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Resumo

Estuda-se modelos Multi-Higgs que satisfazem simetria custodial, na procura de caracterı́sticas fora

do comum e pouco estudadas em sub-classes desses modelos. Ao estudar modelos com numero

arbitrário de dubletos e singletos escalares, descobre-se que modelos com pelo menos dois dubletos e

um singleto carregado têm a propriedade interessante de apresentar um acoplamento entre um bosão

Z e dois escalares carregados de massas diferentes. Esta propriedade é normalmente ignorada em

análises fenomenológicas, devido a estar ausente em modelos com apenas dubletos. Explora-se este

problema em detalhe, considerando h → Z‚, B → Xs‚, e o decaimento de um escalar carregado

pesado num mais leve e num bosão Z. Propõe-se que o ultimo seja procurado activamente no LHC,

usando o sector escalar de Zee-type models como protótipo e propondo pontos de benchmark que

obedeçam todos os dados experimentais correntes, e que possam estar no alcance do LHC.

Também se discute tópicos como o mecanismo de Higgs e a existência de carga, e como estes são

influenciados numa teoria com simetrias de Gauge adicionais no sector electrofraco. Dá-se ênfase a

teorias com grupo de Gauge eletrofraco SU(2) × U(1) × U(1), e trabalha-se o exemplo de uma teoria

com um dubleto e um multipleto maior.

Palavras-chave: Multi-Higgs; Zee Model; Gauge; LHC
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Abstract

We study Multi-Higgs models which satisfy custodial symmetry in search of unusual and understudied

characteristics in sub-classes of these models. Thus, we explore models with an arbitrary number of

scalar doublets and singlets, finding that, within those, models containing at least two doublets and a

charged singlet have the interesting property that they have couplings between one Z boson and two

charged scalars of diferent masses. This property is often ignored in phenomenological analysis, as it is

absent from models with only extra scalar doublets. We explore this issue in detail, considering h→ Z‚,

B → Xs‚, and the decay of a heavy charged scalar into a lighter one and a Z boson. We propose

that the latter be actively searched for at the LHC, using the scalar sector of the Zee-type models as

a prototype and proposing benchmark points which obey all current experimental data, and could be

within reach of the LHC.

We also discuss the topics of the Higgs mechanism and the existence of charge, and how these

are influenced in a theory with extra gauge symmetries in the electroweak sector, giving a particular

emphasis to theories with an SU(2) × U(1) × U(1) electroweak gauge group and working the example

of one of those theories with a scalar doublet and a higher multiplet.

Keywords: Multi-Higgs; Zee Model; Gauge; LHC
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Chapter 1

Introduction

Over many decades, the Standard Model (SM) [1, 2, 3] has been confirmed to unprecedented precision.

This culminated with the 2012 experimental detection of a fundamental scalar particle with mass 125GeV

(the Higgs Boson h125) [4, 5], which had been proposed in the early 1960’s [6, 7]. Still, the SM leaves

unanswered questions, from the nature of neutrino masses, to the origin of Dark Matter (DM). Having

found one fundamental scalar, the most pressing question is: are there more fundamental scalars in

Nature? There is a large international effort to answer this question, both from the theoretical point of

view, and from the robust experimental physics programs currently pursued at CERN’s LHC. Thus, one

is lead to study and search for signals of extra scalars.

In Chapter 2 we give an introduction to concepts in Multi-Higgs physics in a pedagogical approach

both to ease the reading of the rest of this work to the more inexperienced reader and to introduce the

notations used later.

It is known experimentally that the masses of the W and Z bosons bear a relation very close to that

predicted in the SM: MZ cos „W =MW ∼ 1, where „W is the Weinberg angle. This holds automatically if

the extra scalars are in doublets or singlets of the electroweak gauge group. Thus, we are lead to study

theories with any number of scalar doublets and/or singlets; the latter neutral and/or charged.

In Chapter 3, starting with the Standard Model, we work our way up to introduce and study those

models with an arbitrary number of doublets and singlets. We also go in more detail in one of those

models, the Zee Model [8], consisting of two doublets and one charged singlet.

The Zee model is a case of particular interest, originally proposed to explain naturally small neutrino

masses, and later adapted to explain also DM [9, 10]. The Zee model with an extra Z2 symmetry

proposed by Wolfenstein [11] is not consistent with current data from neutrino oscillations [12, 13], but

the original proposal is still consistent with all leptonic experimental results [14, 15]. But the scalar sector

of the Zee model (and of models having the same scalar sector, which we dub “Zee-type” models) also

has another striking feature which is mostly ignored; it is the minimal model predicting the existence of

couplings ZH±1 H
∓
2 between the Z gauge boson and two charged scalars (H+

1 and H+
2 ) of different mass.

This feature was the central motivation for a work which lead to the submission of an article for

publication [16]. Along with part of Chapter 3, Chapter 4 was mainly adapted from this article.
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Even before direct detection of the extra charged scalar particles, ZH±1 H
∓
2 couplings could potentially

have a virtual effect on current measurements, such as h125 → Z‚. We discuss this example in detail.

In fact, the contribution of the charged scalars to the branching ratio can even vanish, but that is not be-

cause the Z couples to two different charged scalars, but rather because there are two charged scalars

contributing in the loop. Indeed, this feature is already present for instance in the 3HDM, where there

are two charged scalars but the coupling of the Z to them is diagonal. Although there is a modulation

of the result with the mixing angle between the two charged Higgs, this is hidden when the sum over all

diagrams is performed.

To study this model we took into account all the theoretical and experimental constraints coming from

the scalar and quark sectors. In particular, we considered in detail the influence of the bounds coming

from BR(B → Xs‚) [17]. This is especially important because, as there are two charged Higgs, one can

evade the 580 GeV limit for the 2HDM [18]. We will discuss the implications of this for Zee-type models.

A distinctive signal for this model with its ZH±1 H
∓
2 couplings is the decay of the heavier charged Higgs

into the lightest one and one Z. We performed an analysis of the parameter space to look for regions

where this decay can be large. This lead us to identify examples of benchmark points where the decay

H+
2 → H+

1 Z can be large as well as the decay H+
1 → tb̄, leading to a clear signature that should be

searched for at the LHC.

In Chapter 5 we study some of the concepts presented before but in the context of Multi-Higgs

theories with larger Gauge groups in the electroweak sector. We also study a model with an SU(2)L ×

U(1)Y × U(1)′ symmetry and a scalar sector containing a doublet and a higher multiplet.

After the conclusions in Chapter 6, some appendices are included. In appendix A we collect the

relevant couplings of the charged Higgs in Zee-type models. The detailed formulas for the loop decays

are presented in appendix B and for perturbative unitarity in appendix C. As far as we know, the latter are

presented in the submited article for the first time. Appendix D helps understand how the hypercharges

change when we change the basis of the Gauge bosons, which is useful for Chapter 5.
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Chapter 2

Concepts in Multi-Higgs Physics

In this chapter we introduce concepts the reader may be accustomed to see in the framework of the SM,

but explored in a more broad context of general Multi-Higgs models. This will serve both as an invitation

to broaden established concepts and as an introduction to the kind of notation used in this text. For

practical purposes, in this chapter, we restrict ourselves to models invariant under the SM gauge group

and omit the strong force group since it has no bearing in most of this work.

2.1 The Particle Content

Since our models are invariant under the electroweak gauge group of the SM, SU(2)L×U(1)Y , all kinetic

terms in the Lagrangian should use the covariant derivative

D— = @— + iK— ; (2.1)

where

K— = gTaW
a
— + g ′Y B— ; (2.2)

Ta are the SU(2) generators and Y is the U(1) hypercharge. These operators take different forms ac-

cording to the fields the covariant derivative is acting on. By rotating the SU(2) generators to a basis

with a raising, a lowering and a diagonal operator, we can write K— as:

K— = g(T+W
+
— + T−W

−
— ) + gT3W

3
— + g ′Y B— : (2.3)

where

W±— =
W 1
— ∓W 2

—√
2

(2.4)

3



and

T± =
T 1 ± iT 2

√
2

(2.5)

The W±— are the charged carriers of the electroweak force, while W 3
— and B— will become the neutral

carriers upon rotation to the mass eigenstates. As we will see later, this rotation depends on the content

of the Higgs sector.

The fermionic sector is akin to the one of the SM. It includes three generations of particles, each with

two SU(2) doublets

QL =

0@uL
dL

1A ; LL =

0@�L
eL

1A ; (2.6)

with hypercharges 1=6 and −1=2 respectively, and three SU(2) singlets

uR ; dR ; eR ; (2.7)

with hypercharges 2=3, −1=3 and −1 respectively. The SU(2) generators act as the Pauli matrices on

the doublets and as null operators on the singlets.

Finally, the Higgs sector will be restricted to an arbitrary number of doublets developing vevs in only

the real part of one entry, so that, as we will see, electric charge remains unbroken. These can be

expressed in the form

Φi =

0BBBBBBBBBBBB@

:

H++
i

H+
i

1√
2

(vi + hi + iai )

H̃−i

:

1CCCCCCCCCCCCA
: (2.8)

The existence and stability of this minimum will have to be studied on a case by case basis. In this

section we assume we are dealing with a model where this type of vacuum is allowed.

We define ti such that each multiplet has dimension 2ti + 1, t3V i to be the eigenvalue of T3 when

acting on the vacuum of the multiplet, yi to be the multiplet’s hypercharge and Vi = vi=
√

2.

2.2 The Higgs Mechanism

The Higgs mechanism is the process by which a scalar particle, by developing a vev that breaks a

gauge symmetry, gives mass to the gauge boson correspondent to the broken degrees of freedom of

that symmetry. To understand this mechanism, let us start by looking at the example of an abelian gauge

symmetry, before moving on to the non-abelian case.
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2.2.1 Abelian Higgs Mechanism

For the purposes of understanding the Higgs mechanism, let us consider a model with only the abelian

gauge group U(1) and a complex scalar particle charged under this symmetry. The covariant derivative

takes the form

D— = @— + ieA— ; (2.9)

and the Higgs potential

V (ffi±) = −—2ffi+ffi− + –(ffi+ffi−)2 : (2.10)

This potential has the form of a champagne-bottle profile, with the minimum outside of the centre and

spontaneously breaking the U(1) symmetry. The vacuum can the be taken real and assigned the value

v =
p
—2=–.

The scalar can be rewritten around the vacuum as

ffi+ =
1√
2

(v + h + ia) ; (2.11)

and, by expanding the potential, we get

V (h; a) = –v2h2 + –vh3 + –vha2 +
–

4
(h2 + a2)2 − –v4

4
: (2.12)

Note that there is no term quadratic in the real scalar a, and thus, it is a massless field. The presence

of such a massless field is ensured by the Goldstone theorem which states that for each broken degree

of freedom of the original symmetry, a massless spinless field shall arise. This field is called a Goldstone

boson, and is essential for the Higgs mechanism to take place.

Meanwhile, the covariant derivative acting on the scalar gives

D—ffi+ =
1√
2

(@—h + i@—a + ieA—(v + h + ia)) ; (2.13)

and, keeping only quadratic terms, the kinetic part of the Lagrangian becomes

LK2 = |D—ffi+|2 =
1

2

`
@—h@—h + @—a@—a + e2v2A—A— + 2evA—@—a

´
: (2.14)

Before the spontaneous breaking of the gauge symmetry, the gauge boson A— was massless since

one cannot add a mass term while preserving the gauge symmetry. And, by solving the massless Proca

equation, one knows that such a field has only two degrees of freedom, corresponding to what we call

the two transverse polarisations of the photon in electromagnetism.

Once the symmetry is spontaneously broken, one finds in Equation (2.14) a mass term with m = ev .

But, by solving the complete Proca equation, one knows that a massive spin-1 field has three degrees of

freedom, the two transverse plus a longitudinal one. Since the number of physical degrees of freedom
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cannot change between high energies, where the symmetry is not broken, and low energies, where the

symmetry is broken, this additional degree of freedom must come from somewhere.

To solve this problem, one can start by noticing that Equation (2.14) can be rearranged as

LK2 =
1

2

„
@—h@—h + e2v2

„
A— +

1

e
@—a

«„
A— +

1

e
@—a

««
: (2.15)

Using the fact that a U(1) gauge field is free to be redefined with the transformation A— → A— + i@—„,

one can now define the field

B— = A— +
1

e
@—a ; (2.16)

leaving LK as

LK2 =
1

2

`
@—h@—h + e2v2B—B—

´
: (2.17)

As can be seen, the kinetic term of the goldstone boson a, responsible for the dynamics of the field,

completely disappeared from the Lagrangian, and we are left with a spin-1 massive boson B— in the

place of the original A—. It is then said that the dynamical degree of freedom of the goldstone boson

got absorbed by the originally massless gauge boson to become the longitudinal component of the now

massive gauge boson. This process is what is called the Higgs mechanism, and it is the only known

way to generate mass to spin-1 fields in renormalizable theories.

2.2.2 Non-Abelian Higgs Mechanism

Let us now consider a theory as the ones described in Section 2.1, but only with one multiplet in Equation

(2.8), and losing its subscript. To find the masses of the Gauge bosons, one needs not to look at

the Higgs potential, since the Goldstone theorem guarantees that the required Goldstone bosons to

be absorbed by the Gauge bosons will appear in the needed fashion. We then jump to the kinetic

Lagrangian, and will calculate merely the terms with only neutral particles.

LK0 =
1

2
(@— − igt3VW 3— − ig ′yB—)(v + h − ia)(@— + igt3VW

3
— + ig ′yB—)(v + h + ia) : (2.18)

Taking the scalar fields to zero, one finds the Gauge boson mass terms

LM0 =
v2

2
(gt3VW

3— + g ′yB—)(gt3VW
3
— + g ′yB—) ; (2.19)

which corresponds to a mass matrix, in the basis (W 3
—; B—), of

M2 = v2

0@ g2t2
3V gg ′t3V y

gg ′t3V y g ′2y2

1A ; (2.20)
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which in turn needs to be diagonalized. But, looking at Equation (2.19), one infers that the combination

Z— = − 1p
g2t2

3V + g ′2y2

`
gt3VW

3
— + g ′yB—

´
; (2.21)

is an eigenvector with eigenvalue

m2
Z = v2(g2t2

3V + g ′2y2) ; (2.22)

and, since the matrix is hermitian, the perpendicular vector is the other eigenvector with null eigenvalue.

One can then define the rotation angle „W as

cos(„W ) = − gt3Vp
g2t2

3V + g ′2y2
; (2.23)

sin(„W ) =
g ′yp

g2t2
3V + g ′2y2

; (2.24)

so that:

Z— = cos(„W )W 3
— − sin(„W )B— ; (2.25)

A— = sin(„W )W 3
— + cos(„W )B— ; (2.26)

where the sign notation was chosen so that the above equations coincide with the definition of the

Weinberg angle in the case of the SM.

Calculating the mass term for the charged bosons one finds

LM1 =
g2v2

2
(t(t + 1)− t2

3V )W+—W−— ; (2.27)

leading to a mass of

m2
W =

g2v2

2
(t(t + 1)− t2

3V ) : (2.28)

And a procedure like the one in the previous subsection reveals the absorbed goldstone bosons to be a

for the Z— and a combination of the H± and H̃± for the W±— .

Notice that there is no mass term for A—, and so, the resulting terms are still invariant under an abelian

gauge transformation on A—, which means that there remains an unbroken U(1) gauge symmetry in our

theory. To find the corresponding unbroken charge, one needs to apply the field rotation to K—, which

leads to

K— = g(T+W
+
— + T−W

−
— )− g2t3V T3 + g ′2yYp

g2t2
3V + g ′2y2

Z— +
gg ′(yT3 − t3V Y )p
g2t2

3V + g ′2y2
A— ; (2.29)
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and, using the useful convention

e =
gg ′p

g2(t3V =y)2 + g ′2
; (2.30)

it can be written as

K— = g(T+W
+
— + T−W

−
— )− g2t3V T3 + g ′2yYp

g2t2
3V + g ′2y2

Z— + e

„
T3 −

t3V
y
Y

«
A— : (2.31)

The unbroken U(1) charge is then

Q = T3 −
t3V
y
Y : (2.32)

This remaining symmetry is usually denoted by Uem(1), since its gauge boson A—, called the photon,

is responsible for electromagnetic interactions. And Q is then the electric charge operator.

To finalise this subsection we note that in the case of the SM one has a doublet with quantum

numbers y = −t3V = 1=2 which lead to

Q = T3 + Y ; (2.33)

as the reader might be familiar from traditional textbooks.

2.3 Charge Definition in Multi-Higgs

Electric charge is, in a general sense, a combination of the diagonal operators in the covariant derivative.

This is the case since there is no flavour changing processes assigned to the electromagnetic force. In

the case of SU(2)L × U(1)Y , it can then be written as

Q = T3 + rY ; (2.34)

where we used the fact that an overall constant can always be absorbed by e to assign a unitary value

to the coefficient of T3. By definition, this must correspond to the unbroken part of the symmetry, which

means that, in models with various scalar multiplets, when applied to the vacuum of these, the charge

must vanish

Q < ffii >= (t3V i + ryi ) < ffii >= 0 : (2.35)

Since by defining the size of a multiplet and which entry develops the vacuum one already fixes t3V i ,

the previous relation holds only if the hypercharges of the multiplets with vacuum satisfy

ryi = −t3V i : (2.36)
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This means that, when assigning hypercharges to the doublets of a theory, one really only has one

degree of freedom to choose, r , and all the hypercharges are automatically assigned in order not to

break the electromagnetic gauge symmetry. Note that if another entry of a multiplet were to develop a

vacuum, they would not be able to both satisfy Equation (2.36) at the same time, since they would have

same yi but different t3V i .

With various multiplets, the gauge boson mass terms of the Lagrangian become just a sum of the

term from each vacuum

LM =
X
i

g2v2
i

2
(ti (ti + 1)− t2

3V i )W
+—W−— +

X
i

v2
i

2
(gt3V iW

3
— + g ′yiB—)2 ; (2.37)

leading to a charged bosons mass of

m2
W =

X
i

g2v2
i

2
(ti (ti + 1)− t2

3V i ) ; (2.38)

and a neutral gauge bosons mass matrix of

M2 =

0@ P
i g

2t2
3V iv

2
i

P
i gt3V ig

′yiv
2
iP

i gt3V ig
′yiv

2
i

P
i g
′2y2

i v
2
i

1A : (2.39)

This matrix has, in general, non-null eigenvalues. But it is easy to check that the condition of Equation

(2.36) is enough to render its determinant null, creating one vanishing eigenvalue as expected. In fact,

applying those conditions on the Lagrangian leads to

LM =
X
i

g2v2
i

2
(ti (ti + 1)− t2

3V i )W
+—W−— +

1

2
(−rgW 3

— + g ′B—)2
X
i

y2
i v

2
i ; (2.40)

which induces us to generalise the rotation angle to

cos(„W ) =
rgp

r2g2 + g ′2
; (2.41)

sin(„W ) =
g ′p

r2g2 + g ′2
; (2.42)

leading to

LM =
X
i

g2v2
i

2
(ti (ti + 1)− t2

3V i )W
+—W−— +

r2g2 + g ′2

2
Z—Z—

X
i

y2
i v

2
i ; (2.43)

and translating to a mass for the neutral gauge boson of

m2
Z = (r2g2 + g ′2)

X
i

y2
i V

2
i : (2.44)

For completion, in order for Equation (2.34) to be valid, we need to explicitly state the generalised
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definition

e =
gg ′p

g2r2 + g ′2
: (2.45)

2.4 Custodial Symmetry

In order to understand custodial symmetry, we will start by exemplifying the matter with the case of the

doublet.

The doublet can be parameterised as

ffi =
1√
2

0@’1 + i’2

’3 + i’4

1A ; (2.46)

where the ’i are real fields, and the most general Higgs potential may be written as

V (ffi) = −—2ffi†ffi+ –(ffi†ffi)2 : (2.47)

The potential only depends on the quantity

ffi†ffi =
1

2

`
’2

1 + ’2
2 + ’2

3 + ’2
4

´
; (2.48)

and so, it is not only globally invariant under the SU(2)L symmetry, but it is actually globally invariant

under the larger symmetry group SO(4) that rotates the four scalars between each other. This group

is isomorphic to SU(2)L × SU(2)R, and, assuming the right hand fermions transform as doublets under

SU(2)R, the rest of the SM Lagrangian is also invariant under the larger group.

Since only one of these scalars develops a vacuum, the symmetry breaks to the SO(3) that rotates

the remaining three fields and is isomorphic to SU(2)V , the diagonal component of SU(2)L × SU(2)R.

This remaining global symmetry is the custodial symmetry.

Those three scalars that do not develop a vacuum are the goldstone bosons that will be absorved

throughout the Higgs mechanism by the gauge bosons. And, since they transform as a triplet under the

custodial symmetry, so must the massive gauge bosons. The presence of custodial symmetry can then

be checked for in the mass terms appearing after symmetry breaking and ignoring the mixing with the

U(1)Y gauge boson.

From Equation (2.37) one can obtain

LM =
X
i

g2v2
i

4
(ti (ti + 1)− t2

3V i )(W 1—W 1
— +W 2—W 2

—) +
X
i

g2v2
i

2
t2

3V iW
3—W 3

— ; (2.49)

and so, for the theory to be invariant under the global custodial symmetry, since the gauge bosons must

transform as a triplet under SO(3), one must have

ti (ti + 1)− t2
3V i = 2t2

3V i ; (2.50)
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for all multiplets in the theory.

The reasoning behind ignoring the U(1)Y gauge boson in this analysis, is because the U(1)Y sym-

metry is actually a subgroup of the global SO(4) symmetry of the potential. Since it is independent of

SU(2)L, it must be present as a subgroup in the remaining custodial symmetry group, after symmetry

breaking. By gauging only that part of the remaining symmetry, one is breaking the symmetry even

further. Nonetheless, the custodial symmetry remains intact in the Higgs sector, since the gauge boson

has no influence in it. One must then study the theory without the U(1)Y gauge boson to obtain the right

conditions, since by adding it, one does not change the global symmetries of the Higgs potential.

One can now translate this condition to experimentally measurable consequences, by defining the

quantity

 =
m2
W

m2
Z cos2 „W

: (2.51)

Using Equations (2.38), (2.41) and (2.44), and after a little algebra, one finds that

 =
t(t + 1)− t2

3V

2t2
3V

; (2.52)

for theories with only one scalar, and

 =

P
i (ti (ti + 1)− t2

3V i )viP
i 2t2

3V ivi
; (2.53)

for theories with multiple scalars.

The condition for custodial symmetry is then for the quantity  to be measured equal to 1. In fact,

this quantity has been measured to extreme precision to a value astonishingly close to that: 1:00038 ±

0:00020[37]. The multiplets included in our theories must then satisfy Equation (2.50) or have a very

small vacuum.

The multiplets that satisfy those conditions are the ones with quantum numbers

(2t + 1; t3V ) ∈ {(1; 0); (2;±1=2); (7± 2); (26;±15=2); (97;±28); :::} ; (2.54)

and, in this work, we will restrict ourselves to theories including only the first two.
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Chapter 3

Multi-Higgs Models

In this chapter we look into more specific multi-Higgs models studied in this work. We start by reviewing

the SM. Then, we move on to study models with an arbitrary number of doublets and singlets. We

identify an overlooked coupling appearing in some doublet singlet models and motivate the study of

experimental signatures of such type of couplings. We end the chapter by studying the Zee model since

Zee-type models are the minimal models with the presence of such couplings which will be used in the

next chapter to study its possible experimental signatures.

All these models have the structure described in Section 2.1. And so, there is a need only to specify

the Higgs content.

3.1 The Standard Model

The SM has only an SU(2)L doublet. Its vacuum can be brought by an SU(2)L transformation to the real

part of its lower component, leading us to y = −t3V = 1=2 as discussed in the last chapter. It can be

parameterized as

ffi =

0@ G+

1√
2

`
v + h + iG0

´
1A : (3.1)

The Higgs potential is the one used in Section 2.4

V (ffi) = −—2ffi†ffi+ –(ffi†ffi)2 ; (3.2)

and, by conducting its derivatives with relation to the scalars, one finds that the vacuum must satisfy

v =

r
—2

–
: (3.3)

The fields G± and G0 become the goldstone bosons absorbed by W± and Z respectively. Using the

minimum condition in Equation (3.3), the mass of the remaining scalar h, known as the Higgs boson, is
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found to be

m2
h = 2–v2 : (3.4)

Since there is only one doublet, the Yukawa sector can only be

−LY = Q̄L ffĩYuuR + Q̄L ffiYddR + L̄L ffiYeeR + h:c: : (3.5)

where

ffĩ = ffiT iff2 (3.6)

3.2 General Doublet Singlet Models

We consider the models studied in [19] and use a similar notation to the one presented there. The scalar

part of the model consists of nd doublets of SU(2), nc singly charged singlets and nn real neutral singlets.

The fermionic and vector fields are identical to the SM content.

The scalars are denoted by

ffia =

0@’+
a

’0
a

1A ; a = 1; 2; :::; nd ;

ffl+
i ; i = 1; 2; :::; nc ; (3.7)

ffl0
r ; r = 1; 2; :::; nn ;

and the neutral fields can be expanded around their vevs as

’0
a =

1√
2

(va + ’0
a
′) ; (3.8)

ffl0
r = ur + ffl0

r
′ ;

with complex va and real ur , where the former satisfy v =
`P
|va|2

´
' 246GeV. With a total of n = nd +nc

complex singly charged scalar fields andm = 2nd+nn real neutral scalar fields, we can define the change

to the physical basis S+
¸ (¸ = 1; 2; :::; n) and S0

˛ (˛ = 1; 2; :::; m) with masses m±¸ and m0˛ respectively,

throughout the transformations

’+
a = U¸a S

+
¸ ;

ffl+
i = T¸i S

+
¸ ;

’0
a
′ = V ˛a S

0
˛ ; (3.9)

ffl0
r
′ = R˛r S

0
˛ ;

where the last matrix is real and the others are complex. In this text, every index appearing up and down
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in the same expression is assumed to be summed over. The matrices

Ũ¸¸′ =

0@U¸a
T¸i

1A ;

Ṽ ˛˛′ =

0BBB@
Re V ˛a

Im V ˛a

R˛r

1CCCA ; (3.10)

are, respectively, the unitary and orthogonal matrices that diagonalize the charged and neutral mass

matrices. The physical fields with indices ¸ = 1 and ˛ = 1 are assigned to the unphysical Goldstone

bosons, and the neutral S0
2 field is assigned to the Higgs particle measured at the LHC with mass

mh ' 125GeV. We note that even though the matrices defined in Equation (3.10) are unitary, the

matrices in Equation (3.9) do not need to be. In fact, only if there is no mixing between the doublet

fields and the charged singlets, can the matrices be brought to a basis where they become composed

of zeros surrounding a unitary square matrix. This characteristic is of significant importance as we will

show later.

3.2.1 Scalar potential

For simplicity, we assume a discrete symmetry under which all fields transform trivially, except the neutral

singlet scalars, for which ffl0
r → −ffl0

r . The scalar potential may then be conveniently written as

V = —ab1 ffi
†
affib + —i j2 ffl

+
i ffl
−
j + —rs3 ffl

0
rffl

0
s + (—abi4 ffiaiff2ffibffl

−
i + h:c:)

+ –abcd1 ffi†affibffi
†
cffid + –i jkl2 ffl+

i ffl
−
j ffl

+
k ffl
−
l + –rstu3 ffl0

rffl
0
sffl

0
tffl

0
u (3.11)

+ –abij4 ffi†affibffl
+
i ffl
−
j + –abrs5 ffi†affibffl

0
rffl

0
s + –i jrs6 ffl+

i ffl
−
j ffl

0
rffl

0
s ;

where ff2 is the second Pauli matrix, —3 and –3 are real and the rest complex, while h:c: stands for

hermitian conjugate. The parameters are subject to the relations

—ab1 = —ba∗1 ; —i j2 = —j i∗2 ; —rs3 = —sr3 ; —abi4 = −—bai4 ;

and

–abcd1 = –cdab1 = –badc∗1 ; –i jkl2 = –kli j2 = –j i lk∗2 ; –rstu3 = –
(rstu)
3 ; (3.12)

–abij4 = –baji∗4 ; –abrs5 = –bars∗5 = –absr5 ; –i jrs6 = –j i rs∗6 = –i jsr6 ;
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where (rstu) stands for any permutation of the indices rstu. After expanding around the vevs with

Equation (3.8) and using Equations (3.9)-(3.10) we are interested in the cubic terms

V ⊃–abcd1 (’0
a
′∗vb + v∗a’

0
b
′)’−c ’

+
d +

1

2
–abij4 (’0

a
′∗vb + v∗a’

0
b
′)ffl+

i ffl
−
j

+ 2us–
abrs
5 ’−a ’

+
b ffl

0
r
′ + 2us–

i jrs
6 ffl+

i ffl
−
j ffl

0
r
′ (3.13)

—abi4√
2

(’+
a ’

0
b
′ − ’0

a
′’+
b )ffl−i +

—abi∗4√
2

(’−a ’
0
b
′∗ − ’0

a
′∗’−b )ffl+

i

=
h
–abcd1 (V ˛∗a vb + v∗a V

˛
b )U¸1∗

c U¸2

d +
1

2
–abij4 (V ˛∗a vb + v∗a V

˛
b )T¸1

i T¸2∗
j

+ 2us–
abrs
5 U¸1∗

a U¸2

b R
˛
r + 2us–

i jrs
6 T¸1

i T¸2∗
j R˛r (3.14)

—abi4√
2

(U¸1
a V

˛
b − V

˛
a U

¸1

b )T¸2∗
i +

—abi∗4√
2

(U¸2∗
a V ˛∗b − V

˛∗
a U¸2∗

b )T¸1

i

i
S+
¸1
S−¸2

S0
˛

≡g˛¸1¸2 v S+
¸1
S−¸2

S0
˛ ;

and in the quadratic terms with charged scalars, given by

V ⊃ (—ab1 + –abcd1 vdv
∗
c + –abrs5 urus)’

+
b ’
−
a + (—i j2 +

1

2
–abij4 vbv

∗
a + –i jrs6 urus)ffl

+
i ffl
−
j

+
—abi4√

2
(va’

+
b − vb’

+
a )ffl−i +

—abi∗4√
2

(v∗a’
−
b − v

∗
b’
−
a )ffl+

i (3.15)

=
h `
—ab1 + –abcd1 vdv

∗
c + –abrs5 urus

´
U¸1

b U
¸2∗
a +

„
—i j2 +

1

2
–abij4 vbv

∗
a + –i jrs6 urus

«
T¸1

i T¸2∗
j

+
—abi4√

2
(vaU

¸1

b − vbU
¸1
a )T¸2∗

i +
—abi∗4√

2
(v∗aU

¸2∗
b − v∗bU¸2∗

a )T¸1

i

i
S+
¸1
S−¸2

: (3.16)

We see from Equation (3.15) that there is no mixing between the charged fields originating from doublets

with the charged fields originating from singlets, unless —abi4 6= 0 for some combination of indices. Thus,

the cubic terms in the potential (3.11) are essential for the non-unitary behaviour of the matrix U¸a that

will be shown to be mandatory for the appearance of ZH+
1 H
−
2 couplings that change the “flavour” of the

charged scalars. Also, Equation (3.13) tells us that the coupling h0H+
1 H
−
2 exists with —abi4 = 0 only for

H+
1 and H+

2 belonging both to the doublet sector or both to the singlet sector, while only —abi4 6= 0 induces

a mixing of the sectors. Since —abi4 is anti-symmetric in (a; b), the minimal scalar sector containing such

a coupling is a model with two doublets and one charged singlet. This corresponds to the Zee-type

models, which we study in the next section.
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3.2.2 Gauge-scalar couplings

The part of the Lagrangian regarding the covariant derivative of the scalars, was derived in Equation

(29) of [19]. The relevant terms for our purposes are

L ⊃ ieA—‹¸¸
′
(S+
¸ @

—S−¸′ − S
−
¸′@

—S+
¸ ) + e2A—A

—‹¸¸
′
S−¸′S

+
¸

+ g

„
MWW

+
— W

−— +
MZ

2cW
Z—Z

—

«
Re(!†V )˛S0

˛ − i
g

2cW
Z—(2s2

W ‹
¸¸′

− (U†U)¸
′¸)(S+

¸ @
—S−¸′ − S

−
¸′@

—S+
¸ )− eg

cW
A—Z

—(2s2
W ‹

¸¸′ − (U†U)¸
′¸)S−¸′S

+
¸ ; (3.17)

where !a = va=v . Here we finally check the appearance of the expression (U†U)¸
′¸ that is diagonal if

U¸a is unitary. In models without a —abi4 coupling, this expression will then be diagonal and there will be

no “flavour” changing ZH+
1 H
−
2 coupling. The exploration of this under-appreciated point is one of the

distinguishing features of this work.

3.2.3 Fermion-scalar couplings

The Yukawa Lagrangian is the same as for the NHDM for N = nd , and the fermion-scalar couplings were

calculated for that model in [20]. The calculation for our model proceeds in a similar fashion, leaving us

with the relevant Lagrangian term

L ⊃ − 1

v
d̄L
`
N¸d B

˛
¸S

0
˛

´
dR −

1

v
ūL
`
N¸u B

˛∗
¸ S

0
˛

´
uR −

1

v
ēL
`
N¸e B

˛
¸S

0
˛

´
eR (3.18)

− ūLV
`
N¸d S

+
¸

´
dR + d̄LV

† `N¸u S−¸ ´ uR + h.c. ;

where

B˛¸ = U†a¸ V
˛
a ; N¸d =

v√
2
U†dLΓaUdRU

¸
a ; (3.19)

N¸u =
v√
2
U†uL∆aUuRU

¸∗
a ; N¸e =

v√
2
U†eLΓaeUeRU

¸
a ;

V is the CKM matrix, Γa, ∆a and Γae are the Yukawa coupling matrices, and Uf L=R are the rotation

matrices to the physical basis. We ignore neutrino masses for simplicity. To calculate the Higgs decays,

the relevant terms may be written as

L ⊃ −
X
f

“√
2G—

” 1
2

mf  ̄f (a˛f + i‚5b
˛
f ) f S

0
˛ ; (3.20)
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where mf are the fermion masses, G— is the Fermi constant, satisfying
`√

2G—
´− 1

2 = v , and

a˛f =
v

2mf
(Rf ˛ + Lf ˛) ; b˛f = −i v

2mf
(Rf ˛ + Lf ˛) ;

Rf ˛ =
1

v
N¸f B

˛
¸ ; Lf ˛ =

1

v
N†¸f B˛∗¸ ; f = d; e ; (3.21)

Ru˛ =
1

v
N¸u B

˛∗
¸ ; Lu˛ =

1

v
N†¸u B˛¸ :

3.3 Zee-type Models

As an example, we look at a particular case of Zee-type models [8] consisting of a type II 2HDM with a

complex singly charged singlet scalar. In a type II 2HDM, the fields satisfy a Z2 symmetry where ffi2 and

uR transform as  → − , while the other fields do not transform under the symmetry. This means that

ffi2 will only couple to the up type quarks while ffi1 will only couple to the rest of the fermions.

When using this model in Chapter 4, the purpose is not to make a global fit to the quark, scalar and

also the lepton sectors of any specific Zee model, but rather to highlight those features of such types of

model that could be probed at LHC. As a result, we do not explore the bounds coming from the lepton

sector, including neutrino oscillations; an analysis which can be found, for example, in Refs. [14, 15].

These references simplify the analysis by effectively using the Z2 symmetry in the quark sector, which

is helpful to fix the production and some branching ratios at LHC. Those simulations also assume some

scalar couplings to vanish, effectively bringing the result close to that in the Z2 scalar sector used here.

For simplicity, we take couplings consistent with Z2 in the quark-scalar sectors, reducing the number of

parameters to scan, and simplifying the analysis of some theoretical constraints, such as bounded from

below (BFB) and absence of charge breaking (CB) vacua. Our main result, the importance of searching

for the decay H+
2 → H+

1 Z, is not affected by this simplification.

3.3.1 The Higgs potential and rotation matrices

The Higgs potential can in general be written as a particular case of Equation (3.11),

V = m2
Cffl

+ffl− + –C(ffl+ffl−)2 +
ˆ
—4 ffi1iff2ffi2ffl

− + h:c:
˜

+m2
1ffi
†
1ffi1 +m2

2ffi
†
2ffi2

−m2
12

“
ffi†1ffi2 + ffi†2ffi1

”
+
h
k1ffi
†
1ffi1 + k2ffi

†
2ffi2 − k12

“
ffi†1ffi2 + ffi†2ffi1

”i
ffl+ffl− (3.22)

+
–1

2

“
ffi†1ffi1

”2

+
–2

2

“
ffi†2ffi2

”2

+ –3ffi
†
1ffi1ffi

†
2ffi2 + –4ffi

†
1ffi2ffi

†
2ffi1 +

–5

2

»“
ffi†1ffi2

”2

+
“
ffi†2ffi1

”2
–
;

where we generalized the 2HDM potential with a Z2 symmetry in [21]. For simplicity, we consider all

parameters and vevs real, corresponding to CP conservation.

Allowing the doublets to develop vevs, the minimum conditions read

m2
1 =

2m2
12v2 − v3

1–1 − v1v
2
2 (–3 + –4 + –5)

2v1
; (3.23)

m2
2 =

2m2
12v1 − v3

2–1 − v2v
2
1 (–3 + –4 + –5)

2v2
:
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The analytic expressions for the mass matrices have no inherent interest, so we will just state some

of their properties, while defining the rotation to the physical basis. First, we note that CP-odd fields

do not mix with the CP-even fields. The mass matrix for the CP-odd fields has the eigenvectors (v1; v2)

and (v2;−v1), with the first corresponding to a null eigenvalue, which is the Goldstone boson. We can

transform the fields into the physical mass basis through1

0@S0
1 ≡ G0

S0
4 ≡ A

1A =

0@ cos˛ sin˛

− sin˛ cos˛

1A0@Im’0
1
′

Im’0
2
′

1A ≡ O˛
0@Im’0

1
′

Im’0
2
′

1A ; (3.24)

where

cos˛ = v1=v; sin˛ = v2=v; v =
q
v2

1 + v2
2 : (3.25)

By applying the same rotation to the doublets’ charged scalars0@S+
1 ≡ G+

H+

1A =

0@ cos˛ sin˛

− sin˛ cos˛

1A0@’+
1

’+
2

1A ; (3.26)

we find the charged Goldstone boson G+, and the intermediate field H+, not yet a mass eigenstate.

Finally, the remaining charged and neutral scalars do not follow such simple relations. So we need to

diagonalize, in the general case, with two new independent angles0@S0
2

S0
3

1A =

0@ cos¸ sin¸

− sin¸ cos¸

1A0@Re’0
1
′

Re’0
2
′

1A ≡ O¸
0@Re’0

1
′

Re’0
2
′

1A ; (3.27)

0@S+
2

S+
3

1A =

0@ cos ‚ sin ‚

− sin ‚ cos ‚

1A0@H+

ffl+

1A ≡ O‚
0@H+

ffl+

1A : (3.28)

Note that, if we had applied the rotation by ˛ initially to the doublets themselves, we would get to the

so-called Higgs basis [22].

Inverting all the transformations and joining the two charged transformation above, we find that the

matrices defined in Equations (3.9)-(3.10) are

V =

0@i cos˛ cos¸ − sin¸ −i sin˛

i sin˛ sin¸ cos¸ i cos˛

1A ; (3.29)

U =

0@cos˛ − sin˛ cos ‚ sin˛ sin ‚

sin˛ cos˛ cos ‚ − cos˛ sin ‚

1A ; (3.30)

T =
“

0 sin ‚ cos ‚
”
: (3.31)

1For convenience, we place the pseudoscalar as the last of the neutral scalars. So S0
4 is the CP odd scalar and S0

2 ; S
0
3 are the

two CP even eigenstates. Notice that this choice affects the order of the columns in the matrix V in Equation (3.29).
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Some of the relevant combinations of these matrices that appear in the Lagrangian terms calculated in

the previous section are

U†U =

0BBB@
1 0 0

0 cos2 ‚ − sin ‚ cos ‚

0 − sin ‚ cos ‚ sin2 ‚

1CCCA ; (3.32)

B = U†V =

0BBB@
i cos(˛ − ¸) sin(˛ − ¸) 0

0 − cos ‚ sin(˛ − ¸) cos ‚ cos(˛ − ¸) i cos ‚

0 sin ‚ sin(˛ − ¸) − sin ‚ cos(˛ − ¸) −i sin ‚

1CCCA ; (3.33)

Re!†V =
“

0 cos(˛ − ¸) sin(˛ − ¸) 0
”
: (3.34)

Note that, if we had started by bringing the doublets to the Higgs basis, and then defined ¸ as the

rotation of the neutral CP-even fields from that basis to the physical one, then ¸ would transform as

¸→ ¸+ ˛, and these matrices would become independent of ˛.

The non diagonal nature of U†U is what gives rise to the flavour changing coupling of the charged

scalars with the Z boson, adding a new type of diagrams to the process h → Z‚ when compared to the

general NHDM. In that same sense, the non mixture of the first component of that matrix with the rest

ensures that the Goldstone bosons do not take part on those flavour changing couplings, so that the

diagrams involving the W bosons remain safely of the same nature.

3.3.2 The choice of independent parameters

After using the minimisation Equations (3.23) to get v and ˛, we are left with more twelve real indepen-

dent parameters in the Higgs potential of Equation (3.22)

m2
C ; –C ; —4; m

2
12; k1; k2; k12; –1; –2; –3; –4; –5 : (3.35)

For phenomenological studies it is convenient to trade some of these parameters for the physical masses

of the neutral and charged scalars: mH0
1
; mH0

2
; mA0 ; mH+

1
, and mH+

2
. This follows a standard procedure.

We just give the example of the mass matrix for the pseudo-scalars. We have

L ⊃ −1

2

ˆ
Im’0

1
′; Im’0

2
′˜M2

P

24Im’0
1
′

Im’0
2
′

35+ · · · ; (3.36)

where

M2
P =

264v2

v1

`
m2

12 − –5v1v2

´
−m2

12 + –5v1v2

−m2
12 + –5v1v2

v1

v2

`
m2

12 − –5v1v2

´
375 : (3.37)

Now using 24Im’0
1
′

Im’0
2
′

35 = OT˛

24G0

A0

35 ; (3.38)
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we obtain

O˛M2
POT˛ =

240 0

0 m2
A0

35 : (3.39)

From here we can get –5 as a function of the mass mA0 and other independent parameters,

–5 =
1

v2

„
−m2

A0 +
m2

12

sin˛ cos˛

«
: (3.40)

Following this procedure for the other mass matrices we can solve for the other –’s as well as for —4; m
2
C .

We find

–1 =
1

v2 cos2 ˛

“
m2
H0

1
cos2 ¸+m2

H0
2

sin2 ¸−m2
12 tan˛

”
; (3.41a)

–2 =
1

v2 sin2 ˛

“
m2
H0

2
cos2 ¸2 −m2

12 cot˛ +m2
H0

1
sin2 ¸

”
; (3.41b)

–3 =
1

v2

 
2m2

H+
1

cos2 ‚ + 2m2
H+

2
sin2 ‚ −

m2
12 + (m2

H0
2
−m2

H0
1
) cos¸ sin¸

sin˛ cos˛

!
; (3.41c)

–4 =− 1

v2

„
–5v

2 + 2m2
H+

1
cos2 ‚ − 2m2

12

sin˛ cos˛
+ 2m2

H+
2

sin2 ‚

«
; (3.41d)

—4 =−
√

2

v
(m2

H+
1
−m2

H+
2

) cos ‚ sin ‚; (3.41e)

m2
C =− 1

2
k1v

2 cos2 ˛ + k12v
2 cos˛ sin˛ − 1

2
k2v

2 sin2 ˛

+m2
H+

1
sin2 ‚ +m2

H+
2

cos2 ‚ : (3.41f)

This choice is, of course, not unique but it is a convenient one. In the end, our set of twelve independent

parameters is

mH0
1
; mH0

2
; mA0 ; mH+

1
; mH+

2
; m2

12; ¸; ‚; –C ; k1; k2; k12 : (3.42)

3.3.3 Fermion couplings to scalars

The Yukawa couplings to the quarks can be written as

− LY = Q̄L ffĩ2YuuR + Q̄L ffi1YddR + h:c: (3.43)

Going to the charged physical basis, we find the couplings

− LY ⊃
√

2Vud
v

ū (mu‰
u
APL +md‰

d
APR) d (cos ‚S+

1 − sin ‚S+
2 ) + h:c: ; (3.44)

where, with these definitions,

‰uA = cot˛ ; ‰dA = tan˛ : (3.45)
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These are exactly the 2HDM couplings of fermions to the only charged scalar existent in that case:

H+
2HDM [21]. We re-obtain them with the substitution (cos ‚S+

1 − sin ‚S+
2 ) → H+

2HDM. Said otherwise,

the vertices udS+
1 and udS+

2 are the same as the 2HDM vertex udH+
2HDM, but with the factors cos ‚

and − sin ‚, respectively. This is not surprising. Indeed, the combination of scalars appearing above

corresponds to the H+ field. This field is the one we find in the doublets when in the Higgs basis and so

the result is the same as treating the model as we would treat the 2HDM, and then replace the charged

scalar by this combination.
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Chapter 4

The Search for Distinctive Signals of

Zee-type Models

In this Chapter we further study the Zee model introduced in the last Chapter in order to find an example

of a distinctive signal of the flavour changing couplings of the charged scalars with the Z boson discussed

before. In Section 4.1 we discuss the constraints, both theoretical and experimental on the model. Our

results are presented in Section 4.2 where we discuss the impact on h → Z‚ and in Section 4.3 where

we study the novel decay H+
2 → H+

1 Z. For this decay we propose benchmark points with noteworthy

features in Section 4.4.

4.1 Constraints on the Model

4.1.1 Theoretical Constraints

Bounded from Below

The necessary and sufficient conditions for the potential to be bounded from below (BFB) are know

[23, 24] for the neutral part of the potential, that coincides with the 2HDM. They are

–1 ≥ 0; –2 ≥ 0; –3 +
p
–1–2 ≥ 0; –3 + –4 − |–5|+

p
–1–2 ≥ 0 : (4.1)

For the Zee model they were studied in Reference [25]. They extended the conditions in Equation (4.1)

but were not able to find necessary and sufficient conditions, only necessary conditions. To explain

these conditions it is better to use their notation and indicate the correspondence with ours. They write

the quartic part of the potential as

VQ =b00x
2
0 + b11x

2
1 + b22x

2
2 + b33x

2
3 + b44x

2
4

+ b01x0x1 + b02x0x2 + b03x0x3 + b12x1x2 + b13x1x3 + b23x2x3 ; (4.2)
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where

x0 = |ffl+|2; x1 = |ffi1|2; x2 = |ffi2|2; x3 = Re(ffi†1ffi2); x4 = Im(ffi†1ffi2) : (4.3)

Comparing with the potential in Equation (3.22), we obtain

b00 = –C ; b11 =
1

2
–1; b22 =

1

2
–2; b33 = –4 + –5; b44 = –4 − –5;

b01 = k1; b02 = k2; b03 = −2k12; b12 = –3; b13 = 0; b23 = 0 : (4.4)

They found the following necessary conditions for the potential to be BFB,

b11 ≥ 0; b22 ≥ 0; b12 ≥ −2
p
b11b22; b12 + b44 ≥ −2

p
b11b22; b12 + b33 ≥ −2

p
b11b22; (4.5a)

b01 ≥ −2
p
b00b11; b02 ≥ −2

p
b00b22; f (¸; „) ≥ 0; ∀¸; „: (4.5b)

where

f (¸; „) =
1

8
b03 sin 2„ sin2 2¸+

1

4

`
b01 cos2 „ + b02 sin2 „

´
sin2 2¸

+

»
b11 cos4 „ + b22 sin4 „ +

1

4
(b12 + b33) sin2 2„

–
sin4 ¸ : (4.6)

It is easy to verify that the conditions in Equation (4.5a) correspond to the usual conditions for the 2HDM

in Equation (4.1). The others are new for Zee-type models. The condition in Equation (4.6) cannot be

solved analytically for the bi j . Therefore we took a large random sample of „ and ¸ and excluded points

that have f (¸; „) < 0. As explained in Reference [25], even after applying these constraints there are a

few points that are still not BFB. We have verified this fact when considering the analysis of the charged

breaking minima in the following section, and we have also discarded those points.

Charge Breaking Minima

The analysis of the charge breaking (CB) minima is much more complicated that in the 2HDM [24],

because of the cubic term in the potential. Indeed, contrary to the 2HDM, the condition

VCB > VN ; (4.7)

is not guaranteed to be verified even when we are at the normal neutral minimum, VN . As it is very

complicated (if not impossible) to solve a set of nonlinear equations for the stationary points of VCB,

we took a different approach, based on Reference [25]. We parameterize the possible charge breaking

minima as

ffi1 =

24y1

y2

35 ; ffi2 =

24y3

y4

35 ; ffl+ = y5 : (4.8)
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Then, for the parameters for which we have a normal minimum VN ,

Setmin = m2
1; m

2
2; m

2
C ; –C ; —4; m

2
12; k1; k2; k12; –1; –2; –3; –4; –5 ; (4.9)

we consider the function Vother(Setmin; yi ). We start by taking a large set of random values for yi

yi ∈ [−1000; 1000] GeV ; (4.10)

and then for each of these initial values we apply the method of gradient descent to obtain the lowest

possible value for Vother(yi ) and compare it with VN . If VN < Vother we keep the point. In doing this we also

verified the claim [25] that the BFB conditions are not sufficient, as we found a small amount of points

corresponding to potentials unbounded from below.

There is a final point deserving a comment. When doing the procedure described above, in many

cases we got to a point where y5 = 0 (of course numerically there is no such thing as zero and we have

considered |y5| < 10−6). As y1 and y3 are non-zero, the question is if this is really a charged breaking

minimum or not. We can make an SU(2) rotation to bring to zero the upper component of the first doublet24 cos „ sin „

− sin „ cos „

3524y1

y2

35 =

24 0

y ′2

35 ; tan „ = −y1

y2
: (4.11)

Now, if the same rotation on the second doublet also gives24 cos „ sin „

− sin „ cos „

3524y3

y4

35 =

24 0

y ′4

35 ; (4.12)

and q
y ′2

2 + y ′4
2 =

v√
2
; (4.13)

then this is just a normal minimum. In all occasions we found, this was precisely the same normal

minimum VN in a different guise.1 We have looked at these situations and kept the points if these

conditions were verified.

Perturbative Unitarity

To ensure perturbative unitarity of the quartic couplings we implemented the general algorithm presented

in Reference [26]. As we are interested in the high energy limit, one just needs to evaluate the scattering

S-matrix for the two body scalar bosons, and these arise exclusively from the quartic part of the potential.

Since the electric charge and the hypercharge are conserved in this high energy scattering, we can

1This explains why we used Vother above, and not VCB .
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separate the states according to these quantum numbers. In the notation of Reference [26],

ffii =

24w+
i

ni

35 ; ffi†i =

24w−i
n∗i

35T ; ffl = ffl+; ffl∗ = ffl− : (4.14)

This corresponds to the following possibilities,

Q = 2; Y = 1 S++
¸ ={w+

1 w
+
1 ; w

+
1 w

+
2 ; w

+
1 ffl

+; w+
2 w

+
2 ; w

+
2 ffl

+; ffl+ffl+}; (4.15a)

Q = 1; Y = 1 S+
¸ ={w+

1 n1; w
+
1 n2; w

+
2 n1; w

+
2 n2; ffl

+n1; ffl
+n2}; (4.15b)

Q = 1; Y = 0 T+
¸ ={w+

1 n
∗
1; w

+
1 n
∗
2 ; w

+
2 n
∗
1 ; w

+
2 n
∗
2 ; ffl

+n∗1 ; ffl
+n∗2}; (4.15c)

Q = 0; Y = 1 S0
¸ ={n1n1; n1n2; n2n2}; (4.15d)

Q = 0; Y = 0 T 0
¸ ={w−1 w+

1 ; w
−
1 w

+
2 ; w

−
1 ffl

+; w−2 w
+
1 ; w

−
2 w

+
2 ; w

−
2 ffl

+;

ffl−w+
1 ; ffl

−ffl+; ffl−ffl+; n1n
∗
1 ; n1n

∗
2; n2n

∗
1 ; n2n

∗
2}: (4.15e)

With this setup we have to find the scattering matrices for each (Q; Y ) combination and their eigenvalues.

Let us call this set Λi . Then the perturbative unitarity constraints are

max(Λi ) < 8ı; i = 1; : : : ; 19: (4.16)

In Appendix C we write explicitly the various scattering matrices and their eigenvalues. In total we have

19 different eigenvalues, as we already anticipated in Equation (4.16).

The oblique parameters S; T; U

All the points in parameter space have to satisfy the electroweak precision measurements, using the

oblique parameters S, T and U. We demand that S, T and U are within 2ff of the fit given in [27].

For general models with an arbitrary number of doublets and singlets the expressions for the oblique

parameters were given in Refs. [19, 28]. They depend on combinations of the matrices V and U defined

in Equations (3.29)-(3.30). The needed matrices are U†U in Equation (3.32) , U†V in Equation (3.33),

and

ImV †V =

0BBBBBB@
0 − cos(˛ − ¸) − sin(˛ − ¸) 0

cos(˛ − ¸) 0 0 − sin(˛ − ¸)

sin(˛ − ¸) 0 0 cos(˛ − ¸)

0 sin(˛ − ¸) − cos(˛ − ¸) 0

1CCCCCCA : (4.17)

4.1.2 Constraints from the LHC

From the LHC data we have two types of constraints. First we consider the constraints on the h125

Higgs boson. These are normally enforced through the signals strengths for each production mode

i = ggF; VBF; VH; ttH and final state j = H → ‚‚;H → ZZ;H → ZZ;H → fifi;H → bb, and are defined

26



by

—i j =
ffi (pp → H)

ffSM
i (pp → H)

BR(H → j)

BRSM(H → j)
(4.18)

The values for the signals strengths are given in Table 4.1 and were taken from Figure 5 of Reference

[29]. The other type of constraints from the LHC data are the bounds on other neutral and charged

Decay Production Processes

Mode ggF VBF VH ttH

H → ‚‚ 0:96+0:14
−0:14 1:39+0:40

−0:35 1:09+0:58
−0:54 1:10+0:41

−0:35

H → ZZ 1:04+0:16
−0:15 2:68+0:98

−0:83 0:68+1:20
−0:78 1:50+0:59

−0:57

H → WW 1:08+0:19
−0:19 0:59+0:36

−0:35 − 1:50+0:59
−0:57

H → fifi 0:96+0:59
−0:52 1:16+0:58

−0:53 − 1:38+1:13
−0:96

H → bb − 3:01+1:67
−1:61 1:19+0:27

−0:25 0:79+0:60
−0:59

Table 4.1: Values for —i j taken from [29]

scalars. This we implemented using the most recent version of HiggBounds5 [30].

4.1.3 Constraints from BR(B → Xs‚)

In models with charged scalar bosons, it is well known [31, 17, 18, 32, 33] that the experimental limits on

the BR(B → Xs‚) can put important constraints in the parameter space of these models. For instance,

in Reference [18] the bound

mH+ > 580 GeV ; (4.19)

is derived for the type 2 2HDM at 95% CL (2ff). In fact the exact number depends on the errors both in

the theoretical calculation [34] as well as in the experimental errors. For instance, the result for the SM

at NNLO is [35, 33]

BRSM(B → Xs‚) = (3:40± 0:17)× 10−4 ; (4.20)

which shows an error of 5%, to be compared with the world average [36]

BRexp(B → Xs‚) = (3:32± 0:15)× 10−4 : (4.21)

Here we take the approach of considering for the theoretical error a band around the central value of

the calculation with an error of 2.5%, and following [33], for the experimental error, we consider 99%CL

(3ff), that is,

2:78× 10−4 < BR(B → Xs‚) < 3:77× 10−4 : (4.22)

The calculation

Our calculation follows closely the original calculation of Reference [17]. The central point in that calcula-

tion is that the new contributions from the charged scalar bosons are encoded in the Wilson coefficients,
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C0;eff
7 (—W ) =C0;eff

7;SM(—W ) + |Y |2C0;eff
7;YY(—W ) + (XY ∗)C0;eff

7;XY(—W ) ; (4.23a)

C0;eff
8 (—W ) =C0;eff

8;SM(—W ) + |Y |2C0;eff
8;YY(—W ) + (XY ∗)C0;eff

8;XY(—W ) ; (4.23b)

C1;eff
4 (—W ) =E0(x) +

2

3
log

„
—2
W

M2
W

«
+ |Y |2EH(y) ; (4.23c)

C1;eff
7 (—W ) =C1;eff

7;SM(—W ) + |Y |2C1;eff
7;YY(—W ) + (XY ∗)C1;eff

7;XY(—W ) ; (4.23d)

C1;eff
8 (—W ) =C1;eff

8;SM(—W ) + |Y |2C1;eff
8;YY(—W ) + (XY ∗)C1;eff

8;XY(—W ) : (4.23e)

All the expressions needed are given in Reference [17]. Also there one finds the way to evolve these

coefficients to the scale —b = mb. The dependence on the charged scalar mass appears because

the functions, C0;eff
i ;YY; C

0;eff
i ;XY; C

1;eff
i ;YY; C

1;eff
i ;XY, depend on y = m2

t =m
2
H+ while the SM coefficients depend on

x = m2
t =M

2
W .

The generalization for models with more charged scalars is straightforward. The case of two charged

scalar bosons was considered in Reference [33]. We just give the example of C1;eff
7 (—W ), all the other

having similar expressions.

C1;eff
7 (—W ) =C1;eff

7;SM(—W ) + |Y1|2C1;eff
7;YY(—W ; y1) + |Y2|2C1;eff

7;YY(—W ; y2)

+ (X1Y
∗

1 )C1;eff
7;XY(—W ; y1) + (X2Y

∗
2 )C1;eff

7;XY(—W ; y2) ; (4.24)

where Xi ; Yi are defined in Equation (A.6), taking the values in Equation (A.7a) for Zee-type models, and

we wrote explicitly the dependence on the charged scalar masses,

y1 =
m2
t

m2
H+

1

; y2 =
m2
t

m2
H+

2

: (4.25)

An important point in the calculation is the value of the input parameters. We took those of Reference

[17] except for ¸s(MZ); mt ;MZ ;MW that were updated to the values of the PDG [37]. The values are

¸s(MZ) = 0:1179± 0:0010; mt = 172:76± 0:3 GeV ; (4.26a)

mc=mb = 0:29± 0:02 mb −mc = 3:39± 0:04 GeV ; (4.26b)

¸−1
em = 137:036± |V ∗tsVtb=Vcb|2 = 0:95± 0:03 ; (4.26c)

BRSL = 0:1049± 0:0046 : (4.26d)

We should emphasize that, using the input values of Reference [17], we were able to reproduce their

results2 for the SM.

2We are indebted to C. Greub for discussions and for having shared with us the original code for cross checking our independent
calculation. One important point was that the parameter –1 = 0:12 GeV2 defined in Reference [17] should be positive.
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The result for the 2HDM type 2

First we considered the particular case of the 2HDM with type 2 couplings to fermions. In our model this

is accomplished by setting ‚ = 0. Then the second Higgs decouples completely (X2 = Y2 = 0) and we

have an effective 2HDM. The results are shown in Figure 4.1. On the left panel we considered a band

Figure 4.1: BR(B → Xs‚) as a function of the charged scalar mass. Left panel: The
lines in blue represent the 3ff experimental limits, and those in red to 2.5% error in
the calculation. Right panel: The lines in blue represent the 2ff experimental limits,
and those in red to 5% error in the calculation.

corresponding to 2.5% in the calculation and a 3ff band for the experimental result. On the right panel

we considered a band corresponding to 5% in the calculation and a 2ff band for the experimental result.

We see that the limit for the mass of the charged scalar that we get is similar in both cases and also

similar to what was obtained in Reference [18]

As we are not doing a NNLO calculation, our goal here is not to improve the limit for the 2HDM with

type 2 couplings. We just want to show that in models with more charged scalars, as was addressed

in Reference [33], the limit in Equation (4.19) can be relaxed for one of them and this will have impli-

cations for Zee-type models. We discuss this in the next section for the case of Zee-type models. For

definiteness we take the choice on the left panel of Figure 4.1.

Implications for Zee-type Models

We have just seen that in the case of having just one charged scalar boson we have a limit for its mass

coming from the BR(B → Xs‚) for the case of 2HDM with type 2 fermion couplings. Now we consider the

case of Zee-type models also with type 2 fermion couplings. We start by just considering the variation of

the masses and of the mixing angle ‚ without imposing all the theoretical and experimental constraints on

the model. That will be done below when we consider the discussion of benchmark points. Our purpose

here is just to show how the constraints from BR(B → Xs‚) can be satisfied in the model. Although we

can always choose mH+
1
< mH+

2
, we start by not imposing that constraint. All points satisfying Equation

(4.22) are shown on the left panel of Figure 4.2. We see that we have an exclusion for both masses to

be below the value found (in the 2HDM) with one single charged scalar, but it is possible that one of the
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Figure 4.2: Left panel: points satisfying Equation (4.22) for Zee-type models. Right
panel: mass of the lightest charged scalar boson as a function of the mixing angle
‚.

masses is lower than 580 GeV if the other is above. This is a function of the mixing angle ‚, as shown

on the right panel of Figure 4.2. We see that mH+
1

can be as low as 50 GeV if the mixing angle is close

to ±ı=2. Notice that for ‚ = 0 we recover the previous result. As can be seen from Figure 4.2, when

mH+
1

is low, the other mass has always to be above the 580 GeV limit.

This result means that for each point in parameter space we have to evaluate the BR(B → Xs‚) to

see if it passes the bounds in Equation (4.22), instead of using just one fixed limit for all points, like in

the 2HDM.

There is a final comment. The charged Higgs contribute to ∆MBs;d
, coming from the B meson

oscillations. We have not considered this contribution from flavour data because, as shown in [38], they

are important only for very low tan˛, below what we already exclude from the other constraints; see

Figure 4.3 below.

4.1.4 Scanning strategy

We made our scans varying the parameters in the following ranges,

mh1 = 125 GeV; mh2 ; mh3 ; mH+
1
∈ [100; 1000]GeV; mH+

2
∈ [500; 1000]GeV; (4.27)

¸ ∈ [−ı
2
;
ı

2
]; tan˛ ∈ [0; 60]; ‚ ∈ [−ı

2
;
ı

2
]; (4.28)

m2
12 ∈ [10−1; 106]GeV2; –c ∈ [10−3; 102]; k1 ∈ [10−3; 102]; (4.29)

k2 ∈ [10−3; 102]; k12 ∈ [10−3; 102]; (4.30)

and take randomly m2
12; k12 with both signs. Despite this flat scan, there are large correlations in the

points that satisfy all the constraints. For instance, we show in Figure 4.3 the correlation between ¸

and ˛. We see that all the points satisfy | cos(˛ − ¸)| . 1, that is they are close to the alignment limit,

where the 125GeV neutral scalar has couplings equal to their SM values. The points with negative ¸
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correspond to the wrong sign of the fermion couplings [39, 40]. We also see that despite having varied

tan˛ in a larger interval, the good points have tan˛ ∈ [1; 10].

Figure 4.3: Left panel: correlation between ¸ and ˛; Right panel: correlation be-
tween ¸ and tan˛.

4.2 Impact of the charged scalars on the decays h → ‚‚ and h →

Z‚

4.2.1 The diagrams of the charged scalars

As we discussed before, the distinctive feature of our implementation of Zee-type models is the appear-

ance of the off-diagonal coupling ZH±1 H
∓
2 . This contributes to the loop decay h → Z‚ and, in principle,

could lead to some new feature. For the decay h → ‚‚, on the contrary, because of the photon cou-

pling being always diagonal, the contribution of the charged scalars will not depend on the off-diagonal

ZH±1 H
∓
2 coupling. In fact, the diagrams coming from the charged scalars and contributing in this model

for h → ‚‚ are shown in Figure 4.4 while for the case of the decay h → Z‚, besides those equivalent to

Figure 4.4 (with one ‚ exchanged with a Z) we also have those with the off-diagonal coupling, as shown

in Figure 4.5. The formulas for these loop decays in the absence of couplings of the type ZH+
1 H

+
2 are

well known. They were explicitly written for the C2HDM in Reference [41] and, for h → ‚‚, they can be

easily adapted for the case of Zee-type models. We generalize the formulas for h → Z‚ to include the

new couplings, and write the full expressions in Appendix B.

4.2.2 Discussion of the impact of the charged scalars on the loop decays

Couplings h1H
+
j H
−
k

The couplings h1H
+
1 H
−
1 and h1H

+
2 H
−
2 do not have a strong dependence on ‚. On the contrary the

couplings h1H
+
1 H
−
2 and h1H

+
2 H
−
1 are proportional to sin ‚.
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Figure 4.4: Charged scalars contributions to h→ ‚‚

Couplings ZH+
j H
−
k

The couplings ZH+
1 H
−
2 and ZH+

2 H
−
1 are given in Equations (A.2b)-(A.2c). They are proportional to

sin(2‚) and vanish for ‚ = 0;±ı=2, while the couplings ZH+
1 H
−
1 and ZH+

2 H
−
2 vary with ‚ like

gZH+
i H
−
i
∝ (−1 + 4s2

W + cos 2‚) : (4.31)

It is interesting to note that because −1 + 4s2
W ' 0 they behave approximately like cos 2‚ that vanishes

at ±ı=4.

Results and Conclusions

Because of the dependence of the couplings on the mixing angle ‚, we looked at the contributions of

the charged scalars as a function of this angle. If the loop integral did not vary much with the masses,

the results would be proportional to the products of the h1H
+
j H
−
k and ZH+

j H
−
k couplings, as the photon

coupling is universal. In the following figures all points passed all the constraints, including HiggsBounds

5.9.1 and those coming from BR(B → Xs‚), as discussed in section 4.1.3.

In Figure 4.6 we show on the left panel the result of the product of the couplings (we divide by v

because the coupling h1H
+
j H
−
k has dimensions of mass), first for the the case of H+

1 running in the loops

of Figure 4.4 in red and then for the case of H+
2 in blue. From the above discussion we expect the result

to vary like cos 2‚, and that is indeed the case. Our assumptions that the loop integrals do not depend

much on the masses can be verified in the right panel of Figure 4.6 where we show the actual plot for

the loop amplitudes. The behaviour as cos 2‚ is clear in both cases.

Now we can study the case where there are two different charged scalars, H+
1 and H+

2 , running in

the loops of Figure 4.5. This is shown in Figure 4.7. Again on the left panel we plot the product of

the couplings, and on the right panel the loop amplitudes. In this case Amp(H+
1 ; H

+
2 ), corresponding to
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Figure 4.5: Extra charged scalars contributions to h→ Z‚

Figure 4.6: Results for the charged scalars amplitudes contribution to h → Z‚. On
the left panel the coupling products and on the right panel the actual amplitudes.

diagrams 7, 10 and 11 of Figure 4.5 in red, coincides with Amp(H+
2 ; H

+
1 ) corresponding to diagrams 8, 9

and 12. As expected we see clearly a dependence on sin 2‚, confirming our expectations.

However this nice result will not help us in using the decay h → Z‚ to identify the novel coupling

ZH+
1 H
−
2 appearing in Zee-type models. The problem is that once we sum all contributions we loose the

dependence on ‚. This can be seen on Figure 4.8 both for the products of the couplings in the left panel,

and for the final result for the charged scalar contribution to h→ Z‚.

In conclusion, although the contribution of the charged scalars can have both signs and also be zero,

the dependence on ‚ and therefore on the mixing parameters —4 is hidden. In fact we can have the

same behaviour of the charged scalar amplitudes in other models like the 3HDM [42].
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Figure 4.7: Results for the charged scalars amplitudes contribution to h → Z‚. On
the left panel the coupling products and on the right panel the actual amplitudes.

Figure 4.8: Results for the charged scalar amplitudes contribution to h → Z‚. On
the left panel the sum of the product of couplings and on the right panel the com-
plete result.

4.3 Decays of the Charged Higgs

4.3.1 The decay H+
2 → H+

1 + Z

If we want to have a unique signal for this model it would be the decay of one charged Higgs in another

one plus a Z boson. This is only possible if ‚ 6= 0. We have checked that this can indeed occur, as

shown in Figure 4.9. All points shown satisfy all the constraints discussed in Section 4.1. We see clearly

that, as expected, one has to be away from ‚ = 0 to have a sizable decay width.
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Figure 4.9: Decay with H+
2 → H+

1 + Z. On the left panel the dependence on the
mass of the decaying charged Higgs and on the right the dependence on ‚.

Decays of the heavier H±2

Depending on the masses the following decays are among the most important,

H±2 → H±1 + Z ; H+
2 → t + b ; H±2 → H±1 + hi ; (4.32)

H±2 → W± + hi ; H+
2 → �fi + fi+ : (4.33)

The first decay is unique to this type of models and not present in NHDM. It requires a mixing between

the charged Higgs from the doublets with the charged Higgs from the singlets. The expression for the

width is

Γ(H±2 → H±1 + Z) =
g2

64ım3
H+

j

M2
W

gHpjHmkZ[2; 1]2 –(m2
H+

2
; m2

H+
1
;M2

Z)3; (4.34)

where the Källen function is given by

–(x2; y2; z2) =
p
x4 + y4 + z4 − 2x2y2 − 2x2z2 − 2y2z2: (4.35)

and gHpjHmkZ[2; 1] is given in Equation (A.2c).

For the other decays we have

Γ(H+
2 → t + b) =

3g2

32ıM2
W

mH+
2
–(mH+

2
; m2

t ; m
2
b)
ˆ
(1− xt − xb)(Y 2

2 xt + X2
2xb)− 4xtxbX2Y2

˜
; (4.36)

where

xt =
m2
t

mH+
2

; xb =
m2
b

mH+
2

; (4.37)

and Xk ; Yk are given in Equation (A.7a). For the decay into the other charged Higgs and one neutral

Higgs boson we have,

Γ(H±2 → H±1 + hi ) =
ghjHpiHmk[i ; 2; 1]2

16ım3
H+

2

–(mH+
2
; mH+

1
; m2

hi ): (4.38)
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where ghjHpiHmk[i ; 2; 1] is given in Equation (A.8).

The decay into one W and one neutral Higgs boson is similar to the decay into the charged Higgs

and Z. We obtain

Γ(H±2 → W± + hi ) =
g2

64ım3
H+

2
M2
W

ghjHpkWm[i ; 2]2 –(m2
H+

2
;M2

W ; m
2
hi )

3: (4.39)

where ghjHpkWm[i ; 2] is given in Equations (A.5b) (A.5d) and (A.5f).

Finally the decay in the third family leptons (the others are negligible) is given by

Γ(H+
2 → �fi + fi+) =

g2

32ıM2
W

Z2
2 m

2
fi mH+

2

"
1− m2

fi

m2
H+

2

#2

: (4.40)

Decays of the lighter H±1

Except for the decays into another charged Higgs, that are not allowed because we assume that

mH+
1
< mH+

2
, the decays are similar to those of the heavier charged scalar. If kinematically available, the

expressions for the decays can be easily obtained from the above with index 2→ 1.

4.4 Benchmark points for Zee-type models

4.4.1 Looking for a distinctive signature

As we have discussed before, Zee-type models provide an example of the non-vanishing coupling be-

tween two different charged Higgs and the Z boson. For instance, this cannot happen in any NHDM,

even with a large N. So we want to see if there is a signal of this coupling.

As we explained in section 4.2, the first idea was to look at the impact on the BR(h125 → Z‚). But it

turns out that the effect of the extra diagrams is not quantitatively different from the effect of a second

charged scalar coupling only diagonally to the Z boson, as occurs for instance in the 3HDM, where there

are two charged Higgs bosons, but no ZH+
1 H
−
2 coupling [42]. So, although there is an effect, for instance

the contribution of summing over all the charged Higgs diagrams can vanish, this is not an effect specific

to the ZH+
1 H
−
2 coupling. So we turn to a distinctive decay:

H+
2 → H+

1 + Z; and H+
1 → t + b : (4.41)

This decay has a very clear signature and should be searched for at the LHC.

4.4.2 Benchmark Point P1

As the model has many independent parameters, if we try to plot the various branching ratios of the

H+
1 or H+

2 instead of obtaining something similar to the famous plot [43] of the SM Higgs boson BR’s

as a function of its mass (when this mass was yet not known), we would get a figure with all the points
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superimposed and no lines. So, to have a better visualization we fix most of the parameters and show

that indeed the branching ratios for the processes in Equation (4.41) can be important, or even dominant.

This leads us to the choice of benchmark points. In choosing these benchmark points for Zee-type

models we take in account all the theoretical and experimental constraints on the model. Then, we scan

the parameters around the benchmark points, so that one can visualise the whole benchmark region.

For the first benchmark point, P1, we choose a situation when both masses are above3 the limit of

Equation (4.19). It is defined by the following parameters,

mh1 = 125 GeV mh2 = 714:98 GeV mh3 = 767:42 GeV (4.42a)

mH+
1

= mH+
2
− 200 GeV ¸ = 1:391 ‚ = 0:894 (4.42b)

m2
12 = 8:828× 104 GeV2 –c = 0:4363 k1 = 0:4633 (4.42c)

k2 = 0:4633 k12 = 5:427× 10−2 (4.42d)

The situation is shown in Figure 4.10. We see that our signal decay has the largest branching ratio,

Figure 4.10: Dominant BR’s for H+
2 (left panel) and H+

1 (right panel) for benchmark
point P1.

while H+
1 decays almost 100% into t + b. This should provide clear signatures at the LHC. A detailed

analysis, with background studies, should of course be done. The width of the bands comes from the

variation of tan˛ (at the percent level, because the good points have ¸ ' ˛). All the points pass all the

constraints, including that of Equation (4.22).

4.4.3 Benchmark Point P2

One could argue that P1 will lead to a situation where the constraint of Equation (4.22) was verified,

as we took the masses to satisfy the bound of Equation (4.19). Therefore we want to show another

benchmark point that would be excluded by Equation (4.19). That is, we do not exclude points a priori,

but for each point we evaluate the BR(B → Xs‚) to see if it passes the bounds in Equation (4.22).

3The starting point satisfied Equation (4.19), but as we vary the masses some points are slightly below that limit.
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For the second benchmark point P2 we therefore choose a situation where the lowest charged Higgs

mass is below that limit. It is defined by the following parameters

mh1 = 125 GeV mh2 = 580:7 GeV mh3 = 633:7 GeV (4.43a)

mH+
1
; mH+

2
GeV; scanned as shown ¸ = 1:398 ‚ = 1:089 (4.43b)

m2
12 = 5:77× 104 GeV2 –c = 4:473 k1 = 1:082 (4.43c)

k2 = 3:98× 10−3 k12 = −1:266× 10−3 (4.43d)

The situation is shown in Figure 4.11. We see that our signal decay has the largest branching ratio, while

Figure 4.11: Dominant BR’s for H+
2 (left panel) and H+

1 (right panel) for benchmark
point P2.

H+
1 decays almost 100% into t + b. This should be clear signatures at the LHC, although background

studies should be done. The width of the bands comes from the variation of tan˛ and mH+
1
; mH+

2
which

were varied independently. All the points pass all the constraints, including that of Equation (4.22).

4.4.4 Benchmark Point P3

We have a large set of benchmark points that illustrate our signal, the decay H+
2 → H+

1 + Z. We just

give another example, our benchmark point P3. It is defined by the following parameters,

mh1 = 125 GeV mh2 = 728:3 GeV mh3 = 720:5 GeV (4.44a)

mH+
1
; mH+

2
GeV; scanned as shown ¸ = 1:401 ‚ = −1:145 (4.44b)

m2
12 = 9:48× 104 GeV2 –c = 2:67× 10−2 k1 = 7:149 (4.44c)

k2 = 1:425× 10−2 k12 = 1:29× 10−2 (4.44d)

The situation is shown in Figure 4.12. Again we see that our signal decay has the largest branching

ratio, while H+
1 decays almost 100% into t + b. The width of the bands comes from the variation of tan˛

and mH+
1
; mH+

2
which were varied independently. All the points pass all the constraints, including that of
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Figure 4.12: Dominant BR’s for H+
2 (left panel) and H+

1 (right panel) for benchmark
point P3.

Equation (4.22).

4.4.5 Benchmark Point P4

It has been pointed out recently [44], that there are some decay channels for the charged Higgs that

have not been investigated at LHC. One of them is the decay H+
1 → W+ + h1. We looked in our data

sample for points where the BR(H+
1 → W+ + h1) could be large. For our model, after passing through

the HiggsBounds 5, there are not many points of the general scan that have a large BR(H+
1 → W+ +h1).

We took one of these which is our benchmark point P4. It is defined by the following parameters,

mh1 = 125 GeV mh2 = 314:9 GeV mh3 = 651:3 GeV (4.45a)

mH+
1
; mH+

2
GeV; scanned as shown ¸ = −1:402 ‚ = −1:421 (4.45b)

m2
12 = 1:85× 104 GeV2 –c = 2:00× 10−2 k1 = 1:422× 10−2 (4.45c)

k2 = 0:432 k12 = −9:597× 10−3 (4.45d)

The situation is shown in Figure 4.13. We see that, in our model, both BR(H+
1 → W+ + h1) and

BR(H+
1 → W+ + h2) can be sizable. In this case, the BR(H+

2 → H+
1 + Z) is very small, around 2%.

However the BR(H+
2 → W+ + h1) and BR(H+

2 → W+ + h2) can also be large, making this an interesting

benchmark point. The width of the bands comes from the variation of tan˛, mH+
1
, and mH+

2
, which were

varied independently. All the points pass all the constraints, including that of Equation (4.22).

4.4.6 Production cross-sections and Experimental bounds

One can ask if a charged Higgs boson with a large BR(H+ → tb) is not in contradiction with experimental

bounds from the LHC. Although we have checked all the points with HiggsBounds 5.9.1 [30], it is perhaps

helpful to show it explicitly for our benchmark points. The results are shown in Figure 4.14 and Figure

4.15. We used the values for the production cross-section ff(pp → tbH+) from Reference [45, 46]. To
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Figure 4.13: Dominant BR’s for H+
1 (left panel) and H+

2 (right panel) for benchmark
point P4.

Figure 4.14: ff(pp → tbH+) × BR(H+ → tb) versus the charged Higgs mass for
benchmark points P1 (left panel) and P2 (right panel). We took BR(H+ → tb)= 1.
The green line is the current LHC limit.

see if the points are allowed we considered the worst case scenario where BR(H+ → tb)=1 (although for

our benchmark points this is only true for the lightest charged Higgs boson); see Figure 4.7 and Figure

4.8. The green line is the current experimental bound from ATLAS [47] as discussed in Reference [44].

So we conclude that all our benchmark points are consistent with the latest LHC data.
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Figure 4.15: ff(pp → tbH+) × BR(H+ → tb) versus the charged Higgs mass for
benchmark points P1 (left panel) and P2 (right panel). We took BR(H+ → tb)= 1.
The green line is the current LHC limit.
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Chapter 5

Extra Gauge Symmetries

In this Chapter we extend some of the concepts studied in Chapters 2 and 3 to theories with additional

gauge symmetries within the electroweak sector. We start by studying the Higgs mechanism for neutral

gauge bosons in such theories, then we specialise to theories with the gauge group SU(2) × U(1) ×

U(1) and study the rotation of the correspondent bosons to the physical basis, and finally we apply the

formalism in the rest of the Chapter to a specific model with gauge group SU(2) × U(1) × U(1) and a

Higgs sector composed of a doublet and a higher multiplet.

5.1 Neutral Gauge Bosons

In a theory with a general electroweak gauge sector, and by ignoring all but the neutral gauge bosons,

the covariant derivative can be written as

D— = @— + i
mX
r=1

grYrX
—
r ; (5.1)

where Xr are the neutral gauge bosons, Yr are the correspondent symmetry generators or hypercharges,

and m is how many there are. The generators will have a variety of representations, and so will the

scalars, but since, apart from a remaining U(1)em, the symmetries are broken at our scales, we assume

the vacua will appear in one specific entry of all their representations, such that

Yr < ffii >= yr i < ffii > : (5.2)

We will assume there are n of those scalars, denote the entry of the vacuum by ΦiV , and parameterize

it as

ffiiv =
1√
2

(vi + hi + iai ) : (5.3)

To study the physical spectrum, we calculate the covariant derivative acting on the vacuum entry and
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keep only the terms we saw are relevant for the Higgs mechanism

D—ffiiv =
i√
2

 
@—ai +

mX
r

vigryr iX
—
r

!
: (5.4)

Proceeding to calculate the relevant part of the Lagrangian one finds

LK0 =
nX
i

|D—Φiv |2 =
1

2

nX
i

@—ai@—ai +
nmX
i r

vigryr iX
—
r @—ai +

1

2

nmmX
i rs

v2
i grgsyr iysiX

—
r Xs— : (5.5)

To write this last equation in a more useful notation, we define the following vectors

ā =
“
@—a1 @—a2 : : @—an

”T
; (5.6)

X̄ =
“
X—1 X—2 : : X—m

”T
; (5.7)

c̄r =
“
v1gryr1 v2gryr2 : : vngryrn

”T
; (5.8)

and the following n×m matrix

C =
“
c̄1 c̄2 : : c̄m

”
; (5.9)

together with its m×m Graham Matrix

M2 = CTC =

0BBBBBBBBB@

c̄T1

c̄T2

:

:

c̄Tm

1CCCCCCCCCA
“
c̄1 c̄2 : : c̄m

”
=

0BBBBBBBBB@

c̄1 · c̄1 c̄1 · c̄2 : : c̄1 · c̄m
c̄2 · c̄1 : :

: : :

: : :

c̄m · c̄1 : : : c̄m · c̄m

1CCCCCCCCCA
: (5.10)

Using these definitions

LK0 =
1

2
āT ā + āTCX̄ +

1

2
X̄TM2X̄ : (5.11)

Before applying the Higgs mechanism to obtain the physical fields, one needs to find the gauge

bosons mass eigenstates by diagonalizing M2. For that, we define the rotation matrix R such that

RM2RT = M2
D ; (5.12)

where M2
D is the diagonal form of M2. The mass eigenstates will then be

Ȳ = RX̄ ; (5.13)
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and the matrix C can also be rotated as

CD = CRT ; (5.14)

so that M2
D is the Graham Matrix of CD

M2
D = CTDCD : (5.15)

The Lagrangian then becomes

LK0 =
1

2
āT ā + āTCDȲ +

1

2
Ȳ TM2

DȲ : (5.16)

Since M2
D is diagonal, v̄Di , the column vectors of CD, are all orthogonal. Their norm is the squared

mass of the gauge bosons, and so, the vectors correspondent to massless gauge bosons, like the pho-

ton, will automatically be null vectors. One can then safely ignore the null columns of CD and massless

entries ofM2
D, turning those matrices into k×m and k×k respectively, where k in the number of massive

gauge bosons. Using the vector B̄ with k entries composed of only the massive gauge bosons of Ȳ ,

LK0 =
1

2
āT ā + āTCDB̄ +

1

2
B̄TM2

DB̄ : (5.17)

The Goldstone theorem guarantees that all massive gauge bosons have a correspondent Goldstone

boson to absorb, meaning that m ≥ k. Looking at 5.17, the goldstone coupled to each gauge boson is

given by the columns of CD, vDi . If m = k , CD is a square matrix. But, if m > k1, that can be obtained by

projecting the vectors vDi to the k-dimensional space spanned by them. Denoting the m× k matrix that

entails that projection by P , and the inverse operation by P−1 that satisfies P−1P = 1m×m, we define

CDS = PCD ; (5.18)

b̄T = āTP−1 ; (5.19)

where now CDS is k × k, b̄ has k entries, and z̄ is composed by the m − k scalar bosons not in b̄.

The Lagrangian is then

LK0 =
1

2
z̄T z̄ +

1

2
b̄T b̄ + b̄TCDSB̄ +

1

2
B̄TM2

DB̄ ; (5.20)

and, after a little algebra, one finds

LK0 =
1

2
z̄T z̄ +

1

2

`
B̄T + b̄T (CTD)−1

´
M2
D

`
B̄ + C−1

D b̄
´
: (5.21)

Finally, using the gauge symmetry available for each entry of B̄, one can redefine the gauge bosons

1Meaning that there are m − k > 0 massless neutra Gauge bosons.
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to be

Z̄ = B̄ + C−1
D b̄ ; (5.22)

leaving the Lagrangian as

LK0 =
1

2
z̄T z̄ +

1

2
Z̄TM2

DZ̄ ; (5.23)

or, since the matrix M2
D is diagonal, and by denoting its eigenvalues m2

i , this can be written simply as

LK0 =
m−kX
i

1

2
@—zi@—zi +

kX
i

1

2
m2
i Z

—
i Zi— ; (5.24)

where Z—i are the physical massive gauge bosons.

5.2 SU(2)× U(1)× U(1) Theories

In this section, we will look at the simplest example of just adding an additional U(1) to the SU(2)×U(1)

gauge symmetry used in previous chapters. The models with that property present us with the covariant

derivative

D— = @— + igTaW
a
— + igaYaXa— + igbYbXb— ; (5.25)

where we are mostly interested in the quantity

K0
— = gT3W

3
— + gaYaXa— + gbYbXb— : (5.26)

For that end, we will do as in Chapter 2 and explore the definition of electromagnetic charge in this

context. In a general sense, it is a linear combination of the operators above

Q = cT3 + aYa + bYb : (5.27)

It will prove instructive to look first at the case where at least one of the multiplets of the theory is a

singlet, and after that expand to the more general case.

5.2.1 Theories with a Singlet

As discussed in Chapter 2, for the electromagnetic charge to be conserved, when it is applied to the

vacuum of each multiplet in the theory, it must give zero

Q < ffii >= (ct3V i + ayai + bybi ) < ffii >= 0 : (5.28)
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The singlets in the theory have automatically t3V i = 0. The condition on their hypercharges is then

ayasi + bybsi = 0 ; (5.29)

where I’m using the s subscript to indicate only the singlets. This implies that all singlet hypercharges

must have the same ratio

yasi
ybsi

=
yasj
ybsj

= −b
a
: (5.30)

One can then always apply a rotation of Xa— and Xb— to the basis with a gauge field B— that does

not couple to any of the singlets, and a gauge field X— that couples to all the singlets. The previous

expressions become then (see Equations (5.43)-(5.46) below)

K0
— = gT3W

3
— + gBYBB— + gXYXX— ; (5.31)

Q = cT3 + dYB + d ′YX ; (5.32)

Q < ffii >= (ct3V i + dyBi + d ′yXi ) < ffii >= 0 : (5.33)

Applying to the singlets, this expression for the charge leads now to

d ′yXsi = 0 : (5.34)

And, since the singlets couple to the X—, we must have d ′ = 0.

In other words, and using the results in Appendix D, in an SU(2) × U(1) × U(1) theory with at least

one singlet, the photon must be orthogonal to the gauge boson X— that interacts with the singlets. Thus,

one can define the angle „W rotating the W 3
— and B— bosons to the photon as

0@Z0
—

A—

1A =

0@cos „W − sin „W

sin „W cos „W

1A0@W 3
—

B—

1A ; (5.35)

where Z0
— is not yet a physical particle. Then, one can define a second angle „X , mixing the resulting Z0

—

with the remaining X—, to bring them to the physical basis as

0@Z′—
Z—

1A =

0@cos „X − sin „X

sin „X cos „X

1A0@Z0
—

X—

1A : (5.36)

The charge can once again be written as

Q = T3 + rYB ; (5.37)
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and, by applying it to the vacua, one can recover the formulas for „W and e of Section 2.3:

cos(„W ) =
rgp

r2g2 + g ′2
; (5.38)

sin(„W ) =
g ′p

r2g2 + g ′2
; (5.39)

and

e =
gg ′p

g2r2 + g ′2
: (5.40)

For the rest one needs to use the results of Section 5.1 as we will show with an example at the end of

this Chapter.

We conclude that, even though the theory has three neutral gauge bosons, there are only two phys-

ical angles needed to bring these fields to the physical basis, instead of the usual three Euler angles.

This happens because one of them depends on the U(1) × U(1) basis in which we decide to start in,

and is thus non physical. This third angle can be removed without loss of generality, by starting from

the basis where the singlets couple exclusively to one gauge boson (X—). In the next section this will be

proven to be true also for the case where there are no singlets in the theory.

5.2.2 Theories without a Singlet

It is assumed the existence of the photon that can be written as

A— = cW 3
— + aXa— + bXb— ; (5.41)

and that, according to the results in D, corresponds to the unbroken charge

eQ = cgT 3 + agaYa + bgbYb ; (5.42)

where a2 + b2 + c2 = 1.

By rotating the U(1) × U(1) fields as

B— =
1√

a2 + b2
(aXa— + bXb—) ; (5.43)

X— =
1√

a2 + b2
(bXa— − aXb—) ; (5.44)

and the hypercharges as

gBYB =
1√

a2 + b2
(agaYa + bgbYb) ; (5.45)

gXYX =
1√

a2 + b2
(bgaYa − agbYb) ; (5.46)
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K0
— gets rewritten as

K0
— = gT3W

3
— + gBYBB— + gXYXX— ; (5.47)

while the photon becomes

A— = cW 3
— + dB— ; (5.48)

where d =
√
a2 + b2 so that c2 + d2 = 1. In this basis, the electromagnetic charge is then

eQ = cgT 3 + dgBYB : (5.49)

What we showed here is nothing more than proving that there is always a specific gauge boson lying

within the U(1) × U(1) bosons space who is perpendicular to the photon. In the case of theories with

singlets, this coincides with the one that does not couple to the singlets, but it is also existent in the other

theories. This means that, regardless of our theory, if there is an unbroken U(1), one can choose to start

in a basis where there are only two angles needed to bring the gauge bosons to their physical basis, as

described before, rendering the third Euler angle nonphysical.

5.3 Working Theory: Doublet plus Multiplet

As an example of the usage of the results obtained in this chapter so far, let us study the model with

an SU(2)L × U(1)Y × U(1)′ Gauge symmetry, and a doublet and higher multiplet in the scalar sector,

parameterized as

’ =

0@ :

1√
2

(v + ’R + i’I)

1A ; ffl =

0BBBBBB@
:

:

1√
2

(u + fflR + ifflI)

:

1CCCCCCA ; (5.50)

with hipercharges:

’ : t3V = −1=2 yB = 1=2 yX = y2 ; (5.51)

ffl : t3V = −yB yB = yB yX = yX ; (5.52)

where we are already in the basis where X— is perpendicular to the photon, and implying that the

constant in the electromagnetic charge of Equations (5.37) and (5.40) is r = 1.

The C matrix may then be written as

C =

0@− 1
2gv

1
2gBv y2gXv

−yBgu yBgBu yXgXu

1A : (5.53)
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To turn this matrix square, we already know that there is only one massless boson in this theory, the

photon, and find it using Equations (5.35), (5.38) and (5.39). And the C matrix rotates to

C′ =

0@− 1
2g0v 0 y2gXv

−yBg0u 0 yXgXu

1A : (5.54)

As discussed before, we can safely retrieve the photon from our calculations, loosing the null column

of C′ to get

C′ =

0@− 1
2g0v y2gXv

−yBg0u yXgXu

1A : (5.55)

The mass matrix will then be

M ′2 =

0@ g2
0 ( 1

4v
2 + y2

Bu
2) −g0gx( 1

2y2v
2 + yByXu

2)

−g0gx( 1
2y2v

2 + yByXu
2) g2

X(y2
2 v

2 + y2
Xu

2)

1A : (5.56)

If we diagonalize this matrix we get to the physical basis. Lets then say that this matrix is diagonalized

by the rotation matrix

RX =

0@cos „X − sin „X

sin „X cos „X

1A ; (5.57)

such that

RXM
′2RTX = M2

D ; (5.58)

or, equivalently:

C′RTX = CD =
“
v̄D1 v̄D2

”
; v̄D1 · v̄D2 = 0 : (5.59)

Assuming „X ∈ [−ı=4; ı=4], these give us expressions for „X

cos „X =

s
1 +

p
1− 1=(1 +K2=4)

2
; (5.60)

sin „X =
sign(K)

cX
√

4 +K2
; (5.61)

where:

K =
g2

0 ( 1
4v

2 + y2
Bu

2)− g2
X(y2

2 v
2 + y2

Xu
2)

1
2g0gX( 1

2y2v2 + yByXu2)
: (5.62)

50



The coupling matrix in the physical basis becomes:

CD = −

0@ v( 1
2g0cX + y2gXsX) v( 1

2g0sX − y2gXcX)

u(yBg0cX + yXgXsX) u(yBg0sX − yXgXcX)

1A ; (5.63)

and the masses of the Gauge bosons are:

M2
1 = v2(

1

2
g0cX + y2gXsX)2 + u2(yBg0cX + yXgXsX)2 ; (5.64)

M2
2 = v2(

1

2
g0sX − y2gXcX)2 + u2(yBg0sX − yXgXcX)2 : (5.65)

The Goldstone bosons absorbed by each Gauge boson are:

G1 =
v( 1

2g0cX + y2gXsX)’I + u(yBg0cX + yXgXsX)fflI

M1
; (5.66)

G2 =
v( 1

2g0sX − y2gXcX)’I + u(yBg0sX − yXgXcX)fflI

M2
; (5.67)

with coupling constants −M1 and −M2 with their respective Gauge boson.
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Chapter 6

Conclusions

We started by introducing topics in Multi-Higgs physics to introduce the notation used in the text and to

give the reader a different approach on those topics. A discussion on custodial symmetry leads us to

study models with that property.

The study of models with an arbitrary number of doublets and singlets lead us to identify the presence

of an understudied coupling between the Z boson and two charged scalars of different mass. We justify

why this coupling is only present in theories with at least two doublets and a charged singlet. We call

the minimal models containing such a sector Zee-type models.

As an example of a Zee-type model, used to search for signals of this kind of couplings, we use a

Zee model composed of a type 2 2HDM plus a charged scalar singlet. We study the scalar sector of this

model including the rotation to the physical basis and the inversion of the parameters of the potential

into physical quantities.

We study and impose various theoretical constraint on the model. For the study of the bounded

from below conditions, we use the study made in Reference [25]. One of the condition on ¸ and ˛

cannot be solved analytically, so we took a large sample of those parameters and excluded the ones

not satisfying the condition. For the charged breaking minima analysis, we took an approach based on

Reference [25]. Perturbative unitarity of the quartic couplings was ensured by the implementation of the

general algorithm presented in Reference [26]. We use the fit given in Reference [27] to the electroweak

precision measurements and demand the parameters to be within 2ff of the result.

We also imposed experimental constraints on the model. The constraints on the measured Higgs

boson of 125GeV were taken from Reference [29]. The constraints on other neutral and charged scalars

were implemented using the most recent version of HiggBounds 5 [30].

The last constraints we made on the model are from the B → Xs‚ decay. We started by studding

this constraints on the simpler type 2 2HDM, using a calculation close to the original in Reference [17],

and reproducing the result in Reference [18] of a lower bound of 580GeV on the charged scalar. We

then imposed the constraints on our type 2 Zee model, and found that, in this model, only one of the

charged scalars needs to satisfy the 580GeV lower bound, while the other can be as low as 50GeV . We

also checked that when ‚, the rotation angle of the charged scalars, equals zero, we recover the type 2
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2HDM result as expected, while for ‚ closer to ±ı=2 we get the less restrained parameter space.

The first process where we looked for an impact of the coupling of interest, was the decay of the mea-

sured higgs boson into Z‚. The decay into ‚‚ has the same diagrams as in theories with two charged

scalars but without this coupling, as in the 3HDM. But the decay into Z‚ has those diagrams plus dia-

grams with different charged scalars running in the same loop, exclusive to this models. We calculated

all those diagrams and found the expected dependence on ‚ and, consequently on our coupling of in-

terest. Nonetheless, once we summed all the diagrams, this dependence was completely lost. Meaning

that the overall process has no new properties when compared to models like the 3HDM, which do not

present this type of coupling.

We then turned to a more obvious way of probing such a coupling, the decay H+
2 → H+

1 + Z, unique

to this type of models. We verified that this decay does happen for a mass of the heaviest charged scalar

above the 580GeV limit, as expected from the B → Xs‚ analysis, and that it has the predicted strong

dependence on our coupling of interest, or, equivalently, on the angle ‚. We explain that the chain of

events composed of this decay followed by the decay of the resulting scalar into a top bottom pair should

have very clear signatures at colliders. We strongly urge a search for these kind of signatures.

To test the relevance of this process, we generate benchmark points in relevant benchmark regions.

We successfully generated three benchmark regions where the decays of our process are the most

prominent. There is still a need for background studies to be done, but these should, in principle,

provide clear signatures. The first of these benchmark regions has the masses of both charged scalars

above the 580GeV limit, while the other two have the mass of the lighter one considerably below that

limit, proving that there are indeed good points where one of the scalars does not satisfy that lower

bound.

We also took a forth benchmark region with different characteristics. The decay H+
1 → W+ + h1 is

one of the channels that have not been investigated at the LHC yet [44]. This last benchmark region was

taken from the few points with a large BR(H+
1 → W+ + h1). We find that both BR(H+

1 → W+ + h1) and

BR(H+
1 → W+ +h2) can be sizeable, but in this case, the BR(H+

2 → H+
1 +Z) is very small. Nonetheless,

BR(H+
2 → W+ + h1) and BR(H+

2 → W+ + h2) can also be large, which makes this an interesting

benchmark region.

Finally, we study models with extended gauge symmetries in the electroweak sector. We start by

explicitly applying the Higgs mechanism to the neutral gauge bosons of such theories. Then we study

how the addiction of an U(1) symmetry affects the definition of charge and the rotation of the gauge

bosons into the physical basis. We conclude that, despite of having three gauge bosons, only two

angles are needed to bring them to the mass eigenstates, since the third is rendered nonphysical by the

freedom in deciding in which U(1)×U(1) basis we start in. We end by applying the previous concepts to

an SU(2)×U(1)×U(1) theory with a doublet and a higher multiplet. We deduce formulas for this model

that might be useful in future work.
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Appendix A

Couplings of the charged Higgs

A.1 Couplings to the Z boson

We define the coupling as

[H+
j ; H

−
k ; Z] := −i g

2cW
(pH+

j
− pH−k )—gHpjHmkZ[j; k]; (A.1)

where all particles are entering the vertex and

gHpjHmkZ[1; 1] =
1

2

`
c2
W − 3s2

W + cos(2‚)
´
; (A.2a)

gHpjHmkZ[1; 2] =− 1

2
sin(2‚); (A.2b)

gHpjHmkZ[2; 1] =− 1

2
sin(2‚); (A.2c)

gHpjHmkZ[2; 2] =
1

2

`
c2
W − 3s2

W − cos(2‚)
´
; (A.2d)

Notice that when the mixing angle ‚ vanishes the singlet decouples from the doublet and there is no

[H+
j ; H

−
k ; Z] vertex for j 6= k.

A.2 Couplings to the W boson

For CP even neutral Higgs bosons (j = 1; 2) we define the coupling as

[hj ; H
+
k ;W

−] : −i g
2

(pH+
k
− phj )—ghjHpkWm[j; k]; (A.3)

where all particles are entering the vertex. For CP odd neutral Higgs boson (j = 3) we define

[h3; H
+
k ;W

−] :=
g

2
(ph3 − pH+

k
)—ghjHpkWm[3; k]; (A.4)
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where

ghjHpkWM[1; 1] = cos(‚) sin(¸− ˛)); (A.5a)

ghjHpkWM[1; 2] =− sin(¸− ˛) sin(‚); (A.5b)

ghjHpkWM[2; 1] = cos(¸− ˛) cos(‚); (A.5c)

ghjHpkWM[2; 2] =− cos(¸− ˛) sin(‚); (A.5d)

ghjHpkWM[3; 1] = cos(‚); (A.5e)

ghjHpkWM[3; 2] =− sin(‚); (A.5f)

A.3 Couplings to quarks and leptons

The interactions of charged Higgs bosons with quarks are given by the following Lagrangian

L =
g√
2

»
mdj
MW

XkuiVi jPRdj +
mui
MW

XkuiVi jYkPLdj +
ml
MW

Zk� lPRel

–
H+
k + h.c. (A.6)

where k = 1; 2 and we have used the conventions of Borzumati and Greub [17], extended in Refer-

ence [33], which is convenient for the BR(B → Xs‚) calculation. We get

X1 = tan˛ cos ‚; Y1 = cot˛ cos ‚; Z1 = tan˛ cos ‚; (A.7a)

X2 =− tan˛ sin ‚; Y2 = − cot˛ sin ‚; Z2 = − tan˛ sin ‚; (A.7b)

A.4 Couplings to neutral Higgs

Finally the couplings to the neutral Higgs are given by the Lagrangian

L = H+
i H
−
k hjghjHpiHmk[j; i ; k]; (A.8)

where ghjHpiHmk are long expressions that we do not reproduce here. Note however that ghjHpiHmk(3; i ; k) =

0.
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Appendix B

The decays h→ ‚‚ and h→ Z‚

These decays were calculated for the 2HDM to one loop approximation in [41]. Since most terms in

the Lagrangian of our model only differ by multiplicative constants, our results will only change by some

factors. We adapt from [41] for the next results. The major difference occurs in h → Z‚, where the

presence of the ZH±1 H
∓
2 coupling allows for the new diagrams in Figure 4.5.

B.1 Fermion Loops

The fermion loops are easily obtained plugging the couplings of Equation (3.20) in the results of [41]:

X‚‚F = −
X
f

Nfc 2a2
fQ

2
f fif [1 + (1− fif )f (fif )] ;

Y ‚‚F = −
X
f

Nfc 2b2
fQ

2
f fif f (fif ) ;

XZ‚F = −
X
f

Nfc
4a2
f g
f
V Qfm

2
f

sW cW

"
2M2

Z

(m2
h −M2

Z)2

ˆ
B0(m2

h; m
2
f ; m

2
f )− B0(M2

Z ; m
2
f ; m

2
f )
˜

(B.1)

+
1

m2
h −M2

Z

ˆ
(4m2

f −m2
h +M2

Z)C0(M2
Z ; 0; m

2
h; m

2
f ; m

2
f ; m

2
f ) + 2

˜ #
;

Y Z‚F = −
X
f

Nfc
4b2
f g

f
V Qfm

2
f

sW cW
C0(M2

Z ; 0; m
2
h; m

2
f ; m

2
f ; m

2
f ) ;

where Nfc is 3 for quarks and 1 for leptons, Qf is the fermion charge, g fV is the fermion’s vector coupling

to the Z boson and the sums run over all fermions f . The function appearing is defined as

f (fi) = −2m2
f

fif
C0(0; 0; m2

h; m
2
f ; m

2
f ; m

2
f ) =

8>><>>:
h
sin−1

“p
1=fi
”i2

; if fi ≥ 1

− 1
4

»
ln

„
1 +
√

1− fi
1−
√

1− fi

«
− iı

–2

; if fi < 1

; (B.2)

while B0 and C0 are the Passarino-Veltman functions.
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B.2 Charged gauge boson loops

The only change in these loops comes from the hV V vertex, which is multiplied by a factor Re(!†V )˛,

and so is the loop. Using the notation of [41], we have

X‚‚W = Re(!†V )˛ [2 + 3fiW + 3fiW (2− fiW )f (fiW )] ;

XZ‚W =
Re(!†V )˛

tan „W
IW ; (B.3)

where,

!a = va=v; fiW =
4M2

W

m2
h

;

IW =
1

(m2
h −M2

Z)2

ˆ
m2
h(1− tan2 „W )− 2M2

W (−5 + tan2 „W )
˜
M2
Z∆B0 ;

+
1

m2
h −M2

Z

[m2
h(1− tan2 „W )− 2M2

W (−5 + tan2 „W ) ; (B.4)

+ 2M2
W

ˆ
(−5 + tan2 „W )(m2

h − 2M2
W )− 2M2

Z(−3 + tan2 „W )]C0

˜
M2
Z∆B0 ;

∆B0 = B0(m2
h;M

2
W ;M

2
W )− B0(M2

Z ;M
2
W ;M

2
W ) ;

C0 = C0(M2
Z ; 0; m

2
h;M

2
W ;M

2
W ;M

2
W ) :

B.3 Charged Scalar Loops

For the decay to ‚‚, the loops are the same as the one presented in [41] with the cubic scalar vertex

replaced by the ones we defined in Equation (3.13). Besides this replacement, we only need to sum

over the charged scalars, obtaining

X‚‚H = −
X
¸

g2¸¸ v2

2m2
±¸

fi±¸[1− fi±¸f (fi±¸)] ; (B.5)

where fi±¸ = 4m2
h=m±¸. Regarding the decay to Z‚, we can allow two different scalars to run within the

same loop, as seen in Figure 4.5. This generalizes the result in [41]. We obtain

XZ‚H = −
X
¸1¸2

(2s2
W ‹

¸1¸2 − (U†U)¸2¸1 )

sin „W cos „W

g2¸1¸2 v2

m2
h −M2

Z

"
M2
Z

m2
h −M2

Z

`
B0(m2

h; m
2
±¸1

; m2
±¸2

)

−B0(M2
Z ; m

2
±¸1

; m2
±¸2

)
´

+ 1 +m2
±¸1

C0(M2
Z ; 0; m

2
h; m

2
±¸1

; m2
±¸1

; m2
±¸2

)

+m2
±¸2

C0(M2
Z ; 0; m

2
h; m

2
±¸2

; m2
±¸2

; m2
±¸1

)

#
: (B.6)

If there were no cubic terms in Equation (3.11) (—abi4 = 0), then (U†U)¸2¸1 = ‹¸2¸1 and there would be no

diagrams involving simultaneously two different charged scalars.

64



B.4 Final widths for loop decays

The final widths are given by

Γ(h→ ‚‚) =
GF¸

2m2
h

128
√

2ı3

`
|X‚‚F + X‚‚W + X‚‚H |

2 + |Y ‚‚F |
2
´
;

Γ(h→ Z‚) =
GF¸

2m2
h

64
√

2ı3

„
1− M2

Z

m2
h

«3 “
|XZ‚F + XZ‚W + XZ‚H |

2 + |Y Z‚F |
2
”
: (B.7)
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Appendix C

Perturbative unitarity

We write here the scattering matrices for the various (Q; Y ) combinations and list all the eigenvalues at

the end. This is presented here for the first time. We follow the notation of [26].

C.1 Q = 2; Y = 1

For the combination of states S++
¸ in Equation (4.15a) we have

M++
2 =

26666666666664

–1 0 0 –5 0 0

0 –3 + –4 0 0 0 0

0 0 k1 0 −k12 0

–5 0 0 –2 0 0

0 0 −k12 0 k2 0

0 0 0 0 0 2–c

37777777777775
: (C.1)

C.2 Q = 1; Y = 1

For the combination of states S+
¸ in Equation (4.15b) we have

M+
2 =

26666666666664

–1 0 0 –5 0 0

0 –3 –4 0 0 0

0 –4 –3 0 0 0

–5 0 0 –2 0 0

0 0 0 0 k1 −k12

0 0 0 0 −k12 k2

37777777777775
: (C.2)
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C.3 Q = 1; Y = 0

For the combination of states T+
¸ in Equation (4.15c) we have

M+
0 =

26666666666664

–1 0 0 –4 0 0

0 –3 –5 0 0 0

0 –5 –3 0 0 0

–4 0 0 –2 0 0

0 0 0 0 k1 −k12

0 0 0 0 −k12 k2

37777777777775
: (C.3)

C.4 Q = 0; Y = 1

For the combination of states S0
¸ in Equation (4.15d) we have

M0
2 =

26664
0 0 0

0 0 0

0 0 0

37775 : (C.4)

C.5 Q = 0; Y = 0

For the combination of states T 0
¸ in Equation (4.15e) we have

M0
0 =

26666666666666666666666666666666664

2–1 0 0 0 –34 0 0 0 k1 –1 0 0 –3

0 2–5 0 –34 0 0 0 0 −k12 0 –5 –4 0

0 0 0 0 0 0 k1 −k12 0 0 0 0 0

0 –34 0 2–5 0 0 0 0 −k12 0 –4 –5 0

–34 0 0 0 2–2 0 0 0 k2 –3 0 0 –2

0 0 0 0 0 0 −k12 k2 0 0 0 0 0

0 0 k1 0 0 −k12 0 0 0 0 0 0 0

0 0 −k12 0 0 k2 0 0 0 0 0 0 0

k1 −k12 0 −k12 k2 0 0 0 4–c k1 −k12 −k12 k2

–1 0 0 0 –3 0 0 0 k1 2–1 0 0 –34

0 –5 0 –4 0 0 0 0 −k12 0 2–5 –34 0

0 –4 0 –5 0 0 0 0 −k12 0 –34 2–5 0

–3 0 0 0 –2 0 0 0 k2 –34 0 0 2–2

37777777777777777777777777777777775

; (C.5)

where for simplicity we have defined

–34 ≡ –3 + –4 : (C.6)
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C.6 The independent eigenvalues

We can obtain easily the eigenvalues for all the matrices except for M0
0 in Equation (C.5) for which we

have to solve numerically a fourth order polynomial. The list of independent eigenvalues is,

Λ1 =
1

2

“
−
p

(k1)2 − 2k1k2 + 4(k12)2 + (k2)2 + k1 + k2

”
; (C.7a)

Λ2 =
1

2

“p
(k1)2 − 2k1k2 + 4(k12)2 + (k2)2 + k1 + k2

”
; (C.7b)

Λ3 =–3 + –4 (C.7c)

Λ4 =
1

2

„
−
q
–2

1 − 2–1–2 + –2
2 + 4–2

5 + –1 + –2

«
; (C.7d)

Λ5 =
1

2

„q
–2

1 − 2–1–2 + –2
2 + 4–2

5 + –1 + –2

«
; (C.7e)

Λ6 =2–c ; (C.7f)

Λ7 =–3 − –4 ; (C.7g)

Λ8 =
1

2

„
−
q
–2

1 − 2–1–2 + –2
2 + 4–2

4 + –1 + –2

«
; (C.7h)

Λ9 =
1

2

„q
–2

1 − 2–1–2 + –2
2 + 4–2

4 + –1 + –2

«
; (C.7i)

Λ10 =–3 − –5 ; (C.7j)

Λ11 =–3 + –5 ; (C.7k)

Λ12 =
1

2

“
−
p

(k1)2 − 2k1k2 + 4(k12)2 + (k2)2 − k1 − k2

”
; (C.7l)

Λ13 =
1

2

“p
(k1)2 − 2k1k2 + 4(k12)2 + (k2)2 − k1 − k2

”
; (C.7m)

Λ14 =–5 − –3 ; (C.7n)

Λ15 =− –3 − 2–4 + 3–5 : (C.7o)

The remaining eigenvalues, Λ16 − Λ19, are the roots of the polynomial of fourth degree

c0 + c1 ” + c2 ”
2 + c3 ”

2 + c4 ”
4 = 0 ; (C.8)
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where

c0 =6(k1)2–2–3 + 12(k1)2–2–4 + 18(k1)2–2–5 − 8k1k2–
2
3 − 20k1k2–3–4

− 24k1k2–3–5 − 8k1k2–
2
4 − 12k1k2–4–5 + 36(k12)2–1–2

− 16(k12)2–2
3 − 16(k12)2–3–4 − 4(k12)2–2

4 + 6(k2)2–1–3 + 12(k2)2–1–4

+ 18(k2)2–1–5 − 36–1–2–3–c − 72–1–2–4–c − 108–1–2–5–c + 48–2
3–4–c

+ 48–2
3–5–c + 16–3

3–c + 36–3–
2
4–c + 48–3–4–5–c + 12–2

4–5–c + 8–3
4–c ; (C.9a)

c1 =− 6(k1)2–2 − 2(k1)2–3 − 4(k1)2–4 − 6(k1)2–5 + 8k1k2–3 + 4k1k2–4

− 12(k12)2–1 − 12(k12)2–2 − 6(k2)2–1 − 2(k2)2–3 − 4(k2)2–4 − 6(k2)2–5

+ 9–1–2–3 + 18–1–2–4 + 27–1–2–5 + 36–1–2–c + 12–1–3–c + 24–1–4–c

+ 36–1–5–c + 12–2–3–c + 24–2–4–c + 36–2–5–c − 12–2
3–4 − 12–2

3–5 − 16–2
3–c

− 4–3
3 − 9–3–

2
4 − 12–3–4–5 − 16–3–4–c − 3–2

4–5 − 4–2
4–c − 2–3

4 ; (C.9b)

c2 =2(k1)2 + 4(k12)2 + 2(k2)2 − 9–1–2 − 3–1–3 − 6–1–4 − 9–1–5 − 12–1–c

− 3–2–3 − 6–2–4 − 9–2–5 − 12–2–c + 4–2
3 + 4–3–4 − 4–3–c + –2

4

− 8–4–c − 12–5–c ; (C.9c)

c3 =3–1 + 3–2 + –3 + 2–4 + 3–5 + 4–c ; (C.9d)

c4 =− 1 : (C.9e)
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Appendix D

Field and charge rotations

Suppose we start with three fields such that

K— = gAYAA— + gBYBB— + gCYCC— : (D.1)

Our goal now is to check what is the charge YZ of a general linear combination of those three fields Z—.

Lets then supose this linear combination to be:

Z— = aA— + bB— + cC— =
“
a b c

”0BBB@
A—

B—

C—

1CCCA ; (D.2)

with a2 + b2 + c2 = 1.

We can now define a orthogonal rotation matrix such that:0BBB@
Z—

Z′—

Z′′—

1CCCA = O

0BBB@
A—

B—

C—

1CCCA ; O =

0BBB@
a b c

× × ×

× × ×

1CCCA : (D.3)

Where Z′— and Z′′— are some combinations of the initial fields orthogonal to Z— and to each other. We
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can now rewrite K— as:

K— =
“
gAYA gBYB gBYB

”0BBB@
A—

B—

C—

1CCCA (D.4)

=
“
gAYA gBYB gBYB

”
OTO

0BBB@
A—

B—

C—

1CCCA (D.5)

=
“
gZYZ × ×

”0BBB@
Z—

Z′—

Z′′—

1CCCA ; (D.6)

where,

gZYZ =
“
agA bgB cgC

”0BBB@
YA

YB

YC

1CCCA ; (D.7)

and thus,

YZ ∝
“
agA bgB cgC

”0BBB@
YA

YB

YC

1CCCA : (D.8)

We can then conclude that if a field is a combination of the form of Equation (D.2), then its charge

takes the form of Equation (D.8). This can be generalised for any number of fields in the theory.
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