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Abstract  

 Emergency Medical Services (EMS) play a critical role in pre-hospital care and directly affect the medical 

outcome of emergency patients. Given the increase of emergency requests and the restricted resources that 

EMS systems have at their disposal, there is an urgency to operate at the highest efficiency. In order to find fields 

to improve, planning problems at EMS were studied and it was found that rescheduling, which is the process of 

finding a new feasible schedule after a disruption, constitutes an interesting area to develop further analysis.  

 Since the Portuguese Emergency Medical Institute – INEM – still performs this complex task manually 

and, being an almost daily activity, there is the opportunity to improve its efficiency by developing more 

sophisticated methods capable of providing strong insights to decision-makers. Therefore, a mathematical 

model was developed in order to assist EMS systems on their rescheduling activity, providing accurate solutions 

in a short amount of time.  

 To assess its effectiveness, the model was tested for different INEM scenarios, including the most 

extreme absenteeism cases in the EMS sector and delivered optimal solutions always in less than 11 minutes. 

Additionally, it was also possible to compare the differences between starting the month with a cyclic and a non-

cyclic schedule. Results show that the non-cyclic outperforms the cyclic in both under and oversupply situations 

due to its flexibility to adapt to different contexts. Therefore, as INEM currently builds a cyclic initial schedule, it 

could be beneficial to consider a shift to non-cyclic. 

 

Keywords: Emergency Medical Services, Staff Rescheduling, Optimization, Mathematical Programming, Health 

Services, Human Resources Planning 
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Resumo 

 Os EMS desempenham um papel crítico nos cuidados pré-hospitalares e sua capacidade de resposta 

afeta diretamente o resultado médico dos pacientes em casos de emergência. Dado o aumento dos pedidos e 

os escassos recursos que os sistemas de EMS têm à sua disposição, existe a necessidade de atuar com a máxima 

eficiência. Assim, com intuito de descobrir áreas por melhorar, os problemas de planeamento dos EMS foram 

estudados e verificou-se que o reescalonamento, processo de reconstrução do horário após uma disrupção, 

seria uma área de interesse para desenvolver uma análise aprofundada. 

 Uma vez que o INEM ainda executa esta complexa tarefa manualmente e, sendo uma atividade quase 

diária, existe a oportunidade de melhorar a sua eficiência através do desenvolvimento de métodos mais 

sofisticados capazes de gerar informações relevantes para os decisores. Por conseguinte, foi desenvolvido um 

modelo matemático para ajudar os sistemas EMS a resolver este problema, que pretende fornecer soluções 

precisas em pouco tempo, para responder diariamente.  

 Para comprovar a sua eficácia, o modelo foi testado para diferentes cenários do INEM, incluindo os 

casos mais extremos de absentismo no sector do EMS, tendo encontrado soluções ótimas sempre em menos de 

11 minutos. Adicionalmente, foi também possível comparar a resposta usando um calendário cíclico e um não 

cíclico. Os resultados evidenciam que, neste caso, o não cíclico supera o cíclico devido à sua flexibilidade para 

se adaptar a contextos diferentes. Por conseguinte, como o INEM atualmente constrói um calendário inicial 

cíclico, poderia ser benéfico considerar uma mudança para não cíclico. 

 

Palavras-chave: Serviços de Emergência Médica, Reescalonamento de Staff, Otimização, Programação 

Matemática, Serviços de Saúde, Planeamento de Recursos Humanos 
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1. Introduction 

 Technological improvement and easier access to health care services, alongside a better distribution of 

goods and better living conditions, have increased the medium life expectancy worldwide. In Portugal, in the 

last 20 years, it increased more than five years to 81 years (Simões et al. 2017). This factor has contributed to 

an increase in the proportion of elder people in society. In Portugal, in the last 20 years, the ratio of an elder 

person per youngster increased from 1 to 1.61 (PORDATA, 2020). Consequently, the need for proper health care 

services has been increasing over the past years. 

 Effectively, in 2018, Portugal spent 18,300 million euros on health care, which means an expense of 

1,784 euros per capita and 5.1% more than in the previous year, which represents 9.1% of the national Gross 

Domestic Product – GDP (INE, 2019). Within the health care service, there are emergency medical services, 

which are designated to save lives and play a key role in pre-hospital medical care, directly impacting the medical 

outcome of emergency patients (World Health Organization, 2005). Although, in 2018, Portugal had the same 

percentage of expenses allocated to emergency medical services as the average of the European Union, the 

percentage of the GDP allocated to health care services was almost 10% lower when compared to the average 

of 9.9% from the European Union (Eurostat, 2021). These factors may indicate that, in Portugal, the Emergency 

Medical National Institute – INEM – operates with scarce resources. 

 Thus, in this context, arises the need to deliver the most effective and efficient service to patients using 

restricted available resources. Operations Research techniques have been applied to a variety of problems in 

health care environments and have largely contributed to providing better solutions for these problems 

(Brailsford & Vissers, 2011). Personnel scheduling is one of the most extensively studied topics as it can directly 

influence the performance of the health organization and staff costs have the highest proportion on the overall 

costs of a health organization (Clark et al. 2015). 

 However, staff rescheduling, which is the task of rebuilding a schedule that suffered a disruption by an 

absent employee, has not received a lot of attention. Although it has been considered as a complex and time-

consuming activity, accounting for 10-20% of managers’ day-to-day activities, few academic research has been 

made on this topic (Clark et al., 2015).  

 In most organizations, rescheduling is still a task performed manually and few models have been 

implemented due to lack of staff training, high complexity of solutions or lack of financial resources to implement 

them. INEM is no exception and still performs this activity manually. In fact, INEM planners must often rely on 

intuition and experience to make challenging planning decisions in the face of uncertainty, limited by budget 

restrictions and balancing various stakeholders’ objectives. Therefore, there is room for improvement, to 

achieve a higher efficiency which will lead to a higher service level. 

 This context motivates the present study, which addresses the staff rescheduling problem in the EMS 

field, exploiting particularly the case of INEM. The use of more sophisticated techniques to support decision-
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making could potentially contribute to more effective and efficient solutions, which may enhance the overall 

performance of an organization. 

1.1 Dissertation Goals 

 The ultimate goal of the dissertation is to, in the context of EMS, automatize the staff rescheduling 

process, improving, not only the overall quality of the final schedule but also the sense of fairness and 

satisfaction in the workforce. The proposed model should be flexible to allow different goals and to be able to 

cope with different EMS systems. Additionally, the model results must be analysed in order to provide key 

insights to INEM that, at the same time, may be relevant and adaptable to all EMS systems. 

  Besides these main goals, there are also secondary objectives, such as (i) characterizing the Portuguese 

EMS, focusing on the most important aspects of its operation, highlighting their complex nature, (ii) assessing 

what previous and current practices are being used by EMS practitioners in order to identify potential gaps and 

proposing alternative approaches and (iii) contribute to the existing literature and possibly to increase the 

efficiency of INEM’s operations. 

1.2 Methodology 

 To achieve the aforementioned objectives, a research methodology with eleven steps is proposed, as 

can be observed in figure 1. 

 The first step is (1) Problem Definition, which includes the characterization of the Portuguese 

Emergency Medical Service, focusing on the most important aspects of its operation, highlighting their complex 

nature, to then be able to propose and define the problem that will be addressed. This step enables a clear 

overview of the context. The second is (2) Literature Review, which assesses previous literature on both the 

emergency medical services field and the rescheduling process, in order to identify research gaps and 

fundaments that support the development of the model. 

 Following, the third step is (3) First Mathematical Problem Definition. This is done taking key aspects 

from the literature studied, namely from the most relevant studies from Maenhout & Vanhoucke (2011), 

Maenhout & Vanhoucke (2018), Wickert et al. (2019) and Wolbeck et al. (2020). This includes, for example, the 

fair penalization scheme proposed by Wolbeck et al. (2020). Then, in step (4), a first draft of the problem and its 

characteristics are presented to INEM’s TEPHs, in order to get a clear overview of what are the most important 

factors to take into account and if those being considered are relevant, e.g., it is crucial to understand if the 

different stakeholders prefer fairness and employees’ satisfaction over service quality or overall costs for the 

organization. The data collected from these interactions is treated in step (5), extracting the main conclusions 

that will be then presented to TEPH’s responsible, following a review in step (6), having in mind its validation. 

 In case of validation, it is possible to construct the (7) Final Mathematical Problem Definition, 

determining then sets, subsets, parameters, decision variables, the objective function and constraints. After, in 
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step (8), it will be possible to implement the model with CPLEX. In step (9), the model will be solved, considering 

progressively more complex instances from INEM’s dataset. If these solutions are validated, then a strong 

analysis will be performed in step (10). This analysis intends to understand which is the best initial schedule type, 

cyclic and non-cyclic and how it can affect the results. Then, in (11) this analysis will be presented, reviewed and 

subject to validation from the TEPH’s responsible. Additionally, recommendations to INEM are given. 

 

Figure 1: Proposed methodology for the future dissertation 

1.3 Thesis Outline 

 The dissertation is structured into seven chapters: 

- Chapter 1 – Introduction 

 The dissertation starts with the current chapter, an introduction comprehending the motivations of this 

 study and what the goals pretended to be achieved through a research methodology. Furthermore, it 

 specifies the structure of the document. 

- Chapter 2 – Problem Definition 

 The second chapter introduces INEM and explains in detail SIEM’s activities, from emergency request 

 to patient treatment. Following, the problem at stake is defined and its importance is explained in the 

 context of INEM. 

- Chapter 3 – Literature Review 

 The third chapter reviews the literature on emergency medical planning problems, concluding that 

 rescheduling is worth being deeply studied. It also reviews the approaches researchers have been 

 proposing over the last years for rescheduling problems in different fields, which is crucial for the 

 development of the model. 

- Chapter 4 – Model Formulation 
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 This chapter introduces a refined problem statement and, supported by the methodologies explored in 

 the literature review and INEM’s case study, an optimization model to solve EMS staff rescheduling 

 problems is presented, detailing the sets, subsets, parameters, variables and the constraints required 

 to minimize the objective function that seeks to generate as little disruption as possible for workers, 

 maintaining a good service level. 

- Chapter 5 – INEM Case Study and Instance Generation 

 In chapter 5, the data required to apply the model above defined to the real case of INEM is introduced, 

 explaining how data was collected. It also provides a more detailed exposition of the problem context 

 started in chapter 2 and, finally, the instance structured is presented as well as the tests done in order 

 to assess the model accuracy to find solutions for different scenarios. 

- Chapter 6 – Results and Discussion 

 Chapter 6 exhibits the results obtained for the different experiments, takes key insights from them and 

 makes make recommendations both specific for INEM and generally applicable to all EMS systems. 

- Chapter 7 – Conclusion and Future Work 

 The last chapter summarises the most relevant insights and conclusions of this study, highlighting 

 opportunities for future work. 
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2. Case Study Description 

 This chapter aims to describe the case study which is addressed in this Master dissertation. It starts by 

providing an overview of the Portuguese entity responsible for the Emergency Medical Services – INEM – to 

have a wide view of the context. Then, this analysis will be narrowed and focused on the rescheduling at INEM. 

 Section 2.1 introduces INEM to better perceive its mission in the Portuguese society and define its 

organizational structure, focusing on the operational related areas. Next, it explains in detail the whole set of 

processes that constitute pre-hospital care. Section 2.2 discusses rescheduling at INEM for a specific class of 

workers, TEPHs (Pre-Hospital Emergency Technicians). Due to increasing demand and lack of resources, 

efficiency improvement can be a pillar to fulfil the population’s requirements. Considering the aforesaid analysis, 

Section 2.3 presents the research problem definition. At last, section 2.4 presents the chapter conclusions and 

main considerations.  

2.1 Portuguese Emergency Medical Service 

The Medical Emergency National Institute – INEM – was established, in 1981, as the entity of the 

Portuguese Health Ministry responsible for running the Integrated Medical Emergency System – SIEM –, 

ensuring a prompt and correct pre-hospital health care provision in mainland Portugal (INEM, 2020). In order to 

achieve its mission, INEM must define, organize, coordinate and assess SIEM operation. These activities can be 

divided into two groups: (i) in-scene emergency and respective support activities and (ii) administrative and 

planning activities. The first group includes the following: 

- Emergency request reception, triage and counselling; 

- Proper medical emergency vehicles dispatch and pre-hospital medical care provision at the scene; 

- Transportation of patients to the hospital; 

- Correct coordination between the adequate Health Units (HU) (e.g., hospitals and Portuguese Red 

Cross) and other entities (e.g., police officers, firefighters). 

The second group encompasses activities such as: 

- Planning and coordination of medical emergency training for staff and National Health Service – 

SNS – entities, as well as competencies’ certification; 

- Continuous designing of emergency civil planning policies (e.g., Covid-19 measures), partnering 

with the General Health Office – DGS; 

- Collaboration in emergency and catastrophe plan development with Health Region 

Administrations, the General Health Office and the Civil Protection National Authority (e.g., fires 

and natural disasters); 

- Development of prevention, awareness and information actions, concerning SIEM and its activities; 

- Maintenance and extension of a wide emergency telecommunications network. 
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2.1.1 Organizational Structure 

There are three Regional Delegations (RD) responsible for the operational management of INEM’s 

activities, working as Decentralized Services. These RDs are established in the North, Centre and South of 

Portugal, and work in collaboration with the Centralized Services, which cover three main areas: (i) Operational, 

(ii) Logistics and Operations Support and (iii) Management Support (INEM, 2019). 

Considering the Operational area, it includes two departments: Medical Emergency (ME) and Medical 

Emergency Training (MET). The ME Department coordinates SIEM, on both normative and technical sides, and 

assesses periodically its performance. In 2019, 42 people worked directly in this department, involving Pre-

Hospital Emergency Technicians (TEPH), Nurses, Doctors and Leaders. The MET Department, besides defining 

and planning the medical emergency training, also guides and executes the training for the different SIEM 

entities. In 2019, 17 people were shared by both departments. 

Concerning the Logistics and Operations Support area, it includes seven departments: Human 

Resources Management (HRM), Financial Management (FM), Logistics and Operations (LO), Systems and 

Information Technologies (SIT), Purchase Management and Public Hiring (PMPH), Juridic and Installations 

Management (IM). For this study, we are going to focus only on the LO Department and on the SIT Department. 

The main function of the LO Department is to manage INEM’s fleet, assuring its successful operation as 

well as defining which patients should be transported and in which vehicle. In 2019, 50 people worked directly 

in this department, mainly TEPH and Technical Assistants. The SIT Department is responsible for implementing 

and maintaining information systems in INEM and defining interfaces with other internal and external 

information systems. The department aims to guarantee the homogenization and optimization of procedures. 

Regarding the Management Support area, it is composed of three departments: Quality, Planning and 

Control Management (PCM), and, finally, Marketing and Communication. Lately, the PCM Department is gaining 

more importance in INEM’s activities, measuring the accurate KPI’s, assuring that the organization meets its 

goals (INEM, 2019). 

In figure 2, it is possible to observe a graphical summary of the information explained above, presenting 

the organizational structure of INEM. 
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Figure 2: INEM’s organizational structure (INEM, 2020) 

2.1.2 From emergency request to patient treatment 

In this section, the patient’s emergency care pathway, in terms of pre-hospital care, is going to be 

presented and SIEM’s most relevant activities for this analysis will be studied afterwards. SIEM is a set of 

coordinated activities executed by different entities within the emergency medical care delivery structure, 

including INEM, firefighters, police officers, the Portuguese Red Cross, hospitals and health units. 

Firstly, an incident that requires emergency assistance is detected, usually by civilians near the event, 

that must call the emergency number – 112 –, which, in case of a medical emergency, is directed to a Centre of 

Orientation of Urgent Patients – CODU. After receiving the information and prioritizing the case, an emergency 

vehicle with a crew may be dispatched (normally, at least one TEPH is present). While it is reaching the incident, 

if needed, the caller may be receiving instructions on Basic Life Support by the TEPH at the CODU. Once the 

emergency vehicle arrives, medical care to stabilize the victim is provided. When necessary, while the victim is 

transported to a health unit, care continues to be provided in transit (Ferreira dos Santos, 2019). Finally, the 

victim is received at the closest health unit to continue the required treatment. At this moment, the vehicle and 

the crew are released and become available for the next operation (INEM, 2020). 
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2.1.2.1 Call reception and Triage 

 Emergency calls to 112 are handled in two Operational Centres managed by the Public Security Police 

- PSP. The North Operational Centre answers calls from districts north of Leiria and Castelo Branco, while the 

South Operational Centre answers the remaining calls. Police officers evaluate the situation and direct the call 

to a specific SIEM stakeholder who is able to better respond and solve the incident. In case of a health-related 

emergency, the call is sent to a CODU (Ferreira dos Santos, 2019). 

 The four CODUs operate on a 24/7 basis in mainland Portugal and their activity is managed by TEPHs, 

backed by doctors and psychologists. In these centres, TEPHs are required to screen and prioritize each situation, 

advise in-scene actors and dispatch the adequate emergency vehicle and crew, in order to ensure an accurate 

response. The first National CODU was founded as a result of the regional differences in emergency call 

answering in 2011, improving the service level significantly by reducing the answer time, i.e., from the moment 

a police officer transfers the call to CODU until a TEPH is in line, from 13 (2010) to 7 seconds (2011). Besides 112 

calls, CODU also answers to other types of requests: (i) inter-hospital emergency transportation requests, which 

are treated as 112 calls and (ii) calls transferred from SNS 24, a 24-hour service that provides medical advice 

through the phone. In 2020, CODU predicts to have answered 1.443.155 calls, around 3.943 per day with a lead 

time, i.e., since a person calls to the moment a CODU TEPH is in line, of 18s. 

Table 1:  Evolution of Emergency Calls (INEM, 2020) 

Emergency Calls 2017 2018 2019 P 2020 

Answered Calls (Total Per Year) 1,368,141 1,393,594 1,414,858 1,443,155 

Answered Calls (Average Per Day) 3,748 3,818 3,876 3,943 

Answering Time (Average in seconds) 36 26 24 18 

 Since 2012, CODUs began a partnership with SNS 24, where all non-urgent calls are transferred from 

CODU to SNS 24, and all the urgent calls go the opposite way. This measure was key to improve efficiency, 

allowing INEM to allocate its resources to situations that are, in fact, urgent. In 2020, CODU transferred 95.601 

calls to SNS 24, around 262 per day, representing a 34% increase from 2019. The number of calls transferred 

from SNS 24 to CODU was 76.012, around 208  per day, representing a 24% increase from 2019  (INEM, 2021a). 

This growth may be explained by the COVID 19 pandemic, as SNS 24 was the entity responsible for tracking 

COVID 19 infected. Figure 3 shows the growth of each type of calls since 2015, which leads to an efficiency 

increase, as the population receives more accurate assistance to their needs. 
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Figure 3: Evolution of the monthly number of medical emergency calls answered from and transferred to SNS 24, from 2015 
to 2021 (INEM, 2021a) 

 Emergency calls are answered by the TEPH who has been idle for the longest time, regardless of the 

caller’s location or the TEPH’s CODU (Ferreira dos Santos, 2019). Then, the triage stage starts, in which the TEPH 

asks the caller specific questions provided by the medical triage algorithm TETRICOSY (TElephonic TRIage and 

COunseling SYstem). As the TEPH records the answers in the software, priority levels change and new questions 

are suggested. Finally, TETRICOSY Response Plan will determine if and which emergency vehicle and crew should 

be assigned. This model is based on a set of decision support algorithms that ease TEPHs’ job, allowing higher 

objectivity, while reducing possible errors. This triage is based on the following classification: 

Table 2: Priority Classification (INEM, 2019) 

P1 – Emergent Situations Life-threatening situation, where the victim requires immediate intervention 

P3 – Urgent Situations 
Not immediate life-threatening situation but the victim requires assistance in 
a short period of time 

P5 – Non-Urgent Situations 
No vehicles or crew are required at the scene and the call may be transferred 
to SNS24 

Other Priorities – CIAV, P4 
Authority, P4 CDOS, P6 CAPIC 

No vehicles or crew are required at the scene and different assistance may 
be given (e.g., psychological and anti-poisoning assistance) 

 In figure 4, the evolution of the number of monthly emergency calls by priority is shown and it is 

possible to conclude that there is a general growth since 2015, except for 2020. In addition, most of SIEM’s 

activities are driven by occurrences of Priority 3. Moreover, Priority 3 accounts for 67% – 78% of the total 

emergency calls answered per month, being the minimum percentage observed during the first lockdown in 

Portugal, from March to April of 2020 when more people were at home, contributing to a smaller number of 

emergency requests. The second most frequent is Priority 1, accounting for 10% – 14% of the emergency calls, 
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which was also reduced drastically during the first lockdown. Then, Priority 5 accounts for 6% – 16%, having 

reached the maximum value at the beginning of the COVID 19 pandemic. Since SNS 24 is the entity responsible 

for tracking COVID 19 infected, the number of calls transferred from CODU to SNS 24 increased significantly. The 

remaining priorities represent 3% – 8% of the monthly emergency calls answered by CODU. 

 
Figure 4: Evolution of the monthly number of emergency calls of each priority level answered by CODU, from 2015 to 2021 

(INEM, 2021b) 

 This study will continue to focus on situations that require emergency vehicles with a crew to assist at 

the occurrence location. In the next section, emergency vehicles will be presented. 

2.1.2.2 Emergency vehicles 

 In order to provide an efficient and high-quality medical service to the population, INEM and its SIEM’s 

partners, namely the Portuguese Red Cross, firefighters and health units, own different emergency vehicles. 

These are specialized mobile resources, that transport patients and victims from the occurrence location to the 

nearest hospital, and allow the transporting crew to both provide medical care at the scene and during the 

conveyance. In 2017, INEM reached a historical mark of having, at least, one ambulance in each of Portugal’s 

mainland councils (278+). 

 In June of 2020, INEM owned 671 operational emergency vehicles distributed by the Portuguese inland, 

with the possibility to require more vehicles – not owned by the entity – according to seasonality. The location 

of these vehicles is crucial to assure fast and flexible assistance (INEM, 2020). Most of them are located in 

emergency departments of SNS hospitals, but may also be based in regions where Urgency Polyvalent Services 

– SUP – and Urgency Medical-Surgical Services – SUMC – hospitals exist, which can be hospitals, health centres, 
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firefighters or police stations, according to the type of vehicle (Ferreira dos Santos, 2019). Table 3 shows INEM’s 

fleet composition, the number of vehicles in 2020, the staff required for each and their function. Emergency 

vehicles may be equipped in order to provide Basic Life Support – BLS – or Advanced Life Support – ALS – also 

known as ILS – Immediate Life Support. Additionally, in the Appendix, it is possible to find an image of each 

vehicle. 

Table 3: INEM’s fleet (Ferreira dos Santos, 2019; INEM, 2013; Namorado Rosa, 2017) 

Emergency Vehicle 
Number of 
Vehicles in 

2020 

Staff 
Requirement 

Function 

Medical Emergency 
Ambulance (AEM) (BLS) 

56 2 TEPHs 
Transport TEPHs to the scene, stabilize and 
provide medical care while transporting 
victims to a HU 

Medical Emergency 
Motorcycle (MEM) (BLS) 

9 1 TEPH 
Promptly transport a TEPH to the scene to 
stabilize the victim and prepare for 
transportation 

Inter-Hospital Pediatric 
Transport Ambulances (TIP) 
(BLS) 

4 
1 TEPH + 1 
Nurse + 1 
Physician 

Transport the crew and stabilize or transport 
a minor (0-18 years old) 

Immediate Life Support 
Vehicle (SIV) (ALS) 

40 
2 TEPHs +  
1 Nurse 

Transport the crew and provide a 
differentiated medical care (e.g., 
resuscitation, defibrillation, medication) 

Vehicle of Medical Emergency 
and Reanimation (VMER) (ALS) 

44 
1 Nurse + 

 1 Physician 

Promptly transport the crew to the scene to 
stabilize the victim and prepare for 
transportation 

Medical Emergency Helicopter 
Service (SHEM) (ALS) 

4 
2 Pilots + 1 
Nurse + 1 
Physician 

Transport risk patients between HUs or from 
the scene to a HU 

Mobile Unit of Phycological 
Emergency Intervention 
(UMIPE) (BLS) 

4 
1 TEPH + 1 

Psychologist 

Intervene in potentially traumatic situations, 
where victim’s emotional stress requires 
special care 

Medical Emergency Stations 
Ambulances (PEM) (BLS) 

364 
2 SIEM’s 
Partner 

Members 

Transport the crew, stabilize and provide 
medical care while transporting victims to a 
HU 

Reserve Station Ambulances 
(RES) (BLS) 

123 
2 SIEM 

Partner’s 
Members 

Transport the crew, stabilize and provide 
medical care while transporting victims to a 
HU 

Non-INEM Ambulances 
(NINEM) (BLS) 

22 
Partners’ 
Members 

Used when others are unavailable to stabilize 
and provide medical care while transporting 
victims to a HU 

 As the dissertation thesis will focus on the work done by TEPHs, it is going to be displayed in order to 

have a better overview of INEM’s operations. 

2.1.2.3 TEPHs 

 TEPHs are health professionals that work full-time at INEM and their activities are exclusively dedicated 

to assisting in a pre-hospital context, being crucial to the survival of victims of sudden illness or accidents. TEPHs 

can do two types of activities: (i) manage CODUs, being responsible to answer calls, triage the situation and 

allocate the correct vehicle and crew to the location and (ii) operate a specific ambulance and assist victims at 

the scene, according to vehicle’s requirements  (Table 3). Additionally, they may also have certain tasks related 
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to exceptional situations or international missions. TEPHs are an essential part of INEM’s workforce, 

representing more than 70% of the total (INEM, 2018a). However, this number needs to be reinforced, 

therefore, new TEPHs must be hired every year. 

 Table 4 displays the evolution of the number of TEPHs since 2017. For each year, there are two columns. 

The first with a P, which corresponds to a Prediction according to the estimated needs for that year, i.e., the 

required number of TEPHs to perform tasks. The second with an O, which corresponds to the actual number of 

TEPHs that Occupied each function at the end of the year (except for 2020, in which these values are only 

accounted until June). It is noticeable that the effective number of TEPHs has been roughly increasing. 

Nonetheless, the percentage of required TEPHs that is fulfilled, i.e., 
 𝑇𝑜𝑡𝑎𝑙 𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑𝑖

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖
, 𝑖 = 2017, 2018, 2019, 2020, 

has been varying between 72% and 79%. This suggests that current TEPHs are overworking to meet population 

needs. 

Table 4: Evolution of the number of TEPHs per year, between 2017 and June 2020 (INEM, 2017, 
2018b, 2019, 2020) 

Function/Year 
2017 

P 
2017 

O 
2018 

P 
2018 

O 
2019 

P 
2019 

O 
2020 

P 
2020 

O 

General Coordinator TEPH 11 12 4 4 4 7 4 4 

Operational Coordinator TEPH - - 8 8 23 18 23 7 

TEPH with CODU  functions 1264 178 295 212 279 229 279 224 

TEPH with EV functions - 721 920 737 1018 717 1018 815 

TEPH Backoffice - 28 24 32 27 5 21 5 

Total 1275 939 1251 993 1351 976 1345 1055 

% of required TEPHs 73.7% 79.4% 72.2% 78.4% 

 To ensure that the highest standards of quality and safety are met, TEPHs must complete a rigorous 

training plan credited by the Health Minister and Medical Doctors’ Order. This formation requires internships in 

ambulances and hospitals, representing a pioneer model in Portugal but with excellent results shown 

internationally in countries such as Spain or the United States of America (INEM, 2018a). 

 Table 5 shows, in the first column, the competencies required by TEPHs in order to perform their tasks 

– Driving, CODU responsible and operator, Glucagon administrator, Defibrillator and Driving MEM. From these 

tasks, which include CODU and emergency vehicles related, some obligatorily require certain competencies. The 

first column displays the percentage of tasks that require each competence. It is important to note that some 

tasks may require more than one specific competence. The second column demonstrates the percentage of 

tasks for which additional competencies may be important but not critical. Therefore, the third column results 

from the sum of the first two columns. The last column provides the percentage of TEPHs allocated to Lisbon 

CODU that possess these competencies. 

 Comparing the two last columns, one can remark that the percentage of TEPHs with a particular 

competence is higher than the necessity of that competence, with an exception for “CODU responsible”. For this 
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case, it may indicate two possible outcomes: (i) TEPHs that have CODU responsible competence must overwork 

to meet tasks requirements leading to extreme fatigue or (ii) tasks that require mandatorily a TEPH with CODU 

responsible competence may be performed by other TEPHs without this competence, decreasing the quality 

level of the task executed. Both possibilities may impair CODU’s proper functioning and harm INEM’s pre-

hospital processes. 

 This analysis was done for the Lisbon CODU due to being the focus of the dissertation. 

Table 5: Competences, % of tasks requiring mandatory or desired competence and TEPHs with those competences for 
Lisbon CODU 

Competences 
% of tasks with 

mandatory 
competence 

% of tasks with 
desired 

competence 
Total tasks 

TEPHs with 
competence 

Driving 53.1% 31.3% 84.4% 87.2% 

CODU responsible 7.8% - 7.8% 3.8% 

CODU operator 10.9% - 10.9% 48.9% 

Glucagon 35.9% 34.4% 70.3% 96.6% 

Defibrillator 37.5% 60.9% 98.4% 100.0% 

Driving MEM 4.7% - 4.7% 5.3% 

2.1.2.4 Dispatching and routing 

 According to the priority and local accessibility of the emergency, the most appropriate vehicle must 

be selected to be dispatched. This decision is made by the responsible CODU TEPH and validated by a regulating 

doctor. 

 Emergency situations require both BLS and ALS or ILS emergency vehicles.  On the other hand, urgent 

situations only require a BLS vehicle. In some cases, MEMs are dispatched to a P3 occurrence in order to quickly 

reach the scene to stabilize the victim as soon as possible or to confirm that it is not a false alarm. Some situations 

demand a psychologist or a paediatrician, therefore an UMIPE or a TIP may be dispatched. Table 6 compiles 

vehicles requirements for the different priorities. 

Table 6: Vehicle Types Requirements According to Priority Level (INEM, 2019) 

Priority Level Vehicle Types Possible Combination of Vehicles 

P1 - Emergency Situations BLS + ALS/ILS 
AEM/PEM/RES/NINEM + VMER/SIV 

VMER + SIV 
SHEM 

P3 - Urgent Situations BLS 
AEM/PEM/RES/NINEM/SIV 

MEM 

P5 - Non-Urgent Situations No vehicle - 

Other Priorities UMIPE, TIP or others Variable 
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 Figure 5 presents the average number of dispatches per day for all types of vehicles. One can observe 

that nearly all vehicles dispatches decreased in 2020. This happened mostly due to the confinement that 

Portugal lived in the first semester of that year, reducing the number of emergency occurrences. Additionally, it 

seems evident that PEM is the most dispatched emergency vehicle, mainly because it represents more than 50% 

of INEM’s fleet. It is followed by AEM and RES, which are identical. Then, VMER is more used than NINEM, SIV 

and MEMs. Finally, UMIPE, SHEM and TIP are barely dispatched.  

Figure 5: Average number of vehicle dispatches per day, from 2015 to 2020 (INEM, 2021a) 

 After a vehicle is selected, it must be dispatched based on location and availability. To support TEPHs’ 

decision, INEM uses SIADEM – Integrated System of Medical Emergency Answering and Dispatching – that gives 

updated information on the vehicles’ exact location and their availability, whether parked in a base on in-transit. 

The system displays a list with the vehicles ordered by the proximity to the occurrence and following a priority 

rule established by INEM. On any occasion that is possible to send an INEM owned vehicle (AEM), the TEPH must 

dispatch it first. If there are no INEM vehicles available, a partner vehicle (PEM or RES from the Portuguese Red 

Cross or Firefighters Associations) must be dispatched. If none of these options is possible, the TEPH should 

dispatch a NINEM, which represent ambulances for which INEM has not an established protocol, for which the 

entity must pay a prize each time it is operated (INEM, 2019). Normally, the TEPH chooses the closest available 

vehicle, such that vehicles and crews operate within their usual region of activity, which may be a county or a 

parish. 

 Regarding TEPHs, Figure 6 indicates an average of how many times a team of TEPHs is dispatched in 

each shift of 8 hours, assuming that each crew is assigned to one emergency vehicle for that day’s shift. Once 
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more, AEM is the most dispatched vehicle, therefore, TEPHs allocated to that transport will handle occurrences 

more frequently. 

 
Figure 6: Average number of dispatches of a TEPH’s crew per shift from 2015 to 2020 (INEM, 2021a) 

 Finally, to assess the quality of its dispatching process, INEM uses two Key Performance Indicators: (i) 

% of occurrences in rural zones where response time is less than 30 minutes and (ii) % of occurrences in urban 

areas where response time is less than 15 minutes. INEM reached 90% for the first and 73% for the second in 

2018 (INEM, 2019), being these results in line with what is achieved in countries with high-performance medical 

emergency services, such as Spain and the United Kingdom. 

2.1.2.5 Articulation and Coordination  

 To guarantee that all involved actors are in line, there is, for each emergency, a CODU TEPH that has 

two intermediating functions: (i) counsel people that are with the victim to provide any possible care, according 

to the situation, (ii) contact the closest Health Unit to confirm that is possible to receive that person. Additionally, 

TEPHs in the emergency vehicle must use iCare – Integrated Clinical Ambulance REcord – that allows sharing 

real-time information about the victim so that the CODU team can inform the Health Unit in order to prepare 

for the treatment, accelerating this process, which is especially important in serious emergent cases (INEM, 

2019).  

 In Figure 7, it is possible to view the whole SIEM’s process, summarizing previous sections. Activities in 

yellow represent those studied in section 2.1.2.1 and 2.1.2.2, comprehending the steps since an emergency 

request is made until a vehicle is dispatched, in green those analysed in section 2.1.2.4, regarding the vehicle’s 

dispatching and routing, and, finally, in dotted blue those in this last section. 
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Figure 7: SIEM’s Process 

2.2 Staff rescheduling at INEM 

 From this analysis, one can understand that INEM is a continuous operating entity, in which work is 

structured into shifts. Managing staff properly is of crucial importance as these represent a vast percentage of 

INEM’s operational costs. Periodically, a staff schedule is presented by the responsible who assigns each 

individual to a specific duty over the planning horizon. Nevertheless, as this operating system is embedded in a 

dynamic and uncertain environment where unpredictable events may happen, disruptions may affect the initial 

schedule, creating the necessity of rescheduling. This phenomenon urges when individuals are unable to 

perform a specific task to which they were assigned and therefore it is mandatory to reconstruct the schedule, 

fulfilling demand, while trying to minimize shift changes (Wolbeck et al., 2020). Since TEPHs represent the 

greatest share of the staff, this study will focus on this group of workers allocated to the CODU of Lisbon. 

 In this section, a brief overview of INEM’s current scheduling process is going to be presented so that 

the context can be understood. Then, the rescheduling process is going to be introduced in detail, as well as the 

problems that may arise from the current modus operandi and performance indicators that must be improved. 

2.2.1 Scheduling at INEM 

 Until recently, TEPHs’ schedules were made based on their preferences. TEPHs started by determining 

and managing their own agenda in a platform called Gestão de Horários to allow a certain degree of flexibility. 

Then, in a second step, both coordinators of CODU and EVs would construct a first schedule for each activity 
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based on the data provided. Rearrangements due to infeasibilities would then be done until forecasted demand 

was met. Finally, the last step was the coordination between the heads of CODU and EVs, reaching a final 

schedule (Namorado Rosa, 2017). Effectively, this is a simple process for TEPHs but highly complex to the 

coordinators, as the rearrangements’ processes can have several iterations. 

 Nowadays, TEPHs operate under a cyclical schedule where they give their available shifts to the 

responsible, who will later build the schedule based on the following 10-days cycle: M – M; A – A; O; N – N; O – 

O – O. These letters represent the shift that is done in a specific day (N – Night (00:00 a.m. – 8 a.m.), M – Morning 

(08:00 a.m. – 04:00 p.m.), A – Afternoon (04:00 p.m. – 12:00 p.m.) and O – Day Off). Table 7 displays an example 

of a schedule for 10 TEPHs for a planning horizon of 10-days. It is possible to remark that all TEPHs account for 

6 shifts during this period, assuring equality of worked hours. 

Table 7: Example of a cyclical schedule 

TEPH/Day Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 

TEPH 1  M M A A O N N O O O 

TEPH 2  O M M A A O N N O O 

TEPH 3 O O M M A A O N N O 

TEPH 4 O O O M M A A O N N 

TEPH 5 N O O O M M A A O N 

TEPH 6 N N O O O M M A A O 

TEPH 7 O N N O O O M M A A 

TEPH 8 A O N N O O O M M A 

TEPH 9 A A O N N O O O M M 

TEPH 10 M A A O N N O O O M 

2.2.2 Rescheduling at INEM 

 Rescheduling is triggered by a schedule disruption such as the absence of an assigned TEPH, leading to 

understaffing. Since the beginning of the COVID 19 pandemic, these disruptions have been more frequent, as a 

result of new factors that can lead to an absence, such as a contact with an infected – requiring quarantine – or 

a TEPHs’ child being in contact with an infected – which may require that the parent stays at home. 

 When in need to reconstruct a new schedule, similar problems to the scheduling process arise. It is 

mandatory to guarantee that tasks that ask for specific competencies are done by qualified TEPHs, while meeting 

forecasted demand and not incurring excessive costs. It is critical to comply with work and legal regulation, while 

reducing the occurrence of both over and understaffing. It is crucial to maintain labour equality between staff, 

while contributing to improve their satisfaction. However, the rescheduling process must consider three 

additional aspects. 
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 First, disruptions are based on usually unforeseen events that happen close to their date. Therefore, it 

is not possible to manage them in advance. Moreover, these require that the reconstructing process is done in 

a short period – days or weeks – being present in the short term operational phase. With daily disruptions, the 

responsible may become overwhelmed as solving these disruptions every day is not always desired, since it 

generally leads to higher costs. Secondly, it is not just necessary to build a schedule but rather do it with the 

fewer shift changes possible, because doing it every time that there is a disruption would lead to overwork and 

it could harm TEPHs’ satisfaction due to constant changes. Finally, TEPHs adapt their personal lives according to 

the initial schedule and when there is a disruption that affects their agenda, their willingness to accept changes 

can decrease, being this a vital factor, as their refusal or resistance may make the process very difficult or even 

impossible to advance. 

 Nowadays, both INEM’s scheduling and rescheduling for Lisbon’s CODU area are performed by three 

local TEPHs, two for emergency vehicles and one for the CODU. Looking to rescheduling, it is an informal process, 

where the three rebuild the schedule by calling other TEPHs to determine whether or not they are available for 

the disrupted shift. Typically, they contact people that are in one of the three consecutive days off (Table 6) and 

try to maintain equity factors – extra hours, weekends availability, legal constraints and others – immutable. 

Often, TEPHs communicate between themselves to assure that another worker replaces the absent. 

Table 8: Cyclical schedule with disruptions 

TEPH/Day Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 

TEPH 1  M M A A O N N O O O 

TEPH 2  O M M A A O N N O O 

TEPH 3 O O M M A A O N N O 

TEPH 4 O O O M M A A O N N 

TEPH 5 N O O O M M A A O N 

TEPH 6 N N O O O M M A A O 

TEPH 7 O N N O O O M M A A 

TEPH 8 A O N N O O O M M A 

TEPH 9 A A O N N O O O M M 

TEPH 10 M A A O N N O O O M 

 To evaluate the process performance, INEM intends to achieve neither overtime nor undertime. On the 

one hand, overtime must happen only when strictly necessary, as the entity is incurring higher costs. On the 

other hand, undertime might not fulfil demand, causing understaffing, which is also undesirable. Additionally, 

some issues related to TEPHs’ wages arise when working hours are not constant. However, another interesting 

performance indicator could be the time spent to rebuild a schedule or the number of changes from the previous 

schedule to the updated version. Considering the example of Table 7, assume now that there are five disruptions 
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to the initial situation, highlighted in red in Table 8. These would create the necessity to reconstruct the 

schedule. 

 Table 9 displays the last schedule, where red cells represent TEPHs that had Day Off and now must 

work in a shift and green cells represent those TEPHs who will have a Day Off in the disrupted shift. In this case, 

although there is undertime or overtime for 8 TEPHs, one may believe that for a longer period this could be 

balanced and INEM’s goals would be me. Nevertheless, what this method demands in terms of labour and time 

spent, when compared to an automatic solution, is considerably high. Especially, it is possible to think of the 

increased difficulties that arise when scaling these 10 TEPHs to the actual number and when staff’s capabilities 

are introduced, knowing that certain tasks require specific competencies. 

Table 9: Reconstructed cyclical schedule 

TEPH/Day Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 

TEPH 1  M M A A O N N N O O 

TEPH 2  O M M A A O N O O O 

TEPH 3 O O M O A A O N N O 

TEPH 4 O O O M M A A O N N 

TEPH 5 N O N O M M O A O N 

TEPH 6 N N O M O M M O A O 

TEPH 7 O N N O O O M M A A 

TEPH 8 A O O N O O O M M A 

TEPH 9 A A O N N O A O M M 

TEPH 10 M A A O N N O A O M 

2.3 Problem Definition 

 Currently, INEM’s managers reconstruct disrupted schedules manually, which makes it a time-

consuming task. As it is a frequent task and it happens almost every day, the time spent can be higher than what 

would be desired. Moreover, the rescheduling process has more factors needed to be taken into account than 

the scheduling, which increases its complexity. Thus, being an informal process, some errors may occur. These 

are, certainly, not desired, since when equity is not accomplished, employees’ satisfaction may decrease, which 

will ultimately affect the quality of the service provided. 

 Therefore, this dissertation aims to develop and apply a mathematical model that can act as support to 

the rescheduling process at INEM. The main goal of the model is to provide a tool for this process to perform 

this activity in a short amount of time and causing little as less disorder as possible for TEPHs. Ultimately, it aims 

as well to improve the quality of current solutions. It should automate the process of constructing a new updated 

schedule after a disruption caused by a worker. The model must consider current restrictions, such as demand 
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fulfilment, legal regulation and labour equity maintenance without incurring over or understaffing. It will be 

applied to the Lisbon CODU area that is composed of 266 TEPHs. 

2.4 Chapter Considerations 

 The goal of this chapter is to present the context and define the case study that is addressed in the 

dissertation. After this analysis, it is possible to perceive that INEM plays a key role in providing pre-hospital 

medical care in Portugal, as it is the entity responsible for running a set of activities and coordinating a group of 

entities in a complex  EMS system.  

 Demand for this service has been increasing in the past years, which, naturally, hinders its mission. In 

spite of 2020’s figures, it is expected that this tendency will continue after recovering from the damages caused 

by the pandemic. Lately, INEM has been training and hiring more TEPHs to follow this growth. Nevertheless, 

another possibility to go along with this movement might come from increasing processes’ efficiency, reducing 

the necessity of employing more workers and following the restricted budget constraints. Having in mind that 

rescheduling is a time-consuming and exhaustive process that is still performed manually in INEM, it is possible 

to conclude that there is room to improve. 

 Therefore, the goal of this dissertation is to create a mathematical model to assist EMS and, especially, 

INEM in the rescheduling process. The model aims to produce optimal solutions and in a short amount of time. 

In the next chapter, a literature review on rescheduling is presented, in order to understand that this is a problem 

that must be deepened in the context of the EMS and also to study the various approaches that researchers 

have been introducing to cope with the rescheduling problem in other fields. These are crucial to present an 

accurate model for EMS. 
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3. Literature Review 

 Although it has not received a lot of attention in the literature when compared to scheduling, the staff 

rescheduling is a common problem for most organizations where each worker operates a shift. This chapter 

shows why it should be more studied, especially in the EMS context. Section 3.1 presents the different planning 

problems that have been arising in EMS. After considering that rescheduling is a problem to EMS, section 3.2 

shows how poor rescheduling decisions can harm the performance of a health organization. Then, section 3.3 

reviews the methodologies that authors follow when approaching the rescheduling problem. In section 3.4, the 

main solution techniques are outlined, distinguishing between exact and heuristic approaches. Finally, section 

3.5 presents the main conclusions of this chapter and highlights the gap in the literature. 

3.1 Planning Problems in EMS 

 Emergency Medical Service (EMS) is one of the most essential health care entities as it largely 

contributes to saving people’s lives and lower death and morbidity rates. Operations research scientists, EMS 

planners and health care professionals, who investigated many problems arising in the EMS systems’ 

management since the 1960s, have recognized the significance and sensitivity of decision making in this field 

(Aringhieri, Bruni, Khodaparasti, & van Essen, 2017). 

 Frequently, decision making is related to planning, as these represent the most important managerial 

functions. Planning can be perceived as deciding what to do in advance, having two main components, goals 

and action statements. Decision making is the process of identifying several different alternatives, resulting in 

the choice of a course of action to detriment of the others. By planning, a team discovers these alternatives and, 

by testing and evaluating their effectiveness, they choose a path to follow.  

 Additionally, planning in EMS has the goal to measure the performance and costs of the system, as well 

as to assess its process quality, i.e., response time. Moreover, planning also aims to compute the expected 

service level based on the current state and future changes to be implemented (Reuter-Oppermann et al. 2017). 

Reuter-Oppermann et al., (2017) divided EMS planning into three main groups: (i) the general design, (ii) the 

logistics and (iii) the analytics. 

 The general design is mainly emergency hotline dispatch, emergency rescue and patient transport, 

considering existing laws and regulations, which may differ according to the country or the region. The logistics 

group must ensure that the designed services can be provided, encompassing two main aspects, ambulance 

planning and workforce planning. Finally, the analytics includes two parts: forecasts for the logistical planning 

problems (number of ambulances, location bases, hiring crew and others) and data analysis of historical data to 

control the provided service levels and to confirm that laws and regulations were met. 

 This thesis will focus on the logistics field, concerning a specific planning problem: workforce planning. 

Reuter-Oppermann et al., (2017) split EMS staff into two groups: (i) staff working in the ambulances and (ii) staff 
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working in dispatching centres. In most countries, the two groups are completely disconnected so the 

corresponding planning problems can be studied independently. However, both in Portugal and Germany, 

dispatchers also work in ambulances and vice-versa. Furthermore, staff scheduling has been widely discussed in 

the literature, which is motivated by economic factors, since labour cost is the major direct cost component in 

many cases (Van Den Bergh et al. 2013).  

 Despite shift scheduling being an extensively studied subject, rescheduling has not received the same 

consideration in the literature (Maenhout & Vanhoucke, 2011). The importance of staff rescheduling as an 

every-day complex and time consuming task has not been widely recognized, although some authors have noted 

that the lack of a specific methodological base that considers its complexity increases the likelihood to prejudice 

patients and stress working staff and managers (Clark et al., 2015). Therefore, this thesis will focus on this gap, 

studying the staff rescheduling in EMS. 

3.2 Staff Rescheduling Problems 

 In any organization, staff scheduling is a balancing act between service needs and the available 

workforce resources. Poor scheduling decisions carry risks that may negatively impact the staff and, ultimately, 

the performance of the service provided. Rescheduling is the act of rediscovering this balance in a short period. 

Thus, poor rescheduling decisions may also prejudice the effectiveness of the service (Clark et al., 2015). Clark 

et al. (2015) concluded that, as well as nurse scheduling, data suggests that rescheduling can impact patient 

care, staff morale and costs. 

 Regarding the deterioration of patient care, it can be originated by three consequences of poor 

rescheduling decisions: (i) poor skill mix, (ii) under-staffing and (iii) long hours. McGillis Hall et al. (2004) found 

that, in the hospital context, inappropriate staff skill mix results in higher medication errors and wound 

infections, especially concerning more complex problems. Aiken et al. (2002) and Taylor et al. (1999) identified 

that when there are high patient-to-nurse ratios, there is also a higher mortality risk and failure-to-rescue rate. 

It can be transposed to the EMS, as when there are fewer technicians, response time – both on the dispatching 

centre and for the ambulance – may be higher, causing a delayed service, which may lead to mortality risk 

increase. Finally, Rogers et al. (2004) detected that when shift durations exceeded 12.5 hours per day, nurses 

were more fatigued, leading to an increase in errors occurrence and that risk of errors started increasing when 

shifts exceeded 8.5 hours per day. 

 Considering staff morale decline, it can be caused by three consequences of poor rescheduling: (i) long 

hours (ii) inequitable shifts and (iii) excessive changes on the initial schedule. As observed in Rogers et al. (2004), 

when working long hour shifts, staff will be more fatigued, which according to Hegney et al. (2006), can lead to 

a decrease in nurse morale. According to Wilson, (2002), several of characteristics contribute to the acceptability 

of shift work, including equitable shift rotas. Also, these rotas must be as regular as possible, having few changes 

so that employees can find a routine for themselves. Finally, low staff morale can lead to high staff turnover and 

high absenteeism (Silvestro & Silvestro, 2008). 
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 Concerning the loss of costs effectiveness, it can be generated by two consequences of poor staff 

morale already mentioned, high staff turnover and high absenteeism, and two consequences of poor 

rescheduling decisions, over-staffing and low efficiency in the rescheduling process. Bland Jones (2008) 

conducted a study where the most obvious insight was that by building an environment that increases nurse 

retention and mitigates its absence, the health organization would save money from turnover costs and other 

indirect gains, such as improved staff and patient satisfaction. Hayes & Bonnet, (2010) also concluded that it is 

possible to decrease costs by retaining valued staff. In addition, overstaffing can directly increase costs 

(Newbold, 2008). Finally, Clark et al. (2015) described rescheduling as time-consuming, as some senior managers 

were spending 10-20% of most working days rescheduling, repairing absenteeism and changing required staff. 

 When poorly done, the rescheduling process in health organization can, indirectly, hinder patient care, 

staff morale and costs increase. Thus, it can affect the whole performance of the health organization, being a 

topic demanding urgent attention. Figure 8 shows a graphical summary of the analysis above to have a clearer 

view of the causality relation between these events originated by poor rescheduling decisions. The green 

highlighted boxes show the long term effects poor rescheduling may have on the organization, while in yellow 

are highlighted the local consequences that lead to those long terms effects. 

 

Figure 8: Effects of poor rescheduling decisions 

3.3 Methodologies 

 In the rescheduling problem, some characteristics are translated into a mathematical formulation 

through an accurate modelling. This section introduces the most common methodologies used over the years. 

First, it introduces the most important decision criteria. These give an insight into the quality of the reschedule 

solution. Then, the most common constraints to which rescheduling decisions are subjected will be discussed. 
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Finally, it presents some different modelling strategies regarding the horizon and the number of workers 

considered, and their impact on the quality of the final solution. 

3.3.1 Common Decision Criteria 

 The reconstructed schedule quality is measured by multiple goals with different priority levels which 

can be grouped in health organisation’s and staff related objectives, as it is demonstrated in table 10 (Maenhout 

& Vanhoucke, 2011).  

Table 10: Rescheduling objectives (Maenhout & Vanhoucke, 2011, 2013; Mutingi & Mbohwa, 2015) 

Health Organization’s Objectives Staff Related Objectives 

i) Maximize or maintain the quality of service as was 
intended in the original roster before disruptions 

iii) Maintain or maximize or the satisfaction of 
individual nurse preferences 

ii) Maintain or minimize labour cost iv) Maintain or maximize schedule fairness 

- v) Maintain or minimize workload variation 

- 
vi) Maintain or minimize schedule changes as much 

as possible 

 The objectives related to the health organization normally consist of assuring the level of service is 

maintained while not incurring extra costs. To that end, the aim is to guarantee the number and skills of workers 

needed in each shift, while avoiding extra costs (Maenhout & Vanhoucke, 2013). In the literature review of 

Mutingi & Mbohwa, (2015), these objectives are designated as i) Maximize or maintain the quality of service as 

was intended in the original roster before disruptions and ii) Maintain or minimize labour cost. Usually, these 

are achieved by penalizations in the objective function. In Maenhout & Vanhoucke, (2011) they use a penalty 

cost for scheduling a deficient number of nurses for a specific shift and one for when there is a surplus of nurses. 

Another way can be to penalize if a proper skill mix is not reached and to penalize extraordinary hours worked. 

  The staff related objectives concern individuals’ preferences and satisfaction which are determined by 

fair and even scheduling practices, personal contract stipulations, collective union agreement requirements, 

labour laws and others. In Mutingi & Mbohwa, (2015) these objectives are known as iii) Maintain or maximize 

or the satisfaction of individual nurse preferences, iv) Maintain or maximize schedule fairness and v) Maintain 

or minimize workload variation. Again, these objectives are usually obtained by penalization in the objective 

function. Wolbeck et al. (2020), to maximize fairness, considers a penalization depending on (i) the type of shift 

change (e.g., if the change is from a working day to a day off or to another shift type), on (ii) the time of a shift 

change by taking into account the lead time between the announcement of the disruption and the current shift 

execution and on (iii) the distribution of shift changes by looking to past accumulated penalties. 

 Moreover, related to rescheduling, there is another objective that must be achieved. Workers organize 

their personal lives according to the expected duties. Hence, any change can create inconveniences. It is crucial, 

then, that the new schedule created retain as much the current individual shifts as possible (Maenhout and 

Vanhoucke, 2013), which is designated in Mutingi & Mbohwa, (2015) as vi) Maintain or minimize schedule 
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changes as much as possible. This the most common objective in rescheduling as models are intended to 

minimize a function that counts the differences between the previous and the current schedule. 

3.3.2 Common Constraints 

 Rescheduling models share many constraints with scheduling models. Regarding scheduling, following 

the work done by Cheang et al. (2003) and  Namorado Rosa, (2017), it is possible to divide these constraints into 

four groups: (i) coverage requirements, (ii) time-related constraints, (iii) work regulation constraints and (iv) 

internal ward constraints. Maenhout and Vanhoucke (2011) added one more group concerning rescheduling (v) 

disruption constraints, as it is displayed in table 11. 

Table 11: Common constraints in rescheduling (Cheang et al., 2003; Maenhout & Vanhoucke, 2011; Namorado Rosa, 2017) 

Coverage 
requirements 

Time-related 
constraints 

Work regulation 
constraints 

Internal ward 
constraints 

Disruption 
constraints 

Requirements of 
different types of 

workers for any shift  
Staff workload 

Preferences or 
requirements 

Shift patterns 

The set of 
disruptions must be 
performed by other 

workers 

Constraints among 
shifts  

Consecutive working 
shifts/days 

Rest time between 
working shifts 

Historical record 
Some nurses cannot 

be assigned to 
particular shifts  

Shift type 
assignment 

(requirements for 
each shift type)  

Consecutive same 
working shifts/days 

Working weekend - - 

- - 
Holidays and 

vacations 
- - 

- - Staff free days - - 

 Coverage requirements refer to the necessity of providing proper care with the right number of skilled 

workers. Then, time-related constraints concern staff’s periodic work. Restrictions that deal with legislative and 

preferences’ issues are presented in work regulation constraints. Additionally, some specific policies practised 

by wards are considered in the internal ward constraints. Finally, the last column considers restrictions regarding 

the post-disruption moment. The latter are specific constraints only found in rescheduling models, being 

comprised of two sets of constraints. The first guarantees that the disruptor worker that was firstly assigned to 

a shift no longer has to operate that shift. The second ensures that, despite the need to rebuild the schedule, 

some workers cannot perform certain shifts, e.g., when a worker is absent on a night shift, the one that will 

substitute him/her cannot have made two night shifts in the past two days if there is a restriction of a maximum 

of two consecutive night shifts. However, the substitute can still operate a different shift. 
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 The constraints here presented are usually divided into two categories: hard and soft. Hard constraints 

are those that must be satisfied in any case, e.g., a worker can be assigned to at most one shift per day. These 

are normally related to minimum service levels and regulatory or contractual constraints, i.e., guaranteeing that 

there is a minimum number of workers not absent, with required skills for the shift and that do not work 

consecutive shifts or more than one shift per day (Wickert et al., 2019). Soft constraints are those that can, to 

some point, be violated but, when this violation occurs, there is a penalty in the objective function (Paias  et al. 

2021). These include all the remaining constraints. 

 Moreover, Wickert et al. (2019) studied the impact on the model of relaxing soft constraints. They 

observed that a model that considers soft constraints is 30 times slower than without them. Hence, although 

they considered that these are often important for generating good quality solutions, in critical cases when it is 

required to be as fast as possible, it may be useful to ignore them, as performing these urgent tasks should be 

prioritized over staff preferences or month workload. 

3.3.3 Reschedule Strategies 

 When constructing a schedule, it is logical that the whole time horizon must be considered. However, 

when rebuilding an affected schedule, it may not be necessary to reschedule for the whole horizon. Some 

authors investigated the outcome for different scheduling horizons in order to understand what the impact was. 

 Maenhout and Vanhoucke (2013) concluded that it is not required to rebuild for the complete horizon. 

In truth, to effectively perform this task, the planning period must start two days before the first schedule 

disruption. Starting sooner than these two days can lead to a deterioration of the solution’s quality. This is 

particularly important because the responsible manager is frequently noticed of the absence less than two days 

before its occurrence. Concerning the period after the last disruption, these authors also found that it is not 

necessary to go until the end of the time horizon, but rather two days after the last disruption. This will ensure 

an effective rescheduling and increasing the after-period is useless, as the quality will not improve. Additionally, 

Wickert et al. (2019) generated near-optimum results confirming that if the planning period had already started, 

it may only be necessary to consider from the first day of absence. 

 Moreover, Maenhout & Vanhoucke, (2013) also considered the variation of the number of workers on 

to reroster. In traditional rescheduling, the whole staff size is considered. They hypothesized that with fewer 

workers, solutions could still achieve a good quality in less time. However, this theory fell apart, as they identified 

that a higher number of workers would lead to lower variation, which would, in turn, guarantee higher quality. 

3.4 Solutions 

 Several solution techniques have been applied to solve the personnel rescheduling problem. Based on 

the different classifications made, a broader classification is proposed (Clark et al., 2015; Mutingi & Mbohwa, 
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2015; Namorado Rosa, 2017). It divides these techniques into (i) manual methods (ii) exact algorithms and (iii) 

heuristic algorithms. 

3.4.1 Manual Methods 

 Manual methods are the simplest. When a worker responsible for a shift cannot operate it, s/he can 

bargain with other colleagues to do their shift instead or s/he can contact the schedule responsible. Then, the 

responsible must contact the available staff to ensure that all shifts are operated and that working and legal 

regulations are met. It is extremely time consuming, difficult and more susceptible to errors occurrence (Mutingi 

& Mbohwa, 2015). It is interesting to note that even with a simple Excel solution, the number of ward managers 

tasks for covering absences, which includes phone calls, conversations to substitute staff and others, decreased 

significantly (Tuominen et al. 2016). However, it still is the most common method used by managers. 

 Clark et al. (2015) conducted a survey on four different health organizations to understand if 

automation scheduling processes were used and what were the reasons for its non-utilization. In the first, staff 

did not perceive the advantage of using a scheduling software, thus the paper-based system kept being used. 

The second had a software introduced. Nevertheless, due to lack of training, its adoption was poor and most 

areas still used manual methods. The third health organization could not find financial resources to implement 

them. Only the fourth had introduced the software across all areas. Although manual methods are very complex, 

only a few alternative models have been implemented, namely the one proposed by Bard & Purnomo (2006) in 

a hospital in the United States of America. These authors approached the problem in a different view, where 

organizations could hire part-timers, agency nurses on a daily basis – Nurse Addition Problem (NAP). 

3.4.2 Exact Algorithms 

 Exact methods used in rescheduling comprise Linear Programming (LP) – to solve problems with 

continuous decision variables –,  Integer Linear Programming (ILP) – to solve problems with discrete decision 

variables – techniques and Mixed Integer Programming (MIP) that combines both discrete and continuous 

decision variables (Namorado Rosa, 2017). 

 The first researchers to approach the rescheduling problem were Moz & Pato (2003), who conducted 

the tests for the ILP formulation of the integer multicommodity flow model, where they concluded that it is 

possible to obtain optimal schedules in reasonable computational times from the ILP formulation of the 

multicommodity flow problem. Moz & Pato (2004) presented two new integer multicommodity flow models. 

The first aims to optimize an integer multicommodity flow in a multi-level network with additional constraints. 

The second model aggregates the nodes corresponding to the same shift tasks in a single node. The latter 

achieved much better results than both the former and the formulation of Moz & Pato (2003), where 22 test 

instances were solved in less than five hours against 36 test instances solved in one minute or less. 
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 Later, Do et al. (2017) proposed a method based on MIP to provide a new schedule with minimum 

changes, while satisfying all constraints as in the original situation, for the Lai Chau hydropower station. This 

model is capable of providing very good solutions in less than 180 seconds. However, they noticed that, as time 

passes, it is more difficult to find a feasible solution. Additionally, if a worker asks for an absence, while all his/her 

day-offs have been satisfied, the solution tends to be infeasible. 

 Taking into account that schedules are often affected by uncertain events that require its 

reconstruction, Wolbeck et al. (2018) used a dynamic approach where a monthly schedule is created and then 

uncertain events such as illness are generated stochastically. In addition, the authors tested different 

optimization rescheduling strategies, random and ratio approaches where no differences were found in terms 

of employee satisfaction and extra hours. Moreover, they tested with and without constraint relaxation and 

concluded that allowing constraint violation may decrease satisfaction, while extra hours increase. 

 Wolbeck et al. (2020) developed a MIP model where instead of penalizing each shift change equally, 

they evaluated them according to a Fair Shift Change Penalization Scheme. In this scheme, penalty costs are 

determined dynamically depending on (i) the type of shift change (e.g., if the change is from a working day to a 

day off or to another shift type), on (ii) the time of a shift change by taking into account the lead time between 

the announcement of the disruption and the current shift execution and on (iii) the distribution of shift changes 

by looking to past accumulated penalties. The higher the penalty the less satisfied the employee is. This model 

provides a fair distribution of shift changes among all workers. Also, Wolbeck et al. (2020) considered refusals 

(when the manager calls a nurse that refuses) as additional absences in the model, which is an important 

characteristic to consider in the implementation in a health organization. 

 Finally, Paias et al. (2021) approached the bus driver rerostering problem with a MIP multicommodity 

flow assignment model, enabling the reconstruction based on calling standby drivers, good candidates to replace 

absents, depot drivers, those who have no duties in that day, and the postponement of already assigned days 

off. The concept of standby workers is also addressed by Wolbeck et al. (2020) as a way of considering 

rescheduling when performing the scheduling process, increasing the robustness of the original schedule. 

3.4.3 Heuristic Algorithms 

 Heuristics are a powerful family of algorithms for numerical optimization. It is a method designed for 

finding a solution that is reasonably good in an acceptable time frame. It may not be the optimal solution but it 

is still helpful as it is found in a short amount of time. 

 Moz & Vaz Pato (2007) were the first to propose heuristic methods for the rescheduling problem. They 

developed two versions of a constructive heuristic, in which the first, orders the nurses in a fixed way and assigns 

tasks accordingly, whilst, in the second, tasks and nurses were randomly ordered in the initialization step. The 

randomly ordered outperformed the fixed ordered model. Additionally, they also developed various versions of 

a Genetic Algorithm (GA), depending on the encoding of permutations and on the genetic operators used for 

each encoding, and also developed hybridized versions. Despite longer computational times, GA had almost 
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always better solution quality than constructive heuristics. Pato & Moz (2008) developed an utopic Pareto 

genetic heuristic to deal with a bi-objective nurse rerostering problem, where the main differences, compared 

to the previous model, were the building of the initial population and the inclusion of an utopic individual to the 

population to improve quality and diversification.  

 Kitada & Morizawa (2010) proposed a heuristic model incorporating a tree-search algorithm into the 

recursive search algorithm to achieve an optimal roster while minimizing reassigned tasks. Following this model, 

in Kitada & Morizawa (2013), the authors proposed to solve the problem of staff absence for several consecutive 

days by separating several days of absence into a set of one day absences and then solving each subproblem. 

Finally, they followed the approach as in their previous study. 

 In Maenhout & Vanhoucke (2011), the authors developed an evolutionary meta-heuristic model. They 

also tested different optimization strategies and compared their results with the existing literature, concluding 

that their procedure outperforms the best in class from Pato & Moz, (2008). Later, Maenhout & Vanhoucke 

(2018) proposed a method that thrives on a perturbation mechanism to diversify the search and a variable 

neighbourhood search to intensify the search in the region of a solution point. The benchmark revealed that this 

model is capable of obtaining near-optimal results for different scenarios for short computational times. 

 Bäumelt et al. (2013) dealt with the rerostering problem by performing a parallel algorithm 

(constructive heuristic) on a Graphics Process Unit (GPU) to shorten the required computational time, which is 

a non-trivial task, bringing many issues, such as the utilization of the memory and the minimization of the 

communication overhead between the PC and the GPU. When comparing to the results of Moz & Pato (2004), 

they found that their solutions were within 18% (4%) from the optimal for a dataset of 19 (32) nurses, while the 

average speed was up to 1.9 (2.5) times faster. While the results were still far from optimal, the speed was 

significantly improved. Later, Bäumelt et al. (2016) improved the model and achieved a better quality, at the 

level of Moz & Vaz Pato (2007), but with a speed of 13 (18) times faster for a dataset of 19 (32) nurses. GPU is 

an important tool to accelerate complex problems and it is clear that it will play a key role in the future of 

computational science (Brodtkorb et al. 2013). 

 Chiaramonte & Caswell (2016) developed a modified agent-based nurse rostering system that provides 

solutions for both scheduling and rescheduling and also considers the negative impact on nurses preferences. 

Despite producing good results, as it solved over 90% of the disruptions, it has still some limitations. The model 

only allows one-to-one shift trade, i.e., if a worker is absent for two days, it will only consider four shifts, two 

from the disrupter and two from the worker that will fill those shifts. However, this model presents a promising 

methodology, having the potential to be as good as others. 

 Mutingi & Mbohwa (2016) created a Fuzzy Multi-criteria Simulated Evolution (FMSE) approach, an 

iterative algorithm generated from the general Simulated Evolution (SE), where some of the original SE 

operators are fuzzified. It allows decision-makers to use expert opinions based on information from patients and 

staff to make adjustments to the solution process based on the relative contribution of each element. Uhmn et 

al. (2017) introduced a deterministic algorithm, iterative deepening depth-first search. They compared with a 
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Simulated Annealing (SA) and remarked that the model outperformed the SA in terms of the number of instances 

solved, the average time to find a solution and its quality. Simić, Corchado, Simić, Ðorðević, & Simić (2019) 

presented a hybrid strategy for the rescheduling problem with a methodology based on efficient cooperation 

between fuzzy logic ordered weighted averaging and variable neighbourhood descent search. 

 Finally, Wickert et al. (2019) presented a Variable Neighbourhood Descent (VND) heuristic, a simple 

algorithm but able to integrate several neighbourhood structures and generate good results quickly. They 

approached different strategies, such as relaxing constraints, reschedule only a part of the time horizon and, 

when comparing the results with a MIP solver, they always found errors lower than 2%, which shows the 

robustness of the model and provides an alternative to commercial solvers. 

3.5 Chapter Considerations 

 This chapter aimed to understand rescheduling as a problem in the context of the EMS and to learn 

which approaches have been developed to deal with it. In fact, staff scheduling in EMS is known as a problem 

due to the necessity of making efficient use of scarce resources – both personal and financial – and has been 

studied for many years. 

 In this context, rescheduling arises as a frequent and time-consuming task required to repair schedules. 

It carries several risks and, when poorly performed, it has implications for patient care, staff morale and cost 

effectiveness, which will ultimately affect the performance of the health organization. However, there is 

currently little computational support for rescheduling and even less implementation, being, in most cases, an 

informal task that occupies a serious fraction of managers’ time. 

 Although exact algorithms guarantee an optimal solution, the larger the problem, the more complex 

the solution space is, thus the algorithm will be slower. Despite the significant advances in computer hardware 

and commercial solvers over the past few decades, it remains difficult to guarantee the optimality of staff 

scheduling solutions. Additionally, as rescheduling problems have been becoming more complex with the 

introduction of more constraints, researchers have been dealing with it by relaxing soft constraints (Wickert et 

al. 2019). Furthermore, researchers have been designing different heuristic algorithms, which solve the problem 

in a faster and more efficient way than the latter, even if they compromise optimality, accuracy or precision. 

 Several heuristic approaches, such as evolutionary algorithms and constructive heuristic, were 

introduced and it is possible to conclude that these have been delivering good solutions in a considerably lower 

time than exact algorithms. As rescheduling happens almost every day and, in specific cases, needs to be as fast 

as possible, the time is certainly an aspect to take into account. Thus, these methods may become crucial for 

the evolution of staff rescheduling literature and model implementation.   

 To solve this problem, most of the approaches are exact or heuristic algorithms and provide optimal or 

near-optimal results in a short period. The next chapter proposes a mathematical model to solve the staff 

rescheduling problem at EMS. 
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4. Model Formulation 

 This chapter presents an optimization model to solve EMS staff rescheduling problems, supported by 

the methodologies explored in the literature review and INEM’s case study. Therefore, section 4.1 presents the 

statement of the problem that will be addressed. Section 4.2 describes the mathematical formulation, where 

the parameters, sets and subsets are primarily established, followed by the objective function and constraints. 

Final remarks and the chapter’s conclusions are made in section 4.3. 

4.1 Problem Statement 

 The rescheduling problem occurs when one or more workers cannot be present in a day and shift to 

which they were assigned before in the initial schedule due to unforeseen events. These events may harm the 

quality of the service provided and thus it is crucial to recreate a schedule in a short period. For this, workers 

that were on day-off may be requested to work on that day which may oblige workers to perform it out of their 

team but only if they have the required skills to do so.  

 Each day is divided into three shifts, as presented in table 12, and each shift is composed of several 

tasks to be done with fixed starting times and lengths in order to avoid the possibility of overlapping. Most duties 

start at the same time and have the same duration of 8 hours. 

Table 12: The three shift types and their corresponding starting and ending time 

Shift Type Starting Time Ending Time 

Night (1) 00:00 a.m. 08:00 a.m. 

Morning (2) 08:00 a.m. 04:00 p.m. 

Afternoon (3) 04:00 p.m. 00:00 a.m. 

 The reconstructed schedule reallocates, when needed, workers to different tasks to respond quickly to 

the disruption and guarantees along the planning horizon that both work and regulation factors are respected. 

 Additionally, the following elements are also key to rebuild a schedule: the definition of the planning 

horizon, namely the number of days of the schedule, and the total number of weekends during the planning 

horizon. Furthermore, all the public holidays, scheduled holidays and non-working days during that specific 

planning horizon must be known, once they decrease the number of working hours. 

 To simplify the problem under consideration, all personnel is assumed similar and exceptional 

situations are not considered in this model. As a result, seniority rights, personal limitations, and breaks during 

working shifts are not considered. To summarize, the problem can be stated as: 

Given: 

1. The number of contractual working hours; 
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2. The maximum number of consecutive working night shifts; 

3. The minimum resting time between two consecutive shifts; 

4. The minimum number of Sundays off;  

5. The maximum number of consecutive days off; 

6. The maximum number of consecutive working days; 

7. The number of public and scheduled holidays on the planning horizon (/per worker); 

8. The composition of each team; 

9. The set of skills needed to perform each task; 

10. The set of desired skills associated to each task; 

11. The allocation of tasks to teams and correspondent service; 

12.  The shifts starting and ending time; 

13. The staff requirements for each task on each shift of each day of the planning horizon; 

14. The days in which a worker prefers not to work; 

15. The days in which a worker is absent. 

Determine: 

1. The reallocation of tasks to workers on each shift of each day of the planning horizon starting from the 

day in which the schedule is disrupted. 

So as to minimize:  

1. Changes between initial and rebuilt schedule; 

2. Number of tasks done by people which do not belong to the team to which the task is allocated; 

3. Under and overstaffed tasks; 

4. Allocation of tasks to workers who do not have the desired skills; 

5. Allocation of tasks to workers who do not have preference for that shift; 

6. Deviation of the number of working hours from those established in the contract (excess and deficit); 

7. The number of incomplete weekends off among the workforce. 

4.2 Mathematical Formulation 

 This section introduces the mathematical model taking into account the problem statement. It presents 

a detailed explanation of the sets, subsets, parameters, variables and the objective function. Finally, the 

constraints to which the model is subject are defined. 

4.2.1  Sets and Subsets 

 The following are the sets and indices used in the mathematical model: 

– 𝒊 ∈ 𝑰  is the set of individuals 

– 𝒕 ∈ 𝑻  is the set of tasks 
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– 𝒅 ∈ 𝑫 is the set of days in the planning horizon 

– 𝒔 ∈ 𝑺 is the set of working shifts, (e.g., S = {1(Night), 2(Morning), 3(Afternoon)}) 

– 𝒈 ∈ 𝑮 is the set of teams 

– 𝒘 ∈ 𝑾 is the set of Sundays on the planning horizon  

The following are the subsets used in the mathematical model: 

– 𝑰𝒈
𝑮  is the set of workers that belong to team 𝑔 

– 𝑰𝒕
𝑻 is the set of workers that have the required skills to perform task 𝑡 

– 𝑻𝒊
𝑰 is the set of tasks that can be performed by worker 𝑖 

– 𝑰𝒕
𝑻𝒅 is the set of workers that have the desired skills to perform task 𝑡 

– 𝑻𝒈
𝑮 is the set of tasks that are assigned to team 𝑔 

– 𝑯𝒊
𝑰 is the set of holidays scheduled by worker 𝑖 

– 𝑷𝒊
𝑰 is the set of days a worker 𝑖 prefer not to work 

– 𝑪𝒕
𝑻 is the set of tasks that belong to the dispatch centre  

4.2.2  Parameters 

The parameters used in the mathematical model are defined as: 

– 𝜽𝒅𝒂𝒚𝒔
𝒎𝒂𝒙   as the maximum number of consecutive working days 

– 𝜽𝒏𝒊𝒈𝒉𝒕𝒔
𝒎𝒂𝒙  as the maximum number of consecutive working nights 

– 𝜽𝒅−𝒐𝒇𝒇
𝒎𝒂𝒙   as the maximum number of consecutive days off 

– 𝜽𝒊
𝒎𝒊𝒏 as the minimum number of working hours for worker 𝑖  

– 𝜽𝒔−𝒐𝒇𝒇
𝒎𝒊𝒏  as the minimum number of Sundays off that worker must have during the planning horizon 

– 𝜽𝒔
𝒎𝒊𝒏−𝒔 as the minimum number of shifts that must be performed for each shift 𝑠 

– 𝑳𝒕 as the length of the task 𝑡 

– η as the number of public holidays on the planning horizon 

– 𝜉 as the number of hours to discount from the contract hours 

– 𝑨𝒊 as the percentage of work that must be allocated to the dispatch centre for worker 𝑖  

– 𝑹𝒅,𝒔,𝒕 as the staff requirements for day 𝑑, shift 𝑠 and task 𝑡 

– 𝒛𝒊,𝒅,𝒔,𝒕
𝟎   as the initial schedule for worker 𝑖  

– 𝒛𝒊,𝒅
𝑫  as the disruptions caused by worker  𝑖 and day 𝑑 

– 𝑫𝒊𝒔𝒕𝒊,𝒕  as the distance between worker  𝑖 location and the place where the task 𝑡 must be performed 

– |𝑫| as the number of days during the planning horizon 

– |𝑾| as the number of Sundays during the planning horizon 

The objective function weights are now defined as: 

– 𝒘𝑾𝑭− the weight of the penalty variable for understaffed tasks for a certain day and shift 
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– 𝒘𝑾𝑭+ the weight of the penalty variable for overstaffed tasks for a certain day and shift 

– 𝒘𝑶𝑻−  the weight of the penalty variable for shortage of hours worked 

– 𝒘𝑶𝑻+  the weight of the penalty variable for excess of hours worked 

– 𝒘𝑺𝒖𝒏 the weight of the penalty for worker  𝑖 being assigned to work on Sunday 𝑤 but not on Saturday 

𝑤 − 1 

– 𝒘𝑺𝒂𝒕 the weight of the penalty for worker 𝑖  being assigned to work on Saturday 𝑤 − 1 but not on 

Sunday 𝑤 

– 𝒘𝑺𝑷 the weight of the penalty for not satisfying staff preferences 

– 𝒘𝒔𝒌𝒊𝒍𝒍
𝒅𝒆𝒔  the weight of the penalty for worker 𝑖  not meeting desired skills for task 𝑡  

– 𝒘𝑪− the weight of the penalty variable for the difference between required working hours in the 

dispatch centre and the hours worked (undertime) 

– 𝒘𝑪+ the weight of the penalty variable for the difference between required working hours in the 

dispatch centre and the hours worked (overtime) 

– 𝒘𝑮  the weight of the penalty for team swaps 

– 𝒘𝑫𝒊𝒔𝒕 the weight of the penalty for tasks performed outside of workers’ location 

– 𝒘𝑹− the weight of the penalty variable for decrease in working hours by worker  𝑖 from previous 

schedule 

– 𝒘𝑹+ the weight of the penalty variable for increase in working hours by worker  𝑖 from previous 

schedule 

4.2.3  Variables 

 This section presents decision and auxiliary variables along with their respective domain. Regarding 

decision variables, this problem presents only a set of decision variables, concerning the assignment of a tasks 

on a day and shift to a worker:  

𝒙𝒊,𝒅,𝒔,𝒕 ∈ {0,1} is a decision variable that determines if worker 𝑖 is assigned on day 𝑑 and shift 𝑠 to task 

𝑡 (1) or not (0)  

There are various auxiliary/penalty variables, which account for the quality of the reschedule solution, as these 

are present in the objective function. In this model, the auxiliary variables are the following: 

– 𝒀𝒊
𝑶𝑻− ∈ ℕ𝟎 is the auxiliary/penalty variable for the number of deficit working hours by worker 𝑖  

– 𝒀𝒊
𝑶𝑻+ ∈ ℕ𝟎 is the auxiliary/penalty variable for the number of excess working hours by worker 𝑖  

– 𝒀𝒅,𝒔,𝒕
𝑾𝑭− ∈ ℕ𝟎 is the auxiliary/penalty variable measuring the lack of workers on day 𝑑, shift 𝑠 to 

perform task 𝑡 

– 𝒀𝒅,𝒔,𝒕
𝑾𝑭+ ∈ ℕ𝟎 is the auxiliary/penalty variable measuring the excess of workers on day 𝑑, shift 𝑠 to 

perform task 𝑡 

– 𝒀𝒊,𝒘
𝑺𝒖𝒏 ∈ ℕ𝟎 is the auxiliary/penalty variable defining if worker 𝑖 is assigned to work on Sunday 𝑤 but 

not on Saturday 𝑤 − 1 
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– 𝒀𝒊,𝒘
𝑺𝒂𝒕 ∈ ℕ𝟎 is the auxiliary/penalty variable defining if worker 𝑖 is assigned to work on Saturday 𝑤 − 1 

but not on Sunday 𝑤 

– 𝒀𝒊,𝒅
𝑺𝑷 ∈ ℕ𝟎 is the auxiliary/penalty variable that evaluates if the preference of a day-off of worker i on 

day d is satisfied 

– 𝒀𝒊,𝒕
𝒅𝒆𝒔 ∈ ℕ𝟎 is the auxiliary/penalty variable for assigning a task t to a worker  𝑖 that does not have the 

desired skills to perform 𝑡 

– 𝒀𝒊
𝑪+ ∈ ℕ𝟎 is the auxiliary/penalty variable measuring the difference between required working hours 

in the dispatch centre for worker 𝑖  

– 𝒀𝒊
𝑪− ∈ ℕ𝟎 is the auxiliary/penalty variable measuring the difference between required working hours 

in the dispatch centre and the hours worked for worker 𝑖  

– 𝒀𝒈
𝑮 ∈ ℕ𝟎 is the auxiliary/penalty variable for allocating tasks to team g to workers that do not belong 

to team 𝑔 

– 𝒀𝒊,𝒅,𝒔
𝑹+ ∈ ℕ𝟎 is the auxiliary/penalty variable measuring the increase in working hours by worker 𝑖  from 

previous schedule 

– 𝒀𝒊,𝒅,𝒔
𝑹− ∈ ℕ𝟎 is the auxiliary/penalty variable measuring the decrease in working hours by worker 𝑖  

from previous schedule 

4.2.4  Objective Function 

 The objective function presented in equation (4.1) aims to minimize the weighted sum of the penalty 

variables, as stated in problem statement on section 4.1. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
(∑ ∑ ∑ 𝒘𝑾𝑭− × 𝒀𝒅,𝒔,𝒕

𝑾𝑭−

𝒕∈𝑻𝒔∈𝑺𝒅∈𝑫

+ 𝒘𝑾𝑭+ × 𝒀𝒅,𝒔,𝒕
𝑾𝑭+) 

+ (∑ 𝒘𝑶𝑻− × 𝒀𝒊
𝑶𝑻−

𝒊∈𝑰

+ 𝒘𝑶𝑻+ × 𝒀𝒊
𝑶𝑻+) + (∑ ∑ 𝒘𝑺𝒂𝒕 × 𝒀𝒊,𝒘

𝑺𝒂𝒕 + 𝒘𝑺𝒖𝒏 × 𝒀𝒊,𝒘
𝑺𝒖𝒏

𝒘∈𝑾𝒊∈𝑰

)

+ (∑ ∑ 𝒘𝑺𝑷 × 𝒀𝒊,𝒅
𝑺𝑷

𝒅∈𝑫𝒊∈𝑰

) + (∑ ∑ ∑ ∑ 𝒘𝒔𝒌𝒊𝒍𝒍
𝒅𝒆𝒔 × 𝒀𝒊,𝒅,𝒔,𝒕

𝒅𝒆𝒔

𝒕∈𝑻𝒔∈𝑺𝒅∈𝑫𝒊∈𝑰

)

+ (∑ 𝒘𝑪− × 𝒀𝒊
𝑪−

𝒊∈𝑰

+ 𝒘𝑪+ × 𝒀𝒊
𝑪+) + (∑ 𝒘𝑮 × 𝒀𝒈

𝑮

𝒈∈𝑮

)

+ (∑ ∑ 𝒘𝑫𝒊𝒔𝒕 × (∑ ∑ 𝒙𝒊,𝒅,𝒔,𝒕

𝒔∈𝑺𝒅∈𝑫

) × 𝑫𝒊𝒔𝒕𝒊,𝒕

𝒕∈𝑻𝒊∈𝑰

)

+ (∑ ∑ ∑ 𝒘𝑅− × 𝒀𝑖,𝑑,𝑠
𝑅− + 𝒘𝑹+ × 𝒀𝒊,𝑑,𝑠,𝑡

𝑹+

𝒔∈𝑺𝒅∈𝑫𝒊∈𝑰

) 

(4.1) 

 The first four lines concern aspects regarding the scheduling and the last line is related to the 

rescheduling. The first line includes the most important factor of the scheduling: (i) under (𝒀𝑾𝑭−) and 

overstaffed (𝒀𝑾𝑭+)  tasks on particular days and schedules. It represents the coverage maximization, which has 
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a direct impact on any organization, especially EMS, as the lack of workers may compromise the service quality 

and thus jeopardize patient care. Effectively, the objective function will be more penalized in case of 

understaffed tasks.  

 Then, terms (ii) to (viii) seek to reduce factors that do not contribute to the schedule quality, such as 

(ii) shortage (𝒀𝒊
𝑶𝑻−) and excess (𝒀𝒊

𝑶𝑻+) of hours worked, (iii) incomplete weekends off, which means having only 

the Saturday off (𝒀𝒊,𝒘
𝑺𝒂𝒕) or only the Sunday off (𝒀𝒊,𝒘

𝑺𝒖𝒏), (iv) completing tasks on days in which individuals preferred 

not to work (𝒀𝒊,𝒅
𝑺𝑷), and (v) had not the desired skills to perform that task (𝒀𝒊,𝒕

𝒅𝒆𝒔). Additionally, it also considers 

(vi) the shortage (𝒀𝒊
𝑪−) and excess (𝒀𝒊

𝑪+) of hours that should be allocated to the dispatch centre and (vii) the 

tasks done outside of the corresponding team (𝒀𝒈
𝑮). Finally, the objective function penalizes (viii) the distance 

that each worker must do to perform a specific task. Each term corresponds to a penalty that impacts the general 

satisfaction for the schedule, weighed correspondingly.  

 Lastly, the objective function also takes into account (ix) the differences between the current and 

previous schedule, by penalizing for each worker both the decrease (𝒀𝑖,𝑑,𝑠
𝑅− ) and the increase (𝒀𝑖,𝑑,𝑠

𝑅+ ) of shifts to 

perform. As it was explained before, it is of critical importance that the rebuilt schedule creates as little disorder 

as possible from the previous. 

4.2.5 Constraints 

 Finally, this section presents the model’s constraints. These were developed based on previous works 

done by various authors (Carmo, 2021; A. Clark & Walker, 2011; Maenhout & Vanhoucke, 2018a; Namorado 

Rosa, 2017; Wickert et al., 2019; Wolbeck et al., 2020). Constraints can be divided into two categories, hard and 

soft constraints, which will be exposed in the next sections. 

4.2.5.1 Hard Constraints 

 This category is composed of all the constraints that must not be violated. Thus, the model aims to find 

a rebuilt schedule that respects all the hard constraints. It is important to note that there are constraints that 

concern the building of any schedule, so an initial schedule can be built applying this set of constraints. 

Moreover, there are also constraints related to rebuilding a new schedule from a previous one. Therefore, with 

the same set of constraints, it is possible to build scheduling and rescheduling models (Wickert et al., 2019). 

Scheduling Constraints 

Skills Requirement 

 Certain tasks demand precise skills and constraint (4.2) guarantees that there are no workers assigned 

to tasks for which they are not capable of, i.e., tasks can only be done by the group of workers that have the 

skills to perform it. This is critical to assure that patients have the best health care with the right staff. 

 𝒙𝒊,𝒅,𝒔,𝒕 = 𝟎 , ∀ 𝒊 ∉ 𝑰𝒕
𝑻 , ∀ 𝒅 ∈ 𝑫 , ∀ 𝒔 ∈ 𝑺 , ∀ 𝒕 ∈ 𝑻 (4.2) 
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Minimum resting time between two consecutive shifts 

 Workers at EMS need a minimum resting time between two consecutive shifts of twelve hours. As each 

shift has eight hours, it is considered that there must be two shifts off between the last finished and the 

following. Therefore, constraints (4.3), (4.4) and (4.5) assure this. Constraint (4.3) states that each worker can 

only carry out at most one task (that belongs to the group of tasks that this worker is capable of performing) per 

day, while constraint (4.4) expresses that a worker can only operate at most one task within the morning and 

the afternoon of one day and the night of the following. Constraint (4.5) considers the remaining alternative 

where the individual can only perform at most one task within the afternoon of one day and the night and the 

morning of the following. Figure 9 explain the three shifts sequences that are avoided with these equations. 

 

 

∑ 𝒙𝒊,𝒅,𝟏,𝒕

𝒕∈𝑻𝒊
𝑰

+ ∑ 𝒙𝒊,𝒅,𝟐,𝒕

𝒕∈𝑻𝒊
𝑰

+ ∑ 𝒙𝒊,𝒅,𝟑,𝒕

𝒕∈𝑻𝒊
𝑰

≤  𝟏 , ∀ 𝒊 ∈ 𝑰 , ∀ 𝒅 ∈ 𝑫 (4.3) 

 

 

∑ 𝒙𝒊,𝒅+𝟏,𝟏,𝒕

𝒕∈𝑻𝒊
𝑰

+ ∑ 𝒙𝒊,𝒅,𝟐,𝒕

𝒕∈𝑻𝒊
𝑰

+ ∑ 𝒙𝒊,𝒅,𝟑,𝒕

𝒕∈𝑻𝒊
𝑰

≤  𝟏 , ∀ 𝒊 ∈ 𝑰 , ∀ 𝒅 ∈ 𝑫 \ {|𝑫|} (4.4) 

 

 

∑ 𝒙𝒊,𝒅+𝟏,𝟏,𝒕

𝒕∈𝑻𝒊
𝑰

+ ∑ 𝒙𝒊,𝒅+𝟏,𝟐,𝒕

𝒕∈𝑻𝒊
𝑰

+ ∑ 𝒙𝒊,𝒅,𝟑,𝒕

𝒕∈𝑻𝒊
𝑰

≤  𝟏 , ∀ 𝒊 ∈ 𝑰 , ∀ 𝒅 ∈ 𝑫 \ {|𝑫|} (4.5) 

 

Figure 9: Shift sequences to be avoided 

Maximum consecutive working days per worker  

 Each worker must not be assigned to tasks in more than 𝜃𝑑𝑎𝑦𝑠
𝑚𝑎𝑥  consecutive days. Thus, constraint (4.6) 

guarantees that, for each set of 𝜃𝑑𝑎𝑦𝑠
𝑚𝑎𝑥  + 1 consecutive days in the planning horizon, each individual works a 

maximum of 𝜃𝑑𝑎𝑦𝑠
𝑚𝑎𝑥 , having at least one day off in the set.  

 

 

∑ ∑ ∑ 𝒙𝒊,𝒓,𝒔,𝒕

𝒕∈𝑻𝒊
𝑰𝒔∈𝑺𝒓∈{𝒅,𝒅+𝟏,...,𝒅+𝜽𝒅𝒂𝒚𝒔

𝒎𝒂𝒙 }

≤  𝜽𝒅𝒂𝒚𝒔
𝒎𝒂𝒙  , ∀ 𝒊 ∈ 𝑰 , ∀ 𝒅 ∈ 𝑫 \ {|𝑫|, |𝑫|  −  𝟏, . . . , |𝑫|  − 𝜽𝒅𝒂𝒚𝒔

𝒎𝒂𝒙 } (4.6) 

Maximum consecutive working nights per month per worker 

 Constraint (4.7) functions as the previous but regarding nights (shift = 1). Hence, for each set of 𝜃𝑛𝑖𝑔ℎ𝑡𝑠
𝑚𝑎𝑥  

+ 1 days during the planning horizon, each individual works a maximum of 𝜃𝑛𝑖𝑔ℎ𝑡
𝑚𝑎𝑥 , having at least one night off 

in the set.  
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∑ ∑ ∑ 𝒙𝒊,𝒓,𝟏,𝒕

𝒕∈𝑻𝒊
𝑰𝒔∈𝑺𝒓∈{𝒅,𝒅+𝟏,...,𝒅+𝜽𝒅𝒂𝒚𝒔

𝒎𝒂𝒙 }

≤  𝜽𝒏𝒊𝒈𝒉𝒕𝒔
𝒎𝒂𝒙  , ∀ 𝒊 ∈ 𝑰 , ∀ 𝒅 ∈ 𝑫  {|𝑫|, |𝑫| − 𝟏, … , |𝑫|  − 𝜽𝒏𝒊𝒈𝒉𝒕𝒔

𝒎𝒂𝒙 } 
(4.7) 

Maximum consecutive days-off per month per worker 

 Each worker has also a maximum limit of 𝜽𝒅−𝒐𝒇𝒇
𝒎𝒂𝒙  consecutive days-off. In this case, constraint (4.8) 

assures that, for each set of 𝜽𝒅−𝒐𝒇𝒇
𝒎𝒂𝒙  + 1 consecutive days during the planning horizon, each individual must work 

at least one day. It is important to note that, when implementing the model, holidays must be taken into account 

so there is no conflict between this constraint and scheduled holidays. 

∑ ∑ ∑ 𝒙𝒊,𝒓,𝒔,𝒕

𝒕∈𝑻𝒊
𝑰𝒔∈𝑺𝒓∈{𝒅,𝒅+𝟏,...,𝒅+𝜽𝒅−𝒐𝒇𝒇

𝒎𝒂𝒙 +𝟏}

≥ 𝟏 , ∀ 𝒊 ∈ 𝑰 , ∀ 𝒅 ∈ 𝑫 \ {|𝑫|, |𝑫|  −  𝟏, . . . , |𝑫|  − 𝜽𝒅−𝒐𝒇𝒇
𝒎𝒂𝒙 − 𝟏} (4.8) 

Minimum number of Sundays off per month per worker 

 Additionally, when building the schedule, each worker must be entitled to have a minimum of 𝜽𝒔−𝒐𝒇𝒇
𝒎𝒊𝒏  

Sundays off. Constraint (4.9) allows individuals to only be assigned to Sundays’ tasks the number of Sundays in 

the planning horizon |𝑊| minus the number of minimum Sundays off, 𝜽𝒔−𝒐𝒇𝒇
𝒎𝒊𝒏 . 

 

 

∑ ∑ ∑ 𝒙𝒊,𝒓,𝒔,𝒕

𝒕∈𝑻𝒊
𝑰𝒔∈𝑺𝒓∈𝑾

≤ |𝑊| − 𝜽𝒔−𝒐𝒇𝒇
𝒎𝒊𝒏 , ∀ 𝒊 ∈ 𝑰 (4.9) 

Minimum number of shifts per shift type 

 In order to avoid that workers only operate in a specific shift, constraint (4.10) requires that each one 

has at least 𝜽𝒔
𝒎𝒊𝒏−𝒔 tasks in each shift. It allows to balance the type of shifts performed by the workers, while 

this equilibrium may also contribute to increase staff satisfaction. 

 

 

∑ ∑ 𝒙𝒊,𝒅,𝒔,𝒕

𝒕∈𝑻𝒊
𝑰𝒅∈𝑫

≥ 𝜽𝒔
𝒎𝒊𝒏−𝒔 , ∀ 𝒊 ∈ 𝑰, 𝒔 ∈ 𝑺 (4.10) 

Scheduled holidays 

 Finally, scheduled holidays must be considered. Thus, constraint (4.11) guarantees that workers are not 

allocated to tasks on days that belong to the group of days in which they have holidays, as they are absent. 

 

 

∑ ∑ ∑ 𝒙𝒊,𝒅,𝒔,𝒕

𝒕∈𝑻𝒊
𝑰𝒔∈𝑺𝒅∈𝑯𝒊

𝑰

= 𝟎 , ∀ 𝒊 ∈ 𝑰 (4.11) 

Rescheduling Constraints 

Absent workers do not work 

 When there is a disruption, rescheduling constraints are used, as workers that will be absent in a day 

of the schedule may not perform tasks to be done in that day. Therefore, constraint (4.12) set that, for a worker 
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𝑖 on a specific day 𝑑, if s/he is absent, i.e., 𝒛𝒊,𝒅
𝑫 = 1, then s/he cannot be allocated to tasks on that day, i.e., 

∑ ∑ 𝒙𝒊,𝒅,𝒔,𝒕𝒕∈𝑻𝒊
𝑰𝒔∈𝑺 = 0 . If s/he is not absent on that, i.e., 𝒛𝒊,𝒅

𝑫 = 0, then s/he can operate on that day, i.e., 

∑ ∑ 𝒙𝒊,𝒅,𝒔,𝒕𝒕∈𝑻𝒊
𝑰𝒔∈𝑺 = 1. The sum of these two terms is equal or lower than 1, because there can be the case where 

the worker is not absent, 𝒛𝒊,𝒅
𝑫 = 0, and was not allocated to a task on that day, ∑ ∑ 𝒙𝒊,𝒅,𝒔,𝒕𝒕∈𝑻𝒊

𝑰𝒔∈𝑺 = 0. 

 

 

∑ ∑ 𝒙𝒊,𝒅,𝒔,𝒕

𝒕∈𝑻𝒊
𝑰𝒔∈𝑺

+ 𝒛𝒊,𝒅
𝑫 ≤ 𝟏 , ∀ 𝒊 ∈ 𝑰 , ∀ 𝒅 ∈ 𝑫 (4.12) 

4.2.5.2 Soft Constraints 

 In contrast to hard, soft constraints can be violated but these violations are penalized in the objective 

function. The global objective is to minimize the weighted sum of all the penalty variables, minimizing the real 

impact of violating soft constraints and obtaining a better quality for the solution. 

Scheduling Constraints 

Overtime and undertime of workers 

 Each worker performs certain tasks in specific days and shifts (𝒙𝒊,𝒅,𝒔,𝒕), which multiplied by the length 

of each task 𝑳𝒕 returns the number of hours worked in each month. This number must be in agreement with the 

number of hours present in the contract 𝜽𝒊
𝒎𝒊𝒏, subtracted by the number of scheduled 𝐻𝒊

𝐼 and public holidays η 

multiplied by the number of hours to be subtracted 𝜉. However, to meet the demand, sometimes there are 

differences between the number of hours worked and those established in the contract, being counted as 

overtime 𝒀𝒊
𝑶𝑻+ or undertime 𝒀𝒊

𝑶𝑻−. Effectively, reducing both over and undertime are of the greatest interest to 

the organization, thus these factors are penalized in the objective function. 

 

 

∑ ∑ ∑ 𝑳𝒕 × 𝒙𝒊,𝒅,𝒔,𝒕

𝒕∈𝑻𝒊
𝑰𝒔∈𝑺𝒅∈𝑫

= 𝜽𝒊
𝒎𝒊𝒏 − (η + 𝐻𝒊

𝐼) × 𝜉 + 𝒀𝒊
𝑶𝑻+ − 𝒀𝒊

𝑶𝑻− , ∀ 𝒊 ∈ 𝑰 (4.13) 

Coverage requirements 

 Constraint (4.14) intends to avoid understaffed tasks that may harm the quality of the service provided 

and overstaffed tasks that lead the organization to incur extra costs. Therefore, for each task on a day and shift, 

the number of workers allocated must be equal to the demand 𝑹𝒅,𝒔,𝒕. Nevertheless, current workforce may not 

be able to answer to the demand, which will take to understaffed tasks 𝒀𝒅,𝒔,𝒕
𝑾𝑭−or it may exceed the demand, 

leading to overstaffed tasks 𝒀𝒅,𝒔,𝒕
𝑾𝑭+. As explained above, reducing both is crucial to the organization.  

 

 

∑ 𝒙𝒊,𝒅,𝒔,𝒕

𝒊∈𝑰𝒕
𝑻

= 𝑹𝒅,𝒔,𝒕 − 𝒀𝒅,𝒔,𝒕
𝑾𝑭− + 𝒀𝒅,𝒔,𝒕

𝑾𝑭+ , ∀ 𝒅 ∈ 𝑫 , ∀ 𝒔 ∈ 𝑺 , ∀ 𝒕 ∈ 𝑻 (4.14) 

 



40 

 

Incomplete weekends off per month per worker 

 Usually, organizations are legally bounded to offer their workers a particular number of Sundays off 

enforced by the hard constraint (4.9). Still, organizations should, whenever it is possible, give the whole weekend 

off to increase staff’s satisfaction. Constraint (4.15) takes this aspect into consideration, penalizing the objective 

function if a person works on a Sunday but not on Saturday (𝒀𝒊,𝒘
𝑺𝒖𝒏) and if a person works on Saturday but not on 

a Sunday (𝒀𝒊,𝒘
𝑺𝒂𝒕). 

 

 

∑ ∑(𝒙𝒊,𝒘,𝒔,𝒕 − 𝒙𝒊,𝒘−𝟏,𝒔,𝒕) − 𝒀𝒊,𝒘
𝑺𝒖𝒏 +

𝒕∈𝑻𝒊
𝑰𝒔∈𝑺

𝒀𝒊,𝒘
𝑺𝒂𝒕 = 𝟎, ∀ 𝒊 ∈ 𝑰 , ∀ 𝒘 ∈ 𝑾 (4.15) 

 The following soft constraints related to scheduling were not used in the present model. However, they 

will be introduced, since they can be interesting to the development of the literature and future works. 

Staff preferences  

 In order to increase staff satisfaction, it is important to meet their preferences. Therefore, constraint 

(4.16) penalizes when a worker must perform a task on day and shift that s/he did not give preference to.  

 

 

∑ 𝒙𝒊,𝒅,𝒔,𝒕

𝒕∈𝑻𝒊
𝑰

= 𝒀𝒊,𝒅,𝒔
𝑺𝑷  , ∀ 𝒊 ∈ 𝑰, ∀ 𝒅 ∈ 𝑷𝒊

𝑰 , ∀ 𝒔 ∈ 𝑺 (4.16) 

Satisfy desired skill requirements 

 Besides the skills required to execute a task, some organizations also consider those skills that are 

relevant and an added value but not mandatory to operate. Even if a worker has not these skills, s/he may be 

allocated to that task. Thus, constraint (4.17) penalizes when a person is allocated to a task and does not belong 

to the set of workers that have the desired skills to perform it 𝑰𝒕
𝑻𝒅. 

 
∑ ∑ 𝒙𝒊,𝒅,𝒔,𝒕

𝒔∈𝑺𝒅∈𝑫

= 𝒀𝒊,𝒕
𝒅𝒆𝒔 , ∀ 𝒊 ∉ 𝑰𝒕

𝑻𝒅, ∀ 𝒕 ∈ 𝑻𝒊
𝑰 

 

(4.17) 

Hours allocated to each class of task 

 Some organizations demand that workers have a mix of tasks from different departments. Hence, there 

is a percentage 𝑨𝒊 of hours worked in the dispatch centre that the staff must respect. However, this is not 

considered an obligation but rather a recommendation to keep operating in emergency vehicles and thus it is 

penalized with lack 𝒀𝒊
𝑪− and excess 𝒀𝒊

𝑪+of hours in the dispatch centre.  

 

 

∑ ∑ ∑ (𝒙𝒊,𝒅,𝒔,𝒕 × 𝑳𝒕)

𝒕∈𝑪𝒕
𝑻𝒔∈𝑺𝒅∈𝑫

=  𝑨𝒊 × ∑ ∑ ∑(𝒙𝒊,𝒅,𝒔,𝒕 ×

𝒕∈𝑻

𝑳𝒕)

𝒔∈𝑺𝒅∈𝑫

− 𝒀𝒊
𝑪− + 𝒀𝒊

𝑪+ , ∀ 𝒊 ∈ 𝑰 (4.18) 
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Performing tasks within the respective team 

 To facilitate the organization of operations, organizations group their workers according to the tasks 

and skills requirement, in such way that each person is part of a team. Therefore, it is crucial to have tasks that 

belong to a team being allocated to workers that also belong to that team, being the contrary penalized in the 

objective function with the counting variable 𝒀𝒈
𝑮. 

 

 

∑ ∑ ∑ ∑ 𝒙𝒊,𝒅,𝒔,𝒕

𝒊∈𝑰𝒕
𝑻\𝑰𝒈

𝑮𝒕∈𝑻𝒈
𝑮𝒔∈𝑺𝒅∈𝑫

− 𝒀𝒈
𝑮 = 𝟎 , ∀ 𝒈 ∈ 𝑮 (4.19) 

Rescheduling Constraints 

Changes from original schedule 

 When rebuilding a schedule after a person’s absence, it is critical to reduce the disruption caused to 

the remaining staff. Therefore, constraint (4.20) assures that the new schedule 𝒙𝒊,𝒅,𝒔,𝒕 is equal to the previous 

one  𝒛𝒊,𝒅,𝒔,𝒕
𝟎 , except for specific cases when it is required to change workers’ schedule in order to respect hard 

constraints or to achieve a better solution quality. 𝒀𝒊,𝒅,𝒔
𝑹+  reflects the increase of shifts worked that an individual 

has from the previous schedule and 𝒀𝒊,𝒅,𝒔
𝑹−  the decrease.  

 

 

∑(𝒙𝒊,𝒅,𝒔,𝒕

𝒕∈𝑻𝒊
𝑰

− 𝒛𝒊,𝒅,𝒔,𝒕
𝟎 ) + 𝒀𝒊,𝑑,𝑠

𝑹+ − 𝒀𝒊,𝒅,𝒔
𝑹− = 𝟎 , ∀ 𝒊 ∈ 𝑰 , ∀ 𝒅 ∈ 𝑫 , ∀ 𝒔 ∈ 𝑺 (4.20) 

4.3 Chapter Considerations 

 This chapter presented the mathematical model to solve the EMS rescheduling problem. First, the 

problem statement was presented to have a clear overview of the issue being addressed. The model has the 

goal of reallocating tasks to workers, while minimizing eight important factors abovementioned. 

 Then, the mathematical formulation was introduced showing sets and subsets, parameters, variables, 

objective function and constraints. The developed model intends to be general for all EMS and flexible to 

integrate multiple goals. As seen in section 4.2.5, it is capable of producing both scheduling and rescheduling, 

being the constraints grouped in those used to build a first schedule and those that must be taken into account 

when rebuilding a schedule. In the next chapter, the INEM case will be presented and a real data set will be used 

in order to validate the present model. 
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5. INEM Case Study and Instance Generation 

 This chapter introduces the data required to apply the model above defined to the real case of INEM. 

Section 5.1 explains the three data collection procedures used in this work. Following, section 5.2 presents the 

problem context, detailing the demand area, the tasks needed to be done, the workforce and respective team 

allocation to both services, CODU and EVs. Section 5.3 describes the instance structure. Then, section 5.4 

presents the three groups of instances generated to verify the consistency of the model, evaluating the 

difference between starting from a cyclic and a non-cyclic schedule, assessing the feasibility of the model for the 

INEM universe and then varying the absenteeism rate and disruptions generation. Finally, section 5.5 briefly 

discuss the main considerations taken from this chapter. 

5.1 Data Collection Procedures 

 To apply the proposed model to the case study of INEM, appropriate data must be collected and 

processed in order to create model inputs. To accomplish this, three data collection methods were used. First, 

an analysis of the data treated in previous INEM’s works was done. In the last years, Namorado Rosa, (2017), 

Ferreira dos Santos, (2019) and Carmo, (2021) studied issues at INEM, including staff scheduling and then 

developed a complete database alongside INEM’s technicians. This dataset is composed of, for example, 

workers, their skills and teams’ composition. However, when the data required was not present in the database, 

it was important to discuss with other stakeholders, including experts that had previous contacts INEM’s 

technicians. This was important to add relevant data, such as parameters settings and also the value of the 

weights. Finally, when it was not possible to access demanded data via the two abovementioned methods, it 

was important to resort to the existing literature. To illustrate, INEM did not keep records of the absences that 

happen during a month. Therefore, the absence rate was estimated based on the work done by (Wolbeck et al., 

2018) and Wickert et al., (2019). Moreover, it would be interesting that INEM could keep these records and also 

the reconstructed schedule that arose from a disruption in order to compare with the results obtained from the 

model present in section 6. 

5.2 Problem Context 

 INEM operates every day, being the workers possibly allocated to one of three shifts: night, morning 

and afternoon. INEM’s initial schedule is cyclic, where TEPHs work in 10-days cycles (M-M-A-A-O-N-N-O-O-O) as 

it was explained in section 2.2.1. 

 This section presents the demand area which will be addressed in this case, then the tasks that must 

be done and, finally, the workforce composition, as well as the composition of the teams.  
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5.2.1 Demand Area 

 This study focuses on rescheduling for both INEM’s services, CODU and EVs in the areas that respond 

to the Lisbon CODU displayed in figure 10. Surely, it encompasses CODU’s location (in red) but it also includes 

several areas of the Lisbon Metropolitan Area (below CODU in the left column). Moreover, there are also other 

cities, scattered through the south to the centre region of Portugal that are ordered from the northernmost to 

the southernmost in the right column of the figure. 

 

Figure 10: Geographic distribution of INEM services that respond to the Lisbon CODU 

5.2.2 Tasks 

 For each of the two services, there are specific tasks. These also have an associated duration, almost 

all last for eight hours, except for MEM drive which lasts for twelve hours. Additionally, each task also demands 

certain skills so that they can be performed by TEPHs. These skills are displayed in the right column of table 13. 

 TEPHs can execute two jobs at CODU: the CODU shift responsible and the CODU operator. The CODU 

shift responsible is responsible for supervising and coordinating activities at CODU throughout each shift, 

monitoring the various operations and making crucial decisions as necessary. Concerning the high level of 

responsibility that this work implies, it necessitates a particular skill - CODU responsible -, which comprises more 

expertise with CODU service and leadership abilities. Once a TEPH has this skill, he also has the CODU operator 

skill and can perform both jobs. On the other hand, the CODU operator is responsible for answering incoming 

calls, routing and dispatching vehicles, and gathering emergency data, and the CODU operator competence is 

required to accomplish this work. 

 Considering EVs service, each task is called for the kind of medical vehicle to which it is linked. To 

illustrate, SIV task is related to the SIV vehicle and the TIP task is related to the TIP vehicle. There is just one 
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exception for the AEM category, because this vehicle demands two distinct tasks, requiring then two TEPHs. 

These TEPHs have separate roles: one is in charge of driving, as an AEM driver, while the other is in charge of 

the shift, as an AEM team responsible. Each of these activities needs the acquisition of specialized abilities in 

accordance with the work requirements of each TEPH. For example, driving and MEM driving skills are equivalent 

to having a vehicle and a motorbike license, respectively and both glucagon administration and defibrillator skills 

call for specialized training. 

Table 13: INEM tasks, duration and required skills 

Tasks Duration (in hours) Required Skills 

CODU 
CODU shift responsible 8 CODU responsible 

CODU operator 8 CODU operator 

EVs 

AEM driver 8 Driving 

AEM team responsible 8 Glucagon, Defibrillator 

SIV driver 8 Driving 

TIP driver 8 Driving, CODU operator 

UMIPE driver 8 Driving, CODU operator, Defibrillator 

MEM driver 12 MEM driving, Defibrillator, Glucagon 

5.2.3 Workforce and Team Allocation 

 The workforce considered in this case study is composed of 266 Pre-Hospital Emergency Technicians 

(TEPHs). At INEM, every TEPH holds a full-time contract, working 35 hours per week, which corresponds to 7 

hours per day, 5 days a week. As the time horizon in this case study is 31 days, if there are no public or scheduled 

holidays, TEPHs must work 156 hours given by the following equation: 

𝜃𝑖
𝑚𝑖𝑛 = int ((35 × 4) × (|𝐷|/28) + 0.5) − (η + 𝐻𝑖

𝐼) × 𝜉 (5.1) 

 However, due to the need of satisfying the demand, TEPHs may have under or overtime, despite not 

being recommended. To have an idea, given the horizon of 31 days and the cyclic schedule that was 

implemented by INEM, workers perform 18 or 19 shifts within a month (depending on which day of the 10-days 

cycle the month starts) without extra hours. Assuming 19, it means that there are 5,054 operated shifts by the 

266 TEPHs. Nevertheless, for this area, INEM’s demand for the whole month corresponds to 6,080 shifts, which 

shows two main aspects. On the one hand, there is a huge lack of TEPHs for the Lisbon CODU area. In order to 

not have extra hours and meet all the demand, 54 new TEPHs should be hired, assuming that each one would 

execute 19 shifts. On the other hand, there is also a great need for efficiency in INEM’s operations to assure that 

these scarce human resources are used in the best possible way and rescheduling is definitely one aspect to take 

into account. 
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 As seen before, INEM has two services: CODU and EVs. TEPHs can be allocated to one or more teams 

and each team is responsible for certain tasks that belong to one or the other service. Nonetheless, TEPHs may 

perform tasks outside of their team, but this should be avoided. The number of TEPHs assigned to each working 

team is determined by the following factors: required skills and the location of the tasks. The efficient and well-

planned distribution of TEPHs between teams and tasks is critical to ensure the organization of INEM's activities. 

The allocation of each TEPH to the correspondent team was provided by INEM. 

5.2.3.1 CODU Service 

 At CODU, there are 5 teams and each one is formed by 23 TEPHs, having a total of 115 technicians that 

can perform CODU’s tasks. It is important to note that these may also belong to other EVs’ teams. Each one of 

the 5 teams is responsible for the same two tasks: CODU shift responsible and CODU operator, as is shown in 

table 14. 

Table 14: Distribution of the number of workers, task number and task type per working team for CODU 

Team Number of workers Task number Task 

Team 1 23 
Task 1 
Task 2 

CODU shift responsible 
CODU operator 

Team 2 23 
Task 3 
Task 4 

CODU shift responsible 
CODU operator 

Team 3 23 
Task 5 
Task 6 

CODU shift responsible 
CODU operator 

Team 4 23 
Task 7 
Task 8 

CODU shift responsible 
CODU operator 

Team 5 23 
Task 9 

Task 10 
CODU shift responsible 

CODU operator 

 In this service, the daily demand for each shift is defined a priori based on past events. Each CODU 

shift responsible task requires one TEPH and each CODU operator task requires 20 TEPHs with the required 

capabilities, which means there is a need of 63 TEPHs for CODU’s activities per day.  

5.2.3.1 EV Service 

 In the EVs case, there are 194 TEPHs capable of performing tasks that belong to EVs. In this case, each 

team is responsible for a set of activities related to a set of vehicles. There are teams without associated TEPHs, 

however, due to workers’ cross training, the corresponding tasks are still performed. The information regarding 

teams, allocated workers and the tasks that they are responsible for is summarized in Table 15. 

 Furthermore, associated with each vehicle there is a correspondent task and a required number of 

workers. For AEM, there must be two TEPHs, one responsible for driving and another as the team responsible. 

For the other vehicles, SIV, TIP, UMIPE and MEM, there is only one TEPH required to perform the task associated 

with the vehicle. 
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 Moreover, not all vehicles operate continuously, 24 hours per day. Most of AEMs work every day all 

three shifts but some only function two shifts a day (morning and afternoon). Then, SIVs, UMIPE and TIP operate 

constantly. Finally, MEMs only operate on morning shifts on weekdays. 

Table 15: Distribution of the number of workers, task number and task type per working team for EVs 

Team Number of workers Task number Task 

Team 6 28 Task 11 to Task 17 
AEM 1, AEM 10,  

AEM 15, SIV Lisboa 

Team 7 24 Task 18 to Task 23 AEM 2, AEM 9, AEM 13 

Team 8 25 Task 24 to Task 29 AEM 3, AEM 11, AEM 12 

Team 9 27 Task 30 to Task 37 
AEM 4, AEM 7,  

AEM 14, AEM Sacavém 

Team 10 21 Task 38 to Task 43 
AEM 6, AEM 5, 
AEM Amadora 

Team 11 18 Task 44 to Task 47 
AEM Setúbal 1,  
AEM Setúbal 2 

Team 12 17 Task 48 to Task 51 AEM Almada, AEM Seixal 

Team 13 4 Task 52 SIV Estremoz 

Team 14 4 Task 53 SIV Torres Novas 

Team 15 6 Task 54 SIV Tomar 

Team 16 5 Task 55 SIV Elvas 

Team 17 3 Task 56 SIV Ponte de Sor 

Team 18 0 Task 57 TIP Lisboa 

Team 19 0 Task 58 UMIPE Lisboa 

Team 20 4 Task 59 MEM Lisboa 

Team 21 3 Task 60 MEM Cascais 

Team 22 6 Task 61 MEM Setubal 

Team 23 4 Task 62 SIV Odemira 

Team 24 5 Task 63 SIV Moura 

Team 25 4 Task 64 SIV Castro Verde 

 The next section explains what inputs are given to the model to obtain accurate solutions regarding the 

case study. 

5.3 Instance structure 

 Instances are composed of tables, parameters and weights. Instances are composed of 8 tables, 10 

parameters and 12 weights. These will be explained in the following sections. 
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5.3.1 TEPH vs Team 

 The first table allocates each TEPH to one or more teams within which s/he is expected to perform most 

of her/his tasks. Each line corresponds to a TEPH identification and each column to a team identification. If TEPH 

𝑖 belongs to team 𝑔, the entry (𝑖, 𝑔) of the table 16 is equal to 1 and 0 otherwise. 

Table 16: Table TEPH vs Team 

Team  

TEPH 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

162 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

163 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

164 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

165 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

166 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

5.3.2 TEPH vs Task 

 The second table indicates if a TEPH has the skills that are considered to be required to perform a 

specific task. Each line corresponds to a TEPH identification and each column to a task identification. In case a 

TEPH 𝑖 has the required skills to perform task 𝑡, the entry (𝑖, 𝑡) of the table 17 is equal to 1. In case it does not 

happen, the entry (𝑖, 𝑡) is equal to 0. 

Table 17: Table TEPH vs Task 

Task  

TEPH 

 1 2 3 4 5 6 7 8 9 10 11 12 … 53 54 55 56 57 58 59 60 61 62 63 64 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

162 0 0 0 0 0 0 0 0 0 0 1 1 ... 1 1 1 1 1 1 1 1 1 1 1 1 

163 0 1 0 1 0 1 0 1 0 1 1 1 ... 1 1 1 1 1 1 0 0 0 1 1 1 

164 0 0 0 0 0 0 0 0 0 0 1 1 ... 1 1 1 1 1 1 0 0 0 1 1 1 

165 0 1 0 1 0 1 0 1 0 1 1 1 ... 1 1 1 1 1 1 0 0 0 1 1 1 

166 0 1 0 1 0 1 0 1 0 1 1 1 ... 1 1 1 1 1 1 0 0 0 1 1 1 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

 

5.3.3 Demand during the planning horizon 

 The following table displays the demand defined a priori for each day and each shift of the planning 

horizon. Each line corresponds to a task identification and each column to a shift of the day above, for example 

the top left 0 is related to the demand for task 9 on the day 1 and shift 1. The entry (𝑡(𝑑, 𝑠)) corresponds to the 

number of TEPHs required for that task in that day and shift. 
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Table 18: Demand during the planning horizon 

Horizon  

Task 

Day 1 2 3 4 … 28 29 30 31 

Shift 1 2 3 1 2 3 1 2 3 1 2 3 … 1 2 3 1 2 3 1 2 3 1 2 3 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

9 0 0 0 0 0 0 0 1 0 0 1 0 ... 1 0 0 1 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 20 0 0 20 0 ... 20 0 0 20 0 0 0 0 0 0 0 0 

11 1 1 1 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 1 1 1 

12 1 1 1 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 1 1 1 

13 1 1 1 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 1 1 1 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

5.3.4 Duration of each task 

 Table 19 presents the length in hours of each task t. As it was abovementioned all tasks take 8 hours to 

be completed with exception to MEM tasks, 59, 60 and 61, which take 12 hours to be carried out. 

Table 19: Duration of each task 

Task  

Duration 
1 2 3 4 5 6 7 8 9 10 11 12 … 53 54 55 56 57 58 59 60 61 62 63 64 

8 8 8 8 8 8 8 8 8 8 8 8 ... 8 8 8 8 8 8 12 12 12 8 8 8 

5.3.5 Task vs Team 

 The next table allocates each task to a team. Each line corresponds to a task identification and each 

column to a team identification. If task 𝑡 belongs to team 𝑔, the entry (𝑡, 𝑔) of the table 19 is equal to 1 and 0 

otherwise. 

Table 20: Task vs Team 

Team  

Task 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

52 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

53 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

5.3.6 Scheduled holidays 

 The following table identifies the days in which TEPHs have scheduled vacations. Effectively, there are 

months where more people have holidays than others, which corresponds to lower demand months and 
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summer months. Since it was not possible to access INEM’s holidays record, for this case study, it was decided 

with the decision maker to have a 0.5% of vacation days for all the 266 TEPHs, accounting for around 40 days. It 

was assumed that each TEPH takes 5 days of holidays at a time, so there were 8 TEPHs chosen randomly to have 

holidays. Then, the starting day of the beginning of the holidays was also randomly chosen. 

Table 21: Scheduled holidays 

Day  

TEPH 

 1 2 3 4 5 6 7 8 9 10 11 12 … 20 21 22 23 24 25 26 27 28 29 30 31 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

162 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

163 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

164 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

165 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

166 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

5.3.7 Initial Schedule 

 The following tables represent the initial schedule that suffers a disruption, which are joined together. 

However, for the better understanding of what is at stake, they are presented here separately. For both tables, 

each line corresponds to a TEPH identification and each column to a day. The difference between the tables is 

what is in the entry (𝑖, 𝑑) of each. In the first, table 22, in the entry (𝑖, 𝑑), there is the shift that TEPH i is going to 

execute on day 𝑑. If the entry is 0, TEPH i does not work on day 𝑑. In the second, table 23, the entry (𝑖, 𝑑 ) 

corresponds to the task that TEPH i must perform on day 𝑑. Therefore, in the end, there will be a tuple (𝑖, 𝑑, 𝑠, 𝑡) 

with the task 𝑡 that a TEPH 𝑖 must carry out on day 𝑑 and shift 𝑠. To illustrate, there is the following example of 

(162, 1, 3, 30). 

Table 22: Initial Schedule – Task 

Day  

TEPH 

Shift 1 2 3 4 5 6 7 8 9 10 11 12 … 20 21 22 23 24 25 26 27 28 29 30 31 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

162 3 3 0 1 1 0 0 0 2 2 3 3 ... 2 3 3 0 1 1 0 0 0 2 2 3 

163 0 2 2 3 3 0 1 1 0 0 0 2 ... 0 0 2 2 3 3 0 1 1 0 0 0 

164 2 2 3 3 0 1 1 0 0 0 2 2 ... 0 2 2 3 3 0 1 1 0 0 0 2 

165 2 2 3 3 0 1 1 0 0 0 2 2 ... 0 2 2 3 3 0 1 1 0 0 0 2 

166 1 0 0 0 2 2 3 3 0 1 1 0 ... 1 1 0 0 0 2 2 3 3 0 1 1 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
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Table 23: Initial Schedule – Task 

Day 

TEPH 

Task 1 2 3 4 5 6 7 8 9 10 11 12 … 20 21 22 23 24 25 26 27 28 29 30 31 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

162 30 32 0 30 37 0 0 0 30 30 30 30 ... 31 30 30 0 30 30 0 0 0 36 30 33 

163 0 34 2 2 2 0 2 30 0 0 0 35 ... 0 0 2 2 2 2 0 2 2 0 0 0 

164 4 35 33 30 0 31 30 0 0 0 31 4 ... 0 30 31 4 4 0 4 30 0 0 0 30 

165 30 31 32 35 0 30 31 0 0 0 32 37 ... 0 35 35 30 30 0 31 30 0 0 0 31 

166 6 0 0 0 37 33 6 6 0 31 31 0 ... 30 6 0 0 0 36 6 6 6 0 30 31 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

5.3.8 Disruptions 

 The following tables present the disruptions generated for the initial schedule, i.e., the days in which 

TEPHs will be absent. For both tables, each line corresponds to a TEPH identification and each column to a day. 

If the entry (𝑖, 𝑑) of both tables is 1, it means that TEPH 𝑖 is absent on day 𝑑, thus will not execute any task. If it 

is 0, there is no problem and TEPH 𝑖 can work on day 𝑑. 

 Since it was not possible to access the records of disruptions and changes on the initial schedule at 

INEM for a month, disruption generation was based on the works done by Ingels & Maenhout, (2015), Wolbeck 

et al., (2018) and Wickert et al., (2019) and interactions with the decision maker, deciding for an absenteeism 

rate of 1.6%.  

 The difference between the two tables lies in the way disruptions were generated. For table 24, which 

refers to type I, disruptions were generated with a Binomial distribution with binary scenarios (success – 1 or 

unsuccess – 0) with a probability of success of 1.6%. The number of trials was the number of TEPHs multiplied 

by the number of days in the planning horizon (266 x 31). Disruptions could happen every day for any TEPH. 

Table 24: Disruption Type I 

Day  

TEPH 

Task 1 2 3 4 5 6 7 8 9 10 11 12 … 20 21 22 23 24 25 26 27 28 29 30 31 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

162 0 0 0 0 0 0 0 1 0 0 0 0 ... 0 0 0 0 1 0 0 0 0 0 0 0 

163 0 0 0 0 0 0 0 0 1 0 0 0 ... 0 0 0 0 0 0 0 0 1 0 0 0 

164 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 1 0 0 0 0 0 0 0 0 0 

165 0 0 0 0 0 0 0 0 0 0 1 0 ... 0 1 0 0 0 0 0 0 0 0 0 0 

166 0 0 0 0 0 0 1 0 0 0 0 0 ... 0 0 0 1 0 0 0 0 0 0 0 0 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

 Disruption of type II, not uniformly distributed through the planning horizon, was generated since the 

study made by Vahtera et. al (2001) showed that there are week days where the probability to be absent is 

higher. According to the work developed, people tend to be absent more in the beginning – Monday – or in the 

end of the week – Friday. They found that the absenteeism rates on these days is up to 1.9 times higher than on 
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others. Therefore, for each day, it was generated a trial using a Binomial distribution where the probability of 

being a day with a disruption was 80% for Mondays and Fridays and 40% for the rest of the days. This resulted 

in 14 days with disruptions, 6 Fridays or Mondays and 8 from the other weekdays, which accounts for around 

45% of the days in the planning horizon, as presented in figure 11. 

 

Figure 11: 14 disruption days for disruptions of Type II 

 Then, to equal the probability of 1.6% of the previous type, disruptions were generated again for each 

worker on the days with disruptions using a Binomial distribution where the probability of each person being 

absent was 3.6% (3.6% x 45% = 1.62%). Table 25 displays the disruptions of type II. 

Table 25: Disruption Type II 

Day  

TEPH 

Task 1 2 3 4 5 6 7 8 9 10 11 12 … 20 21 22 23 24 25 26 27 28 29 30 31 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

162 0 1 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 

163 0 1 0 0 1 0 0 0 0 0 0 1 ... 0 0 0 1 0 0 0 0 0 0 1 0 

164 0 0 1 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 

165 0 0 0 0 1 0 0 0 0 0 0 0 ... 0 0 0 0 0 1 0 0 0 1 1 0 

166 0 0 0 0 1 0 0 0 0 0 0 1 ... 0 0 0 0 0 0 0 0 0 1 0 0 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

5.3.9 Parameters and Weights 

 Regarding INEM case study, the parameters used are those displayed in table 26. All of them were 

obtained via the collaboration with INEM’s technicians. 

 The objective function attempts to minimize the weighted sum of the penalties associated with the soft 

constraints. Nonetheless, the factors are not all equally important and should be weighted accordingly. The 

relative and then the quantitative relevance of the criteria was discussed and adjusted with INEM’s decision-

makers, aiming to achieve accurate weights in order to adequately assess the models’ performance. Table 27 

summarizes the weights used for the tests, which are kept for each instance tested. 

As explained throughout the thesis, the main goal of the model is to produce as little disruption as possible in 

the following days of the schedule, whilst minimizing uncovered demand. Therefore, changes in the rebuilt 

schedule from the previous schedule are the most penalized factors. It is important to note that for CODU’s 

instances, changes from previous schedules weight had both a value of 20, after some adjustments made with 

the decision-maker. 

 Moreover, understaffed tasks are considered less desirable to happen than overstaffed tasks and these 

understaffed tasks are much more harmful for the organization if they happen in EVs rather than in CODU. 
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Having less workers in CODU may represent an increase in the time that patients wait for a vehicle. However, 

having less workers in EVs may lead to non-operating vehicles and, consequently, the patients may not receive 

any kind of assistance. Finally, as EVs teams are located in different sites, assigning workers to tasks outside of 

their teams is less wanted than for CODUs.  

Table 26: Parameters for INEM case study 

Parameter Value 

𝜽𝒅𝒂𝒚𝒔
𝒎𝒂𝒙  : Maximum number of consecutive working days 6 

𝜽𝒏𝒊𝒈𝒉𝒕𝒔
𝒎𝒂𝒙  : Maximum number of consecutive working nights 3 

𝜽𝒅−𝒐𝒇𝒇
𝒎𝒂𝒙  : Maximum number of consecutive days off 3 

𝜽𝒊
𝒎𝒊𝒏 : Minimum number of working hours for worker i 156 

𝜽𝒔−𝒐𝒇𝒇
𝒎𝒊𝒏  : Minimum number of Sundays off that worker must have during the planning horizon 1 

𝜽𝒔
𝒎𝒊𝒏−𝒔 : Minimum number of shifts that must be performed for each shift 3 

|𝑫| : Number of days during the planning horizon 31 

|𝑾| : Number of Sundays during the planning horizon 4 

η : Number of public holidays on the planning horizon 0 

𝜉 : Number of hours to discount from the contract hours 8 

Table 27: Weights for INEM case study 

Penalty Weight Value 

Understaffed tasks for EVs 𝑤𝐸𝑉_𝑊𝐹− 1000 

Overstaffed tasks for EVs 𝑤𝐸𝑉_𝑊𝐹+ 10 

Understaffed tasks for CODU 𝑤𝐶𝑂𝐷𝑈_𝑊𝐹− 100 

Overstaffed tasks for CODU 𝑤𝐶𝑂𝐷𝑈_𝑊𝐹+ 10 

Shortage of hours worked 𝑤𝑂𝑇− 1 

Excess of hours worked 𝑤𝑂𝑇+ 50 

Incomplete weekend off (Sunday) 𝑤𝑆𝑢𝑛 10 

Incomplete weekend off (Saturday) 𝑤𝑆𝑎𝑡  10 

Team swaps for Evs 𝑤𝐸𝑉_𝐺  5 

Team swaps for CODU 𝑤𝐶𝑂𝐷𝑈_𝐺  1 

Changes from previous schedule (-) 𝑤𝑅− 7000 

Changes from previous schedule (+) 𝑤𝑅+ 7000 
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5.4 Test instances 

 The model was tested on real data provided by INEM and the tests made can be divided into four 

groups. 

 The first group concerns a comparison between rescheduling starting from a cyclic schedule and from 

a non-cyclic schedule with the same disruptions scenario. The cyclic initial schedule was generated from previous 

works at INEM and the non-cyclic schedule was generated from the model presented in this thesis. As it was 

demonstrated in section 4.2.5, some constraints are related to scheduling and others that deal with 

rescheduling, thus this model is able to perform both schedule and reschedule.  

 Additionally, these tests were made considering only CODU service, where there are 115 workers that 

can perform the 10 tasks in 31 days and 3 shifts. Also, the two types of disruptions were considered, generating 

4 instances, as can be observed in table 28. 

Table 28: First group instances  

Instance TEPHs Tasks Days Variables Rate 

CODU Cyclic Schedule – Type I 115 10 31 106,950 1.6% 

CODU Cyclic Schedule – Type II 115 10 31 106,950 1.6% 

CODU Non-Cyclic Schedule – Type I 115 10 31 106,950 1.6% 

CODU Non-Cyclic Schedule – Type II 115 10 31 106,950 1.6% 

 It is important to remark that, similarly to the following instances, a month was simulated and the 

model only run in the days where there was a disruption, day r. In this case, the past schedule was blocked from 

day 1 until day (r – 3) and, from day (r – 2) until day 31, variables were free to change from the previous schedule. 

It means that TEPHs must notice the manager until two days before their absence, which seems reasonable. 

Therefore, during the month the number of variables for this instance is expressed by the following equation:  

# 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = 115 × 10 × 3 × (31 − (r − 2)) (5.2) 

 Equation (5.2) applies to the other instances only changing the number of TEPHs and the number of 

tasks. 

 The second group concerns tests for an initial cyclic schedule for the universe of EVs, composed of 194 

workers that can perform the 54 tasks in 31 days and 3 shifts and for the whole INEM, CODU and EVs services, 

of 266 workers that can perform 64 tasks in the same planning horizon. This group also includes the two types 

of disruptions generated with a 1.6% absenteeism rate. Table 29 provides a summary of the second group 

instances. 

 

 



55 

 

Table 29: Second group instances 

Instance TEPHs Tasks Days Variables Rate 

EVs Cyclic Schedule – Type I 194 54 31 974,268 1.6% 

EVs Cyclic Schedule – Type II 194 54 31 974,268 1.6% 

INEM Cyclic Schedule – Type I 266 64 31 1,538,232 1.6% 

INEM Cyclic Schedule – Type II 266 64 31 1,538,232 1.6% 

 The third group involves tests for an initial schedule for the whole INEM, CODU and EVs services, with 

three variants of the first type of generated disruptions. The first variant starts from the disruptions used in the 

second group (with an absenteeism rate of 1.6%) but the next day of the schedule for each TEPH is also a 

disruption day. This results in two consecutive absent days, which accounts for an absenteeism rate of 

approximately 3.2%. The second variant is very similar but the two next days of a disruption also have 

disruptions. Hence, three consecutive absent days are generated, which accounts for an absenteeism rate of 

approximately 4.8%. The third variant is equal to type I, disruptions are also generated randomly using Binomial 

distribution but different values of probability will be used, 5% and 10%, because these are the absenteeism 

rate reported for emergency services and health care, due to their stress working conditions and high rates of 

overtime (Wickert et al., 2019). Third group cases have been intensely studied over the years in the rescheduling 

literature, hence it is critical to assure that the model is capable of finding a solution for the most severe cases 

(Kitada & Morizawa, 2013; Maenhout & Vanhoucke, 2013, 2018b; Wickert et al., 2019; Wolbeck et al., 2020, 

2018). Table 30 presents a summary of third group instances.  

Table 30: Third group instances 

Instance TEPHs Tasks Days Variables Rate 

INEM Cyclic Schedule – Type I Variant I 266 64 31 1,538,232 3.2% 

INEM Cyclic Schedule – Type I Variant II 266 64 31 1,538,232 4.8% 

INEM Cyclic Schedule – Type I 266 64 31 1,538,232 5% 

INEM Cyclic Schedule – Type I 266 64 31 1,538,232 10% 

 The fourth group includes tests for an initial schedule for the whole INEM, CODU and EVs services, with 

an absenteeism rate of 5%, the same disruptions used for the third group, starting from a cyclic and a non-cyclic 

schedule. In this case, it is intended to study the effect on the other variables of the objective function after 

varying the weight of changing shifts from the previous schedule 𝑤𝑅− and 𝑤𝑅+. These will have a value of 1000, 

equal to the weight of understaffing, and 500, half of the weight of understaffing so that in the objective function 

two changes (remove a shift from an absent person and add one to another person) have the same value, in 

theory, of an understaffed task. It is also intended to go deeper in the study of the differences between starting 

with a cyclic and a non-cyclic schedule. 
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Table 31: Fourth group instances 

Instance TEPHs Tasks Days Variables Rate 𝒘𝑹−/𝒘𝑹+ 

INEM Cyclic Schedule – Type I 266 64 31 1,538,232 5% 1000 

INEM Cyclic Schedule – Type I 266 64 31 1,538,232 5% 500 

INEM Non-Cyclic Schedule – Type I 266 64 31 1,538,232 5% 1000 

INEM Non-Cyclic Schedule – Type I 266 64 31 1,538,232 5% 500 

5.5 Chapter Considerations 

 This chapter presents mainly the data needed to be inputted in the model in order to validate its 

accuracy in the case of INEM. First, it was explained how data was collected via three procedures, using mainly 

data from previous works at INEM and from the literature. Then, the problem context was explained to deepen 

even more the knowledge on INEM activities, its workforce and how it is divided into teams that belong to one 

of the two services. Following, the main structure for all instances was exposed, ending with the different tests 

that were done in order to assess the consistency of the model for different scenarios. 
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6. Results and Discussion 

 This chapter presents the computational results of the model application to the different test instances 

introduced in chapter 5. Section 6.1 presents the results of group 1 regarding the comparison between starting 

from a cyclic and a non-cyclic initial schedule. Section 6.2 demonstrates the results for the second group, which 

includes both EVs and INEM with two types of disruptions and an absenteeism rate of 1.6%. Section 6.3 presents 

the results that assure that the model is capable of performing for the most severe cases of the emergency 

services sector with absenteeism rates of 5% and 10% and considering 2 and 3 consecutive absent days. Section 

6.4 presents the results considering the effects of varying the weight of changing shifts from previous to the new 

schedule starting from both cyclic and non-cyclic schedules. Section 6.5 analyses the results obtained for the 

different scenarios with a 5% absenteeism rate and some recommendations are made along the way. Finally, 

section 6.6 draws the main considerations of the results provided by the model for the different tests. 

 The model is implemented in Python with the combination of the library docplex - IBM Decision 

Optimization CPLEX and solving through IBM ILOG CPLEX Optimizing Studio. All tests were executed on a PC with 

an Intel Core i7- 1165G7 processor of 2.4 GHz and 16 GB of RAM running under the Windows 10 operating 

system. 

 The results below were obtained after simulating a month with disruptions. On each day there was a 

disruption, the simulation would stop and run the model in order to solve the disruptions. Therefore, there is a 

reconstructed schedule for each day that there was a disruption. Then, the column Time (s) is the time that the 

model took to run in each iteration and Changes (+) is the number of sets (𝑖, 𝑑, 𝑠) that did not exist in a previous 

schedule but exist in the following one, i.e., the number of additional shifts that each person must perform 

compared to a previous schedule. Changes (–) is the number of sets (𝑖, 𝑑, 𝑠) that existed in a previous schedule 

but do not exist in the following, i.e., the number of shifts that each has not to perform anymore from a previous 

schedule. Finally, OFV is the Objective Function Value that allows to compare the quality between each solution. 

Most commonly the averages of these values are going to be considered in the following analysis. Furthermore, 

CPLEX was capable of finding an optimal solution for all models. 

6.1 Results – Group 1 

 This section presents the results that provide key insights on the differences between starting the 

month with a cyclic and a non-cyclic initial schedule.  

 The two following tables, 32 and 33 display the results for the first type of generated disruptions with 

1.6% of absenteeism rate, where the first of them concerns the cyclic and the second the non-cyclic initial 

schedule. For this group of instances, it is important to have in mind that it is expected to have some overstaffing, 

because the number of TEPHs that can perform CODU’s tasks is 115 and, if we consider the assumption that in 

section 5.2.3 where each TEPH performs 19 shifts per month, there is a total of 2,185 carried out shifts, which is 
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higher than the demand of 1,953 shifts. In fact, both initial schedules have overstaffing. Compared to the 

demand, in the cyclic there are more 178 shifts done than what is required and in the non-cyclic 150.  

Table 32: Results for CODU Cyclic Schedule – Type I Disruption – 1.6% 

CODU Cyclic Schedule – Type I 

Schedule Time (s) Changes (+) Changes (-) OFV 

Schedule 1 19.14 0 1 3,515 

Schedule 2 20.33 0 1 3,513 

Schedule 3 15.16 1 2 3,551 

Schedule 4 20.00 1 2 3,539 

Schedule 5 14.75 1 2 3,537 

Schedule 6 12.8 0 1 3,495 

Schedule 7 12.53 0 1 3,493 

Schedule 8 10.63 2 4 3,699 

Schedule 9 9.28 2 3 3,587 

Schedule 10 8.48 1 1 3,537 

Schedule 11 5.38 1 2 3,545 

Schedule 12 4.52 1 1 3,525 

Schedule 13 2.67 0 1 3,503 

Schedule 14 2.39 1 2 3,541 

Schedule 15 2.58 0 2 3,517 

Schedule 16 2.19 0 1 3,505 

Schedule 17 1.72 0 1 3,485 

Schedule 18 1.31 0 1 3,493 

Schedule 19 1.21 0 2 3,501 

Schedule 20 1.03 0 1 3,499 

Schedule 21 0.64 0 1 3,479 

Schedule 22 0.66 0 1 3,497 

Schedule 23 0.63 1 1 3,477 

Schedule 24 0.42 0 1 3,495 

Schedule 25 0.34 0 1 3,475 

Schedule 26 0.33 0 2 3,511 

Mean 6.58 0.46 1.50 3,519.77 

SD 6.72 0.63 0.75 44.30 

 After running the two monthly simulations, some findings may be worth considering. Firstly, it takes 

more time, on average, to solve the same disruptions for the cyclic schedule than for the non-cyclic. However, 

since for this case the running time is a matter of seconds, it is not concerning. Nevertheless, it may become a 

concern on larger services, such as to the whole INEM service. Then, to solve the same disruption scenario, it is 

needed to make less changes for cyclic schedule than for non-cyclic. These changes include both to add people 

to tasks that they were not allocated in the previous schedule – Changes (+) – and to remove people from tasks 

that they were supposed to – Changes (-) – due to disruptions or to increase solution’s quality. The number of 

Changes (+) is effectively lower when starting with the cyclic due to the fact that there is higher overtime from 
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the initial schedule, so it is not always required to add more TEPHs since the demand is being met. In a more 

restricted instance, where there can be more understaffing shifts, this phenomenon may not happen. 

 Finally, it is key to remark that the Objective Function Value – OFV – when starting from the cyclic 

schedule is higher than when starting from the non-cyclic schedule. It means that the quality of the solutions 

found is lower by an average difference of approximately 17.5%. Although the first fact that comes to mind is 

the difference in the overstaffing of the initial schedules, this aspect is dissipated throughout the month. To 

illustrate, the last created schedule that started from the cyclic has more 151 shifts done that what is required 

and in the non-cyclic 149 but the difference in the OFV remains of 532. Therefore, there must be another reason 

for this difference. Since the sum of the shortage and excess of hours worked is similar, this factor is no reason 

either. For example, for the last schedule, it is 959 when for the cyclic and 1,019 for the non-cyclic. 

Table 33: Results for CODU Non-Cyclic Schedule – Type I Disruption – 1.6% 

CODU Non-Cyclic Schedule – Type I 

Schedule Time (s) Changes (+) Changes (-) OFV 

Schedule 1 10.28 1 1 2,721 

Schedule 2 10.39 1 2 2,727 

Schedule 3 9.91 2 2 2,821 

Schedule 4 8.08 3 5 2,937 

Schedule 5 7.88 3 2 2,879 

Schedule 6 4.78 1 1 2,819 

Schedule 7 6.17 1 1 2,819 

Schedule 8 5.67 5 5 3,099 

Schedule 9 4.41 3 3 3,069 

Schedule 10 2.33 3 1 2,913 

Schedule 11 1.89 2 2 2,903 

Schedule 12 1.72 2 1 2,885 

Schedule 13 1.63 1 1 2,865 

Schedule 14 1.95 1 1 2,865 

Schedule 15 1.44 3 4 2,971 

Schedule 16 1.45 1 1 2,911 

Schedule 17 1.34 1 2 2,871 

Schedule 18 0.72 1 1 2,911 

Schedule 19 0.78 1 1 2,931 

Schedule 20 0.67 1 2 2,959 

Schedule 21 0.64 1 2 2,899 

Schedule 22 0.55 1 1 2,939 

Schedule 23 0.52 3 2 2,899 

Schedule 24 0.61 1 1 2,939 

Schedule 25 1.11 2 1 2,899 

Schedule 26 0.78 2 2 2,979 

Mean 3.37 1.81 1.85 2,901.15 

SD 3.31 1.04 1.17 81.80 
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 Additionally, the number of tasks performed out of each’s team is small, in average 4 for all schedules. 

Hence, the difference between the OFV lays in the number of incomplete weekends off. To illustrate, for the 

last schedule, there are 185 incomplete weekends off for the cyclic schedule and 116 for the non-cyclic. 

Regarding that the weight associated to this penalty is 10, the difference is equal to 690 in the OFV. 

 In the two following tables, 34 and 35 simulations of a month with disruptions of type II are displayed. 

The insights taken from these are similar to those of the previous simulations. The time required to rebuild a 

schedule is now lower for cyclic but there are less Changes (+) again for the cyclic schedule and relatively the 

same for Changes (-) for both schedules. In this case, the OFV is again lower for the non-cyclic and the difference 

of incomplete weekends off for the last schedule is 65 (196 for the cyclic and 131 for the non-cyclic), which 

accounts for a difference in the OFV of 650. Since the difference between the averages is 710.14, it is reasonable 

to assume that the main aspect that affects the differences in OFVs is the incomplete weekends off. 

Table 34: Results for CODU Cyclic Schedule – Disruptions Type II – 1.6% 

CODU Cyclic Schedule – Type II 

Schedule Time Changes (+) Changes (-) OFV 

Schedule 1 17.28 3 5 3,763 

Schedule 2 18.31 1 4 3,857 

Schedule 3 6.25 2 4 3,893 

Schedule 4 5.02 0 4 3,855 

Schedule 5 6.28 1 1 3,825 

Schedule 6 3.75 0 1 3,803 

Schedule 7 4.39 2 2 3,863 

Schedule 8 3.02 0 1 3,801 

Schedule 9 3.05 0 1 3,809 

Schedule 10 2.66 3 5 4,205 

Schedule 11 0.92 1 1 4,085 

Schedule 12 0.86 2 2 4,125 

Schedule 13 0.77 1 3 4,032 

Schedule 14 0.56 1 1 4,014 

Mean 5.22 1.21 2.50 3,923.57 

SD 5.46 1.01 1.55 135.67 

 In fact, these two scenarios of table 34 and 35 were simulated again but, in this case, the weight 

associated with incomplete weekends off was fixed at 0 and the results confirmed the hypothesis presented 

before, since the average of OFVs for the scenario starting with the cyclic schedule was 1,988.14 and for the 

scenario starting with the non-cyclic was 1,928.43, which represents a difference of 3%. Although rescheduling 

benefits from starting from the non-cyclic schedule, the difference compared to the cyclic schedule is 

significantly lower than when considering the scenarios that penalized incomplete weekends off (table 34 and 

35). Therefore, it is possible to state that starting with a cyclic schedule jeopardizes schedules’ quality, as the 

OFV is much higher than when starting with a non-cyclic schedule mainly due to the penalization of incomplete 

weekends off – IWO. 
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Table 35: Results for CODU Non-Cyclic Schedule – Disruptions Type II – 1.6% 

CODU Non-Cyclic Schedule – Type II 

Schedule Time Changes (+) Changes (-) OFV 

Schedule 1 24.25 6 6 3,051 

Schedule 2 19.61 4 4 3,171 

Schedule 3 8.86 5 4 3,213 

Schedule 4 12.30 2 4 3,169 

Schedule 5 7.89 2 2 3,169 

Schedule 6 7.77 1 1 3,129 

Schedule 7 4.98 4 2 3,213 

Schedule 8 5.02 1 1 3,143 

Schedule 9 3.89 1 1 3,163 

Schedule 10 2.25 3 2 3,345 

Schedule 11 1.47 1 2 3,245 

Schedule 12 0.94 1 1 3,197 

Schedule 13 0.59 4 2 3,379 

Schedule 14 0.56 2 1 3,401 

Mean 7.17 2.64 2.36 3,213.43 

SD 6.97 1.63 1.49 95.59 

 Regarding CODU, the 5 different teams start the month on different days of the 10-days cycle. To 

illustrate, for team 1, the beginning of the cycle matches the first day of the month, so their first ten days shifts 

are: M-M-A-A-O-N-N-O-O-O. However, for team 2, the first day of the month matches the third day of the cycle, 

so their first ten days shifts are: A-A-O-N-O-O-O-M-M. This implies that, every weekend, there are always two 

teams with incomplete weekend off. For the non-cyclic, this aspect is more flexible, being able to have fewer 

incomplete weekends off. Although it may be more practical for TEPHs, as it is easier to know their schedules, it 

impacts the quality of the recreated schedules, which may harm the service quality. 

 It is important to note that these tests, since they are for a CODU instance, function as a first idea to 

the cyclic vs non-cyclic schedule problem but it is crucial to study this problem for the whole INEM service. 

Finally, table 36 presents a summary of the averages of the results discussed in this section. 

Table 36: Summary of the solutions found for the first group tests 

Instance Rate Changes (+) Changes (-) OFV IWO 

CODU Cyclic Schedule – Type I 1.6% 0.46 1.50 3,519.77 183.92 

CODU Non-Cyclic Schedule – Type I 1.6% 1.81 1.85 2,901.15 126.42 

CODU Cyclic Schedule – Type II 1.6% 1.21 2.50 3,923.57 191.25 

CODU Non-Cyclic Schedule – Type II 1.6% 2.64 2.36 3,213.43 126.92 

CODU Cyclic Schedule – Type II 1.6% 1.21 2.50 1,988.14 0 

CODU Non-Cyclic Schedule – Type II 1.6% 2.64 2.36 1,928.43 0 
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6.2 Results – Group 2 

 Before proceeding with additional studies, it is critical to validate the suggested model to confirm its 

accuracy in describing the real system, as well as to ensure that any simplifying assumptions and accompanying 

mathematical formulations created throughout the modelling stages conform to reality (Williams, 2013). In 

order to validate the proposed model, four instances were created, two for the EVs service (tables 37 and 38) 

and two for the whole INEM service (tables 39 and 40), being both services tested for two types of generated 

disruptions. 

Table 37: Results for EVs Cyclic Schedule – Disruptions Type I – 1.6% 

EVs Cyclic Schedule – Type I 

Schedule Time (s) Changes (+) Changes (-) OFV 

Schedule 1 420.38 0 27 193,900 

Schedule 2 372.2 0 8 59,908 

Schedule 3 358.86 2 2 29,906 

Schedule 4 325.69 1 2 22,916 

Schedule 5 240.09 1 12 98,024 

Schedule 6 224.41 2 12 105,922 

Schedule 7 225.38 3 3 46,946 

Schedule 8 206.05 0 12 96,962 

Schedule 9 188.09 7 1 60,932 

Schedule 10 180.63 0 8 62,950 

Schedule 11 170.52 1 5 48,958 

Schedule 12 164.97 2 2 32,986 

Schedule 13 157.80 2 2 32,966 

Schedule 14 152.79 0 7 52,966 

Schedule 15 149.53 1 2 25,982 

Schedule 16 141.98 0 7 52,004 

Schedule 17 181.81 3 1 33,016 

Schedule 18 123.08 0 2 19,032 

Schedule 19 122.91 2 3 40,050 

Schedule 20 112.61 0 1 12,038 

Schedule 21 129.03 0 5 39,084 

Schedule 22 181.81 1 1 19,108 

Schedule 23 162.89 0 4 33,140 

Schedule 24 129.73 1 1 10,140 

Schedule 25 109.13 0 2 19,156 

Schedule 26 93.36 4 2 40,140 

Schedule 27 59.52 2 1 22,172 

Schedule 28 48.17 0 1 7,156 

Schedule 29 41.81 2 2 32,980 

Mean 178.45 1.28 4.76 46,601.38 

SD 91.00 1.55 5.44 37,322.48 
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Table 38: Results for EVs Cyclic Schedule – Disruptions Type II – 1.6% 

EVs Cyclic Schedule – Type II 

Schedule Time Changes (+) Changes (-) OFV 

Schedule 1 451.27 2 28 214,892 

Schedule 2 219.84 2 4 46,928 

Schedule 3 201.83 2 5 53,942 

Schedule 4 177.98 1 4 39,966 

Schedule 5 170.63 1 3 33,012 

Schedule 6 151.75 3 9 89,044 

Schedule 7 151.05 1 12 96,042 

Schedule 8 136.33 3 4 54,058 

Schedule 9 106.94 2 6 62,197 

Schedule 10 104.55 3 7 75,182 

Schedule 11 90.56 5 15 157,220 

Schedule 12 116.95 2 3 61,219 

Schedule 13 80.44 1 1 33,268 

Schedule 14 74.58 1 1 15,003 

Mean 159.62 2.07 7.29 73,712.36 

SD 91.61 1.10 6.91 51,618.22 

 Regarding the EVs service, the simulation of the month starts from a cyclic schedule. For the first case, 

disruptions were generated using a Binomial distribution with a probability of 1.6%, creating disruptions in 29 

days. For the second case, disruptions were generated using type II, as it was explained in section 5.3.8. For both 

cases, it was possible to find reasonable solutions in a short time, being the average of time spent 178.45 seconds 

and 159.62 seconds, respectively. Therefore, one of the objectives of the model is guaranteed, to find solutions 

quickly. This makes it possible for managers to run the model on a daily basis to solve disruption problems or 

even to adjust the current schedule over the month to better meet workers’ and organizations’ goals, present 

in the objective function. It is interesting to note that, throughout the month, the time required to find optimal 

solutions reduces due to the decrease in the number of decision variables, since the past schedule is blocked. 

 Looking at the changes made in relation to previous schedules, both models present acceptable results, 

changing in average only 0.16% and 0.26% of the previous schedule. Hence, it is reasonable to declare that the 

model provides accurate results for the EVs service. 

 Concerning the whole INEM service, the simulation also started from a cyclic schedule and the 

disruptions of the first type generated absences in all of the 31 days. For both instances, the model found again 

optimal solutions in fairly short times, with an average of 212.08 seconds for the first and 214.71 seconds for 

the second, being the maximum less than 11 minutes, which is remarkably a reasonable time to spend in one 

day to create a new schedule. 
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Table 39: Results for INEM Cyclic Schedule – Disruptions Type I – 1.6% 

INEM Cyclic Schedule – Type I 

Schedule Time (s) Changes (+) Changes (-) OFV 

Schedule 1 349.28 0 7 13,430 

Schedule 2 621.67 1 10 48,462 

Schedule 3 478.86 1 5 27,498 

Schedule 4 442.2 2 13 34,536 

Schedule 5 361.73 7 14 90,590 

Schedule 6 338.97 5 14 83,630 

Schedule 7 326.5 3 10 27,620 

Schedule 8 295.01 6 11 62,646 

Schedule 9 394.09 8 9 97,660 

Schedule 10 237.69 3 10 48,706 

Schedule 11 220.38 3 7 48,732 

Schedule 12 201.44 3 11 55,738 

Schedule 13 190.72 8 2 76,736 

Schedule 14 178.59 0 1 8,032 

Schedule 15 180.84 0 4 13,744 

Schedule 16 162.98 2 9 48,768 

Schedule 17 152.05 3 2 41,807 

Schedule 18 162.36 0 2 20,850 

Schedule 19 146.69 1 2 27,831 

Schedule 20 129.29 0 1 13,849 

Schedule 21 116.31 0 3 27,883 

Schedule 22 109.81 0 2 20,926 

Schedule 23 97.57 0 4 34,931 

Schedule 24 93.18 0 4 34,963 

Schedule 25 145.63 2 3 41,971 

Schedule 26 112.8 1 5 49,003 

Schedule 27 103.45 3 4 56,011 

Schedule 28 70.98 0 3 28,035 

Schedule 29 57.31 1 5 49,094 

Schedule 30 48.86 3 6 70,118 

Schedule 31 47.23 0 3 28,115 

Mean 212.08 2.13 6.00 42,965.00 

SD 138.65 2.39 3.93 22,762.11 

 Looking at the changes from past schedules, both models present acceptable results, changing on 

average only 0.17% and 0.21% of the previous schedule. Thus, it is plausible to declare that the model provides 

accurate results for the whole INEM service under the circumstances discussed and adjusted with the decision-

maker. 
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Table 40: Results for INEM Cyclic Schedule – Disruptions Type II – 1.6% 

INEM Cyclic Schedule – Type II 

Schedule Time (s) Changes (+) Changes (-) OFV 

Schedule 1 562.13 3 14 69,413 

Schedule 2 498.59 1 8 34,437 

Schedule 3 379.3 2 17 62,469 

Schedule 4 195.3 5 14 69,480 

Schedule 5 167.69 6 16 104,518 

Schedule 6 149.13 4 7 83,606 

Schedule 7 136.28 0 9 41,646 

Schedule 8 174.19 3 4 55,642 

Schedule 9 141.05 1 4 41,686 

Schedule 10 117.3 1 2 69,712 

Schedule 11 166.56 4 5 41,706 

Schedule 12 128.59 1 4 27,738 

Schedule 13 105.92 0 1 13,714 

Schedule 14 83.97 1 2 20,760 

Mean 214.71 2.29 7.64 52,609.07 

SD 145.56 1.83 5.31 24,575.88 

6.3 Results – Group 3 

 This section aims to demonstrate the model accuracy to deal with the strictest scenarios that can 

happen in the emergency services sector regarding disruptions. These include managing situations with sudden 

absences for consecutive days and also situations with one of the highest absenteeism rates among the different 

sectors, ranging from 5% to 10%. These have been deeply examined over the years in the rescheduling literature 

(Kitada & Morizawa, 2013; Maenhout & Vanhoucke, 2013, 2018b; Wickert et al., 2019; Wolbeck et al., 2020, 

2018). 

 Table 41 shows the results for a scenario with two consecutive absent days and an absenteeism rate of 

3,2%. It shows that the model is capable of finding optimal solutions in a short amount of time, with an average 

of 234.58 seconds per disruption day. Regarding the changes it is interesting to remark that, throughout the 

month, it is uncommon to have Changes (+) higher than Changes (-), i.e., there are more shifts being eliminated 

than those being added. This means that, sometimes, it is better for the organization to have understaffed tasks 

than to cause perturbation for their workers. However, it can be adjusted in the weight associated with 

penalizing the changes in the rebuilt schedule, as will be explained afterwards. 
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Table 41: Results for INEM Cyclic Schedule – Disruptions Type I Variant I – 3.2% 

INEM Cyclic Schedule – Type I Variant I 3.2% 

Schedule Time (s) Changes (+) Changes (-) OFV 

Schedule 1 580.75 0 1 13,430 

Schedule 2 634.53 1 5 55,437 

Schedule 3 475.16 3 6 69,570 

Schedule 4 444.27 3 5 62,539 

Schedule 5 416.06 3 7 76,712 

Schedule 6 374.14 5 9 111,758 

Schedule 7 315.91 6 6 97,731 

Schedule 8 301.98 5 4 69,779 

Schedule 9 424.53 6 6 97,828 

Schedule 10 425.73 4 7 90,890 

Schedule 11 221.86 4 6 76,904 

Schedule 12 211.44 3 8 83,978 

Schedule 13 210.14 6 9 111,994 

Schedule 14 179.78 2 2 34,984 

Schedule 15 160.31 2 3 35,024 

Schedule 16 172.88 1 6 70,058 

Schedule 17 160.53 3 7 98,042 

Schedule 18 138.14 5 4 35,054 

Schedule 19 153.34 0 4 49,104 

Schedule 20 126.84 2 2 21,120 

Schedule 21 118.64 0 5 42,150 

Schedule 22 114.5 2 6 63,192 

Schedule 23 160.95 2 6 63,224 

Schedule 24 149.56 3 9 91,272 

Schedule 25 149.27 4 7 84,296 

Schedule 26 111.08 1 6 56,336 

Schedule 27 97.27 4 9 105,368 

Schedule 28 77.73 1 6 56,408 

Schedule 29 64.33 4 8 91,440 

Schedule 30 48.2 4 11 112,496 

Schedule 31 52.06 0 8 63,560 

Mean 234.58 2.87 6.06 70,699.29 

SD 157.40 1.81 2.26 26,618.69 

 Table 42 exhibits the results for a scenario with three consecutive absent days and an absenteeism rate 

of 4.8%. This represents situations of TEPHs’ illness, which makes it important to study, especially within the 

COVID-19 pandemic context. In this case, the ratio Changes (+) per Changes (-) is higher due to the fact that the 

maximum of absent days that TEPHs can have according to the model is three. Thus, in the day right after coming 

from the three days absent period it was needed to add a shift if there was none in order not to violate that 

constraint. 
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Table 42: Results for INEM Cyclic Schedule – Disruptions Type I Variant I – 4.8% 

INEM Cyclic Schedule – Type I Variant I 4.8% 

Schedule Time (s) Changes (+) Changes (-) OFV 

Schedule 1 520.83 1 2 27,397 

Schedule 2 579.08 3 6 69,460 

Schedule 3 487.17 6 8 104,558 

Schedule 4 421.31 6 10 118,558 

Schedule 5 370.44 8 8 118,638 

Schedule 6 320.11 7 11 139,692 

Schedule 7 310.05 8 7 118,704 

Schedule 8 338.78 6 8 104,726 

Schedule 9 265.64 6 9 111,792 

Schedule 10 280.48 7 9 118,902 

Schedule 11 389.72 4 10 104,938 

Schedule 12 283.78 4 10 105,016 

Schedule 13 340.41 8 13 154,058 

Schedule 14 310.59 8 8 119,038 

Schedule 15 225.17 1 4 42,062 

Schedule 16 310.19 5 8 98,104 

Schedule 17 195.63 7 9 119,120 

Schedule 18 191.22 3 8 84,110 

Schedule 19 210.45 7 8 112,172 

Schedule 20 157.78 1 4 42,196 

Schedule 21 216.31 0 5 42,206 

Schedule 22 138.59 5 8 98,248 

Schedule 23 130.27 5 10 112,288 

Schedule 24 207.42 8 12 147,344 

Schedule 25 162.01 6 10 119,376 

Schedule 26 167.63 4 11 112,432 

Schedule 27 99.94 8 12 147,464 

Schedule 28 88.78 2 8 77,512 

Schedule 29 111.89 5 10 112,552 

Schedule 30 58.67 6 15 154,624 

Schedule 31 96.22 1 13 105,720 

Mean 257.63 5.03 8.84 104,613.13 

SD 129.86 2.44 2.76 31,978.38 

 Table 43  displays the results for an instance with an absenteeism rate of 5%. It shows that the model 

can find optimal solutions in a short amount of time, with an average of 192.91 seconds per disruption day. It is 

interesting to observe that the average of the OFV for this case is 15% lower when compared to the previous 

instance despite having a higher absenteeism rate. This occurrence is related to the higher likelihood, in the 

previous scenario, of adding a shift, as previously explained. Additionally, the previous scenarios were 17% and 
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25% more time-consuming than this one, which may reflect a higher severity and, consequently, higher difficulty 

on dealing with absences on consecutive days. 

Table 43: Results for INEM Cyclic Schedule – Disruptions Type I – 5% 

INEM Cyclic Schedule – Type I 5% 

Schedule Time (s) Changes (+) Changes (-) OFV 

Schedule 1 496.25 1 10 83,494 

Schedule 2 581.63 1 7 69,550 

Schedule 3 457.86 4 12 118,690 

Schedule 4 408.56 4 9 97,776 

Schedule 5 364.58 4 10 111,880 

Schedule 6 359.63 10 8 139,892 

Schedule 7 315.97 8 6 111,876 

Schedule 8 185.89 9 10 139,940 

Schedule 9 160.44 4 6 76,958 

Schedule 10 154.14 2 9 84,048 

Schedule 11 141.79 8 7 112,102 

Schedule 12 136.31 2 9 84,168 

Schedule 13 126.27 5 13 133,224 

Schedule 14 162.95 2 3 42,240 

Schedule 15 151.23 5 12 126,296 

Schedule 16 148.23 6 11 126,336 

Schedule 17 144.36 4 6 77,400 

Schedule 18 272.73 4 5 70,432 

Schedule 19 127.47 2 8 77,520 

Schedule 20 117.98 1 7 63,558 

Schedule 21 105.39 2 5 56,602 

Schedule 22 99.92 4 12 119,666 

Schedule 23 144.23 0 4 35,762 

Schedule 24 130.36 2 5 56,730 

Schedule 25 119.33 4 9 98,706 

Schedule 26 103.56 3 11 105,826 

Schedule 27 66.72 4 6 77,842 

Schedule 28 71.23 3 11 105,906 

Schedule 29 52.09 2 5 56,930 

Schedule 30 36.97 0 7 56,986 

Schedule 31 36.11 1 3 36,002 

Mean 192.91 3.58 7.94 88,849.61 

SD 139.56 2.49 2.77 30,067.57 

 Table 44 shows the results obtained for a 10% absenteeism rate. Once more, the time required to 

recreate each schedule is perfectly reasonable to be performed on a daily basis if needed. Effectively, in this 

case, the average OFV is two times higher than for the 5% absenteeism rate. Finally, the number of changes and 
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the OFV decreasing over the month shows that there are less absent workers at the end of the month compared 

to the beginning of the month, which in this case is a random event. 

Table 44: Results for INEM Cyclic Schedule – Disruptions Type I – 10% 

INEM Cyclic Schedule – Type I 10% 

Schedule Time (s) Changes (+) Changes (-) OFV 

Schedule 1 500.28 4 25 209,582 

Schedule 2 309.53 5 27 237,760 

Schedule 3 391.03 4 22 196,022 

Schedule 4 309.71 10 19 210,268 

Schedule 5 203.42 15 36 357,630 

Schedule 6 200.41 15 22 266,744 

Schedule 7 202.97 9 17 196,784 

Schedule 8 179.19 15 22 266,890 

Schedule 9 163.69 12 18 217,950 

Schedule 10 160.39 16 24 288,146 

Schedule 11 150.83 14 29 309,390 

Schedule 12 181.09 8 14 162,502 

Schedule 13 122.59 7 15 162,566 

Schedule 14 113.13 3 11 106,618 

Schedule 15 104.94 5 11 120,666 

Schedule 16 117.05 7 17 176,766 

Schedule 17 120.19 6 10 120,738 

Schedule 18 106.86 5 17 162,884 

Schedule 19 98.11 2 17 142,024 

Schedule 20 88.75 5 21 191,202 

Schedule 21 84.84 5 20 184,372 

Schedule 22 88.56 2 11 100,458 

Schedule 23 76.47 4 11 114,514 

Schedule 24 108.13 5 9 107,546 

Schedule 25 97.91 3 8 79,578 

Schedule 26 85.77 2 8 79,626 

Schedule 27 71.61 2 5 58,650 

Schedule 28 50.84 4 12 121,714 

Schedule 29 47.81 0 7 65,778 

Schedule 30 38.69 3 15 135,874 

Schedule 31 42.38 2 10 93,938 

Mean 148.94 6.42 16.45 169,199.35 

SD 103.00 4.52 7.11 74,057.44 

6.4 Results – Group 4 

 This section aims to determine the effects of varying the weight of making changes from previous to 

new schedules for both cyclic and non-cyclic starting schedules. It presents the results obtained for the main 



70 

 

aspects that have been studied in the past sections, time to create the new optimal schedule, the changes that 

were made from the past and the objective function value. In section 6.5 there will be a more in-depth analysis. 

 Table 45 displays results for an initial cyclic schedule for INEM with a 5% absenteeism rate and a 

penalization of changes of 1000, which is very similar (except for OFV) to those in table 43, where the 

penalization was 7000. At a first glance, it seems that, for this case, when this penalization is bigger or equal to 

the penalization associated with understaffing, the model will return the same schedule for the same scenario. 

Table 45: Results for INEM Cyclic Schedule – Disruptions Type I – 5% – Changes Weight = 1000 

INEM Cyclic Schedule – Type I 5% - 1000 

Schedule Time (s) Changes (+) Changes (-) OFV 

Schedule 1 548.73 1 10 17,494 

Schedule 2 596.97 1 7 15,550 

Schedule 3 473.63 4 12 22,690 

Schedule 4 420.31 4 9 19,776 

Schedule 5 369.69 4 10 21,880 

Schedule 6 352.53 10 8 25,892 

Schedule 7 326.27 8 6 21,876 

Schedule 8 187.59 9 10 25,940 

Schedule 9 166.41 4 6 16,958 

Schedule 10 164.73 6 9 22,066 

Schedule 11 146.14 4 7 18,120 

Schedule 12 140.31 2 9 19,204 

Schedule 13 128.88 8 13 28,278 

Schedule 14 165.02 1 3 11,284 

Schedule 15 161.84 5 12 24,340 

Schedule 16 206.47 7 11 25,380 

Schedule 17 147.13 3 6 16,434 

Schedule 18 154.28 2 5 14,468 

Schedule 19 131.09 2 8 17,556 

Schedule 20 121.89 1 7 15,594 

Schedule 21 107.67 2 5 14,638 

Schedule 22 103.61 4 12 23,702 

Schedule 23 146.33 4 9 20,742 

Schedule 24 142.14 2 5 14,766 

Schedule 25 128.48 0 4 11,798 

Schedule 26 110.83 3 11 21,862 

Schedule 27 98.73 4 6 17,878 

Schedule 28 61.83 3 11 21,942 

Schedule 29 52.53 2 5 14,966 

Schedule 30 44.59 0 7 15,022 

Schedule 31 36.89 1 3 12,038 

Mean 198.18 3.58 7.94 19,036.58 

SD 143.91 2.57 2.77 4,483.84 



71 

 

 Table 46 presents the results for the same scenario but where the weight associated with changes in 

the schedule is 500. This was made because, as it was observed in section 6.3 for table 41, the solutions found, 

normally, deal with the absences by accepting understaffing rather than replacing the missing people with other 

TEPHs that can perform the task. To no surprise, the number of Changes (+) is on average higher than in the past 

table and OFV is lower. Once more, the model is able to generate a new schedule in a short time. 

Table 46: Results for INEM Cyclic Schedule – Disruptions Type I – 5% – Changes Weight = 500 

INEM Cyclic Schedule – Type I Variant I 5% - 500 

Schedule Time (s) Changes (+) Changes (-) OFV 

Schedule 1 499.75 3 10 11,994 

Schedule 2 582.33 3 7 11,050 

Schedule 3 523.36 4 12 14,690 

Schedule 4 430.63 3 9 13,276 

Schedule 5 483.31 7 10 15,380 

Schedule 6 362.06 11 8 15,892 

Schedule 7 322.95 9 6 14,376 

Schedule 8 214.58 7 10 15,420 

Schedule 9 176.22 2 6 10,976 

Schedule 10 171.34 7 9 15,062 

Schedule 11 146.91 6 7 13,606 

Schedule 12 150.13 3 8 11,672 

Schedule 13 150.05 8 13 17,728 

Schedule 14 166.47 1 3 9,234 

Schedule 15 163.75 5 12 15,790 

Schedule 16 159.05 6 11 15,830 

Schedule 17 162.69 3 6 11,906 

Schedule 18 216.92 2 5 10,940 

Schedule 19 133.91 3 8 12,528 

Schedule 20 121.64 3 7 11,566 

Schedule 21 107.31 4 6 12,110 

Schedule 22 103.41 5 12 15,674 

Schedule 23 155.66 2 10 15,214 

Schedule 24 135.03 2 5 11,238 

Schedule 25 127.95 2 4 9,770 

Schedule 26 109.23 3 10 13,834 

Schedule 27 98.25 3 5 11,850 

Schedule 28 62.75 3 11 14,914 

Schedule 29 53.83 2 5 11,438 

Schedule 30 39.02 2 7 11,494 

Schedule 31 35.55 1 3 10,010 

Mean 205.36 4.03 7.90 13,111.68 

SD 148.25 2.43 2.75 2,165.55 
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 In table 47, it is possible to observe the results obtained from running a simulation starting with a non-

cyclic initial schedule conceived by part of the model, the same procedure explained in section 6.1 for CODU 

instances. In this case, the model runs for 7 hours and achieved a relative gap of 4.05%. Being a case where the 

demand is higher than the general supply, as it was observed in section 5.2.3, this schedule has less understaffed 

tasks and TEPHs has less undertime than the cyclic, which is caused by the higher flexibility to respond to the 

needs. 

Table 47: Results for INEM Non-Cyclic Schedule – Disruptions Type I – 5% – Changes Weight = 1000 

INEM Non-Cyclic Schedule – Type I 5% - 1000 

Schedule Time (s) Changes (+) Changes (-) OFV 

Schedule 1 339.36 0 24 28,034 

Schedule 2 263.97 1 9 18,001 

Schedule 3 267.48 2 10 20,045 

Schedule 4 264.21 1 7 16,081 

Schedule 5 248.84 1 9 17,153 

Schedule 6 258.75 3 11 22,215 

Schedule 7 242.95 2 7 18,281 

Schedule 8 216.39 9 12 29,060 

Schedule 9 266.63 5 9 24,068 

Schedule 10 258.64 4 11 23,162 

Schedule 11 250.97 4 4 16,206 

Schedule 12 155.69 1 3 12,232 

Schedule 13 138.79 2 10 20,296 

Schedule 14 145.75 1 9 17,368 

Schedule 15 122.83 4 13 25,164 

Schedule 16 115.27 1 9 18,249 

Schedule 17 119.31 1 6 14,289 

Schedule 18 116.11 3 6 17,333 

Schedule 19 100.64 1 7 16,391 

Schedule 20 106.75 3 6 17,415 

Schedule 21 97.52 3 8 19,439 

Schedule 22 89.84 0 7 15,219 

Schedule 23 81.25 2 7 17,280 

Schedule 24 121.17 1 4 12,312 

Schedule 25 103.77 1 4 12,344 

Schedule 26 89.73 1 9 18,408 

Schedule 27 78.27 2 8 19,848 

Schedule 28 55.71 2 16 21,034 

Schedule 29 48.17 1 11 20,664 

Schedule 30 42.67 1 14 22,776 

Schedule 31 44.59 1 5 13,816 

Mean 156.52 2.06 8.87 18,844.61 

SD 83.83 1.76 4.07 4,159.49 
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 It is interesting to note that the average time required to conceive each new schedule is significantly 

lower, around 21% lower than for the same situation but with a cyclic starting schedule, table 45. A possible 

explanation can be related to the fact that this initial schedule was generated by a variance of the model applied 

for rescheduling. To illustrate, the results of table 48 were obtained, on average, in 35% of the time of the same 

situation, exhibited in table 46. 

Table 48: Results for INEM Non-Cyclic Schedule – Disruptions Type I – 5% – Changes Weight = 500 

INEM Non-Cyclic Schedule – Type I Variant I 5% - 500 

Schedule Time (s) Changes (+) Changes (-) OFV 

Schedule 1 98.33 5 24 14,075 

Schedule 2 89.94 2 9 9,340 

Schedule 3 101.01 3 10 9,983 

Schedule 4 96.67 3 7 8,530 

Schedule 5 101.56 3 9 9,202 

Schedule 6 98.44 5 11 10,473 

Schedule 7 89.99 3 7 8,722 

Schedule 8 91.08 4 12 11,460 

Schedule 9 155.34 2 9 10,017 

Schedule 10 84.98 5 11 10,659 

Schedule 11 82.78 2 4 8,303 

Schedule 12 83.94 2 3 8,029 

Schedule 13 73.23 2 10 10,492 

Schedule 14 71.63 3 9 9,664 

Schedule 15 67.55 4 13 12,132 

Schedule 16 69.49 4 10 10,396 

Schedule 17 65.38 3 6 9,215 

Schedule 18 60.69 2 6 9,557 

Schedule 19 131.61 2 7 9,616 

Schedule 20 57.12 3 6 9,939 

Schedule 21 54.34 3 8 10,552 

Schedule 22 51.92 3 7 9,402 

Schedule 23 49.01 2 7 10,042 

Schedule 24 48.03 2 4 8,574 

Schedule 25 50.34 3 4 8,607 

Schedule 26 42.67 2 8 10,171 

Schedule 27 38.44 4 8 9,995 

Schedule 28 36.23 6 16 13,047 

Schedule 29 34.55 3 10 10,718 

Schedule 30 34.16 4 14 12,030 

Schedule 31 34.01 3 5 9,370 

Mean 72.40 3.13 8.84 10,074.58 

SD 28.90 1.07 4.06 1,342.37 
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 Additionally, Changes (-) is higher than in table 45, which shows that the likelihood of a person that is 

considered to be absent on a certain day was supposed to work is higher for the same disruption scenario, 

demonstrating that cyclic provides a wider response to the demand. 

 Table 48 shows the results obtained for the same scenario, starting from a non-cyclic schedule, but with 

the weight associated with changes being 500, instead of 1000. Compared to table 46, the same observations 

made to the past table maintain. However, in this case, the average OFV is relatively lower, which is caused by 

the lower understaffing. Compared to table 47, as was expected the average number of Changes (-) is higher. 

6.5 Results Analysis  

 In the following section, there will be made a more extensive analysis of the results featured in the past 

section. Given the equal or relatively close absenteeism rate, scenarios from tables 42, 43, 45, 46, 47 and 48 will 

be examined. Since the changes from previous schedules were already discussed before, in this section the 

remaining most relevant elements of the objective function are going to be taken into account, which are 

understaffing, overstaffing, incomplete weekends off and undertime. Finally, the objective function will also be 

compared between scenarios. 

6.5.1 Understaffing 

 Regarding understaffing, as was above remarked, there is a tendency of avoiding replacing an absent 

TEPH with another and instead accepting understaffing. Three insights can be retrieved from figure 12.  

 First, for the cyclic initial schedule, when the weight associated is 1000 or 7000, the level of 

understaffing is essentially the same, as it was for the changes from previous schedules, presented in section 

6.4. It shows that when the weight associated with changes is equal or higher than the one associated with 

understaffing only obligatory changes to respect the hard constraints are made.   

 

Figure 12: Tasks not performed compared to the demand for the different schedules created throughout the month 
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 Secondly, for the same scenario, the level of understaffing is always lower when the weight associated 

with changes is equal to 500 compared to 1000. Fixing the weight at 500 is a good alternative if INEM wishes to 

have more replaced shifts and more perturbation for TEPHs but also less understaffing, which can be crucial to 

a provide a proper service.  

 Finally, for the first schedule created, both scenarios that start with non-cyclic have the lowest number 

of understaffed tasks. This aspect comes from the fact that the non-cyclic initial schedule has less understaffed 

and it is more flexible, which, for a very stressed set of human resources as INEM has, can be more beneficial. 

Additionally, even for both scenarios where the weight associated with changes is equal to 500, schedules that 

start with a non-cyclic respond better on what understaffing is concerned, having less understaffed tasks than 

the scenario that starts with a cyclic schedule. 

6.5.2 Overstaffing 

 Considering overstaffing – tasks that are done in excess compared to what is established in the a priori 

demand – cyclic starting schedules, in general, achieve better results than non-cyclic starting schedules, which 

can be due to the fact that non-cyclic schedule starts with more performed tasks and there will be effectively 

more redundant tasks. However, there is still the case of the cyclic schedule with three consecutive days 

absences. Since the model requires to after being absent for three days, having one working day some allocated 

tasks may again be redundant. Table 49 displays the average overstaffed tasks per instance. 

Table 49: Average overstaffed tasks per instance 

Instance Overstaffing Average 

Cyclic - Type I Variant I 4.8% - 7000 10.09 

Cyclic - Type I 5% - 7000 7.73 

Cyclic - Type I 5% - 1000 7.09 

Cyclic - Type I 5% - 500 5.36 

Non-Cyclic - Type I 5% - 1000 9.18 

Non-Cyclic - Type I 5% - 500 9.36 

6.5.3 Incomplete weekends off 

 In respect to incomplete weekends off, scenarios that start with non-cyclic schedules seem to perform 

worse regarding scenarios starting with cyclic schedules. In contrast to what was discussed in section 6.1, this 

event occurs, since in this instance the supply is not capable of meeting the demand, thus the flexible non-cyclic 

schedule aims to respond with a higher effort from workers, which results in the increase of only one weekend 

day with a shift to perform. In figure 13, it is possible to view three groups of scenarios with similar incomplete 

weekends off for all the TEPHs throughout the month: the upper group, where there are the non-cyclic starting 
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schedules, in the middle, there are scenarios with a 5% absenteeism rate, despite the value of the weight 

associated to changes and the bottom with only the instance where there are three consecutive absent days. 

Therefore, scenarios with the same disruption context and initial schedule tend to be affected in the same way 

on what incomplete weekends off is concerned. 

 

Figure 13: Incomplete weekends off for the different schedules created throughout the month 

6.5.4 Undertime 

 Regarding the hours that TEPHs do not work compared to what is established in the celebrated 

contract, scenarios that start with cyclic schedules tend to perform worse than scenarios starting with non-cyclic 

schedules, as it is presented in figure 14. 

 

Figure 14: Hours not worked compared to the contract for the different schedules created throughout the month 
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have at least 4 hours of undertime. For the non-cyclic starting schedule, since there are less schedule constraints, 

TEPHs can carry out more than 19 shifts in 31 days, having less undertime. ´ 

 Finally, the increasing tendency for each scenario verified in figure 14 refers to the fact already 

mentioned that, for certain cases, it seems to be preferable to have one more understaffed task rather than 

replace the absent worker with another that was not performing any task in that day and shift. 

6.5.5 Objective Function Value 

 After analysing how these elements react in the different scenarios, it is thus possible to perceive the 

reasons behind each OFV. The following three figures demonstrate the evolution of the OFVs over the month. 

 Figure 15 displays two scenarios starting with a cyclic initial schedule, one with three consecutive 

absent days and one with an absenteeism rate of 5%. For this case, although the second (in yellow) has higher 

understaffing, higher incomplete weekends off and higher undertime, the first (in blue) has higher OFV 

throughout the month mainly due to great need of making changes, especially adding shifts that were not being 

done in the previous schedule. Being the weight associated with schedule changes the highest by far, the 

objective function is much more penalized. 

 

Figure 15: OFV for the different schedules created throughout the month (1) 

 In figure 16, the two scenarios presented are a simulation starting with a cyclic schedule and one with 

a non-cyclic schedule, both with the weight associated with changes equal to 1000. Additionally, figure 17 

exhibits the same scenarios but with the weight associated with changes equal to 500. In both cases, the non-

cyclic starting schedule performs better than the cyclic, overall. However, both cyclic schedules start the month 

more prepared with lower understaffing and lower undertime, which can even compensate for the fact that 
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Figure 16: OFV for the different schedules created throughout the month (2) 

 

Figure 17: OFV for the different schedules created throughout the month (3) 
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7. Conclusions and Future Work 

 EMS are complex and uncertain systems that are critical to save patients’ lives and provide high-quality 

health care. Moreover, over the past years, tendencies show that requests for EMS systems are growing. 

Although countries are increasing the total expenses in health care and also expenses relative to their GDP, 

Portugal is still behind the European average. Operating with tight budget constraints and, thus, limited 

resources create the necessity to improve efficiency so that no activities are spending unnecessary crucial 

resources. SIEM’s process is complex and, despite the great effort to modernize INEM’s activities, accurate 

performance indicators show that there is still room for improvement, especially in the rescheduling process, 

which is a reconstruction of a schedule after a disruption caused by an absent employee. It is performed 

manually by schedule managers and it is, usually, a daily and time-consuming task. 

 Some authors found that both scheduling and rescheduling constitute two of the EMS planning 

problems regarding workforce planning. Effectively, the scheduling problem in EMS has been extensively studied 

and researchers have proposed several solutions. However, the rescheduling process has not received the same 

attention. Some interesting studies approached this problem through mainly exact and heuristic algorithms. 

Albeit there are relevant contributions to other contexts, such as hospitals and bus driving, there are no 

applications to EMS systems. Hence, the main contribution of this dissertation is a model to assist the 

rescheduling process for EMS systems in a short time and causing little perturbation to the workers. This model 

should be flexible to integrate multiple goals, while providing a realistic representation of the most important 

components of the rescheduling at INEM. 

 To assess its effectiveness, the model was tested for progressively more complex INEM scenarios. 

Results show the capacity to manage well INEM’s situation, presenting the model as a good alternative to the 

current manual way of rebuilding schedules at the organization. Additionally, the two main objectives were 

achieved, as the model was able to provide optimal solutions in less than 11 minutes per day. Moreover, the 

most severe situations studied in the literature were also considered, being the model able to show its 

consistency for cases with two and three consecutive absent days and also for the highest absenteeism rates 

observed in the emergency services sector ranging from 5% to 10%. 

 Furthermore, since INEM currently operates under a cyclic initial schedule, the differences between 

starting the month with a cyclic and a non-cyclic schedule were studied. For scenarios with oversupply and 

undersupply compared to the demand, the non-cyclic initial schedule month simulation outperformed the cyclic, 

mainly due to the lack of flexibility shown by the latter. On the one side, since all workers must follow a 10-days 

cycle, it presents inefficiencies related to overstaffing and it is not capable to deal with specific days 

penalizations, such as having incomplete weekends off. There is always the same number of workers with 

incomplete weekends off, where for the non-cyclic it can adjust both incomplete weekends off and balance 

overstaffing with undertime in order to provide better quality solutions. On the other side, regarding 

undersupply scenarios, the cyclic initial schedule is not able to respond to the existing understaffing, since 
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workers must follow the 10-days cycle. However, the non-cyclic initial schedule is not so strict and is capable of 

countering, in some way, this situation balancing the reduction of understaffing with the increase of overtime, 

finding an optimal balance and creating schedules with higher quality. 

 Hence, the recommendation to INEM holds with rethinking the way its initial schedule is being 

generated. Although it is more practical for TEPHs, as it is easier for them to follow a cycle every month, knowing 

which shifts they must perform, it is not the solution that offers the highest quality and as explained in Chapter 

3, bad rescheduling techniques may ultimately jeopardize the quality of the provided health service. 

7.1 Future Work 

 Despite the advancements made in this area, there are still numerous ways to develop this subject. The 

results obtained in this dissertation aimed to create new schedules in a matter of minutes and with little 

perturbation for the workers, only considering three groups of elements in the objective function. In severe 

cases, where a quick response is required, it may be fair but performing it every day may neglect important 

aspects, such as staff preferences and hours allocated to each service. Thus, it would be interesting to solve 

rescheduling also concerning those key factors – present in chapter 5 – even if periodically during the month, to 

adjust the latter, assuring that staff satisfaction is being considered. Probably, it would take a longer time to find 

optimal solutions and, if needed, a heuristics approach should be developed in order to find good results quickly. 

 Additionally, it would be also important to consider disruptions for shifts instead of only considering 

for days, which is a more severe scenario, because when is not related to illness, workers’ absences may only 

happen for a short period of the day. 

 Regarding INEM, it is essential to study TEPHs absenteeism more in-depth in order to better understand 

the reasons behind them and, possibly, introduce factors taking that into consideration in the initial schedule to 

reduce disruptions. It would also be interesting to have the records of one month of the created schedules after 

disruptions to be able to precisely compare the solutions provided by the model and those obtained by 

performing this task manually. It would be key to have this other type of records so that future work could be 

even more relatable to INEM’s operations and to clearly conclude whether or not the solutions presented 

represent effective gains for INEM’s efficiency and ultimately for its patients. 

 Furthermore, INEM’s planners must often rely on intuition and experience to make challenging 

planning decisions and, according to the literature, schedule managers, often spend 10-20% of their days 

performing this task. Hence, it would be a great advantage if this process could be automatized. For its 

implementation, there are two tools that outstand to be critical for its acceptance. The first is a Graphical User 

Interface, which must be user-friendly and intuitive to ease managers job. The second is a communication tool 

concerned with the difficulty for the manager to communicate with TEPHs and get people to perform tasks that 

were going to be done by an absent worker. 
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Appendix 

Emergency Vehicle Image of the Vehicle 

Medical Emergency Ambulance (AEM) 
(BLS) 

 

Medical Emergency Motorcycle (MEM) 
(BLS) 

 

Inter-Hospital Pediatric Transport 
Ambulances (TIP) (BLS) 

 

Immediate Life Support Vehicle (SIV) 
(ALS) 

 

Vehicle of Medical Emergency and 
Reanimation (VMER) (ALS) 

 

Medical Emergency Helicopter Service 
(SHEM) (ALS) 

 

Mobile Unit of Phycological Emergency 
Intervention (UMIPE) (BLS) 

 

Medical Emergency Stations Ambulances 
(PEM) (BLS) 

 

Reserve Station Ambulances (RES) (BLS) 

 

Non-INEM Ambulances (NINEM) (BLS) 

 

 


