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Abstract

Heap memory corruption vulnerabilities are still present in today’s software. Since these vulnerabilities

are used to gain privileges to numerous widely used systems, it is necessary to find them as quickly

as possible. In this thesis we developed HeapDUO, a tool capable of detecting heap vulnerabilities.

The name HeapDUO derives from the vulnerabilities it detects, Double-frees, Use-after-frees and Heap

Overflows. It also relates to the fact that it is composed by two major components, a static analyser and

a symbolic engine.

We extended GUEB [1], a static analysis tool capable of detecting use-after-frees and double-frees

in binary code, to also find heap overflows. We improved GUEB’s use-after-free detection mechanism,

added support for the x86-64 architecture, implemented a more robust memory model, improved the

memory usage, and added support for heap buffer overflow detection. To enhance the detection of heap

overflows in loops, we combine our static analyser and the symbolic engine AVD [2] to help determine the

number of times a loop can be executed. Additionally, and in order to tackle the well known problem of a

high number of false positives reported by static analysis tools, we modelled the heap and implemented

heap related functions in AVD to be able to triage the vulnerabilities reported by the static analyser.

We evaluated HeapDUO on two different datasets, the Juliet and the CodeQL datasets. In each

dataset we compared HeapDUO with GUEB and AFL++ [3], where we analysed the number of vul-

nerabilities detected by each and also the time it took to analyse them. We also applied HeapDUO to

real-world software and detected an already known heap out of bounds read, CVE-2021-32614 [4], in

the open-source project dmg2img [5].
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Resumo

As vulnerabilidades de corrupção de memória da heap ainda estão presentes no software dos dias

de hoje. Como estas vulnerabilidades podem ser usadas para obter diversos privilégios, em sistemas

amplamente usados, é necessário localizá-las o mais rapidamente possı́vel. Nesta tese desenvolvemos

uma ferramenta chamada HeapDUO, capaz de detetar vulnerabilidades de heap, entre elas, double-

free, use-after-free e heap overflows. O nome HeapDUO tem como origem as vulnerabilidades que

deteta, Double-free, User-after-free e Heap Overflows. O nome da ferramenta está também relacionado

com o facto de ser composta por duas componentes, um analisador estático e um motor de execução

simbólica.

Neste trabalho estendemos a ferramenta GUEB [1], uma ferramenta de análise estática, capaz

de detetar vulnerabilidades de use-after-free e double-free em binários, para também detetar heap

overflows. Melhorámos o mecanismo de deteção de use-after-free do GUEB, adicionámos o suporte

para a arquitetura x86-64, implementámos um modelo de memória mais robusto e adicionámos suporte

para a deteção de heap overflows. Como uma possı́vel fonte de heap overflows ocorre dentro de ciclos,

usámos o motor de execução simbólica AVD [2] para determinar o número de vezes que um ciclo pode

ser executado. Com esta informação, a análise estática pode assim realizar uma análise mais completa.

Além disso, e para lidar com o elevado número de falsos positivos gerados por ferramentas de análise

estática, modelámos a heap e implementámos funções da biblioteca relacionadas com a heap no AVD

para poder fazer a triagem das vulnerabilidades reportadas pelo analisador estático. A avaliação da

nossa ferramenta foi feita recorrendo aos datasets Juliet e CodeQL. Para cada dataset comparámos a

nossa ferramenta com a ferramenta GUEB e o AFL++ [3] e para cada uma delas analisámos o número

de vulnerabilidades detetadas e também o tempo que demorou para analisá-las. Além disso usámos a

nossa ferramenta em programas open-source e fomos capazes de detetar um heap out of bounds read,

já conhecido, ao qual foi atribuı́do o CVE-2021-32614 [4] no projeto dmg2img [5].

Palavras Chave

Análise Estática; Execução Simbólica; Vulnerabilidades de heap; Deteção Automática
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1.1 Motivation

Software progressively plays a major role in our lives, from web browsers to mobile applications, smart

tvs, etc. With the increasing complexity in today’s software it is expected that in some particular situations

the behaviour of these is different from the expected. When these behaviours decrease the overall

security of a system we may have a vulnerability.

Security vulnerabilities can have huge impacts not only for the customers but also to the reputation

of companies. For instance Heartbleed [6] was a vulnerability found in OpenSSL cryptographic software

library that granted attackers the possibility to steal secret keys used to identify service providers and

encrypt traffic, thus efforts to keep software secure are essential. Yet manually securing software by

performing code audits is a complex task that takes time and consequently the usage of tools to au-

tomatically find vulnerabilities presents itself as a more efficient and probably the only solution for this

problem.

Memory corruption bugs are one of the oldest problems in computer security, with their impact rang-

ing from not exploitable to a possible full system compromise. According to MITRE ranking [7], memory

corruption bugs are the most dangerous software weakness in 2021. In our work we will focus on these

particular class of vulnerabilities.

Usually languages like C and C++ [8] are one of the sources of these type of vulnerabilities because

they lack memory security features which allows attackers to alter the program behaviour and even

change the control flow. In these languages when the programmer needs to allocate memory at run

time it resorts to the heap, and when the requested memory is no longer necessary it is required to

manually free it. The fact that the programmer is the one responsible for freeing the memory when he

no longer needs it is one of the main sources of heap memory corruption bugs. There are three kinds

of heap vulnerabilities: double-free, when the memory is freed twice, use-after-free, when the memory

is used after it was freed, and heap overflows, when there are reads and/or writes past the previously

allocated memory. To clearly understand how dangerous these are, in Pwn2Own 2021 [9], a computer

hacking contest, multiple heap vulnerabilities were used to attack different targets:

1. A heap based buffer overflow was used to get remote code execution on Zoom video client.

2. A double-free was used to perform local privilege escalation on Ubuntu Desktop.

3. A use-after-free was used to perform local privilege escalation on Windows.

1.2 Objectives

The main objective of this thesis is to develop a tool capable of detecting use-after-free, double-free and

heap overflow vulnerabilities in binaries without any access to source code information. We will use

3



static analysis on an intermediate language to detect heap vulnerabilities. The use of static analysis

may lead to the generation of false positives, meaning that it reports that there are vulnerabilities that in

fact do not exist. To filter such reports we will use a symbolic execution engine to verify the presence of

the vulnerabilities claimed by the static analyser.

1.3 Contributions

In this work we developed HeapDUO, a tool that detects Double-free, Use-after-free and Overflows on

the heap by combining two existing tools, a static analyser, GUEB [1], and a symbolic engine, AVD [2].

We based our work on GUEB, a tool capable of detecting use-after-free and double-free vulnerabilities

and made various improvements on it. These improvements include:

• the support for the x86-64 architecture;

• an improvement in the detection of use-after-free vulnerabilities;

• a more robust memory model allowing to reason about buffer overflows;

• the reduction of memory usage; and

• the ability to detect possible heap overflows.

Regarding the symbolic engine, we developed two additional functionalities. The first one with the goal

of making our analysis more complete is the ability to inform the static analyser of how many times a

loop can be executed based on the information sent by it. The second one is the the ability to detect

heap vulnerabilities by developing heap library functions along with heap safety policies which we used

to triage the results reported by the static analysis.

We evaluated HeapDUO performance on two different datasets, the Juliet and CodeQL dataset,

where we compared the number of vulnerabilities detected by HeapDUO, GUEB and AFL++ and the

time it took to analyse them. We also successfully tested HeapDUO’s capabilities of detecting previous

bugs found by GUEB in real world applications, and were able to detect a recently found heap out of

bounds read in an open-source project (CVE-2021-32614 [4]).

1.4 Outline

This thesis is organized as follows: in Chapter 2 we provide a background for the work developed, where

we describe symbolic execution and the heap, more specifically the heap internals and the heap memory

layout. In this chapter we also present some known heap security vulnerabilities. In Chapter 3 we

present GUEB, an open-source static analysis tool that is capable of finding some heap vulnerabilities

4



and in which our work is based on. In Chapter 4 we describe the architecture of our solution and

discuss our implementation choices. Chapter 5 presents the evaluation of our work by performing an

effectiveness and performance comparison with GUEB and AFL++ using the Juliet and the CodeQL

dataset, and also the detection of vulnerabilities in open-source projects. Finally, Chapter 6 concludes

our thesis and proposes some directions for future work.
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2.1 Symbolic Execution

The main idea behind symbolic execution [10] is to use symbolic variables for inputs instead of actual

data, and to represent values of program variables as symbolic expressions. As a result, the output

values computed by a program are expressed as a function of the symbolic input values.

A key goal of symbolic execution in software testing is to explore as many different paths as possible.

Each path is associated with a set of restrictions on symbolic variables called path conditions. This way

it is possible not only to generate a concrete input that reaches these paths, but also check the presence

of various kinds of errors such as assertion violations, uncaught exceptions and security vulnerabilities.

Symbolic execution maintains a symbolic state σ, that maps variables to symbolic expressions, and

a symbolic path constraint PC which is a quantifier-free first order formula over symbolic expressions.

1 void test(int x, int y) {
2 int sum = x + y;
3 if (sum > 32)
4 ERROR;
5 }
6

7 int main() {
8 int x = symbolic_input ();
9 int y = symbolic_input ();

10 test(x, y);
11 return 0;
12 }

Figure 2.1: C program example

For example, symbolic execution of the program in Figure 2.1 starts with an empty the symbolic

state σ0, and the symbolic path constraint PC0 with true. Every time there’s a statement var =

symbolic input() a new unconstrained symbolic value is added to the symbolic state. After line 9 we

have σ0 = {x 7→ x0, y 7→ y0}, PC0 = {true}.

The symbolic state has to be updated due to the statement in line 2 resulting in σ0 = {x 7→ x0, y 7→

y0 sum 7→ x0 + y0}. In line 3 the conditional expression is added to the path constraint, PC0 = {true ∧

(x0 + y0 > 32)}, and a new path constraint, PC1, is created with the symbolic expression negated,

PC1 = {true ∧ ¬(x0 + y0 > 32)} to account for the else branch of the if. If none of the path constraints

can be satisfied then symbolic execution terminates.

When symbolic execution reaches an error it is terminated and it can generate a concrete input

by solving the current path constraints, usually the constraints are given to a first order solver. In this

example a possible input to reach the error statement could be {x = 33, y = 0}.

9



2.1.1 Modern Symbolic Execution Techniques

Classic symbolic execution tries to explore all possible paths of a given program, but following this

approach it may be unfeasible to explore all. A simple example is a program that has a loop where the

termination condition is symbolic, resulting in infinitely many execution paths. Furthermore there are

paths constraints which the first order solver is incapable of solving.

As a result, Concolic testing was introduced by mixing concrete and symbolic execution, where

symbolic execution is performed dynamically, while the program is executed on concrete input values.

Thus whenever the first order solver is unable to solve a particular path constraint concrete values are

used releasing the solver from that burden.

Another modern technique used is Execution-Generated Testing, EGT, that makes a distinction be-

tween concrete and symbolic values by checking before every instruction if all values are concrete. If so

the operations are executed as in the original program, avoiding the additional overhead for the symbolic

execution.

2.1.2 Symbolic Execution challenges

Symbolic execution faces a few key challenges when processing real-world code, for instance how to

deal with path explosion, the environment and constraint solving.

Path Explosion: The most significant challenge regarding scalability is the exponential number of

paths in a program due to loops and conditions, since a new instance must be created with a new

symbolic state, σ and a new path constraint, PC. To get a general idea a program with N symbolic

branches, would generate 2N instances. As stated in [11], [12] there are some techniques to reduce the

state space namely:

• Pruning Unrealizable Paths: At each branch the symbolic execution invokes the first order solver

to decide whether the condition given the current path constraint is not satisfiable, so that a new

instance doesn’t need to be forked.

• Preconditioned Symbolic Execution: The idea is to partition the input space, for instance inputs

that don’t satisfy some predicate will not be explored. Known Length and Known Prefix are two

possible preconditions [12], where the precondition Known Length is specially powerful on loops.

Constraint Solving: Another challenge that stops symbolic execution from scaling is related to the

time it takes in constraint solving. Complex programs have complex input constraints, thus it takes more

time for the first order solver to provide a solution. To reduce this time, one approach is to apply Con-

straint Reduction, where constraints are reduced into simpler forms and Reuse of Constraint Solutions,
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where queries to the first order solver are cached as well as the solution, so that it can be used in future

queries speeding up the process.

Environment : System calls and library functions, influence a program execution, thus these inter-

actions need to be modeled. For instance, KLEE [13] is able to model symbolic files, where these are

supported through a basic symbolic file system for each execution state. AEG [12] models symbolic

files in a similar approach to KLEE [13], symbolic sockets, environment variables, library function calls

and over 70 system calls. DART [14] and CUTE [15] on the other hand, execute external calls by using

concrete arguments, therefore some paths will not be explored.

2.2 Heap

A program consists of 4 key memory regions depicted in Figure 2.2: i) Stack, grows to lower addresses,

works just as a LIFO structure and is responsible for holding temporary information such as local vari-

ables, return addresses, function arguments, etc., ii) Text, includes the instructions that are executed by

the program, iii) Data, its primary purpose is to hold global and static variables, iv) Heap, grows to higher

addresses and is responsible for providing dynamically unused memory to the program.

Figure 2.2: User space program memory regions

At runtime programs can request memory dynamically using calls such as malloc(), calloc(), realloc()

that return a reference to the newly allocated ready to use memory. Since the memory of a computer

is limited, when no longer needed, it should be released to be used in further allocations, otherwise the

program reaches a state where no memory available is left, preventing it to continue a normal execution.

Therefore, something has to be responsible for managing it. This can either be done automatically using

garbage collectors or manually, leaving the responsibility on the developer himself, which is the case

in languages like C/C++. In Figure 2.3 there is a simple example of a user space program requesting

memory dynamically (line 6) and when no longer needed it is freed (line 13).

A variety of heap allocators have been developed to meet specific needs:

• phkmalloc used by OpenBSD

• tcmalloc developed by Google
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1 int main() {
2 int size = 10;
3 char *petname = NULL;
4

5 // dynamically request memory
6 petname = (char*) malloc(sizeof(char) * size);
7

8 read(stdin , petname , size);
9 petname[size - 1] = '\0';

10 printf("pet name is %s", petname);
11

12 // free memory when no longer used
13 free(petname);
14 return 0;
15 }

Figure 2.3: C program dynamically requesting memory

• jemalloc used by FreeBSD and Facebook

• Low Fragmentation Heap used in Microsoft Windows

• Hoard designed to work on several operating systems

• ptmalloc2 used by GNU LIBC

Heap allocators usually have two main goals: good performance and minimum fragmentation. These

are two conflicting goals, since to achieve high performance, operations should be kept to minimum, but

to avoid fragmentation it is required additional operations.

2.2.1 Heap Memory Layout

In this section, we will study ptmalloc2 (pthreads malloc) [16–18], which is used by GNU LIBC [16],

GLIBC, and is based on dlmalloc [19], due to its importance in linux user space programs.

A heap segment is a contiguous region of memory that is subdivided into chunks. A chunk is a small

region of memory that can be allocated (owned by the program), freed (owned by GLIBC) or combined

with adjacent freed chunks into larger ones.

The ptmalloc2 implementation uses in-place metadata, as can be seen in Figure 2.4.

A chunk can be either in two possible states, allocated or freed. Let’s start by analysing each state

individually for an easier comprehension. Regarding the allocated chunk, Figure 2.4a, the beginning of

the chunk contains the header, pointed by the chunk arrow. The first field of the header has two mean-

ings based on the previous contiguous chunk state. When the previous contiguous chunk is allocated,

then the first field will have data of the previous contiguous chunk, otherwise, the chunk is free thus it

will have the size of the previous contiguous chunk.
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(a) Allocated chunk (b) Freed chunk

Figure 2.4: GLIBC chunks

The second and last field of the header, the chunk size, contains the size of the chunk in bytes

and the last 3 bits give some information about the chunk itself, and if the previous chunk contiguous in

memory is allocated or not.

• prev inuse (P) - This bit is set when the previous contiguous chunk is allocated.

• is mmaped (M) - This bit is set when this chunk was mmaped.

• non main arena (N) - This bit is set when this chunk belongs to a thread arena.

When a program requests memory via malloc() or calloc() or realloc(), the reference that is given to

the program is the mem arrow. This is actually the start of the space reserved for the program to write

and read data, which is still part of the chunk. The size of user data is always larger or equal to the

requested.

As previously mentioned, the first field of a chunk header depends on the previous contiguous chunk

state. Since the chunk is allocated, the first field of the next contiguous chunk will contain user data,

which can be seen by the next chunk arrow.

Before analysing the freed chunk, notice that in some cases, depending on the chunks’ size, there

cannot be two adjacent freed chunks in memory. In those cases, they are merged resulting in a larger

chunk. For simplicity, we will assume that all adjacent freed chunks are merged into a single one.

Regarding the freed chunk in Figure 2.4b, since two adjacent contiguous chunks cannot be freed,

then the first field of a freed chunk header will always contain user data of the previous contiguous

chunk, that is allocated. The second field chunk size was already explained but now we know that the

value of P is 1, since it is known that the previous contiguous chunk is allocated.

The ptmalloc2 keeps track of freed chunks by keeping them in single linked lists or in double linked

lists, according to their size. When a chunk is in a single linked list it uses the first field to point to the
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next chunk on it and when in a double linked list it uses both fields, one that points to the next chunk and

the other to point to the previous. The first field is known as the forward pointer (fd) and the second as

the backward pointer (bk).

These single linked lists and double linked lists are called bins. Each chunk is inserted in a specific

bin according to its size. In ptmalloc2, there are 4 types of bins: i) Fast bin, ii) Unsorted bin, iii) Small

bin, iv) Large bin.

Fast Bin: Although GLIBC supports a maximum of 10 fast bins, the default is to use only 7, where

each bin is a single linked list of freed chunks. The insertion and deletion happens at the head of the

list, working like a lifo structure. In each bin, the inserted chunks have all the same size and each fast

bin chunks size differs 8/16 bytes in 32/64 bit architectures. For instance the first bin holds chunks of

size 16/32, the second holds chunks of size 24/48, and so on, where the last one holds chunks of size

64/128. Note that fast chunks, chunks that belong to fast bins, are not combined with adjacent chunks,

meaning that they are not merged with adjacent freed chunks. Even though there is a special condition

that may force these into merging.

Unsorted bin: When chunks other than fast chunks, are freed they are initially stored into a single

bin that uses a double linked list. The purpose of the unsorted bin is to speed up malloc() and free(),

since on deletion it is not necessary to find the appropriate bin, and on allocation if there is a chunk in

the unsorted bin it can simply be returned to the program, therefore the time to look for the respective

bin is eliminated.

Small bin: Chunks with size less than 512/1024 bytes are called small chunks. There are a total of

62 small bins where each bin is simply a double linked list, where insertion happens at the head of the

list and deletion at the end, working like a fifo structure. Similiar to fast bins, chunks are inserted in a

specific small bin according to its size. For instance, the first bin holds chunks of size 16/32, the second

holds chunks of size 24/48, and so on, where the last one holds chunks of size 504/1008, so they are

8/16 bytes apart. Note that, it is not possible to have two adjacent small chunks in memory, when this

happens they are both merged and added to the unsorted bin.

Large bin: There are a total of 63 large bins. Chunks whose size is larger than small chunks are

inserted in these bins. Each bin is a double linked list where chunks are stored in decreasing order.

Thus insertion and deletion does not happen necessarily at the beginning or end of the list.

Note that all these bins are in the data segment of the GLIBC.

Besides the normal chunks, there are 2 special chunks with a unique purpose, the top chunk and

the last remainder chunk.

The top chunk can be considered as a large freed chunk, that does not belong to any bin, and is

only used as a last resource, when all available bins are empty. For instance the first program allocation

is always served by the top chunk. If the size of the top chunk is larger than the requested then it will be
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split in two chunks. The newly allocated chunk, that belongs to the program, and the remainder chunk

that becomes the new top chunk.

The last remainder chunk is the leftover of a small request split. When a program requests memory

and its size is qualified as a small chunk, but it cannot be served by the small bin nor the unsorted bin,

the large bin is used. If there is an available large chunk it is split in two, the chunk that belongs to the

program and the remainder chunk that gets added to the unsorted bin. This remainder chunk becomes

the last remainder chunk. Therefore on upcoming small chunk requests, if the last remainder chunk is

the only chunk in the unsorted bin it will be split in two once again, helping achieving locality of reference

due to the memory allocations being next to each other.

2.2.2 Thread Local Cache

Thread Local Cache, tcache, is a new caching mechanism introduced in GLIBC 2.26, 2017. The main

objective is to improve the heap management performance by allowing threads to allocate memory at the

same time, thus not needing to acquire locks since each thread now has its own free list data structures.

Notice that when a thread free list structure is empty, it still resorts to the structures introduce before,

such as fast bin, unsorted bin, small bin and large bin. Tcache introduces two new structures, Figure 2.5.

1 #define TCACHE_MAX_BINS 64
2

3 typedef struct tcache_entry
4 {
5 struct tcache_entry *next;
6 } tcache_entry;
7

8 typedef struct tcache_perthread_struct
9 {

10 char counts[TCACHE_MAX_BINS ];
11 tcache_entry *entries[TCACHE_MAX_BINS ];
12 } tcache_perthread_struct;

Figure 2.5: tcache structures

Tcache is essentially an array of single linked lists denoted by entries, where each tcache entry

contains linked chunks of a certain size. Also each entry has a maximum of 7 linked chunks, which is

kept by the array counts, that keeps track of how many chunks are linked.

Insertion and deletion happens at the head of the list just like in fast bins, but on the contrary the next

pointer, points to the user data of the chunk and not to the beginning.

In Figure 2.6, there is a simple visual representation of the tcache. The first tcache bin, at index 0,

has a single chunk, the second bin has no elements and the third bin, at index 2, has 2 chunks.
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Figure 2.6: tcache visual representation

2.2.3 Heap vulnerabilities

In this section we will present the heap vulnerabilities that will be considered in this work.

1 int main {
2 char *buf = (char*) malloc (0x10);
3 // ...
4 if (condition)
5 free(buf);
6 // return 0;
7

8 struct function_pointers* fp = (char*) malloc (0x10);
9 // function_pointers initialization

10

11 // Use -after -free , if condition = true
12 read(0, buf , 0x10);
13 fp->foo();
14 return 0;
15 }

Figure 2.7: Use-after-free

Use-after-free, known as UAF, presented in Figure 2.7 is a heap vulnerability that occurs when a

program uses memory that had been previously freed. In this example, the program requests memory

from the heap and performs some computations with it. If condition is evaluated to true, then the chunk

allocated in line 2, will be placed in the tcache bin that holds chunks of size 0x10. In line 7 the program

requests a memory region of the same size, 0x10, which malloc() will end up returning to the program the

same memory that was freed in line 5. Notice that this memory is now initialized with function pointers.

The vulnerability occurs at line 12, where data is being read to the memory pointed by buf. Since buf is

a reference to the memory which is now initialized with function pointers, then the user is able to control
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the entire function pointers structure, thus being able to control fp→foo and redirect code execution at

line 13.

This is a very simple example, just to get an insight of the consequences of such a vulnerability. In

reality, even without the function pointers structure it is still possible to corrupt the program data, make a

program crash acting like a denial of service attack, possibly construct arbitrary read/write primitives or

even get arbitrary code execution.

Double-free is a special case of Use-after-free, which occurs when a pointer is freed more than one

time. This vulnerability may lead to undefined behaviour but it can also be exploited to construct arbitrary

memory read/write primitives and possibly leading to arbitrary code execution.

1 int main {
2 char *buf = (char*) malloc (0x10);
3 free(buf);
4 free(buf); // double -free
5 return 0;
6 }

Figure 2.8: Double-free

1 #define SIZE 32
2 int main() {
3 char* src = NULL;
4

5 // initialize src pointer ...
6

7 char* buffer = (char*) malloc(sizeof(char) * SIZE);
8

9 // heap overflow: off by one
10 for (int i = 0; i <= SIZE; i++)
11 buffer[i] = src[i];
12

13 return 0;
14 }

Figure 2.9: Heap overflow

Heap Overflow is similar to a buffer overflow. It happens when the size of the data written is larger

than the size of the chunk. If the data is user controlled then the user can change adjacent chunk

metadata, such as the chunk size, the prev inuse bit and the actual data stored by it. In case the

adjacent chunk is freed, the user can change the pointers from the linked list to its own advantage.
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2.3 Related Work

2.3.1 Symbolic execution

There are already a variety of tools capable of performing concolic symbolic execution.

KLEE [13] is a symbolic execution engine with 2 main goals: i) hit every line of executable code,

ii) at each operation detect if any input value can cause an error, like dereferences, assertions, buffer

overflow, etc. When KLEE finds a possible error it is able to solve the current path constraints and create

a test case for it, thus it is able to generate tests that achieve high code coverage on a set of complex

programs. KLEE was also used as a bug finding tool being able to detect 56 bugs over a total of 452

different applications.

DART [14] was first implemented at Bell Labs for testing C programs. It combines dynamic test gen-

erations with random testing and model checking techniques with the goal of executing all the possible

paths of a programs, while still checking for possible errors as program crashes, assertion violations and

non-termination. One of the programs tested by DART was oSIP [20], an open source implementation

of SIP, Session Initiation Protocol, where it was able to crash about 65% of the oSIP functions, most of

them due to null pointer dereferences.

CREST is an open-source tool for concolic testing of C programs, that can use different search path

heuristics, in order to scale for larger programs. In [21], the authors, propose new search heuristics such

as control flow directed search, uniform random search and random branch search. With these 3 new

different techniques CREST was able to achieve more branch coverage when comparing to a bounded

DFS search.

CUTE [15] ”is a concolic unit testing engine that extends DART to handle multi-threaded programs

that manipulate dynamic data structures using pointer operations”, [10]. When applied to SGLIB [22], a

C data structure library, it found 2 bugs, a segmentation fault and an infinite loop.

2.3.2 Symbolic Execution Applied to Security

Early work on automatic exploit generation focused primarily on stack-based overflows.

In AEG [12], the authors developed a tool capable of finding vulnerabilities on source code and gen-

erating exploits for them, showing that exploit generation for control flow hijack attacks can be modelled

as a formal verification problem. The authors introduced a new technique, preconditioned symbolic

execution that narrows down the state space to be explored and implemented 4 different preconditions:

• None: The state space is explored normally.

• Known Length: The size of the symbolic input is known, thus reducing the state explosion when

executing a loop.
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• Known Prefix : The prefix of the symbolic input is known. This precondition helps when targeting

programs with a specific protocol or format, for instance parsing images.

• Concolic Execution: In case there is an input that crashes the program, it can be used to determine

if it can be exploitable.

Regarding the vulnerabilities targeted, only stack buffer overflows and format strings are considered

allowing to perform return-to-stack and return-to-libc attacks, thus not taking into consideration possible

binary protection schemes, such as NX and ASLR.

The basic exploitation principles introduced in AEG [12], were applied to MAYHEM [23] the winner of

DARPA Cyber Grand Challenge [24]. The vulnerabilities considered by MAYHEM were the same as in

AEG.

HeapHopper [25] is a system that uses dynamic symbolic execution to find weaknesses in heap

allocators implementation. HeapHopper needs a set of heap operations, malloc, free, Overflow, Double-

free, Use-after-free, to create a list of interactions, that are used to identify security violations, which

are detected while executing symbolically each heap allocator implementation. The security violations

considered by HeapHopper are:

• Overlapping Allocations - when malloc() returns memory that is already allocated.

• Non-Heap allocation - when malloc() returns memory that is not inside the heap boundaries

• Arbitrary write - whether is its possible to write any content to an arbitrary location

ArchHeap [26] essentially tries to achieve the same as HeapHopper, but it is independent of the heap

implementation. To be heap implementation independent the authors performed an analysis of different

heap allocators and found common designs, such as binning and in-place metadata. With this common

designs an heap model abstraction was created, avoiding the need of symbolic execution. ArchHeap

showed by its results that was able to outperform HeapHopper since it was able to find new exploitation

primitives.

2.3.3 Fuzzing

Fuzzing is a widely used technique in the security field which has demonstrated to be an effective way

of finding software vulnerabilities automatically. The general idea behind it is to feed the target program

with multiple randomly mutated inputs and monitor the target for a possible crash. Now a days most

fuzzers such as AFL++ [3], an improved version of AFL [27], take advantage of a feedback mechanism to

decide whether a given mutated input is interesting and should be kept for additional mutations. An input

is considered to be interesting when it reaches previously unexplored points in the target program, which
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increases the program coverage. AFL++ has proved its capabilities by detecting multiple vulnerabilities

in open-source projects.
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In this section we describe Graphs of Use-After-Free Extracted from Binary (GUEB) from Josselin

Feist [1], with the goal of triggering Use-After-Free using automated program analysis techniques on

binary code. Our work will be based on GUEB which we extend to support better use-after-free detection

and heap overflow detection.

3.1 Value Set Analysis

Value Set Analysis (VSA) is a program analysis algorithm that determines an over-approximation of the

set of numeric values and addresses that each register and memory location holds at each program

point [28].

In the context of GUEB, the analysis of a program always starts at a function entry-point, usually

main, where all instructions begin with an empty memory state. When analysing an instruction its

memory state is changed, and this new memory state is propagated to the memory states of all the next

instructions to be analysed. The process is repeated until all the instructions are analysed.

In every program the existence of control flow instructions determines which instructions will be

executed next based on a given condition, which requires a merge operation between two memory

states, since certain instructions can be reached from different paths. Also the same instruction can be

executed several times due to loops. In these cases they are analysed until the memory state converges.

In Figure 3.1, we have the pseudo-code of a program to demonstrate how the merge operation is

used when certain instructions can be reached from several paths. In this case the instruction at line 4,

can be reached directly from the instruction at line 1 or at line 3. Recalling the memory state, we can

say with certainty that at, a = 0, the memory state contains the variable a equal to zero and at a = 1 the

variable is updated to one. Now regarding line 4, it is only possible to infer the content of the variable

a based on the value of the condition. Since the author considered the analysis to be path insensitive,

meaning all paths are evaluated regardless of the path conditions, the memory state at line 4 has both

values, a = {0, 1}.

1 a = 0
2 if (condition)
3 a = 1
4 ...

Figure 3.1: Value Set Analysis

The process of how memory states are propagated is discussed in greater detail in Section 3.4.
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3.2 Static analysis at machine code level

In [1], the author highlights several key concepts required for GUEB to statically analyse a binary.

I) Control Flow Graph recovery - The first step when analysing a binary program, is to disassemble

the binary code and to build a control flow graph, which stores information about all possible execution

paths that the program can take. GUEB relies on a disassembler called IDA [29], that given a binary

program it generates the assembly code and the control flow graph for every function. In Figure 3.3,

we can see the resulting control flow graph of the program in Figure 3.2, which also gives information

regarding the relation between different basic blocks (sequence of instructions with no branches), which

GUEB heavily relies on to detect double-free and use-after-free vulnerabilities. In this case there are 4

basic blocks, since only the last instruction of a basic block can cause code to be executed in a different

one.

1 int main() {
2 int a;
3 char condition;
4

5 a = 0;
6 condition = (char) getchar ();
7

8 if (condition)
9 a = 1;

10

11 return 0;
12 }

Figure 3.2: Source code Figure 3.3: Control Flow Graph

II) Loop detection and unrolling - As stated before, loop instructions can be executed several times.

To perform VSA on these instruction we can execute them until fixed-point is reached, however in [1] the

author decided that loops could be unrolled a fixed number of times. As the author states ”Although not

correct, this technique showed good results in practice” [1]. To unroll a loop, the loop structure needs

to be recognized using it’s control flow graph, by identifying the existing strongly connected components

(SCC), and then simply unrolling these SCC.

The algorithm to find and unroll loop structures an arbitrary number of times is presented in [1], so

the important thing to keep in mind is that we have access to an algorithm that is capable of unrolling

loops, which will be later explored in Section 4.3.2.

III) Function inlining - In real world scenarios the location in the code of the events that trigger a

vulnerability, such as calling malloc(), free() and triggering the vulnerability itself are not often located

in a single function, on the contrary, these events usually happen several functions apart. So in order

to have good results, interprocedural analysis was implemented where the values of global variables or
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1 void B() {
2 puts("hello");
3 }
4 void A() {
5 B();
6 }
7 int main() {
8 A();
9 return 0;

10 }

(a) Source Code (b) Inlined CFG’s

Figure 3.4: Function inlining

variables passed to a function are considered when analysing it, enabling a more precise analysis, as

opposed to intraprocedural analysis, where the scope of each variable in a function is limited to only that

function. The technique of function inlining was used to perform interprocedural analysis.

For instance in Figure 3.4a, main calls function A which then calls function B. When analysing main,

and when the instruction that calls function A is reached, the memory state of the callee instruction

is passed as an initial memory state for entry A first instruction. When function B is called the same

procedure happens, eventually reaching the return B node, that has a new memory state that contains

function B changes. When returning from function B, the final memory state of B is propagated back

to the instruction that follows the one that called B, and the same process happens when reaching the

return A node. Notice that function B calls puts, which does not have an implementation available in the

program since it is a GLIBC function. In these cases, where there are calls to external functions that

do not affect our analysis, their effects are simply ignored by not considering the function call. We only

take into consideration calls to external functions that are required for our analysis such as malloc()

and free().

3.3 Memory Model

VSA is a program analysis algorithm that determines an over-approximation of the set of numeric values

and addresses that each register and memory location holds at each program point [28].
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As stated before, in a program memory space Figure 2.2, there are 3 main sources of data, the stack,

the heap and the data region. Intuitively, VSA would split the memory space of a program into the same

memory regions, yet the author defines 5 disjoint memory regions:

I) Global region: Memory locations representing the data address space of a program.

II) Heap region: Memory locations representing the heap address space of a program.

III) Register region: Memory locations representing registers.

IV, V) Initreg, Initmem: Memory locations representing values and addresses that were not initialized.

Furthermore, associated with VSA, there is the concept of value set, memory location, and abstract

environment:

• value set — the set of all possible addresses and values

• memory location, memLoc — represents a memory address that contains a value set

• abstract environment, absEnv — function that maps any memory location to all its possible

values, the value set

A memory location is defined by the following grammar in Figure 3.5:

〈addr〉 ::= N
〈offset〉 ::= Z
〈chunk〉 ::= string

〈init reg name〉 ::= string
〈init mem name〉 ::= string

〈reg name〉 ::= string
〈heap〉 ::= He 〈chunk〉

〈memLoc〉 ::= Globals 〈addr〉 | Registers 〈reg name〉 | 〈heap〉×〈offset〉
| Initreg 〈init reg name〉×〈offset〉 | Initmem 〈init mem name〉×〈offset〉
| >

Figure 3.5: Memory location grammar

For instance we represent a heap memory location with {He(”chunk1”), 0x0} where ”chunk1” is a

string and 0x0 is the offset. Note that > represents all possible memory locations.
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The value set is defined by the following grammar in Figure 3.6:

〈offsets〉 ::= 〈offset〉 | 〈offset〉 + 〈offsets〉
〈base〉 ::= Constant | 〈heap〉 | Initreg 〈init reg name〉 | Initmem 〈init mem name〉
〈value〉 ::= 〈base〉×〈offsets〉
〈values〉 ::= 〈value〉 | 〈value〉 + 〈values〉

〈valueSet〉 ::= 〈values〉 | >

Figure 3.6: Value set grammar

In the value set definition, the symbol + represents concatenation, for instance, offsets is defined as

a single number or as multiple numbers, offsets = [−1] or offsets = [−1, 4, 5].

Often in pointer based languages we can dereference a pointer and treat its value as another memory

location, just like in Figure 3.7 at line 17. With this case in mind this memory model needs to support

these cases, meaning converting a value set into a memory location.

The author defines 2 functions for dereferencing pointers:

1. value to loc set that takes as input a value = base × offsets and outputs a set of memory

locations.

2. value set to loc set that takes as input a valueSet = values | > and outputs a set of memory

locations

value to loc set(base, X) =


{Globals(x) | x ∈ X}, if base = Constant
{Initreg(n, x) | x ∈ X}, if base = Initreg(n)
{Initmem(n, x) | x ∈ X}, if base = Initmem(n)
{He(n, x) | x ∈ X}, if base = He(n)

value set to loc set(V ) =


⋃
v=V

value to loc set(v), if V 6= >

{>}, otherwise

Now that we have defined the memory model, we can finally understand how this model works, by

analysing a single instruction. The main goal of this example is to explain the use of Initreg and memory

dereferences. In most functions the two first instructions are push rbp and mov rbp, rsp followed by

sub rsp, offset in case it is necessary to reserve space for local variables.

The same happens for the first instructions of the program Figure 3.7, which are push rbp; mov

rbp, rsp; sub rsp, 0x10, where it is subtracted the value 0x10 = 8 * 2 from the stack pointer to

allocate space on the stack for the two pointers char* name and struct person* person. From the

first two instructions we can see that it is assumed that rbp and rsp already have concrete values, thus
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the need for Initreg. At the beginning of the analysis of a program it is required to initialize the values of

both rsp and rbp, so even before analysing the first instruction of main we already initialized our memory

state with:

Registers(rsp)→ {Initreg(rsp), {0x0}} ; Registers(rbp)→ {Initreg(rbp), {0x0}}

Now, we are ready to start analysing the first instruction push rbp, which decrements the current

value of rsp and writes into the memory it points to the current value of rbp. Note that this can be

seen as a memory dereference since we treat the contents of rsp as a memory location. So we first

decrement the value set of Register(rsp) by 8 and we get:

Registers(rsp)→ {Initreg(rsp), {-0x8}}

Then we convert the value set of Register(rsp) to a memory location using the function previously de-

fined value set to loc set, with Initreg(rsp), {- 0x8} as input, returning the memory location Initreg(rsp,

-0x8). The last step is to write at the new memory location the contents of the Register(rbp):

Initreg(rsp, -0x8)→ {Initreg(rbp), {0x0}}

Taking everything into account we get the following memory state from just executing the first instruc-

tion in the program:

Registers(rsp)→ {Initreg(rsp), {-0x8}} ; Registers(rbp)→ {Initreg(rbp), {0x0}}

Initreg(rsp, -0x8)→ {Initreg(rbp), {0x0}}

Fast forwarding into analysing the instruction at line 16 of Figure 3.7, that generates the assembly

instructions mov rax, [rbp - 0x8]; mov rdx, [rbp - 0x10]; mov [rax], rdx and considering the

following variable mapping:

• name = Initreg(rbp, -0x10)→ {He(”chunk1”), {0x0}}

• person = Initreg(rbp, -0x8)→ {He(”chunk2”), {0x0}}

After the first two instructions, we get as a result:

Register(rax)→ {He(”chunk2”), {0x0}} Register(rdx)→ {He(”chunk1”), {0x0}}

The last instruction is the one that initializes the struct person with a pointer to its name, this is

done by converting the value set of rax into a memory location, again using value set to loc set, and

writing to it the value set of rdx. After this instruction this is the first time that the memory location He

has a value set:

He(”chunk2”, 0x0)→ {He(”chunk1”, {0x0})}

In the // initialize name at line 14 of Figure 3.7, if we had the following instruction name[5] =

’A’; we would get additionally:

He(”chunk1”, 0x5)→ {Constant, {0x41}}
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1 struct person {
2 char* name;
3 // ...
4 };
5

6 int main() {
7

8 char* name = NULL;
9 struct person* person = NULL;

10

11 name = (char*) malloc(sizeof(char) * 32);
12 person = (struct person *) malloc(sizeof(struct person));
13

14 // initialize name ...
15

16 person ->name = name;
17 puts(person ->name);
18

19 return 0;
20 }

Figure 3.7: Pointer dereference

3.4 GUEB VSA algorithm

As stated before, a control flow graph is composed by multiple basic blocks connected to others estab-

lishing a parent/child relation, where each basic block has multiple instructions without any branches.

For every instruction in a control flow graph there is a memory state. This state, is propagated to the

following instructions therefore each instruction has a Statein and a Stateout. The Statein acts like the

memory state before a instruction is analysed and the Stateout contains the changes resulting from

analysing the given instruction. In general the Statein of one instruction is exactly the Stateout of the

previous instruction – for instance in Figure 3.3 the Statein(cmp [rbp + condition], 0) is the same as

the Stateout(mov [rbp + condition], al). The Statein can also be a composition of multiple Stateout

– for instance the instruction mov eax, 0 also in Figure 3.3 has to take into account both Stateout(mov

[rbp + a], 1) and Stateout(jz short loc 1159), since the analysis is path insensitive.

Algorithm 3.1: analyse func(F, Statein)
entry bb←− get entry bb(F )
analyse func bbs(entry bb)
return merge states({Stateout(n) | n ∈ return insts(F )}

In a high level way the analysis starts by initializing the frame registers, (rsp, rbp), and calling

analyse func Algorithm 3.1 on the entry function of the program, with the initialized state as an argu-

ment. Since it is possible that a given basic block can have multiple parents and we only want to analyze

it once, we make use of the function already analysed that tells if a given basic block was already
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analysed by checking if the last instruction’s Stateout is not empty. Also this basic block can only be

analysed when all the parent basic blocks have already been analysed, which is checked by the function

all parents analysed. Regarding the analysis of the instructions, we say an instruction can be one

of two types: a call instruction in which case we call handle call Algorithm 3.4 or it can be a regular

instruction that is analysed by function transfer. Note that ignore call, resets the stack pointer, the

rsp register, to its previous value, since a call instruction pushes the next instruction address to be

executed after the function to the stack.

The analysis is performed on top of an intermediate language, Reverse Engineering Intermediate

Language, REIL [30], that can translate instructions from different architectures such as x86, PowerPC-

32 and ARM-32. It has a simple instruction set with only 17 different instructions and it has infinite

temporary registers, t0, t1, etc.

The syntax of REIL instructions is of the following form:

opcode (RA, RA size), (RB, RB size), (RC, RC size)

The source are registers A and B and the destination is register C. The size operand can be rep-

resented by b1/b2/b4/b8/b16 which denotes the size of the operand in bytes, For example we can

have:

• add (t1, b4), (4, b4), (rax, b8) - adds 4 to the contents of the temporary register t1 and

stores the result in rax.

• stm (t1, b4), , (t2, b4) - stores the contents of the temporary register t1 in the memory

location given by t2

Note that GUEB ignores the operand size however in our solution we use it as described in Sec-

tion 4.2.3.

The transfer function indicates the effects of analysing each REIL instruction on the memory

state and it is the only function that is dependent on the intermediate language. The only instruction that

needs special attention is the store to memory, stm. Considering the example, stm (t1, b4), , (t2,

b4), the first step is to convert the value set of t2 into a memory location, using the already described

function value set to loc set. At this point we need to consider four different possibilities regarding

the resulting memory location:

1. There is only one valid memory location

2. There are multiple possible memory locations

3. The memory location is > (top)
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4. The number of memory locations exceeds a value predetermined

The first case is called a strong memory update, since there is only one possible memory location,

so the contents of the register t1 are stored in it. In the second case we have more than one possible

memory location, which is called a weak memory update. Figure 3.8 illustrates an example where

such a situation can happen. In line 17 current buffer can hold two different values, buffers[0] or

buffers[1], thus we call this memory store a weak memory update.

1 char* buffers [2];
2

3 int main() {
4

5 // init buffers array
6 buffers [0] = (char*) malloc(sizeof(char) * 10);
7 buffers [1] = (char*) malloc(sizeof(char) * 10);
8

9

10 char* current_buffer = buffers [0];
11

12 char option = getc(stdin);
13 if (option == 'N') {
14 puts("buffer1 selected");
15 current_buffer = buffers [1];
16 }
17 current_buffer [0] = 'A';
18

19 return 0;
20 }

Figure 3.8: Weak memory update

In such situations, for each possible memory location we just append the contents of t1 to the

contents that are already present in the value set of the given memory location. Finally both in the third

and last case the update is ignored.

Algorithm 3.2: analyse func bbs(bb)
if (not already analysed(bb)) and all parents analysed(bb.parents) then
Statein ←− get parents state(bb.parents)
for all inst ∈ bb do
Statein ←− analyse instruction(inst, Statein)

end for
bb.analysed←− true
for all son bb ∈ bb.sons do
analyse func bbs(son bb)

end for
else
continue

end if
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Algorithm 3.3: analyse instruction(inst, parent states in)
Statein(inst)←− merge abs(parent states in, empty state)
if is call(inst) then
Stateout(inst)←− handle call(inst)

else
Stateout(inst)←− transfer function(inst)

end if
return Stateout(inst)

Algorithm 3.4: handle call(inst)
F ←− get function called(inst)
if Code of F unavailable then
Stateout(inst)←− ignore call(Statein(inst))

else
Stateout(inst)←− analyse func(F, Statein(inst))

end if

3.5 Modelling the Heap State

To find vulnerabilities on the heap, the author proposes a new heap representation that includes a status

representing whether a chunk is allocated or freed. So the previous heap model defined in Figure 3.5 is

updated to the one presented in Figure 3.9:

〈status〉 ::= allocated | freed
〈heap〉 ::= He 〈chunk〉×〈status〉

Figure 3.9: Heap status grammar

With the new addition when there is a call to an allocation function it creates a similar value set,

{He(chunk, allocated), {0x0}}, where chunk is a unique string identifier. On the other hand, when

free() is called, is is necessary to find all the memory locations of the current memory state that

contain the given chunk in its value set and change the chunk status property to freed. With the new

heap model it is simple to detect double-free and use-after-free vulnerabilities. To detect a double-free

it is required to check if the value set passed to free is a heap object with the status property set to

freed. Regarding the use-after-free there are two causes that can trigger it, reading from a freed heap

object or writing into a freed heap object. Therefore to detect use-after-free vulnerabilities it is needed

to check before executing the REIL instructions, ldm (load from memory) if the source is a heap object

and its status property value is freed, and stm (store to memory), if the the destination is a heap object

and it is marked as freed.
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In this chapter we will start by describing the architecture of our solution and our improvements on

GUEB. These include:

1. improved detection of use-after-free vulnerabilities which allowed us to increase the recall metric

on the datasets

2. support for the x86-64 architecture that let us analyse not only 32 bit binaries but also 64 bit ones

3. improved memory model which is needed for the detection of heap buffer overflows

4. reduction of memory usage

Afterwards we will focus on extending GUEB so that it also detects heap buffer overflow vulnerabilities.

4.1 Solution architecture

Figure 4.1: Solution architecture

The purpose of this work is to develop a tool capable of automatically detect heap vulnerabilities in a

given program.

Architecture: Our solution has 2 major components as seen in Figure 4.1: a static analyser and a

symbolic execution engine.

Static analyser: One of the main issues when working with a symbolic execution engine, as men-

tioned before, is the path explosion problem. Thus, finding heap vulnerabilities can become an unfeasible

task when resorting only to symbolic execution. Therefore we will extend the static analyser GUEB [1]
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not only to find use-after-free and double-free vulnerabilities but also to find heap overflows. The static

analysis is performed on the intermediate language REIL [30], that can be translated from many differ-

ent architectures such as x86, PowerPC-32 and ARM-32. This translation is performed by the Binnavi

framework [31] that exposes an API [32] which is used to get the basic blocks and their relations, using

them to build the control flow graph. The framework extracts the assembly instructions and the control

flow graph with the help of the disassembler IDA [29] and BinExport [33]. Along the analysis, HeapDUO

Figure 4.2: Static analysis architecture

may find that certain loops should be unrolled and sends information to the symbolic engine the se-

quence of instructions that can be followed to reach the loop and the sequence of instructions that must

be followed to stay inside it. When it is no longer possible to continue executing the loop, the symbolic

engine sends to the static analyser how many times the loop should be unrolled. When the static anal-

ysis finishes, it will send to the symbolic engine information regarding the vulnerability that was found

and possible sequences of instructions that can be followed to reach it. To detect heap vulnerabilities

it is not necessary to have a fine grained implementation of malloc()/free(). We will reuse the naive

approach developed in GUEB [1], where every call to malloc() returns a different memory location.

Symbolic execution engine: The symbolic engine will be responsible for I) discover how many times

a loop can be unrolled and send it to the static analyser, II) detect and inform the static analyser if

the information sent by it is indeed a real heap vulnerability. This is similar to the approach taken by

KLEE [13], where at each operation that involves heap functions or heap objects it is checked for the

existence of a vulnerability such as double-free, use-after-free or heap overflow.
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4.2 GUEB Improvements

In this section we present all the improvements made on GUEB.

4.2.1 Use-After-Free Detection

To detect use-after-free vulnerabilities, as stated in Section 3.5, we find memory writes and memory

reads where the memory location is a freed heap object. In Figure 4.3 there is simple example that

demonstrates both of these behaviours, a memory store in line 7 and a memory read in line 8, both from

heap objects that are marked as freed, which GUEB is able to correctly identify as a vulnerability.

A problem arises when the vulnerability does not occur in the available code, but in some shared

library. Recall the Algorithm 3.4 handle call, that ignores a function call if the code is not available,

therefore GUEB is not able to identify the call to memcpy on line 10 as a vulnerability resulting in a false

negative. Note that we are not trying to find vulnerabilities in the code base of shared libraries. In these

cases we want to identify if any of the arguments passed to a function that is not available is a freed

object. Since we don’t have an easy way to recognize how many arguments an external function has

based on the REIL instructions, we need to have a mapping that associates a function name with the

arguments that can possibly be an heap object, we call this mapping funcArg.

1 int main() {
2

3 char c;
4 char* buffer = (char*) malloc(sizeof(char) * 2);
5 free(buffer);
6

7 buffer [0] = 'A'; // UAF - detected
8 c = buffer [0] + 1; // UAF - detected
9

10 memcpy(buffer , "A", 1); // UAF - not detected
11

12 return 0;
13 }

Figure 4.3: Use-after-free

For instance funcArg("memcpy") = {0, 1}, meaning that both the first and second argument can be

heap objects and are a potential source of vulnerabilities, like the one at line 10.With this new mapping

we are able to detect use-after-free vulnerabilities in functions that are not available for analysis. In our

solution we implemented a total of 20 function mappings for the most commonly used GLIBC [16] func-

tions such as memset, strcpy/strncpy, strcat/strncat. The addition of a new mapping is a simple

process, the only requirements being the function name and the arguments that should be analysed.

The results of this improvement can be seen in the evaluation section (Section 5).
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We can imagine a situation where a function with the following signature is called, function(char**),

where the argument can be a heap object that is allocated and contains an array of heap objects that

are freed. This approach has the limitation of only checking the argument itself and never its contents,

the array of freed heap objects. To consider such cases we would need to be structurally aware of

the arguments, which would not be difficult to implement but in our work we haven’t encountered such

functions from GLIBC.

4.2.2 New architecture support

GUEB is only capable of analysing x86 binaries which is a major limitation because x86-64 binaries are

predominant nowadays over x86 ones.

With this in mind we wanted to support the analysis for the x86-64 architecture requiring an x86-64

REIL translator which was completed by the community in 2020 [34]. We extended this work to support

missing instructions such as the movsxd instruction, which is emitted when compiling simple statements

like for (int i = 0; i < size; i++) buffer[i] = ’A’. Furthermore, we also fixed instructions that

were incorrectly implemented.

GUEB was built for the x86 architecture, and so we had to adapt it to support x86-64. For instance

to get the argument of malloc, we need to get the value from the stack if we are working on x86 but

from the register rdi if we are working on x86-64. Very similarly the return value of a function is set

either on the eax or the rax register according to the architecture. We developed two simple functions,

get first arg and set return value that have different behaviours depending on the architecture,

creating an abstraction not only for these two, but also for all the others that could be supported.

4.2.3 Memory Model

One inconsistency in GUEB’s memory model is that memory locations are considered to be disjoint. In

Figure 4.4, we have an example that explains what we mean by memory locations being disjoint. In

Figure 4.4b we have two stacks; to the left a real stack, and to the right an abstract GUEB stack to better

understand the concept. Both stacks represent the changes done by the code in Figure 4.4a.

The stack values represented by the variable buffer are equal. However, when we convert the type

char* to int* and get the first element as an int (line 9), GUEB does not consider the consecutive

memory locations of buffer and only gets the first one, thus evaluating buffer int to 0x01. Another

situation that illustrates the same concept is at line 10 where the assignment does not split the value into

4 consecutive memory locations which makes the variable chr have a non initialized (NI) value instead

of the correct value 0x43 (line 11).

Thus detecting possible heap buffer overflows with the current memory model was not possible
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1 int main() {
2 char buffer [4];
3

4 buffer [0] = 0x01;
5 buffer [1] = 0x01;
6 buffer [2] = 0xa8;
7 buffer [3] = 0xc0;
8

9 int buffer_int = *((int*) buffer);
10 int k = 0x41424344;
11 char chr = ((char*)&k)[1];
12

13 printf("0x%x\n", buffer_int);
14 printf("%c\n", chr);
15 return 0;
16 }

(a) Source Code (b) Stack

Figure 4.4: Disjoint memory location

and it was necessary to implement a byte addressed memory model where memory locations are

no longer disjoint and where it is possible to reason about buffer boundaries. For instance if we did

strlen((char*)&foo) we would get 1 instead of 4 due to the contiguous addresses being marked as

not available (NA).

To implement a byte addressed memory model we used new mapping functions for the Globals

and He memory region that receive as input an address and return a list of bytes. Since we want our

memory locations to be contiguous, we created the function set value (memory location, values,

size) that is responsible for storing size bytes into the corresponding memory location. These bytes

are the result of applying the function unpack values on values, where each offset of a value, is split into

a list of size bytes. Note that the argument size, recall Section 3.4, is now being used and is taken from

the operand size of REIL instructions. So for instance, if we want to store {Constant, {0x41424344}}

in Globals(0xa0), we now get: Globals(0xa0) → [0x44]; Globals(0xa1) → [0x43]; Globals(0xa2) →

[0x42]; Globals(0xa3)→ [0x41].

In addition, a heap object can no longer be identified by a string, recall Figures 3.5 and 3.9, be-

cause its address, like the buffer contents, also has to be stored in contiguous memory. Instead we

chose to identify it by a unique heap address similarly to real programs. Therefore our static anal-

ysis tool needs to keep track of the next available heap address, which it does by having a variable

next heap address. When we encounter an allocation function like malloc, we set our unique identifier

to be equal to next heap address and increment it using the requested size. With this approach we

ensure that there are no overlapping heap objects. So we update our heap memory region to include a

chunk address instead of a string identifier to:

39



〈chunk addr〉 ::= 〈addr〉
〈status〉 ::= allocated | freed
〈heap〉 ::= He 〈chunk addr〉×〈status〉

Figure 4.5: Heap addressed grammar

To complete our byte address model we still need to consider memory reads. These are handled by

the get value (memory location, size) function, which essentially gets the address from the memory

location and builds size lists of bytes. Using pack values we get the original value that was stored in

memory and we create a value set. The problem arises from the fact that it is not possible to know

if the value that was originally stored is of type Constant or of type He. To consider this we need

a new mapping function addrMap that maps an address to a single value set. We use addrMap to

map a chunk address added with each of its offsets to the original value set. So when storing a He

value set in memory we need to insert it in addrMap. On the contrary when reading from memory after

reconstructing the original number we can tell if it is a Constant or a He by checking its absence or

presence, respectively, in addrMap.

Binary programs usually have read/write and read only segments that contain global and static vari-

ables, like constants, strings, etc. However, GUEB does not load this data into its memory model. In

order to make our model more complete, we import all bytes from these segments so that we can later

reason about code like strlen("AAA"), where ”AAA” comes from the data segment. Also, with this new

improvement we no longer need to use the memory location Initmem since we import and load all the

data that can possibly be addressed.

With our memory model complete we now need to consider what happens when merging two mem-

ory states. Such situation can happen when a basic block has more than one parent so its Statein comes

from merging its parents Stateout. We used the union (memoryRegionA, memoryRegionB) function that

receives two hash tables representing the memory regions and returns a single list where each entry

contains a key (an address) with the corresponding possible bytes from both memory regions. So for

instance if we have the following memory regions
memoryRegionA = {0xa0 = [0]; 0xa1 = [1]; 0xa2 = [2]; 0xa3 = [3]; 0xa4 = [4];

0xa5 = [5]; 0xa6 = [6]}
memoryRegionB = {0xa0 = [0, 4, 6]; 0xa1 = [1, 4, 6]; 0xa2 = [2, 2, 6];

0xa3 = [3, 4, 3]; 0xa4 = [4]; 0xa5 = [5]},
the result from calling union would be equal to

[[0xa0, ([0], [0, 4, 6])], [0xa1, ([1], [1, 4, 6])], [0xa2, ([2], [2, 2, 6])],

[0xa3, ([3], [3, 4, 3])], [0xa4, ([4], [4])], [0xa5, ([5], [5])], [0xa6 , ([6], [])]].
Afterwards we pass this result to merge heuristic, which has a visual representation in Figure 4.6

of its inner workings. In Figure 4.6a, we can see that these addresses are split into 3 sets, {0xa0, 0xa1,

0xa2, 0xa3}, {0xa4, 0xa5}, {0x6}, where each set must have: I) consecutive addresses; and II) the
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number of the possible bytes for every address in a given set must be equal. Afterwards, and for every

set, we build a sequence of bytes using the possible bytes for each address and remove the duplicated

sequences, thus we are left with unique sequences. The final step is to build a new memory region

from the sequence of bytes, resulting in the memory region that can be seen in Figure 4.6b. So the final

memory region is
{0xa0 = [0, 4, 6]; 0xa1 = [1, 4, 6]; 0xa2 = [2, 2, 6]; 0xa3 = [3, 4, 3]; 0xa4 = [4];

0xa5 = [5]; 0xa6 = [6]}

(a) Memory regions to merge (b) Memory region re-
sult

Figure 4.6: Merge heuristic

The final point left to discuss regarding our improved memory model is the merge of the new mapping

addrMap. There are 2 cases that need to be considered: the first one is when a given address is only

present in one of the memory regions; the other one is when a given address is present in both memory

regions. In the first case we just copy the original mapping to the new addrMap. The second case

results from situations where we have a basic block that receives for instance two memory states where

the same heap object is marked as freed in only one of them. In these situations we must add to the

new mapping the heap object that is freed, otherwise possible use-after-free vulnerabilities might not be

detected.

4.2.4 Memory Usage

To find possible use-after-frees, GUEB first analyses all nodes of a function, keeping the Statein and

Stateout data in memory and then revisits every ldm and stm instruction. Since every assembly instruction

can be translated up to 256 REIL instructions, and every REIL instruction has a Statein and a Stateout,

the memory usage will increase much more than it has to as the analysis proceeds. The only reason we

can think of why GUEB was implemented this way is that GUEB did not have memory usage problems

due to its simplistic memory model. However, since our memory model is considerably more complex, it

results in more memory necessary to hold each Statein and Stateout. We improve this by analysing each

ldm and stm instruction for heap vulnerabilities as they come instead of waiting for the whole function to

be analysed. This way we can destroy the Statein and Stateout data that is longer needed, reducing this

way the memory usage.
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4.3 Heap buffer Overflow detection

We can think of any heap memory access as a dereference of a heap object base pointer added to a

given offset, thus we can easily detect heap overflows by simply checking if the following condition is

true

heap object base pointer + offset >= heap object base pointer + heap object size,

which can be translated to

offset >= heap object size.

With the use of the value set analysis algorithm, in every instruction, we are aware if we are dealing

with heap objects and we know each heap object base pointer and possible offsets. Note that the heap

object base pointer is the chunk addr unique identifier, recall Figure 4.5, and the offsets come from the

value set itself. At this point our memory model does not keep track of the heap objects size, so once

again we need to change our heap memory definition to:

〈size〉 ::= 〈offsets〉
〈status〉 ::= allocated | freed

〈chunk addr〉 ::= 〈addr〉
〈heap〉 ::= He 〈chunk addr〉×〈status〉×〈size〉

Figure 4.7: Final Heap grammar

Note that size holds a list of possible sizes for each heap object. Now our memory model is keeping

track of all the information necessary to detect possible read and write heap out of bounds. The function

detect heap overflow detailed in Algorithm 4.1, is called to analyse every ldm and stm REIL instruction,

since they are the source of possible heap memory reads and writes. It starts by filtering out all the

memory locations that are not part of the heap, filter heap loc, and for each offset of each heap

object it checks whether or not the offset exceeds the heap object size. Since an heap object can

have multiple possible sizes and our goal is to detect heap overflows, we will only consider the smallest

one. With this approach we are sure that if there is an out of bounds read/write we will detect it but at

the cost of being also a possible source of false positives. Figure 4.8 and Figure 4.9 present an example

for each one of these situations. The first one illustrates that by assuming the minimal size to detect

overflows we can detect wrong assumptions made regarding the allocated memory size, and the latter

presents a false positive originated from considering such assumption. In Figure 4.8 the heap object

allocated at line 7 can have a size within the range [0, 4294967295], but in line 8, the programmer

assumed that it has a size of at least 13. With our minimum size assumption we can easily detect
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that the presented code is vulnerable to a heap out of bounds vulnerability, which happens only when

size <= 12. On the other hand, the code presented Figure 4.9 does not contain any vulnerability as it

allocates a buffer of one of the possible sizes 2,3,4, and adds a null-byte in the last position given by

size - 1. Our tool however flags this code pattern as vulnerable because at line 13 we have a heap

object dereference where the possible offsets are {1,2,3}, and the object size considered is the smallest

given by the function min({2,3,4}), which is 2. So when considering offset = 3, the condition offset

>= heap object size is satisfied even tough the code is correct.

Algorithm 4.1: detect heap overflow(memory location)
overflow list←− []
heap objects←− filter heap loc(memory location)
for all heap object ∈ heap objects do

heap object size←− min(heap object.size)
for all offset ∈ heap object.offsets do

if offset ≥ heap object size then
overflow list.append(heap object)

end if
end for

end for
return overflow list

1 unsigned int get_size () {
2 unsigned int size = 0;
3 scanf("%d", &size);
4 return size;
5 }
6

7 int main() {
8 unsigned int size = get_size ();
9 char* buffer = (char*) malloc(size);

10 buffer [12] = '\0';
11 return 0;
12 }

Figure 4.8: Heap out of bound

As we have just seen in Figure 4.8 the scanf function was crucial to find the heap overflow since it

was the one who dictated the heap object size, thus allowing us to reason about the condition offset

>= heap object size. We can think of other examples where GLIBC functions can be an indirect

source of vulnerabilities, for instance, user input can be used as an index when accessing heap ob-

jects. scanf("%d", &idx); heap object[idx] = ’A’ is one such example. Implementing scanf and

similar GLIBC functions behaviour will allow us to reason about this types of vulnerabilities.

But GLIBC functions can also be a direct source of heap vulnerabilities, in particular reading or writing

more bytes than the size of the heap object is considered to be a heap overflow. In Figure 4.10 we have

43



1 unsigned int get_size () {
2 if (cond1)
3 return 2;
4 else if (cond2)
5 return 3;
6 else
7 return 4;
8 }
9

10 int main() {
11 unsigned int size = get_size ();
12 char* buffer = (char*) malloc(size);
13 buffer[size - 1] = '\0';
14 return 0;
15 }

Figure 4.9: False positive heap out of bound

an example where the function strcat is responsible for writing past the allocated memory. strcat

appends "BBB" to buffer and adds a null byte terminator which causes the overflow. We model this

function and 24 other such as strcat, strcpy, read, memcpy, memset, scanf, allowing us to detect

more heap overflows. New functions can be easily added and do not need to be part of the GLIBC.

1 int main() {
2

3 char* buffer = (char*) malloc(sizeof(char) * 4);
4 buffer [0] = 'A';
5

6 strcat(buffer , "BBB");
7 return 0;
8 }

Figure 4.10: strcat heap out of bound

Until now we have not addressed the possibility of heap overflows happening inside loops which can

only be triggered after a specific amount of iterations. Since loops can also be a source of vulnerabilities,

in the next sections we will target loops with the goal of identifying when the termination condition is

based on user input and also try to unroll loops with the help of symbolic execution.

4.3.1 Taint analysis

Our motivation to add taint tracking to our current memory model is to detect loops where its termination

is based on user input. Taint analysis is a method of tracking all variables that are influenced directly or

indirectly by user input. In Figure 4.11, both examples contain a loop that writes to the variable heap ptr

and can eventually write out of bounds since the termination depends on user input. The main difference

between the code in Figures 4.11a and 4.11b is that in the former, the termination condition is tainted

44



before the loop and in the latter, the termination condition gets tainted after one iteration. Our approach

to catch both of these code patterns will be to unroll every loop twice and check if the loop’s termination

condition is tainted.

1 unsigned int size;
2 scanf("%u", &size);
3

4 for (unsigned int i = 0; i < size; i++)
5 heap_ptr[i] = (char) fgetc(stdin);

(a)

1 unsigned int i = 0;
2 char chr = 0;
3

4 while (chr != '\n') {
5 chr = (char) fgetc(stdin);
6 heap_ptr[i++] = chr;
7 }

(b)

Figure 4.11: Heap loop overflow

The only possible source of taint comes from user input and it is propagated to other temporary

registers or memory locations when using operations like the REIL add or stm instructions. When adding

two registers, if there are any tainted source registers, then the destination register also gets tainted.

The same is true when writing to memory, if the source register is tainted then the memory location also

gets tainted.

To support taint analysis we need to change our current definition of value that is defined as value

= base x offsets. Since we need to keep track if a value is tainted, we change our current definition

to value = base x offsets x taint, where taint = true | false. Taking into account that we changed our

memory model to no longer store a value set in a given memory location but rather to store bytes, we

need an additional mapping function that keeps record of whether a byte at a given addresses is tainted

or not. The function taintMap receives as input an address and outputs the byte’s taintedness. So for

instance, if we are storing 8 bytes of {{Constant, {1, 2}, false}, {He, 0x555555000, status=allocated,

size={0x41}, {0x0}, true}} in a given address addr, we set taintMap(addr) = false || true, which

evaluates to true, since one of them is tainted.

From now on our value set is complete and defined as follows:
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〈addr〉 ::= N
〈offset〉 ::= Z
〈offsets〉 ::= 〈offset〉 | 〈offset〉 + 〈offsets〉
〈taint〉 ::= true | false
〈status〉 ::= allocated | freed

〈chunk addr〉 ::= 〈addr〉
〈size〉 ::= 〈offsets〉
〈heap〉 ::= 〈chunk addr〉×〈status〉×〈size〉
〈base〉 ::= Constant | 〈heap〉
〈value〉 ::= 〈base〉×〈offsets〉×〈taint〉
〈values〉 ::= 〈value〉 | 〈value〉 + 〈values〉

〈valueSet〉 ::= 〈values〉 | >

Figure 4.12: Final value set grammar

4.3.2 Loop unrolling

In this section, we aim to find potential heap overflows inside loops. As stated before, we already have

an algorithm that can recognize loops using the control flow graph of a function and can unroll them a

specific number of times. Since we are only interested in finding heap out of bounds reads and writes,

our goal is only to unroll loops containing heap accesses. To be unrolled more than the default amount

of times, a loop needs to have an instruction where a heap object is dereferenced. So, our approach is

to perform the analysis as before, recall Section 3.4, but in the presence of a loop with a heap access,

we unroll it and restart the analysis.

In Figure 4.16 we have an example of a heap out of bounds write, where Figure 4.16b is the corre-

sponding control flow graph of Figure 4.16a. In this situation, there is a buffer of size 10 and a loop that

fills it with user-supplied data. The problem arises from the fact that the loop iterates from 0 to 10, so

there is an off by one error that causes an overflow. Relying solely on the intermediate language REIL

to understand how many times this loop is going to be executed is a difficult task, so to this end, we rely

on a symbolic execution engine [2]. We give the symbolic engine all the possible pairs of instructions

that the program can take to reach the entry basic block of a loop and stay inside the loop. A pair of

instructions can be seen as the current instruction address and the next instruction address. An example

of a pair of instructions from Figure 4.16b is <0x1189, 0x118d>. We have two types of instructions pairs

(type A/B, <X, Y>): type A simply tells the symbolic engine that it can go from X to Y, where type B

tells the engine that it should go from X to Y and if jumping to Y is satisfiable then a new loop iteration

is possible and the maximum number of iterations is incremented. There are situations where we can

have two pairs of instructions like the following (type A, <X, Y>), (type A, <X, Z>) where the cur-
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rent instruction is the same but the destinations are different. In Figure 4.16b we have such example,

where the instruction 0x11c2 has two possible destinations 0x11c4 and 0x11d4, thus we have (type

A, <0x11c2, 0x11c4>), (type A, <0x11c2, 0x11d4>). The only instruction that can lead to stepping

out of the loop is the instruction at address 0x11ef. So, the instruction pair at this address must be of

type B, (type B, <0x11ef, 0x11ac>). When the symbolic engine reaches this instruction, it checks

if it is feasible to jump to 0x11ac. If it is, it continues to explore the next instructions and increments

the maximum number of iterations. Note that we exclude all pairs of instructions that do not lead to the

target entry loop.

One problem when trying to get the maximum number of iterations of a loop with symbolic execu-

tion is that loops can have many conditional branches, leading to state explosion, negatively impacting

performance.

4.3.3 Validation of vulnerabilities

This section aims at describing our changes to the symbolic engine AVD [2], in order to detect heap

vulnerabilities. Our contributions are:

1. Re-implemented the heap model

2. Added heap safety policies

3. Added a heap heuristic to guide the engine exploration

Since we use path insensitive static analysis, it is expected to have many false positives. Our goal

is to triage all results with the help of symbolic execution. The first step is to implement a heap model,

for which we will take the same approach as we did when modeling the heap in HeapDUO, where all

allocation functions return a fresh memory address. One problem that can arise when using this simple

heap approach is that we may run out of memory when we encounter an allocation intensive program

because we are never reusing freed memory.

The second step regarding the detection of vulnerabilities is to create heap safety policies, which are

functions that verify that a given instruction does not lead to an inconsistent/vulnerable program state.

When a safety policy is violated, we halt our program execution and try to generate an input capable of

triggering a program crash by solving the current path constraints. Heap overflows and use-after-free

vulnerabilities may not necessarily cause a program crash. For instance, an overflow may overwrite data

that does not trigger a crash. On the contrary, double-free vulnerabilities usually result in a crash forced

by GLIBC since it has mechanisms to detect them in the tcache and fastbin lists as well as in other kinds

of chunks.

Three safety policies need to be implemented: (i) the use-after-free, (ii) the double-free, and (iii) the

heap overflow policy. Regarding the first one, in every load/store we check if the source/destination is
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a freed heap object. If this condition is met, we say that our safety policy was violated and solve the

current path restrictions to generate an input. The case of double-free is straightforward to implement

by simply checking whether the pointer passed to free references a previously freed memory object.

1 int main() {
2 char* a = (char*) malloc(sizeof(char) * 5);
3 char* b = (char*) malloc(sizeof(char) * 5);
4

5 a[7] = 'A';
6 return 0;
7 }

Figure 4.13: Invalid heap access

Since our heap model returns contiguous heap objects, to detect possible heap overflows we need

more than just check whether the accesses belongs to a valid and already allocated memory as for

instance in Figure 4.13 we have a heap out of bounds where the access belongs to a valid allocated

memory. Therefore, and to avoid missing these patterns, we need to know in every load/store the

original heap object base pointer so that we can reason whether there is an invalid access. To this end

we added a base pointer to the abstract data type, ADT, Figure 4.14. This ADT, only has its base pointer

initialized when an allocation function is called. So all the allocation functions return ADT(new heap addr,

base pointer = new heap addr). And as a result in Figure 4.13 at line 5 when we are writing out of

bounds, we can access the base pointer, that is for example 0x555555559000, get the memory size

that is 5, and reason that 0x555555559007 - base pointer = 7, which is larger than the memory size

concluding that we are in the presence of an heap overflow. Note that there are situations where the

user is able to control the arguments of an allocation function, which results in being able to control the

size of the requested memory. In these cases the size is a symbolic value and it must be converted into

a real value. As we did before we will try to minimize it based on the current restrictions over it, so we

detect heap overflows like the one in Figure 4.8.

1 class ADT:
2 def __init__(self , val , base_pointer = None):
3 self.val = val
4

5 # used to keep track of heap OOB read/write ,
6 # this value is never changed after initialization
7 self.base_pointer = base_pointer

Figure 4.14: Abstract data type

To this point AVD is now able to detect heap overflows, double-free and use-after-free vulnerabilities,

so the final step is to detail the triage process describing the information sent from HeapDUO to AVD.
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This information has a specific structure and format. In the case we are in the presence of an over-

flow vulnerability we have the following structure (<CONTROL FLOW GRAPH>, "OVERFLOW", <ALLOCATION

EVENT>, <OVERFLOW EVENT>), otherwise we have (<CONTROL FLOW GRAPH>, "DOUBLE FREE"/"USE AFTER

FREE", <ALLOCATION EVENT>, <FREE EVENT>, <VULNERABILITY EVENT>). Both have enough details

for the symbolic engine to start the analysis and to reach each of the events and declare if it is in fact a

vulnerability. Regarding the format of the <CONTROL FLOW GRAPH>, it contains only the necessary infor-

mation to build a minimal control flow graph to reach all of the previous events when traversing it. The

<ALLOCATION/FREE/VULNERABILITY EVENT> has the information regarding where the allocation, free or

vulnerability occurs, such as the basic block address, the instruction address, and the call stack required

to reach it. A call stack is a dynamic structure used by HeapDUO that works like a stack, where we insert

on top the instruction address that called the function that is going to be analysed, and when we finish

analysing a function we pop the first address from the it. It is essential that each event contains a call

stack and we illustrate such reason with the example in Figure 4.15. Without a call stack we would only

have the information that the overflow happened in the instruction at line 4, therefore when analysing

the function that is called at line 12 none of the heap safety policies would be violated, meaning that

the engine would report it as a false positive. Yet the vulnerability only occurs when the analysis calls

fill buffer at line 13, thus the importance of a call stack for each event.

1 void fill_buffer(char* buffer) {
2 #define SIZE 10
3 for (int i = 0; i < SIZE; i++)
4 buffer[i] = 'A';
5 }
6

7 int main() {
8

9 char* buffer1 = (char*) malloc(sizeof(char) * 20);
10 char* buffer2 = (char*) malloc(sizeof(char) * 1);
11

12 fill_buffer(buffer1);
13 fill_buffer(buffer2); // overflow
14

15 return 0;
16 }

Figure 4.15: fill buffer overflow

As stated before, a new instance of the symbolic execution engine is forked at each conditional

branch, which leads to the known state explosion, therefore we try to guide our engine reaching each of

these events. AVD already provides a template for this with a function prior(mem1, mem2) that lets us

choose which memory, mem1 or mem2 we want to prioritize. The high level idea is to choose the memory

that is closer to the next event. Note that to trigger a safety policy violation, the symbolic engine needs

to reach each of the events imported from HeapDUO in order. So for instance in the case of a use-
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after-free vulnerability it is required to reach the allocation event first, then the free event and finally the

vulnerability itself. To find which memory is closer to reaching the next event, we use a breadth first

search in the control flow graph to count the distance from the current basic block to the basic block

where the target event occurs. In case the distances are equal for both memories we randomly select

one of them. Also if when AVD, finds memories that cannot reach the next target event it stops analysing

them. Finally for each vulnerability reported by HeapDUO, the symbolic engine informs it whether it is a

real vulnerability.

50



1 #define SIZE 10
2 int main() {
3 char chr;
4 char* buffer;
5 buffer = (char*) malloc(sizeof(char) * SIZE);
6

7 for (int i = 0; i <= SIZE; i++) {
8 chr = (char) fgetc(stdin);
9

10 if (chr >= 'a' && chr <= 'z')
11 chr = chr - ('a' - 'A');
12

13 buffer[i] = chr;
14 }
15 puts(buffer);
16

17 return 0;
18 }

(a) Source code

(b) Control flow graph

Figure 4.16: Heap out of bound write
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In this chapter we present our tool performance where we focus on showing that the tool developed

is able to:

1. detect heap vulnerabilities in a given application;

2. triage the false positives that are generated from the static analysis;

3. work on both x86 and x86-64 architectures.

In order to assess HeapDUO we relied on two different datasets: the Juliet [35] dataset ”(...) created

by the National Security Agency’s (NSA) Center for Assured Software (CAS) and developed specifically

for assessing the capabilities of static analysis tools.” and on the CodeQL dataset [36] ”CodeQL is the

analysis engine used by developers to automate security checks, and by security researchers to perform

variant analysis”.

The metrics considered on both datasets are:

1. the time it takes to analyse all the binaries for each vulnerability;

2. recall — the fraction between the number of the detected vulnerabilities and the number of vulner-

able tests;

3. precision — fraction between the number of false positives and the number of tests that were not

vulnerable.

For each dataset we were able to generate vulnerable and non-vulnerable binaries for the two supported

architectures, so we are certain about the precision and the recall of our tool. We also compared our

performance both in terms of the number of detected vulnerabilities and the time it took to analyse the

binaries with GUEB and AFL++ [3]. Finally, we reanalysed CVE-2015-5221, CVE-2015-8871 and CVE-

2016-3177, CVE’s [37] found by GUEB, in order to test whether we are still capable of finding these

same vulnerabilities; we also present our tool capability of finding real world vulnerabilities by detecting

CVE-2021-32614 [4], a heap out of bounds read, that was reported in 2021.

In the following two sections we present our metrics on both the Juliet and the CodeQL datasets,

where we separated them in terms of the binaries containing vulnerabilities and safe binaries. We

evaluate the tools in terms of success in vulnerability detection #detected and false positives (#FP)

and in terms of execution total time (TT), average time (AVG) and the average time taken by the static

analyser (SA AVG). Note that since AFL++ feeds mutated inputs to the target program indefinitely even

when it finds a crash, we had to change its source in order to stop execution right after finding the first

program crash. Additionally we set a timeout of 3 x 60 = 180 seconds from which we terminate AFL++

execution and declare the vulnerability as not found.
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5.1 Juliet dataset

5.1.1 Dataset with vulnerabilities

Dataset HeapDUO AFL++
CWE 416/415/122 #tests #detected recall #detected recall
Use After Free 118 118 100% 0 0%
Double Free 190 190 100% 187 98.4%
Heap Overflow 1178 1178 100% 54 4.6%

Table 5.1: Vulnerability detection in 64 bit dataset with vulnerabilities

HeapDUO AFL++
CWE 416/415/122 TT (sec) AVG (sec) SA AVG (sec) TT (sec) AVG (sec)
Use After Free 3469.66 29.40 1.96 21240.00 180.00
Double Free 2218.75 11.67 0.04 571.75 3.00
Heap Overflow 34307.55 29.12 0.68 202328.72 171.75

Table 5.2: Time taken to analyze Juliet 64 bit dataset with vulnerabilities

Table 5.1 shows the number of detected vulnerabilities while analysing x86-64 binaries. We can

see that HeapDUO was able to correctly identify all the considered vulnerabilities namely use-after-free,

double-free and heap overflow. On the contrary AFL++ performed poorly both in the binaries containing

both use-after-free and heap overflow vulnerabilities ending up with a recall of 0% and 4.6% respectively.

We can think of two reasons why AFL++ performance was unsatisfactory:

1. The Juliet binaries had close to none heap interactions after the vulnerability occurred, which made

it impossible to enter in a corrupt state

2. Since our thesis works at machine code level, no source code information is allowed to analyse

the binaries, therefore AFL++ could not instrument the binary with ASan [38], a memory detector

for C/C++ that is able to find use-after-free, double-free and heap overflows.

In the case of double-free vulnerability, AFL++ had a recall of 98.4%, since GLIBC security checks

are able to identify these situations and abort execution. Regarding the time performance, Table 5.2,

shows that HeapDUO proved to be faster in the detection of use-after-free and heap overflows while the

detection of double-free’s was three times slower. GUEB was not considered in these tests because it

does not support the x86-64 architecture.

In Table 5.3 we have the results of analysing x86 vulnerable binaries, and here we can see that our

improved use-after-free detection increased the recall metric of GUEB from 64.4% to 100% meaning that

we were able to detect vulnerabilities that GUEB could not. We were also able to detected more double-

free vulnerabilities than GUEB. AFL++ had a similar performance comparing to the results in Table 5.1

due to the reasons previously explained.
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Dataset HeapDUO GUEB AFL++
CWE 416/415/122 #tests #detected recall #detected recall #detected recall
Use After Free 118 118 100% 76 64.4% 0 0 %
Double Free 190 190 100% 185 97.3% 186 97.9 %
Heap Overflow 1254 1254 100% - - 55 4.4 %

Table 5.3: Vulnerability detection in Juliet 32 bit dataset with vulnerabilities

Dataset HeapDUO GUEB AFL++
CWE 416/415/122 TT (sec) AVG (sec) SA AVG (sec) TT (sec) AVG (sec) TT (sec) AVG (sec)
Use After Free 2289.08 19.39 1.88 3.37 0.02 21240.00 180
Double Free 1147.62 6.04 0.11 4.28 0.02 735.54 3.87
Heap Overflow 17911.73 14.28 0.80 - - 215824.83 172.10

Table 5.4: Time taken to analyze Juliet 32 bit dataset with vulnerabilities

As can be seen in Table 5.1 and in Table 5.3 there is a difference between the number of analysed

heap overflow binaries, 1178 and 1254, respectively. This difference comes from the fact that some

vulnerabilities could only be triggered in x86 due to the size of pointers in x86 being 4 bytes as opposed

to 8 bytes in x86-64.

Analysing Table 5.4 we can see a significant difference between the time performance of GUEB and

HeapDUO. The two main reasons for the observed decrease in HeapDUO performance are

1. the merge operation between memory states takes additional time due to the more complex mem-

ory model;

2. the addition of a symbolic engine that triages the vulnerabilities found by HeapDUO.

5.1.2 Dataset without vulnerabilities

Regarding the analysis of the dataset without vulnerabilities, Table 5.5 and Table 5.6 reveal that both

HeapDUO and GUEB reported 0 false positives. It should be mentioned that the static analyser of

HeapDUO reported false positives due to loop unrolls but were discarded by the symbolic engine.

Dataset HeapDUO
CWE 416/415/122 #tests #FP discarded #FP precision
Use After Free 118 31 0 100%
Double Free 190 5 0 100%
Heap Overflow 1178 269 0 100%

Table 5.5: Vulnerability detection in Juliet 64 bit dataset without vulnerabilities
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Dataset HeapDUO GUEB
CWE 416/415/122 #tests #FP discarded #FP precision #FP precision
Use After Free 118 90 0 100% 0 100%
Double Free 190 5 0 100% 0 100%
Heap Overflow 1178 350 0 100% - -

Table 5.6: Vulnerability detection in Juliet 32 bit dataset without vulnerabilities

5.2 CodeQL dataset

The CodeQL dataset contained 19 handmade programs vulnerable to heap buffer overflows and 12

programs without any kind of vulnerabilities. For this reason only HeapDUO and AFL++ were taken into

consideration in the following results.

5.2.1 Dataset with vulnerabilities

Dataset HeapDUO AFL++
CWE 122 #tests #detected recall #detected recall
Heap Overflow 19 19 100% 0 0%

Table 5.7: Vulnerability detection in CodeQL 64 bit dataset with vulnerabilities

Dataset HeapDUO AFL++
CWE 122 TT (sec) AVG (sec) SA AVG (sec) TT (sec) AVG (sec)
Heap Overflow 85.87 4.51 0.04 3420.00 180.00

Table 5.8: Time taken to analyse CodeQL 64 bit dataset with vulnerabilities

Dataset HeapDUO AFL++
CWE 122 #tests #detected recall #detected recall
Heap Overflow 19 19 100% 0 0%

Table 5.9: Vulnerability detection in CodeQL 32 bit dataset with vulnerabilities

Dataset HeapDUO AFL++
CWE 122 TT (sec) AVG (sec) SA AVG (sec) TT (sec) AVG (sec)
Heap Overflow 85.56 4.50 0.08 3420.00 180.00

Table 5.10: Time taken to analyse CodeQL 32 bit dataset with vulnerabilities

Tables 5.7 and 5.9 show that HeapDUO was able to detect all the 19 heap overflows independently

of the architecture being analysed. On the contrary AFL++ did not detect any vulnerability due to the

same reasons explained before. Regarding the time taken to analyse each program HeapDUO was

faster than AFL++ with an average time of 4.51 seconds on x86-64 and 4.50 seconds on x86 as can be

seen in Tables 5.8 and 5.10, respectively.
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5.2.2 Dataset without vulnerabilities

Dataset HeapDUO
CWE 122 #tests #FP discarded #FP precision
Heap Overflow 12 0 0 100%

Table 5.11: Vulnerability detection in CodeQL 64 bit dataset without vulnerabilities

Dataset HeapDUO
CWE 122 #tests #FP discarded #FP precision
Heap Overflow 12 0 0 100%

Table 5.12: Vulnerability detection in CodeQL 32 bit dataset without vulnerabilities

Regarding the CodeQL dataset without vulnerabilities, Tables 5.11 and 5.12, show that the static

analyser did not generate any false positives for any of the 12 tests, so the symbolic engine was not

necessary in the triage process. It should be noted that the static analyser generated 0 false positives

since the tests were very specific and simple.

5.3 Real World Vulnerabilities

GUEB showed its success by finding three vulnerabilities in open source software which were as-

signed an unique CVE, CVE-2015-5221 [39] (Jasper-JPEG-200), CVE-2015-8871 [40] (openjpeg) and

CVE-2016-3177 [41] (giflib). In order to assess if HeapDUO was still able to find these same heap

vulnerabilities we tested HeapDUO on these three projects but were only able to find two of them,

CVE-2015-5221 and CVE-2016-3177. To this end we checked if the open sourced GUEB was able to

find CVE-2015-8871, which to our surprise it did not. One possible explanation for this situation is that

perhaps the source code of the project, openjpeg, was changed in order to analyse only possible critical

functions. Therefore it is reasonable that HeapDUO did not find the last vulnerability since the available

version of GUEB could not also.

In order to show the success of our improvements regarding heap overflow detection we searched for

recent heap overflow vulnerabilities reported on open source projects, where we found CVE-2021-32614 [4]

on dmg2img [5], a tool which allows converting Apple compressed dmg archives to standard (hfsplus)

image desk files. Our tool reports that a heap out of bounds read happens at the instruction that calls

memcpy(). Analysing the found vulnerability reported by HeapDUO, we realize that it is assumed that

the buffer from which bytes are copied from has 204 bytes, but in reality it can have less which leads to

an out of bounds read.
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6.1 Conclusions

In this work, we developed HeapDUO, a tool capable of finding heap vulnerabilities such as double-frees,

use-after-frees, and heap overflows, by performing the analysis only on binaries without any access to

source code.

Our tool has two major components, a static analyser based on GUEB [1], and a symbolic engine

AVD [2]. Our static analyser performs value set analysis on all REIL instructions of the recovered control

flow graph given by the Binnavi Framework. In order to detect heap vulnerabilities, we used a simple

heap model where each allocation returns a different memory location. Later on the analysis, these

locations can be marked as allocated or freed. Consequently, to find double-frees we check if an already

freed location is passed to free(); to find use-after-frees we find memory reads or memory writes where

the memory location is a freed heap object; and finally to detect heap overflows we look for memory

reads and writes on heap objects and check if they are accessed beyond their allocated size. Our

symbolic engine is responsible for finding how many times a loop can be executed so that the static

analyser can unroll it and continue its analysis. The symbolic engine is also responsible for the triage of

vulnerabilities found by the static analyser.

In this thesis we made several improvements both on GUEB and on the symbolic engine AVD. Re-

garding the static analyser which is based on GUEB, we improved the detection of use-after-free vul-

nerabilities by also considering the cases when the vulnerability occurs in an external function, added

support for the x86-64 architecture, improved the existing memory model to reason about possible heap

buffer overflows, improved the memory usage, and added the ability to detect heap overflows. To en-

hance the detection of heap overflows in loops, we combined our static analyser and the symbolic engine

AVD to help determine the number of times a loop can be executed. Additionally, we used AVD to triage

vulnerabilities reported by the static analyser, reducing the number of false positives.

Finally, we evaluated HeapDUO by comparing the number of detected vulnerabilities between Heap-

DUO, GUEB, and AFL++ and the time taken to analyse them in both the Juliet and CodeQL datasets.

In terms of effectiveness, HeapDUO managed to find all vulnerabilities present in both datasets. As for

timing performance, HeapDUO revealed to be slower than GUEB and AFL++. We also assessed Heap-

DUO’s ability to find vulnerabilities in open-source software by detecting previously found vulnerabilities

by GUEB and by detecting a heap out of bounds read, in a open-source project, dmg2img.

6.2 Future work

Our work is dependent on the Binnavi framework since it is the one responsible for translating x86 and

x86-64 assembly code to REIL. Since Binnavi is no longer actively maintained and lacks full support

for floating point operations on both the x86 and x86-64, one possible future direction is to move from
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REIL to another intermediate language. As a result we would have to rewrite some parts of HeapDUO,

namely the intermediate language parsing.

Additionally, we improved GUEB’s use-after-free detection by adding a mapping that associates an

external function name with its arguments that can be an heap object. Even tough this solution increased

the detection of use-after-free vulnerabilities on the datasets, it is not complete since it does not take

into consideration functions that can receive as an argument a structure containing a heap object. So, to

make our analysis more complete when finding use-after-free vulnerabilities we could take all the GLIBC

function signatures to be structurally aware of their arguments.

Finally, we could extend HeapDUO with summaries of more external functions to complement the 20

already implemented.
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