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Confronting Multi-Higgs Models with Experiment

The Search for Underrated and Understudied Signals

Ricardo Florentino1,a

1Instituto Superior Técnico, Lisboa, Portugal

Abstract. We search for distinctive signals of understudied characteristic of certain Multi-Higgs models. This
led to the submission of an article for publication [1].
The main understudied property discussed is the presence of couplings between one Z boson and two charged
scalars of different masses present in models with at least two scalar doublets and one charged scalar singlet.
We explore this issue in detail, considering h → Zγ, B → Xsγ, and the decay of a heavy charged scalar into a
lighter one and a Z boson. We propose that the latter be actively searched for at the LHC, using the scalar sector
of a Zee-type model as a prototype and proposing benchmark points which obey all current experimental data,
and could be within reach of the LHC.
We also discuss some topics on models with extra Gauge symmetries. Namely a model with an SU(2)×U(1)×
U(1) electroweak sector with a scalar doublet and a higher multiplet.

1 Introduction

The Higgs Mechanism [2, 3] was used in the creation of
the most successful theory particle physicist proposed so
far, the Standard Model (SM)[4, 5]. It consists of a pro-
cess in which a scalar develops a vacuum, that breaks part
of the Electroweak Gauge group, and creates mass terms
for the correspondent Gauge bosons. The Goldstone the-
orem guarantees the existence of Goldstone bosons after
the breaking of the symmetries, which get absorbed by the
now massive Gauge bosons, solving the renormalizability
problem of such theories with massive vector bosons.

The SM has been confirmed to unprecedented preci-
sion, culminating with the detection of the Higgs boson
[6, 7]. Nonetheless, there are questions the SM leaves
unanswered, like the problems of Dark Matter, Neutrino
Masses, and Baryon asymmetry. It is then natural to ex-
tend the model with additional scalars, since this is the
less tested sector so far.

It is known experimentally that the masses of the W
and Z bosons bear a relation very close to that predicted in
the SM: MZ cos θW/MW ∼ 1, where θW is the Weinberg an-
gle. This holds automatically for models with a scalar sec-
tor satisfying what is known as custodial symmetry. The
scalar potential satisfies this symmetry if it is only com-
posed of scalar singlet, doublet, septet and specific higher
representations of the electroweak gauge group. Thus, we
are lead to study theories with any number of scalar dou-
blets and/or singlets; the latter neutral and/or charged.

A case of particular interest is the Zee model [8] with
two scalar doublets and one charged singlet, originally
proposed to explain naturally small neutrino masses, and
later adapted to explain also DM [9, 10]. The Zee model
with an extra Z2 symmetry proposed by Wolfenstein [11]
is not consistent with current data from neutrino oscilla-
tions [12, 13], but the original proposal is still consistent
with all leptonic experimental results [14, 15]. But the
scalar sector of the Zee model also has another striking
feature which is mostly ignored; it is the minimal model
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predicting the existence of couplings ZH±1 H∓2 between the
Z gauge boson and two charged scalars (H+

1 and H+
2 ) of

different mass. This is the feature highlighted in this work.

Even before direct detection of the extra charged scalar
particles, ZH±1 H∓2 couplings could potentially have a vir-
tual effect on current measurements, such as h125 → Zγ.
We discuss this example. In fact, the contribution of the
charged scalars to the branching ratio can even vanish, but
that is not because the Z couples to two different charged
scalars, but rather because there are two charged scalars
contributing in the loop. Indeed, this feature is already
present for instance in the 3HDM, where there are two
charged scalars but the coupling of the Z to them is di-
agonal. Although there is a modulation of the result with
the mixing angle between the two charged Higgs, this is
hidden when the sum over all diagrams is performed.

To study this model we took into account all the the-
oretical and experimental constraints coming from the
scalar and quark sectors. In particular, we considered in
detail the influence of the bounds coming from BR(B →
Xsγ) [16]. This is especially important because, as there
are two charged Higgs, one can evade the 580 GeV limit
for the 2HDM [17]. We discuss the implications of this for
Zee-type models.

A distinctive signal for this model with its ZH±1 H∓2
couplings is the decay of the heavier charged Higgs into
the lightest one and one Z. We performed an analysis of
the parameter space to look for regions where this decay
can be large. This lead us to identify examples of bench-
mark points where the decay H+

2 → H+
1 Z can be large as

well as the decay H+
1 → tb̄, leading to a clear signature

that should be searched for at the LHC.

As a side work, we also study the addition of gauge
symmetries to the electroweak sector and how it affects
the Higgs mechanism. Specifically, we study models with
an extra U(1) gauge symmetry, and present formulae for a
theory with a doublet and a higher multiplet.
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2 Models with an arbitrary number of
doublets and singlets

We consider models with the content of the SM but a scalar
sector composed of the following SU(2) doublets and sin-
glets

φa =

(
ϕ+

a
ϕ0

a

)
, a = 1, 2, ..., nd ,

χ+
i , i = 1, 2, ..., nc , (1)

χ0
r , r = 1, 2, ..., nn ,

and denote by ϕ0
a
′ and χ0

r
′ the neutral fields after the re-

moval of the developed vacua. The fields rotate to the
physical states through the transformations

ϕ+
a = Uα

a S +
α ,

χ+
i = Tα

i S +
α ,

ϕ0
a
′ = Vβ

a S 0
β , (2)

χ0
r
′ = Rβ

r S 0
β ,

where the last matrix is real and the others are complex.
These matrices are not square, and thus, are not unitary.
Only if there is no mixing between the scalar and doublet
sectors, these matrices can be brought to a basis where
they are presented as unitary matrices plus zeros. This will
have an important bearing further in this work.

The scalar potential has the quadratic and quartic terms
combining the scalar φ†aφb with the scalar bosons. There
is only one more unique term, which is (µabi

4 φaiσ2φbχ
−
i +

h.c.), where µabi
4 is anti-symmetric in (a, b).

After expanding the vacua, the term above leads to

V ⊃ µabi
4√
2

(ϕ+
aϕ

0
b
′ − ϕ0

a
′ϕ+

b )χ−i ,

+
µabi∗

4√
2

(ϕ−aϕ
0
b
′∗ − ϕ0

a
′∗ϕ−b )χ+

i , (3)

+
µabi

4√
2

(vaϕ
+
b − vbϕ

+
a )χ−i ,

+
µabi∗

4√
2

(v∗aϕ
−
b − v

∗
bϕ
−
a )χ+

i ,

where we can see that there is only mixing between the
doublets and singlets if µabi

4 , 0 for some combination of
indices. The cubic term in the potencial is then essential
for the non-unitary behaviour of the matrix Uα

a , which will
soon be of major importance. We also see in this last equa-
tion that the coupling h0H+

1 H−2 can exist with µabi
4 = 0, but

only for H+
1 and H+

2 belonging both to the doublet sector or
both to the singlet sector, while µabi

4 , 0 induces a mixing
of the sectors.

Finally, the covariant derivative of the scalars leads to
the term

L ⊃ −i
g

2cW
Zµ (2s2

Wδ
αα′ − (U†U)α

′α) (4)

×(S +
α∂

µS −α′ − S −α′∂
µS +

α) ,

where we see the appearance of (U†U)α
′α. Note that if

µabi
4 = 0, then the matrix Uα

a will behave as unitary, mean-
ing that (U†U)α

′α will be diagonal. This means that the
coupling ZH+

a H−b for a , b does not exist if µabi
4 = 0.

The charged scalars will then only have flavour changing

neutral currents with the Z boson if µabi
4 , 0 for some

combination of indices. The exploration of this under-
appreciated point is one of the distinguishing features of
this work.

3 A Zee-type Model

The minimal models containing the type of coupling high-
lighted in the last section are Zee-type models, which are
composed of two scalar doublets and one singly charged
singlet. To study a particular example of these models, we
pick a Zee-type model consisting of a type II 2HDM with
the singly charged singlet. Our purpose is not to make a
global fit to the sectors of the model, but rather highlight
those features of such types of model that could be probed
at the LHC.

The Higgs potential of the model can be written as

V = m2
Cχ

+χ− + λC(χ+χ−)2 +
[
µ4 φ1iσ2φ2χ

− + h.c.
]

+ m2
1φ
†

1φ1 + m2
2φ
†

2φ2 − m2
12

(
φ†1φ2 + φ†2φ1

)
+

[
k1φ

†

1φ1 + k2φ
†

2φ2 − k12

(
φ†1φ2 + φ†2φ1

)]
χ+χ−

+
λ1

2

(
φ†1φ1

)2
+
λ2

2

(
φ†2φ2

)2
+ λ3φ

†

1φ1φ
†

2φ2 (5)

+ λ4φ
†

1φ2φ
†

2φ1 +
λ5

2

[(
φ†1φ2

)2
+

(
φ†2φ1

)2
]
,

and we consider all parameters and vacua real.
Denoting the rotation matrices for various angles as

Oθ =

(
cos θ sin θ
− sin θ cos θ

)
, (6)

we define the angles that rotate to the physical basis as(
S 0

1 ≡ G0

S 0
4 ≡ A

)
= Oβ

(
Imϕ0

1
′

Imϕ0
2
′

)
, (7)(

S 0
2

S 0
3

)
= Oα

(
Reϕ0

1
′

Reϕ0
2
′

)
, (8)(

S +
1 ≡ G+

H+

)
= Oβ

(
ϕ+

1
ϕ+

2

)
, (9)(

S +
2

S +
3

)
= Oγ

(
H+

χ+

)
, (10)

where β is the angle that brings us to the Higgs basis of
the doublets, revealing the Goldstone bosons G0,±, and the
other angles are obtained by diagonalizing the remaining
mass matrices.

The Uα
a matrix discussed before becomes, in this the-

ory,

U =

(
cos β − sin β cos γ sin β sin γ
sin β cos β cos γ − cos β sin γ

)
. (11)

And the quantity appearing in the flavour changing neutral
current of the charged scalars with the Z is

U†U =

1 0 0
0 cos2 γ − sin γ cos γ
0 − sin γ cos γ sin2 γ

 . (12)

The flavour changing coupling comes exactly from the off

diagonal components of this matrix, which are absent in
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theories like the NHDM. When calculating the masses and
angles from the parameters of the potential we are left with
the following fourteen independent parameters

mH0
1
, mH0

2
, mA0 , mH+

1
, mH+

2
, m2

12,

v, α, β, γ, λC , k1, k2, k12 , (13)

where v is the only one already constrained by experiment
thorough the mass of the W±µ bosons.

3.1 Theoretical Constraints

To scan the parameter space of the model, we imposed on
the generated points some theoretical constraints that the
model needs to satisfy.

The bounded from below conditions in the Zee model
were studied in Reference [18]. They extend the known
conditions for the 2HDM [19, 20], but only find necessary
conditions, not sufficient. One of the conditions depending
only on α and β cannot be solved analytically. To sidestep
this, we took a large sample of those parameters and ex-
cluded the ones that do not satisfy the condition.

The analysis of the charged breaking minima was
much more complicated than in the 2HDM [20]. There-
fore, we took an approach based on Reference [18]. We
parameterize the possible minima, and for each neutral
minima in the theory, we generate random values of that
parameterisation and use the method of gradient descent
to obtain the lower minimums.

To ensure perturbative unitarity of the quartic cou-
plings, we implemented the general algorithm presented in
Reference [21]. We found the scattering matrices for pro-
cesses conserving electric charge and hypercharge, which
have a total of 19 different eigenvalues. We then exclude
points where at least one eigenvalue is bigger than 8π.

Finally, the points have to satisfy the electroweak pre-
cision measurements from the oblique parameters S, T and
U. We use the fit given in [22] and demand the parameters
to be within 2σ of the result.

3.2 Constraints from the LHC

One type of experimental constraints we impose on the
points from the LHC, are the constraints on the measured
Higgs boson of 125GeV . These are forced from the signal
streghts for each production mode and final state, which
are given in Reference [23].

The rest of the constraints from the LHC are the
bounds on other neutral and charged scalars which we im-
plemented using the most recent version of HiggBounds
5 [24].

3.3 Constraints from BR(B→ Xsγ)

In models with charged scalar bosons it is well known [16,
17, 25–27] that the experimental limits on the BR(B →
Xsγ) can put important constraints on the parameter space
of these models. For instance, in Reference [17] the bound

mH+ > 580 GeV , (14)

is derived for the type 2 2HDM at 95% CL (2σ).
We take the approach of considering for the theoreti-

cal error a band around the central value of the calculation
with an error of 2.5%, and following [27], for the experi-
mental error, we consider 99%CL (3σ), that is,

2.78 × 10−4 < BR(B→ Xsγ) < 3.77 × 10−4 . (15)

Our calculation follows closely the original calcula-
tion of Reference [16]. The central point in that calcula-
tion is that the new contributions from the charged scalar
bosons are encoded in the Wilson coefficients. For the in-
put parameters we use those of Reference [16] except for
αs(MZ),mt,MZ ,MW that were updated to the values of the
PDG [28].

Before advancing, we checked that, by using the input
parameters of [16], we were able to reproduce their results
for the SM.

Then, we considered the particular case of a type 2
2HDM, accomplished by setting γ = 0 in our model, de-
coupling the singlet completely. In Figure 1 we show the
results considering a band corresponding to 2.5% in the
calculation and a 3σ band for the experimental result. As

Figure 1. BR(B→ Xsγ) as a function of the charged scalar mass.
The lines in blue represent the 3σ experimental limits, and those
in red to 2.5% error in the calculation.

can be seen, the limit for the mass of the charged scalar
that we get is similar to what was obtained in Reference
[17].

Finally, we considered our type 2 Zee model. For now,
we do not impose the theoretical and experimental con-
straints on the model, since our purpose here is just to
show how the constraints from BR(B → Xsγ) can be sat-
isfied. We varied the masses and γ, and obtained the plots
in Figure 2. In the upper panel, we see that we cannot
have both charged Higgs masses below the approximately
580GeV limit simultaneously. Nonetheless, it is possible
that one of the charged Higgs is below that threshold, if
the other is above. This depends on the angle γ as can be
seen in the lower panel. We see that mH+

1
can be as low as

50 GeV if the mixing angle is close to ±π/2 and that we
recover the previous result for γ = 0.
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Figure 2. Upper panel: points satisfying Eq. (15) for Zee-type
models. Lower panel: mass of the lightest charged scalar boson
as a function of the mixing angle γ.

4 The Search for Distinctive Signals of
Zee-type Models

4.1 Impact of the charged scalars on the decays
h→ γγ and h→ Zγ

The distinctive feature of our implementation of Zee-
type models, the appearance of the off-diagonal coupling
ZH±1 H∓2 , contributes to the loop decay h → Zγ. It is then
natural to seek for a new feature in this decay, caused by
the mentioned coupling. The decay h → γγ, on the other
hand, will not be influenced by this coupling. The dif-
ference between the two processes comes from diagrams
where different charged scalars circulate in the loop.

The dependence of the amplitudes µ4, is intrinsically
related to their dependence on the angle γ. The couplings
h1H+

j H−k are proportional to sin γ for j , k, and do not
have a strong dependence on γ otherwise. The couplings
ZH+

j H−k are proportional to sin 2γ for j , k and to cos 2γ
otherwise.

We were able to check that the amplitudes of the dia-
grams depend on γ as the products of the respective cou-
plings would suggest, as expected. However, once we

added all the diagrams, we lost the dependence on γ. The
dependence on µ4 is then hidden, and the observed be-
haviour ends up being the same as in models like the
3HDM.

We conclude that the decay h → Zγ cannot be used to
identify the novel coupling ZH+

1 H−2 appearing in Zee-type
models, and move on to search for such a signal in other
processes.

4.2 The decay H+
2 → H+

1 + Z

Depending on the masses, the following decays of the
most massive charged higgs are among the most impor-
tant,

H±2 → H±1 + Z , H+
2 → t + b , H±2 → H±1 + hi ,

H±2 → W± + hi , H+
2 → ντ + τ+ .

The first decay is unique to this type of models and not
present in the NHDM. It has a strong dependence on γ
and is only possible for γ , 0. It is then the prefect pro-
cess to probe the type of models we are interested in. We
have checked that it can indeed ocur, and its dependence
on γ and the mass of the heavier scalar can be seen in Fig-
ure 3, where all the points satisfy the constraints discussed
previously.

After the decay into the lighter scalar, this last one can
decay, if kinematically available, into the same processes.

There is one chain of processes that has a very clear
signature. That chain is

H+
2 → H+

1 + Z , and H+
1 → t + b , (16)

and it should be search for at the LHC in order to probe
models with this characteristic couplings.

Since the model has many independent parameters, it
won’t help to plot the BR’s as a function of the heavier
scalar masses, analogous to what was made in [29], since
we would get a figure with all points superimposed and
no lines. We then turn to benchmark points. This allows
for a better visualisation, since we fix most of the param-
eters and oscillate them slightly, in order to show that the
branching ratios of the process in Equation 16 can be im-
portant, or even dominant.

In Appendix A we present the dominant branching ra-
tios of H+

2 and H+
1 for the parameters in the benchmark

regions around each benchmark point.
In the first three benchmark points we see that our sig-

nal decay has the largest branching ratio, while H+
1 decays

almost always into t + b̄. This should provide clear sig-
natures at the LHC. A detailed analysis, with background
studies, should of course be done. The width of the bands
comes from the variation of tan β (at the percent level, be-
cause the good points have α ' β). All the points pass all
the constraints.

For the first benchmark point we chose both masses of
the charged scalars to be above the limit shown in Equa-
tion 14, while for the second and third benchmark point
we chose for the lighter one to be below that limit. This
way we can show that there are indeed points passing all
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Figure 3. Decay with H+
2 → H+

1 + Z. On the upper panel the
dependence on the mass of the decaying charged Higgs and on
the lower the dependence on γ.

the constraints discussed, including those of Equation 15,
while one of the charged scalar lies below the limit of
Equation 14.

The forth and last benchmark point was taken from the
few points with a large BR(H+

1 → W+ + h1). This decay
is one of the channels that have not been investigated at
the LHC yet [30]. From the figures we see that, in our
model, both BR(H+

1 → W+ + h1) and BR(H+
1 → W+ + h2)

can be sizeable. But in this case, the BR(H+
2 → H+

1 +

Z) is very small. However the BR(H+
2 → W+ + h1) and

BR(H+
2 → W+ + h2) can also be large, making this an

interesting benchmark point.

5 Models with extra gauge symmetries

As a side work, we explore models with extra Gauge sym-
metries. Namely theories the electroweak gauge Group
SU(2) × U(1) × U(1). We also work a model with such
an electroweak group and a scalar sector composed of a
doublet and a higher multiplet.

5.1 Neutral Gauge Bosons

We consider theories with the following covariant deriva-
tive

Dµ = ∂µ + i
m∑

r=1

grYrXµ
r , (17)

where we consider only the neutral Gauge bosons. We
assume the scalars of the theories have the vacua in only
one entry, such that

Yr < φi >= yri < φi > , (18)

and parameterize that entry as

φiv =
1
√

2
(vi + hi + iai) . (19)

After applying the covariant derivative to the scalars
and calculating the kinectic terms of the scalars in the la-
grangian, the relevant terms for observing the Higgs mech-
anism on the nautral gauge bosons are the following

LK0 =
1
2

āT ā + āT CX̄ +
1
2

X̄T M2X̄ . (20)

Where the components of ā are ∂µai, the components of X̄
are Xµ

r , C is a matrix whose columns are the vectors

c̄r =
(
v1gryr1 v2gryr2 . . vngryrn

)
, (21)

and M2 is the Graham Matrix of C. By diagonalizing this
last matrix with a rotation matrix R, the lagrangian terms
are rewritten as

LK0 =
1
2

āT ā + āT CDȲ +
1
2

ȲT M2
DȲ . (22)

where Ȳ are the mass eigenstates, Ȳ = RX̄, M2
D is the di-

agonal form of M2, RM2RT = M2
D, and CD = CRT .

We can safely ignore the massless Gauge bosons, since
by corresponding to null eigenvalues, the nature of M2

D and
CD guarantees us that they do not appear in this term. Be-
sides, the Goldstone theorem guarantees that all massive
gauge bosons have a correspondent Goldstone boson to
absorb, which means we can safely project the ai to that
space in the CD term and separate them from the others in
the purely kinetic term. We then obtain

LK0 =
1
2

z̄T z̄ +
1
2

b̄T b̄ + b̄T CDS B̄ +
1
2

B̄T M2
DB̄ , (23)

where B̄ are the massive Gauge bosons, b̄ are the Gold-
stone bosons, and z̄ are the rest of the scalars. After a little
algebra, this gets written as

LK0 =
1
2

z̄T z̄ +
1
2

(
B̄T + b̄T (CT

D)−1
)

M2
D

(
B̄ + C−1

D b̄
)
. (24)

Finally, using the gauge symmetries available, we redefine
the Gauge bosons as

Z̄ = B̄ + C−1
D b̄ , (25)

leaving the lagrangian as

LK0 =
1
2

z̄T z̄ +
1
2

Z̄T M2
DZ̄ , (26)

which illustrates the Higgs mechanism at work in these
theories.
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5.2 The photon in SU(2) × U(1) × U(1) theories

In the case of a theory with an SU(2) × U(1) × U(1) elec-
troweak Gauge group, the neutral part of the covariant
derivative takes the form

Dµ = ∂µ + igT3W3
µ + igaYaXaµ + igbYbXbµ , (27)

and the photon is given by a linear combination of those
Gauge bosons as

Aµ = cW3
µ + aXaµ + bXbµ . (28)

But, defining Bµ as

Bµ =
1

√
a2 + b2

(aXaµ + bXbµ) , (29)

and Xµ as the combination of Xaµ and Xbµ orthogonal to
Bµ, the photon can be written as

Aµ = cW3
µ + dBµ . (30)

One can then always decide to start in this basis of the
U(1) × U(1) subgroup, and define the hypercharges of all
particles with relation to this basis. This means that the
first angle of rotation is nonphysical and one only needs
two of the usual three Euler angles to get to the physical
basis. These angles can be defined, as an example, as(

Z0
µ

Aµ

)
=

(
cos θW − sin θW

sin θW cos θW

) (
W3
µ

Bµ

)
, (31)(

Z′µ
Zµ

)
=

(
cos θX − sin θX

sin θX cos θX

) (
Z0
µ

Xµ

)
, (32)

where (Aµ,Zµ,Z′µ) are the physical basis.
Note that the singlets in a theory do not couple with

W3
µ . If they develop a vacuum, they also cannot couple to

Bµ, or they would also couple to Aµ, and break the electro-
magnetic charge. One must conclude then that, in a theory
with singlets, the basis (Bµ, Xµ) can be found by requiring
that only the Xµ couples to the singlets with vacua. If such
basis is nowhere to be found, the eletromagnetic charge is
broken in the theory, and one must exclude it.

5.3 Working Theory: Doublet plus Multiplet

As an example, we consider a theory with an SU(2) ×
U(1) × U(1) electroweak Gauge group and a scalar sector
consisting of a doublet and a higher multiplet, parameter-
ized as

ϕ =

(
.

1
√

2
(v + ϕR + iϕI)

)
, χ =


.
.

1
√

2
(u + χR + iχI)

.

 , (33)

and with hypercharges:

ϕ : t3V = −1/2 yB = 1/2 yX = y2 , (34)
χ : t3V = −yB yB = yB yX = yX . (35)

The C matrix is then written as

C =

(
− 1

2gv
1
2gBv y2gXv

−yBgu yBgBu yXgXu

)
, (36)

and one can check that a rotation of the first two columns
(correspondent to W3

µ and Bµ respectively) by the angle

cos(θW ) =
rg√

r2g2 + g′2
, (37)

sin(θW ) =
g′√

r2g2 + g′2
, (38)

brings us to a basis with a null column, whose entry in the
graham matrix of C will be zero, and thus must correspond
to the photon. We are then already in the basis discussed
in Section 5.2, thanks to our choice of hypercharges.

Removing the photon, the mass matrix becomes

M2 =

(
g2

0( 1
4 v

2 + y2
Bu2) ∆

∆ g2
X(y2

2v
2 + y2

Xu2)

)
, (39)

where ∆ = −g0gx( 1
2y2v

2 + yByXu2) and g0 =

√
g2 + g2

B.
Finally, to diagonalize this matrix one uses the angle

cos θX =

√
1 +

√
1 − 1/(1 + K2/4)

2
, (40)

sin θX =
sign(K)

cX
√

4 + K2
, (41)

where:

K =
g2

0( 1
4 v

2 + y2
Bu2) − g2

X(y2
2v

2 + y2
Xu2)

1
2g0gX( 1

2y2v2 + yByXu2)
, (42)

and gets for the masses of the physical Gauge bosons

M2
1 = v2( 1

2g0cX + y2gX sX)2 (43)
+u2(yBg0cX + yXgX sX)2 , (44)

M2
2 = v2( 1

2g0sX − y2gXcX)2 (45)
+u2(yBg0sX − yXgXcX)2 . (46)

6 Conclusions
We look for understudied distinctive signals in various
Multi-Higgs Models. One such singular feature of mod-
els with multiple scalar doublets and charged singlets is
the presence of off-diagonal ZH±1 H∓2 couplings. We have
studied this feature in detail, using the scalar sector of a
Zee-type model as an example.

We show that ZH±1 H∓2 couplings appear in h→ Zγ and
B → Xsγ, but that there they do not impose features be-
yond those already present in generic 3HDM (where such
off-diagonal couplings are not present).

We stress the importance of looking experimentally for
H+

2 → H+
1 Z decays and propose interesting benchmark

points. We also found in our model interesting values
for the decays recently proposed in [30]. We found that
there are regions of parameter space consistent with large
branching ratios for H+

1 → W+h1,2 or H+
2 → W+h1,2. But,

in those cases, we found no case where simultaneously
BR(H+

2 → H+
1 Z) was large. We strongly urge a search for

H+
2 → H+

1 Z decays.
We also work some expressions on the Higgs mecha-

nism for theories with extra Gauge symmetries in the elec-
troweak sector. We give emphasis to SU(2)×U(1)×U(1)
theories and work the example of theories with a scalar
dublet and a higher multiplet.
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A Benchmark points branching ratios

Figure 4. From top to bottom we present the dominant branch-
ing ratios of H+

2 on the left and H+
1 on the right for each of the

benchmark points 1 to 4.


