Tuning Trajectory Following Controllers for
Autonomous Cars Using Reinforcement Learning

Ana Vilaga Carrasco
ana.vilaca.c@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

December 2021

Abstract

This paper proposes the use of a Q-Learning algorithm to train an agent to tune the parameters of
a trajectory controller. This controller is used on a system designed to perform two maneuvers - lane
changing and roundabout navigation - and is also capable of avoiding frontal collisions and controlling
velocity and steering angle range. This work integrates a Reinforcement Learning agent with the CARLA
simulation environment to test the efficacy of a simplified Q-learning algorithm.

The results after the training demonstrate an appropriate implementation of the algorithm. A custom
environment was created to test all the functions of the system, as well as the quality of the tuned gains.
The results show the system performing all the functions as intended. They also suggest the gains were
appropriately tuned, attesting to the success of the proposed algorithm.

Future works include real-world experimenting with the system, upgrading the Q-learning algorithm to
a Double Q-learning, and adding a Neural Network for image processing of the environment.

Keywords: Machine Learning, Reinforcement Learning, Autonomous Driving Systems, Q-Learning

1. Introduction

Autonomous Driving technologies have a vast
range of applications, the most notorious being
fully autonomous vehicles, but also other explored
technologies like Vehicle-to-vehicle and Vehicle-to-
Infrastructure[10]. Partially autonomous technolo-
gies can be found in many applications (Adaptive
Cruise Control, Parallel Parking Assist). Massive
implementation of fully autonomous vehicles can
have countless advantages: avoiding accidents,
reducing congestion, optimizing resources like en-
ergy, time and money, and a more Eco-friendly im-
pact in the world.

Machine Learning (ML) offers many benefits to
the field of Autonomous Driving Systems (ADS):
self-optimisation based on collected data and new
environments, the ability to specify the desired be-
haviour of the system, and increased generalisa-
tion capacity. Machine Learning has become the
primary interest of the autonomous driving indus-
try.

This work proposes a system with a modular
architecture and a Reinforcement Learning (RL)
agent for lateral control of a vehicle. This agent is
trained for offline tuning of the trajectory control
gains, to minimize the trajectory errors. The RL
agent, using a discretized tabular Q-learning al-
gorithm, is trained to fine-tune these gains to per-

form two maneuvers: lane changing and round-
about navigation. The system includes a mod-
ule that identifies when to perform each maneu-
ver and changes the gains appropriately, and also
a safety module that controls the vehicle’s veloc-
ity and steering angle range and avoids frontal
collisions. The CARLA Simulator[4] is used to
train and test the proposed system. The simulator
communicates with the system through a ROS[12]
bridge.

This work presents an alternative to the popu-
lar online gain tuning: instead of tuning the gains
while driving the vehicle through live updates of the
Q-table values, this thesis proposes updating the
Q-table and tuning the gains every time a specific
maneuver is performed by the vehicle - the data is
collected and processed afterward, and the gains
adjusted accordingly. This would mean that the
gain tuning would occur in an extended period of
time, rather than at each iteration. Offline tuning
avoids possible sudden gain changes while driv-
ing, which can cause safety issues. It also allows
the user to tune the gains to specific environments
inside a city, which can be beneficial to use in well-
known dangerous zones. This work demonstrates
that a Q-learning algorithm with limited state-action
space and constricted combination of gains can
still produce satisfying results. A simplified algo-

rithm brings advantages like: code errors are less
likely, easier to troubleshoot, easier to implement in
a project with limited computational resources, and
easier transition to a physical system.

2. Background

The perception system, an essential part of an
ADS, is made up of a set of sensors that use fu-
sion techniques to combine the gathered informa-
tion about the environment. The general function-
ing of an ADS is heavily based on the perception
of its surroundings, hence the perception system
has a significant impact on the system’s perfor-
mance. The sensors that usually make up per-
ception systems are: Ultrasonic, RADAR, LiDAR
and cameras. Sensor fusion manages the ad-
vantages and disadvantages of each sensor to im-
prove the quality of the data perceived. Ultrasonic
sensors are especially used in short-distance mea-
surements at low velocities. They are cheap sen-
sors that work well with any material and harsh
environments but are also prone to false posi-
tives. RADARs are high accuracy sensors that
detect targets in a wide range around the vehi-
cle. They are especially good in all weather con-
ditions but are also known for a reduced individ-
ual Field of View and a lack of precision. LiDARs
are known for their high resolution and great ac-
curacy in perception of the environment, even in
the dark. These are very expensive sensors that
are affected by weather conditions such as rain,
snow, fog or dust. Cameras, the most commonly
used sensors, are especially well suited for object
recognition and are also very cost-efficient. The
most common cameras (RGB) are highly affected
by variations in lighting conditions, rain, snow, or
fog, and lack depth perception.

Three domains can be distinguished when de-
signing an intelligent agent: learning strategies,
neural network architecture and training algo-
rithm. In Machine Learning, most training al-
gorithms fall into one of three categories: Su-
pervised Learning (SL), Unsupervised Learn-
ing (UL) and Reinforcement Learning (RL). Re-
inforcement Learning is distinguished for the self-
improvement and generalisation capabilities it of-
fers. This strategy is suitable for typical time-
sequential problems, which is the case for au-
tonomous driving. Unlike SL, it does not require
a labeled dataset and instead offers the possibil-
ity of explicitly defining the desired behaviour for
the agent (reward function), which may be an ad-
vantage or a disadvantage, depending on the com-
plexity of that task. RL agents take notoriously
more time to train compared to SL agents, and
its training in the real world may be challenging,
potentially raising safety and cost complications.

Supervised Learning offers a high-speed train-
ing convergence and does not require specifica-
tions on how the agent must reach its goal. An
agent’s training is based on labeled data, which
can be unfavorable for multiple reasons: acquir-
ing and labeling data can be a very slow process;
labeled data may contain biases towards certain
actions or situations; agents trained with labeled
data usually present less adaptability to new envi-
ronments than agents trained with RL. While with
SL, ADS are able to imitate a human driver, with
RL the vehicle is able to learn to drive better than
a human, since it’'s learning by itself. On the other
hand, choosing RL can exhaust the resources of
a project, without guaranteeing applicability to the
real world. Hybrid learning methods, like using
SL as a pre-training step to a RL agent, try to take
advantage of both faster learning processes and
better self-adaptation to new environments.

The most common neural network architec-
tures used in the field of autonomous driving are
Convolutional Neural Networks (CNN), Recur-
rent Neural Networks (RNN), Long Short-Term
Memory (LSTM) RNNs and Fully Connected
Neural Networks (FCNN), since these have ex-
ceptionally good results in solving image process-
ing and temporal sequence data processing prob-
lems. Although RNN and LSTM applications pro-
duce good results, CNNs are still the broadly used
architecture.

SL problems can be broadly grouped into two
types of problems: classification problems, which
consist of predicting a discrete class label, and
regression problems, which consist of predict-
ing a continuous quantity. In RL, algorithms
are broadly divided into three classes: value-
based, policy gradient and actor-critic algo-
rithms. One of the most commonly used RL al-
gorithms in the ADS context is Q-learning or vari-
ations, some of the most relevant being Hierar-
chical Q-Learning[2], Double Q-Learning[5], and
SARSA[14]. In the context of autonomous driving,
Deep Q-Networks[7] are a popular choice, as they
make it possible to apply Q-learning methods to a
high dimensional state-action space, and optimize
the training process with Neural Networks as func-
tion approximations.

Other popular RL actor-critic algorithms include
Supervised Actor-Critic (SAC)[16] and Asyn-
chronous Advantage Actor-Critic (A3C)[11]. By
having a combination of value-based and policy
gradient approaches, these algorithms find a way
to have a better performance than the other two al-
gorithms separately. There is another subset of RL
called Imitation Learning [6], with some methods,
like Inverse Reinforcement Learning (IRL)[7],
surging to overcome obstacles like dataset biases

and learning complex reward functions. Neural
Networks are a popular approach, used to solve
either classification or regression problems, or are
used as function approximators for the RL algo-
rithm. When using NNs, the most commonly
used optimizers are Stochastic Gradient De-
scent (SGD) and its variants, like AdaBoost, Ada-
Grad and Adam. Although some works claim bet-
ter results from one or two optimizers, it is still a
highly argued subject.

2.1. Q-Learning

Q-learning[15] defines a table shaped
[state, action], with an utility value for each
pair. It initializes it randomly and then updates
those utility values (known as the Q-values) by
greedily maximizing a new kind of value function,
called the Q-function:

Qnew(st,at) — (1—0() .Q(st,at)—i- (1)
a-(re+v- max Q(st41,a))

Q(s¢, ar) is the Q-value of the state-action pair
before the update, « is the learning rate (0 < o <
1), rs = R(sy, at) is the expected reward value as-
sociated with taking the action «a, in state the state
st, v is the discount factor and max Q(s;11,a) is

the estimate of the optimal future value. This
equation can be understood as: the new Q-value
of the (s,a) pair is the expected reward for exe-
cuting action «a in state s plus the best Q-value it
can produce in the new state, s’, weighted by ~.
The Convergence Theorem for this algorithm is
defined in [15].

Full vehicle autonomy is a relatively new area
of research. Robust high-performing full vehicle
autonomy is still out of reach, the main constraint
being the significant complexity of the tasks per-
formed by the agent. A variety of learning strate-
gies have been explored, however showing a pref-
erence for end-to-end architectures with SL and
CNNs. The inputs are generally camera images
and the outputs are steering and acceleration vari-
ables. Although the results show progress towards
full vehicle autonomy, it still shows a lack of ad-
equate performance and robustness compared to
partial autonomy.

2.2. Challenges

Over the last years, there has been a lot of re-
search around the applications of Machine Learn-
ing to autonomous vehicle control, which has been
supported by tremendous technological growth in
many related areas. However, it still faces a sig-
nificant amount of challenges, especially with real-
world applications [9]. Two of the biggest obsta-
cles faced by Machine Learning applications are

the high computation complexity of the methods
and the size of the dataset. While bigger and more
diverse datasets provide more robust and reliable
systems, computational complexity grows expo-
nentially with the number of dimensions of an en-
vironment (Curse of Dimensionality), making the
training process slower for more complex environ-
ments. It is also important to ensure the datasets
are diverse and don’t include biases, which often
happens in simulated environments. In Reinforce-
ment Learning applications, defining an adequate
reward function is essential but usually very diffi-
cult. IRL is known to help with this obstacle since
it provides a natural system for optimizing the re-
ward function without the need to define it empir-
ically. However, IRL is usually expensive to run
and needs a lot of human driving data to obtain de-
cent results. An autonomous vehicle encounters
a very wide range of inconsistent environments,
which is why it is vital to ensure the system can
generalise well to new environments. Generalisa-
tion is difficult to guarantee, and it’s virtually im-
possible to test the vehicle in all the scenarios it
could encounter. Simulators are usually used to
train the system on a diverse set of environments,
but these systems often fail to generalise well in
real environments. To properly validate the per-
formance and safety of the system, rigorous test-
ing must be applied. Testing in the real world can
often be expensive, time-consuming and unsafe,
so that is why simulation studies are becoming the
dominant method of study in this field [9]. How-
ever, despite the advantages, simulators difficult
the process of transferring the system to the real
world. The developer must ensure the agent’s poli-
cies don’t overfit the simulation environment, which
is why it’s important to validate both the model
and the simulation environment. Safety is, un-
doubtedly, one of the most important properties of
an autonomous vehicle. Guaranteeing that these
systems are safe is a top priority since a failure or
malfunction can have devastating consequences.
However, the solutions provided by systems oper-
ating with Machine Learning methods are increas-
ingly difficult to interpret and control. The lack of
transparency of these systems is known as the
black box problem [9]. Approaches to ensure
functional safety include combining reinforcement
methods with traditional control methods, increas-
ing safety through traditional control theory.

2.3. Related Work

When designing an intelligent ADS, the most pop-
ular approach is a SL-based end-to-end architec-
ture with a complex neural network. Bojarski et.
al [3] proposes an end-to-end architecture with
a 9-layered CNN trained with Supervised Learn-

ing methods to map RGB images directly to steer-
ing commands for the vehicle, which revealed to be
surprisingly powerful. However, the proposed NN
architecture adds great computational complexity
to the system, while also requiring large datasets
to be created for training. As an alternative to an
end-to-end architecture, Bari S. et. al [1] proposes
the use of a simple 3-layered NN for online tun-
ing of a PID controller’s parameters of a Flight
Control of a Quadcopter. This work showcases the
benefits of applying ML directly in the control mod-
ule, over conventional offline PID tuning methods.
Despite that, the testing environment is simplified
and the proposed system’s robustness is not com-
parable to an autonomous driving system. The
works from Panagiotis Kofinas et. al [8] and Shi
et. al[13] both offer an alternative RL approach for
tuning PID controllers. Shi et. al[13] proposes the
tuning of two PID controllers’ gains in a simu-
lated cart-pole system, using a Q-Learning al-
gorithm with 6 discretized Q-tables. This work
argues in favour of introducing the adaptive prop-
erties of the Q-Learning algorithm directly into the
control module through PID tuning. However, the
proposed system requires extensive training times.
Panagiotis Kofinas et. al [8] proposes a hybrid
Zeigler-Nichols (Z-N) Reinforcement Learning-
based PID tuner to control the speed of a DC
motor, where the PID gains are set by the Z-N
method and then are tuned online through a fuzzy
Q-learning agent. The authors argue that using
a NN as a function approximator would result in a
very slow learning rate and, although simpler, dis-
cretizing the action-state space can lead to sud-
den gain changes, which may cause dangerous
behaviours. Instead, they opt for Fuzzy logic to
allow the Q-Learning to be applied in a continu-
ous state-state, despite increasing the complexity
of the system.

The work of [13] and [8] signify the viability of
using a Q-learning algorithm to tune a controller’s
gains in a simulated environment. It is argued that
working with a higher-level controller (trajectory
controller) instead of the PID controller, defining
control laws and setting gain limits dismisses
the issues raised in [8] against using a discretized
action-state space. Furthermore, discretizing and
limiting the state-action space reduces training
times. Finally, applying these ML methods only on
the motion control module allows for a high level of
control over the system, as other modules may be
added to build a "safety net”, giving the developer
even more control over the system.

3. Methodology

The proposed system’s architecture is presented in
fig.1. This architecture can be divided into 4 mod-

ules: the vehicle simulator, a high-level con-
troller, a Reinforcement Learning agent and a
low-level controller. The simulation consists of
a vehicle with multiple sensors attached. The low-
level controller drives the vehicle through a pre-
defined reference path by calculating and impos-
ing values for velocities and steering angle. The
goal is to optimize the vehicle’s behavior while per-
forming certain maneuvers. The optimization pro-
cess consists of adjusting the set of gains, used
to calculate the velocities and steering angle val-
ues, to minimize the average error between the ve-
hicle’s pose and the reference path. The RL agent
is trained to find the best set of gains for each ma-
neuver. The maneuvers that were tested were lane
changing (to the right) in a straight road and cir-
culating in a roundabout. The high-level con-
troller processes information from the simulator
and communicates with the other modules, mak-
ing a bridge between them.

The system works as follows: while the vehicle fol-
lows the reference path, the high-level controller
collects and processes data from the simulation
sensors. If necessary, it sends high-level control
actions to the low-level controller. If the system
needs to perform any of the maneuvers, the high-
level controller sends that information to the RL
agent, which will then set the gains to the appro-
priate fine-tuned values for that maneuver. Those
fine-tuned set of gains, (K,, K;, K;), are then
sent to the low-level controller to adjust the steer-
ing angle, ¢, the linear and the angular veloc-
ities, v and w; - these three values define a low-
level control action. The simulator also communi-
cates directly with the low-level controller, sending
an estimation of the vehicle’s current pose. This
estimation is made based solely on the vehicle’s
odometry.

The tuning process is offline, therefore the set of
gains are constant while the vehicle follows the ref-
erence path, and will only change if the vehicle is
prompted by the High-Level controller to perform
one of the mentioned maneuvers.

Essentially, the vehicle is expected to behave as a
human driver would when facing different types of
environments. The gain adjustments should mimic
the adjustment in the driving style a human driver
would display.

3.1. Simulator

CARLA is an open-source simulator designed for
autonomous driving research. It simulates urban
driving environments, with multiple vehicle mod-
els, sensors, objects and pedestrians. The simu-
lator has a bridge with ROS, which allows direct
communication with the simulated vehicle, through
publishers and subscribers from this bridge, and

Environment
information

|"/ High Level \'-
0 Controller)

Sensor

information

Pose estimation h |

e Y vel control actio i
| Simulator) High level control actin | RL Agent)
— \ S
¥ v
e Y
L toweve {0 SOWLEVEL e (.5,
e _/

Figure 1: Full system architecture - the simulator module can be

substituted by a real vehicle

also provides a way to customize the vehicle setup,
through a .launch file. The proposed setup is a
"Tesla Model 3” vehicle with a speedometer, a col-
lision detector sensor, an odometry sensor and
an obstacle detector sensor located on the ve-
hicle’s bumpers. This sensor is initialized sepa-
rately from the rest of the setup, since it is not
included in the CARLA ROS bridge packages.
The system communicates with the controller
inside the simulator through Ackermann Mes-
sages. Each iteration, the system uses the pub-
lisher "/carla/ego_vehicle/ackermann_cmd” to send
a message with updated values for the steering an-
gle, ¢, for speed, v and for steering angle velocity,
ws. Then, the simulation controller converts the
Ackermann Messages into commands that con-
trol acceleration and velocity through an integrated
Python-based PID. The simulator communicates
back with the client through subscribers to topics
such as “/carla/ego_vehicle/odometry” for the vehi-
cle’s odometry, “/carla/ego_vehicle/vehicle_status”
to check the vehicle’s current linear velocity,
"/carla/ego_vehicle/collision” to check for collisions
and “/carla/status” to keep track of the simulation
time. The obstacle detector sensor’s data is sent
to the system by a publisher created in a sepa-
rate script. Figure 2 shows the coordinate sys-
tem of the vehicles inside the CARLA simulator -
this will be referred to as the vehicle frame. The
simulation has its own clock, conducted by the
server. This simulation time is generally slower
than real time. The time span between two sim-
ulation frames, called the time-step, can be con-
figured to be either variable - running as fast as it
can - or fixed. For this project, the simulator runs
with a fixed time-step of 0.01 simulated sec-
onds, which is equivalent to 100 frames per simu-
lated second. CARLA is built over a client-server
architecture. The communication between client
and server can be asynchronous or synchronous.
In this case, these communications run in syn-
chronous mode, which means the simulation runs
as fast as the client can process the information,
and never faster. The simulator was also config-
ured to wait for a new vehicle control command be-
fore processing each new frame.

Figure 2: CARLA’s coordinates system

3.2. Low-level controller

The controller module is in charge of controlling the
trajectory of the vehicle by adjusting the values of
the steering angle ¢, linear velocity, v, and an-
gular velocity, w;, in real-time, with the goal of
minimizing the error between the reference and the
actual pose of the vehicle. Figure 3 illustrates how
the error in the world frame, “e,is obtained.

Yref Fhe
Traf

N
reference path
1
I

o+,
Figure 3: lllustration of the error in the world frame, “e.

The control laws that will determine the values of
v, ws and ¢ are defined by the equations:

v=K,le,, ws=Key+ Kle,, ¢= /ws dt
(2)

where ®e, the error in the vehicle frame, is ob-
tained from “e by means of a rotation matrix of a
0 degree rotation around the Z axis.The values for
v, ws and ¢ are then converted into control actions
to communicate with the vehicle. The trajectory
controller gains are the linear velocity gain, K,
the steering gain, K, and the linear gain, K,
which are the focus of this work. The diagram in
fig.4 explains how the controller functions.

High Level
Contro| Action

Lrefs Yref .

]
T LK ey 2

=

v, Wy, gﬁ‘«*[Simulatori
[Pl Y’
it

Ly Y,y ¢
Figure 4: Diagram of the controller

3.3. Reinforcement Learning agent

The RL agent is responsible for tuning the trajec-
tory controller gains. The proposed method aims
to automatize this process, which is usually man-
ual, using a simple Q-learning algorithm with a
discretized Q-table that takes an interval of gains
and finds the set of gains with which the vehicle
presents the best performance. Performance eval-
uation is translated in the reward function of the al-
gorithm. The RL environment is defined as follows:
States: An array with the average of the absolute
value of the lateral and orientation errors, S =
[Ey, Eg]. Each of the error values have low and
high limits, Erow and Egrqg, and are discretized
into 40 units;

Actions: Each action, A = [ag, a1, az], is repre-
sented by an array that defines either an increase,
decrease or invariance of each of the controller
gains. There are 27 different actions. The gains
are adjusted by the action array through the follow-
ing equation:

K, = K, + hoao, K; = K; + hia1, Ky = K, + hoao
3)

The variables ag, a; and a, can take the values
1, 0 or -1. The values hg, h; and hy are positive
constants that will either be ignored, subtracted or
added to the previous value of the gain.

Terminal condition: Given how difficult it is to
reach the state S, = [0, 0], the adopted approach
was to consider any state that would come closer
to Sy to be the terminal state. As a result, if the
current state is closer to Sy than the closest state
recorded so far, then a terminal state was reached.
To determine the distance of a state to the state S,
d(S, Sy), the algorithm uses a weighted euclidean
distance. Since the lateral error values, E,, are
generally 10 times greater than the orientation er-
ror values, Ey, the weight array used was [1, 10]:

A(S,80) = \/IB, 2 +10 B2 (4)

Reward function: The reward function chosen for
this work is defined by the equation:

1 1
= 1+4d(S",S0) 1+4d(S,S,)’

()

where d(S5’,S,) is the distance between the new
state S’ and Sy and d(S,Sy) is the distance be-
tween the current state S and S,. This function
is based on the one used in [8]. Also, if a collision
is registered the reward is decreased by a defined
value.

Training Algorithm: The RL agent was trained to
perform two different maneuvers: a lane changing
maneuver in a straight road and driving in a round-
about.The algorithm used to train the RL agent

Step Loop

,| Define state
Si

/ New episode [Newstep)
Start _ Start

Initialization
of variables

No 1 No

Max number-.
_ of episodes <
__reached?

Yes, Yes i
4

1\ terminal state?

Update |

End training < epsilon

Update g-
values

+ Update state: Yes

| Sij1 and reward « 2> Simulation

.time over?

Figure 5: Diagram of the training algorithm

is shown by the diagram in fig.5. The agent was
trained over a certain number of episodes, each
of which is divided by steps. Each step, a current
state, S;, is defined based on the last error aver-
age registered. Then, an action is taken and the
new gains are defined, after which a new simula-
tion starts, with the system’s controller guiding the
vehicle through the reference path. After the sim-
ulation stops, the new state, S; .1, and the reward,
R;, are updated. With these values, the Q-table
is updated based on equation (1). If the new state,
S;+1 does not satisfy the terminal condition, this cy-
cle repeats in a new step. Otherwise, the episode
ends.

3.4. High-level Controller

The high-level controller works as both an event
manager and a safety module. It determines
if the vehicle needs to perform one of the two
maneuvers and enforces high-level control ac-
tions on the low-level controller, including enforc-
ing a speed limit, controlling the steering angle
range and avoiding collisions. The diagram on
fig.6 demonstrates how this controller works. To
test the system, the map was divided into zones,
each of which associated with an event. Figure 12
shows the organization of the map. The map is di-
vided into 4 types of zones: the blue zone, where
the vehicle performs a lane change, the red zone,
where the vehicle navigates in a roundabout, the
green zone, where the collision avoidance function
is tested and the orange zones, where the steer-
ing angle range limit is temporarily reduced. The
reference path is marked by a red line. The con-
troller uses the vehicle’s position to identify which
zone it is in. If a vehicle is detected in the green
zone, the High-Level controller will overwrite the
Low-level control actions, lowering the linear veloc-
ity and imposing w = 0 and ¢ = 0 until the vehicle
stops.

Reset
environment

Define new gain |
values (choose a;) |

Start new

(Startne
simulation

Update vehicle pose|

and velocity arrays | |

High Level Controller

' n '
' N '
' v N vl '
Obstacle ' .~ Obstacle ™, w=0 H
detector data 1l 100 close?” - [Il
1 . / ¢=0] | '
' " '
' Y ' ' '
H No ' i H (Low Level |
' X ' ' ' ,_Controller |
_ H /\ ' i H A 4/
[\ Speedometer| ' —‘>-—/-’U = L '
| Simulator | P U > Upay— ! maz H
\ / data ' ' ! '
N ; ;
H No =X :
' e "
H Control action H e \
| | Odometry ' /—;—'\ RL Agent |
'

data ' ‘
T :
.............

........................

Figure 6: Diagram of the high-level controller’s internal operations

4. Results & discussion
4.1. CARLA simulator validation

A series of experiments were carried out to as-
sess the simulator’s performance while working
with the proposed system. The experiments were
designed to evaluate the simulator's odometry pre-
cision. Many factors, such as delays in communi-
cations with the simulation server, lower the sim-
ulator’s precision. Initial tests revealed a standard
deviation around ¢ = 0.072 of the values of the av-
erage lateral error, £,. High deviation values can
compromise the Q-learning agent’s quality. After
some adjustments to the algorithm and to the sim-
ulator settings, the following tests registered devi-
ation values below o = 0.035. These tests greatly
outline the stochastic behaviour of the simulator.

4.2. Agent training and testing

The values chosen for the parameters, for each of
the maneuvers, are shown in table 1. The Loop
time represents the time of each training step, in
simulated seconds. The values [hg, h1, ho] are the
positive constants that define the action values (eq.
(3)). € decay and start value refer to the e-greedy
policy[14] used in the Q-learning algorithm. ¢
range is the default steering angle range used dur-
ing training. Step limit refers to the maximum
number of steps an episode can have, a condition
that prevents unfeasible training times. K44 /min
refers to the limits of each of the gains, K,, K; and
K.

Table 1: Table of parameter values for each of the training en-
vironments,where n is the number of episodes

Lane Change | Roundabout
Loop time 5 30
a 1/(n+1)0-8 1/(n+1)06
¥ 0.9 0.9
Enigu (m) [4,0.4] [1,0.1]
Erow (m) [0,0] [0,0]
Kmin [0.1,1,1] [1,1,1]
Kmax [2.42, 21, 21] [5.8, 21, 21]
[ho, h1, h2] [0.58, 5, 5] [1.2,5, 5]
¢ range (°) 30 30
€ (start) 1 1
e decay 1/(n/2) 1/(n/2)
Step Limit 120 100

Using the algorithm illustrated in fig.5, the agent is
trained to find the set of gains that minimize the
error while the vehicle performs the two maneu-
vers. The agent was trained for 30 episodes for
the lane changing maneuver and for 20 episodes
for the roundabout navigation. The training times
of these tests were 18.5 hours and 16 hours, re-
spectively. Figures 7-8 show the sum of rewards of
each episode of the two trainings, also known as
the learning curve, which is an indicator of the ef-
ficiency of the algorithm applied [13]. Both figures
show a convergence of the learning curve, which
implies the success of the algorithm. Episodes 21,
23, 27 and 22 on fig.7 and episode 4 on fig.8 re-
veal a drop in value. In these episodes, the agent
reaches the step limit without finding a terminal
state and is forced to move to the next episode,
causing the drop in value. The center of mass was
chosen to define the set of gains used in the blue
and red zones. All terminal gains obtained after
the convergence of the algorithm are considered,
i.e., the gains from episode 15 onward for the lane
changing maneuver and from episode 10 onward
for the roundabout navigation. The episodes where
a terminal state is not reached are discarded. The
center of mass of each of these groups of gains are
(2.42,11.67,1.33) and (2.2,12.5,1.0), respectively.
These are the sets of gains used in the validation
tests.

The validation process consists of evaluating the
performance of these sets of gains while perform-
ing the corresponding maneuver and comparing
them with the performance of other sets of gains.
The tests lasted for 10 sim.secs for the lane chang-
ing and 50 sim.secs for the roundabout naviga-
tion. Figures 9 and 10 show the trajectory per-
formed by the vehicle in blue and the reference
path in orange. The figures suggests that the sys-
tem can perform the maneuvers efficiently, suc-
cessfully correcting the initial errors imposed.

Table 2 presents the average Mean Square Er-
ror (MSE) of the lane changing maneuver for some
sets of gains spread through the range of values.

Sum of rewards

0 5 10 20 25 30

15
Episode

Figure 7: Lane changing training: Sum of rewards per episode

As mentioned before, some dispersion is observed
in the error values produced by the simulator. For
that matter, the table presents the highest aver-
age MSE registered out of 10 samples, exclud-
ing the first second of the simulation.The third col-
umn presents the standard deviation values, o,
from the 10 samples gathered from each set of
gains.

Average MSE o

(0.68,1,1) 2.723 0.407
(0.68, 21, 21) 2.194 0.327
(1.26,11,11) 1.294 0.174
(1.84,16, 16) 0.842 0.135
(1.84,11,1) 0.7809 0.1203
(2.42,11.67,1.33) 0.4658 0.0328
(2.42,21,21) 0.5628 0.05

Table 2: Average MSE of set of gain from the lane changing
validation tests

A qualitative analysis of these values reveal that
the chosen gains present the lowest average MSE,
with gains (2.42,21,21) following close behind.
Also, the closer to the chosen gains, the lower the
o values are. The table also suggests that differ-
ences in the value of K, have more impact on
the results, with the biggest decreases observed
between K, = 0.68 and K, = 1.26.

Similarly to table 2, table 3 presents the information
gathered about some sets of gains for the round-
about navigation. The values presented were the
highest out of 10 samples, and exclude the first
10 seconds of the maneuver. The third column
presents the standard deviation, o, of those 10
samples:

Average MSE | o(e—3)
(1,1,1) 8.8¢—3 0.31
(2.2,1,1) 5.8¢—3 0.27
(2.2,12.5,1.0) 3.0e—-3 0.14
(2.2,21,21) 6.7e—3 2.9
(3.4,1,1) 0.010 1.9
(4.6,11,21) 0.01612 3.0
(5.8,21,21) 0.120 30.5

Table 3: Average MSE of set of gain from the roundabout vali-
dation tests

Sum of rewards

0.0 25 50 75 10.0 125 15.0 175
Episode

Figure 8: Roundabout training: Sum of rewards per episode

The chosen set of gains presents the lowest MSE
value, followed by (2.2,1,1) and (2.2,21,21). Also,
comparing the gains (1,1,1) and (5.8,21,21), it
seems that lower gain values produce lower
MSE. Contrary to the previous maneuver, all the
sets of gains presented very low standard devi-
ation values. The lowest o values are also found
closer to the chosen gains.

Overall, the performance of the system working
with the chosen gains, for both maneuvers, show
low lateral errors and MSE values. Tables 2-3 sug-
gest that the agent’s choice of gains is around
the values that minimize the average MSE. Al-
though the deviation observed in the error val-
ues lowers the accuracy of the agent, the lowest
MSE scores frequently belong to the chosen set of
gains.

4.3. Full System Testing
The system was tested while navigating in the en-
vironment illustrated in figure 12, following the ref-
erence path defined in red. The chosen gains
for the blue and red zones were, respectively,
(2.42,11.67,1.33) and (2.2,12.5,1.0) . The steering
angle range is reduced to 10° inside the orange
zones. For testing purposes, the speed limit im-
posed is 4 m/s (~ 14.4 km/h). The collision avoid-
ance method was tested by spawning a second ve-
hicle inside the green zone, blocking the system’s
path. When the vehicle detects an obstacle, the
High Level Controller imposes a new equation for
the linear velocity, defined as:
v =v; - (d;/20), (6)
where v; is the velocity of the vehicle when the ob-
stacle is first detected (20 meters away) and d; is
the distance to the obstacle registered by the sen-
sor at each time-step. The results are presented in
figure 11. It shows the trajectory performed by the
system, in blue, and the reference path, in orange,
with the second vehicle marked by a red rectan-
gle. The figure shows the system successfully fol-
lows the reference path, without any major errors
or collisions. The last portion of the trajectory also
shows the collision avoidance function in action,
identifying the second vehicle and coming to a full

TRAJECTORY

/

-92 =90 -88 -86 -84

Figure 9: Lane changing Validation Test: Trajectory

Table 4: Average MSE values of the system test using the cho-
sen sets of gains and sets of gains outside the cluster

Average MSE | o(e—3)
Caaiay | ooz | 53
Coaasno) | 0omi | 20
(?54522112211)) ’ 0.164 19.1

stop a few meters away from it, despite the refer-
ence path. This produces a slight deviation from
the reference path, the result of imposing w = 0
and ¢ = 0.

Table 4 shows the average MSE of the tests per-
formed with the chosen gains and other less pre-
ferred gains. The third column shows the standard
deviation, o, from the 10 samples registered for
each set of gains. The MSE values registered dur-
ing the final portion (green zone) were ignored.
The table shows the chosen set of gains produces
the lowest average MSE, with very low deviation
values. It is worth noting that, comparing to tables
2 and 3, the differences between average MSE val-
ues of each set of gains is close to none. This
suggests that this type of tuning has more impact
when applied locally (in a specific zone or for a
maneuver), rather than generally (throughout the
full path).

The results demonstrate all of the proposed func-
tions working correctly. The trajectory in figure
11 and the velocity values registered during this
test demonstrate that the system does not engage
in unsafe behaviour, like collisions or excessive ve-
locity. It also consistently follows the reference with
very little error. The MSE values in table 4 sug-
gest the chosen gains are in the neighbourhood of
values that overall minimize the trajectory error.

5. Conclusions

This work proposes a different approach to us-
ing a Reinforcement Learning algorithm in an au-
tonomous driving system: a “long-term” offline
tuning of the gains that requires the entire maneu-
ver to be executed to gather information and learn

TRAJECTORY

—40 -30 -20 -10 0 10 20

Figure 10: Roundabout Validation Test: Trajectory - the refer-
ence and the trajectory are superimposed

from it. This approach not only avoids dangerous
online fluctuations of the gains but also introduces
a way to adjust the gains to specific maneuvers or
zones inside a city. The drawback of this approach
is the training times, which could take as long as
a few hours per episode. This means that the al-
gorithm can only be trained with a significantly re-
duced number of episodes, compared to the most
common RL applications. For that matter, this ap-
proach would be used as a "long term” tuner, train-
ing the algorithm within several weeks, months or
years.

Meeting the Q-learning convergence conditions,
combined with the learning curves obtained, sug-
gest a proper implementation of the algorithm.
The validation tests performed to the chosen gains
suggest that the algorithm can tune the gains to
values that minimize the trajectory error. The re-
sults presented show that all the modules of the
system are working as intended.

During this project, RL has shown to be a good
approach when working with the CARLA simula-
tor and limited computational resources - by not
requiring labeled datasets or image processing, it
significantly reduces the computational require-
ments, while still providing adaptability and robust-
ness to the system. Using a simplified version of
the Q-learning algorithm also helped surpass the
shortage of computational resources, while seem-
ingly not jeopardizing the viability of the agent.
Although finding the best reward function was a
long trial-and-error process, experiments made
throughout this work suggested that multiple func-
tions could turn out similarly good results.

CARLA offers not only a vast range of tools to de-
velop self-driving autonomous vehicles but also a
good support network for problem-solving and soft-
ware improvement. Working with the CARLA sim-
ulator, however, proved to be one of the biggest
challenges of this thesis. Configuring it to per-
form the necessary tasks was a slow and difficult
process, but the biggest setback was the disper-
sion observed in the data acquired. This compro-
mised the performance of the agent. Future works

TRAJECTORY

120 €

100 -
80
60

>
40
20
o S—
-20

-80 -60 -0 -20 0
X

Figure 11: Full system test: Trajectory - the reference and the trajectory are

superimposed

include: A solution to working with the disper-
sion observed in the data acquired from the sim-
ulator: exploring longer in a vaster action space,
achieved by lowering the learning rate and increas-
ing the grain of gain tuning; Implementing a Neu-
ral Network to be used to identify the map zone the
vehicle is currently in; Upgrading the Q-learning
algorithm to a Double Q-learning algorithm, with
the only downside of doubling the memory require-
ments; Real-world application.

References

[1]1 S. Bari, S. Shabih Zehra Hamdani, H. Ul-
lah Khan, M. ur Rehman, and H. Khan. Ar-
tificial Neural Network Based Self-Tuned PID
Controller for Flight Control of Quadcopter;
Artificial Neural Network Based Self-Tuned
PID Controller for Flight Control of Quad-
copter. 2019.

A. G. Barto and S. Mahadevan. Recent Ad-
vances in Hierarchical Reinforcement Learn-
ing. Discrete Event Dynamic Systems, 13(4),
2003.

[2]

[3] M. Bojarski, D. Del Testa, D. Dworakowski,
B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba. End to End Learning
for Self-Driving Cars. 4 2016.

[4] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez,
and V. Koltun. CARLA: An Open Urban Driv-
ing Simulator. 11 2017.

[5] H. Hasselt. Double Q-learning. In J. Lafferty,
C. Williams, J. Shawe-Taylor, R. Zemel, and
A. Culotta, editors, Advances in Neural Infor-
mation Processing Systems, volume 23. Cur-
ran Associates, Inc., 2010.

[6] A. Hussein, M. M. Gaber, E. Elyan, and
C. Jayne. Imitation Learning. ACM Computing
Surveys, 50(2), 6 2017.

20

o Figure 12: Simulation map division

[7] B. R. Kiran, I. Sobh, V. Talpaert, P. Man-
nion, A. A. A. Sallab, S. Yogamani, and
P. Perez. Deep Reinforcement Learning for
Autonomous Driving: A Survey. IEEE Trans-
actions on Intelligent Transportation Systems,
2021.

[8] P. Kofinas and A. I. Dounis. Fuzzy Q-learning
agent for online tuning of PID controller for DC
motor speed control. Algorithms, 11(10), 10

2018.

S. Kuutti, R. Bowden, Y. Jin, P. Barber, and
S. Fallah. A Survey of Deep Learning Appli-
cations to Autonomous Vehicle Control. 12
2019.

9]

[10] Luigi Glielmo. Vehicle-to-Infrastructure Con-
trol: Grand Challenges for Control. Technical

report, IEEE Control Systems Society, 2011.

V. Mnih, A. P. Badia, M. Mirza, A. Graves,
T. P. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous Methods for
Deep Reinforcement Learning. 2 2016.

(1]

[12] M. Quigley, B. Gerkey, K. Conley, J. Faust,
T. Foote, J. Leibs, E. Berger, R. Wheeler, and
A. Ng. ROS: an open-source Robot Operating

System. Technical report.

Q. Shi, H. K. Lam, B. Xiao, and S. H. Tsai.
Adaptive PID controller based on Q-learning
algorithm. CAAI Transactions on Intelligence
Technology, 3(4), 2018.

[13]

[14] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. The MIT Press,

2nd edition, 2018.

[15] C. J. C. H. Watkins and P. Dayan. Q-learning.
Machine Learning, 8(3-4), 5 1992.

[16] D. Zhao, B. Wang, and D. Liu. A supervised
Actor—Critic approach for adaptive cruise con-
trol. Soft Computing, 17(11), 11 2013.

10

