
Bar recursion with abstract types
a study on the bounded functional interpretation

João Rafael Oliveira Mira da Silva

October 2021

Abstract

We study two extensions to the bounded functional interpretation of Ferreira and Oliva, in the

context of classical logic. The first extension introduces definitions by bar recursion, a form of

transfinite recursion in well-founded trees. The second extension concerns the addition of an abstract

type, that is, the inclusion of an additional ground type which can represent a ring, or a metric space,

for example.

Our goal is to study the simultaneous extension of the bounded functional interpretation with

bar recursion and an abstract type. We deduce, in the presence of an abstract type, the principle of

dependent choices from bar induction, the proof principle corresponding to bar recursion.

Keywords: proof theory, functional interpretation, majorisability, bar recursion, abstract type,

proof mining

1 Introduction

A proof interpretation of a formal system A in a formal system B consists of a mapping of the formulas

of A into formulas of B. In addition, we require that there is a computable translation of the proofs in A

to proofs in B in such a way that the theorems of A are mapped by the interpretation to theorems of B.

This translation is usually called the soundness theorem of the interpretation.

Proof interpretations were introduced in the context of relative consistency proofs. Nowadays, the

more interesting facet of these interpretations is that they can be used to provide terms that are witnesses

for existential theorems, given that these are proven by restricted means. This term extraction is now a

core part of the proof mining programme, whose main question is posed by Georg Kreisel:

What more do we know if we have proved a theorem by restricted means

than if we merely know that it is true?

The main technique at work in proof mining is the monotone functional interpretation of Kohlenbach

[5], an interpretation that allows the extraction of bounds for witnessing terms. In exchange for only

extracting bounding terms, the monotone interpretation can deal with some non-constructive principles,

including, for instance, weak König’s lemma — the claim that every infinite binary tree has an infinite

path.

1

A different interpretation used for proof mining is the bounded functional interpretation of Fernando

Ferreira and Paulo Oliva [4]. Like the monotone interpretation, the bounded functional interpretation

focuses on the extraction of bounding terms, instead of precise witnessing terms, and, due to this, it can

be used for the analysis of proofs involving some non-constructive principles.

In this work, we present a version of the bounded functional interpretation directly for classical logic

[3]. We follow two lines of inquiry,

• an extension with bar recursive functionals,

• an extension with an abstract type.

On one hand, the extension with bar recursion enables the analysis of proofs using stronger non-

constructive principles, such as the principle of dependent choices and the principle of full numerical

comprehension. On the other hand, the extension with an abstract type allows proof mining to go

beyond representable spaces and to consider theorems about arbitrary spaces. These extensions to the

bounded functional interpretation have been studied individually in the PhD thesis of Patŕıcia Engrácia

[1], in the context of intuitionistic logic. Our contributions are twofold,

• the simultaneous extension with bar recursive functionals and an abstract type,

• the study of these extensions directly for classical logic, instead of through a negative translation.

The former item settles a question posed by Engrácia and Ferreira in [2], and is relevant for the proof

mining programme in the context of the bounded functional interpretation.

2 Bounded functional interpretation

In this section, we present the theory of finite-type arithmetic, a version of this theory with intensional

majorisability, and the bounded functional interpretation — an interpretation of finite-type arithmetic

with intensional majorisability into itself.

2.1 Arithmetic in all finite types

The theory of arithmetic in all finite types is a many-sorted theory, with a sort for each finite type.

Types The finite types are defined recursively as follows: 0 is a finite type — the ground type — and

if σ and τ are finite types, then σ → τ is a finite type — a higher type. Intuitively, the ground type 0

represents the type of the natural numbers, and the type σ → τ stands for the type of total functions

from objects of type σ to objects of type τ .

Language The language of finite-type arithmetic has variables xτ , yτ , zτ , . . . of each type τ . There

are the logical constants Π and Σ, called the combinators. The combinator Π represents the function

(x, y) 7→ x and Σ represents the function (x, y, z) 7→ x(z, y(z)). There are also the arithmetical constants:

0 represents the first natural number, S represents the successor function n 7→ n+ 1, and the constants

2

Rτ , named recursors, are used to define functions by recursion, they represent the function g such that

g(0, x, f) = x, and g(n+ 1, x, f) = f(g(n, x, f), n).

There is a unique binary predicate symbol =0 between objects of type 0.

Terms The terms of the language of finite-type arithmetic are typed — they are assigned a type. The

terms of type τ are: constants of type τ , variables of type τ , and terms obtained by functional application

— if t is a term of type σ → τ and s is a term of type σ, then the term t applied to s, denoted by ts, is

a term of type τ .

Terms are usually written with the type superscript notation tτ , meaning that t is a term of type τ .

When there is no potential ambiguity, we will omit the type superscript for both variables and terms.

Formulas The atomic formulas are of the form t =0 s with t and s terms of type 0. The formulas are

then defined recursively using the connectives ¬ and ∨ and the quantifiers ∀xτ , for each type τ . The

other connectives and the existential quantifier are defined by abbreviation.

Axioms The theory of Peano arithmetic in all finite types, denoted by PAω (from Peano arithmetic),

is based on classical logic together with axioms that are the universal closures of the following formulas:

• equality axioms x =0 x and x =0 y ∧A[x/w]→ A[y/w], where A(w) is an atomic formula,

• successor axioms Sx 6=0 0 and Sx =0 Sy → x =0 y,

• combinator axioms A[Πxy/w]↔ A[x/w] and A[Σxyz/w]↔ A[xz(yz)/w], where A(w) is an atomic

formula,

• recursor axioms A[R(0, y, z)/w] ↔ A[y/w] and A[R(Sx, y, z)/w] ↔ A[z(R(x, y, z), x)/w], where

A(w) is an atomic formula,

• induction schema A(0) ∧ ∀n0 (A(n)→ A(Sn))→ ∀n0A(n), where A(n) is an arbitrary formula.

In addition to the primitive equality =0 between objects of type 0, we define equality for higher types

t =σ→τ s as ∀xσ (tx =τ sx), assuming that x is not a variable of the terms t and s.

Combinatorial completeness The combinators provide the theory PAω with combinatorial complete-

ness — for each term t and variable x, we can construct a term λx.t whose variables are those of t other

than x and such that PAω proves A[(λx.t)s/w]↔ A[t[s/x]/w], for any formula A and term s.

With the recursor R0, we can construct a closed term for each primitive recursive function. The usual

order relation ≤ and the maximum operator max can be defined primitive recursively.

Standard model The full set-theoretic model, denoted by S ω, is the standard model for PAω. The

type structure S ω is defined recursively as S0 = N, and Sσ→τ = SSστ , for all types σ and τ .

Majorisability We define the strong majorisability relation, written as ≤∗τ and define sets Mτ simul-

taneously by recursion on the type τ : n ≤∗0 m is simply n ≤ m and we define M0 = N; and x ≤∗σ→τ y

holds when x, y ∈MMσ
τ and

∀u, v ∈Mσ (u ≤∗σ v → xu ≤∗τ yv ∧ yu ≤∗τ yv),

3

and we define Mσ→τ = {x ∈ MMσ
τ | x ≤∗ x∗, for some x∗ ∈ MMσ

τ }, for all types σ and τ . Intuitively,

having x ≤∗ y means that y is an upper bound for x, and that y is monotone.

The relation ≤∗ is not reflexive, but if we have x ≤∗ y, then y ≤∗ y. Furthermore, the strong

majorisability relation is transitive: when we have x ≤∗ y and y ≤∗ z, it follows that x ≤∗ z.

The model of strongly majorisable functionals, denoted by M ω, contains functionals that can be

strongly majorised, the type structure for M ω being defined with the sets Mτ defined above. By finding

majorants for the constant symbols of the language, we conclude that M ω is a model of PAω.

2.2 Intensional majorisability

In PAω, the extensional version of strong majorisability ≤∗ is obtained by defining the symbols ≤∗ accord-

ing to the definition of strong majorisability above. For the intensional version of strong majorisability

E — a version partially governed by a rule — we add binary relation symbols Eτ to our language and

bounded quantifiers ∀x Eτ t where the variable x does not occur in the term t. The bounded quantifier

∃x Eτ t is defined by abbreviation. A formula whose quantifiers are all bounded is said to be a bounded

formula. If Abd is a bounded formula, then formulas of the form ∀xAbd are said to be universal bounded.

The theory of Peano arithmetic in all finite types with intensional majorisability, denoted by PAωE, is

the extension of PAω with the universal closures of:

• bounded quantifier axioms ∀x Eτ t A ↔ ∀x (x Eτ t → A), where A is an arbitrary formula, the

variable x does not occur in the term t, and τ is any type,

• strong majorisability axioms x E0 y ↔ x ≤0 y and, for all types σ and τ ,

x Eσ→τ y → ∀uσ, vσ (u Eσ v → xu Eτ yv ∧ yu Eτ yv),

and the strong majorisability rule

Abd ∧ u Eσ v → tu Eτ sv ∧ su Eτ sv
Abd → t Eσ→τ s

where Abd is a bounded formula, and u and v do not occur free in Abd, in t or in s.

Flattening Given a formula A of PAωE, its flattening, denoted by A∗, is the formula of PAω obtained from

A by replacing the relation symbols Eτ with ≤∗τ , and the occurrences of bounded quantifiers ∀x Eτ t A

with ∀x (x ≤∗τ t→ A). If the theory PAωE proves A, then the theory PAω proves its flattening A∗.

2.3 Bounded functional interpretation

The bounded functional interpretation is a proof interpretation of PAωE in itself.

An object x is monotone whenever x strongly majorises itself. We define an abbreviation for quantifiers

ranging over monotone objects, called monotone quantifiers: ∀̃xA is an abbreviation for ∀x (x E x→ A),

and ∀̃x E t A is an abbreviation for ∀x E t (x E x → A). Monotone quantifiers ∀̃xA are not bounded

quantifiers ∀x E t A — in a bounded quantifier, t is a term in which the variable x does not occur.

4

Definition 2.1 (Bounded functional interpretation). To each formula A of the language of PAωE we assign

a formula AU , called the bounded functional interpretation of A, which is of the form

∀̃x ∃̃y AU (x, y),

with AU (x, y) a bounded formula, and x and y are (possibly empty) tuples of variables. The formulas

AU and AU are defined recursively as follows:

• if A is an atomic formula, then AU and AU are simply A.

For the remaining cases, let the interpretation of A be ∀̃x ∃̃y AU (x, y) and the interpretation of B be

∀̃u ∃̃v BU (u, v). Then:

• (¬A)U is ∀̃f ∃̃x ∃̃x′ E x ¬AU (x′, fx′),

• (A ∨B)U is ∀̃x, u ∃̃y, v (AU (x, y) ∨BU (u, v)),

• (∀z A)U is ∀̃w, x ∃̃y ∀z E w AU (x, y),

• (∀z E t A)U is ∀̃x ∃̃y ∀z E t AU (x, y).

The formula inside the unbounded ∀̃ ∃̃ quantifiers of AU is defined to be AU .

Characteristic principles There are three principles that play an important role in the bounded

functional interpretation, and in a sense characterise the mapping A 7→ AU (see Theorem 2.4):

• the monotone bounded choice principle, denoted by mAC, is

∀̃x ∃̃y Abd(x, y)→ ∃̃f ∀̃x ∃̃y E fx Abd(x, y)

with Abd(x, y) a bounded formula where f does not occur free, and x and y are tuples of variables,

• the bounded collection principle, denoted by bC, is

∀x E a ∃y Abd(x, y)→ ∃̃b ∀x E a ∃y E b Abd(x, y)

with Abd(x, y) a bounded formula where b does not occur free, and x and y are tuples of variables,

• the majorisability principle, denoted by MAJ, is ∀x∃y (x E y).

The following results are the main theorems of the bounded functional interpretation.

Theorem 2.2 (Soundness). Let A(z) be a formula of the language of PAωE with free variables z, and ∆

be a set of universal bounded sentences. If PAωE + mAC + bC + MAJ + ∆ ` A(z), then there are closed

monotone terms t, effectively obtainable from a proof of A(z), such that

PAωE + ∆ ` ∀̃w ∀z E w ∀̃x A(z)U (x, twx).

Corollary 2.3 (Extraction). Let Abd(x, y) be a bounded formula of PAωE with free variables x and y. If

PAωE +mAC+ bC+MAJ ` ∀x ∃y Abd(x, y), then there are closed monotone terms t, effectively obtainable

from a proof of ∀x∃y Abd(x, y), such that

PAωE ` ∀̃w ∀x E w ∃y E tw Abd(x, y).

Theorem 2.4 (Characterisation). Let A be a formula of the language of PAωE. We have

PAωE + mAC + bC + MAJ ` A↔ AU .

5

3 Bar recursion

In this section, we present an extension of the bounded functional interpretation with bar recursion and

show that this extension enables the interpretation of proofs that use numerical comprehension.

3.1 Bar recursion

We begin with an informal discussion of bar recursion. First, we need to establish some notation. By

S∗ we mean the set of finite sequences of elements of a set S, including the empty sequence 〈〉. Finite

sequences are written as s = 〈s(0), s(1), . . . , s(k)〉, with their elements referred to as s(i). Given s ∈ S∗,

we define |s| as the length of s and, if i ≤ |s|, then s|i denotes the truncation of s to its first i elements.

For an infinite sequence x ∈ SN, we also use the notation x|i with the same meaning. The symbol ∗ is

used for concatenation in S∗. We consider a designated zero element 0 ∈ S, and, when s ∈ S∗, we write

s for the infinite sequence resulting from s by appending zeros.

Definition 3.1 (Bar recursion). To define a function S∗ → T by bar recursion, we require functions

Y : SN → N, F : S∗ → T , and G : S∗ × TS → T . We say that a function B : S∗ → T is defined by bar

recursion on Y , F and G when

B(s) =

F (s) if ∃i ≤ |s|
(
Y (s|i) ≤ i

)
G(s, λw.B(s ∗ 〈w〉)) otherwise.

The scheme above might not assign a value B(s) to all finite sequences s ∈ S∗. When B(s) is defined

by the step case G, its value can depend on the value of some B(s ∗ 〈w〉), which might in turn depend on

the value of some B(s ∗ 〈w, z〉). If this chain of dependencies never reaches the base case F , then B(s)

will not be defined. The occurrence of this infinite recurrence depends only on the condition function Y .

It can be proven that, if Y ∈M(0→σ)→0, then the function B(s) is a total function.

Bar recursion in finite-type arithmetic Bar recursion is defined using finite sequences, which are

not directly available in finite-type Peano arithmetic. A finite sequence with elements of type σ is

represented by a pair of objects: one of type 0 — its length — and the other of type 0→ σ — an infinite

sequence to be truncated. The canonical representative for a finite sequence is the pair n, x|n whose

infinite sequence is extended with zeros.

To add bar recursion to PAω, we include additional constants — the bar recursors Bσ,τ — and the

bar recursor axioms BR

∃i ≤ n
(
y(x|i) ≤ i

)
→
(
A[B(y, f, g, n, x)/z]↔ A[f(n, x|n)/z]

)
∀i ≤ n

(
y(x|i) > i

)
→
(
A[B(y, f, g, n, x)/z]↔ A[g(n, x|n, λw.B(y, f, g, Sn, x|n ∗ 〈w〉))/z]

)
where A(z) is an atomic formula.

Our main model for bar recursion — a model where functionals defined by bar recursion are always

total functions — is the model M ω of strongly majorisable functionals. The fact that M ω is a model of

PAω allows us to add some truths of M ω to PAω without incurring in contradiction.

6

3.2 Bar induction

Bar induction is the principle of proof corresponding to bar recursion, in the same manner as proofs by

ordinary induction correspond to definitions by ordinary recursion. The version of bar induction we use

is the following.

Definition 3.2 (Simplified monotone bar induction). Given a formula P (n0, x0→σ), the principle of

simplified monotone bar induction, named BI−, is the formula Hyp1∧Hyp2∧Hyp3→ P (0, 00→σ), where

• Hyp1 is ∀x0→σ ∃n0 P (n, x|n) (well-foundedness)

• Hyp2 is ∀n0 ∀x0→σ ∀i ≤ n
(
P (i, x|i)→ P (n, x|n)

)
(monotonicity)

• Hyp3 is ∀n0 ∀x0→σ
(
∀wσ P (n+ 1, x|n ∗ 〈w〉)→ P (n, x|n)

)
(step)

When we restrict P (n, x) to be an existential bounded formula, this principle is called existential simplified

monotone bar induction and denoted by BI−∃ .

To prove bar induction, we use some semantic reasoning based on the model M ω. More precisely, we

use some sentences from the set ∆Mω of formulas whose flattening is true in M ω.

Theorem 3.3 (Bar induction). The theory PAωE + BR + mAC + bC + MAJ + ∆Mω proves BI−∃ .

3.3 Numerical comprehension

The addition of bar recursion significantly strengthens the theory of finite-type arithmetic. In fact, this

extension can be used to interpret proofs that use a number of choice and comprehension principles:

• the principle of numerical comprehension CA0

∃f0→0 ∀n0 (f(n) = 0↔ A(n))

where A(n) can be any formula where f does not occur free,

• the principle of dependent choices DCω

∀xσ ∃yσ A(x, y)→ ∀wσ ∃f0→σ
(
f(0) = w ∧ ∀n0A(f(n), f(n+ 1))

)
where A(x, y) can be any formula where f does not occur free, and σ any tuple of types.

When we restrict A(x, y) to be a universal bounded formula, this principle is denoted by DCω∀ ,

• the principle of numerical choice AC0,ω

∀n0 ∃xσ A(n, x)→ ∃f0→σ ∀n0A(n, f(n))

where A(n, x) can be any formula where f does not occur free, and σ any tuple of types.

When we restrict σ to be type 0, this principle is denoted by AC0,0.

Proposition 3.4.

1. PAωE + BI−∃ ` DCω∀ ,

2. PAωE + mAC + bC + MAJ + DCω∀ ` DCω,

3. PAωE + DCω ` AC0,ω,

4. PAωE + AC0,0 ` CA0.

Corollary 3.5. The theory PAωE + BR + mAC + bC + MAJ + ∆Mω proves CA0.

7

4 Abstract type

In this section, we develop an extension of the bounded functional interpretation simultaneously with bar

recursion and with an abstract type that can represent a ring, or a metric space, for example. By using

an abstract type, we are no longer restricted to working with spaces that have to be encoded.

4.1 Extended arithmetic in all finite types

The theory of arithmetic in all finite types can be extended with a new type X, called an abstract type,

that represents a mathematical structure other than the natural numbers.

Types The extended finite types are defined recursively as follows: 0 and X are extended finite types

— the extended ground types, and if σ and τ are extended finite types, then σ → τ is an extended finite

type — an extended higher type. The finite types using only ground type 0 are called arithmetical types.

Language The language of finite-type arithmetic is extended with a constant 0X of type X and other

new constants depending on the structure X at hand. For instance, if X is a ring, then one of these

constants could be + of type X → X → X that represents the additive operation.

Axioms The extended theory of Peano arithmetic in all finite types, denoted by PAω,X , is the extension

of the theory PAω with axioms that are the universal closures of the following formulas:

• equality axioms for X: x =X x and x =X y ∧A[x/w]→ A[y/w], where A(w) is an atomic formula,

• universal axioms related to the structure X.

When X is a ring, we would have a distributivity axiom (x+ y) + z = x+ (y + z).

Standard model The extended full set-theoretic model, denoted by S ω,X , is the intended model for

extended finite-type arithmetic. The type structure S ω,X is defined recursively as S0 = N, SX = X, and

Sσ→τ = SSστ , for all types σ and τ .

Majorisability The extended strong majorisability relation is a relation between objects of an extended

type and of its corresponding arithmetical type. To each extended type τ we assign an arithmetical type

τ̂ that is obtained from τ by replacing every occurrence of type X with type 0 — that is, 0̂ and X̂

are 0, and σ̂ → τ is σ̂ → τ̂ . We define, by simultaneous recursion on the type τ , the extended strong

majorisability relation ≤∗τ and the sets Mτ as follows: n ≤∗0 m is simply n ≤ m and we define M0 = N;

the relation x ≤∗X n depends on the structure X and must satisfy

• if x ≤∗X n and n ≤ m, then x ≤∗X m,

• for each x ∈ X there is some n ∈ N such that x ≤∗X n,

and we define MX = X; and x ≤∗σ→τ y holds when x ∈MMσ
τ , y ∈MMσ̂

τ̂ , and

∀u ∈Mσ ∀v ∈Mσ̂ (u ≤∗σ v → xu ≤∗τ yv) ∧ ∀u, v ∈Mσ̂ (u ≤∗σ̂ v → yu ≤∗τ̂ yv)

8

and we define Mσ→τ = {x ∈MMσ
τ | x ≤∗ x∗, for some x∗ ∈MMσ̂

τ̂ }, for all extended types σ and τ .

The extended version coincides with the original version of strong majorisability when τ is an arith-

metical type, hence we use the same symbol ≤∗ for both relations. The main properties of the original

strong majorisability relation still hold for the extended strong majorisability relation: reflexivity for

strong majorants and transitivity.

The extended model of strongly majorisable functionals, denoted by M ω,X , is now based on the new

majorisability relation, the type structure for M ω,X being defined with the sets Mτ defined above.

Intensional majorisability In PAω,X , we can also define an extensional version of ≤∗ as above,

assuming that x ≤∗X n is defined by a universal formula BX(n, x). The intensional version E requires

the addition of symbols Eτ and the bounded quantifiers as before.

The extended theory of Peano arithmetic in all finite types with intensional majorisability, denoted

by PAω,XE , is the extension of PAω,X with the universal closures of the formulas:

• bounded quantifier axioms ∀x Eτ t A ↔ ∀x (x Eτ t → A), where A is an arbitrary formula, the

variable x does not occur in the term t, and τ is any type,

• extended strong majorisability axioms n E0 m ↔ n ≤0 m; x EX n → BX(x, n); and, for all

extended types σ and τ ,

x Eσ→τ y → ∀uσ ∀vσ̂ (u ≤∗σ v → xu ≤∗τ yv) ∧ ∀uσ̂, vσ̂ (u ≤∗σ̂ v → yu ≤∗τ̂ yv),

• universal bounded axioms related to the structure X,

and the extended strong majorisability rules

Abd → BX(x, n)

Abd → x EX n
and

Abd ∧ u Eσ v ∧ u′ Eσ̂ v′ → tu Eτ sv ∧ su′ Eτ̂ sv′
Abd → t Eσ→τ s

where Abd is a bounded formula, and the variables u, v, u′, and v′ do not occur free in Abd, in t or in s.

4.2 Extended bounded functional interpretation

The bounded functional interpretation as in Definition 2.1 also provides an interpretation of PAω,XE into

itself, with the characteristic principles mAC, bC, and MAJ generalised to the extended types.

Theorem 4.1 (Soundness). Let A(z) be a formula of the language of PAω,XE with free variables z, and ∆

be a set of universal bounded sentences. If PAω,XE + mAC + bC + MAJ + ∆ ` A(z), then there are closed

monotone terms t, effectively obtainable from a proof of A(z), such that

PAω,XE + ∆ ` ∀̃w ∀z E w ∀̃x A(z)U (x, twx).

Theorem 4.2 (Characterisation). Let A be a formula of the language of PAω,XE . We have

PAω,XE + mAC + bC + MAJ ` A↔ AU .

9

4.3 From bar recursion to numerical comprehension

The principle of definition by bar recursion can be extended to abstract types simply by allowing bar

recursive definitions involving the extended types. As before, the extended model of strongly majorisable

functionals is a model for bar recursion — that is, a model for the extended bar recursor axioms BR.

The principle of proof by bar induction BI− can be similarly extended. To prove this extension of bar

induction, we use sentences from the set ∆Mω,X of formulas whose flattening is true in M ω,X .

Theorem 4.3 (Bar induction). The theory PAω,XE + BR + mAC + bC + MAJ + ∆Mω,X proves BI−∃ .

Furthermore, using this extended bar induction, we can prove the same choice and comprehension

principles, where the type σ can be any extended type.

Proposition 4.4.

1. PAω,XE + BI−∃ ` DCω∀ ,

2. PAω,XE + mAC + bC + MAJ + DCω∀ ` DCω,

3. PAω,XE + DCω ` AC0,ω,

4. PAω,XE + AC0,0 ` CA0.

Corollary 4.5. The theory PAω,XE + BR + mAC + bC + MAJ + ∆Mω,X proves CA0.

With a suitable axiomatisation of metric spaces, the principle of numerical choice AC0,0 can be used,

in conjunction with the principle of bounded collection bC, to prove that the bounded functional inter-

pretation automatically completes metric spaces.

Proposition 4.6. Consider a Cauchy sequence x : 0→ X, that is, a sequence x such that

∀k0 ∃n0 ∀i, j ≥ n
(
d(xi, xj) ≤ 1

k + 1

)
.

The theory PAω,XE + BR + mAC + bC + MAJ + ∆Mω,X proves that x has a limit, that is,

∃zX ∀k0 ∀i ≥ fk
(
d(xi, z) ≤ 1

k + 1

)
.

References

[1] P. Engrácia. ‘Proof-theoretical studies on the bounded functional interpretation’. PhD thesis. 2009.

[2] P. Engrácia and F. Ferreira. ‘Bounded functional interpretation with an abstract type’. In: Contem-

porary Logic and Computing. Coll. Publ., London, 2020, pp. 87–112.

[3] F. Ferreira. ‘Injecting uniformities into Peano arithmetic’. In: Ann. Pure Appl. Logic 157.2-3 (2009),

pp. 122–129.

[4] F. Ferreira and P. Oliva. ‘Bounded functional interpretation’. In: Ann. Pure Appl. Logic 135.1-3

(2005), pp. 73–112.

[5] U. Kohlenbach. ‘Analysing proofs in analysis’. In: Logic: from Foundations to Applications (Stafford-

shire, 1993). Oxford Sci. Publ. Oxford Univ. Press, New York, 1996, pp. 225–260.

10

	Introduction
	Bounded functional interpretation
	Arithmetic in all finite types
	Intensional majorisability
	Bounded functional interpretation

	Bar recursion
	Bar recursion
	Bar induction
	Numerical comprehension

	Abstract type
	Extended arithmetic in all finite types
	Extended bounded functional interpretation
	From bar recursion to numerical comprehension

