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Abstract

The solar influence on the space weather and terrestrial environment is intelligible. Strong geo-
magnetic storm activity can significantly affect astronauts in orbit, communications and GPS systems
and disrupt Earth’s power distribution networks, making continuous monitoring and forecasting of so-
lar activity vital. Sunspots are magnetic disturbances in the photosphere characterized by their dark
appearance in the solar disk, being directly related to phenomena that contribute to these intense
storms, namely solar flares and coronal mass ejections. This thesis lies at the intersection between solar
surveillance and computer vision by applying state-of-the-art deep learning algorithms in the automatic
detection of sunspots and sunspot groups. Three algorithms were implemented based on two approaches,
semantic segmentation and instance segmentation, among them U-Net, U-Net 3+ and Mask R-CNN.
The semantic approach presented superior results to two state-of-the-art sunspot detection algorithms
with 74.2% IoU, leaving solid promises of outperforming the best algorithm compared with, increasing
the network capacity. An improved Mask R-CNN achieved 51.7 AP of bounding box and 78.6% in pre-
dicting the number of sunspot groups between 2010 and 2014 in the test set. Both results are promising,
paving the path for further research and development, aiming at the execution of an autonomous and
efficient algorithm for the purpose.
Keywords: Sun, deep learning, neural networks, detection, sunspots

1. Introduction

Sunspots are manifestations of the solar magnetic
field; regions on the photosphere that appear darker
than the surrounding areas due to a reduced surface
temperature originated by strong magnetic fields
that partially inhibit the regular transport of en-
ergy by convection. Currently, the Solar Dynam-
ics Observatory (SDO) sends over one terabyte of
data daily to Earth, and methods for fast and reli-
able analysis are more critical than ever. Over the
past two decades, the research on automated de-
tection of solar features has increased dramatically
following the volume increase of data availability,
with several algorithms and image processing tech-
niques being developed. Although the accomplish-
ments so far have proven to be successful, plenty of
aspects can be improved. Most of the softwares de-
veloped are based on threshold techniques, border
methods (edge detection), mathematical morphol-
ogy or Bayesian pattern recognition, which rely im-
mensely on properties of the data, image resolution
and average intensity, which tend to be difficult to
generalize to unseen data without supervision. The
last decade brought numerous advances in the field
of machine learning, more precisely in deep learn-
ing, resultant from the significant leaps achieved in

the hardware industry, making it possible a vast
amount of theories and algorithms postulated in
the past, like deep convolutional neural networks,
to be to tested and empirically studied. The algo-
rithms proposed in this thesis combine state-of-the-
art computer vision algorithms based on deep learn-
ing techniques for automatic detection of sunspots
and sunspots groups. These algorithms take as in-
put continuum-intensity images from the Helioseis-
mic and Magnetic Imager (HMI), one of the three
instruments aboard the SDO, and are trained, val-
idated and tested using sunspots catalogues pro-
vided by the Debrecen Heliophysical Observatory.

2. Background
2.1. Semantic Segmentation

Semantic segmentation is a computer vision task
where the goal is to label each pixel in an image
accordingly to the class object it represents, result-
ing in an image that is segmented by classes. There
is no distinction between pixels of the same class;
thus, different and separated objects belonging to
the same class are treated equally, that is, with no
ID attribute. Despite the popularity of the tradi-
tional methods, deep learning came to revolution-
ize many computer vision problems, being image
segmentation one of them, tackling it using deep
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CNNs. In the context of automatic sunspot detec-
tion, the application of CNNs is still to be explored.
The CNN architectures introduced here to tackle
automatic sunspot detection based on semantic seg-
mentation are the U-Net and U-Net 3+.

2.1.1 U-Net and U-Net 3+

U-Net [1] is an architecture initially developed for
biomedical image segmentation in 2015. The U
term derives from the U-shaped architecture of the
network, which consists of a symmetric encoder-
decoder structure. Essentially, the encoder is re-
sponsible for extracting information from the im-
age, down-sampling it similarly to a standard CNN,
and the decoder restores the image dimensions with
precise locations for final pixel-wise classification to
create a fully segmented image. The use of skip con-
nections to combine the high-level semantic feature
maps from the decoder and the corresponding low-
level detailed feature maps from the encoder proved
to be a significant add-on. Since its release, U-Net
has seen a gigantic burst in medical-imaging usage
and many computer vision applications, with sev-
eral new architectures still being developed deriving
from it.
Following several U-Net improved networks, U-

Net++[2] came as a modified version where the skip
connections were redesigned in a nested and dense
manner. Additionally, a deep supervision module
was added, enabling the network to operate in two
modes, an accurate mode where the output from all
resolution segmentation branches are average, and
a fast mode where only one of the segmentation
branches is selected. Following the latter approach,
U-Net 3+[3](2020) arises as an improvement by re-
designing the inter-connections (skip connections)
between the encoder and the decoder as well as the
intra-connections between the decoders to capture
fine-grained details from the different scale levels,
but with fewer parameters to improve the compu-
tation efficiency. Additionally, to tackle the over-
segmentation (false positives) in non-organ images,
a classification-guided module is proposed by jointly
training with an image-level classification. In this
work, the deep supervision and classification-guided
module were not employed by limited computa-
tional resources limitations, therefore only the skip
connections improvement was implemented. The
architecture comparison between U-Net, U-Net++
and U-Net 3+ is depicted on Fig. 1.

2.2. Instance Segmentation
Instance segmentation is a computer vision task for
detecting and localizing an object in an image. It
comprises two different tasks in a single approach,
namely object detection and semantic segmenta-
tion. Instance segmentation is still one difficult

challenge in computer vision, and over the years,
several different techniques have been developed to
its effective automation. While in semantic segmen-
tation there is no distinction between objects of the
same class, each object in an image receives one
individual ID in instance segmentation. The algo-
rithm introduced in this work to tackle automatic
sunspot group detection based on instance segmen-
tation belongs to the detection followed by segmen-
tation category, the most popular approach, briefly
described next.

2.2.1 Mask R-CNN

Mask R-CNN [4] became state-of-the-art in ob-
ject instance segmentation in 2017, winning the
best paper award at the International Conference
on Computer Vision (ICCV), and it is still one
of the most powerful object detectors algorithms.
It extends Faster R-CNN [5] by adding a branch
for predicting segmentation masks on top of each
region-of-interest (RoI), in parallel with the exist-
ing branch for classification and bounding box re-
gression. There are three major modifications from
Faster R-CNN to Mask R-CNN: the employment of
Feature Pyramid Network (FPN); the replacement
of RoIPool with RoIAlign; the introduction of an
additional branch to predict segmentation masks
- Mask Head. Figure 2 illustrate the architecture
of the network, and it is composed of three main
components that can be understood to perform the
following tasks:

1. Backbone Network: it is responsible for ex-
tracting features from the input image at dif-
ferent scales. It uses a FPN architecture com-
posed of a deep residual network (ResNet) as
backbone.

2. Region Proposal Network: it generates
proposals of possible object bounding boxes
from the multi-scale features maps passed by
the FPN.

3. RoI Heads: composed of a Box Head and a
Mask Head. The former is responsible for ob-
ject class prediction and bounding box regres-
sion from specific features maps from FPN in
conjunction with proposals boxes from Region
Proposal Network. The Mask Head takes the
same information as the input and outputs seg-
mentation mask of each RoI.

2.3. Automatic Sunspot Detection
For an inexperienced eye, it seems relatively trivial
to detect sunspots and perform handmade drawings
of dark contours, although centuries of controversy
in this matter among the solar physics community

2



Figure 1: Comparison between U-Net, U-Net++ and U-Net 3+ architectures. [3]

Figure 2: Mask R-CNN

has proven quite the opposite. The intensity vari-
ability nature (and shape) of sunspots give rise to
certain degrees of subjectivity, making the task of
automatic methods even more difficult.

The first approaches were mainly based in
threshold techniques (Zharkov et al. (2005), Je-
walikar and Singh (2010), Dasgupta et al.(2011)),
edge detection (Zharkov et al. (2005), re-
gion growing (Zharkov et al.(2005)) and math-
ematical morphology transforms (Zharkov
et al.(2005), Curto et al.(2008)). The effectiveness
and robustness of these techniques led to the de-
velopment of automatic algorithms that were able
not only to detect sunspots but to extract other
important characteristics, such as area and coor-
dinates. The arguably three algorithms that had
the most impact in the subject were the Solar
Monitor Active Region Tracker (SMART) Hig-
gins et al.(2010), the Automated Solar Activity
Prediction (ASAP) Colak and Qahwaji (2009) and
the Sunspot Tracking And Recognition Algo-
rithm (STARA) Watson et al. (2009), later im-
proved into new versions.

3. Methodology
3.1. Dataset
The Debrecen Heliophysical Observatory (DHO)
provides the most consolidated sunspot datasets,
being currently the Debrecen Photoheliographic
Data (DPD) and the Helioseismic and Magnetic Im-
ager Debrecen Data (HMIDD) the most detailed
ground-based and space-borne sunspots catalogues
respectively [14]. Both provide area and position
data for each observable sunspot daily, performed
by a software developed to the purpose that has
been improved over the years named Sunspot Au-
tomatic Measurement (SAM)[15, 16], which previ-
sions are later revised and corrected by solar ex-
perts.

Although DPD presents a visual representation
of their catalogues, the sunspots annotations are
provided in text format, indicating its coordinates,
area, and other fields for each spot individually, at
a specific time. Thus, in order to have our ground-
truth data in the desired state when fed to the algo-
rithms, they must be first pre-processed. For that,
binary segmentation masks need to be generated
from these sunspots catalogues.

Thus, from HMIDD sunspot catalogues available
from 2010 to 2014, a total of four records equally
spaced in time (4h) per day were selected to initiate
the extraction procedure from the SDO continuum-
intensity series with 720 seconds cadence (with limb
darkening correction) provided by JSOC. Next, the
mask generation procedure starts by employing a
recursive flood fill algorithm. A seed is placed in
the pixel correspondent to the central coordinate
of each spot, and the expansion starts by select-
ing the darkest pixel in its surroundings until the
total area of the sunspot is reached. This proce-
dure works quite well, although tiny anomalies oc-
cur in few extremely small spots. Two dataset are
built separately for each approach since semantic
masks are group agnostic, the spots’ individual IDs
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are not necessary for the model, on the other hand,
for the instance segmentation masks each group re-
ceives one ID and a bounding box needs to be cre-
ated based on the most external pixels that belongs
to a spot. Additionally, to have the instance seg-
mentation dataset compatible with the dataloaders
of the library used for the implementation of Mask
R-CNN, the training, validation and set test were
converted into COCO format and stored in a JSON
file each.

(a) Full-disk instance seg-
mentation mask containing
sixteen groups

(b) Zoomed area of the full-
disk containing three groups

Figure 3: Instance segmentation mask loaded in De-
tectron2.

In regard to the final dataset split into training,
validation and test set, for both datasets some as-
pects should be noted. Randomly assigning samples
accordingly to some distribution into the different
sets, in the context of solar imaging surveillance is
not the best practice due to the temporal depen-
dencies of the global dataset. For example, in one
day we have a total of 4 samples (ideally), the dif-
ferences in the intrinsic information between those
samples are small; thus, if three of them are as-
signed to the three different sets, the model will see
the nearly same data in all sets, which is not desir-
able for generalisation purposes. To accommodate
this matter, the division of the sets was made with
the following distribution:

– training set: every sample from January to
September of each year.

– validation set: every sample of October of each
year.

– test set: every sample from November to De-
cember of each year.

The final dataset is composed of:

• 6468 4K1 images captured by SDO2

• 59679 group instances

140962 pixels.
2Due to availability reasons, around 350 images were not

retrieved from JSOC, for that reason this amount is smaller
than supposed.

• approximately 884252 individual spots3

3.2. Evaluation Metrics
To evaluate the semantic segmentation models,
Intersection-over-Union (IoU) was computed,
which is also calculated in [17](2016) where three
methods for automatic sunspot detection were com-
pared, one of them being the ASAP indicated in sec-
tion 2.3, and the remaining methods were originally
developed to the study. However, due to unknown
reasons, in [17] the IoU metric was given the name
of ”Quality Index (Q)”, presenting the same for-
mulation as the former, defined as:

IoU =
TP

TP + FN + FP
= Q, (1)

where, TP are the true positive, FN are the false
negatives and FP the false positives.

In regard to instance segmentation, this approach
can not establish a direct comparison with the met-
rics presented by the current algorithms for sunspot
detection indicated in section 2.3, as it encapsulates
two problems, the sunspot group (object) detec-
tion and its segmentation, possessing then standard
evaluation metrics quite different from those algo-
rithms. Nevertheless, the bounding box evaluation
w.r.t the HMIDD dataset following the COCO eval-
uation metrics is computed, being the mean aver-
age precision (mAP) the primary metric along
with different values of IoU and instance scales, as
well as the precision of the number of groups pre-
dictions along the analysed years.

3.3. U-Net and U-Net 3+
The implementation of U-Net and U-Net 3+ was
based on PaddleSeg [18] (2021), a high-efficient de-
velopment toolkit for image segmentation of Pad-
dlePaddle [19], an open-source deep learning frame-
work developed by Baidu. This toolkit provides nu-
merous high-quality segmentation models following
the official implementation releases, and it aims for
ease and speed of development and research, rea-
sons why it was chosen.

The application of both networks follows the
standard released architecture, and the same pre-
processing pipeline is applied to both. Here, binary
segmentation masks in image format can be directly
loaded as annotations. Both networks were submit-
ted to different training setups, varying input sizes,
augmentation strategies and optimisers. Due to the
considerably small size of numerous sunspots, the
loss of information originated by a high resize fac-
tor harm the performance of the models. This event
was in fact detected when establishing a direct com-
parison from U-Net to U-Net 3+. The capacity re-

3For the same reason mentioned previously, this value was
estimated from the total declared 929641 individual spots in
HMIDD catalogues.
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strictions of the GPUs used during this implemen-
tation only allowed U-Net 3+ to have a network
input of 5122 pixels, against the 10242 pixels size
allowed for U-Net, thus for their fair comparison,
U-Net was also trained and tested with an input
size of 5122. The effects of this re-scaling are shown
in the next chapter.
Concerning data augmentation, beyond the gen-

eralization purposes, with the intention to make the
model robust to different source images that might
present slightly different properties, some noise was
introduced. This aspect is more common in ground-
based observations; as a matter of fact, in SDO im-
ages this is not a problem since it usually4 present
the same image properties, but these appearance
changes can be problematic to several algorithms
that rely on pixel intensity for features detection,
like the ones described in section 2.3. In addition
to the common horizontal/vertical flip, random dis-
tortion were added following the next configurations
with a probability of 0.5 each: brightness range
[0.2], contrast range [0.2], saturation range [0.1].
SGD and Adam were the optimizers used, Adam

provided a faster convergence but SGD presented
as expected better results (around two IoU points).
Polynomial decay was chosen for learning rate
schedule, where the starting value was submitted
to several rounds of testing in the set {0.1; 0.01;
0.001; 0.0001}, presenting better model training be-
haviour for 0.01 for both models with a batch size
of 1. Regarding the loss function, three of the most
widely used losses to segmentation, namely, binary
cross-entropy, focal loss and dice loss, were applied
to inspect which one yielded better evaluation met-
ric performance.

3.4. Mask R-CNN
The official Mask R-CNN implementation devel-
oped by Facebook AI Research (FAIR) presented
in currently provided in Detectron2 [20](2019), a
FAIR’s open-source software platform that imple-
ments state-of-the-art object detection algorithms.
The direct use of Mask R-CNN original implemen-
tation model (i.e., the one trained on a vast nat-
ural scene images with coarsely-annotated objects)
is naturally not sufficient. As a matter of fact, if
applied for inference or even trained without any
parameter adjustment to this application, the re-
sults are essentially poor. The main reason behind
this, is associated with the completely distinct na-
ture of the tasks, leading further to sub-optimal net-
work loose hyperparameters. To properly tune the
network to sunspot group detection, a complete un-

4There is an observable appearance change in the con-
verted grey-scale images recorded during 2011 for example.
Before that period, the images appeared darker than the cur-
rent ones stored. Sporadic occurrences can also be detected
after that year.

derstanding of the whole architecture is necessary.

3.4.1 Mask R-CNN fine-tune

Mask R-CNN presents several details and design
choices in the three main components that resulted
from previous state-of-the-art detectors, baseline
theories and empirical studies. The released model
was designed to tackle the standard natural image
competitions, trained in datasets such as the Com-
mon Object in Context (COCO)[21], which presents
challenges far different this application. Firstly, a
sunspot group is comprised of several spots islands,
making therefore this problem fundamentally dif-
ferent as an instance is composed of a non-uniform
number of ”objects”, in contrast to an instance be-
ing represented by a single object. This brings great
challenges to bounding box regression particularly
in periods of increased solar activity. Additionally,
the size of sunspots groups differ greatly from natu-
ral objects, and the anchor box generation must be
in accordance with the network input dimensions
since the groups sizes naturally depend on it.

Mask R-CNN is comprised of dozens of hyperpa-
rameters from their three main components. Some
of these hyperparameters affect the quality of the
model and the ability to infer correct results, other
more associated with time and memory cost of run-
ning the algorithm, which also affects the training
behaviour. There are two approaches to adjust-
ing hyperparameters: manual hyperparameter tun-
ing and automatic hyperparameter tuning. Choos-
ing the hyperparameters manually requires full un-
derstanding of what each hyperparameter do, how
their different range of values affect the network,
and how deep learning models achieve good gen-
eralization. Automatic hyperparameter selection
algorithms significantly reduce the need of under-
standing these concepts and how the network fully
operate, but they can be extremely computationally
expensive, Goodfellow et al. [22].

Rethinking Transfer Learning
Transfer learning is a process of domain adaption
widely use in deep learning, which consists on trans-
ferring the domain knowledge of a specific model
trained for a specific tasks and reuse it in another
related task. The benefits of this technique are
faster training convergence, and in some cases, a
performance increase. In [23](2018) by FAIR, an
extensive analysis is done to investigate the effects
of the use of transfer learning of pre-trained mod-
els on ImageNet in comparison with training from
scratch, specifically on Mask R-CNN. The compar-
ison was made for different conditions, such as dif-
ferent datasets sizes, different augmentation setups
and training strategies. The setup behaviour more
related, and therefore most relevant, to the imple-
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mentation of this work is associated when training
with 1k images in analysis. The random initializa-
tion was in fact able to catch up the pre-trained
setup training loss, but when it did, presented a
significant lower validation accuracy showing a con-
siderable lack of generalization capability.

The main observations to add from this study
is that training from scratch requires significantly
longer learning schedules to catch up the ImageNet
pre-train, however both approaches tend to con-
verge to similar results when the dataset is large
enough. Also, ImageNet pre-training does not nec-
essarily help reduce overfitting unless we enter in a
very small data regime, which is the case here.

Training with high-resolution images raises the
problem of long training schedules. As a matter of
fact, resizing SDO images to 1K5 and using ResNet-
101 backbone with the unmodified Mask R-CNN
model, took around 2 days in a NVIDIA GeForce
GTX 1070 for 100k iterations, which for hyper-
parameter tuning is far from ideal. For this rea-
son, and taking into account the important gener-
alization aspect mentioned above, the use of a pre-
trained model seemed a reasonable choice, as for the
model fine tuning as well as for comparison with
the randomly initialized setup, to actually infer
the ImageNet pre-training effect on sunspot detec-
tion. Considering the different strategies of transfer
learning, which depend on the dataset size and the
similarity between data, a freeze of the first two con-
volutional blocks of the backbone (stem,res2) was
settled and the rest of network’s weights followed
random initialization, every time transfer learning
was employed.

Observations from standard baseline
Before any adjustment to the network, its behaviour
with the standard settings was analysed. Mask R-
CNN is composed of five individual losses, and it is
based on each of those that during training can be
spotted the components with worst performances,
together with the final detection metrics. To the ini-
tial experiment, a pre-trained ResNet-50 was cho-
sen as backbone and the network was studied for
100k iterations. RPN was the component that
in proportion most contribute to the general loss,
mainly its Lloc term. Concerning the RoI Heads,
classification had the least contribution, with the
box regression contributing significantly. The fi-
nal COCO detection metrics were poor, clearly the
biggest challenge of the model was to detect ac-
curately the small sunspot groups, presenting met-
rics for bounding box and segmentation for smaller
instances very low. Considering the network data
flow, RPN should be first analysed prior to the RoI
Heads. The backbone here is not the main concern,

51024×1024.

at least for an initial approach. If the proposals
from RPN are unsatisfactory, the post-processing
in RoIAlign and further task branches will perform
poorly as well, therefore its tune must take place
first.

RPN and RoI Heads tune
Both components are constituted by dozens hyper-
parameters. To better understand the influence of
the most critical ones, the ablation experiments in
[4, 5, 24, 25] were carefully analysed, where the
same hyperparameters have been already subjected
to different ranges of values and configurations for
training and testing purposes. The tuning of the
hyperparameters most relevant to this application
were based on a manual approach following a par-
ticular strategy. Defining a training regime, 50k to
100k iterations depending on the modification, each
parameter was analysed individually maintaining
the rest of the standard baseline fixed. Then, differ-
ent set of values depending on the role of each hy-
perparameters were run separately storing weights
checkpoints for validation purposes.

The performance comparison between modifica-
tions was performed on the validation set with the
weights of different hyperparameters values that
presented same training loss and not only at the end
of each training schedule. For example, RPNBS

highly affects the convergence of RPN, comparing
the final metric results of two set of values (e.g.:
512, 2048) at the end of the training schedule is not
the best practice since with 512 takes more time
to converge than when set to 2048, thus only when
both setups present similar training losses is fair
to establish the comparison, selecting the weights
of the closest validation checkpoint then for eval-
uation and final comparison. In regard to archi-
tecture hyperparameters, RPNAG−S for example,
the strategy employed is a bit different since it this
parameter does not change the data flow volume,
therefore, after the dataset dimensional study (i.e.,
statistic report of the instances sizes), several con-
figurations were tested but only compared at the
end of the training schedule based on the detection
metrics. In regard to the RoI heads, the experi-
ments were conducted with the intent of increasing
or decreasing the capacity of the network and the
architecture structure was not modified. The best
setups are presented in the next section.

4. Results

The results of both approaches are presented and
discussed. As mentioned previously, the semantic
segmentation approach was implemented in Pad-
dlePaddle framework and the instance segmenta-
tion model in Pytorch, using Detectron2 library.
Both were trained, validated and tested with the
following hardware setup:
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• NVIDIA GeForce GTX 1070 8GB

• Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz

4.1. U-Net and U-Net 3+
Table 1 presents the U-Net IoU results of the best
models for each loss function used, setting a resize
factor of 4 (i.e., rescaling each training and valida-
tion/test image to 10242 pixels), full augmentation,
batch size of 1 and learning rate of 0.01. All the U-
Net models presented better performance than the
ASAP algorithm, and Method 2 of [17]; however,
around 10.0 IoU points behind Method 3. The ex-
periments of [17] used a total of 45 images of Octo-
ber and November of 2014 with 1200×1000 pixels,
acquired in the Geophysical and Astronomical Ob-
servatory of the University of Coimbra (OGAUC),
labelled by a solar observer expert to build the
ground-truth dataset.

Table 1: Comparison between the implemented U-
Net model and three state-of-the-art sunspot detec-
tion algorithms.

Model IoU

ASAP [17] 0.6930

Method 2 [17] 0.6435

Method 3 [17] 0.8465

U-Net (BCE loss) 0.7166

U-Net (FL loss) 0.7238

U-Net (Dice loss) 0.7424

In Table 2 is shown the best results achieved for
U-Net 3+ where due to computational limitations
the network could only be trained with an effective
input image of 5122 pixels, comparing to the corre-
sponding U-Net with the same settings. The best
results were achieved with a training pipeline that
consisted of a first target resize to 10242 followed by
a random crop of 5122 pixels. Other configurations
were tested to study the best setup, for example, a
direct resize to 5122, and a resize to 20482 followed
by a random crop of 5122 pixels, however present-
ing worst performances. The best setup was trained
three times for both models, presented are the best
scores achieved.

Table 2: Comparison between U-Net and U-Net 3+
results with an effective network input of 5122 pix-
els.

Model Params IoU

U-Net (Dice loss) 13.40M 0.6206

U-Net3+ (Dice loss) 26.97M 0.6496

The same U-Net model trained with both setups

(a) Superimposed ground-
truth mask

(b) Superimposed predicted
mask

Figure 4: Comparison between the ground-truth
mask and the predicted mask by the U-Net model
in a disk zoomed area.

presented a decrease of around 12% with a resize
factor of 8, which illustrate as expected the per-
formance harm inducted by the huge information
loss created by the rescaling operation. This as-
pect is critical in sunspot detection due to the mas-
sive number of tiny spots, making its detection with
large rescales even harder.

Nevertheless, the results are auspicious, showing
that with an increase of capacity of U-Net (or U-
Net 3+), for instance, by employing a ResNet-101
backbone6, this approach can in fact surpass the
results of Method 3. The same is true limiting the
resize factors to a minimum. Employing U-Net 3+
with the same pre-training pipeline as the models
of Table 1 may approximate the results of Method 3
by a significant margin or even surpass it. In Figure
4.1 is shown comparisons between the U-Net (Dice
loss) predictions and the ground-truth. It is clear
that the detection of larger spots is quite accurate,
however the model have some difficulty predicting
the smaller ones accurately.

4.2. Mask R-CNN
The best configurations from the extensive exper-
imentation are presented on Table 3. Indicated
are the parameters that ultimately were modified
w.r.t the standard baseline as described previously,
although numerous additional versions were sub-
jected to experimentation.

The experiments related to the standard base-
line with random initialisation in comparison to the
v1 setup with pre-trained weights provided by De-
tectron2 are shown in Table 4. In these tests, all
models were trained for 100k iterations, the learn-
ing rate of 0.01 with linear warm-up and batch size
of 1, with 10242 input images.

The effect of ImageNet pre-training (p-t) is clear,
showing a similar increase of bounding box AP for
ResNet-101 and ResNeXt-101-v1, around 6 points
in both models. This aspect proves the evidences
discussed in sec. 3.4, and to spare computational
time and resources, all final models were initialised

6U-Net with a ResNet-101 backbone presents around
55.90M parameters, four times the capacity of the standard
U-Net used in this work.
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Table 3: Region Network Proposal hyper-parameters.

Hyper-parameters Standard baseline v1 v2 v3

RPNIoU−T [0.3,0.7] [0.4,0.75] [0.4,0.75] [0.4,0.75]

RPNBS 256 3000 3000 3000

RPNNMS−T 0.7 0.75 0.75 0.75

RPNAG−S [32, 64, 128, 256, 512] [18, 46, 92, 160, 360] [18, 46, 92, 160, 360] ==

RPNNMS−T 0.7 0.75 0.75 0.75

RoIBB−FCDim 1024 1024 2048 2048

RoIM−PoolerR 14 14 14 28

RoIM−N−CONV 4 4 6 4

with pre-trained weights. The improvements of the
modified setups are intelligible, with the v1 setup
presenting an increase around 15 points in bounding
box AP and 4 points in segmentation mask from the
standard baseline, showing thus the full effect of the
fine-tune strategy conducted in sec. 3.4.

The final model results are shown in Table 5. All
networks were initialised with pre-trained weights
to accelerate convergence due to the long training
schedules necessary. Each model was trained up to
300k iterations (around 6 days and 18h) with vali-
dations loops of 12k iterations, presenting best val-
idation scores from 180k (ResNet-101-v1) to 240k
iterations (ResNeXt-101-v2). The latter was sub-
jected to a longer push of more 200k (around 5
days and 6h) to study the minimum locality; al-
though presenting overfit behaviour since the best
checkpoint (240k iter), with the validation scores
decreasing steadily up to 500k.

Considering the difficult task of the bounding
box regression, the results are quite satisfactory,
presenting the best AP score of 51.7 with the v2
setup. The increase of capacity of the fully con-
nected layers (1024 to 2048) showed an improve-
ment of 4.4 points over the v1 setup. The AP
difference between v2 and v3 setups can be ne-
glected since they have the same box head config-
uration. In addition, ResNeXt-101 presents a sur-
prisingly 5.9 points improvement over ResNet-101,
which is interesting considering that both have sim-
ilar capacity. Although the results are quite good
for medium to large scales, the algorithm presents
limitations in accurately predicting smaller groups’
bounding boxes. It was found that RPN presents
much lower losses of box localization than the box
head regression losses and both look to the same fea-
tures maps (excluding P6) and are optimised with
the same loss function, which indicates that the
incapability of the box head to predict the small
groups bounding boxes accurately might be related
to the RoIAlignV2 (or Pool/Align) operation. As
a matter of fact, this operation forcibly implies a

considerable information loss with a small resolu-
tion output (7×7), which turn out to be critical to
the extremely small spots that end up being lost
after the operation. The configuration of sunspot
groups tend to have a dispersion of smaller spots to-
wards the boundaries of their limitation, and since
this task massively depends on the instances delim-
itation structure, the predictions based on features
maps that do not possess accurate information of
smaller spots are hugely harmed. Although the in-
crease of RoIAlignV2 output resolution for the Box
Head was not tested, it is safe to claim that better
performances would result, as seen in Mask Head,
increasing however the computational price.

(a) Ground-truth mask (b) Predicted mask

Figure 5: Comparison between an zoomed area of a
instance segmentation ground-truth sample and its
Mask R-CNN (ResNeXt-v3) prediction.

The comparison between the number of groups
predictions and the number of ground-truth groups
of November and December from 2010 to 2014 (test
set) was also conducted using the v2 setup, pre-
sented in Table 67. The model is able to catch
the trend pretty well, although its performance de-
creases significantly with an increase of solar activ-
ity, as expected. In fact, 2013 was a year charac-
terised by a massive increase in sunspot numbers
and huge groups density. With a severe decrease in
distance between groups, it is also noted a consider-
able decrease in bounding box regression, naturally
because the delimitation between groups is very dif-

7Note that the number of ground-truth groups presented
does not represent the monthly international value since the
test set contains several daily samples (up to 4 varying).
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Table 4: Mask R-CNN bounding box and instance segmentation mask results on test set, for both
pre-trained and random initialization of standard baseline together with v1 setup comparison.

BBox Mask

Mask R-CNN w/ AP AP50 AP75 APs APm APl AP AP50 AP75 APs APm APl

ResNet-50 10.4 20.5 16.7 7.2 36.2 12.5 5.9 17.0 3.9 0.6 31.0 27.6

ResNet-101 11.0 22.1 10.8 14.4 33.8 6.1 5.7 15.7 3.0 0.5 28.1 27.9

ResNet-101(p-t) 17.9 31.9 18.4 18.0 44.0 15.2 10.5 27.9 5.8 2.4 39.1 40.1

ResNeXt-101 15.4 28.3 15.6 17.7 46.4 15.4 7.3 20.4 3.3 1.0 31.9 36.0

ResNeXt-101-v1 31.8 54.5 33.5 24.3 56.9 51.6 11.4 33.2 5.3 2.7 37.1 31.3

ResNeXt-101-v1(p-t) 37.9 57.6 41.1 26.9 69.0 66.5 12.2 33.5 6.1 2.6 39.1 31.9

Table 5: Mask R-CNN bounding box and instance segmentation mask results on test set for each setup.

BBox Mask

Mask R-CNN w/ AP AP50 AP75 APs APm APl AP AP50 AP75 APs APm APl

ResNet-101-v1 41.4 59.1 46.4 27.9 75.7 76.5 11.5 31.3 5.7 2.1 37.1 32.2

ResNeXt-101-v1 47.3 65.4 53.5 35.3 79.3 78.4 12.5 33.2 6.9 3.1 39.4 33.4

ResNeXt-101-v2 51.7 68.9 57.6 39.7 83.2 82.3 12.2 32.4 6.7 3.2 38.4 32.6

ResNeXt-101-v3 51.3 64.9 57.2 35.3 84.5 85.5 15.1 37.5 9.4 4.0 46.5 42.0

Table 6: Comparison between the number of
ground-truth groups of the test set and the num-
ber of groups predicted by the v2 setup.

Nº groups Nº predicted groups Precision

2010 723 681 94.2%

2011 2450 2145 87.6%

2012 1840 1458 79.2%

2013 3872 1994 51.5%

2014 1912 2212 84.3%

Total 10797 8490 78.6%

ficult to infer. This could be improved by providing
the algorithm with McIntosh classification for each
group; although it would make the Box Head clas-
sification task much more demanding, the model
would learn the configuration of different groups in
a supervised way explicitly, and that should help it
to predict groups boundaries better and therefore
increase the performance of the regression task.

5. Conclusions

The results from both approaches are promising.
The implemented U-Net model surpasses two state-
of-the-art methods and presents an additional im-
portant counterpoint, namely the total removal of
calibration procedure needs, characteristic of the al-
gorithms based on pixel intensity and mathemati-
cal morphology. U-Net 3+ trained and tested with

the same training pipeline presented better results
than U-Net, which indicates that limiting the input
rescale and increasing the capacity of the network
employing a stronger backbone, ResNet-101 or Ef-
ficientNet for example, it may in fact surpass the
best compared state-of-the-art method for sunspot
detection. The instance segmentation implemen-
tation, still a difficult challenge in computer vi-
sion, presented a promising performance in terms of
bounding box regression, although the mask predic-
tion task performed poorly. To improve both tasks,
RoIAlign must be replaced with a more adequate
sub-component since it creates critical information
losses that hugely affect both RoI Heads. Being an
initial deep learning approach to this problem, this
work hopes to push the existing boundaries further
and serve as a foundation for future approaches.
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