
Tuning Trajectory Following Controllers for Autonomous
Cars Using Reinforcement Learning

Ana Vilaça Carrasco

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisor: Prof. João Fernando Cardoso Silva Sequeira

Examination Committee

Chairperson: Prof. Francisco André Corrêa Alegria
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December 2021





Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the

requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.

i



ii



Abstract

Over the years, autonomous vehicles rapidly became the most popular research field of the automo-

tive industry. In the past decade, Machine Learning (ML) has been one of the most popular approaches

for solving the autonomous driving problem, more specifically Reinforcement Learning (RL) and Deep

Learning (DL). When designing an autonomous vehicle, a common strategy involves using ML methods

to tune the parameters of the vehicle’s controller.

This thesis proposes the use of a Q-Learning algorithm to train an agent to tune the parameters of a

trajectory controller. This controller is used on a system designed to perform two maneuvers and is also

capable of avoiding frontal collisions and controlling velocity and steering angle range. A framework

allowing a Q-learning based system to work with the CARLA simulator is introduced.

Initial tests were performed to the simulator to evaluate its performance. The results after the training

demonstrate an appropriate implementation of the algorithm. A custom environment was created to test

all the functions of the system, as well as the quality of the tuned gains. The results show the system

performing all the functions as intended. They also suggest the gains were appropriately tuned, attesting

to the success of the proposed algorithm.

Future works include real-world experimenting with the system, upgrading the Q-learning algorithm to a

Double Q-learning, and adding a Neural Network for image processing of the environment.
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Resumo

Na última década, Machine Learning (ML), mais especificamente Reinforcement Learning (RL)

e Deep Learning (DL), têm sido uma das abordagens mais populares para a resolução do problema

da condução autónoma. Na concepção de um veı́culo autónomo uma estratégia comum envolve a

utilização de métodos de ML para afinar os parâmetros do controlador do veı́culo.

Esta tese propõe a utilização de um algoritmo Q-Learning para ensinar um agente a afinar os parâmetros

de um controlador de trajectória. Este controlador é utilizado num sistema concebido para efectuar duas

manobras, ser capaz de evitar colisões frontais e controlar a velocidade e o limite do ângulo de direcção.

É introduzida uma framework para um sistema baseado em Q-learning que trabalha com o simulador

CARLA.

Começou-se por testar o desempenho do simulador. Os resultados após o treino do agente demon-

stram uma implementação adequada do algoritmo.

Foi criado um ambiente personalizado para testar todas as funções do sistema, bem como a qualidade

dos ganhos afinados. Os resultados mostram a execução de todas as funções da forma pretendida e

sugerem que os ganhos foram afinados de forma adequada, provando o sucesso do algoritmo proposto.

Trabalhos futuros incluem testar o sistema no mundo real, actualizar o algoritmo para um Double Q-

learning, e adicionar uma Rede Neuronal para processamento de imagem do ambiente.

Palavras Chave

Aprendizagem Autónoma, Reinforcement Learning, Veı́culos Autónomos, Inteligência Artificial, Q-Learning
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Chapter 1

Introduction

This section introduces the fields of Autonomous Driving Systems (ADSs) and Machine Learn-

ing (ML), as well as applications of ML technologies in autonomous driving. The motivation and proposed

work for this thesis is defined. A table of concise descriptions of the most relevant concepts addressed

in this section is provided in the appendix A. The contributions of this work are addressed in the last

section.

1.1 Motivation and proposed work

The initial idea for this thesis was to create a ML based system capable of automatizing the process

of tuning the controller gains, implemented in a fully autonomous vehicle. Initially, the plan was to have

one or more autonomous agents programmed to optimize the gains based on different characteristics

of the environment - the curvature of the road, the number of obstacles around the vehicle, the type of

street - or even based on variables like the trajectory errors, velocity or acceleration.

This thesis proposes a system with a modular architecture and a Reinforcement Learning agent for

lateral and longitudinal control of a vehicle. This agent is trained for offline tuning of the trajectory

control gains, to minimize the trajectory errors. The trajectory controller is a proportional controlle

defined by three gain values, as expressed in equations (3.3)-(3.5).The Reinforcement Learning (RL)

agent, using a discretized tabular Q-learning algorithm, is trained to fine-tune these gains to perform

two maneuvers: lane changing and roundabout navigation. The system is also programmed to

control the vehicle’s velocity and steering angle range and to avoid frontal collisions. The CARLA Sim-

ulator [1] is used to train and test the proposed system. The simulator communicates with the system

1



through a ROS [2] bridge.

The following are the goals of this project:

1. Create a Reinforcement Learning agent and, using a simple Q-learning algorithm, train it while

performing the two maneuvers (lane changing and roundabout navigation) to tune the set of gains

to each maneuver;

2. Build a module that can identify when to perform each maneuver and communicate with the RL

agent to adjust the gains appropriately;

3. Build a safety module that controls the vehicle’s velocity and steering angle range and avoids

frontal collisions.

The contributions of this work are presented in section 1.6. Section 2.4 explains the thought process

behind some of the decisions made by reviewing some architectures contained in the literature that

inspired those decisions1.

1.2 Autonomous Driving Systems (ADSs)

Although autonomous driving has been a research field since 1926 [3], it was only in the 1980s that

Ernst Dickmanns [4] designed a vision-guided driverless van, which made a breakthrough in the area

by introducing computer software to the field of autonomous driving. In the following decades, world-

wide research in car automation grew exponentially, and by 1995 there were already cars operating with

Neural Networks (NNs). In the early 2000s, DARPA (Defense Advanced Research Projects Agency)

brought forward unmanned ADSs with the ability to navigate difficult off-road terrain and avoiding obsta-

cles [5]. Nowadays, there is an ongoing race to achieve full autonomous driving, with Waymo (Google)

and Model S (Tesla) in the lead, each betting on different architectural approaches. While better hard-

ware can have a significant impact on the performance of the vehicle, it can be argued that taking the

lead on the market mostly depends on the development of better software [6].

The SAE Standard J3016 [7], identifies 6 levels of driving automation: Level 0 is defined by a full-

time performance by the human driver; Level 1 is defined by having some driver assistance system of

either steering or acceleration but expecting the human driver to perform all remaining tasks; On the

second level, the human driver performs part of the dynamic driving task; On the third level the system

performs the dynamic driving task; At level 4 it is not expected of the human driver to intervene; At level
1The base code used for the work developed in this Thesis can be found in this GitHub repository:

https://github.com/anavc97/Thesis-MEEC-IST-2021.git . Please contact the author to access the contents
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5 the full-time performance is made by the system, under all circumstances and environments. As of

today, the leading commercial vehicles have not reached the last level of automation.

Autonomous driving technologies have a vast range of applications, the most notorious being fully au-

tonomous vehicles, but also other explored technologies like Vehicle-to-vehicle and Vehicle-to-Infrastructure

[8]. Partially autonomous technologies can be found in many applications (Adaptive Cruise Control

(ACC), Parallel Parking Assist). Massive implementation of fully autonomous vehicles can have count-

less advantages: avoiding accidents, reducing congestion, optimizing resources like energy, time and

money, and a more Eco-friendly impact in the world.

1.3 Machine Learning (ML)

The history of Machine Learning starts with Warren McCulloch & Walter Pitts(1943) [9] and Donald

Hebb (1949) [10], laying the grounds for the work on Neural Networking. In 1980 Kunihiko Fukushima

introduced the Neocognitron, the first Convolutional Neural Network (CNN) architecture. Not long after

the Recurrent Neural Network (RNN) (Michael I. Jordan, 1986) and the Long Short-Term Memory

(LSTM) (Hochreiter & Schmidhuber, 1997) were born (table A.1).

Up until the late 80’s, ML development was mostly focused on the Deep Learning (DL) area. However,

another ML area known as Reinforcement Learning (RL) came along. The Q-learning algorithm is

developed in 1989 (Christopher Watkins) [11], which greatly improves the practicality and feasibility of

Reinforcement Learning, consolidating the presence of this area in the research field. The next years

saw exponential growth, especially in the field of DL.

Designing an autonomous agent based on ML requires choosing the learning strategy, the training

algorithm and the Neural Network architecture (for DL agents):

• Learning Strategy: Choosing the best learning strategy may depend on the input, output and

available data and resources. In Machine Learning, most training algorithms fall into one of three

categories: Supervised Learning (SL), Unsupervised Learning (UL) (Table A.1) and Reinforce-

ment Learning (RL), the latter being where this work focuses on.

• Training Algorithm: The algorithm chosen to train the agent influences the performance of the

agent and the training time. Moreover, choosing the values for the algorithm’s hyper-parameters

is usually a long process of trial-and-error [12]. In Reinforcement Learning, algorithms are broadly

divided into three classes: value-based, policy gradient and actor-critic algorithms (Table A.1).

SL problems can broadly be grouped into two types of problems: classification problems, which

3



consist of predicting a discrete class label, and regression problems, which consist of predicting

a continuous quantity.

• Neural Network Architecture: To design a DL agent, many types of neural network architectures

are used, the most commonly seen in the field of ADSs being CNN, RNN, LSTM and Fully Con-

nected Neural Network (FCNN) architectures (see chapter 2). While simpler networks offer faster

results for less computational resources, more complex networks offer higher performance and

robustness to the system.

Q-Learning Algorithm

In Reinforcement Learning, the autonomous agent learns to improve its performance at an assigned

task by interacting with its environment - it learns what actions to perform in which situations in order to

maximize a reward function [13]. A RL problem defines a state space, S, a set of actions, A, a state

transition probability matrix, P and a reward function, Rs(a), that associates a reward value with

each state-action pair, (s, a). The RL agent is to learn a policy π which maximizes the rewards.

Q-learning [11] is a model-free RL algorithm, meaning it does not need to define a state transition

probability matrix (generally used to model the system). A simple Q-learning application defines a table,

named Q-table and shaped [state, action], with an utility value for each pair. It initializes it randomly

and then updates those utility values (known as the Q-values) by greedily maximizing a value function.

Equation (1.1) shows the new kind of value function proposed by this algorithm, called the Q-function:

Qnew(st, at)←− (1− α) ·Q(st, at) + α · (rt + γ ·max
a

Q(st+1, a)), (1.1)

where Q(st, at) is the Q-value of the state-action pair before the update, α is the learning rate (0 < α ≤

1), rt = R(st, at) is the expected reward value associated with taking the action at in state the state st,

γ is the discount factor and max
a

Q(st+1, a) is the estimate of the optimal future value. This equation

can be understood as: the new Q-value of the (s, a) pair is the expected reward for executing action a

in state s plus the best Q-value it can produce in the new state, s′, weighted by γ. In [11], the learning

rate value is defined for each episode, αn, where n is the nth episode.

Learning Rate and Discount Factor

The learning rate, α, determines how much the new information acquired overrides the old information.

A value of 0 will make the agent learn nothing from the new acquired information, while a factor of 1 will

make the agent completely ignore prior knowledge in turn of the new information, making the learning

process quicker (but not necessarily better).
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The discount factor, γ, models how much the future rewards are worth comparing to the current reward,

rt. A value of 0 will make the algorithm ”short-sighted” by considering only the current rewards, while

a factor near 1 will make the algorithm look for long-term high rewards. Generally, this value should be

very close to 1.

Convergence Theorem (Watkins & Dayan) [11]

Given bounded rewards |rn| ≤ R, learning rates 0 ≤ αn < 1, and

∞∑
n=1

αni(x,a) =∞ ,
∞∑
n=1

[αni(x,a)]
2 <∞ , ∀x, a, (1.2)

then Qn(x, a)→ Q∗(x, a) as n→∞, ∀x, a, with probability of 1.

Using the nomenclature of this thesis, x is the current state s, R is the reward function R(s, a), Q∗ is the

Q values for an optimal policy, n is the number of episodes and ni(x, a) represents the index of the ith

time that action a is tried in state x. This theorem defines the following conditions for convergence:

1. The reward, rt is drawn from the reward function R(s, a);

2. The learning rates of each episode, αn, must satisfy the two properties of equation (1.2);

3. The (s, a) are visited infinitely often, i.e., n→∞;

If these conditions are met, the function converges to the optimal solution, Q∗(s, a) with a probability of

1.

Exploration vs. Exploitation

The training process can be divided into two stages, the exploration phase, when the algorithm is

mostly taking random actions to ”explore” the environment, and the exploitation phase, when the al-

gorithm prioritizes past knowledge and always picks the best possible action for the current state. This

work uses the ε-greedy policy to balance exploration and exploitation:

at =

{
argmaxQ(st) with probability 1− ε

random action with probability ε
(1.3)

where ε represents the probability of choosing a random action, i.e., exploring. The action selection

policy is used with an ε value that decays over time.

The Q-learning algorithm implemented is explained in more detail in section 3.3.1.
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1.4 Machine Learning in Autonomous Driving Systems

Since the early 1980s, Machine Learning-based architectures have been one of the most popular

approaches when designing ADSs. One of the first to research and implement Neural Networks in

an ADS was Carnegie Mellon University, with Navlab [14], in 1984-1986. Pomerleau and his team

presented ALVINN(1989) [15], a simple system with an end-to-end architecture that could successfully

follow a road. Since then, projects like DARPA Grand Challenges brought forward multiple autonomous

vehicles and, in 2007, fully autonomous vehicles were driving successfully for miles.

Machine Learning offers many benefits for the field of ADSs: self-optimisation based on collected data

and new environments, the ability to specify the desired behaviour of the system, and increased gener-

alisation capacity. Machine Learning, especially Deep Learning, has become the primary interest of the

autonomous vehicle field.

1.4.1 Architecture Approaches

There are two different approaches when designing the architecture of an ADS: a modular archi-

tecture, with a perception-planning-control pipeline, or an end-to-end learning architecture, where the

sensor data is directly mapped to a control output.

(a) Modular Architecture

(b) End-to-end Architecture

Figure 1.1: Generic architecture approaches

Modular architecture (figure 1.1(a)) usually consists of a perception module, a high-level and low-level

path planning module, and a control module: the perception module is responsible for gathering the

sensory information, mapping the surroundings of the car and localizing it; The high-level path plan-

6



ner consists of obtaining a reference path between the origin and the destination; the low-level path

planner operates more locally than the previous module, such as to calculate trajectories around ob-

stacles in the road; The control module is responsible for communicating with the autonomous vehicle,

providing the appropriate control actions, like desired steering angle, velocity, or brake. Architectures

based on modules separate the challenging tasks of autonomous driving into simpler and smaller prob-

lems, offering the advantage of expertly crafting the individual modules, either with ML or more classical

methodologies, but also integrating functions on top of these modules - a redundant but reliable de-

sign [16].

An end-to-end learning architecture (figure 1.1(b)) is significantly simpler, with only one module, gen-

erally with a ML design, connecting directly the perception system with the autonomous vehicle. End-to-

end architectures have been shown to improve the performance significantly in several robotic tasks [17]

and do not require any intermediate engineered modules. The optimization offered by this approach

directly mimics the performance demonstrated by the human drivers, a desirable feature. However, an

architecture only based on ML lacks transparency on a concerning level: it is very difficult to under-

stand how the ML agent makes decisions, and thus very difficult to ensure a safe and desired behaviour

(this problem is known as the “black box” problem). Applying machine learning methodologies to only

part of the modules and combining them with other classical methodologies gives the opportunity to

ensure some level of safety and apply more restrictions to the behaviour of the agent. This is the main

advantage explored in this thesis.

1.4.2 Partial and full vehicle control

Over the years, researchers have applied machine learning techniques to three different types of

controls: lateral control, longitudinal control, and full vehicle control, where multiple tasks can be

performed.

Lateral control consists of controlling the position of the vehicle on the lane, while longitudinal control

consists of controlling the distance to the cars in front and also avoid rear-end collisions. Although

generally focusing on one of the two types of control, more recent research explores the simultaneous

lateral and longitudinal control. These three types of controls face different challenges, generally differing

in type of learning strategy, Neural Network architecture, and algorithms used (see 2.2.4).

Different vehicle controls perform different tasks: longitudinal control performs tasks like maintaining a

certain distance from the vehicle ahead, collision avoidance, safety and comfort balance, and emergency

braking maneuvers. Lateral control tasks include road following, navigation around obstacles, and lane

change maneuvers. Combining multiple tasks is explored when researching full vehicle control, which
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translates in goals like predicting desired steering angle and acceleration simultaneously, mitigating

collisions or navigating through busy streets.

1.5 Organization of the Document

The structure of this thesis is the following: The two key topics of this study, ADS and ML, as

well as the intersection of these two, are introduced in chapter 1. It also explains the motivation and

describes the contributions of this work. Chapter 2 reviews the most important technologies of these

areas, focusing on ML applied to the ADS industry. It also includes a section outlining the most common

challenges to constructing an AI-based autonomous vehicle architecture. The chapter ends with a look

at some architectural examples that influenced the choices made for this project. In chapter 3, the

system’s architecture is laid out. It is then broken down into modules, each of which described in greater

detail. Chapter 4 describes the tests performed to the system and discusses the results from those tests.

Finally, the conclusions of this work, as well as the proposed future work are presented in chapter 5.

1.6 Contributions

These are this work’s contributions:

• Propose an offline approach to gain tuning: instead of tuning the gains while driving the vehicle

through live updates of the Q-table values, this thesis proposes updating the Q-table and tuning

the gains every time a specific maneuver is performed by the vehicle - the data is collected and

processed afterwards, and the gains adjusted accordingly. This would mean that the gain tuning

would occur in an extended period of time, rather than at each iteration. Offline tuning avoids

possible sudden gain changes while driving, which can cause safety issues. This approach also

allows the user to tune the gains to specific environments inside a city, which can be beneficial to

use in well-known dangerous zones;

• Test the efficacy of a simplified algorithm: demonstrate that a Q-learning algorithm with limited

state-action space and constricted combination of gains can still produce satisfying results. A

simplified algorithm brings advantages like: code errors are less likely, easier to troubleshoot,

easier to implement in a project with limited computational resources, and easier transition to a

physical system;

• Integrate a Q-learning agent with the CARLA simulation environment;
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Chapter 2

Literature Review

This chapter reviews the latest technologies on the ADS and ML fields, including a review

of the relevant hardware used in autonomous vehicles and a review of the most popular and common

Machine Learning applications in this field. The third section discusses the most common chal-

lenges faced when designing an autonomous driving system. The last section presents some of the

related work that inspired the proposed architecture.

2.1 Sensors

The perception system, an essential part of an ADS, is made up of a set of sensors that use fusion

techniques to combine the gathered information about the environment [18]. The general functioning of

an ADS is heavily based on the perception of its surroundings, hence the perception system has a

significant impact on the system’s performance. The quality of the perception system is a key factor for

commercial applications of autonomous driving technology in the real world.

The sensors that usually make up perception systems are: Ultrasonic, RADAR, LiDAR and cameras.

Sensor fusion manages the advantages and disadvantages of each sensor to improve the quality of

the data perceived. The list below presents a summary of how these sensors work, as well as the

advantages and disadvantages of their application in the context of ADSs.

• Ultrasonic: They use sonic waves to measure the distance to an object. In vehicles, they are es-

pecially used in parking systems or other short-distance measurements at low velocities. They are

cheap sensors that work well with any material and also in dusty or humid environments. However,

they tend to produce false positives when bouncing and have blind zones in the measurements,

9



which can lead to safety risks in some situations.

• Radio Detection And Ranging (RADAR): Measure the distance between the emitter and other

objects by calculating the time between the emission of a radio signal and the received echo.

RADARs detect short-range targets in a wide range around the vehicle, with high accuracy, provid-

ing information about distance, direction and speed of the targets. RADARs are especially good

in all weather conditions. These two particularities make them significantly improve safety and

reduce human decision-making burdens. On the other hand, they can produce false positives due

to bouncing of the emitted signal, have reduced individual Field of View and are known for a lack

of precision.

• Light Detection And Ranging (LiDAR): Measure the time between a pulsed infrared light emis-

sion from a laser diode until its reception by an emitter. They are known for their high resolution

and great accuracy in perception of the environment, even in the dark. They are usually used in

Adaptive Cruise Control, object identification and avoidance or simply 3D mapping. These are

very expensive sensors that are affected by weather conditions such as rain, snow, fog or dust

due to the diffraction of light in these conditions. They also reduce their operating range detection

depending on the reflectivity of the targeted objects.

• Cameras: They are the most commonly used sensors in ADS perception systems, with the pur-

pose of obtaining information about the surroundings with high-quality colour information and high

resolution. They are especially well suited for object recognition and are also very cost-efficient.

The most common cameras, known as visible cameras (for example, RGB) are highly affected by

variations in lighting conditions, rain, snow, or fog, do not work in the dark and lack depth percep-

tion. In addition, high-resolution images are highly dimensional and compact a lot of useless data,

which usually requires the implementation of techniques that extract only useful information.

2.1.1 Sensor Fusion

The goal of sensor fusion is to improve the measurement of two or more sensor data by applying

redundant data measurements and combining them in an algorithm. There are several types of fusion

methods and algorithms, either based on Gaussian filters, probabilistic inference or Machine Learning

techniques. It is essential to obtain the best possible performance for the perception system. For

instance, RGB cameras usually need to be complemented with other sensors that work better in the

dark or with rain, to compensate for their big dependence on lighting conditions. Another problem worth

considering when implementing sensors in ADS is the situation where one or more of the sensors

malfunctions or is compromised. Having multiple sensors of the same type ensures that the information
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is not lost in this situation, or it can be compensated by other types of sensors through fusion methods.

In the ADS industry, there is little consensus on what should be the approach to a sensor system

implementation: camera based or LiDAR based [19]. Nevertheless, there is no argument against having

multiple, different sensors working together.

2.2 Machine Learning applications in Autonomous Vehicles

Three domains can be distinguished when designing an intelligent agent: learning strategies,

Neural Network architecture and training algorithm1.

2.2.1 Learning Strategies - Reinforcement vs. Supervised Learning

Reinforcement Learning is distinguished for the self-improvement and generalisation capabilities it

offers: systems operating with RL are particularly good at learning from past experience and adapting to

new environments. This strategy is suitable for typical time-sequential problems, where the completion

of a task involves a sequence of actions that can impact each other, which is the case for autonomous

driving. Unlike SL, it does not require a labeled dataset and instead offers the possibility of explicitly

defining a desired behaviour for the agent (reward function). This may be an advantage or a disadvan-

tage, depending on the complexity of defining the function. Furthermore, RL agents take notoriously

more time to train compared to SL agents, and their training in the real world may be challenging, since

an agent’s interaction with the environment may raise safety and cost complications. Supervised Learn-

ing offers a high-speed training convergence and does not require specifications on how the agent must

reach its goal. An agent’s training is based on labeled data, which can be unfavorable for multiple rea-

sons: acquiring and labeling data can be a very slow process (alternatively, one can use predefined

data, but the sensor setup has to match the one present in that data); labeled data may contain biases

towards certain actions or situations; agents trained with labeled data usually present less adaptability

to new environments compared to agents trained with RL.

While with Supervised Learning, ADSs are able to imitate a human driver, with Reinforcement Learning

the vehicle is able to learn to drive better than a human, since it is learning by itself. On the other hand,

choosing RL can exhaust the resources of a project, without guaranteeing applicability to the real world.

Hybrid learning methods, like using SL as a pre-training step to a RL agent, try to take advantage of

both faster learning processes and better self-adaptation to new environments.

1The information from this section was mainly based on the works of Kuutti S. et al. [20] and Grigoresu et al. [19].
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2.2.2 Neural Network Architectures

The most common neural network architectures used in the field of autonomous driving are CNN,

RNN, LSTM and FCNN. The exceptionally good results in solving image processing and temporal

sequence data processing problems are what make these architectures popular for autonomous vehicle

applications. Other [20] feedforward architectures, while less frequent, also appear in the literature.

Although RNN and LSTM applications produce good results [21, 22], CNNs are still the broadly used

architecture.

CNNs are one of the most successful models for learning complex features from raw input data, espe-

cially high dimensional images, showing superior performance on large data sets, as they learn features

automatically from training examples, without requiring any manual optimization [23]. Their ability to

extract relevant features from images makes them a suitable choice for sensor fusion [24]. However, the

autonomous driving task is usually met by problems of temporal dependencies, which is where RNNs

are introduced.

RNNs can integrate past information, allowing both visual and temporal dependencies to be learned,

therefore solving different autonomous driving scenarios with incomplete information. However, they

are not able to memorize long-term dependencies, which is why some works opt for an approach with

LSTM networks. Unlike RNNs, LSTMs have a long-term memory that selectively remembers or forgets

information which makes them more efficient in dealing with long-range temporal dependencies.

2.2.3 Training algorithms

One of the most commonly used RL algorithms in the ADS context is Q-learning or variations,

some of the most relevant being Hierarchical Q-Learning [25], created to solve problems arising from

large state-action spaces, Double Q-Learning [26], that solves the poor performance of the Q-learning

in stochastic environments, and SARSA [13], that prioritizes the safety of the system over optimality.

The Hierarchical Q-Learning and SARSA algorithms were not considered better alternatives for this

work’s implementation: the state-action space is relatively small and, since the work is exclusively ap-

plied in a simulator, optimality is preferred over safety. Double Q-Learning was considered a potential

improvement to this thesis, since it does not increase the computational complexity. Nonetheless, this

improvement was pushed to future work. In the context of autonomous driving, Deep Q-Networks (ta-

ble A.1) are a popular choice, as they make it possible to apply Q-learning methods to a high dimensional

state-action space, and optimize the training process with NN as function approximations.

Other popular RL actor-critic algorithms include Supervised Actor-Critic (SAC) [27] and Asynchronous
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Advantage Actor-Critic (A3C) (Table A.1). By having a combination of value-based and policy gradient

approaches, these algorithms find a way to have a better performance than the other two algorithms sep-

arately. In some works it is also mentioned a subset of Reinforcement Learning called Imitation Learn-

ing [28]. Some Imitation Learning methods, like Inverse Reinforcement Learning (IRL)(table A.1),

appear in the ADS context to overcome obstacles like dataset biases and learning complex reward

functions.

In Supervised Learning (SL) applications to ADS, Neural Networks are the most popular approach.

These are used to solve either classification or regression problems [29, 30], or are used as function

approximators for the RL algorithm. When using Neural Networks, the most commonly used optimizers

are Stochastic Gradient Descent (SGD), which is the basic algorithm, and its variants, like AdaBoost,

AdaGrad and Adam. Although some works claim better results from one or two optimizers, it is still a

highly argued subject.

2.2.4 Partial and full vehicle control

In the context of lateral control, Supervised Learning with an end-to-end architecture is the most

common approach. Lateral control techniques are characterized by using the steering angle as output

and camera images of the environment as input of the network, generally using multi-layer CNN archi-

tectures to process these images. Reinforcement Learning has also been implemented, showing higher

adaptability than SL solutions.

One of the most well-known systems for longitudinal control is the Adaptive Cruise Control (ACC), and

a commonly used solution for these types of systems is a Deep Neural Networks (DNNs) combined with

RL since it does not require the knowledge of the system’s complex model and shows strong adaptability

to new complex environments. The most common NN inputs and outputs found in this type of control

are relative velocity, acceleration and/or distance as input and desired acceleration or accelerate/break

actions as output.

Full vehicle autonomy is a relatively new area of research. Recent research shows that robust high-

performing full vehicle autonomy is still out of reach, the main constraint being the significant complexity

of the tasks performed by the agent. A variety of learning strategies have been explored, however

showing a preference for end-to-end architectures with Supervised Learning and CNNs. The inputs are

generally camera images and the outputs are steering and acceleration variables. Ideally, the strategies

tested in this context provide robustness to noise, deviations to trajectory and other errors, support to

high-speed driving, and allow the system to take more types of inputs into account. Although the results

show progress towards these goals, full vehicle autonomy still shows a lack of adequate performance
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and robustness compared to partial autonomy.

2.3 Challenges

The past sections have shown that, over the last years, there has been a lot of research around

the applications of Machine Learning to autonomous vehicle control, which has been supported by

tremendous technological growth in many related areas. However, it still faces a significant amount of

challenges, especially with real-world applications [20]. This section reviews the biggest technological

challenges commonly faced by Machine Learning applications in the context of autonomous driving. It

is important to note that issues such as artificial intelligent machine ethics, cost efficiency, interaction

with humans and lack of legislation and regulation are also present in this research field, but are not the

focus of this section.

• Computation and Dataset: Two of the biggest obstacles faced by Machine Learning applications

are the high computation complexity of the methods and the size of the dataset. Deep Learn-

ing methods require large amounts of data and a significant time to train a network adequately.

While bigger and more diverse datasets provide more robust and reliable systems, computational

complexity grows exponentially with the number of dimensions of an environment (Curse of Di-

mensionality), making the training process slower for more complex environments. Common

solutions to reduce training data requirements or training times are based on combining RL with

SL: RL provides higher adaptability for the system in new and complex environments while the

prior knowledge of SL speeds up the learning process, exploiting the advantages of both methods.

It is also important to ensure the datasets are diverse and do not include biases. Simulated envi-

ronments often produce datasets with harmful biases. A solution here is to use methods such as

IRL to learn from human driver samples. [19]

• Architecture and general design: In Reinforcement Learning applications, defining an adequate

reward function is essential but usually very difficult. IRL is known to help with this obstacle since it

provides a natural system for optimizing the reward function without the need to define it empirically.

However, IRL is usually expensive to run and needs a lot of human driving data to obtain decent

results. Also, in most cases, the human driver cannot cover all the possible states that the agent

may encounter during training, which makes for an incomplete support [31]. Another challenge

faced is reward hacking, which is an effect that occurs when the agent exploits the reward function

in a way that does not align with the developer’s objectives for the agent [20].

• Adaptability and generalization: An autonomous vehicle encounters a very wide range of in-
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consistent environments, which is why it is vital to ensure the system can generalise well, i.e.,

interact properly with a completely new environment. Generalisation is difficult to guarantee, and

it is virtually impossible to test the vehicle in all the scenarios it could encounter. Simulators are

usually used to train the system on a diverse set of environments, but these systems often fail to

generalise well in real environments [24]. The usual workaround for this problem is to avoid overfit-

ting - when the model fits the training data too well and is not able to generalise well to new data -

during training. There are no known methods to choose when to stop training the model (stopping

point), but it is advised to implement a three dataset policy: a set for training, a set for validation

and a set for testing. By observing the error in the validation dataset, it is possible to infer and

avoid overfitting. Validation sets can also help choose between different network architectures and

parameters.

• Verification and Validation: To properly validate the performance and safety of the system,

rigorous testing must be applied. This includes testing in conditions as similar and situations as

diverse as the ones encountered by these systems in the real world. Testing in the real world can

often be expensive, time-consuming and unsafe. That is why simulation studies are becoming the

dominant method of study in this field [20]. However, while cheaper, more flexible and faster, simu-

lators difficult the process of transferring the system to the real world. The developer must ensure

the agent’s policies do not overfit to the simulation environment, which is why it is important to

validate both the model and the simulation environment. The quality of the training must also

be validated.

• Safety: Safety is, undoubtedly, one of the most important properties of an autonomous vehicle.

Guaranteeing that these systems are safe is a top priority since a failure or malfunction can have

devastating consequences. However, the solutions provided by systems operating with Machine

Learning methods are increasingly difficult to interpret and control. The lack of transparency of

these systems is known as the black box problem - if we do not understand how the system

makes its decisions, ensuring it does not make unsafe decisions in new environments becomes in-

creasingly difficult [20]. To prepare the vehicle for any dangerous scenario, it is common to train the

system in unsafe and unpredictable situations, while always maintaining safety during training and

testing in the real world. Approaches to ensure functional safety include combining reinforcement

methods, that provides superior adaptability, with traditional control methods, increasing safety

through traditional control theory [32].
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2.4 Related Work

When designing an intelligent ADS, the most popular approach is a SL-based end-to-end architec-

ture with a complex neural network. Bojarski et. al [33] proposes an end-to-end architecture with a

9-layered CNN trained with Supervised Learning methods to map RGB images from a single front-

facing camera directly to steering commands for the vehicle. The authors claim the proposed approach

to be surprisingly powerful, showing high adaptability to different conditions and environments with a

simple architecture and small amounts of training data. However, besides the lack of transparency of

an end-to-end architecture, the proposed NN architecture adds great computational complexity to the

system, while also requiring large datasets to be created for training.

Although less common, ML methods applied directly to the control module are also present in the litera-

ture, including for Proportional Integral Derivative (PID)-controller tuning. Bari S. et. al [34] proposes the

use of a simple NN for online tuning of a PID controller’s parameters in a highly non-linear system

such as a Flight Control of a Quadcopter. The proposed NN has three inputs, a hidden layer and the

outputs are the gains Kp,Ki and Kd. This work showcases the benefits of applying ML directly in the

Control module, and also demonstrates the improvements of ML over conventional offline PID tuning

methods. Despite that, the testing environment is simplified and the proposed system’s robustness is

not comparable to an autonomous driving system.

The works from Panagiotis Kofinas et. al [35] and Shi et. al [36] both propose a RL approach for

tuning PID controllers. Shi et. al [36] proposes the tuning of 2 PID controllers’ gains in a simulated

cart-pole system, using the Q-Learning algorithm. The agent is composed of 6 discretized Q-tables

(one for each gain of each PID), with an adaptive α method (Delta-Bar-Delta) and ε-greedy policy for

action selection. This work argues in favour of introducing the adaptive properties of the Q-Learning

algorithm directly into the control module through PID tuning. On the other hand, a system with 6

Q-tables requires extensive, and sometimes infeasible training times. Panagiotis Kofinas et. al [35]

proposes a hybrid Zeigler-Nichols (Z-N) Reinforcement Learning-based PID tuner to control the

speed of a DC motor, where the PID gains are set by the Z-N method and then are tuned online through

a fuzzy Q-learning agent. The agent can increase or decrease the gains from 0% up to 50% of

their original values. The agent’s states and reward function are defined by the error, and the actions

are 3 variables defining the percentage of change of each gain. Fuzzy logic is used to allow the Q-

Learning to be applied in a continuous state-action, despite increasing the complexity of the system.

The authors argue that using a NN as a function approximator would result in a very slow learning rate

and, although simpler, discretizing the action-state space can lead to sudden gain changes, which may

cause dangerous behaviours.
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The work of this thesis is inspired by [35]: it proposes a RL agent applied in the motion control module to

tune the gains of a controller. It is argued that, although it takes more time to train, a RL agent provides

desirable adaptability and computational simplicity, while also facilitating the workload by not requiring

a dataset to train. Furthermore, discretizing the Q-table and limiting the state-action space reduces the

training times.

The work of [36] and [35] signify the viability of using a Q-learning algorithm to tune a controller’s gains

in a simulated environment. Based on that, a basic Q-learning algorithm with a discretized action-

state space is proposed. As mentioned in [35], this approach enables sudden changes in actions,

which could lead to unwanted behaviours or even safety issues in future real-world applications. These

issues can be solved by working with a higher-level controller (trajectory controller), instead of the PID

controller. In any case, defining the control laws and setting gain limits help prevent these behaviours

from occurring. Furthermore, applying these ML methods only on the motion control module allows for

a high level of control over the system, as other modules may be added to build a ”safety net”, giving the

developer even more control over the system.

Despite the advantages, a considerable amount of hyper-parameters are involved in the RL agents, es-

pecially when training in different environments. This requires extensive trial-and-error testing to achieve

the best results, which is why training in a simulation is preferred. On the other hand, delays in the

communications between the system and the simulated vehicle lead to a large dispersion of the data

retrieved (see 4.1), which causes the training results to be less precise. This compromises the system’s

performance and even complicates a transition to a physical system.
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Chapter 3

System architecture

This chapter presents the proposed system’s architecture. This architecture can be divided

into 4 modules: the vehicle simulator, a high-level controller, a Reinforcement Learning agent

and a low-level controller. The simulation consists of a vehicle with multiple sensors attached. The

low-level controller drives the vehicle through a predefined reference path (a vector of evenly spaced

poses) by imposing values for velocities and steering angle. This controller is responsible for calculating

these values, with the goal of optimizing the vehicle’s behavior while performing certain maneuvers. The

optimization process consists of adjusting the set of gains used to calculate the velocities and steering

angle values to minimize the average error between the vehicle’s pose and the reference path. The

RL agent is trained to find the best set of gains for each maneuver. The maneuvers that were tested

were lane changing (to the right) in a straight road and circulating in a roundabout. The high-level

controller processes information from the simulator and communicates with the other modules, making

a bridge between them.

A diagram of the complete architecture is presented in figure 3.1:

Figure 3.1: Full system architecture
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The system works as follows: while the vehicle follows the reference path, the high-level controller

collects and processes data from the simulation sensors. Then, if necessary, it sends high-level control

actions to the low-level controller (see section 3.4). If it is necessary to perform any of the maneuvers,

it sends that information to the RL agent, which will then find the appropriate fine-tuned gains for that

maneuver. Those fine-tuned set of gains, (Kv,Kl,Ks), are then sent to the low-level controller to adjust

the steering angle, φ, the linear and the angular velocities, v and ws - these three values define a low-

level control action. The simulator also communicates directly with the low-level controller, sending an

estimation of the vehicle’s current pose. This estimation is made based solely on the vehicle’s odometry.

The tuning process is offline, therefore the gains are constant while the vehicle follows the reference

path, and will only change if the vehicle is prompted by the High-Level controller to perform one of the

mentioned maneuvers.

Essentially, the vehicle is expected to behave as a human driver would when facing different types of

environments. The gain adjustments should mimic the adjustment in the driving style a human driver

would display.

The next sections go into detail about each of the system’s modules.

3.1 Simulator

CARLA is an open-source simulator designed for autonomous driving research. It simulates ur-

ban driving environments, with multiple vehicle models, sensors, objects and pedestrians. CARLA is

grounded on Unreal Engine [37] to run the simulation. The vehicles inside the simulation have their

own controllers - these will be referred to as the simulation controllers. The RL agent is trained in

the simulated environment, while the low-level controller communicates with the simulation controller to

impose velocity and steering angle values.

The simulator has a bridge with ROS. This allows direct communication with the simulated vehicle,

through publishers and subscribers from this bridge, but it also provides a way to customize the vehicle

setup, which is initialized through a .launch file. The proposed setup is a ”Tesla Model 3” vehicle with

an obstacle detector sensor located on the vehicle’s bumpers, a speedometer, a collision detector sen-

sor and an odometry sensor. Since the obstacle detector sensor is not included in the CARLA ROS

bridge packages, this sensor is initialized separately from the rest of the setup. Figure 3.2 illustrates the

communication system provided by the ROS bridge:
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Figure 3.2: Communication system between the simulator and the system

The system communicates with the simulation controller through Ackermann Messages, which con-

sist of 3 main parameters: steering angle, speed and steering angle velocity. Each iteration, the sys-

tem uses the publisher ”/carla/ego vehicle/ackermann cmd” to send a message with updated values

for these parameters. The value for the steering angle is defined as φ, for speed is v and for steer-

ing angle velocity is ωs. Then, the simulation controller converts the Ackermann Messages into com-

mands that control acceleration and velocity through an integrated Python based PID.

The simulator communicates back with the client through subscribers, to topics such as ”/carla/ego vehicle/odometry”

for the vehicle’s odometry, ”/carla/ego vehicle/vehicle status” to check the vehicle’s current linear veloc-

ity, ”/carla/ego vehicle/collision” to check for collisions and ”/carla/status” to keep track of the simulation

time. Since the obstacle detector sensor is initialized separately from the rest of the setup, the data is

sent to the system by a publisher created in a separate script, which is marked in purple in figure 3.2.

3.1.1 Vehicle model

Figure 3.3 shows the coordinate system of the vehicles inside the CARLA simulator - this will be

referred to as the vehicle frame. The longitudinal movement of the vehicle is defined by the X-axis, with

the positive values corresponding to the forward movement and the negative values to the backward

movement. The lateral movement of the vehicle is defined by the Y-axis, with the positive values for

movement to the right and negative values for movement to the left. The Z-axis is aligned with the

vehicle’s center of mass, pointing upwards: Roll, pitch and yaw are defined in the figure by circular

arrows. Roll, in blue, is the angle around the X-axis. Pitch, in red, is the angle around the Y-axis. Yaw, in

green, is the angle around the Z-axis. Roll and pitch usually stay near zero. Yaw is the angle that defines

the vehicle’s orientation, with positive values for rotations to the right and negative values for rotations to

the left.

21



Figure 3.3: CARLA’s coordinates system

3.1.2 Simulation time

The simulation has its own clock, conducted by the server. This simulation time is generally slower

than real time. The time span between two simulation instances, or frames, called the time-step, can

be configured to be either variable - running as fast as it can - or fixed. For this project, the simulator

runs with a fixed time-step of 0.01 simulated seconds, which is equivalent to 100 frames per simulated

second. As previously stated, the topic ”/carla/status” is used to maintain track of the simulation’s current

frame - if 100 frames have passed since the start of the simulation, 1 simulated second has elapsed.

CARLA is built over a client-server architecture. The server runs the simulation while the client re-

trieves information and sends commands with changes in the world. The communication between

client and server can be asynchronous or synchronous. In this case, these communications run in

synchronous mode, which means the simulation runs as fast as the client can process the infor-

mation, and never faster. This allows for synchronization between sensors. The simulator was also

configured to wait for a new vehicle control command before processing the next frame (see syn-

chronous mode wait for vehicle control command in table B.1). This means that the simulation will

always wait for the simulation controller to process the last control command it receives.

Working with the CARLA simulator revealed to be one of the biggest challenges of this work. Choos-

ing the most appropriate configuration was vital to the quality of the work, especially the synchronous

mode. By forcing a synchronization between sensors, this mode allowed for more consistent results

from the simulator. However, while in this mode, the simulator had to wait for every sensor to process

the last information it acquired, which would, in turn, slow the processing speed of the simulator, some-

times making it unfeasible to run longer simulations. To avoid this, any sensor that was not necessary

to train the agent was disabled. Even so, initial tests still showed inconsistencies with the controller

measurements. The tests performed on the simulator and the low-level controller are presented in sec-

tion 4.1, evidencing this unwanted ”stochastic behaviour” and demonstrating how its preponderance

decreased by making changes to the code and the simulator configurations. A guide to installing and
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configuring the CARLA simulator can be found in appendix B.

3.2 Low-level controller

The controller module guides the vehicle along a desired trajectory by adjusting the values of the

steering angle φ, linear velocity, v, and angular velocity, ωs, in real-time. These adjustments are made

using control laws that are based on the vehicle model, and the goal is to minimize the error between

the reference and the actual pose of the vehicle. The values for v, ωs and φ are then converted into

control actions to communicate with the vehicle, through the ROS bridge.

3.2.1 Control laws

The control laws are a function of the error between the reference and the actual pose, in the

vehicle frame (be). To find this error, the error in the world frame (we) needs to be calculated first using

the following equation:
we = [xref − x, yref − y, θref − θ], (3.1)

where (xref , yref , θref ) is the reference pose and (x, y, θ) is the vehicle’s current pose. Figure 3.4 illus-

trates how we is obtained.

Figure 3.4: Illustration of the error in the world frame, we.

To convert the error in the world frame, we, to the error in the vehicle frame, be, the following equation

is used:

be = Rz(θ)
we⇔b e =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

we, (3.2)

where Rz(θ) is a rotation matrix that represents a θ degree rotation around the Z axis.
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The control laws that will determine the values of v, ωs and φ are defined by the equations:

v = Kv
bex (3.3)

ωs = Ks
beθ +Kl

bey (3.4)

φ =

∫
ωs dt (3.5)

The variables Kv, Ks and Kl are the trajectory controller gains. The RL agent will be responsible

for tuning these gains, to optimize the trajectory following behaviour of the vehicle. These control laws

define, in a broad sense, a proportional controller. This controller does not have an integral or derivative

component since they would require more parameters to be tuned, which would increase the training

times substantially.

The diagram in figure 3.5 explains how the controller functions. First, the reference pose is obtained

from the reference path. The pose chosen as reference is usually not the one immediately closer to the

current pose of the vehicle, but one a few meters ahead in the path. The index of the reference pose is

calculated according to the following equation:

ir = iv + ahead, (3.6)

where ir is the index, in the reference path vector, for the reference pose, iv is the index of the point in

the path closest to the actual pose of the vehicle and ahead is the number of indexes from this point to

the reference pose. This makes the vehicle continuously ”chase” the pose ahead of itself. After defining

the reference, the loop begins. It starts by calculating the error in the world frame, we, converting it into

the vehicle frame, be, and then using the control laws to calculate v, ωs and φ. It is important to note that

the integration, computationally, is obtained by applying the Euler Method [38]. These values are then

sent to the simulator, which will process the information (as explained in subsection 3.1) and return the

current position and orientation of the vehicle. At any point in the cycle, the High-Level controller can

override the linear velocity value to avoid collisions or when the vehicle is breaking the speed limit.
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Figure 3.5: Diagram of the controller

The loop repeats until the destination is reached (i.e., if the current position is close enough to the last

position in the path), a collision is registered or the simulation time ends. The reference pose is updated

each iteration, based on the current position of the vehicle.

3.2.2 Trajectory controller gains

The trajectory controller gains, Kv, Kl and Ks, are the focus of this project. The performance of

the vehicle when following the trajectory depends heavily on these gains. As a result, the priority will be

to find the gains that optimize, or at least improve, this performance when executing the aforementioned

maneuvers. In this work, the best gains are considered to be the ones that minimize the average lateral

and orientation errors over a period of time.

According to equation (3.3), Kv, the linear velocity gain, reflects the impact of the longitudinal error,
bex on the vehicle’s linear velocity, v. This means that the vehicle will try to correct the longitudinal error

by increasing its linear velocity, with a proportional component of Kv. Looking now to equation (3.4),

the linear gain, Kl, is the proportional component of the lateral error and the steering gain, Ks, is

the proportional component of the orientation error, all weighing on the angular velocity and the steering

angle of the vehicle.

3.3 Reinforcement Learning agent

The RL agent is responsible for tuning the trajectory controller gains. This tunning used to be a

slow manual task, and would not even ensure the vehicle’s most optimized behaviour. The proposed

method is automatizing this process using a simple Q-learning algorithm, with a discretized Q-table,
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that takes an interval of gains, tests multiple combinations several times and finds the values with which

the vehicle presents the best performance. Performance evaluation is translated in the reward function

of the algorithm, and will be explained below.

The RL environment is defined as follows:

States

The states are defined by an array with the average, over the duration of each simulation, of the

absolute values of the lateral and orientation errors:

S = [Ey, Eθ], (3.7)

To construct a finite-sized Q-table, these states need to be discretized. For that matter, it is necessary

to define a low and a high limit for the values of the errors, as well as how many parts we discretize into.

Figure 3.6 illustrates this:

Figure 3.6: Discretization process of the continuous states

where ELOW and EHIGH are arrays with the low and high limits for each of the errors - the range defined

for Ey and Eθ is different for the type of maneuver the agent is training. The discrete state space size

is the number of units this interval is discretized into. For this work, each of the errors is discretized into

40 units. The discrete state, SK is obtained by the equation:

Sk =
[Ey, Eθ]− ELOW

unitsize
, (3.8)

where [Ey, Eθ] is the continuous state and unitsize is the size of one discretized unit, which is obtained

by the equation:

unitsize =
EHIGH − ELOW

40
(3.9)

The average of the longitudinal error, Ex, is not taken into account in the state definition. This is because

the performance of the vehicle while performing the two maneuvers mentioned is more significantly

influenced by the lateral and orientation errors than by the longitudinal error. Furthermore, a smaller

state-action space is more advantageous since it requires less time to train on.
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Actions

Each action, A = [a0, a1, a2], is represented by an array that defines either an increase, decrease or

invariance of each of the controller gains. Since there are 3 gains and 3 possible choices (increase,

decrease, maintain), there are 27 different actions. The gains are adjusted by the action array through

the following equation:

Kv = Kv + h0a0 (3.10)

Kl = Kl + h1a1 (3.11)

Ks = Ks + h2a2 (3.12)

where a0, a1 and a2 are the action array entries and can take the values -1, 0 or 1. The values h0, h1

and h2 are positive constants that will either be ignored, subtracted or added to the previous value of the

gain. The gains can be tuned within a defined range. To reduce computational complexity and training

times, this range and the h values were picked so that there were 5 possible values for each gain. This

way, the work of this thesis only considers 125 possible combinations of gains.

Terminal condition

In a simple Q-learning algorithm, the terminal condition is usually defined as the current state matching

a terminal state. In this context, the most logical terminal state would be S0 = [0, 0] (both the lateral

and orientation average error are null). However, given how difficult it is to achieve this state, a ”less

ambitious” criteria must be defined. For that matter, the adopted approach was to consider any state

that would come closer to [0, 0] to be the terminal state. As a result, if the current state is closer to S0

than the closest state recorded so far, then a terminal state was reached.

In order to determine the distance of a state to the state S0, the algorithm uses a weighted euclidean

distance:

d(S, S0) =

√∑
i

wi(Si − 0)2, (3.13)

where w is an array of weights. Since the lateral error values, Ey, are generally 10 times greater than

the orientation error values, Eθ, this array of weight has the purpose of balancing the impact of these

two errors on the distance. Therefore, the weight array used was [1, 10]. Taking these values, equation

(3.13) can be rewritten as:

d(S, S0) =
√
|Ey|2 + 10 ∗ |Eθ|2 (3.14)

If working as expected, this function guarantees that the algorithm always finds a better (or the best) set

of gains in each episode, showing a constant improvement of the performance throughout the episodes.

On the other hand, with this terminal condition, it is increasingly more difficult for the algorithm to find a

27



terminal state. At a certain point, it is even impossible to find a new terminal state. For that reason, and

to assure feasible training times, if a new terminal state is not found in a certain number of steps, the

episode is forced to end.

Reward function

Choosing a good reward function is the most important and most difficult task of designing a Reinforce-

ment Learning agent. The process of designing the function used in this system always followed these

criteria:

• Since this function reflects performance evaluation of the vehicle, it should be a function of the

average of the error;

• If the average error decreases, then the reward must be positive and if it increases, the reward

must be negative;

• The reward should penalize taking a bigger number of actions to reach the terminal state so that

the algorithm learns the best gains in the shortest time possible.

After testing several alternatives that met those criteria, the reward function chosen for this work is

defined by the equation:

R =
1

1 + d(S′, S0)
− 1

1 + d(S, S0)
, (3.15)

where d(S′, S0) is the weighted euclidean distance between the new state S′ and [0, 0] and d(S, S0) is

the weighted euclidean distance between the previous state S and [0, 0].

This function is based on the one used in Panagiotis Kofinas et. al [35], analyzed in section 2.4. It also

takes advantage of the euclidean distance metrics used to define the terminal condition. This function

not only meets the criteria pointed previously but also associates bigger or smaller rewards for bigger or

smaller reductions in the distance.

Another component is added to the reward function to account for collisions: if a collision is registered,

the reward is decreased by a defined value.

3.3.1 Training method

The RL agent was trained to perform two different maneuvers: a lane changing maneuver in a

straight road and driving in a roundabout. Figures 3.7 and 3.8 show the reference path used to train

each of these maneuvers, in blue, as well as the initial position of the vehicle, in red. It is important to
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note that, in both settings, the vehicle starts with an orientation error of zero. Other initial orientation

errors are not explored in this work.

Figure 3.7: Reference path for the lane changing maneu-
ver

Figure 3.8: Reference path used for driving in a round-
about

As shown in figure 3.7 , the vehicle’s initial position in the first environment is 4 meters to the left of the

reference path. To correct this 4-meter difference, the controller forces the vehicle to change lanes.In the

second environment, in figure 3.8, the vehicle’s initial pose is 0.9 meters to the left and 5 meters behind

the reference path. Assuming appropriately tuned gains, the vehicle is expected, on the first setting,

to return to the right lane as fast as possible, with minimal oscillation, and, on the second setting, to

navigate the roundabout properly without colliding with the pavement. The initial positions are set a

few meters away from the reference path to force the vehicle to correct its position immediately after

departure. The ability to do that properly is important to evaluate the quality of the set of gains - lower

gain values will take a longer time to correct this error, increasing the average error and decreasing the

associated reward.

The algorithm used to train the RL agent is shown by the diagram in figure 3.9:
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Figure 3.9: Diagram of the training algorithm

The agent was trained over a certain number of episodes, each of which is divided by steps. Each step

starts by defining a current state, Si, based on the last average of errors and re-spawning the vehicle

in the initial position and orientation. Then, an action is taken and the new gains are defined. After

that, with the new set of gains, a new simulation starts, with the system’s controller guiding the vehicle,

correcting the error to the reference path. The simulation runs for a period of time (see loop time in

table 4.1), after which it stops and the new state, Si+1, based on the new average of the errors, and the

reward, Ri, are updated. With these values, the Q-table is updated as explained in section 1.3. If the

new state, Si+1 does not satisfy the terminal condition, then this cycle repeats in a new step. Otherwise,

the episode ends.

Section 4.2 discusses the results of the training.

3.4 High-level controller

The high-level controller works as both an event manager and a safety module, making a bridge

between the simulator and other modules and preventing unwanted behaviours from occurring. It per-

forms two functions:
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• Determine if the vehicle needs to perform any maneuver that the Reinforcement Learning agent

has been trained to respond to, based on the map zone the vehicle is currently in;

• Enforce high-level control actions on the low-level controller, preventing the vehicle from performing

undesirable and unsafe behaviors. These actions include enforcing a speed limit, controlling the

steering angle range and avoiding frontal collisions by overriding the low-level control actions in

specific situations.

The controller takes as input the data from the speedometer, obstacle detector and odometry sensors.

It processes this information and communicates with the RL agent and the Low-Level controller. The

diagram on 3.10 demonstrates how this controller works:

Figure 3.10: Diagram of the high-level controller’s internal operations

To test the controller’s functions, a portion of the map was divided into zones, each of which associated

with an event - performing a maneuver, avoiding a frontal collision, or controlling the steering angle.

Velocity limits are imposed on the whole map. Figure 3.11 shows the organization of the map:
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Figure 3.11: Simulation map division

The proposed environment has the goal of testing each of the high-level controller functions sequentially.

The map is divided into 4 types of zones: the blue zone, where the vehicle performs a lane change, the

red zone, where the vehicle navigates in a roundabout, the green zone, where the collision avoidance

function is tested and the orange zones, where the steering angle range limit is temporarily reduced.

The reference path is marked by a red line. If the controller is working as intended, the gains should

adjust to the appropriate maneuver when entering the blue and red zone. When entering the green

zone, the vehicle should detect a vehicle in front of it and safely stop. When inside any of the orange

zones, the steering angle limit is reduced, going back to its original value when the vehicle is outside

those areas.

3.4.1 Collision avoidance

The method used to avoid frontal collisions works with the obstacle detector sensor, incorpo-

rated into the simulation vehicle. The method of detection used is called ”Sphere Trace by Channel”,

present in the Unreal Engine’s libraries [39]. Figures 3.12 and 3.13 illustrate this method:
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Figure 3.12: 3D view of the obstacle detector sensor us-
ing the sphere trace method

Figure 3.13: Top and side views of the obstacle detector
sensor

The obstacle detector sensor has two attributes: distance and hit radius, which are represented in

figures 3.12 and 3.13 in green by a ”d” and in red by an ”r”, respectively. Any object that is inside the

sphere or cylinder will trigger the sensor, which will output the type of object and the distance from the

sensor to that object. If any part of the obstacle enters the sphere, the sensor outputs a distance equal

to zero. If the distance is less than a defined threshold, the High-Level controller will overwrite the Low-

level control actions and lower the linear velocity until the vehicle stops. It will also impose ω = 0 and

φ = 0. The zone used to test this function is defined as:

Green Zone⇔ −7 < x < 10 & 74.0 < y < 127.4 (3.16)

3.4.2 Maneuver identification

Since it is outside the scope of this project, the maneuver identification method is very simplified,

with the sole purpose of testing the interaction between the simulator and the RL agent. It is programmed

to work specifically inside the environment represented in 3.11. The controller uses the vehicle’s position

to identify if it is inside the blue or the red zone. The zones are defined by the following constraints:

Red Zone⇔ −58 < x < 33 & −39 < y < 50 (3.17)

Blue Zone⇔ −90.5 < x < −73 & 8.5 < y < 127.4 (3.18)

The controller communicates with the agent through a set of flags. If the vehicle is inside one of these

zones, the controller triggers the corresponding flag, which makes the RL agent adjust the gains to the

appropriate ones.
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3.4.3 Steering angle range limit

The high-level controller is also programmed to change the limits of the steering angle range,

depending on the type of zone. In straight lanes, where the vehicle is driving without obstacles in the

way, the steering angle range is reduced to minimize the vehicle’s oscillation. On the other hand, during

maneuvers, this range must be wide enough to allow for faster orientation changes. The zones marked

in orange are zones where this range limit is reduced, and are defined as follows:

Orange Zone1⇔ −90.5 < x < −73 & 8.5 < y < 73.0 (3.19)

Orange Zone2⇔ −7 < x < 10 & 50 < y < 127.4 (3.20)
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Chapter 4

Results and Discussion

This chapter discusses the tests performed to evaluate each of the system’s modules. The

simulator was tested while working with the system’s controller (section 4.1). The RL agent was trained

while performing two maneuvers (section 4.2). Finally, the full system is tested (section 4.3) to assess if

the high-level controller functions are working properly (obstacles are detected, gain values are changed

appropriately and maximum velocity and steering angle are managed).

4.1 CARLA simulator assessment

A series of tests were carried out to assess the simulator’s performance while working with the

proposed controller. The experiments were designed to evaluate the simulator’s odometry precision

and were initially performed in the environment of figure 3.7. With that goal, a code with the following

structure was used:

1. Define a set of fixed gain values;

2. Spawn the vehicle in an initial position and orientation;

3. Run the control loop (see figure 3.5) to follow a predefined reference path;

4. At each iteration of the loop, register the absolute value of the lateral error, ey;

5. When the error in the y axis of the vehicle frame (bey) is less than 0.1m, end the control loop;

6. At the end of each episode, register the average of the lateral error, Ey;

7. Repeat this for several episodes, for the same set of gains, initial pose, and reference path.
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In ideal conditions, the vehicle is expected to perform exactly the same way in each episode. If the

trajectory, the registered errors and the time of each cycle is identical, it means the simulator has perfect

precision. However, many factors, such as server-client latency, lower this precision. The initial tests

presented the following results:

Figure 4.1: Error per episode of the initial tests

Figure 4.1 shows the average error of the vehicle in the y axis, Ey, for each episode. It is possible to

see a peek of values in the first episodes, and then a cluster of values between -1.25 and -1.31 in the

following episodes. The values spread unevenly between approximately -1.1 and -1.32, an interval of

0.22 meters. The standard deviation of these values is σ = 0.072. High deviation values can compromise

the Q-learning agent’s quality.

After some investigation, the high deviation was attributed to a lack of code optimization and delay

in communications between the client and the simulator. Different simulator settings were tested and

adjustments were made to the code, showing improvements to the processing times and computational

complexity. Furthermore, some of the system’s parameters showed to have some influence on this

dispersion as well, particularly those related to path following. The values of these parameters were

picked to decrease the deviation values as much as possible. The reference paths were designed so

that each of the points was equally distanced from each other, resulting in a more fluid path following

behaviour and therefore less inconsistencies.

The consequence of all these changes was a new set of tests that showed a more satisfactory result:
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Figure 4.2: Error per episode of the final tests

Figure 4.2 shows the error values per episode of one of the last tests, after the modifications. A size of

0.22 units was imposed on the y axis, so as to match the perspective of figure 4.1. There is a dispersion

between -1.8 and -1.91, approximately, a difference of 0.11 meters. Although the cluster on the first

test was less disperse than the values in this test, there were no peeks registered. The result was a

significant improvement, with a deviation of σ = 0.031, less than half of the previous tests1.

More tests were made to the controller’s performance during the training of the RL agent, to assess if

the previous deviation values were not altered. While the agent was training in the first environment (fig.

3.7), a set of gains were selected to make this assessment:

Figure 4.3: Errors of the gains (0.68,6,1) during training in first environment

1Although these two tests were made with the same set of gains, vehicle and reference path, the initial position of the first test
is 3 meters away from the reference, while in the second test it was 4 meters away. This explains the difference in the average
error values.
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Figure 4.3 shows all the average lateral errors (Ey) registered by the set of gains (0.68,6,1). The values

are distributed between the errors 2.24 and 2.37, a difference of 0.13 meters, and the deviation is

approximately σ = 0.034. These results conclude that the deviation was also low during the training

process, therefore this ”stochastic behaviour” is expected to have little impact on the agent’s training

quality.

Similar tests were made during the training of the agent in the second environment (fig. 3.8). These

tests were used to tune some of the parameters to the new environment. The results are shown below:

Figure 4.4: Error of the gains (2.2,1,1) during training in the second environment

Figure 4.4 shows all the average lateral errors (Ey) registered by the set of gains (2.2,1,1). The values

are distributed between the errors 0.31 and 0.36, a difference of 0.05 meters, and the deviation is

approximately σ = 0.0138. With these results, it is possible to conclude that the ”stochastic behaviour”

will have an even smaller impact on the agent’s training in the second environment.

4.2 RL agent training

The training algorithm involves several parameters, either associated with the Q-learning algorithm

or with the controller. As a result, the agent was trained multiple times to test different values, in a pro-

cess of trial-and-error. To facilitate this process, information relative to each set of gains was registered

at the end of each training. This information includes, for each set of gains, the average of the errors

Ey and Eθ, the average vehicle velocity and the number of times that set was tested. Based on this,

the values chosen for the parameters, for each of the environments of figures 3.7 and 3.8, are shown in

table 4.1 :
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Description Lane Change Roundabout

Loop time (sim. secs) Duration of a simulation
in each step 5 30

ααα Learning Rate (sec.1.3) 1
(n+1)0.6

1
(n+1)0.6

γγγ Discount Factor (sec.1.3) 0.9 0.9
ELOWELOWELOW (m) Minimum state values (sec.3.3) [0 , 0] [0 , 0]
EHIGHEHIGHEHIGH (m) Maximum state values (sec.3.3) [4 , 0.4] [1 , 0.1]

KminKminKmin [Kvmin ,Klmin ,Ksmin ] [0.1, 1, 1] [1, 1, 1]
KmaxKmaxKmax [Kvmax ,Klmax ,Ksmax ] [2.42, 21, 21] [5.8, 21, 21]

[h0, h1, h2][h0, h1, h2][h0, h1, h2]
Positive constants that define the
action values (eq. (3.10)-(3.12)) [0.58, 5, 5] [1.2, 5, 5]

default φφφ range (◦) Default value for the steering
angle range 30 30

ε (start) Starting value of ε 1 1

ε decay Decay value of ε per episode 1
n/2

1
n/2

Step Limit Limit of steps per episode 120 100

Table 4.1: Table of parameter values for each of the training environments,where n is the number of episodes

The Loop time values were chosen to be as low as possible and shorten the training times, but high

enough so that the full maneuver can be executed and the vehicle’s performance properly evaluated.

The reference values for α and γ found in the literature are usually constant, generally around 0.1 and

0.9, respectively, but to respect the convergence conditions (sec.section 1.3), a polynomial learning late

is used - the polynomial function with an exponent of 0.6 was chosen based on the results from [40] for a

low number of steps and γ = 0.9 . The ε decay speed is chosen to balance between longer training times

and incomplete learning processes. The Kmin,max values were set by testing the controller separately

from the agent and choosing the range of values that better suited each maneuver. The h constants

were defined so that each gain had 5 discrete values. The EHIGH,LOW values were set with the goal

of using all the state space during training, therefore adjusting the error range to the one found during

each training. The φ values were empirically chosen to match a realistic range in a vehicle. The ε has a

starting value, ε start, which decreases each episode by a value of ε decay. Both of these parameters’

values were also chosen empirically.

As mentioned in Chapter 3, the algorithm considers a new state terminal when its distance to the state

S0 = (0, 0) is lower than the lowest one registered so far. However, early training showed that finding

states closer to S0 becomes a near-impossible task after a few episodes. For that matter, the terminal

state condition considers a window of values close enough to the lowest distance registered. So, if the

last terminal state registered distmin as the lowest distance to S0, then the terminal state condition would

be defined as:

if dist′ ≤ distmin +WIN then S′ −→ St (4.1)

where dist′ is the distance between the new state, S′ and (0, 0) and St represents a terminal state. WIN
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is the range of the window of values mentioned before, which was adjusted to balance the number of

steps it would take each episode to find a new terminal state. If many episodes reached the step limit

without finding a new terminal state, then this window was slowly increased until that occurrence is rare.

4.2.1 Lane Changing Training

Using the algorithm explained in 3.3.1, the agent is trained to find the set of gains that minimize the

error while the vehicle changes to the lane on the right, following the reference path illustrated in figure

3.7. After tuning the values of the parameters, the agent was trained for 30 episodes, with a window

size WIN = 0.01. The training time of this test was 18 hours and 30 minutes, in total. It performed

1225 tests to 109 different sets of gains, about 87% of all the gain combinations. The range of gains,

Kmin,max and the h constants define the following values for each gain:

Kv ∈ [0.1, 0.68, 1.26, 1.84, 2.42] (4.2)

Kl,s ∈ [1, 6, 11, 16, 21] (4.3)

Figure 4.5 shows the sum of rewards of each episode of the training, also known as the learning curve:

Figure 4.5: Lane changing training: Sum of all the rewards of each episode

As explained in [36], the sum of rewards is an indicator of the efficiency of the algorithm applied. If the

sum of rewards of an episode is higher than the previous one it means that the sequence of actions

taken was, on average, better than the previous episode. This suggests that the agent is learning and
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improving its ability to choose better actions. On the other hand, if the sum of rewards is lower on the

next episode the sequence of actions taken was averagely worse than the previous episode. There is

also the case where the agent performs an action that produces a very high or very low reward, greatly

increasing or decreasing the sum of rewards, giving the impression that the sequence of actions is better

or worse than it is. However, it is argued that using the reward function in (3.15) with small increments

of the gain values prevents these situations from happening.

Figure 4.5 shows a convergence of the learning curve, which implies the success of the algorithm. The

graph shows a substantial increase in the sum of rewards for the first few episodes and convergence

after that, around the value 0.105, reaching its maximum value, 0.1065, in episode 15. It is believed that

this rapid convergence is due to the small dimension of the action-state space, as well as the function

used to deduce the learning rate per episode (table 4.1), which was designed to speed up the learning

process. Episodes 21, 23 and 27 show a slight drop in value, and episode 22 shows a substantial drop.

Unlike the rest of the episodes, in these three episodes, the agent reaches the step limit of 120 without

finding a terminal state, which explains the drops.

Assuming the agent is working as expected, the gains chosen after convergence are the ones that

produce the lowest errors, i.e., the best gains to perform the specific maneuver. Figure 4.6 shows the

gains that produced each terminal state - these will be referred to as terminal gains:

Figure 4.6: Lane changing training: gains of all the terminal states

The agent starts by reaching the terminal state with less efficient sets of gains, progressively improving

those gains, showing a preference for the gains (2.42, 6, 1) and (2.42, 21, 1) after converging.
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The center of mass2 of the cluster of gains is chosen to define the set of gains used to test the system

in the blue zone. Only the gains after the learning phase are considered, i.e., all terminal gains from

episode 15 onward, removing the episodes where a terminal state is not reached (episodes 21, 22, 23

and 27). The resulting set of gains is (2.42, 11.67, 1.33)(2.42, 11.67, 1.33)(2.42, 11.67, 1.33). Before testing the system, the chosen set of

gains is validated separately. The validation process consists of evaluating the performance of this set

of gains while performing the maneuver and comparing that with the performance of other sets of gains.

Figure 4.7: Lane changing Validation Test: Trajectory

The first test consisted of performing the lane changing maneuver while using the chosen set of gains,

for 10 simulated seconds. The vehicle starts in position (−84.9, 124.6), with the correct orientation.

Figure 4.7 shows the trajectory performed by the vehicle in blue and the reference path in orange. The

figure suggests that the system can perform the maneuver efficiently, completing the lane changing

approximately 10 meters ahead of the initial position. The trajectory also shows some oscillation after

the lane changing, fixed by controlling the steering angle range, which is implemented and tested later

in this chapter.

The figures below show the absolute values of the lateral and orientation errors registered in this test:

2This method was chosen to take into account all of the good sets of gains evenly. Given the nature of the controller, it is not
expected that the chosen ”middle” gains produce substantially different behaviour. Additionally, the defined range of gain values
guarantees that these gains will not result in dangerous behaviour. Alternatively, one can choose the most popular set of gains.
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(a) Absolute value of lateral error, ey

(b) Absolute value of orientation error, eθ

Figure 4.8: Lane Changing Validation Test: Lateral and Orientation errors

Figure 4.8(a) shows that the system was able to correct the 4-meter lateral error in about 4 simulated

seconds with the chosen set of gains. After the initial error is corrected, the error stabilizes below 0.1

meters. Figure 4.8(b) shows an orientation error spiking at 0.7rad (' 40.1 degrees), during the lane

changing maneuver, and then stabilizing at less than 0.1 rad(' 5.73 degrees).

Figure 4.9 shows the Mean Square Error (MSE), calculated asMSE =
bex

2+bey2+beθ2

3 , registered during

the test:
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(a) MSE values

(b) MSE values after the initial error (zoomed)

Figure 4.9: Lane Changing Validation Test: Mean Square Error values

In conformity with the error values of figures 4.8, the MSE starts at around 5.2 and rapidly drops. After

the initial error, it stabilizes at less than 0.006, as shown in figure 4.9(b).

Table 4.2 presents the average MSE of some sets of gains, including the chosen one, in bold. As

mentioned before, some dispersion is observed in the error values produced by the simulator. For that

matter, the table presents the highest average MSE registered out of 10 samples, excluding the first

second of the simulation:
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Average MSE σσσ
(0.68, 1, 1) 2.723 0.407

(0.68, 21, 21) 2.194 0.327
(1.26, 11, 11) 1.294 0.174
(1.84, 16, 16) 0.8420 0.135
(1.84, 11, 1) 0.7809 0.1203

(2.42, 11.67, 1.33)(2.42, 11.67, 1.33)(2.42, 11.67, 1.33) 0.4658 0.03280.03280.0328
(2.42, 21, 21) 0.5628 0.05

Table 4.2: Average MSE of set of gain from the lane changing validation tests

Table 4.2 compares the chosen gains with other sets of gains spread through the range of values. The

third column presents the standard deviation values, σ, from the 10 samples gathered from each set

of gains. A qualitative analysis of these values reveal that the chosen set presents the lowest average

MSE, with gains (2.42, 21, 21) following close behind. Also, the closer to the chosen gains, the lower

the σ values are. The table also suggests that differences in the value of Kv have more impact on the

results, with the biggest decreases observed between Kv = 0.68 and Kv = 1.26.

Overall, the performance of the system working with the chosen gains shows low lateral errors and

MSE values. Table 4.2 suggests that the agent’s choice of gains is around the values that minimize the

average MSE. Although the deviation observed in the error values lowers the accuracy of the agent, the

lowest MSE scores frequently belong to the chosen set of gains.

4.2.2 Roundabout Navigation Training

After the last environment, the agent is trained to find the set of gains that minimize the error while

the vehicle navigates a roundabout, following the reference path illustrated in figure 3.8. The values of

the parameters had to be adapted to the new environment, as demonstrated in table 4.1. The agent

was trained for 20 episodes, with a window size WIN = 0.007 . The range of gains, Kmin,max and the

h constants define the following values for each gain:

Kv ∈ [1, 2.2, 3.4, 4.6, 5.8] (4.4)

Kl,s ∈ [1, 6, 11, 16, 21] (4.5)

The training time of this test was approximately 16 hours. 317 steps were performed to 94 different sets

of gains, out of 125 ( 75%). Figure 4.10 shows the sum of rewards of each episode of the training:
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Figure 4.10: Roundabout training: Sum of all the rewards of each episode

Similar to the last training, the graphs show a substantial increase in the sum of rewards for the first few

episodes, converging at around 0.22 of sum of reward, its maximum value being 0.2228, in episode 17.

Once again, this learning curve suggests the agent is learning as intended, and converging to a set of

gains in just about 10 episodes, except for episode 4, which shows a drop, once again explained by the

step limit being reached.

Figure 4.11 shows the gains that produced the terminal state of each episode:

Figure 4.11: Roundabout training: gains of all the terminal states

Once again, the agent starts by reaching the terminal state with less efficient sets of gains, improving

those gains until converging to (2.2, 11, 1).
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To define the set of gains used in the red zone, all terminal gains from episode 10 onward are considered.

The resulting center of mass is (2.2, 12.5, 1.0)(2.2, 12.5, 1.0)(2.2, 12.5, 1.0). The validation process follows the same model as the one

before, evaluating the performance of this set of gains while navigating the roundabout and comparing

it with the performance of other sets of gains.

The first test consisted of navigating the roundabout while using the chosen set of gains, for 50 simulated

seconds. The vehicle starts in position (−45.0, 0), with the correct orientation. Figure 4.12 shows the

trajectory of this test:

(a) Trajectory of the roundabout validation test

(b) Zoom of the last portion of the trajectory

Figure 4.12: Roundabout Validation Test: Trajectory

Figures 4.12 shows the trajectory performed by the vehicle in blue and the reference path in orange.

Figure 4.12(a) shows the trajectory and the reference path overlapping, which suggests that the system

is able to follow the reference efficiently. Figure 4.12(b) shows the last portion of the roundabout with

higher oscillation.
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Figure 4.13 shows the absolute values of the lateral and orientation errors registered in this test:

(a) Absolute value of lateral error, ey

(b) Absolute value of orientation error, eθ

Figure 4.13: Roundabout Validation Test: Lateral and Orientation errors

Figure 4.13(a) shows that the system successfully corrects the 0.9 meter lateral error. After that, it stays

always under 0.2 meters of error, oscillating around 0.1 meters of error, except for an initial peek when

entering the roundabout. Figure 4.13(b) shows an orientation error spiking at 0.167rad (' 9.57 degrees),

before entering the roundabout, a slight increase when entering the roundabout (between second 10
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and 20),and then stabilizing at around 0.01 rad(' 0.57 degrees).

Figure 4.14 shows the MSE, calculated as MSE =
bex

2+bey2+beθ2

3 , registered during the test. Figure

4.14(a) essentially mirrors the values in figure 4.13(a), with the initial value of 8.2, rapidly dropping and

stabilizing in approximately 0.003, as shown in figure 4.14(b).

(a) MSE values

(b) MSE values after the initial error (zoomed)

Figure 4.14: Roundabout Validation Test: Mean Square Error values

Similarly to table 4.2, table 4.3 presents the information gathered about some sets of gains. The values

presented were the highest out of 10 samples, and exclude the first 10 seconds of the maneuver. The

third column presents the standard deviation, σ, of those 10 samples:
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Average MSE σσσ
(1, 1, 1) 8.8e−3 3.1e−4
(2.2, 1, 1) 5.8e−3 2.7e−4

(2.2, 12.5, 1.0)(2.2, 12.5, 1.0)(2.2, 12.5, 1.0) 3.0e−33.0e−33.0e−3 1.4e−41.4e−41.4e−4
(2.2, 21, 21) 6.7e−3 2.9e−4
(3.4, 1, 1) 0.0100 1.9e−3
(4.6, 11, 21) 0.01612 3.0e−3
(5.8, 21, 21) 0.120 0.0305

Table 4.3: Average MSE of set of gain from the roundabout validation tests

The chosen set of gains presents the lowest MSE value, followed by (2.2, 1, 1) and (2.2, 21, 21). Also,

comparing the gains (1, 1, 1) and (5.8, 21, 21), it seems that lower gain values produce lower MSE. Con-

trary to the previous maneuver, all the sets of gains presented very low standard deviation values. The

lowest σ values are again found closer to the chosen gains.

Once again, the chosen gains produce low lateral errors and MSE values. Although sensible to variations

in values, table 4.3 suggests that the agent’s choice of gains are in the neighborhood of the gains that

minimize the error.

4.3 System

After training the agent and choosing the best gains, the complete system, presented in 3.1, can

be tested. The system is expected to have an appropriate behaviour in each of the zones while never

exceeding the speed limit imposed: tuning the gains in the blue and red zone, limiting the steering

angle range in the orange zones, and avoiding a frontal collision by stopping the vehicle in the green

zone.

4.3.1 Collision Avoidance Testing

The collision avoidance method was tested by spawning a second vehicle 40 meters away from the

system. The obstacle detector sensor is configured to have the distance d = 20 (the minimum distance

for detection) and the hit radius, r = 5 (radius of sphere where it is considered the system hits the

vehicle). When the vehicle detects an obstacle, the High Level Controller imposes a new equation for

the imposed linear velocity, to substitute equation (3.3), defined as:

v = vi · (di/d), (4.6)
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where vi is the velocity of the vehicle when the obstacle is first detected (20 meters away) and di is the

distance to the obstacle registered by the sensor at each time-step. Equation (4.6) defines a steady

decrease from the initial velocity until it reaches zero, when the vehicle enters the hit area. The High

Level Controller also imposes null values for the steering angle, φ, and the angular velocity, ω. This

sensor is programmed to only detect other vehicles. Figure 4.15 shows the testing environment:

Figure 4.15: Environment used for testing collision avoidance

Figures 4.16 show the result of the testing. Figure 4.16(a) shows the trajectory of the vehicle, with the

other vehicle illustrated as a red rectangle, while figure 4.16(b) shows the velocity imposed in the system

by the controller, in orange, and the real velocity of the system, in blue, registered in each second:

51



(a) Trajectory performed during the test

(b) Velocity per simulated sec. during the test

Figure 4.16: Collision avoidance test results

The designed function is working as expected: the vehicle’s linear velocity starts decreasing 20 meters

before and completely stopping a few meters away from the second vehicle. Figure 4.16(b) shows

the decreasing slope of the imposed velocity, calculated by equation (4.6). Starting at around 10 sim.

seconds, the system’s real velocity (blue) decreases slowly, and then increasingly faster until it peeks to

zero at around second 15.5, around the time the imposed velocity (orange) reaches zero, successfully

stopping the system 1 sim. second after. Figure 4.16(b) is also a good demonstrator of the simulated

vehicle’s delay of response to the values imposed by the controller - although the initial imposed velocity

is over 4, the vehicle is not able to reproduce this velocity in 10 sim. seconds. Similarly, the vehicle only
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reaches a full stop approximately 8 sim. secs after the imposed velocity starts to drop.

4.3.2 Full System Testing

The system was tested while navigating in the environment illustrated in figure 3.11, following

the reference path defined in red. The chosen gains for the blue and red zones were, respectively,

(2.42, 11.67, 1.33)(2.42, 11.67, 1.33)(2.42, 11.67, 1.33) and (2.2, 12.5, 1.0)(2.2, 12.5, 1.0)(2.2, 12.5, 1.0) . The system is spawned in position (−84.9, 127.6056) and the sec-

ond vehicle is spawned in position (7.6, 100). The steering angle range is reduced to 10◦ inside the

orange zones. For testing purposes, the speed limit imposed is 4 m/s (' 14.4 km/h). The results are

presented in the following images:

(a) Trajectory from full system testing

(b) MSE value per time-step during full system test

Figure 4.17: Full system test results
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Figure 4.17(a) shows the trajectory performed by the system, in blue, and the reference path, in orange,

which are superimposed. The second vehicle is marked by a red rectangle. The figure shows the

system successfully follows the reference path, without any major errors or collisions. The first portion of

the trajectory shows the lane changing maneuver being executed successfully. The last portion shows

the collision avoidance function in action, identifying the second vehicle and coming to a full stop a few

meters away from it, despite the reference path. This produces a slight deviation from the reference

path, the result of imposing ω = 0 and φ = 0.

Figure 4.17(b) shows the MSE value per time-step graph, zoomed in the portion after the initial error. The

test can be divided into portions: the first one, from 0 to 68 sim. secs., includes the blue zone and the left

turn that transitions from there to the red zone. From 68 to 119 sim. secs we have the red zone and the

transition from there to the green zone. The green zone is the last portion, from 119 onward. During the

lane changing maneuver, the figure shows a initial high MSE, followed by a drop of value to below 0.01

(in conformity with the validation test to the lane changing maneuver presented earlier). After entering

the first orange zone, it drops even more, below 0.001. After that, the left turn causes these values to

peek above 0.06, dropping afterwards. The second portion shows MSE values oscillating around 0.005,

similarly to the validation test performed to the roundabout maneuver. The values drop again to less

around 0.001 after entering the second orange zone. The peek at the final portion is the result of the

slight deviation observed in fig. 4.17(a), caused by the collision avoidance function, stabilizing when the

vehicle stops.

Figure 4.18 shows the velocity imposed in the system by the controller, in orange, and the real velocity

of the system, in blue, registered in each time-step. The system’s delay in reproducing the velocity

imposed by the controller is evident once again - looking, for instance, at the first portion, the system’s

velocity takes about 20 to 30 sim. secs to reach the imposed value. The velocity limit function is working

as expected, as it is possible to see in 57 − 85 sim. secs and again in 102 − 122 sim. secs., where the

imposed velocity stops at 4 m/s. However, the real velocity of the system seems to be able to exceeds

this limit, even if ever so slightly, which implies that the imposed limit should be below what is actually

desired for the system.
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Figure 4.18: Full system test: Imposed velocity (orange) and real velocity of the system (blue) in each time-step

Table 4.4 shows the average MSE of the test performed with the chosen gains and another one per-

formed with gains outside the ”preferred cluster”. To minimize the value dispersion, the MSE values

registered during the final portion (green zone) were ignored:

Average MSE σσσ
(0.68, 21, 21), (2.2, 21, 21) 0.0742 5.5e−3

(2.42, 11.67, 1.33), (2.2, 12.5, 1.0)(2.42, 11.67, 1.33), (2.2, 12.5, 1.0)(2.42, 11.67, 1.33), (2.2, 12.5, 1.0) 0.07110.07110.0711 2.0e−32.0e−32.0e−3
(2.42, 21, 21), (5.8, 21, 21) 0.164 1.91e−2

Table 4.4: Average MSE values of the system test using the chosen sets of gains and sets of gains outside the
cluster

The average MSE values produced by the chosen sets of gains are compared with other two sets gains.

The third column shows the standard deviation, σ, from the 10 samples registered for each set of gains.

The table shows the chosen set of gains produces the lowest average MSE, although with a very little

difference in value from the first set of gains. It is worth noting that, comparing to tables 4.2 and 4.3, the

differences between average MSE values of each set of gains is very small. This suggests that this type

of tuning has more impact when applied locally (in a specific zone or for a maneuver) than generally

(throughout the full path).

The results demonstrate all of the proposed functions working correctly. The trajectory in fig. 4.17(a)

and the velocity values in fig. 4.18 demonstrates that the system does not engage in unsafe behaviour,

like collisions or excessive velocity. Figure 4.17(b) indicates the system is able to consistently follow

the reference with very little error. The MSE values in table 4.4 suggest the chosen gains are in the

neighbourhood of values that overall minimize the trajectory error.

Table 4.5 presents some reference values taken from the literature for comparison:
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Reference values
Values from the
Lane Changing

maneuver

Values from the
Roundabout Navigation

maneuver

Values from the
complete system test

[41]RMSEθ = 0.042

[42]RMSEθ = 0.040− 0.073

[43]RMSEθ = 0.0709− 0.2076

RMSEθ = 0.2543 RMSEθ = 0.035 RMSEθ = 0.1211

[44]RMSEpos. = 0.9 RMSExy = 1.149 RMSExy = 0.0942 RMSExy = 0.446
[45]Ey < 0.25m

[46]Ey = 0.075− 0.15m
Ey < 0.47m Ey < 0.18m Ey < 0.45m

Table 4.5: Reference values taken from the reviewed literature, compared to the values registered in this work

The Root Mean Square Error (RMSE) values shown are calculated as RMSEθ =
√
E2
θ and RMSExy =√

E2
y+E

2
x

2 , where Ex,y,θ is the average of the error over the duration of the simulation.

According to the table, all of the values from this work are comparable to the reference values. The

numbers registered for the lane changing maneuver, on the other hand, are greater than the reference.

This is due to the conditions under which the error values are registered for that maneuver: the reference

path for this scenario (fig.3.7) does not include the lane changing movement, and instead only includes

a path following a straight road. For that matter, the system registers high values of error until the

maneuver is complete, resulting in greater average RMSE and MSE values.

It is also worth noting that the values for the roundabout navigation are better than the values registered

during the test to the complete system, highlighting the idea that this type of tuning is better suited to the

maneuvers, as intended.
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Chapter 5

Conclusion

This work proposes a different approach for using a RL algorithm in an autonomous driving system,

comparable to how humans learn to drive: instead of the common fast learning with online tuning, the

algorithm requires an entire maneuver to be executed to gather information and learn from it, much like a

person driving in a new environment would. The drawback of using this offline tuning is the training times.

A maneuver can take a few seconds to complete, which, in a simulated environment, can translate to a

few hours per episode. Given that, the proposed system implements an offline ”long-term” gain tuning,

that would be done throughout several weeks, months or years. Every time the system performs a

maneuver, in a given environment, it registers data and trains the algorithm. The tuned gains are later

updated and used the next time. This approach not only avoids dangerous online fluctuations of the

gains but also introduces a way to adjust the gains to specific maneuvers or zones inside a city.

Meeting the Q-learning convergence conditions, combined with the learning curves in fig. 4.5 and

fig. 4.10, suggest a proper implementation of the algorithm. The validation tests performed to the chosen

gains suggest that the algorithm can tune the gains to values that minimize the trajectory error. The

results in section 4.3 show that all the modules of the system are working as intended. It is worth noting

that, after the training, the sets of gains selected to perform each maneuver presented values very close

to each other. This poses the idea that, within a certain grain of tuning, a single set of gains is adequate

to any maneuver.

During this project, RL has shown to be a good approach when working with the CARLA simulator

and limited computational resources. By not requiring labeled datasets or image processing, using RL

significantly reduced the computational requirements, while still providing adaptability and robustness to
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the system. Using a simplified version of the Q-learning algorithm also helped surpass the shortage of

computational resources, while seemingly not jeopardizing the viability of the agent. Although finding

the best reward function was a long trial-and-error process, experiments made throughout this work

suggested that multiple functions could turn out similarly good results.

CARLA offers a vast range of tools to develop self-driving autonomous vehicles. Being an open-

source project, it also provides a good support network for problem-solving and software improvement.

Working with the CARLA simulator, however, proved to be one of the biggest challenges of this thesis.

Configuring it to perform the necessary tasks was a slow and difficult process, but the biggest setback

was the dispersion observed in the data acquired. This compromised the performance of the agent.

Solutions to this problem are proposed in the next section.

5.1 Future Work

These are the proposed future works:

• The reviewed literature leads to believe that the system would benefit from having a neural network

- as explained in 2, hybrid learning methods improve learning speeds and provide better adaptation

to new environments. The network can be used as a function approximator of the Q-learning

algorithm, accelerating the Q-learning training process, but also adding an extra layer of complexity

to the algorithm, as well as requiring time to train [35]. Despite that, performance may increase

after training.

A more interesting usage of a Neural Network in this system, however, would be to identify the

map zone the vehicle is currently in. Instead of relying on the vehicle location, the proposed

improvement would have a neural network process RBG images of the vehicle’s surroundings

and identify traits such as roundabouts or straight roads with no obstacles, which would trigger a

change in the controller gains calculated by the RL agent;

• One of the biggest obstacles faced was the dispersion observed in the data acquired from the

simulator. Training and testing a Q-learning agent in such conditions may compromise the perfor-

mance of the agent. Exploring longer in a vaster action space may help solve this issue. This is

achieved by lowering the learning rate and increasing the grain of gain tuning;

• As mentioned in section 2.4, an interesting upgrade to the Q-learning algorithm would be the

Double Q-learning algorithm - as suggested in [47], this algorithm might improve the performance

of the agent in a stochastic environment such as the CARLA simulator, with the only downside of

doubling the memory requirements;
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• Real-world application is the most important goal of this work. The vehicle performed the maneu-

vers and followed the reference path with relatively little error, as shown in figures 4.7 and 4.12,

while also maintaining safe velocity values (under 15 km/h), despite the limitations imposed by

the simulator. Some of these limitations, like client-server latency, do not exist in real-world ap-

plications. For these reasons, a successful and safe transition to a physical vehicle is expected.

However, some adaptations are required for this transition, namely changing the gain and state

limits, the steering angle range and adapting the system to work in a new physical map;

• During testing, the system presented average velocities of under 25 km/h. Althought this is pre-

ferred for early testing in the real world, more advanced real-world implementations might require

higher average velocities. Future work would be to add a velocity component to the Reward func-

tion of the Q-Learning algorithm, so as to have control on the average velocity of the vehicle.
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Appendix A

Table of Concepts

The following table concatenates the most relevant concepts in the areas of Autonomous Driving

systems and Machine Learning, with a succinct definition for each of them. This table has the purpose

of giving the necessary context to the concepts used throughout the work.

Table A.1: Most relevant concepts on Autonomous Driving Systems and Deep Learning

Concept Description

Agent
An agent is anything that can be viewed as

perceiving its environment through sensors and acting
upon that environment through effectors [48]

Neural Networks

Computing system used in machine learning.
Their architecture is based on interconnected nodes.

A neural network architecture and functioning is
inspired by the biological neural networks present

on animal’s brains

Deep Learning Machine Learning area concerning algorithms
inspired by or using artificial neural networks

Supervised Learning

Machine learning method based on labeled datasets.
The agent learns by observing several data examples

and associated labels and then tries to predict those labels
for new examples [49]. In simple terms, the process

goes as follows: the network predicts a label
for an example. Then, it compares its prediction

with the predefined label and, by taking into account
the error between the two, it adjusts its parameters

to make a better prediction. Eventually, it is able
to correctly predict labels even from unlabeled examples

Unsupervised Learning

Machine learning method that receives input data
but, instead of obtaining target outputs or rewards from

the environment, it finds patterns in that input data.
Examples of Unsupervised Learning (UL)

include clustering and dimensionality reduction [50]
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Convolutional Neural Networks

A class of feed forward neural network is mainly
used for processing spatial information,

such as images, and can be viewed as an image feature
extractor [19]. It has specific characteristics that differ it

from the other classes of neural networks, such as
its shared-weight architecture and translation invariance

Recurrent Neural Networks

A class of neural networks that is especially
good in processing temporal sequence data, such as text

or video streams [19]. They differ from other neural networks
in the sense that they contain a time-dependent feedback

loop in their memory cell. This allows them to exhibit
temporal dynamic behavior, which makes them

a good fit for the mentioned applications

Long Short-Term Memory

A specific Recurrent Neural Network architecture that,
unlike traditional RNN, has feedback connections.

LSTM are non-linear function approximators for estimating
temporal dependencies in sequence data [19]

Inverse Reinforcement Learning

It is a subset of Reinforcement Learning [51] based on
Imitation Learning, in which the reward function is not

specified, but the agent attempts to learn it from
experts’ demonstrations.This is an approach for

solving the problem of extracting a reward function
given observed optimal behavior

Value-based algorithm

It is a type of algorithm used in the context of
reinforcement learning to find the optimal policy

for an agent. It estimates the value function,
which represents the value (reward) of being in a state [20]

Policy gradient algorithm

It is a type of Reinforcement Learning algorithm used to
find the optimal policy for an agent. The algorithm

is based on parameterizing the policy function and then
updating those parameters to maximize the reward [20]

Actor-Critic algorithm

It is a type of Reinforcement Learning algorithm used to
find the optimal policy for an agent. It is a hybrid method

that combines the benefits of both value-based and
policy gradient algorithms. Basically, it divides the model

in two:one part chooses which action the agent
should take (actor) and another part evaluates the
actions taken and communicates how they should

adjust (critic). Both parts are training simultaneously

Advantage Actor Critic

It is an actor-critic algorithm where the Critic part
learns the Advantage values instead of the Q values.
Advantage functions are a part of the Q function that
represent how better an action is compared to others

Asynchronous Advantage Actor Critic

It is an actor-critic algorithm similar to Advantage
Actor Critic but it consists of multiple independent agents

who interact with a different copy of the environment
in parallel, exploring much more of the environment

in a shorter time [52]. The agents update a global network
periodically and asynchronously, and after updating they all

reset their parameters to the ones in the global network
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Deep Q-Network

It is a network that incorporates a variant of the
Q-learning algorithm, by using a deep neural network as

a non-linear Q-function approximator over
high-dimensional state spaces [51]. A common implementation

is to initialize a table of possible state-action
combinations (q-table) and then use a neural network
to predict based on the q-table,while simultaneously

updating its values based on those predictions
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Appendix B

Installing and configuring the CARLA

simulator

The CARLA documentation website [53] offers detailed information about the simulator. It also

offers a step-by-step on how to install it and the system requirements. The ROS bridge was installed

subsequently by following the installation instructions on the ROS Bridge Documentation website [54].

This work uses the CARLA version ”0.9.9-4” and the ROS bridge version ”0.9.10.1”. It is, however,

recommended to install a ROS bridge version that is compatible with the CARLA version, which is not

the case for the two versions used. The simulation is run on a Ubuntu 20.04 (Focal) operating system

(OS) and ROS Noetic, version 1.15.11. Both the CARLA and the ROS bridge were installed from the

source Repository. The simulator’s software is constantly being corrected and improved, so it is highly

recommended to run the simulator in the latest versions and the most recent OS and ROS versions.

B.1 Configuring the CARLA simulator

Table B.1 shows a list of files that can be used to configure the simulator parameters:

File path Parameters
[HOME]/carla-ros-bridge/catkin ws/src/ros-bridge/

carla ros bridge/test/settings.yaml
fixed delta seconds, synchronous mode wait for vehicle control command,

synchronous mode, vehicle filter
[HOME]/carla-ros-bridge/catkin ws/src/ros-bridge/

carla ackermann control/config/settings.yaml
speed Kp, speed Ki, speed Kd,

accel Kp, accel Ki, accel Kd, min accel
[HOME]/carla-ros-bridge/catkin ws/src/ros-bridge/carla ros bridge/

launch/carla ros bridge with example ego vehicle.launch
vehicle filter, spawn point, fixed delta seconds,

synchronous mode wait for vehicle control command
[HOME]/carla-ros-bridge/catkin ws/src/ros-bridge/

carla spawn objects/config/objects.json Vehicle sensor setup (json format)

Table B.1: Table of file paths and parameters configured in each one
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The parameters values are set as follows:

1. synchronous mode wait for vehicle control command and synchronous mode are set to ”True”;

2. fixed delta seconds is set to 0.01;

3. Ackermann controller gains are set to default values;

4. vehicle filter defines the model of the vehicle spawned, and is defined as ”tesla.model3”;

5. spawn point defines the initial pose of the vehicle (see Chapter 3 for specific values);

6. The vehicle sensor setup is defined as explained in chapter 3.1, following the .json file format.
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