the non-diagonal elements is increased from 0,5 to 0,8, the distribution

becomes more thinly peaked and narrow. Furthermore, the diagonal shape of the distribution lies on the

contribution of the non-zero non-diagonal values.

The ability to link the features being evaluated for each training sample is provided by the fact that

these probability distributions might change in shape when considering the covariance matrix calcula-

tion. This indicates that this algorithm can perform feature analysis, which is useful because it allows

for more flexibility in feature selection and eliminates the need to correlate them manually. Compared

to the simpler univariate Gaussian distribution, the multivariate Gaussian distribution has a significant

advantage. The first makes a circular probability assumption, i.e. the threshold curves used to split

cases into anomalies and non-anomalies can only be perfect circles. In figure 2.18 are illustrated the

types of threshold contours of a univariate Gaussian distribution for a two-dimensional dataset, which,

compared to the contours of the multivariate Gaussian distribution, would leave several non-anomalous

points (in blue) outside the boundary and would not consider the two red points as anomalies. Therefore,

the elliptical threshold curves of the multivariate distribution represent an optimal threshold, resulting in

a more accurate anomaly detection algorithm.
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Figure 2.18: Univariate vs multivariate Gaussian distribution threshold contours.

Anomaly detection

The steps of the Anomaly Detection algorithm can be summarized as follows, taking into account the

information above mathematically demonstrated for fitting a Multivariate Gaussian distribution to the

training set’s features:

1. Select xj features that may be suggestive of unusual examples;

An illustrative two-dimensional (2D) dataset is shown in figure 2.19 to visualize the logic behind

the algorithm. It is possible to see a group of samples in the centre of the image and some outliers

separated from this main group. These are examples with characteristics that differ significantly

from the normal feature values.

Figure 2.19: Illustrative 2D dataset.
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2. Calculate the mean vector µ and the covariance matrix ⌃ to fit a Multivariate Gaussian

distribution;

A multivariate Gaussian distribution is fitted to the training set by calculating µ and ⌃. The contours

of the distribution are shown in Figure 2.20. Most examples are located inside the high probability

elliptical region, whilst the anomalous examples are found in the lower probability regions.

Figure 2.20: Gaussian distribution contours.

3. Calculate p(x) for a new example x;

4. If p(x) < ✏, identify an anomaly.

Where ✏ denotes a constant threshold value below an example’s probability value is considered an

anomaly.
p(x) < ✏ ) x is an anomaly

p(x) � ✏ ) x is not an anomaly

The next step of the algorithm is to find the optimal threshold by an iterative approach that uses

a cross-validation subset with prior knowledge of the example’s labels as anomalies or non-

anomalies. This threshold value will be used to split the original dataset plotted in this section

into anomalies and non-anomalies once that iterative procedure is completed. As shown in fig-

ure 2.21, the algorithm detected all anomalies outside of the high probability region, which are

represented by red circles in the image.
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Figure 2.21: Anomaly classification.

After fitting the distribution, the threshold will be the parameter used to classify the testing subset of

data. Hence the success of this algorithm’s classification is highly dependent on this value. If it is set

too high, the algorithm will likely identify more samples as anomalies, leading to non-anomalies being

misclassified as anomalies. If it is too low, the system will incorrectly label anomalies as non-anomalies.

A manual selection can be used, but this requires seeing the results step-by-step, which can be

time-consuming and inconvenient. By analyzing a cross-validation subset of the total dataset, a better

answer can be found by developing an automatic threshold procedure approach. Using this subset of

data, the best threshold can be determined to provide the best anomalous classifications by applying

evaluation metrics to various threshold results.

In order to explain the methodology of the automatic threshold estimation, some concepts need to

be introduced first. Table 2.1 shows a confusion matrix, or error matrix. Based on the correspondence

between the predicted values and the ground truth, the confusion matrix analyzes four classifications. To

describe the problem of anomaly identification and future reference, the value 1 pertains to anomalies

and 0 to non-anomalies.

Table 2.1: Confusion matrix.

Ground truth

1 0

Predicted
1 True positive False positive
0 False negative True negative

Using the presented classifications, the following metrics can be calculated:

Precision =
True positives

True positives+ False positives
(2.31)
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Recall =
True positives

True positives+ False negatives
(2.32)

In regard to the common accuracy principle:

Accuracy =
True positives+ True negatives

Total number of examples
(2.33)

Precision is a metric that quantifies what fraction of all predicted anomalies was an anomaly in

the context of this algorithm, whereas recall measures what fraction of all anomalies was accurately

predicted. In order to classify an algorithm’s success, it is also critical to be exact in the predictions

provided without missing out on numerous anomaly occurrences. In order to simplify the threshold

optimisation process, a new metric called F1 score that combines precision and recall can be analysed.

F1 score =
2 · Precision ·Recall

Precision+Recall
(2.34)

A methodology can be developed using the F1 score to analyze different threshold (✏) values to make

the threshold selection problem automatic:

for ✏ = [ max ( ✏ ); min ( ✏ ) ]

Anomalies = p ( x ) < ✏

Calculate F1 score ( ✏ )

If F1 score ( ✏ ) > F1 score (✏ 0)

Save new best ✏

Finally, the cross-validation subset is used to determine the optimal threshold value. Considering that

previous knowledge of the cross-validation labels is required to calculate the F1 score, this technique of

anomaly detection is a clear demonstration of a supervised learning algorithm.
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Figure 2.22: Visualisation of an illustrative threshold for the marginal and joint probability of a bivariate
Gaussian distribution.
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2.2.2 Anomaly detection autoencoders

Autoencoder

An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data.

By attempting to regenerate the input from the encoding, the encoding is validated and refined. By

training the network to ignore insignificant data, the autoencoder learns a representation for a set of

data, generally for dimensionality reduction. The algorithm is composed of two parts: an encoder that

maps the input into code and a decoder that maps the code back into the input. Duplicating the signal is

the simplest approach to do the copying work perfectly. Instead, autoencoders are frequently compelled

to approximate the input, maintaining just the most significant aspects of the data in the copy.

The algorithm consists of a feedforward, non-recurrent neural network that employs an input layer

and an output layer connected by one or more hidden layers, similar to single-layer perceptrons that

participate in multilayer perceptrons. The number of nodes (neurons) in the output layer is the same

as the input layer. Instead of forecasting a target value Y given inputs X, its goal is to reconstruct

its inputs (minimizing the difference between the input and the output). Therefore, autoencoders learn

unsupervised.

Figure 2.23: Schema of a basic autoencoder.

An autoencoder consists of two parts, the encoder and the decoder, which can be defined as transi-

tions � and  such that:

� : X ! F

 : F ! X

�, = argmin
�, 

kX � ( � �)Xk2
(2.35)

The encoder stage of an autoencoder takes the input x 2 Rd = X and maps it to h 2 Rp = F in the

simplest case, given one hidden layer.

h = �(Wx+ b) (2.36)
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This h is usually referred to as code. � is an element-wise activation function such as a sigmoid

function or a rectified linear unit. b is a bias vector, while W is a weight matrix. Weights and biases

are typically initialised at random and then modified iteratively by backpropagation during training. The

autoencoder’s decoder stage then maps h to a reconstruction X0 of the same shape as X:

x0 = �
0 (W0h+ b0) (2.37)

Where �
0, W0, and b0 for the decoder may be unrelated to the corresponding �, W, and b for the

encoder.

L (x,x0) = kx� x0k2 = kx� �
0 (W0(�(Wx+ b)) + b0)k2 (2.38)

Where x is typically averaged across the training set. Autoencoder training, like that of other feed-

forward neural networks, is done through backpropagation of the error. The feature vector �(x) can be

thought of as a compressed version of the input x if the feature space F has a lower dimensionality than

the input space X . Undercomplete autoencoders are an example of this. An autoencoder can potentially

learn the identity function and become useless if the hidden layers are larger than or equal to the input

layer or if the hidden units are given sufficient capacity. Overcomplete autoencoders, on the other hand,

may nevertheless learn important features, according to experimental findings. The code dimension and

model capacity should, in a perfect scenario, be determined by the complexity of the data distribution to

be modelled. Regularized autoencoders are a model version that can be used to do this.

Autoencoders are used to solve various problems, including facial recognition, feature detection,

anomaly detection, and word meaning interpretation. Moreover, an autoencoder can also be used as

generative models: it can randomly generate new data similar to the input data, i.e. training data.

Figure 2.24: Example of an autoencoder architecture for an image compression application [64].
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Anomaly Detection

Anomaly detection is one of several applications of autoencoders. The anomaly detection autoencoder

(ADAE) is a semi-supervised learning algorithm. The model is encouraged to learn to exactly recre-

ate the most frequently seen features by learning to replicate the most salient features in the training

data under some of the limitations outlined previously. When confronted with anomalies, the model’s

reconstruction performance should be worse. In most circumstances, only data with normal examples

is utilised for training the autoencoder; in others, the frequency of anomalies is low enough compared to

the observation set that its contribution to the learnt representation can be ignored. The autoencoder will

correctly reconstruct normal data after training, but unexpected anomalous input will fail to do so. To de-

tect anomalies, the reconstruction error (the difference between the actual data and its low-dimensional

reconstruction) is utilized as an anomaly score [36, 40].

Considering an implementation in the industry, these anomaly detection techniques are commonly

confronted with two problems: the limited amount of labelled data and the lack of anomalous samples.

Semi-supervised techniques try to solve these challenges. These techniques can work with access to

only one type of class label, which is the normal, i.e. undamaged class [35]. The autoencoder training

used in this thesis, presented in section 5.2.1, which is done with normal data only, is in line with this

assumption.
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Chapter 3

Experimental campaigns

The measurements done for this thesis are divided into two major experimental campaigns—one for

the titanium WT blade and the other for the glass-fiber reinforced plastic (GFRP) WT blade. For each

campaign, vibration-based data such as modal parameters and frequency response functions (FRFs)

were obtained through modal hammer testing, modal shaker testing and pull-and-release testing. The

tests were carried out for each campaign on the blades in their natural state and their damaged state.

In order to simulate damage in the structures, masses of different magnitudes were placed at different

blade positions. In order to better reproduce the operating conditions of the blade in which the blade is

attached to the rotor, the tests were performed in clamped-free boundary conditions.

The system response was measured in terms of acceleration with model 356A15 PCB accelerome-

ters as the one in figure 3.1. Since the objective of this thesis is to analyse the blade data in its altered

state (with masses in the structure) in relation to its healthy state (without masses in the structure), the

mass of the accelerometers can be neglected because it will be present in the measurements of the two

strands. All the data acquisition was made using the Simcenter Testlab software with the parameters

found in table 3.1 through a Simcenter SCADAS like the one in figure 3.2.

Figure 3.1: Model 356A15 PCB accelerometer. Figure 3.2: Simcenter SCADAS Recorder.

Table 3.1: Testlab acquisition parameters.

Bandwidth [Hz] 800
Spectral lines 2048

Aquisition time [s] 2.56
Estimator H1

32



3.1 Experimental setup

Titanium wind turbine blade

The first WT blade studied is made of a Ti6Al4V titanium alloy with a density of 4.429 Mg/m3, and

Young’s modulus of 110 GPa [65]; it is composed of four welded 3D printed parts manufactured by 3D

Systems, and it was designed and scaled-down to 1.265 m by DTU Wind Energy. The blade has also

undergone a stress relief heat treatment and a polishing process.

(a) 3D printed parts.

(b) Post-welding.

(c) Post-polishing.

Figure 3.3: Titanium wind turbine blade.

To perform the experimental tests of damage simulation on the Ti blade, the masses shown in figure

3.4 were used as illustrated in figure 3.6. The magnitude of each mass and the respective percentage

of the total blade mass is specified in table 3.5.

Figure 3.4: Masses used to simulate damage on the Ti blade.

The masses presented were placed along the seven positions shown in figure 3.7, where it is also

possible to see the ten triaxial accelerometers placed along its surface. Regarding the clamping, the

blade was bolted through its flange to a concrete block.

Figure 3.7: Mass positions used to perform the damaged experimental runs of the Ti blade.
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Figure 3.5: Magnitude of the masses used in the
Ti blade tests.

Titanium blade mass [kg]

2.48

Mass [g] Percentage of blade mass

15.5 0.6%
29.1 1.2%
38.5 1.6%
53.5 2.2%
68.5 2.8%
90.2 3.6%

127.0 5.1% Figure 3.6: Mass of 127.0g on the position 7 of
the Ti blade.

GFRP wind turbine blade

The second WT blade tested has the same geometry as the titanium blade and is made of composite

material, specifically GFRP. The blade was designed, scaled-down and manufactured by DTU Wind

Energy.

Figure 3.8: GFRP wind turbine blade.

Manufacturers typically produce two blade shells bonded together with at least one web (figure 3.9)

to form the WT blade, as shown in figure 3.10 [66]. The shells used for this blade were made with

uniaxial and biaxial GFRP, balsa core and glue. Aluminium was used at the root for the clamping to the

rotor.

Figure 3.9: Schema of the section of a WT blade [67]. Figure 3.10: Schematics of the manufactur-
ing of a WT blade [68].
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The masses used for the damaged experimental runs of the GFRP blade are shown in figure 3.11,

and the respective magnitude is detailed in table 3.2. Due to the favourable damage detection results

obtained for the titanium blade presented further on in sections 5.1.2 and 5.2.2, for the GFRP blade

experimental campaign that was carried out later, besides the equivalent mass magnitudes tested for

the Ti blade, even smaller percentages of magnitude were tested in order to test the sensitivity of the

algorithm further.

Figure 3.11: Masses used to simulate damage on the GFRP blade.

In figure 3.12, are represented the positions used for the experimental runs with mass as well as the

arrangement of the ten accelerometers used. Concerning the clamping, the blade was screwed directly

to an iron structure comparatively much heavier to ensure stability during testing, as can be seen in

figure 3.20.

51 4 6 72 3

Figure 3.12: Mass positions used to perform the damaged experimental runs of the GFRP blade.

Table 3.2: Masses used in the tests of the titanium blade vs the GFRP blade.

Titanium blade mass [kg] GFRP blade mass [kg]

2.48 0.72

Mass [g] Percentage of blade mass Mass [g] Percentage of blade mass

- - 0.4 0.06%
- - 1.0 0.14%
- - 2.1 0.29%

15.5 0.63% 4.3 0.60%
29.1 1.17% 8.1 1.12%
38.5 1.55% 10.4 1.44%
53.5 2.16% 14.8 2.06%
68.5 2.76% 19.5 2.71%
90.2 3.64% 26.5 3.68%

127.0 5.12% 35.4 4.92%
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3.2 Modal hammer testing

The impact testing campaign was done using the modal hammer of the figure 3.14. Ten impacts were

made for each run, so the FRFs obtained are an average ratio between the output and the input for each

impact.

Figure 3.13: Modal hammer tips. Figure 3.14: Model 86C03 PCB modal hammer.

GFRP wind turbine blade

Using the appropriate hammer tip (figure 3.13) is a key factor in obtaining a quality FRF measurement.

For an ideal measurement, the input force must excite the frequency range of interest at high amplitude

and have the amplitude evenly distributed along the frequency, as it does for the metal and plastic tip

input spectrum, in figure 3.15.
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Figure 3.15: Input spectrum of the impact testing
performed with different hammer tip materials.
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Figure 3.16: Coherence function of the impact
testing performed with different hammer tip mate-
rials.

The coherence function can also be used as an indicator of the quality of the FRF. This function

indicates how much of the output is predicted as a function of the input by checking the variation from

measurement average to measurement average: a coherence of close to 1 indicates that the measure-

ment is repeatable; on the other hand, a coherence of 0 indicates the measurement is not repeatable.

The majority of the frequency range should ideally have a coherence value close to 1, with the only
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exceptions occurring at anti-resonance frequencies where the response is low and affected by the mea-

surement system noise, as is the case for the metal tip and the plastic tip, shown in figure 3.16.

Bearing these two factors in mind, both metal tip and plastic tip would be reasonable choices; thus,

the tests on the GFRP blade were made using the metal tip. The best results were obtained for the

impacts on the top surface of the blade, near position 3.

Titanium wind turbine blade

For the titanium WT blade, the hammering was made on the bottom surface of the blade between

positions 2 and 3 using the plastic tip, which was the setup that presented the best results for the

equivalent study done for the GFRP blade.

3.3 Modal shaker testing

GFRP wind turbine blade

Regarding the GFRP blade shaker testing, a signal was generated from the SCADAS and transmitted to

the PCB K2007E01 electrodynamic shaker with an integrated power amplifier that allows adjusting the

amplitude of the incoming signal. The shaker is attached to a load cell glued to the structure. The cell

is also connected to the SCADAS and measures the force applied. This signal is used as the reference

force for the FRFs calculation. Two types of excitation signals were tested: random and chirp, shown in

figures 3.17 and 3.18.

Time

A
m
pl
itu
de

Figure 3.17: Random amplitude signal. Figure 3.18: Chirp signal.

The signal chosen for the GFRP blade was the periodic chirp. Both signals presented reasonable

FRFs however the chirp presents slightly less noise, as evidenced in figure 3.19.
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Figure 3.19: FRFs of the GFRP blade for a periodic chirp vs continuous random signal.

The load cell of the shaker was attached to the surface between positions 3 and 4 of the blade, as

shown in figure 3.20.

Figure 3.20: GFRP blade shaker setup.

Titanium wind turbine blade

Concerning the titanium blade, figure 3.21 shows the setup where the PCB 2075E shaker actuated on

the lower surface of the blade near position 3. Unlike the one used for the GFRP blade, this shaker

required the use of an amplifier to process the signal coming from the SCADAS.
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Figure 3.21: Ti blade shaker setup.

The continuous random signal was chosen for the titanium blade because it was the one that deliv-

ered the best results for this blade, as can be seen in the highlighted portion of the FRFs in figure 3.22,

by the noise presented by the chirp signal excitation.

631.39316.98 Hz

20.00

-30.00

g/
N

Periodic chirp
Continous random

Figure 3.22: FRFs of the Ti blade for a periodic chirp vs continuous random signal.

3.4 Pull-and-release testing

As shown in figures 3.23 and 3.24, the pull-and-release testing was performed for both blades using an

elastic and a cable tie to put the blade under tension; after that, the cable tie was cut, and the consequent

acceleration was recorded.
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GFRP wind turbine blade

Figure 3.23: GFRP blade pull-and-release setup.

Titanium wind turbine blade

For the titanium blade, in order to obtain an FRF capable of detecting the otherwise unrecorded modes,

like the torsional and the in-plane bending, the elastic was attached in an inclined position to provide a

diagonal excitation to the blade.

Figure 3.24: Ti blade pull-and-release setup.
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Chapter 4

Modal parameter estimation

After the data acquisition, it is necessary to proceed with the data processing, which involves performing

the modal analysis and extracting the relevant parameters for the implementation of ML. This chapter

presents the estimated modal parameters and how they were obtained, both for the blade in their original

state and with the different magnitude masses at different positions.

Each accelerometer of the setup records an FRF for each of its three directions, as shown in the

example of figure 4.1. The FRFs represented in figure 4.2 correspond to the sum of the three directions

of every accelerometer.

Figure 4.1: FRFs of the three accelerometer directions and their sum.

4.1 Titanium wind turbine blade

The bandwidth was analysed up to 800 Hz because, after several tests, it was the maximum frequency

that guaranteed reliable results. Given the high stiffness of the titanium blade, the impact testing had

the best performance because it was the only test capable of exciting all ten modes highlighted in

figure 4.5 for the analysed bandwidth of 0-800 Hz. The modal shaker test could not decently excite
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the ninth mode at 624.82 Hz since it was an in-plane bending mode which is a challenging mode to

excite with the purely vertical excitation direction in which the shaker was set up, as seen in section 3.3.

Furthermore, it incorrectly registered a small peak near 280 Hz and a double peak in the tenth mode

at 756.65 Hz as shown in figure 4.2 due to coupling effects in the experimental setup. The pull-and-

release test was unable to detect the torsional mode around the 500-600Hz bandwidth also because

of the excitability limitations inherent to the type of test. Concerning the pull-and-release test, for the

crosspower operational pre-processing, the vertical direction, i.e. the out-of-plane blade direction of the

accelerometer closest to the tip, was used as a reference because it was the accelerometer direction that

presented the best-defined autopower, so it was also the reference that produced the most prominent

crosspower.
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Figure 4.2: Ti blade impact and shaker testing
FRF sums.
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Figure 4.3: Ti blade pull-and-release testing
crosspower sum.

Figure 4.4: Ti blade FRFs from healthy vs damaged experimental runs.
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After analysing the FRFs in the healthy state, the experimental runs with masses, i.e. in the damaged

state, will now be introduced. Figure 4.4 presents the FRFs obtained from all the healthy and damaged

experimental runs for a single accelerometer direction, and the difference between the two is very clear.

For the following analysis of natural frequencies and damping ratios, the FRFs used were obtained

from the impact testing and considering only the bandwidth of 15-800 Hz since it was the configuration

that presented the best results for this blade, as explained above. Figure 4.5 shows the stabilisation

diagram with the system poles obtained for a model size of 50 from the Polymax tool of the Simcenter

Testlab. Ten reference normal modes represented in the figure were selected based on the stable poles,

each corresponding to a peak of the sum of the 30 FRFs from the ten tri-axial accelerometers. The

modal parameters presented in table 4.6 correspond to the average natural frequencies and damping

ratios of all healthy experimental runs.
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Figure 4.5: Ti blade stabilisation diagram clustered with the representative poles.

The Modal Assurance Criterion (MAC) analysis is used to determine the similarity between two mode

shapes: If the mode shapes are identical, the MAC will have the value one represented in red in the plot

of figure 4.7. On the other hand, if the mode shapes are very different, the MAC value will be close to

zero, depicted in blue in the graph. A MAC analysis can flag potential issues with the modal analysis

results. The MAC is used to analyse and identify the modes and areas that could benefit from acquiring

more data points on the structure, which was not the case for the titanium blade experimental campaign.

This criterion can also provide information about whether too many modes are being selected based on

high correlation values between them, increasing the validity of the modal analysis [69]. The mode-set

selected was compared to itself in the calculated Auto-MAC in figure 4.7. Ideally, each mode should a

unique mode shape. What can be observed in the figure, where all the non-diagonal values of the matrix

have correlations below 30%. It can then be concluded that no extra modes have been selected.
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Figure 4.6: Ti blade modal parameters.

Mode Natural frequency [Hz] Damping ratio

1 25.969 0.67%
2 56.187 0.89%
3 92.050 0.91%
4 197.803 1.00%
5 241.526 0.97%
6 353.559 0.99%
7 517.906 0.99%
8 541.696 0.86%
9 625.627 0.65%

10 756.772 0.89%

Figure 4.7: Auto-MAC for a healthy experi-
mental run of the Ti blade.

(a) 1st: out-of-plane bending.

(b) 3rd: out-of-plane bending.

(c) 5th: in-plane bending.

(d) 7th: torsional.

(e) 9th: in-plane bending.

(f) 2nd: in-plane bending.

(g) 4th: out-of-plane bending.

(h) 6th: out-of-plane bending.

(i) 8th: out-of-plane bending.

(j) 10th: out-of-plane bending.

Figure 4.8: Ti blade mode shapes.
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In the figure 4.8, are presented the modes shapes of the titanium WT blade obtained in Simcenter

Testlab for the studied bandwidth. After analysing the FRFs and crosspowers of the three experimental

test variants, the mode shapes and the respective MACs, it can be concluded, with a significant degree

of certainty, that the selection of the reference modes is correct.

Having been defined the reference modes and the respective natural frequencies of the structure in

the healthy state, the comparison with the damaged state will be made. In the following figures 4.9 and

4.10, it is represented in blue the frequency range of all the healthy experimental runs performed with the

respective mean, minimum and maximum values represented by dashed lines. All points represented

correspond to frequencies from damaged experimental runs, organised by position on the blade and

magnitude of the mass used.

Figure 4.9: Natural frequencies of the 1st mode
of the Ti blade.

Figure 4.10: Natural frequencies of the 2nd mode
of the Ti blade.

The first evident conclusion is the deviation from the healthy reference frequencies for all masses

tested for all the normal modes. The second interesting conclusion to be drawn from the first two modes

of Ti represented in figure 4.9 and 4.10 is the almost linear increase of the frequency shift according

to the increase of the mass’s distance to the clamped side of the blade and the magnitude of the mass

itself. This phenomenon only does not apply to the lowest magnitude mass of 15.5g, which, despite

having sufficient magnitude to cause an observable deviation, does not have sufficient magnitude to

cause a relevant deviation on par with the other masses so that any pattern can be observed.

The same tendency occurs until the fourth mode, from which the increase in the frequency shift is

no longer related to the position of the mass in the structure and increases only with the increment of

magnitude, as noticeable in figure 4.11. For high-order modes like the seventh mode in figure 4.12, the

frequency distribution starts to be purely random.
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Figure 4.11: Natural frequencies of the 4th mode
of the Ti blade.

Figure 4.12: Natural frequencies of the 7th mode
of the Ti blade.

4.2 GFRP wind turbine blade

Due to its high malleability, the GFRP blade generated a crosspower from the pull-and-release test with

much noise and was unable to evidence the fourteen normal modes depicted in figure 4.16. Both the

impact and the shaker testing were able to detect those modes; however, the modal shaker was the

one that did so most consistently throughout all the experimental runs. For the Crosspower operational

pre-processing of the GFRP blade, the out-of-plane direction of the blade of the accelerometer closest

to the tip was also used as a reference for the same reasons explained previously for the titanium blade.
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Figure 4.13: GFRP blade impact and shaker test-
ing FRF sums.
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Figure 4.14: GFRP blade pull-and-release testing
crosspower sum.
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After analysing the FRFs of the blade in the healthy state, a comparison will now be made with the

damaged state. Figure 4.15 depicts the clear distinction between the experimental runs carried out with

the GFRP blade in both healthy and damaged states.

Figure 4.15: GFRP blade FRFs from healthy vs damaged experimental runs.

The GFRP blade was experimentally tested for the same frequency spectrum as the Ti Blade (0-

800Hz) to allow for comparisons between the two under similar circumstances. However, given the

entirely different nature of the two, the GFRP blade starts presenting inconsistencies for the higher

frequencies of the bandwidth. For this reason, only a smaller, more reliable portion of the spectrum was

considered henceforth.
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Figure 4.16: GFRP blade stabilisation diagram clustered with the representative poles.
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The FRFs used to find the eigenfrequencies and damping ratios of the GFRP blade were obtained

from the modal shaker testing. Figure 4.16 shows the stabilisation diagram, for the 10-650 Hz bandwidth,

with the system poles obtained for the model size of 50, where 14 reference modes were selected based

on the stable poles, each corresponding to a peak of the sum of the FRFs.

Figure 4.17: GFRP blade modal parameters.

Mode Natural frequency [Hz] Damping ratio

1 15.346 0.83%
2 31.437 1.73%
3 47.890 1.51%
4 101.485 1.41%
5 114.879 2.41%
6 137.672 4.47%
7 178.737 1.53%
8 225.382 2.72%
9 247.519 1.50%

10 299.862 1.14%
11 388.350 2.01%
12 457.484 2.02%
13 560.414 2.38%
14 626.092 2.36% Figure 4.18: Auto-MAC for a healthy experi-

mental run of the GFRP blade.

The modal parameters presented in table 4.17 correspond to the average natural frequencies and

damping ratios of all healthy experimental runs. The mode-set selected was compared to itself in the

calculated Auto-MAC in figure 4.18, and some significant correlation values can be observed outside

the diagonal, which was not verified for the Ti blade. These values are due to the spatial aliasing

phenomenon, which causes the mode shapes to coincide in some of the sensors, not meaning that the

mode shapes would be the same in the areas not covered by the sensors. What can be an indicator of

an insufficient number of sensors for bandwidth analysed for the GFRP blade. Bearing this in mind, it is

possible to assume that no extra modes have been selected.

The mode shapes for the analysed bandwidth are shown in the following figure 4.19. These anima-

tions were captured from Simcenter Testlab. Having analysed the FRFs and crosspowers of the three

experimental test variants, the mode shapes and the respective MACs, it is possible to conclude, with a

significant degree of certainty, that the selection of the reference modes for the GFRP blade is correct.
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(a) 1st: out-of-plane bending.

(b) 3rd: out-of-plane bending.

(c) 5th: in-plane bending.

(d) 7th: out-of-plane bending.

(e) 9th: out-of-plane bending.

(f) 11th: out-of-plane bending and torsional.

(g) 13th: out-of-plane bending and torsional.

(h) 2nd: in-plane bending.

(i) 4th: out-of-plane bending.

(j) 6th: out-of-plane bending.

(k) 8th: torsional.

(l) 10th: out-of-plane bending and torsional.

(m) 12th: out-of-plane bending and torsional.

(n) 14th: in-plane bending and torsional.

Figure 4.19: GFRP blade mode shapes.
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After selecting the reference modes of the healthy state, the comparison to the damaged frequencies

can now be made.

As seen for the titanium blade, for the GFRP blade, it is also possible to confirm the deviation of the

damaged frequencies from the blue frequency band corresponding to the healthy experimental runs.

This deviation is evident for all the masses, including the smaller percentage ones not analysed for the

titanium blade. However, this deviation is only evident for most of the masses in positions five onwards,

which correspond to the last third of the blade, near the tip.

Figure 4.20: Natural frequencies of the 1st

mode of the GFRP blade.
Figure 4.21: Natural frequencies of the 2nd

mode of the GFRP blade.

The second conclusion about the increase of this deviation with the approach of the mass to the tip

and the increase of the mass magnitude, which was verified for the Ti blade, is also verifiable for the

GFRP blade. The fact that more mass magnitudes were analysed for this blade highlights, even more,

this linear correlation of the frequency shift with the mass magnitude and with the mass position, as it is

possible to observe in figures 4.20 and 4.21.

This tendency, similar to the titanium blade, is verified until the fourth mode, where the correlation

happens only with the increase in magnitude, as shown in figure 4.22. For high-order modes like the

twelfth mode in figure 4.23, there is no longer any correlation.
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Figure 4.22: Natural frequencies of the 4th

mode of the GFRP blade.
Figure 4.23: Natural frequencies of the 12th

mode of the GFRP blade.

4.3 Modal tracking

4.3.1 Methodology

Monitoring structures health concerning modal analysis is a process that can be divided into three parts:

modal parameter estimation, automated modal parameter selection, modal tracking.

Concerning the modal parameter estimation, in this thesis, it is done through the Polymax algorithm

of the Simcenter Testlab software [61], where the poles of the system, such as those seen in the stabili-

sation diagram of figure 4.16, are calculated.

Regarding the automated modal parameter selection, after calculating the poles, the selection is

made through the automatic modal parameter selection (AMPS) tool, also in Simcenter Testlab. The

AMPS is an algorithm with a clustering approach that analyses the poles generated by Polymax, asso-

ciating and agglomerating them into the respective modes [70].

One of the methodologies that this thesis intends to implement involves the analysis of the healthy

and damaged natural frequencies seen throughout this chapter 4. In order to proceed with this modal

tracking part for the large number of experimental runs performed for each of the states and each of the

blades, the two previous processes of modal parameter estimation and selection must be fulfilled effi-

ciently. Proceeding with the individual analysis of every run through the software - making the selection

of the normal modes using the AMPS along with the Polymax algorithm and the subsequent export of

each file - would be inefficient and time-consuming.

Hence, the need to create a script to make this process automatic and time-efficient arose. The

methodology behind this script is schematised in figure 4.24.

The first step of the script is to process the files used as a reference to perform the modal tracking,
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which correspond to the natural frequencies and mode shapes of the structure in its healthy state. At

the same time, the FRF files from which the modal parameters will be extracted are processed. The

Polymax algorithm, together with the AMPS tool are applied to these files with a purposely exaggerated

modal order to obtain an extensive pre-selection of detected normal modes. These modes are then

compared with the reference parameters mentioned above; a filtering process is done based on a score

that considers the correlation of the reference modal parameters with the extensive list of pre-filtered

ones.

AMPS
Files to
analyse

Reference
files

Reference
mode shapes

Natural
frequencies

FRFs High modal
order Polymax

Mode
shapes

MAC MAC
score

Natural
frequencies

DifferenceFrequency
score

Final score

Filter modes

Reference natural
frequencies

Mode
shapes

Mean

Post-filter modal
parameters

Post-filter
mode shapes

Mean

Modal
parameters

Figure 4.24: Modal tracking script methodology diagram.

The final score based on which the modes are filtered is the combination of a frequency score and a

MAC score. In order to explain the methodology behind each one, the titanium blade reference modes

will be used as an example. The frequency score is simply an assignment of values from 1 up to the

total number of detected modes pre-filtering based on their difference from the reference frequency. As

shown in figure 4.25 for only a portion of the pre-filter modes for the sake of simplification, regarding the

fourth reference mode, the difference between all pre-filter modes and reference frequency is calculated.

The highest score value is assigned to the mode whose frequency is closer to the reference, which, in

this case, is the seventh pre-filter mode that differs only 0.5 Hz.
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Post-filter modes
Mode Frequency [Hz]

1 26.0

2 56.2

3 92.2

4 198.3

5 241.5

6 353.8

7 517.8

8 541.7

9 625.9

10 756.3

Pre-filter modes

Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9

92.2 Hz 171.9 Hz 185.3 Hz 198.3 Hz 241.5 Hz 347.9 Hz

Reference frequency difference

105.6 Hz 25.9 Hz 12.5 Hz 0.5 Hz 43.7 Hz 150.0 Hz

Lower difference          Better score

Reference frequency

Mode 4

197.8 Hz

Frequency score

17 19 20 21 18 14

Figure 4.25: Example of a frequency score assignment for the fourth Ti blade reference mode.

As for the MAC score, it is also an assignment of values from 1 to the total number of pre-filter modes

where the highest value is assigned to the highest MAC correlation between the pre-filter modes and the

reference modes. For the Ti blade case shown in figure 4.26, likewise the frequency score, the highest

correlation value, i.e. the reddest element of the fourth row in the MAC plot, corresponds to the seventh

pre-filter mode.

Pre-filter modes

Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9

92.2 Hz 171.9 Hz 185.3 Hz 198.3 Hz 241.5 Hz 347.9 Hz

MAC score

13 19 20 21 3 18

Post-filter modes
Mode Frequency [Hz]

1 26.0

2 56.2

3 92.2

4 198.3

5 241.5

6 353.8

7 517.8

8 541.7

9 625.9

10 756.3

m

Figure 4.26: Example of a MAC score assignment for the fourth Ti blade reference mode.
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4.3.2 Results

The final score is an equation that takes into account the two scores presented above. In this equation,

the frequency score and the MAC score can assume different weights. The configuration that presented

the best results was attributing a factor of 2 to the MAC score to give more preponderance to the mode

shapes when filtering the modes. This modal tracking script worked perfectly for all healthy experimental

runs; however, for the damaged runs where some of the FRFs do not present all the intended refer-

ence modes, it was necessary constant monitoring and adjustment of the scores weight parameters

mentioned above.
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Chapter 5

Machine learning techniques

5.1 Multivariate Gaussian anomaly detection

5.1.1 Methodology

The idea behind this methodology is based on the natural frequency shift of a damaged structure in

relation to its healthy state, which was evidenced in the chapter Modal parameter estimation. Therefore

the premise is: if the algorithm can learn the natural frequencies of a structure in its undamaged state, it

should be able to detect divergent frequencies of the same structure and consider them as anomalies.

As portrayed in the diagram of figure 5.1, the algorithm starts by reading the files from each experi-

mental run, in the damaged and undamaged state separately, containing the natural frequencies of the

blade. Each file corresponds to an experimental run containing the eigenfrequencies for every mode.

Select modal
parameters files

Process and sort
frequencies

Testing
subset

Oversample

Training
subset

Probability density
function

Threshold
optimization

Individual file
classification

Undamaged

Damaged

Process and sort
frequencies

Damaged Undamaged

Figure 5.1: MGAD methodology diagram.

The data from the selected files are then divided equally into two subsets, both containing damaged

and undamaged data: one used for the training of the algorithm - finding the optimal threshold; and the

other for testing - classifying the files based on the optimal threshold. The following diagram in figure 5.2

illustrates how the dataset is processed.
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Training
subset

Testing
subset

Algorithm

Undamaged run

Damaged run

Undamaged 
structure

Damaged
structure

...

Oversample

Testing
subset

Figure 5.2: MGAD subset processing diagram.

The process of quantifying how divergent a natural frequency should be to be considered an outlier

was done using a multivariate Gaussian distribution. This threshold optimisation process is described in

the theoretical chapter 2.2.1. It was explained that the Gaussian distribution could be used considering

more than one feature resulting in a multivariate Gaussian distribution that will provide a more optimised

threshold; therefore, a more accurate algorithm. For the implementation within the scope of this thesis,

the features used to perform the multivariate Gaussian distribution were the natural frequencies of all

the modes for each blade, estimated in section 4. A visual representation of this approach can be seen

in figure 5.3. Only two modes are represented to help visualise and understand the concept since it is

impossible to visualise a multivariate Gaussian distribution with more than two variables.
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(a) 3D visualisation. (b) 2D visualisation.

Unrestricted © Siemens AG 2018
2021-09-08Page 15 Siemens PLM Software

(c) Anomaly classification.

Figure 5.3: Multivariate Gaussian anomaly detection applied to the natural frequencies of the first two
normal modes of the Ti blade.

Regarding the experimental runs of the blade in its healthy state, some normal modes may present

considerable frequency intervals, as is the case of the fourteenth mode of the GFRP blade shown in

figure 5.4, which jeopardise the performance of the algorithm.
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Figure 5.4: Natural frequencies of the 14th mode
of the GFRP blade.

Figure 5.5: Natural frequencies of the 11th mode
of the GFRP blade.

That is why it is more beneficial to use a multivariate Gaussian distribution that can consider all the

modes instead of the simpler univariate Gaussian distribution approach, which considers only one of the

modes. This way, the algorithm, based on the majority of analysed modes, will have a more reasoned

and balanced approach taking weight off these residual and unideal types of modes. In figure 5.5 is an

example of a more favourable type of mode for the objective of the methodology having an almost null

healthy frequency confidence interval.

Oversampling

The first attempt to implement this methodology obtained the Gaussian distribution represented by the

colour bar of figure 5.6, resulting in the classification represented in figure 5.7. It is possible to observe

that the probability distribution function of the healthy frequencies assumes values very similar to the

damaged frequencies, which means it has a flat Gaussian curve, making it challenging to select an

adequate threshold. This happens because the number of healthy experimental runs is much smaller

than the number of damaged runs, so the algorithm cannot consider the healthy state as the normal be-

haviour of the structure. Another reason for this Gaussian distribution problem is that, for some masses,

the frequency shift of the damaged frequencies referred to in chapter 4 is insufficient to distinguish the

damaged frequencies from the healthy ones.
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(a) Healthy frequencies.
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Figure 5.6: Multivariate Gaussian distribution before the oversampling.
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(a) Healthy frequencies.
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Figure 5.7: MGAD classification before the oversampling.

The solution to this problem was to make an oversampling of the healthy subset of the data. Over-

sampling consists of supplementing the training data with multiple copies of some of the minority classes,

creating a transformation in the Gaussian distribution as illustrated in figure 5.8.
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Figure 5.8: Transformation of a flat Gaussian distribution (blue) into a sharp distribution curve (red) due
to oversampling.

The oversampling factors, i.e. the minimum number of times the healthy data were multiplied to obtain

the best accuracy possible, were around 500 for the Ti blade and 2000 for the GFRP blade. The following

figures 5.9 and 5.10 illustrate the significant difference in the distribution after the oversampling and its

impact on the subsequent classification. To give a numerical sense of the improvement, considering all

of the damaged experimental runs, the accuracy of the Ti blade algorithm went from 55.6% to 100%

and GFRP blade one from 66.7% to 94.1%, representing an increase in the orders of 80% and 40%

respectively.
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Figure 5.9: Oversampled multivariate Gaussian distribution.
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Figure 5.10: Oversampled MGAD classification.

This technique is especially relevant given the context in which this thesis is set. This oversam-

pling process is essentially what happens naturally in a real-world SHM application where most of the

extracted data is done for structures in their healthy state.

5.1.2 Results

In the end, the testing subset of natural frequencies is classified based on the selected threshold, i.e.

separated into damaged and non-damaged. This classification, compared with the ground truth (the

actual state of health of the structure for the corresponding frequencies), leads to the accuracy percent-

age of the algorithm. This accuracy can vary drastically depending on the damaged experimental runs

analysed, hinging on the positions and magnitude of the masses considered.

GFRP turbine blade

In table 5.1, it is presented the sensitivity study of the algorithm’s damage detection as a function of

the mentioned variables. The results presented are from the shaker testing since it was the one that

presented the most reliable data, as seen in section 4.2, and consequently the best results. On the left

are the intervals of masses, and in opposition, are the intervals of mass positions (figures 3.7 and 3.12)

considered to reach the corresponding accuracy. For instance, the first column of the first row of the

table corresponds to the algorithm’s accuracy when running, considering all the damaged experimental

runs of the, in other words, every combination of magnitude and position of the mass. Since the tests

were performed with ten different mass magnitudes in seven different positions, the algorithm ran with
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seven times ten, i.e. 70 different files, representing 70 experimental runs of the blade in the damaged

state. On the other hand, the entry of the last column of the last row corresponds to the algorithm’s

accuracy, taking only into consideration the experimental run with the mass of 35.4g at position 7.

Table 5.1: MGAD accuracies for the different combinations of intervals of magnitude and position of the
GFRP blade.

Mass [g]
Position of the mass on the blade

1 to 7 2 to 7 3 to 7 4 to 7 5 to 7 6 to 7 7

0.4 to 35.4 94.1% 97.8% 95.1% 94.4% 93.8% 92.6% 100.0%
1.0 to 35.4 95.7% 97.7% 94.7% 94.1% 93.3% 92.3% 100.0%
2.1 to 35.4 95.5% 97.5% 94.4% 93.8% 93.1% 92.0% 100.0%
4.3 to 35.4 95.0% 100.0% 100.0% 100.0% 100.0% 91.7% 100.0%
8.1 to 35.4 94.6% 100.0% 100.0% 100.0% 100.0% 91.3% 100.0%

10.4 to 35.4 93.9% 100.0% 100.0% 100.0% 100.0% 90.9% 100.0%
14.8 to 35.4 93.3% 100.0% 100.0% 100.0% 100.0% 90.5% 100.0%
19.5 to 35.4 92.6% 100.0% 100.0% 100.0% 100.0% 90.0% 100.0%
26.5 to 35.4 91.3% 100.0% 100.0% 100.0% 100.0% 89.5% 100.0%

35.4 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

As seen in chapter 4, defects in positions closer to the free extremity of the blade and higher mag-

nitude lead to higher frequency shifts. The opposite is true for natural frequencies from experimental

runs with mass positions closer to the clamped side (position 1 of figure 3.12) and lower magnitude, with

insufficient variation in comparison with its healthy state. This damaged frequency shift will strongly in-

fluence the thresholding process. A high-frequency shift will result in a more optimal threshold, whereas

a low-frequency shift will result in a poor threshold, which will be reflected in the algorithm’s accuracy.

The results obtained shown in table 5.1 validate this reasoning.

Titanium turbine blade

Regarding the titanium blade, the presented results are from the hammer testing, which presented the

most reliable data, shown in section 4.1, and, therefore, the best results. As seen for the GFRP WT

blade, the worst performances are noticed when considering masses of 0.4, 1.0 and 2.1 grams, which

correspond to a maximum of 0.3% of the GFRP blade’s mass.

Table 5.2: MGAD accuracies for the different combinations of intervals of magnitude and position of the
Ti blade.

Mass [g]
Position of the mass on the blade

1 to 7 2 to 7 3 to 7 4 to 7 5 to 7 6 to 7 7

15.5 to 127.0 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
29.1 to 127.0 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
38.5 to 127.0 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
53.5 to 127.0 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
68.5 to 127.0 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
90.2 to 127.0 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

127.0 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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As explained in the chapter on the Experimental campaigns the titanium WT blade was only tested

for masses as light as 0.6% of its total weight. For this reason, given the results for the GFRP blade, it

makes sense that the results for the Ti blade would be close to the perfect accuracy, as was the case

for the GFRP blade for most combinations of runs above 0.3% of the total mass. Which was verified as

shown in table 5.2.

5.2 Anomaly detection autoencoders

5.2.1 Methodology

Another technique developed was the Anomaly Detection Autoencoder (ADAE). The ADAE is a semi-

supervised learning approach that involves training the algorithm with normal features, i.e. data from the

structure in its healthy state and then classifying the rest of the testing dataset based on its reconstruction

error. If the error of a certain point exceeds an established threshold, it is classified as an anomaly.

As schematically shown in the diagram of figure 5.11, the algorithm starts by reading the files from

each experimental run, in the damaged and undamaged state separately, containing the FRFs from the

blade. Each experimental run file has data from the three directions (x, y and z) of each accelerometer.

Considering that ten accelerometers were used, there are three times ten FRFs, i.e. 30 per experimental

run. Then, the data are normalised along the accelerometer directions to reduce the experimentally

inevitable differences in data acquisition from run to run.

Select FRF files

Normalize each
accelerometer
direction FRF

Training subset

Undamaged

Damaged

Normalize each
accelerometer
direction FRF

Train an autoencoder for each
accelerometer direction

Autoencoder

Threshold
optimization

Individual accelerometer
direction classification

Damaged
structure

Undamaged
structure

Testing subset

Validation subset

Calculate
reconstruction error

Individual file
classification

Figure 5.11: ADAE methodology diagram.
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After that, the data from the selected files are divided into three subsets. The first one, consisting of

one-third of the healthy data, is used for the training of the AEs. An AE is trained for each direction of

each accelerometer. The second subset containing one-third of healthy data and half of the damaged

data is used for the validation process - finding the optimal threshold. Finally, the last subset, also con-

sisting of half of the damaged data and one-third of the undamaged data is used for testing - classifying

the files based on the threshold found.

In figure 5.12 is illustrated the fundamental principle of an AE applied to our use case. At the top

of the diagram, in green, it is represented the input signal corresponding to an FRF in the healthy state

and the respective AE reconstruction, which exhibits an almost perfect reconstruction, originating only

residual error. While at the bottom, in red, the input signal of the structure in its damaged state manifests

a significant difference in the AE reconstruction and corresponding error.

High reconstruction error

Damaged input

Undamaged input

Damaged output

Low reconstruction error

Undamaged output

Figure 5.12: ADAE reconstruction error principle.

The error shown in figure 5.12 is simply the difference between the input and the output. However,

for this thesis algorithm implementation, a more reliable form and better-suited method of estimating the
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reconstruction error was used: the root-mean-square error (RMSE). The way to calculate it is described

in equation 5.1 where ŷ represents the predicted values, y the observed values and n the number of

observations.

RMSE =

vuut
nX

i=1

(ŷi � yi)
2

n
(5.1)

The following figures 5.14 and 5.13 show the reconstructions of the FRFs of the structure in its

healthy state, and it is visible that the reconstruction is near perfect; i.e., the output FRF is roughly the

same as the input FRF.
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Figure 5.13: ADAE FRF reconstructions for healthy inputs from the Ti blade.
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Figure 5.14: ADAE FRF reconstructions for healthy inputs from the GFRP blade.

While in figures 5.15 and 5.16, it is represented the case for the input FRFs of the structure in its

damaged state, and the difference in their reconstruction is evident and significant.
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Figure 5.15: ADAE FRF reconstructions for damaged inputs from the Ti blade.

Figure 5.16: ADAE FRF reconstructions for damaged inputs from the GFRP blade.

In order to give an insight into the distribution of the reconstruction error along the spectral lines of

the FRF, i.e. along its bandwidth, figures 5.17 and 5.18 show the RMSE between all the collected exper-

imental runs and their respective output reconstructions for the damaged and healthy state separately.
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Figure 5.17: Sum of the reconstruction RMSE from every healthy vs damaged experimental run for one
of the accelerometer directions of the Ti blade.
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Figure 5.18: Sum of the reconstruction RMSE from every healthy vs damaged experimental run for one
of the accelerometer directions of the GFRP blade.

As expected, it is possible to notice the RMSE corresponding to undamaged data remaining approx-

imately null the whole spectrum. In contrast, the damaged data part remains significant over the whole

bandwidth, with the largest spikes in the zones near the natural frequencies of the blade in its original

state.
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Figure 5.19: RMSE for the different experimental runs of the Ti blade.

The graphs in figures 5.19 and 5.20 shows the variation of RMSE over the different experimental runs

for both healthy and damaged data. Analogously to what was observed in chapter 4, where the natural

frequencies of the damaged structure presented a larger deviation for higher magnitude and masses

closer to the tip of the blade, the same applies to the reconstruction error of the AEs.
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Figure 5.20: RMSE for the different experimental runs of the GFRP blade.

It can be seen that for the titanium turbine blade, it is quite simple to define a threshold value between

the errors of the healthy and damaged structure due to the large difference between the two. Regarding

the GFRP turbine blade, the same is true but only for masses above 4.3g, corresponding to 0.6% of the

blade mass. For the algorithm to be able to identify damage below those magnitudes, the thresholding

process addressed in the following subchapter has to be taken into account.

Thresholding

The selection of the reconstruction error threshold, which defines what points are considered faults,

is one of the most significant challenges when using ADAEs; this value must be determined before

any classification results can be obtained. When labels, i.e. the ground truth data, are known and

exploitable, as with the training and validation sets, the threshold can be set by maximising any given

metric, a process known as supervised thresholding. For each possible threshold, a corresponding value

of true positives and false positives exists; therefore, a receiver operating characteristic (ROC) curve like

the ones shown in figure 5.21 can be created. As illustrated in figure 5.22, the best classifier possible

corresponds to a point in the coordinate (0,1), representing 100% sensitivity (no false negatives), 100%

specificity (no false positives) and an area under the curve (AUC) of 1.

Analysing the number of true positives and false positives can be more informative than focusing only

on the accuracy (equation 2.33) when dealing with datasets with a large percentage of non-anomalous

data. To facilitate the study of the threshold selection considering both variables at the same time, a

score based on the Intersection over Union (IoU) method defined in equation 5.2 was used.

IoU =
True positives

True positives+ False negatives+ False positives
(5.2)

The IoU value can be plotted as a function of the multiple thresholds analysed by the algorithm,

as shown in figure 5.23. The threshold selected for each AE corresponds to the maximum of the IoU

function.
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Figure 5.21: ROC curve for the Ti and GFRP
blades.

Figure 5.22: ROC curves for different classifier
performances.
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Figure 5.23: Threshold corresponding to the maximum IoU for one of the directions of an accelerometer.

A threshold for each of the accelerometer directions is obtained with this process, which means

there will also be a classification for each of them. Knowing that there are ten accelerometers, each

file, i.e. experimental run, will have 30 classifications (3 directions per accelerometer). Now, to decide if

a file should be considered healthy or damaged based on these 30 classifications, a methodology that

consists in finding the ratio that estimates how much an experimental run is likely to be considered or not

damaged was developed. Given that each one of the 30 classifications of an experimental run is labelled

as 0 if it is considered healthy and as 1 when it is considered damaged; the ratio is calculated simply by

summing all the 30 classification labels of the run and dividing it by the total number of accelerometer

direction classifications (i.e. 30). In other words, this ratio will range from 0 to 1, whereby an experimental

run with a ratio of 0 means that it had all its accelerometers classified as healthy, while a run with a ratio

of 1 means that it had all its accelerometers rated as damaged. With this in mind, experimental runs

with ratios below 0.5 are considered healthy, and above 0.5 are deemed damaged.

An alternative considered for the thresholding process was to evaluate the distribution of RMSE

values across the input data and find the midpoint between two clusters. However, this method presup-

poses anomalies to be found in the first place, whereas in a real-world application, most of the tested

structures will be defect-free, so it was not implemented.
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5.2.2 Results

Finally, the testing subset consisting of FRFs is classified based on the threshold found, i.e. separated

into damaged and non-damaged. This classification, compared with the ground truth labels, leads to the

algorithm’s accuracy.

Contrary to what was seen regarding MGAD in the chapter 5.1.2, this algorithm was able to achieve

perfect accuracy for certain configurations when analysing the entire dataset of masses tested. Thus,

those configurations, i.e. AE architectures, will be presented, and the most optimal for each of the WT

blades will be ascertained.

The algorithm architecture and the tuning of its hyperparameters is one aspect that significantly

impacts its accuracy. The two hyperparameters that most affected the final output of the algorithm were

the code size and the maximum number of epochs. An epoch is a term used in ML that indicates the

number of times that the learning algorithm will work through the entire training dataset, and the code

size represents the number of neurons in the hidden layer, i.e. the number of nodes in the middle layer.

GFRP turbine blade

In table 5.3, it is shown the study performed for these two parameters and how they influenced the

accuracy of the algorithm concerning the GFRP blade data. The results presented are from the shaker

testing since it presented the the best results, as presented in section 4.2.

Taking into account that the algorithm execution time and its computational requirements increase

with the increasing of the hyperparameters, i.e., along the lines and columns of table 5.3, a preselection

of the four configurations, which presented perfect accuracy for the less computational impact possible,

was made.

Table 5.3: Accuracy comparison of the algorithm architectures.

Epochs
Code size

1 5 10 20 30 40 50 60

1 97.8% 91.3% 95.7% 89.1% 93.5% 95.7% 93.5% 93.5%
2 95.7% 95.7% 87.0% 87.0% 89.1% 91.3% 89.1% 91.3%
3 97.8% 91.3% 87.0% 87.0% 87.0% 87.0% 91.3% 87.0%
4 91.3% 91.3% 89.1% 89.1% 87.0% 91.3% 87.0% 87.0%
5 89.1% 89.1% 91.3% 91.3% 87.0% 93.5% 87.0% 93.5%

10 93.5% 91.3% 91.3% 91.3% 97.8% 97.8% 97.8% 91.3%
15 100.0% 97.8% 100.0% 97.8% 97.8% 97.8% 97.8% 97.8%
20 95.7% 100.0% 100.0% 97.8% 100.0% 100.0% 95.7% 97.8%
30 100.0% 100.0% 100.0% 97.8% 100.0% 100.0% 100.0% 97.8%
50 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

100 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
200 100.0% 100.0% 97.8% 100.0% 100.0% 100.0% 100.0% 100.0%
300 97.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
500 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
800 100.0% 97.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

1000 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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In order to differentiate the 100% accuracy algorithms, their execution time and classification errors

regarding each accelerometer and experimental run were estimated.

The run classification error corresponds to the sum of the difference between the previously ex-

plained ratio and the respective ideal classification of every experimental run. For instance, an exper-

imental run with nine of its ten accelerometers classified as damaged (ratio of 0.9), in relation to its

respective ideal classification (ten of ten accelerometers classified as anomalies, i.e. a ratio of 1) rep-

resents an error of 0.1. The symmetrical reasoning applies to the healthy state. The error values in

table 5.4 are the sum of all experimental run errors for the respective configuration. A similar approach

was made for the accelerometer classification error, where the values presented in the table are the

sum of the differences between the classification ratios of each accelerometer and its respective ideal

classification.

Table 5.4: Comparison of the preselection of algorithm architectures.

Code size Epochs Runtime [s]
X

Run classification error
X

Accelerometer classification error

1 15 14.2 4.54 1.98
1 30 16.7 3.96 1.80
5 20 16.3 4.25 1.63

10 15 15.7 4.54 1.63

Based on table 5.4, the architecture that presented the most balanced amount of error and runtime

was the one with 30 epochs and a code size of 1, so it was the implemented configuration. The chosen

architecture is optimal for the data collected in the experimental environment shown in chapter 3. For less

controlled environment data, as is the case of a real-world scenario, where there is more variance like

changing atmospheric conditions and longer acquisition time intervals, more demanding and powerful

architectures may be required to distinguish the healthy from the damaged autoencoder reconstructions.

Titanium turbine blade

Considering that the ADAEs results were favourable for the GFRP WT blade when analysing all the

tested masses, the same results were expected for the titanium WT blade since the masses used in this

blade tests were heavier (table 3.2), meaning they would be easier to detect. This was confirmed with

the perfect accuracy results obtained considering all the masses and using the minimal configuration

of 1 epoch and modal size 1; the fastest and less computationally demanding type of AE possible.

Therefore, optimisation analysis as the one done for GFRP blade architecture is not necessary for the

Ti blade. The data analysed to draw these conclusions was from the impact hammer testing since it

presented the best results.

71



Chapter 6

Conclusions

After all the research work developed throughout this thesis, it was concluded that implementing ML

techniques concerning damage detection on vibration-based data was successful.

The fact that this study benefited from experimental tests on two different material WT blades with

the same geometry was particularly useful to validate some of the reasonings developed throughout

the project; coupled with the fact that these algorithms run automatically, without the need for manual

interaction, allows them to be applicable to other WT blades.

The conclusions about the results obtained can be structured according to the two algorithms devel-

oped: MGAD and ADAEs.

Regarding the MGAD, its initial premise centred on the variation of natural frequencies of a damaged

structure was soon confirmed in the chapter Modal parameter estimation. However, with regard to the

GFRP blade, this frequency variation was insufficient for mass positions closer to the clamped side of

the blade and lower magnitude masses, driving the algorithm to worse performance for masses up to

0.29% of the blade’s weight. Since the Ti blade was only tested with masses of 0.6% of its total weight,

the algorithm detected all the masses analysed in every position of the blade. When considering the

application of this algorithm in a real-world scenario, in which the amount of undamaged data is much

greater since the data collection is done most of the time in its healthy state, the confidence interval

of frequencies considered healthy may become more accurate and sensitive to the point of detecting

frequency deviations as small as those from the masses not detected by the MGAD algorithm. However,

for a realistic application of this algorithm, it would need to be implemented in conjunction with a modal

tracking algorithm like the one presented in section 4.3 so that the whole process from data acquisition

until the detection of the anomalous natural frequencies could run in a fluid and automatic manner.

This process should ideally be done in real-time so that the fault detection can be done in time to avoid

significant damages. The heavy reliance on precise modal parameter estimation is a drawback of MGAD.

Concerning the ADAEs results, it can be concluded that its premise, based on the variation of the

FRF of a damaged structure, verified in chapter 4, was proven to be quite reliable, enabling the algorithm

to detect all the masses tested in every position of the two blades. The only aspect to consider that

affects the algorithm’s performance is the architecture and the optimisation of the hyperparameters. For
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the Ti blade, the algorithm presented perfect accuracy for its simplest architecture. On the other hand,

for the GFRP blade, it was necessary to adjust the number of epochs and the code size to obtain the

same results. This adjustment was necessary because the masses tested on the GFRP blade were

proportionally lighter, making them harder to detect.

It should be taken into account that the best damage detection results were obtained with experi-

mental data from the modal hammer and modal shaker testings, which require EMA that is the most

challenging form of modal analysis to implement in a real scenario in opposition to OMA, as explained

in the chapter Modal analysis.

Overall, the ML implementation in the damage detection methodologies resulted in excellent clas-

sification accuracies. Although the ADAEs algorithm presented better damaged detection results, both

techniques have the potential for achieving even better performances.

6.1 Achievements

This thesis’s objectives, specifically the conducting of experimental campaigns to collect the vibration-

based from the blades and the afterwards performance and understanding of the modal analysis princi-

ples, were fulfilled.

Regarding the implementation of ML algorithms, these were able to successfully accomplish the

mission of detecting damage and interpreting its magnitude; however, no relevant progress was achieved

concerning the part of localising the fault. The algorithms were then compared in terms of accuracy,

sensitivity, damage assessment and applicability in a real-world scenario.

The main lesson learned with this project was how to research, understand and implement ML tech-

niques in a short period, have a critical analysis of the results and come up with different approaches or

new directions to take. It was also interesting working with large amounts of data of so many different

kinds, namely data from different types of testing (impact; shaker; and pull-and-release), setups (with-

out masses; with different magnitude masses; and different mass positions), structures (Ti WT blade;

and GFRP WT blade), modal parameters (frequency; damping; and mode shapes) which lead to an

almost infinite number of possible approaches for implementing ML. Organising and visualising such

diverse data types was quite challenging and required a more profound knowledge of the theoretical

background to interpret its behaviour and conceptualise possible improvements to the models.

73



6.2 Future work

The methodologies developed in this thesis still have a long path to take before they can be reliably

implemented as a form of damage detection in a real-world application. Thus, several developments

and future steps to improve their performance and reliability will be suggested:

• Introduce the modal parameter of damping as another variable to be taken into account in the

MGAD algorithm. The multivariate Gaussian distribution was done considering the natural fre-

quencies of all the normal modes of the structure. This ML technique can also be done considering

both the frequency and damping values of each mode;

• In order to improve the accuracy and optimise the architecture of the algorithms, implement Monte

Carlo methods to assess the best data parameters to analyse. Namely, which normal modes,

frequency bandwidth, experimental runs, i.e. masses and positions, should be considered or have

more or less weight in the thresholding and classification process of the algorithm. In addition,

experiment with other ML techniques;

• Complement the study done for Ti blade, testing it with lower magnitude masses to match the

blade mass percentages studied for the GFRP blade tests;

• Perform experimental tests on a blade with permanent damage besides the simulated damage

from masses analysed in this thesis. It would also be interesting to do experimental tests on a

blade bolted to a small-scale operating WT;

• For this thesis, only accelerometer data was used. There are other ways of acquiring data that

may be relevant to analyse—for instance, surface velocity from a laser Doppler vibrometer or

displacements from digital image correlation;

• Further elaborate on the methodologies developed aggregating more than one ML technique and

analysing more than one type of modal parameter to achieve an algorithm capable of identifying

damaged structures with a higher degree of certainty. Furthermore, apply these methodologies to

a structure other than a WT blade.
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