
HeapDUO: Finding Heap Vulnerabilities in Binary Code

Jorge Cardoso Martins
jorge.cardoso.martins@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

Oct 2021

Abstract

Heap memory corruption vulnerabilities are still present in today’s software. Since these vulnerabil-
ities are used to gain privileges to numerous widely used systems, it is necessary to find them as quickly
as possible. In this thesis we developed HeapDUO, a tool capable of detecting heap vulnerabilities.
The name HeapDUO derives from the vulnerabilities it detects, Double-frees, U se-after-frees and
Heap Overflows. It also relates to the fact that it is composed by two major components, a static
analyser and a symbolic engine. We extended GUEB [15], a static analysis tool capable of detecting
use-after-frees and double-frees in binary code, to also find heap overflows. We improved GUEB’s
use-after-free detection mechanism, added support for the x86-64 architecture, implemented a more
robust memory model, improved the memory usage, and added support for heap buffer overflow
detection. To enhance the detection of heap overflows in loops, we combine our static analyser and the
symbolic engine AVD [18] to help determine the number of times a loop can be executed. Additionally,
and in order to tackle the well known problem of a high number of false positives reported by static
analysis tools, we modelled the heap and implemented heap related functions in AVD to be able to
triage the vulnerabilities reported by the static analyser. We evaluated HeapDUO on two different
datasets, the Juliet and the CodeQL datasets. In each dataset we compared HeapDUO with GUEB
and AFL++ [16], where we analysed the number of vulnerabilities detected by each and also the time
it took to analyse them. We also applied HeapDUO to real-world software and detected an already
known heap out of bounds read, CVE-2021-32614, in the open-source project dmg2img.
Keywords: Static Analysis, Symbolic Execution, Heap Vulnerabilities, Automatic Detection,

1. Introduction
1.1. Motivation

Software progressively plays a major role in our
lives, from web browsers to mobile applications,
smart tvs, etc. With the increasing complexity in
today’s software it is expected that in some particu-
lar situations the behaviour of these is different from
the expected. When these behaviours decrease the
overall security of a system we call it a vulnerability.

Security vulnerabilities can have huge impacts
not only for the customers but also to the reputation
of companies. For instance Heartbleed [13] was a
vulnerability found in OpenSSL cryptography soft-
ware library that granted attackers the possibility
to steal secret keys used to identify service providers
and encrypt traffic, thus efforts to keep software se-
cure are essential. Yet manually securing software
by performing code audits is a complex task that
takes time and consequently the usage of tools to
automatically find vulnerabilities presents itself as
a more efficient and probably the only solution for
this problem.

Memory corruption bugs are one of the oldest
problems in computer security, with their impact

ranging from not exploitable to a possible full sys-
tem compromise. According to MITRE ranking [3],
memory corruption bugs are the most dangerous
software weakness in 2021. In our work we will fo-
cus on these particular class of vulnerabilities.

Usually languages like C and C++ [21] are one of
the sources of these type of vulnerabilities because
they lack memory security features which allows at-
tackers to alter the program behaviour and even
change the control flow. In these languages when
the programmer needs to allocate memory at run
time it resorts to the heap, and when the requested
memory is no longer necessary it is required to man-
ually free it. The fact that the programmer is the
one responsible for freeing the memory when he no
longer needs it is one of the main sources of heap
memory corruption bugs. There are three kinds of
heap vulnerabilities: double-free, when the mem-
ory is freed twice, use-after-free, when the memory
is used after it was freed, and heap overflows, when
there are reads and writes past the previously al-
located memory. To clearly understand how dan-
gerous these are, in Pwn2Own 2021 [4], a computer

1

hacking contest, multiple heap vulnerabilities were
used to attack different targets:

1. A heap based buffer overflow was used to get
remote code execution on Zoom video client.

2. A double-free was used to perform local privi-
lege escalation on Ubuntu Desktop.

3. A use-after-free was used to perform local priv-
ilege escalation on Windows.

1.2. Objectives

The main objective of this thesis is develop a tool
capable of detecting use-after-free, double-free and
heap overflow vulnerabilities in binaries without
any access to source code information. We will use
static analysis on an intermediate language to de-
tect heap vulnerabilities. The use of static anal-
ysis may lead to the generation of false positives,
meaning that it reports that there are vulnerabili-
ties where in fact there are not. To filter and verify
such reports we will use a symbolic execution en-
gine, to verify the presence of the vulnerabilities
claimed by the static analyser.

1.3. Contributions

In this work we developed HeapDUO, a tool that
detects Double-free, Use-after-free and Overflows
on the heap by combining two existing tools, a static
analyser, GUEB, and a symbolic engine, AVD. We
based our work on GUEB, a tool capable of de-
tecting use-after-free and double-free vulnerabilities
and made various improvements on it. These im-
provements include the support for the x86-64 ar-
chitecture; an improvement in the detection of use-
after-free vulnerabilities; a new memory model al-
lowing to reason about buffer overflows; the reduc-
tion of memory usage; and the ability to detect pos-
sible heap overflows. Regarding the symbolic en-
gine, we developed two additional functionalities.
The first one with the goal of making our analy-
sis more complete is the ability to inform the static
analyser of how many times a loop can be executed
based on the information sent by it. The second one
is the the ability to detect heap vulnerabilities by
developing heap library functions along with heap
safety policies which we used to triage the results
reported by the static analysis.

We evaluated HeapDUO performance on two dif-
ferent datasets, the Juliet and CodeQL dataset,
where we compared the number of vulnerabilities
detected by HeapDUO, GUEB and AFL++ and the
time it took to analyse them. We also tested Heap-
DUO’s capabilities of detecting previous bugs found
by GUEB and finally it detected a heap out bound
read, already known, in an open-source project.

1.4. Outline

This thesis is divided as follows: In Section 2 we
provide a background for the work developed, where
we describe symbolic execution and the heap. In
Section 4 we detail an open-source project that is
capable of finding some heap vulnerabilities and in
which our work is based on. In Section 5 we describe
our solution architecture along with our implemen-
tation choices. Section 6 presents the evaluation of
our work in two datasets, the Juliet and CodeQL
dataset, and also the detection of vulnerabilities in
open-source projects. Finally, Section 7 concludes
our thesis with future work.

2. Background
2.1. Symbolic Execution

The main idea behind symbolic execution [10] is to
use symbolic variables for inputs instead of actual
data, and to represent values of program variables
as symbolic expressions. As a result, the output
values computed by a program are expressed as a
function of the symbolic input values.

A key goal of symbolic execution in software test-
ing is to explore as many different paths as possible.
Each path is associated with a set of restrictions
on symbolic variables called path conditions. This
way it is possible not only to generate a concrete
input that reaches these paths, but also check the
presence of various kinds of errors such as asser-
tion violations, uncaught exceptions and security
vulnerabilities.

Symbolic execution maintains a symbolic state σ,
that maps variables to symbolic expressions, and a
symbolic path constraint PC which is a quantifier-
free first order formula over symbolic expressions.

1 void test(int x, int y) {
2 int sum = x + y;
3 if (sum > 32)
4 ERROR;
5 }
6

7 int main() {
8 int x = symbolic_input ();
9 int y = symbolic_input ();

10 test(x, y);
11 return 0;
12 }

Figure 1: C program example

For example, symbolic execution of the pro-
gram in Figure 1 starts with an empty the sym-
bolic state σ0, and the symbolic path constraint
PC0 with true. Every time there’s a statement
var = symbolic input() a new unconstrained sym-
bolic value is added to the symbolic state. After line
9 we have σ0 = {x 7→ x0, y 7→ y0}, PC0 = {true}.
The symbolic state has to be updated due to

the statement in line 2 resulting in σ0 = {x 7→
x0, y 7→ y0 sum 7→ x0 + y0}. In line 3 the con-
ditional expression is added to the path constraint,

2

PC0 = {true ∧ (x0 + y0 > 32)}, and a new path
constraint, PC1, is created with the symbolic ex-
pression negated, PC1 = {true ∧ ¬(x0 + y0 > 32)}
to account for the else branch of the if. If none of
the path constraints can be satisfied then symbolic
execution terminates.
When symbolic execution reaches an error it is

terminated and it can generate a concrete input
by solving the current path constraints, usually the
constraints are given to a first order solver. In this
example a possible input to reach the error state-
ment could be {x = 33, y = 0}.

2.2. Modern Symbolic Execution Techniques
Classic symbolic execution tries to explore all pos-
sible paths of a given program, but following this
approach it may be unfeasible to explore all. A
simple example is a program that has a loop where
the termination condition is symbolic, resulting in
infinitely many execution paths. Furthermore there
are paths constraints which the first order solver is
incapable of solving.
As a result, Concolic testing was introduced by

mixing concrete and symbolic execution, where
symbolic execution is performed dynamically, while
the program is executed on concrete input values.
Thus whenever the first order solver is unable to
solve a particular path constraint concrete values
are used releasing the solver from that burden.
Another modern technique used is Execution-

Generated Testing, EGT, that makes a distinction
between concrete and symbolic values by checking
before every instruction if all values are concrete.
If so the operations are executed as in the original
program, avoiding the additional overhead for the
symbolic execution.

2.3. Symbolic Execution challenges
Symbolic execution faces a few key challenges when
processing real-world code, for instance how to deal
with path explosion, the environment and con-
straint solving.
Path Explosion: The most significant challenge

regarding scalability is the exponential number of
paths in a program due to loops and conditions,
since a new instance must be created with a new
symbolic state, σ and a new path constraint, PC.
To get a general idea a program with N symbolic
branches, would generate 2N instances. As stated
in [7], [5] there are some techniques to reduce the
state space namely:

• Pruning Unrealizable Paths: At each branch
the symbolic execution invokes the first order
solver to decide whether the condition given
the current path constraint is not satisfiable, so
that a new instance doesn’t need to be forked.

• Preconditioned Symbolic Execution: The idea

is to partition the input space, for instance in-
puts that don’t satisfy some predicate will not
be explored. Known Length and Known Prefix
are two possible preconditions [5], where the
precondition Known Length is specially power-
ful on loops.

Constraint Solving : Another challenge that stops
symbolic execution from scaling is related to the
time it takes in constraint solving. Complex pro-
grams have complex input constraints, thus it takes
more time for the first order solver to provide a
solution. To reduce this time, one approach is to
apply Constraint Reduction, where constraints are
reduced into simpler forms and Reuse of Constraint
Solutions, where queries to the first order solver are
cached as well as the solution, so that it can be used
in future queries speeding up the process.

Environment : System calls and library functions,
influence a program execution, thus these interac-
tions need to be modeled. For instance, KLEE [9]
is able to model symbolic files, where these are sup-
ported through a basic symbolic file system for each
execution state. AEG [5] models symbolic files in a
similar approach to KLEE, symbolic sockets, envi-
ronment variables, library function calls and over
70 system calls. DART [17] and CUTE [19] on
the other hand, execute external calls by using con-
crete arguments, therefore some paths will not be
explored.

2.4. Heap

Figure 2: User space program memory regions

A program consists of 4 key memory regions de-
picted in Figure 2: i) Stack, grows to lower ad-
dresses, works just as a LIFO structure and is re-
sponsible for holding temporary information such
as local variables, return addresses, function argu-
ments, etc., ii) Text, includes the instructions that
are executed by the program, iii) Data, its primary
purpose is to hold global and static variables, iv)
Heap, grows to higher addresses and is responsible
for providing dynamically unused memory to the
program.

At runtime programs can request memory dy-
namically using calls such asmalloc(), calloc(), real-
loc() that return a reference to the newly allocated
ready to use memory. Since the memory of a com-
puter is limited, when no longer needed, it should

3

be released to be used in further allocations, other-
wise the program reaches a state where no memory
available is left, preventing it to continue a nor-
mal execution. Therefore, something has to be re-
sponsible for managing it. This can either be done
automatically using garbage collectors or manually,
leaving the responsibility on the developer himself,
which is the case in languages like C/C++.

3. Related Work
3.1. Symbolic execution

There are already a variety of tools capable of per-
forming concolic symbolic execution.

KLEE is a symbolic execution engine with 2 main
goals: i) hit every line of executable code, ii) at
each operation detect if any input value can cause
an error, like dereferences, assertions, buffer over-
flow, etc. When KLEE finds a possible error it is
able to solve the current path constraints and cre-
ate a test case for it, thus it is able to generate tests
that achieve high code coverage on a set of complex
programs. KLEE was also used as a bug finding
tool being able to detect 56 bugs over a total of 452
different applications.

DART was first implemented at Bell Labs for
testing C programs. It combines dynamic test gen-
erations with random testing and model checking
techniques with the goal of executing all the possi-
ble paths of a programs, while still checking for pos-
sible errors as program crashes, assertion violations
and non-termination. One of the programs tested
by DART was oSIP, an open source implementa-
tion of SIP, Session Initiation Protocol, where it
was able to crash about 65% of the oSIP functions,
most of them due to null pointer dereferences.

CREST is an open-source tool for concolic test-
ing of C programs, that can use different search
path heuristics, in order to scale for larger pro-
grams. In [8], the authors, propose new search
heuristics such as control flow directed search, uni-
form random search and random branch search.
With these 3 new different techniques CREST was
able to achieve more branch coverage when compar-
ing to a bounded DFS search.

CUTE ”is a concolic unit testing engine that ex-
tends DART to handle multi-threaded programs
that manipulate dynamic data structures using
pointer operations”, [10]. When applied to SGLIB
[22], a C data structure library, it found 2 bugs, a
segmentation fault and an infinite loop.

3.2. Symbolic Execution Applied to Security

Early work on automatic exploit generation focused
primarily on stack-based overflows.

In AEG, the authors developed a tool capable of
finding vulnerabilities on source code and generat-
ing exploits for them, showing that exploit genera-
tion for control flow hijack attacks can be modelled

as a formal verification problem. The authors in-
troduced a new technique, preconditioned symbolic
execution that narrows down the state space to be
explored and implemented 4 different preconditions:

• None: The state space is explored normally.

• Known Length: The size of the symbolic in-
put is known, thus reducing the state explosion
when executing a loop.

• Known Prefix : The prefix of the symbolic in-
put is known. This precondition helps when
targeting programs with a specific protocol or
format, for instance parsing images.

• Concolic Execution: In case there is an input
that crashes the program, it can be used to
determine if it can be exploitable.

Regarding the vulnerabilities targeted, only stack
buffer overflows and format strings are considered
allowing to perform return-to-stack and return-to-
libc attacks, thus not taking into consideration pos-
sible binary protection schemes, such as NX and
ASLR.

The basic exploitation principles introduced in
AEG, were applied to MAYHEM [11] the winner of
DARPA Cyber Grand Challenge. The vulnerabili-
ties considered by MAYHEM were the same as in
AEG.

HeapHopper [14] is a system that uses dynamic
symbolic execution to find weaknesses in heap al-
locators implementation. HeapHopper needs a set
of heap operations, malloc, free, Overflow, Double-
free, Use-after-free, to create a list of interactions,
that are used to identify security violations, which
are detected while executing symbolically each heap
allocator implementation. The security violations
considered by HeapHopper are:

• Overlapping Allocations - when malloc() re-
turns memory that is already allocated.

• Non-Heap allocation - when malloc() returns
memory that is not inside the heap boundaries

• Arbitrary write - whether is its possible to write
any content to an arbitrary location

ArchHeap [23] essentially tries to achieve the
same as HeapHopper, but it is independent of the
heap implementation. To be heap implementation
independent the authors performed an analysis of
different heap allocators and found common de-
signs, such as binning and in-place metadata. With
this common designs an heap model abstraction was
created, avoiding the need of symbolic execution.
ArchHeap showed by its results that was able to
outperform HeapHopper since it was able to find
new exploitation primitives.

4

3.3. Fuzzing
Fuzzing is a widely used technique in the secu-
rity field which has demonstrated to be an effec-
tive way of finding software vulnerabilities automat-
ically. The general idea behind it is to feed the tar-
get program with multiple randomly mutated in-
puts and monitor the target for a possible crash.
Now a days most fuzzers such as AFL++, take ad-
vantage of a feedback mechanism to decide whether
a given mutated input is interesting and should be
kept for additional mutations. An input is consid-
ered to be interesting when it reaches previously
unexplored points in the target program, which in-
creases the program coverage. AFL++ has proved
its capabilities by detecting multiple vulnerabilities
in open-source projects.

4. GUEB
In this section we describe Graphs of Use-After-
Free Extracted from Binary (GUEB) from Josselin
Feist [15], with the goal of triggering Use-After-Free
using automated program analysis techniques on bi-
nary code. Our work will be based on GUEB which
we extend to support better use-after-free detection
and heap overflow detection.

4.1. Value Set Analysis
Value Set Analysis (VSA) is a program analysis al-
gorithm that determines an over-approximation of
the set of numeric values and addresses that each
register and memory location holds at each pro-
gram point [6]. In the context of GUEB, the anal-
ysis of a program always starts at a function entry-
point, usually main, where all instructions begin
with an empty memory state. When analysing an
instruction its memory state is changed, and this
new memory state is propagated to the memory
states of all the next instructions to be analysed.
The process is repeated until all the instructions
are analysed.
In every program the existence of control flow

instructions determines which instructions will be
executed next based on a given condition, which
requires a merge operation between two memory
states, since certain instructions can be reached
from different paths. Also the same instruction can
be executed several times due to loops. In these
cases they are analysed until the memory state con-
verges.
The author defines 5 disjoint memory regions:
I) Global region: Memory locations represent-

ing the data address space of a program.
II) Heap region: Memory locations represent-

ing the heap address space of a program.
III) Register region: Memory locations repre-

senting registers.
IV, V) Initreg, Initmem: Memory locations

representing values and addresses that were not ini-

tialized.

Furthermore, associated with VSA, there is the
concept of value set, memory location, and abstract
environment:

• value set — the set of all possible addresses
and values

• memory location, memLoc — represents a
memory address that contains a value set

• abstract environment, absEnv — function
that maps any memory location to all its
possible values, the value set

A memory location is defined by the following
grammar in Figure 3:

⟨addr⟩ ::= N
⟨offset⟩ ::= Z
⟨chunk⟩ ::= string

⟨init reg name⟩ ::= string

⟨init mem name⟩ ::= string

⟨reg name⟩ ::= string

⟨heap⟩ ::= He ⟨chunk⟩
⟨memLoc⟩ ::= Globals ⟨addr⟩ | Registers ⟨reg name⟩ | ⟨heap⟩×⟨offset⟩

| Initreg ⟨init reg name⟩×⟨offset⟩
| Initmem ⟨init mem name⟩×⟨offset⟩
| ⊤

Figure 3: Memory location grammar

For instance we represent a heap memory loca-
tion with {He(”chunk1”), 0x0} where ”chunk1” is
a string and 0x0 is the offset. Note that ⊤ repre-
sents all possible memory locations. The value set
is defined by the following grammar in Figure 4.

⟨offsets⟩ ::= ⟨offset⟩ | ⟨offset⟩ + ⟨offsets⟩
⟨base⟩ ::= Constant | ⟨heap⟩

| Initreg ⟨init reg name⟩ |
| Initmem ⟨init mem name⟩ | ⊤

⟨value⟩ ::= ⟨base⟩×⟨offsets⟩
⟨values⟩ ::= ⟨value⟩ | ⟨value⟩ + ⟨values⟩
⟨valueSet⟩ ::= ⟨values⟩ | ⊤

Figure 4: Value set grammar

5

4.2. GUEB VSA algorithm
A control flow graph is composed by multiple ba-
sic blocks connected to others establishing a par-
ent/child relation, where each basic block has mul-
tiple instructions without any branches. For ev-
ery instruction in a control flow graph there is a
memory state. This state, is propagated to the fol-
lowing instructions therefore each instruction has a
Statein and a Stateout. The Statein acts like the
memory state before a instruction is analysed and
the Stateout contains the changes resulting from
analysing the given instruction. In general the
Statein of one instruction is exactly the Stateout of
the previous instruction.

5. Implementation
In this section we will start by describing the ar-
chitecture of our solution and our improvements on
GUEB. These include:

1. improved detection of use-after-free vulnerabil-
ities which allowed us to increase the recall
metric on the datasets

2. support for the x86-64 architecture that let us
analyse not only 32 bit binaries but also 64 bit
ones

3. improved memory model which is needed for
the detection of heap buffer overflows

4. reduction of memory usage

Afterwards we will focus on extending GUEB so
that it also detects heap buffer overflow vulnerabil-
ities. The purpose of this work is to develop a tool
capable of automatically detect heap vulnerabilities
in a given program.
Architecture: Our solution has 2 major compo-

nents: a static analyser and a symbolic execution
engine.
Static analyser: One of the main issues when

working with a symbolic execution engine, as men-
tioned before, is the path explosion problem. Thus,
finding heap vulnerabilities can become an unfea-
sible task when resorting only to symbolic execu-
tion. Therefore we will extend the static analyser
GUEB not only to find use-after-free and double-
free vulnerabilities but also to find heap overflows.
The static analysis is performed on the intermedi-
ate language REIL [12], that can be translated from
many different architectures such as x86, PowerPC-
32 and ARM-32. This translation is performed by
the Binnavi framework that exposes an API which
is used to get the basic blocks and their relations,
using them to build the control flow graph. The
framework extracts the assembly instructions and
the control flow graph with the help of the disas-
sembler IDA[2] and BinExport [1].

Along the analysis, HeapDUO may find that cer-
tain loops should be unrolled and sends informa-
tion to the symbolic engine the sequence of instruc-
tions that can be followed to reach the loop and
the sequence of instructions that must be followed
to stay inside it. When it is no longer possible to
continue executing the loop, the symbolic engine
sends to the static analyser how many times the
loop should be unrolled. When the static analysis
finishes, it will send to the symbolic engine informa-
tion regarding the vulnerability that was found and
possible sequences of instructions that can be fol-
lowed to reach it. To detect heap vulnerabilities it
is not necessary to have a fine grained implementa-
tion of malloc()/free(). We will reuse the naive
approach developed in GUEB, where every call to
malloc() returns a different memory location.

Symbolic execution engine: The symbolic engine
will be responsible for I) discover how many times
a loop can be unrolled and send it to the static
analyser, II) detect and inform the static analyser
if the information sent by it is indeed a real heap
vulnerability. This is similar to the approach taken
by KLEE, where at each operation that involves
heap functions or heap objects it is checked for the
existence of a vulnerability such as double-free, use-
after-free or heap overflow.

5.1. Use-After-Free Detection

To detect use-after-free vulnerabilities, we find
memory writes and memory reads where the mem-
ory location is a freed heap object.

A problem arises when the vulnerability does not
occur in the available code, but in some shared li-
brary. In these cases we want to identify if any of
the arguments passed to a function that is not avail-
able is a freed object. Since we don’t have an easy
way to recognize how many arguments an external
function has based on the REIL instructions, we
use a mapping function, funcArg, that associates
a function name with the arguments that can pos-
sibly be an heap object.

5.2. New architecture support

GUEB is only capable of analysing x86 bina-
ries which is a major limitation because x86-
64 binaries are predominant nowadays over x86
ones. With this in mind we wanted to support
the analysis for the x86-64 architecture requir-
ing an x86-64 REIL translator which was com-
pleted by the community in 2020. We extended
this work to support missing instructions such as
the movsxd instruction, which is emitted when
compiling simple statements like for (int i = 0;

i < size; i++) buffer[i] = ’A’. Furthermore,
we also fixed instructions that were incorrectly im-
plemented.

6

5.3. Memory Model

One inconsistency in GUEB’s memory model is
that memory locations are considered to be disjoint.
Thus detecting possible heap buffer overflows with
the current memory model was not possible and it
was necessary to implement a byte addressed mem-
ory model where memory locations are no longer
disjoint and where it is possible to reason about
buffer boundaries.

To implement a byte addressed memory model
we used new mapping functions for the Globals
and He memory region that receive as input an
address and return a list of bytes. Since we want
our memory locations to be contiguous, we cre-
ated the function set value (memory location,

values, size) that is responsible for storing size

bytes into the corresponding memory location.
These bytes are the result of applying the function
unpack values on values, where each offset of a
value, is split into a list of size bytes. Note that
the argument size is taken from the operand size
of the REIL instructions.

To complete our byte address model we still
need to consider memory reads. These are han-
dled by the get value (memory location, size)

function, which essentially gets the address from the
memory location and builds size lists of bytes. Us-
ing pack values we get the original value that was
stored in memory and we create a value set. The
problem arises from the fact that it is not possible
to know if the value that was originally stored is of
type Constant or of type He. To consider this we
need a new mapping function addrMap that maps
an address to a single value set. We use addrMap

to map a chunk address added with each of its off-
sets to the original value set. So when storing a He
value set in memory we need to insert it in addrMap.
On the contrary when reading from memory after
reconstructing the original number we can tell if it
is a Constant or a He by checking its absence or
presence, respectively, in addrMap.

Binary programs usually have read/write and
read only segments that contain global and static
variables, like constants, strings, etc. However,
GUEB does not load this data into its memory
model. In order to make our model more complete,
we import all bytes from these segments so that we
can later reason about code like strlen("AAA"),
where ”AAA” comes from the data segment. Also,
with this new improvement we no longer need to use
the memory location Initmem since we import and
load all the data that can possibly be addressed.

5.4. Memory Usage

To find possible use-after-frees, GUEB first analy-
ses all nodes of a function, keeping the Statein and
Stateout data in memory and then revisits every

ldm and stm instruction. Since every assembly in-
struction can be translated up to 256 REIL instruc-
tions, and every REIL instruction has a Statein and
a Stateout, the memory usage will increase much
more than it has to as the analysis proceeds. Since
our memory model is considerably more complex,
it results in more memory necessary to hold each
Statein and Stateout. We improve this by analysing
each ldm and stm instruction for heap vulnerabili-
ties as they come instead of waiting for the whole
function to be analysed. This way we can destroy
the Statein and Stateout data that is longer needed,
reducing this way the memory usage.

5.5. Heap Overflow Detection
We can think of any heap memory access as a
dereference of a heap object base pointer added
to a given offset, thus we can easily detect heap
overflows by simply checking if the following
condition is true: heap object base pointer

+ offset >= heap object base pointer +

heap object size, which can be translated to
offset >= heap object size.

At this point our memory model does not keep
track of the heap objects size, so we need change
our heap memory definition to:

⟨size⟩ ::= ⟨offsets⟩
⟨status⟩ ::= allocated | freed

⟨chunk addr⟩ ::= ⟨addr⟩
⟨heap⟩ ::= He ⟨chunk addr⟩×⟨status⟩×⟨size⟩

Figure 5: Final Heap grammar

With our memory model complete we present our
algorithm detect heap overflow (Algorithm 1).

Algorithm 1 detect heap overflow(memLoc)

overflow list ←− []
heap objects ←− filter heap loc(memoryLoc)
for all heap object ∈ heap objects do
heap object size ←− min(heap object.size)
for all offset ∈ heap object.offsets do

if offset ≥ heap object size then
overflow list.append(heap object)

end if
end for

end for
return overflow list

5.6. Loop unrolling
We have an algorithm from GUEB that can rec-
ognize loops using the control flow graph of a func-
tion and can unroll them a specific number of times.
Since we are only interested in finding heap out of

7

bounds reads and writes, our goal is only to unroll
loops containing heap accesses. To be unrolled more
than the default amount of times, a loop needs to
have an instruction where a heap object is derefer-
enced. Relying solely on the intermediate language
REIL to understand how many times a loop is going
to be executed is a difficult task, so to this end, we
rely on a symbolic execution engine. We give the
symbolic engine all the possible pairs of instructions
that the program can take to reach the entry basic
block of a loop and stay inside the loop, where a
pair of instructions can be seen as the current in-
struction address and the next instruction address.

One problem when trying to get the maximum
number of iterations of a loop with symbolic ex-
ecution is that loops can have many conditional
branches, leading to state explosion, negatively im-
pacting performance.

5.7. Validation of vulnerabilities

This section aims at describing our changes to the
symbolic engine AVD, in order to detect heap vul-
nerabilities. Our contributions are:

1. Re-implemented the heap model

2. Added heap safety policies

3. Added a heap heuristic to guide the engine ex-
ploration

Since we use path insensitive static analysis, it is
expected to have many false positives. Our goal
is to triage all results with the help of symbolic
execution. The first step is to implement a heap
model, for which we will take the same approach
as we did when modeling the heap in HeapDUO,
where all allocation functions return a fresh mem-
ory address. The second step regarding the detec-
tion of vulnerabilities is to create heap safety poli-
cies, which are functions that verify that a given
instruction does not lead to an inconsistent/vulner-
able program state. When a safety policy is vio-
lated, we halt our program execution and try to
generate an input capable of triggering a program
crash by solving the current path constraints.

6. Results

In this chapter we present our tool performance
where we focus on showing that the tool developed
is able to:

1. detect heap vulnerabilities in a given applica-
tion;

2. triage the false positives that are generated
from the static analysis;

3. work on both x86 and x86-64 architectures.

In order to assess HeapDUO we relied on two differ-
ent datasets: the Juliet dataset ”(...) created by the
National Security Agency’s (NSA) Center for As-
sured Software (CAS) and developed specifically for
assessing the capabilities of static analysis tools.”
and on the CodeQL dataset ”CodeQL is the anal-
ysis engine used by developers to automate security
checks, and by security researchers to perform vari-
ant analysis”.
The metrics considered on both datasets are:

1. the time it takes to analyse all the binaries for
each vulnerability;

2. recall — the fraction between the number of
the detected vulnerabilities and the number of
vulnerable tests;

3. precision — fraction between the number of
false positives and the number of tests that
were not vulnerable.

For each dataset we were able to generate vulner-
able and non-vulnerable binaries for the two sup-
ported architectures, so we are certain about the
precision and the recall of our tool. We also com-
pared our performance both in terms of the number
of detected vulnerabilities and the time it took to
analyse the binaries with GUEB and AFL++ [16].
Finally, we reanalysed CVE-2015-5221, CVE-2015-
8871 and CVE-2016-3177, CVE’s found by GUEB,
in order to test whether we are still capable of find-
ing these same vulnerabilities; we also present our
tool capability of finding real world vulnerabilities
by detecting CVE-2021-32614, a heap out of bounds
read, that was reported in 2021.

In the following two sections we present our met-
rics on both the Juliet and the CodeQL datasets,
where we separated them in terms of the binaries
containing vulnerabilities and safe binaries. We
evaluate the tools in terms of success in vulnerabil-
ity detection #detected and false positives (#FP)
and in terms of execution total time (TT), aver-
age time (AVG) and the average time taken by the
static analyser (SA AVG). Note that since AFL++
feeds mutated inputs to the target program indefi-
nitely even when it finds a crash, we had to change
its source in order to stop execution right after find-
ing the first program crash. Additionally we set a
timeout of 3 x 60 = 180 seconds from which we
terminate AFL++ execution and declare the vul-
nerability as not found.

6.1. Juliet dataset
Table 1 shows the number of detected vulnerabil-
ities while analysing x86-64 binaries. We can see
that HeapDUO was able to correctly identify all
the considered vulnerabilities namely use-after-free,
double-free and heap overflow. On the contrary

8

Dataset HeapDUO AFL++
CWE 416/415/122 #tests #detected recall #detected recall

Use After Free 118 118 100% 0 0%
Double Free 190 190 100% 187 98.4%
Heap Overflow 1178 1178 100% 54 4.6%

Table 1: Vulnerability detection in 64 bit dataset
with vulnerabilities

HeapDUO AFL++
CWE 416/415/122 TT (sec) AVG (sec) SA AVG (sec) TT (sec) AVG (sec)

Use After Free 3469.66 29.40 1.96 21240.00 180.00
Double Free 2218.75 11.67 0.04 571.75 3.00
Heap Overflow 34307.55 29.12 0.68 202328.72 171.75

Table 2: Time taken to analyze Juliet 64 bit dataset
with vulnerabilities

AFL++ performed poorly both in the binaries con-
taining both use-after-free and heap overflow vul-
nerabilities ending up with a recall of 0% and 4.6%

respectively. We can think of two reasons why
AFL++ performance was unsatisfactory:

1. The Juliet binaries had close to none heap
interactions after the vulnerability occurred,
which made it impossible to enter in a corrupt
state

2. Since our thesis works at machine code level,
no source code information is allowed to anal-
yse the binaries, therefore AFL++ could not
instrument the binary with ASan [20], a mem-
ory detector for C/C++ that is able to find
use-after-free, double-free and heap overflows.

In the case of double-free vulnerability, AFL++
had a recall of 98.4%, since GLIBC security checks
are able to identify these situations and abort ex-
ecution. Regarding the time performance, Ta-
ble 2, shows that HeapDUO proved to be faster in
the detection of use-after-free and heap overflows
while the detection of double-free’s was three times
slower. GUEB was not considered in these tests be-
cause it does not support the x86-64 architecture.

Dataset HeapDUO GUEB AFL++
CWE 416/415/122 #tests #detected recall #detected recall #detected recall

Use After Free 118 118 100% 76 64.4% 0 0 %
Double Free 190 190 100% 185 97.3% 186 97.9 %
Heap Overflow 1254 1254 100% - - 55 4.4 %

Table 3: Vulnerability detection in Juliet 32 bit
dataset with vulnerabilities

Dataset HeapDUO GUEB AFL++
CWE 416/415/122 TT (sec) AVG (sec) SA AVG (sec) TT (sec) AVG (sec) TT (sec) AVG (sec)

Use After Free 2289.08 19.39 1.88 3.37 0.02 21240.00 180
Double Free 1147.62 6.04 0.11 4.28 0.02 735.54 3.87
Heap Overflow 17911.73 14.28 0.80 - - 215824.83 172.10

Table 4: Time taken to analyze Juliet 32 bit dataset
with vulnerabilities

In Table 3 we have the results of analysing x86
vulnerable binaries, and here we can see that our
improved use-after-free detection increased the re-
call metric of GUEB from 64.4% to 100% mean-
ing that we were able to detect vulnerabilities

that GUEB could not. We were also able to de-
tected more double-free vulnerabilities than GUEB.
AFL++ had a similar performance comparing to
the results in Table 1 due to the reasons previously
explained.

As can be seen in Table 1 and in Table 3 there is
a difference between the number of analysed heap
overflow binaries, 1178 and 1254, respectively. This
difference comes from the fact that some vulnera-
bilities could only be triggered in x86 due to the
size of pointers in x86 being 4 bytes as opposed to
8 bytes in x86-64.
Analysing Table 4 we can see a significant differ-

ence between the time performance of GUEB and
HeapDUO. The two main reasons for the observed
decrease in HeapDUO performance are

1. the merge operation between memory states
takes additional time due to the more complex
memory model;

2. the addition of a symbolic engine that triages
the vulnerabilities found by HeapDUO.

Regarding the analysis of the dataset without
vulnerabilities, Tables 5 and 6 reveal that both
HeapDUO and GUEB reported 0 false positives.
It should be mentioned that the static analyser of
HeapDUO reported false positives due to loop un-
rolls but were discarded by the symbolic engine.

Dataset HeapDUO
CWE 416/415/122 #tests #FP discarded #FP precision

Use After Free 118 31 0 100%
Double Free 190 5 0 100%
Heap Overflow 1178 269 0 100%

Table 5: Vulnerability detection in Juliet 64 bit
dataset without vulnerabilities

Dataset HeapDUO GUEB
CWE 416/415/122 #tests #FP discarded #FP precision #FP precision

Use After Free 118 90 0 100% 0 100%
Double Free 190 5 0 100% 0 100%
Heap Overflow 1178 350 0 100% - -

Table 6: Vulnerability detection in Juliet 32 bit
dataset without vulnerabilities

6.2. CodeQL dataset

Dataset HeapDUO AFL++
CWE 122 #tests #detected recall #detected recall

Heap Overflow 19 19 100% 0 0%

Table 7: Vulnerability detection in CodeQL 64 bit
dataset with vulnerabilities

Dataset HeapDUO AFL++
CWE 122 TT (sec) AVG (sec) SA AVG (sec) TT (sec) AVG (sec)

Heap Overflow 85.87 4.51 0.04 3420.00 180.00

Table 8: Time taken to analyse CodeQL 64 bit
dataset with vulnerabilities

9

Dataset HeapDUO AFL++
CWE 122 #tests #detected recall #detected recall

Heap Overflow 19 19 100% 0 0%

Table 9: Vulnerability detection in CodeQL 32 bit
dataset with vulnerabilities

Dataset HeapDUO AFL++
CWE 122 TT (sec) AVG (sec) SA AVG (sec) TT (sec) AVG (sec)

Heap Overflow 85.56 4.50 0.08 3420.00 180.00

Table 10: Time taken to analyse CodeQL 32 bit
dataset with vulnerabilities

Dataset HeapDUO
CWE 122 #tests #FP discarded #FP precision

Heap Overflow 12 0 0 100%

Table 11: Vulnerability detection in CodeQL 64 bit
dataset without vulnerabilities

Dataset HeapDUO
CWE 122 #tests #FP discarded #FP precision

Heap Overflow 12 0 0 100%

Table 12: Vulnerability detection in CodeQL 32 bit
dataset without vulnerabilities

The CodeQL dataset contained 19 programs vul-
nerable to heap overflows and 12 programs without
any kind of vulnerabilities. Tables 7 and 9 show
that HeapDUO was able to detect all the 19 vul-
nerabilities independently of the architecture being
analysed with an average time of 4.51 seconds on
x86-64 and 4.50 seconds on x86 as can be seen in
Tables 8 and 10, respectively. Regarding the bina-
ries without vulnerabilities HeapDUO did not gen-
erate any false positives. Similar to the Juliet test
suit, AFL++ performed poorly due to the same
reasons explained before.

6.3. Real World Vulnerabilities
GUEB showed its success by finding three
vulnerabilities in open source software which
were assigned an unique CVE, CVE-2015-5221
(Jasper-JPEG-200), CVE-2015-8871 (openjpeg)
and CVE-2016-3177 (giflib). In order to assess if
HeapDUO was still able to find these same heap
vulnerabilities we tested HeapDUO on these three
projects but were only able to find two of them,
CVE-2015-5221 and CVE-2016-3177. To this end
we checked if the open sourced GUEB was able to
find CVE-2015-8871, which to our surprise it did
not. One possible explanation for this situation is
that perhaps the source code of the project, open-
jpeg, was changed in order to analyse only possible
critical functions. Therefore it is reasonable that
HeapDUO did not find the last vulnerability since
the available version of GUEB could not also.
In order to show the success of our im-

provements regarding heap overflow detection we
searched for recent heap overflow vulnerabilities re-
ported on open source projects, where we found

CVE-2021-32614 on dmg2img, a tool which allows
converting Apple compressed dmg archives to stan-
dard (hfsplus) image desk files. Our tool reports
that a heap out of bounds read happens at the in-
struction that calls memcpy(). Analysing the found
vulnerability reported by HeapDUO, we realize that
it is assumed that the buffer from which bytes are
copied from has 204 bytes, but in reality it can have
less which leads to an out of bounds read.

7. Conclusions
In this work, we developed HeapDUO, a tool capa-
ble of finding heap vulnerabilities such as double-
frees, use-after-frees, and heap overflows, by per-
forming the analysis only on binaries without any
access to source code.

Our tool has two major components, a static
analyser based on GUEB [15], and a symbolic en-
gine AVD [18]. Our static analyser performs value
set analysis on all REIL instructions of the re-
covered control flow graph given by the Binnavi
Framework. In order to detect heap vulnerabili-
ties, we used a simple heap model where each allo-
cation returns a different memory location. Later
on the analysis, these locations can be marked as
allocated or freed. Consequently, to find double-
frees we check if an already freed location is passed
to free(); to find use-after-frees we find memory
reads or memory writes where the memory location
is a freed heap object; and finally to detect heap
overflows we look for memory reads and writes on
heap objects and check if they are accessed beyond
their allocated size. Our symbolic engine is respon-
sible for finding how many times a loop can be ex-
ecuted so that the static analyser can unroll it and
continue its analysis. The symbolic engine is also
responsible for the triage of vulnerabilities found by
the static analyser.

In this thesis we made several improvements
both on GUEB and on the symbolic engine AVD.
Regarding the static analyser which is based on
GUEB, we improved the detection of use-after-
free vulnerabilities by also considering the cases
when the vulnerability occurs in an external func-
tion, added support for the x86-64 architecture, im-
proved the existing memory model to reason about
possible heap buffer overflows, improved the mem-
ory usage, and added the ability to detect heap over-
flows. To enhance the detection of heap overflows
in loops, we combined our static analyser and the
symbolic engine AVD to help determine the number
of times a loop can be executed. Additionally, we
used AVD to triage vulnerabilities reported by the
static analyser, reducing the number of false posi-
tives.

Finally, we evaluated HeapDUO by comparing
the number of detected vulnerabilities between
HeapDUO, GUEB, and AFL++ and the time taken

10

to analyse them in both the Juliet and CodeQL
datasets. In terms of effectiveness, HeapDUO man-
aged to find all vulnerabilities present in both
datasets. As for timing performance, HeapDUO re-
vealed to be slower than GUEB and AFL++. We
also assessed HeapDUO’s ability to find vulnerabili-
ties in open-source software by detecting previously
found vulnerabilities by GUEB and by detecting a
heap out of bounds read, in a open-source project,
dmg2img.

7.1. Future work
Our work is dependent on the Binnavi framework
since it is the one responsible for translating x86 and
x86-64 assembly code to REIL. Since Binnavi is no
longer actively maintained and lacks full support for
floating point operations on both the x86 and x86-
64, one possible future direction is to move from
REIL to another intermediate language. As a result
we would have to rewrite some parts of HeapDUO,
namely the intermediate language parsing.
Additionally, we improved GUEB’s use-after-free

detection by adding a mapping that associates an
external function name with its arguments that can
be an heap object. Even tough this solution in-
creased the detection of use-after-free vulnerabili-
ties on the datasets, it is not complete since it does
not take into consideration functions that can re-
ceive as an argument a structure containing a heap
object. So, to make our analysis more complete
when finding use-after-free vulnerabilities we could
take all the GLIBC function signatures to be struc-
turally aware of their arguments.
Finally, we could extend HeapDUO with sum-

maries of more external functions to complement
the 20 already implemented.

References
[1] Binexport, https://github.com/google/binexport,

accessed: 2021-11-01.

[2] Hex rays, https://hex-rays.com, accessed:
2021-11-01.

[3] Mitre, top 25 most dangerous software errors,
2021.

[4] Pwn2own results, 2021.

[5] T. Avgerinos, S. Cha, B. Hao, and D. Brum-
ley. Aeg: automatic exploit generation. in proc.
of the network and distributed system security
symposium. 2011.

[6] G. Balakrishnan and T. Reps. Wysinwyx:
What you see is not what you execute. ACM
Trans. Program. Lang. Syst., 32(6), Aug. 2010.

[7] R. Baldoni, E. Coppa, D. C. D’Elia, C. Deme-
trescu, and I. Finocchi. A survey of symbolic

execution techniques. ACM Comput. Surv.,
51(3), 2018.

[8] J. Burnim and K. Sen. Heuristics for scal-
able dynamic test generation. In 2008 23rd
IEEE/ACM International Conference on Au-
tomated Software Engineering, pages 443–446,
2008.

[9] C. Cadar, D. Dunbar, and D. Engler. Klee:
Unassisted and automatic generation of high-
coverage tests for complex systems programs.
In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implemen-
tation, OSDI’08, page 209–224, USA, 2008.
USENIX Association.

[10] C. Cadar and K. Sen. Symbolic execution for
software testing: Three decades later. Com-
mun. ACM, 56(2):82–90, Feb. 2013.

[11] S. K. Cha, T. Avgerinos, A. Rebert, and
D. Brumley. Unleashing mayhem on binary
code. In 2012 IEEE Symposium on Security
and Privacy, pages 380–394, 2012.

[12] T. Dullien and S. Porst. Reil: A platform-
independent intermediate representation of
disassembled code for static code analysis. 01
2009.

[13] Z. Durumeric, F. Li, J. Kasten, J. Amann,
J. Beekman, M. Payer, N. Weaver, D. Adrian,
V. Paxson, M. Bailey, and J. A. Halderman.
The matter of heartbleed. In Proceedings of
the 2014 Conference on Internet Measurement
Conference, IMC ’14, page 475–488, New York,
NY, USA, 2014. Association for Computing
Machinery.

[14] M. Eckert, A. Bianchi, R. Wang, Y. Shoshi-
taishvili, C. Kruegel, and G. Vigna. Heaphop-
per: Bringing bounded model checking to heap
implementation security. In Proceedings of the
27th USENIX Conference on Security Sym-
posium, SEC’18, page 99–116, USA, 2018.
USENIX Association.

[15] J. Feist. Finding the needle in the heap :
combining binary analysis techniques to trig-
ger use-after-free. Theses, Université Grenoble
Alpes, Mar. 2017.

[16] A. Fioraldi, D. Maier, H. Eißfeldt, and
M. Heuse. AFL++: Combining incremental
steps of fuzzing research. In 14th USENIX
Workshop on Offensive Technologies (WOOT
20). USENIX Association, Aug. 2020.

[17] P. Godefroid, N. Klarlund, and K. Sen. Dart:
Directed automated random testing. SIG-
PLAN Not., 40(6):213–223, June 2005.

11

[18] N. Sabino. Automatic vulnerability detection:
Using compressed execution traces to guide
symbolic execution. Thesis, IST, Nov. 2019.

[19] K. Sen, D. Marinov, and G. Agha. Cute: A
concolic unit testing engine for c. SIGSOFT
Softw. Eng. Notes, 30(5):263–272, Sept. 2005.

[20] K. Serebryany, D. Bruening, A. Potapenko,
and D. Vyukov. AddressSanitizer: A fast ad-
dress sanity checker. In USENIX ATC 2012,
2012.

[21] L. Szekeres, M. Payer, T. Wei, and D. Song.
Sok: Eternal war in memory. In 2013 IEEE
Symposium on Security and Privacy, pages 48–
62, 2013.

[22] M. Vittek, P. Borovansky, and P.-E. Moreau.
A simple generic library for c. In Proceedings
of the 9th International Conference on Reuse
of Off-the-Shelf Components, ICSR’06, page
423–426, Berlin, Heidelberg, 2006. Springer-
Verlag.

[23] I. Yun, D. Kapil, and T. Kim. Automatic tech-
niques to systematically discover new heap ex-
ploitation primitives. 03 2019.

12

