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Logic may be unshakeable, but it cannot hold out

against a human being who wants to live.

— Franz Kafka, The Trial
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Resumo

As interpretações funcionais são uma ferramenta importante em teoria da demonstração. Estudamos

duas extensões à interpretação funcional limitada de Ferreira e Oliva, no contexto da lógica clássica, que

contribuem para a sua aplicabilidade em estudos de proof mining.

A primeira extensão introduz definições por bar recursão, uma forma de recursão transfinita em

árvores bem fundadas. Com esta adição, a interpretação funcional limitada pode ser usada para analisar

demonstrações que envolvam o prinćıpio das escolhas dependentes e o prinćıpio da compreensão numérica.

A segunda extensão diz respeito à inclusão de um tipo abstrato, isto é, à inclusão de um tipo base

adicional. Este tipo pode representar um anel, ou um espaço métrico, por exemplo. Como consequência,

a interpretação funcional limitada pode ser usada para a análise de demonstrações sobre estruturas

matemáticas arbitrárias sem que estas tenham que ser codificadas.

O objetivo é estudar a extensão da interpretação funcional limitada simultaneamente com bar recursão

e com um tipo abstrato. Verificamos em detalhe, na presença de um tipo abstrato, a dedução do prinćıpio

das escolhas dependentes a partir de bar indução, o prinćıpio de demonstração associado à bar recursão.

Numa aplicação, mostramos que a interpretação funcional limitada estendida completa automaticamente

os espaços métricos.

Palavras-chave: teoria da demonstração, interpretação funcional, majorazibilidade, bar recursão, tipo

abstrato, proof mining
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Abstract

Functional interpretations are an important tool in proof theory. We study two extensions to the bounded

functional interpretation of Ferreira and Oliva, in the context of classical logic, that contribute to its

applicability in proof mining studies.

The first extension introduces definitions by bar recursion, a form of transfinite recursion on well-

founded trees. With this addition, the bounded functional interpretation can be used to analyse proofs

involving the principle of dependent choices and the principle of numerical comprehension.

The second extension concerns the addition of an abstract type, that is, the inclusion of an additional

ground type. This type can represent a ring, or a metric space, for example. As a consequence, the

bounded functional interpretation can be used for the analysis of proofs about arbitrary mathematical

structures without these having to be encoded.

Our goal is to study the simultaneous extension of the bounded functional interpretation with bar

recursion and an abstract type. We check in detail, in the presence of an abstract type, the deduction of

the principle of dependent choices from bar induction, the proof principle corresponding to bar recursion.

As an application, we show that the extended bounded functional interpretation automatically completes

metric spaces.

Keywords: proof theory, functional interpretation, majorisability, bar recursion, abstract type, proof

mining
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Chapter 1

Introduction

A proof interpretation of a formal system A in a formal system B consists of a mapping of the formulas

of A into formulas of B. In addition, we require that there is a computable translation of the proofs in A

to proofs in B in such a way that the theorems of A are mapped by the interpretation to theorems of B.

This translation is usually called the soundness theorem of the interpretation.

An important proof interpretation was defined by Kurt Gödel in [21], and is known as the dialectica

interpretation, after the name of the journal where it was published. The dialectica interpretation in-

terprets Heyting arithmetic HA — the intuitionistic version of Peano arithmetic — in a quantifier-free

system T, known as the system of primitive recursive functionals of finite-type. Combined with a neg-

ative translation of classical logic to intuitionistic logic, Gödel’s interpretation can be used to provide a

syntactic proof of the consistency of Peano arithmetic. An extension of the dialectica interpretation with

bar recursive functionals, carried out by Clifford Spector in [39], strengthens this result to a relative con-

sistency proof of full second-order arithmetic. We can also say this is a proof of the relative consistency

of analysis, since many results from this field can be stated and proven in second-order arithmetic.

Nowadays, the more interesting facet of the dialectica interpretation is that it can be used to provide

terms that are witnesses for existential theorems, given that these are proven by restricted means. This

term extraction is now a core part of the proof mining programme, originally known as proof unwinding,

that stems from the work of Georg Kreisel [29, 30, 31], being further developed by Ulrich Kohlenbach.

The main question of this programme is posed by Kreisel:

What more do we know if we have proved a theorem by restricted means

than if we merely know that it is true?

Currently, a considerable part of the programme is concerned with extracting new effective information

from proofs that use some non-constructive principles. Typical results in proof mining are computable

uniform bounds for theorems in analysis, of which many examples can be seen in [28, §15–18]. The main

technique at work here is the monotone functional interpretation of Kohlenbach [26] that combines the

dialectica interpretation with the hereditary majorisability relation of William Howard [23]. Unlike the

dialectica interpretation, that provides exact witnessing terms, the monotone interpretation allows only

for the extraction of bounds for these terms — in this context called majorants. However, in exchange for
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the weaker term extraction, the monotone interpretation can deal with non-constructive principles that

cannot be dealt with using the dialectica interpretation directly, including, for instance, weak König’s

lemma — the claim that every infinite binary tree has an infinite path. The aforementioned interpretations

rely on typed formal systems where the terms are assigned a finite type, that is, either the type of the

natural numbers, or the type of a function between finite types. An extension of the monotone functional

interpretation includes an additional abstract type that represents an abstract space, for instance, a metric

space, or a normed space, see [27, 20]. The abstract type lifts the restriction of working only with spaces

that have to be encoded.

A different interpretation used for proof mining is the bounded functional interpretation of Fernando

Ferreira and Paulo Oliva [19], a functional interpretation that uses the strong majorisability relation of

Marc Bezem [3]. Like the monotone interpretation, the bounded functional interpretation focuses on the

extraction of bounding terms, instead of precise witnessing terms, and, due to this, it can be used for

the analysis of proofs involving some non-constructive principles. The main difference is that the former

interpretation only takes majorisability into account after the interpretation of formulas, while the latter

has the majorisability relation built into the language of its formal system. The interpretation of weak

König’s lemma is performed using a central principle of the bounded functional interpretation — the

principle of bounded collection bC — that is essentially a generalisation of weak König’s lemma to higher

types. This principle clashes with set-theoretic truth, and it is responsible for a phenomenon that we

may call injection of uniformities, or introduction of ideal elements: it can be used to prove the existence

of an object satisfying a global property, given the existence of objects satisfying local properties. For

example, this principle can be used to prove that every Cauchy sequence converges, provided that it has

a computable rate of convergence.

In this work, we present a version of the bounded functional interpretation directly for classical logic

[12], inspired by Joseph Shoenfield’s direct interpretation of Peano arithmetic in [37, §8.3]. We follow

two lines of inquiry, proposed by Ferreira in [13]

• an extension with bar recursive functionals,

• an extension with an abstract type.

These extensions to the bounded functional interpretation have been studied individually in the PhD

thesis of Patŕıcia Engrácia [9], in the context of intuitionistic logic. Our contributions are twofold,

• the simultaneous extension with bar recursive functionals and an abstract type,

• the study of these extensions directly for classical logic, instead of through a negative translation.

This former item settles a question posed by Engrácia and Ferreira in [11], and is relevant for the proof

mining programme. On one hand, the extension with bar recursion enables the analysis of proofs using

stronger non-constructive principles, such as the principle of dependent choices and the principle of full

numerical comprehension. On the other hand, the extension with an abstract type allows proof mining

to go beyond representable spaces and to consider theorems about arbitrary spaces. Needless to say that

the coexistence of both extensions is of practical importance to the proof mining practice in the context

of the bounded functional interpretation.
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Thesis outline

In Chapter 2, we present the bounded functional interpretation. We begin by describing the theory

of arithmetic in all finite types — the base theory for the formal systems interpreted by the bounded

functional interpretation — then we define some of its models, and present the strong majorisability

relation. After this, we present the intensional version of strong majorisability, governed by a rule, and

how this version relates to its extensional counterpart. Having developed the required background, we

define the bounded functional interpretation for classical logic, presenting also its characteristic principles

and the soundness and characterisation theorems.

In Chapter 3, we describe the extension of the bounded functional interpretation with bar recursive

functionals. First, we describe the principle of definition by bar recursion in an informal setting, before

stating the bar recursor axioms. Following this, we check that the model of strongly majorisable func-

tionals is a model for the bar recursor axioms. Then, we present the principle of proof by bar induction —

the principle of proof corresponding to bar recursion — first presenting this principle informally and then

proving that it holds for an extension of the theory of arithmetic in all finite types. With bar induction,

we are afterwards able to prove the principle of dependent choices and the principle of full numerical

comprehension. As an application, we show how the bar recursive functionals enable the interpretation

of second-order arithmetic. Furthermore, we check that having only the simplest bar recursor is sufficient

for the interpretation of the principle of arithmetical comprehension.

In Chapter 4, we consider the extension of the bounded functional interpretation simultaneously with

bar recursive functionals and with an abstract type. We begin by extending the theory of finite-type

arithmetic with an abstract type, and by extending the strong majorisability relation to encompass the

new types. After this, we illustrate the general concept of an abstract type with some concrete examples.

Having laid the necessary foundations, we define the bounded functional interpretation in a version

extended to abstract types, presenting then its characteristic principles and main theorems. Following

the steps of Chapter 3, we augment the interpretation with bar recursion and bar induction. In a similar

way, we prove the principle of dependent choices and numerical comprehension, now in the presence of an

abstract type. We conclude with an application showing that metric spaces are automatically completed

by the bounded functional interpretation.
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Chapter 2

Bounded functional interpretation

An interpretation of a formal system A in a formal system B is a function mapping the formulas of A to

formulas of B in an effective manner. This function is defined in a way that relates the theorems of A

with the theorems of B. The name functional arises from the existence of functionals — functions that

take other functions as arguments — in our theories of interest. In fact, a functional interpretation effects

a trade-off between quantifiers and higher-order functionals.

In this chapter, we describe the bounded functional interpretation — an interpretation of the theory

of arithmetic in all finite types.

• In Section 2.1, we present the theory of finite-type arithmetic, first describing the finite types, and

then the language and axioms of this theory. We define the standard set-theoretic model and the

model of strongly majorisable functionals based on the relation of strong majorisability.

• In Section 2.2, we consider the theory of finite-type arithmetic with intensional majorisability, a

version of strong majorisability partially governed by a rule, and how this relates to extensional

strong majorisability.

• In Section 2.3, we define the bounded functional interpretation and its characteristic principles,

giving several examples of applications of the principle of bounded collection. We also state the

soundness and characterisation theorems.

2.1 Arithmetic in all finite types

The theory of arithmetic in all finite types is a many-sorted theory, with a sort for each finite type.

Types The finite types are defined recursively as follows:

• 0 is a finite type — the ground type,

• if σ and τ are finite types, then σ → τ is a finite type — a higher type.

Intuitively, the ground type 0 represents the type of the natural numbers, and the type σ → τ stands for

the type of total functions from objects of type σ to objects of type τ . We assume that → associates to
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the right, that is, the notation

τ1 → τ2 → · · · → τn stands for τ1 → (τ2 → (· · · → τn) . . . ).

Objects of a type (σ → τ)→ ρ have arguments of type σ → τ and are usually called functionals.

Language The language of finite-type arithmetic has

• variables xτ , yτ , zτ , . . . of each type τ ,

• logical constants

– Πσ,τ of type σ → τ → σ, for all types σ and τ ,

– Σρ,σ,τ of type (ρ→ σ → τ)→ (ρ→ σ)→ ρ→ τ , for all types ρ, σ and τ ,

• arithmetical constants

– 0 of type 0,

– S of type 0→ 0,

– Rτ of type 0→ τ → (τ → 0→ τ)→ τ , for all non-empty tuples of types τ

• a binary predicate symbol =0 between objects of type 0.

The logical constants Π and Σ are called the combinators and they correspond to the K and S combinators

from SKI combinatory logic, see [8]. The combinator Π represents the function (x, y) 7→ x and Σ represents

the function (x, y, z) 7→ x(z, y(z)).

The arithmetical constant 0 represents the first natural number and S represents the successor function

n 7→ n+ 1. The constants Rτ are called the recursors and are used to define functions by recursion, they

represent the function g such that g(0, x, f) = x, and g(n+ 1, x, f) = f(g(n, x, f), n). If τ is a tuple with

more than one element, then Rτ is itself a tuple with the same number of elements called simultaneous

recursor. To simplify the notation, when denoting (possibly empty) tuples of types, variables or terms,

we will not employ any additional symbols — we might write x for the tuple (x1, . . . , xn).

There is only a predicate symbol for equality between objects of type 0, and not for equality between

objects of higher types. This minimal treatment of equality follows [42] and is due to the fact that

functional interpretations are sensitive to the way equality is treated. Indeed, we will see ahead that the

theory of finite-type arithmetic with some added axioms is not compatible with substitution by pointwise

equal functionals for every type — in fact it refutes the axiom of extensionality (see Example 2.8).

Terms The terms of the language of finite-type arithmetic are typed — they are assigned a type. The

terms of type τ are:

• constants of type τ ,

• variables of type τ ,

• terms obtained by functional application — if t is a term of type σ → τ and s is a term of type σ,

then the term t applied to s, denoted by ts, is a term of type τ .
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The variables of a term are the variables that occur in that term. When a term has no variables, we say

that the term is closed. We assume that application associates to the left, i.e., the notation

ts1s2 . . . sn stands for (. . . ((ts1)s2) . . . )sn.

To improve readability, we will often write this as t(s1, s2, . . . , sn) instead. When referring a variable x

that might occur in a term, we write t[x] instead of t(x) to avoid confusion with functional application.

Terms are usually written with the type superscript notation tτ — meaning that t is a term of type

τ — similar to the type superscripts used for variables. When there is no potential ambiguity, we will

omit the type superscript for both variables and terms.

Formulas The atomic formulas are of the form t =0 s with t and s terms of type 0. The formulas are

then defined recursively:

• atomic formulas are formulas,

• if A is a formula, then ¬A is a formula,

• if A and B are formulas, then A ∨B is a formula;

• if A is a formula, then ∀xτ A is a formula, for any variable xτ of type τ .

Since we will be using classical logic (as opposed to intuitionistic logic), the other connectives and the

existential quantifier are taken as abbreviations:

• A ∧B is ¬(¬A ∨ ¬B),

• A→ B is ¬A ∨B,

• ∃xτ A is ¬∀xτ ¬A.

The primitive connectives are chosen to be ¬, ∨ and ∀ because the version of the bounded functional

interpretation relevant for this work is based on the interpretation by Shoenfield in [37, §8.3], which in

turn uses the proof calculus in [37, §2.6] with these primitive connectives. (Any sound and complete

proof calculus could be used in place of this one.)

When writing formulas, some parenthesis can be unambiguously omitted and the connective preced-

ence is taken as (from higher to lower)

1. ¬, ∀ and ∃,

2. ∧ and ∨,

3. → and ↔.

Formulas without the quantifiers ∀ and ∃ are said to be quantifier-free. A formula of the form ∀xA,

with A quantifier-free, is said to be universal. Likewise, ∃xA formulas are said to be existential. In these

schemata, the variable x can be a tuple of variables (x1, . . . , xn) and in that case the quantifier ∀x should

be read as multiple quantifiers ∀x1 . . . ∀xn , and the same applies for ∃x .

The free variables of a formula are defined recursively:

• if A is an atomic formula, all variables occurring in A are free,

• the free variables of ¬A are the free variables of A,
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• the free variables of A ∨B are the free variables of A and the free variables of B,

• the free variables of ∀xA are the free variables of A other than x.

When a variable occurs in a formula but it is not free, we say it is bound. Formulas with no free variables

are said to be sentences. To refer to a free variable x of a formula A we write A(x), however, we also

use the same notation if x does not occur in A — the notation A(x) means that if x occurs in A, then it

must occur free.

The notation we use for substitution is A[t/x] and it represents the formula A with the variable x

being replaced by the term t whenever x occurs free — i.e., not in the scope of a quantifier over x —

oftentimes we use the shorter notation A(t). We say that t is free for x in A when no variables in t

become bound in A[t/x]. To avoid substitutions A[t/x] with t not free for x in A, we assume that the

bound variables of A are renamed so that there are no clashes with the variables of t.

Axioms The theory of Peano arithmetic in all finite types, denoted by PAω (from Peano arithmetic),

is based on classical logic together with axioms that are the universal closures of the following formulas:

• equality axioms

x =0 x

x =0 y ∧A[x/w]→ A[y/w]

where A(w) is an atomic formula,

• successor axioms

Sx 6=0 0

Sx =0 Sy → x =0 y,

• combinator axioms

A[Πxy/w]↔ A[x/w]

A[Σxyz/w]↔ A[xz(yz)/w]

where A(w) is an atomic formula,

• recursor axioms

A[R(0, y, z)/w]↔ A[y/w]

A[R(Sx, y, z)/w]↔ A[z(R(x, y, z), x)/w]

where A(w) is an atomic formula,

• induction schema

A(0) ∧ ∀n0 (A(n)→ A(Sn))→ ∀n0A(n)

where A(n) is an arbitrary formula.

Using these same axioms with intuitionistic logic, we get the theory of Heyting arithmetic in all finite

types and denoted by HAω — the intuitionistic correspondent of PAω.

The equality axioms can be used to prove symmetry and transitivity for =0. Moreover, the equality,

combinator and recursor axioms that are restricted to atomic formulas A(w) can be proven to hold for

arbitrary formulas A(w).

In addition to the primitive equality =0 between objects of type 0, we define equality for higher types

7



as pointwise or extensional equality, that is, given terms t and s of type σ → τ , we define

t =σ→τ s as ∀xσ (tx =τ sx),

assuming that x is not a variable of t or of s. When it is clear from context, we omit the type subscript

for equality — instead of writing =σ→τ we write only =.

Some of the axioms above are equalities in disguise, e.g. the axiom for the combinator Π given by

A[Πxy/w] ↔ A[x/w]. With equality =τ defined for every type, it seems that we opted for an inelegant

axiom instead of Πxy = x. This convoluted way of writing equalities is due to our issues with the axiom

of extensionality

x = y ∧A[x/w]→ A[y/w],

where A(w) is an atomic formula. This axiom can be derived from the instance x = y → zx = zy, when

the language only has the relation symbol =0. In Example 2.8, we see that PAω with some additional

axioms proves the negation of the axiom of extensionality.

An interesting alternative is to have equality — logical equality — for each type, instead of having only

primitive equality for type 0. By logical equality, we mean that equality would be governed by axioms

similar to the equality axioms above, instead of being defined as extensional or pointwise equality. This

variant is known in the literature as the neutral theory N-PAω, see [41, §1.6.3–§1.6.7] and [2]. The

reason we do not use this variant is historical: the first functional interpretation, Gödel’s dialectica

interpretation [21], requires that quantifier-free formulas A(x) have a characteristic term t(x), in the

sense that A(x) ↔ t(x) = 0. Such terms can be proven to exist in PAω, but not in N-PAω, where there

is no characteristic term for the formula f =0→0 g, for instance. The bounded functional interpretation,

inspired by the dialectica interpretation, was thus introduced in [19] using only =0 as primitive, even

though the existence of characteristic terms seems to be no longer necessary for the former interpretation.

Combinatorial completeness The combinators provide the theory PAω with combinatorial complete-

ness — for each term t and variable x, we can construct a term λx.t whose variables are those of t other

than x and such that PAω proves

A[(λx.t)s/w]↔ A[t[s/x]/w],

for any formula A and term s.

With the recursor R0, we can construct a closed term for each primitive recursive function. Therefore,

the usual first-order Peano arithmetic PA can be seen as a subsystem of PAω. Moreover, using the recursors

Rτ for higher types, we can construct closed terms in PAω for functions that are not primitive recursive,

e.g. the Ackermann function. Since the theory PAω is based on the theory T introduced by Gödel in [21],

the functionals defined by closed terms of PAω are called Gödel primitive recursive functionals of finite

type. At the type 0 → 0, the Gödel primitive recursive functionals coincide with the provably recursive

functions of PA — the functions f for which there is a formula A(x, y) such that f(x) = y if and only if

A(x, y) and PA proves ∀x∃!y A(x, y), where ∃!y abbreviates existence of a unique y — see [28, §3.3] for

more details.
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Order The usual order relation between objects of type 0 can be defined using primitive recursive

functions:

• the predecessor function P , satisfying P (0) = 0 and P (Sx) = x,

• and cut-off subtraction �, satisfying x� 0 = x and x� Sy = P (x� y).

We then define x ≤0 y to be x� y = 0, and, for higher types, we define ≤σ→τ as pointwise inequality —

in other words, given terms t and s of type σ → τ , we define

t ≤σ→τ s as ∀xσ (tx ≤τ sx),

assuming that x is not a variable of t or of s. The maximum operator can also be defined: for the

base type we define max0 as λx0, y0.[x+ (y � x)], and, for higher types, we define maxσ→τ as pointwise

maximum, i.e., we write

maxσ→τ to mean λtσ→τ , sσ→τ , xσ.maxτ (tx, sx).

As with equality, we remove the type subscripts and write only ≤ and max when the types can be inferred

from context. The maximum of a finite set of objects can be defined using the binary maximum operator

— given a term t of type 0→ τ , we define the term max{ti | i ≤ ·} recursively by

• max{ti | i ≤ 0} is t(0),

• max{ti | i ≤ Sx} is max(t(Sx),max{ti | i ≤ x}).

Standard model The full set-theoretic model, denoted by S ω, is the standard model for finite-type

arithmetic. The type structure S ω is defined recursively as

• S0 = N,

• Sσ→τ = SSστ , for all types σ and τ .

Over this type structure, we consider natural interpretations for the function symbols of the language

of finite arithmetic — 0 is interpreted as 0 ∈ N, the symbol S is interpreted as the successor function

n 7→ n+ 1, et cetera. Not only is S ω a model of PAω, it is also a model of the axiom of extensionality.

Majorisability The strong majorisability relation defined by Bezem in [3] is a variation of the hered-

itary majorisability relation of Howard [23]. We define the strong majorisability relation, written as ≤∗τ ,

and define sets Mτ simultaneously by recursion on the type τ :

• n ≤∗0 m is simply n ≤ m and we define M0 = N,

• x ≤∗σ→τ y holds when x, y ∈MMσ
τ and

∀u, v ∈Mσ (u ≤∗σ v → xu ≤∗τ yv ∧ yu ≤∗τ yv),

and we define Mσ→τ = {x ∈MMσ
τ | x ≤∗ x∗, for some x∗ ∈MMσ

τ }, for all types σ and τ .

Intuitively, having x ≤∗ y means that y is an upper bound for x, and that y is monotone. Indeed, if

x ≤∗ x, then we say that x is monotone with respect to the relation ≤∗, in the sense that if u ≤∗ v,
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then xu ≤∗ xv. This entails that ≤∗ is not reflexive, since there are objects that are not monotone — for

example, the function f : N→ N such that

f(n) =

1 if n = 0

0 if n > 0,

is not monotone, hence it is not the case that f ≤∗ f . However, there are some objects for which ≤∗

is reflexive: if we have x ≤∗ y, then y ≤∗ y. Furthermore, the relation ≤∗ is transitive: when we have

x ≤∗ y and y ≤∗ z, it follows that x ≤∗ z.

The model of strongly majorisable functionals, denoted by M ω, contains functionals that can be

strongly majorised, the type structure for M ω being defined with the sets Mτ defined above. This type

structure is closed under function application — if f ∈Mσ→τ and x ∈Mσ, then f(x) ∈Mτ .

With natural interpretations for the function symbols of the language of PAω, it is possible to find

strong majorants for these function symbols, and hence we conclude that M ω is a model of PAω (it is

also a model of the axiom of extensionality). For a proof, see [28, Proposition 3.69].

The models S ω and M ω are different — there are functionals that cannot be strongly majorised.

For type 0 → 0, we still have equality M0→0 = S0→0 = NN, since any function f : N → N is strongly

majorised by fM (n) = maxk<n f(k). However, for type (0 → 0) → 0, we have M(0→0)→0 6= S(0→0)→0.

In fact, consider the following example from [13, §2.4]: let Σ: (N→ N)→ N be such that

Σ(f) =

n if n is the least k such that f(k) 6= 0

0 if f(k) = 0, for all k.

We claim that there is no Ψ: (N → N) → N such that Σ ≤∗ Ψ. If this was the case, then, in particular,

for every f : N → N such that f ≤∗ 10→0, we would have Σ(f) ≤ Ψ(10→0), where 10→0 is the constant

function with value 1 — this is, if f(k) ≤ 1 for every k, then the least k for which f(k) 6= 0 would be at

most Ψ(10→0). This is a contradiction: define a function f such that

f(k) =

1 if k = Ψ(10→0) + 1

0 otherwise.

Then f ≤∗ 10→0, but Σ(f) = Ψ(10→0) + 1 � Ψ(10→0). Thus Ψ /∈M(0→0)→0.

Other models of PAω include the term model, see [34] and [40], and the model of sequentially con-

tinuous functionals, see [36].

2.2 Intensional majorisability

The strong majorisability relation is a key component of the bounded functional interpretation. The

definition in the previous section can be used to define strong majorisability within finite-type arithmetic

— that is, we define recursively the symbols ≤∗ within PAω as

• t ≤∗0 s is defined as t ≤0 s,
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• t ≤∗σ→τ s is defined as

∀uσ, vσ (u ≤∗σ v → tu ≤∗τ sv ∧ su ≤∗τ sv),

for all types σ and τ , assuming that u and v are not variables of t or of s.

This definition we call extensional strong majorisability.

There is a different definition — of intensional strong majorisability — which is relevant for the

bounded functional interpretation. The intensional approach consists of adding an inference rule for

strong majorisability which is used to tackle the issue of quantifier complexity. In the next section, it will

become clear that the bounded functional interpretation is more compatible with universal axioms (see

Theorem 2.11). Extensional strong majorisability is governed by axioms of the form

t ≤∗ s↔ ∀u, v (u ≤∗ v → tu ≤∗ sv ∧ su ≤∗ sv).

The problem is that these axioms are not universal. In particular, the axiom

∀u, v (u ≤∗ v → tu ≤∗ sv ∧ su ≤∗ sv)→ t ≤∗ s

is not universal, since its prenex form is

∃u, v
(
(u ≤∗ v → tu ≤∗ sv ∧ su ≤∗ sv)→ t ≤∗ s

)
.

Apropos, this is also the reason why extensional equality is problematic in our setting: we would have

to include an axiom of the form ∀x (tx = sx)→ t = s, which has prenex form ∃x (tx = sx→ t = s).

The intensional version of strong majorisability involves adding to the language of finite-type arith-

metic, for each type τ , a binary relation symbol Eτ between objects of type τ . The symbol Eτ is meant

to represent the strong majorisability relation ≤∗τ . As before, we omit the type subscript and write only

E whenever no ambiguity arises.

The atomic formulas then include also formulas of the form t Eτ s. In addition to the usual quantifiers,

there are also bounded quantifiers:

• if A is a formula, and the variable x does not occur in the term t, then ∀x Eτ t A is a formula.

As before, we define the bounded existential quantifier as an abbreviation:

• ∃x Eτ t A is ¬∀x Eτ t ¬A.

A formula whose quantifiers are all bounded is said to be a bounded formula. If Abd is a bounded formula,

then formulas of the form ∀xAbd are said to be universal bounded and formulas of the form ∃xAbd are

said to be existential bounded. In these definitions, we allow x to be a tuple of variables.

The theory of Peano arithmetic in all finite types with intensional majorisability, denoted by PAωE, is

based on PAω with its axioms now applying to the formulas of the extended language, in addition to the

universal closures of:

• bounded quantifier axioms

∀x Eτ t A↔ ∀x (x Eτ t→ A)
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[∃x Eτ t A↔ ∃x (x Eτ t ∧A), a consequence of the abbreviation ∃x Eτ t A]

where A is an arbitrary formula, the variable x does not occur in the term t, and τ is any type,

• strong majorisability axioms

x E0 y ↔ x ≤0 y

x Eσ→τ y → ∀uσ, vσ (u Eσ v → xu Eτ yv ∧ yu Eτ yv)

for all types σ and τ ,

and the strong majorisability rule

Abd ∧ u Eσ v → tu Eτ sv ∧ su Eτ sv
Abd → t Eσ→τ s

where Abd is a bounded formula, and u and v do not occur free in Abd, in t or in s.

The strong majorisability rule is the fundamental difference between extensional and intensional ma-

jorisability. This rule avoids having to introduce the extensional axiom that was not universal. In essence,

it deactivates the computational content of the strong majorisability relation. At the same time, the in-

tensional theory PAωE does not enjoy a deduction theorem precisely because of the added rule, see [19,

Proposition 8].

The intensional theory PAωE can prove the aforementioned properties of strong majorisability:

• x E y → y E y,

• x E y ∧ y E z → x E z.

For a proof, see [19, Lemma 2].

Flattening The process of translating formulas of the intensional theory PAωE into formulas of the

extensional theory PAω with the defined strong majorisability relation ≤∗ is called flattening. Given a

formula A of PAωE, its flattening, denoted by A∗, is the formula of PAω obtained from A by replacing the

relation symbols Eτ with≤∗τ , and the occurrences of bounded quantifiers ∀x Eτ t A with ∀x (x ≤∗τ t→ A).

If the theory PAωE proves A, then the theory PAω proves its flattening A∗. Indeed, all applications of

the rule of strong majorisability can be replaced using the defining axiom

t ≤∗ s↔ ∀u, v (u ≤∗ v → tu ≤∗ sv ∧ su ≤∗ sv).

For example, by flattening it follows that the theory PAω proves

• x ≤∗ y → y ≤∗ y,

• x ≤∗ y ∧ y ≤∗ z → x ≤∗ z,

since the intensional theory proves the corresponding theorems for E.

2.3 Bounded functional interpretation

The original functional interpretation — Gödel’s dialectica interpretation [21] — interpreted Peano arith-

metic in two steps: first a negative translation of classical Peano arithmetic into intuitionistic Heyting
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arithmetic, and then the interpretation itself mapped Heyting arithmetic into theory T, which is essen-

tially the quantifier-free fragment of PAω. A posteriori, Shoenfield defines an interpretation of Peano

arithmetic with a single step in [37, §8.3]. Both interpretations hinge on a mapping of formulas into a

∀∃-form and on providing precise witnessing terms for existential theorems. The aim of Gödel with this

interpretation was to prove the consistency of Peano arithmetic via a syntactic argument, relative to the

consistency of the quantifier-free theory T.

The bounded functional interpretation of Ferreira and Oliva provides an interpretation of finite-type

Peano arithmetic (with intensional majorisability) into itself. When it was first introduced in [19], the

bounded functional interpretation of PAωE was also defined in two steps: first using a negative translation

by Kuroda [33], followed by the interpretation itself. Later, Ferreira [12] defines an interpretation in the

style of Shoenfield, with a single step. Again, both interpretations are based on a mapping of formulas

into a ∀∃-form, but now the focus is on obtaining bounds for witnesses of existential theorems in lieu of

the witnesses themselves.

Using a majorisability relation enables the shift of focus from precise witnesses to bounds for witnesses.

This seemingly innocuous change broadens the applicability of functional interpretations to proofs using

stronger proof-theoretical principles. It can be the case that non-computable objects, whose existence

is proven using ineffective principles, can be bounded by a computable object, as long as the existence

claim has the right logical form — essentially the form ∀x ∃y Abd(x, y), where Abd(x, y) is a bounded

formula. The example used in [19] is weak König’s lemma — the claim that every infinite binary tree

has an infinite path — this is ineffective since there are (infinite) recursive binary trees with no infinite

recursive path. An example of a tree with this property is known as the Kleene binary tree, introduced

in [25]. The infinite path is given by its characteristic function, and the bound is simply the constant

function with value 1. In the context of reverse mathematics, weak König’s lemma is equivalent, in terms

of proof-theoretic strength, to well-known ineffective principles from analysis such as

• the Heine-Borel covering lemma: every covering of the closed interval [0, 1] by a sequence of open

intervals has a finite subcovering,

• the maximum principle: every continuous real-valued function on [0, 1] attains a (finite) supremum.

Other principles with the same strength as weak König’s lemma are listed in [38, Theorem I.10.3]. It can

also be seen that weak König’s lemma is an instance of the contrapositive of the principle of bounded

collection bC, a characteristic principle of the bounded functional interpretation (see Example 2.3).

In this section, we present the bounded functional interpretation directly for classical logic, employing

the Shoenfield-like interpretation presented in [12].

An object x is monotone whenever x strongly majorises itself. We define an abbreviation for quantifiers

ranging over monotone objects, called monotone quantifiers:

• ∀̃xA is an abbreviation for ∀x (x E x→ A),

• ∃̃xA is an abbreviation for ∃x (x E x ∧A),

• ∀̃x E t A is an abbreviation for ∀x E t (x E x→ A),

• ∃̃x E t A is an abbreviation for ∃x E t (x E x ∧A).
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Monotone quantifiers ∀̃xA are not bounded quantifiers ∀x E t A — in a bounded quantifier, t is a term

in which the variable x does not occur.

Definition 2.1 (Bounded functional interpretation). To each formula A of the language of PAωE we assign

a formula AU , called the bounded functional interpretation of A, which is of the form

∀̃x ∃̃y AU (x, y),

with AU (x, y) a bounded formula, and x and y are (possibly empty) tuples of variables. The formulas

AU and AU are defined recursively as follows:

• if A is an atomic formula, then AU and AU are simply A.

For the remaining cases, let the interpretation of A be ∀̃x ∃̃y AU (x, y) and the interpretation of B be

∀̃u ∃̃v BU (u, v). Then:

• (¬A)U is ∀̃f ∃̃x ∃̃x′ E x ¬AU (x′, fx′),

• (A ∨B)U is ∀̃x, u ∃̃y, v (AU (x, y) ∨BU (u, v)),

• (∀z A)U is ∀̃w, x ∃̃y ∀z E w AU (x, y),

• (∀z E t A)U is ∀̃x ∃̃y ∀z E t AU (x, y).

The formula inside the unbounded ∀̃ ∃̃ quantifiers of AU is defined to be AU , that is:

• (¬A)U is ∃̃x′ E x ¬AU (x′, fx′),

• (A ∨B)U is AU (x, y) ∨BU (u, v),

• (∀z A)U is ∀z E w AU (x, y),

• (∀z E t A)U is ∀z E t AU (x, y).

The interpretations for the defined connectives ∧, →, and ∃ can be computed using their abbreviations.

Bounded formulas are left unchanged by the interpretation — if A is a bounded formula, then both

AU and AU coincide with A. The clause for negation is the only one responsible for the increase in type

complexity. Indeed, when AU is ∀̃xσ ∃̃yτ AU (x, y), then (¬A)U has a universally quantified variable f of

type σ → τ . The motivation behind the definition of (¬A)U pertains to the axiom of choice, which can

be written in the form

∀x∃y A(x, y)↔ ∃f ∀x A(x, fx),

where the implication from left to right is what is usually called the axiom of choice. Taking A(x, y) as

AU (x, y), the negative form of the above is

¬∀x∃y AU (x, y)↔ ∀f ∃x ¬AU (x, fx).

Using this argument we would get ¬(AU )↔ ∀f ∃x ¬AU (x, fx), and the right-hand side of the equivalence

is similar to the definition of (¬A)U . The difference is that the clause for negation has monotone quantifiers

and includes the bounded quantifier ∃̃x′ E x so that any bound on an existential witness of AU is itself

an existential witness. In other words, the formula AU (x, y) is upward monotone in y.
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Lemma 2.2 (Monotonicity). For any formula A of the language of PAωE, we have

PAωE ` ∀x ∀y ∀y′ E y (AU (x, y′)→ AU (x, y)).

Characteristic principles There are three principles that play an important role in the bounded

functional interpretation, and in a sense characterise the mapping A 7→ AU (see Theorem 2.14):

• the monotone bounded choice principle, denoted by mAC, is

∀̃x ∃̃y Abd(x, y)→ ∃̃f ∀̃x ∃̃y E fx Abd(x, y),

where Abd(x, y) is a bounded formula where f does not occur free, and x and y are tuples of variables

of any type,

• the bounded collection principle, denoted by bC, is

∀x E a ∃y Abd(x, y)→ ∃̃b ∀x E a ∃y E b Abd(x, y),

where Abd(x, y) is a bounded formula where b does not occur free, and x and y are tuples of variables

of any type,

• the majorisability principle, denoted by MAJ, is

∀x ∃y (x E y),

where x is a variable of any type.

The monotone bounded choice principle is similar to the usual axiom of choice, but, instead of provid-

ing a choice function, it states the existence of a function that finds bounds for existential witnesses.

The bounded collection principle in the form presented above can also be used to get a bound for

existential witnesses. Moreover, its contrapositive form

∀̃b ∃x E a ∀y E b Abd(x, y)→ ∃x E a ∀y Abd(x, y)

can be used to prove the existence of an object x E a satisfying the global property ∀y Abd(x, y) from

the weaker hypothesis that, for each bound b, there exist objects xb E a satisfying the local property

∀y E bAbd(xb, y). The global object x is said to work uniformly for each bound b. This method can be

used to prove weak König’s lemma in PAωE + bC. The following example is from [12, §7].

Example 2.3. Weak König’s lemma is the claim that every infinite binary tree has an infinite path.

In PAωE, a tree is represented by a characteristic function T that, given a code s for a finite sequence,

evaluates to T (s) = 0 if that finite sequence is in the tree, and to T (s) = 1 otherwise. Weak König’s

lemma corresponds to the formula

∀T E 10→0
(
Tree∞(T )→ ∃x E 10→0 ∀k0 T (x|k) = 0

)
,

where 10→0 is the constant function with value 1, the symbol x|k denotes the code of the sequence

〈x(0), . . . , x(k − 1)〉, and Tree∞ is an abbreviation for the conjunction of
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• ∀r0, s0
(
T (s) = 0 ∧ r � s→ T (r) = 0

)
(tree)

• ∀s0
(
T (s) = 0→ Seq2(s)

)
(binary)

• ∀n0 ∃s0
(
T (s) = 0 ∧ |s| = n

)
(infinite)

where r � s means that the sequence encoded by r is an initial segment of the sequence encoded by s,

the predicate Seq2(s) says that s is the code of a binary sequence, and |s| is the length of the sequence

encoded by s.

The theory PAωE + bC proves weak König’s lemma. Indeed, let T E 10→0 and assume Tree∞(T ). By

the infinity property, for all n there is a code s for a sequence 〈s(0), . . . , s(n− 1)〉 of length n satisfying

T (s) = 0. Define a functional x as

x(k) =

s(k) if k < n

0 otherwise.

By the binary property, the sequence 〈s(0), . . . , s(n− 1)〉 is binary, hence x E 10→0. Furthermore, by the

tree property, we get T (x|k) = 0 for all k ≤ n. We conclude

∀n0 ∃x E 10→0 ∀k ≤ n T (x|k) = 0.

Using the contrapositive of bC, it follows that

∃x E 10→0 ∀k0 T (x|k) = 0.

This concludes the proof of weak König’s lemma.

The contrapositive of the bounded collection principle bC can also be used to prove a principle of

numerical comprehension for bounded formulas. The following argument is new, as far as we know, and

was discovered in a meeting with Fernando Ferreira, whom we thank for the insight.

Example 2.4. The principle of numerical comprehension for bounded formulas, denoted by CA0
bd, is

∃f0→0 ∀n0 (f(n) = 0↔ Abd(n)),

where Abd(n) is a bounded formula where f does not occur free. As f is a characteristic function, we

only need f E 10→0, where 10→0 is the constant function with value 1.

To prove this principle using bounded collection bC, we first prove

∀a0 ∃f E 10→0 ∀n ≤ a (f(n) = 0↔ Abd(n)),

by induction on a. The base case is ∃f0→0 (f(0) = 0 ↔ Abd(0)). In the case that Abd(0) holds, take

f = λk0.0. Otherwise, take f = λk0.1.

For the step case, we need a function f E 10→0 such that

∀n ≤ a+ 1 (f(n) = 0↔ Abd(n)),

assuming that there is a function g E 10→0 such that ∀n ≤ a (g(n) = 0 ↔ Abd(n)). In the case that

Abd(a + 1) holds, define f taking the same values as g except f(a + 1) = 0. In the other case, define
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f(a+ 1) = 1 instead.

Having proven ∀a0 ∃f E 10→0 ∀n ≤ a (f(n) = 0↔ Abd(n)), we apply bounded collection to get

∃f E 10→0 ∀n0 (f(n) = 0↔ Abd(n)).

Furthermore, applying the principle of bounded collection bC again, we can prove numerical compre-

hension for recursive formulas (the reason for the name recursive formula can be found in §3.4).

Example 2.5. The principle of numerical comprehension for recursive formulas, denoted by CA0
∆, is

∀n0 (∃x0Abd(n, x)↔ ∀x0Bbd(n, x))→ ∃f0→0 ∀n0 (f(n) = 0↔ ∃x0Abd(n, x)),

where Abd(n, x) and Bbd(n, x) are bounded formulas where f does not occur free. As in the previous

example, it suffices to have f E 10→0, where 10→0 is the constant function with value 1.

This argument is based on the proof of [16, Proposition 18]. Assume ∀n0 (∃x0Abd(n, x)↔ ∀x0Bbd(n, x)).

We claim that

∀a0, b0 ∃f E 10→0 ∀n ≤ a ∀x ≤ b
(
(Abd(n, x)→ f(n) = 0) ∧ (f(n) = 0→ Bbd(n, x))

)
.

(The bound n ≤ a is not necessary for the proof, but we write the claim in this form to apply bC)

Indeed, by the principle CA0
bd from Example 2.4, get a function f such that f(n) = 0↔ ∃x ≤ b Abd(n, x).

Now, let n ≤ a and x ≤ b. We only need to check that if f(n) = 0, then Bbd(n, x). In fact, if f(n) = 0,

then ∃xAbd(n, x), and, by hypothesis, we get ∀xBbd(n, x). This proves the claim.

Using the contrapositive of bC on the previous claim, we get

∃f E 10→0 ∀n0, x0
(
(Abd(n, x)→ f(n) = 0) ∧ (f(n) = 0→ Bbd(n, x))

)
,

that is,

∃f E 10→0 ∀n0
(
(∃x0Abd(n, x)→ f(n) = 0) ∧ (f(n) = 0→ ∀x0Bbd(n, x))

)
,

and, by hypothesis, we conclude ∀n0 (f(n) = 0↔ ∃x0Abd(n, x)).

The majorisability principle MAJ is a generalisation of the following result.

Theorem 2.6 (Howard). For any closed term t of the language of PAωE, there is a closed term s such

that PAωE proves t E s.

The proof due to Howard in [23] in a different context still applies to the intensional theory PAωE. As

this theorem only applies to closed terms, it cannot be used to prove MAJ in PAωE — in fact, the theory

PAωE cannot prove MAJ, as the full set-theoretic model S ω contains functionals that cannot be strongly

majorised.

There is an additional principle that can be used in place of monotone bounded choice — the bounded

choice principle, denoted by bAC,

∀x ∃y Abd(x, y)→ ∃̃f ∀̃a ∀x E a ∃y E fa Abd(x, y),

where Abd(x, y) is a bounded formula where f does not occur free, and x and y are tuples of variables of any
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type. The following result shows that monotone bounded choice and bounded choice are interchangeable.

Proposition 2.7. The theory PAωE + bC proves mAC↔ bAC.

Proof. To prove mAC → bAC, assume ∀x∃y Abd(x, y). Then, it follows that ∀̃a∀x E a ∃y Abd(x, y). By

bounded collection, we get

∀̃a ∃̃b ∀x E a ∃y E b Abd(x, y).

Now use mAC to get

∀̃f ∀̃a ∃̃b E fa ∀x E a ∃y E b Abd(x, y).

By transitivity of E, we get ∃̃f ∀̃a ∀x E a ∃y E faAbd(x, y), the consequent of bAC.

To prove bAC → mAC, assume ∀̃x ∃̃y Abd(x, y), i.e., ∀x∃y (x E x → y E y ∧ Abd(x, y)). Using bAC,

we get

∃̃f ∀̃a ∀x E a ∃y E fa (x E x→ y E y ∧Abd(x, y)),

that is,

∃̃f ∀̃a ∀̃x E a ∃̃y E fa Abd(x, y).

As a is monotone, we can take x = a, yielding ∃̃f ∀̃a ∃̃y E faAbd(a, y), the consequent of mAC.

The theory PAωE with the characteristic principles clashes with usual set-theoretic notions. This

phenomenon is already apparent at the level of the axiom of extensionality. The problem stems from the

uniformities introduced by the principle of bounded collection bC. In fact, consider the following example

from [12].

Example 2.8. The theory PAωE + bC proves the negation of

∀Ψ(0→0)→0 ∀f0→0, g0→0 (f = g → Ψf = Ψg).

We argue by contradiction. For type 0→ 0, the formula f = g is an abbreviation for ∀k (fk = gk), so if

the above was true we would have, in particular,

∀Ψ E 1(0→0)→0 ∀f, g E 10→0
(
∀k (fk = gk)→ Ψf = Ψg

)
,

where 10→0 and 1(0→0)→0 are terms representing the constant function with value 1. This is equivalent

to having

∀Ψ E 1(0→0)→0 ∀f, g E 10→0 ∃k (fk = gk → Ψf = Ψg),

and, using the principle of bounded collection bC, we would get

∃n ∀Ψ E 1(0→0)→0 ∀f, g E 10→0 ∃k ≤ n (fk = gk → Ψf = Ψg),

that is,

∃n ∀Ψ E 1(0→0)→0 ∀f, g E 10→0
(
∀k ≤ n (fk = gk)→ Ψf = Ψg

)
.
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Take such an n and define Ψ such that

Ψ(h) =

0 if h(n+ 1) = 0

1 otherwise.

Define also functions f(k) = 0 for all k, and

g(k) =

1 if k = n+ 1

0 otherwise.

Then we have Ψ E 1(0→0)→0, f, g E 10→0 and ∀k ≤ n (fk = gk), but Ψf = 0 and Ψg = 1, a contradiction.

From this example, we conclude that the full set-theoretic model S ω and the model of strongly

majorisable functionals M ω are not models of bC. Furthermore, the following example (also from [12])

shows that the flattening of bC is contradictory in the theory PAω.

Example 2.9. The theory PAω + bC∗, where bC∗ is the flattening of bC, is inconsistent. First, observe

that the theory PAω proves

∀f ≤∗ 10→0 (¬f ≤∗ 00→0 → ∃k (fk 6= 0)),

where 10→0 represents the constant function with value 1, and 00→0 represents the constant function

with value 0. The proof of the same statement with intensional majorisability E cannot be carried out

in PAωE, since we are using the contrapositive of the axiom

∀u, v (u ≤∗ v → xu ≤∗ yv ∧ yu ≤∗ yv)→ x ≤∗ y,

and PAωE only has the corresponding rule.

Now, having ∀f ≤∗ 10→0 ∃k (¬f ≤∗ 00→0 → fk 6= 0), we can use the flattening of bounded collection

bC∗ to conclude

∃n ∀f ≤∗ 10→0 ∃k ≤ n (¬f ≤∗ 00→0 → fk 6= 0),

that is,

∃n ∀f ≤∗ 10→0 (∃k (fk 6= 0)→ ∃k ≤ n (fk 6= 0)).

But this is refuted by the function f ≤∗ 10→0 such that

f(k) =

1 if k = n+ 1

0 otherwise.

Soundness At first sight, it is not clear whether the theory PAωE plus the characteristic principles is

consistent. As a matter of fact, the previous examples cast doubt on the consistency of this theory.

However, the following theorem proves the consistency of the theory extended with the characteristic

principles relative to the consistency of finite-type Peano arithmetic.
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Theorem 2.10 (Soundness). Let A(z) be a formula of the language of PAωE with free variables z. If

PAωE + mAC + bC + MAJ ` A(z),

then there are closed monotone terms t such that

PAωE ` ∀̃w ∀z E w ∀̃x A(z)U (x, twx).

Moreover, the terms t can be computed in an effective manner from such a proof of A(z).

The consistency result comes from taking A to be the formula 0 = 1. It would then follow that if

PAωE + mAC + bC + MAJ is inconsistent, then PAωE is inconsistent as well.

The terms t in the theorem above are called bounding terms. We could also write the conclusion of

the theorem in the form

PAωE ` ∀̃w ∀z E w ∀̃x ∃̃y E twx A(z)U (x, y),

which is equivalent to the one above, by the monotonicity lemma (Lemma 2.2). The soundness theorem

is proven by induction on the proof of A(z), and detailed proofs can be found in [12, Theorem 2] for the

classical setting and in [19, Theorem 1] for the intuitionistic setting.

The bounded functional interpretation can be easily extended with universal bounded sentences. In

fact, consider adding a principle that is a sentence of the form ∀aAbd(a), with Abd(a) a bounded formula.

Its interpretation (∀aAbd(a))U is ∀̃b∀a E bAbd(a) and does not have variables quantified by ∃̃. Thus the

tuple of witnessing monotone terms provided by the soundness theorem is the empty tuple. Adding the

principle ∀aAbd(a) to PAωE we get our desideratum

PAωE + ∀a Abd(a) ` ∀̃b ∀a E b Abd(a),

as ∀aAbd(a) has no free variables and hence z is the empty tuple.

Theorem 2.11 (Soundness extended with univeral bounded sentences). Let A(z) be a formula of the

language of PAωE with free variables z, and ∆ be a set of universal bounded sentences. If

PAωE + mAC + bC + MAJ + ∆ ` A(z),

then there are closed monotone terms t, effectively obtainable from a proof of A(z), such that

PAωE + ∆ ` ∀̃w ∀z E w ∀̃x A(z)U (x, twx).

The soundness theorem can be used to extract bounding terms for witnesses of ∀∃ -formulas. Such

bounds are usually what is sought in a proof mining application.

Corollary 2.12 (Extraction). Let Abd(x, y) be a bounded formula with free variables x and y. If

PAωE + mAC + bC + MAJ ` ∀x ∃y Abd(x, y),

then there are closed monotone terms t, effectively obtainable from a proof of ∀x ∃y Abd(x, y), such that

PAωE ` ∀̃w ∀x E w ∃y E tw Abd(x, y).
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Proof. The result follows by applying the soundness theorem to the formula ∀x∃y Abd(x, y). First, we

have to compute the interpretation of ∀x¬∀y ¬Abd(x, y):

(¬Abd(x, y))U is ¬Abd(x, y)

(∀y ¬Abd(x, y))U is ∀̃a ∀y E a ¬Abd(x, y)

(¬∀y ¬Abd(x, y))U is ∃̃a ∃a′ E a ¬∀y E a′ ¬Abd(x, y)

(∀x¬∀y ¬Abd(x, y))U is ∀̃b ∃̃a ∀x E b ∃a′ E a ¬∀y E a′ ¬Abd(x, y),

which can be simplified to ∀̃b ∃̃a ∀x E b ∃a′ E a ∃y E a′ Abd(x, y). By the soundness theorem (The-

orem 2.10), there is a term t such that

PAωE ` ∀̃b ∀x E b ∃a′ E tb ∃y E a′ Abd(x, y),

and by transitivity of E we conclude PAωE ` ∀̃b∀x E b∃y E tb Abd(x, y).

A consequence of the soundness theorem is that the theory PAωE + mAC + bC + MAJ is conservative

over PAωE + MAJ with respect to ∀∃ -formulas.

Corollary 2.13 (Conservation). Let Abd(x, y) be a bounded formula with free variables x and y. If

PAωE + mAC + bC + MAJ ` ∀x ∃y Abd(x, y),

then PAωE ` ∀̃w ∀x E w ∃y Abd(x, y). Moreover, we get

PAωE + MAJ ` ∀x ∃y Abd(x, y).

Characterisation The characteristic principles characterise the bounded functional interpretation in

the following sense.

Theorem 2.14 (Characterisation). Let A be a formula of the language of PAωE. We have

PAωE + mAC + bC + MAJ ` A↔ AU .

The proof of this result can be done by induction on the formula A, for a proof in the classical case

see [12, Theorem 3], and for the intuitionistic case see [19, Theorem 3].

The characterisation theorem confirms that the characteristic principles are only mAC, bC, and MAJ.

Indeed, assume there is an extra principle P which we could join to PAωE in addition to the existing

characteristic principles and still have a result similar to the soundness theorem. Then there would

exist a closed monotone term t such that PAωE ` ∀̃x PU (x, tx). Hence we would have PAωE ` PU . By

the characterisation theorem, we would conclude that PAωE + mAC + bC + MAJ ` P , thus P would be

superfluous, since it would be a consequence of the existent principles.

The characterisation theorem can also be used to provide a simpler interpretation for the conjunction

A ∧ B. Using our definition, the interpretation of A ∧ B would be computed as (¬(¬A ∨ ¬B))U and

becomes rather intricate and puzzling. Nevertheless, thanks to the characterisation theorem, within the

theory PAωE + mAC + bC + MAJ, the interpretation (A ∧ B)U is equivalent to A ∧ B, which in turn
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is equivalent to AU ∧ BU . If AU is ∀̃x ∃̃y AU (x, y) and BU is ∀̃u ∃̃v BU (u, v), then it follows that the

interpretation of A ∧B is equivalent to

∀̃x, u ∃̃y, v (AU (x, y) ∧BU (u, v)).

If our language had the symbol ∧ as primitive, then we could use the above to define (A ∧B)U and the

soundness theorem would still hold.
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Chapter 3

Bar recursion

The principle of bar recursion is a principle of definition introduced by Spector [39] in an extension to

the dialectica interpretation of Gödel. This extension can be used to prove the consistency of analysis,

that is, of second-order arithmetic PA2. To this principle of definition corresponds a principle of proof

named bar induction. Bar recursion is to bar induction as ordinary recursion is to ordinary induction.

In this chapter, we present an extension of the bounded functional interpretation with bar recursive

functionals and prove that this extension enables the interpretation of proofs using the principle of

numerical comprehension.

• In Section 3.1, we describe the principle of definition by bar recursion, first in an informal setting

and then in the context of finite-type arithmetic.

• In Section 3.2, we verify that the model of strongly majorisable functionals allows definitions by

bar recursion, unlike the standard set-theoretic model.

• In Section 3.3, we introduce the axiom of bar induction, beginning with a definition in the meta-

context. Afterwards, we present the principle of bar induction within finite-type arithmetic and

prove that it holds in a relevant extension of this theory.

• In Section 3.4, we use bar induction to prove the principle of dependent choices and the principle of

full numerical comprehension. These principles are then used to provide an interpretation of some

subsystems of second-order arithmetic, the stronger subsystems requiring more bar recursors.

3.1 Bar recursion

In what follows, we will see that bar recursion is just a disguise for transfinite recursion on a well-

founded tree. We begin by presenting bar recursion informally before adding it to the theory of finite-

type Peano arithmetic. First, we need to establish some notation. By S∗ we mean the set of finite

sequences of elements of a set S, including the empty sequence 〈〉. Finite sequences are written as

s = 〈s(0), s(1), . . . , s(k)〉, with their elements referred to as s(i). Given s ∈ S∗, we define |s| as the length

of s and, if i ≤ |s|, then s|i denotes the truncation of s to its first i elements. For an infinite sequence

x ∈ SN, we also use the notation x|i with the same meaning. The symbol ∗ is used for concatenation in
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S∗. For our current purposes, we need a designated zero element 0 ∈ S, and, when s ∈ S∗, we write s

for the infinite sequence resulting from s by appending zeros, i.e.

s(i) =

s(i) if i < |s|

0 otherwise.

Definition 3.1 (Bar recursion). To define a function S∗ → T by bar recursion, we require

• Y : SN → N, a condition function,

• F : S∗ → T , a base function,

• G : S∗ × TS → T , a step function.

We say that a function B : S∗ → T is defined by bar recursion on Y , F and G when

B(s) =

F (s) if ∃i ≤ |s|
(
Y (s|i) ≤ i

)
G(s, λw.B(s ∗ 〈w〉)) otherwise.

The version presented above is a variation by Ferreira [14] of the original definition by Spector, where

the condition ∃i ≤ |s|
(
Y (s|i) ≤ i

)
replaces the original Y (s) ≤ |s|.

The scheme above might not assign a value B(s) to all finite sequences s ∈ S∗. When B(s) is defined

by the step case G, its value can depend on the value of some B(s ∗ 〈w〉), which might in turn depend on

the value of some B(s ∗ 〈w, z〉). If this chain of dependencies never reaches the base case F , then B(s)

will not be defined. The occurrence of this infinite recurrence depends solely on the condition function

Y . We illustrate this with an example adapted from [14].

Example 3.2. Let Y : NN → N be defined as

Y (x) =

0 if ∀k
(
x(k) 6= 0

)
i+ 1 if x(i) = 0 and ∀k < i

(
x(k) 6= 0

)
,

and consider

B(s) =

0 if ∃i ≤ |s|
(
Y (s|i) ≤ i

)
B(s ∗ 〈1〉) otherwise.

Then B(〈〉) is not defined. In fact, if a finite sequence s does not contain zeros, then Y (s) = |s| + 1.

Thus, we would have B(〈〉) = B(〈1〉) = B(〈1, 1〉) = . . ., and never reach the base case.

Using Ferreira’s version of bar recursion, there is a simple criterion for the condition function Y that

guarantees bar recursion to define a total function. Consider the set

TY = {s ∈ S∗ | ∀i ≤ |s|
(
Y (s|i) > i

)
}.

This set is a tree, since s ∗ t ∈ TY implies s ∈ TY . We say that TY is a well-founded tree if, for all infinite

sequences x ∈ SN, there is i such that x|i /∈ TY , or equivalently Y (x|i) ≤ i. The following result from

[14] justifies bar recursive definitions by transfinite recursion on the tree TY .
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Proposition 3.3. Let Y : SN → N. The tree TY is well-founded if and only if there is a map h from TY

to the ordinals such that, if s is a strict subsequence of t, then h(t) < h(s).

The height map h can be used to define B by transfinite recursion. First, set B(s) = F (s), if s /∈ TY .

When s ∈ TY , we can set B(s) = G(s, λw.B(s ∗ 〈w〉)) as it only depends on values of B at lower height.

Indeed, if s ∗ 〈w〉 ∈ TY , then h(s ∗ 〈w〉) < h(s). On the other hand, if s ∗ 〈w〉 /∈ TY , then B(s ∗ 〈w〉) was

already defined by F .

There are two conditions which imply that TY is well-founded:

• the continuity condition, usually associated with the intuitionistic setting

∀x ∈ SN ∃i ∈ N ∀y ∈ SN (x|i = y|i→ Y (x) = Y (y)
)
,

which is equivalent to having Y a continuous function from the product SN to N, where S and N

are given the discrete topology,

• the bounding condition,

∀x ∈ SN ∃n ∈ N ∀i ∈ N
(
Y (x|i) ≤ n

)
.

The continuity condition implies the bounding condition, however the bounding condition does not

imply continuity. In fact, in §3.2 we see that the model M ω of strongly majorisable functionals satisfies

the bounding condition, but it contains functionals Y that are not continuous. The example from [3] is

the function Y : (N→ N)→ N such that

Y (x) =

1 if x(n) = 0 for all n

0 otherwise.

On one hand, the function Y is strongly majorised by the constant function with value 1. On the other

hand, the function Y is not continuous. To see why, let x be the constant sequence with value 0, and

i ∈ N. Then, there is a sequence y that matches x in the first i elements, but is different from x, for

instance the sequence whose (i + 1)-th element is 1 and whose other elements are all 0, and we get

Y (x) = 0 and Y (y) = 1.

3.1.1 Bar recursion in finite-type arithmetic

Bar recursion is defined using finite sequences, which are not immediately available in finite-type Peano

arithmetic. What is available are infinite sequences, in the form of objects of type 0 → σ, that can be

truncated to generate finite sequences. A finite sequence with elements of type σ is represented by a pair

of objects: one of type 0 and the other of type 0→ σ. The intended meaning is that the infinite sequence

— the object of type 0→ σ — is truncated at a natural number — the object of type 0 — corresponding

to the length of the finite sequence.

An issue with the representation of finite sequences is that there are multiple pairs representing the

same sequence — when a finite sequence of length n is represented as n, x; the values of x(n), x(n+1), . . .

can be arbitrary. Therefore, we choose a canonical representative for this finite sequence — the pair

n, x|n whose infinite sequence is extended with zeros. This definition requires an explanation of what we
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mean by zero at higher types: there are zero terms defined recursively for each type: 00 is the constant

0 and 0σ→τ is λxσ.0τ . Given an infinite sequence x of type 0→ σ, the sequence x|n is thus defined as

(x|n)(i) =

x(i) if i < n

0σ otherwise.

The concatenation operation ∗ can also be defined in this context. In the general case, we define

x|n ∗ y|m as the infinite sequence with has the first n elements of x, followed by the first m elements of

y, followed by zeros. Most regularly, we only append one element to a sequence and use the notation

x|n ∗ 〈w〉 to mean the sequence with the first n elements of x, followed by w, and extended with zeros,

that is

(x|n ∗ 〈w〉)(i) =


x(i) if i < n

w if i = n

0σ otherwise.

To add bar recursion to arithmetic in all finite types, we need additional arithmetical constants: the

bar recursors Bσ,τ , of type

(
(0→ σ)→ 0

)
→
(
0→ (0→ σ)→ τ

)
→
(
0→ (0→ σ)→ (σ → τ)→ τ

)
→ τ.

As for the recursors, we allow τ to be a tuple of types, thus allowing for simultaneous bar recursion. The

types σ and τ will often be omitted and we denote the bar recursors simply by B.

Moreover, when including the bar recursors, we assume that the existing axioms apply also to the

formulas of the extended language, together with the new axioms:

• bar recursor axioms, denoted by BR,

∃i ≤ n
(
y(x|i) ≤ i

)
→
(
A[B(y, f, g, n, x)/z]↔ A[f(n, x|n)/z]

)
∀i ≤ n

(
y(x|i) > i

)
→
(
A[B(y, f, g, n, x)/z]↔ A[g(n, x|n, λw.B(y, f, g, Sn, x|n ∗ 〈w〉))/z]

)
where A(z) is an atomic formula.

These axioms mirror the usual definition by bar recursion (Definition 3.1). The bar recursor B(y, f, g, n, x)

is evaluated using the canonical representative of the sequence represented by n, x; and hence is inde-

pendent of the particular choice of representative. The bar recursor axioms, like the combinator and

recursor axioms, can be proven to hold for any formula A(z).

The theory of Peano arithmetic in all finite types with bar recursion is denoted by PAω + BR. If we

are referring to the version with intensional majorisability, then we write PAωE + BR.

3.2 The model of strongly majorisable functionals

Our main model for bar recursion — a model where functionals defined by bar recursion are always total

functions — is the model M ω of strongly majorisable functionals, defined in 2.1. The fact that M ω is a

model of PAω allows us to add some truths of M ω to PAω without incurring in contradiction. We will

use this ahead, e.g., to prove within the theory that some bar recursors are monotone.
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Our goal is to prove that M ω is a model of bar recursion. However, this claim is contingent on M ω

having an interpretation for the bar recursors. A natural interpretation based on Definition 3.1 would

be desirable, but this might not define a total function. Nevertheless, as M ω satisfies the bounding

condition, the bar recursion scheme will always yield a total function, see §3.1.

Proposition 3.4. M ω satisfies the bounding condition. That is, all Y : M0→σ → N in M ω satisfy

∀x ∈M0→σ ∃n ∈ N ∀i ∈ N
(
Y (x|i) ≤ n

)
.

Proof. Let Y and x be in M ω. Then Y ≤∗ Y ∗ and x ≤∗ x∗ for some Y ∗ and x∗. Take n = Y ∗(x∗).

Because x|i ≤∗ x∗ for any i, we get Y (x|i) ≤ Y ∗(x∗) = n.

To check that M ω is indeed a model of bar recursion, we need a few lemmas about strong majoris-

ability. For their proofs, the reader is referred to [28, §3.6].

Lemma 3.5. If x ≤∗ x∗, then x∗ ≤∗ x∗. Hence, if x ≤∗ x∗ and x∗ ∈MMσ
τ , then x∗ ∈Mσ→τ .

Lemma 3.6. Let x and x∗ be functions Mσ1
→ · · · →Mσk →Mτ . Then x ≤∗ x∗ if and only if we have

xy1 . . . yk ≤∗ x∗y∗1 . . . y∗k and x∗y1 . . . yk ≤∗ x∗y∗1 . . . y∗k,

for all yi, y
∗
i ∈Mσi such that yi ≤∗ y∗i , with i = 1, . . . , k.

Definition 3.7 (xM ). Let x ∈MM0
τ , where τ = τ1 → · · · → τk → 0. We define

xM as λn0, vτ11 , . . . , v
τk
k .max{xiv1 . . . vk | i ≤ n}.

Lemma 3.8. Let x, y ∈MM0
τ . If we have x(n) ≤∗ y(n) for all n ∈ N, then

x ≤∗ yM and xM ≤∗ yM .

In particular, if x ≤∗ x∗ and y ≤∗ y∗, then x, y ≤∗ max(x∗, y∗) and max(x, y) ≤∗ max(x∗, y∗).

Lemma 3.9. For each type τ , we have MM0
τ = M0→τ .

Now we are ready to prove that M ω is a model of bar recursion. The proof uses a principle that

Bezem [3] calls classical bar induction, that is, from

• ∀x0→σ ∃n0 ∀n ≥ n0 P (n, x|n)

• ∀n0 ∀x0→σ (∀wσ P (n+ 1, x|n ∗ 〈w〉)→ P (n, x|n)
)

conclude ∀n0 ∀x0→σ P (n, x|n).

Lemma 3.10. Classical bar induction holds in M ω.

Proof. We prove the contrapositive. Assume there are n0 and x0 such that ¬P (n0, x0|n0) and that

∀n0 ∀x0→σ (∀wσ P (n+ 1, x|n ∗ 〈w〉)→ P (n, x|n)
)
,

or equivalently,

∀n0 ∀x0→σ (¬P (n, x|n)→ ∃wσ ¬P (n+ 1, x|n ∗ 〈w〉)
)
.
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Using dependent choice on the meta-level, there is a sequence x whose first n0 elements coincide with

those of x0 and such that ∀n ≥ n0 ¬P (n, x|n). Using Lemma 3.9, it follows that x ∈M0→σ. This proves

the negation of the first hypothesis of classical bar induction.

The terms B∗ defined below will be proven to be strong majorants for the bar recursors.

Definition 3.11 (Bp, B∗). For each bar recursor Bσ,τ , we define the following terms:

Bpσ,τ is λy, f, g, n, x.Bσ,τy
mfmgfnx,

B∗σ,τ is λy, f, g, n, x.(Bσ,τy
mfmgf )Mnx,

where ym(x) = y(xM ), fm(n, x) = f(n, xM ), and gf (n, x, v) = max
(
f(n, xM ), g(n, xM , v)

)
.

By definition, the notation (Bσ,τyfg)M means λn0, x0→σ.max{Bσ,τyfgix | i ≤ n}, i.e., computing

the maximum of Bσ,τyfg over all initial subsequences of x with length at most n.

The following theorem is the key to showing that the bar recursors can be strongly majorised.

Theorem 3.12. Let y ≤∗ y∗, f ≤∗ f∗, and g ≤∗ g∗ be of appropriate types for bar recursion, and r and

s be infinite sequences. For all n ∈ N, it holds in M ω that, if r(k) ≤∗ s(k) for all k < n, then

Bpy∗f∗g∗nr ≤∗ Bpy∗f∗g∗ns

Bpyfgnr ≤∗ Bpy∗f∗g∗ns

Byfgnr ≤∗ Bpy∗f∗g∗ns.

Proof. This proof is an adaptation of the proof of [28, Theorem 11.17] to our bar recursors. We use

classical bar induction, with P (n, s) being

∀r0→σ (∀k < n (rk ≤∗ sk)→ Byfgnr,Bpyfgnr,Bpy∗f∗g∗nr ≤∗ Bpy∗f∗g∗ns
)
.

Hypothesis 1: ∀s0→σ ∃n0 ∀n ≥ n0 P (n, s|n). Let s ∈ M0→σ. Then there is s∗ ∈ MM0
σ such that

s ≤∗ s∗, and, by Lemma 3.9, we get s∗ ∈ M0→σ. Let n0 = y∗(s∗)M , and take n ≥ n0. By Lemma 3.8,

we have (s|n)M ≤∗ (s∗)M , and, hence, as y∗ is monotone,

(y∗)m(s|n) = y∗(s|n)M ≤ y∗(s∗)M = n0 ≤ n.

Now let r be an infinite sequence such that rk ≤∗ sk, for all k < n. As r|n ≤∗ (s|n)M and (r|n)M ≤∗

(s|n)M by Lemma 3.8, and as y ≤∗ y∗, we get

n ≥ y∗(s|n)M ≥


y∗(r|n)M = (y∗)m(r|n)

y(r|n)M = ym(r|n)

y(r|n).
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Thus, using f ≤∗ f∗ and Lemma 3.6,

Bpy∗f∗g∗ns = (f∗)m(n, s|n) = f∗(n, (s|n)M ) ≥∗


f∗(n, (r|n)M ) = Bpy∗f∗g∗nr

f(n, (r|n)M ) = Bpyfgnr

f(n, r|n) = Byfgnr.

Hypothesis 2: ∀n0 ∀s0→σ (∀wσ P (n + 1, s|n ∗ 〈w〉) → P (n, s|n)
)
. Let n ∈ N, and r and s be infinite

sequences such that rk ≤∗ sk, for all k < n. Consider the following cases:

Case 1: exists i ≤ n such that (y∗)m(s|i) ≤ i. Then, as r|i ≤∗ (s|i)M and (r|i)M ≤∗ (s|i)M by

Lemma 3.8, we get

i ≥ (y∗)m(s|i) = y∗(s|i)M ≥


y∗(r|i)M = (y∗)m(r|i)

y(r|i)M = ym(r|i)

y(r|i).

Hence, using f ≤∗ f∗ and Lemma 3.6,

Bpy∗f∗g∗ns = (f∗)m(n, s|n) = f∗(n, (s|n)M ) ≥∗


f∗(n, (r|n)M ) = Bpy∗f∗g∗nr

f(n, (r|n)M ) = Bpyfgnr

f(n, r|n) = Byfgnr.

Case 2: for all i ≤ n have (y∗)m(s|i) > i. Let w ≤∗ w∗ be of type σ. Then, for all k < n+ 1,

(r|n ∗ 〈w〉)(k) ≤∗ (s|n ∗ 〈w∗〉)(k) and (s|n ∗ 〈w〉)(k) ≤∗ (s|n ∗ 〈w∗〉)(k).

Using P (n+ 1, s|n ∗ 〈w∗〉), we have

Bpy∗f∗g∗(n+ 1)(s|n ∗ 〈w∗〉) ≥∗



Bpy∗f∗g∗(n+ 1)(s|n ∗ 〈w〉)

Bpy∗f∗g∗(n+ 1)(r|n ∗ 〈w〉)

Bpyfg(n+ 1)(r|n ∗ 〈w〉)

Byfg(n+ 1)(r|n ∗ 〈w〉),

and, by Lemma 3.6, we conclude

λw.Bpy∗f∗g∗(n+ 1)(s|n ∗ 〈w〉) ≥∗


λw.Bpy∗f∗g∗(n+ 1)(r|n ∗ 〈w〉)

λw.Bpyfg(n+ 1)(r|n ∗ 〈w〉)

λw.Byfg(n+ 1)(r|n ∗ 〈w〉).

In this case, we have

Bpy∗f∗g∗ns = g∗f∗(n, s|n, λw.Bpy∗f∗g∗(n+ 1)(s|n ∗ 〈w〉))

= max
(
f∗(n, (s|n)M ), g∗

(
n, (s|n)M , λw.Bpy∗f∗g∗(n+ 1)(s|n ∗ 〈w〉)

))
,
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thus, by Lemma 3.8, it follows that

Bpy∗f∗g∗ns ≥∗


max

(
f∗(n, (r|n)M ), g∗

(
n, (r|n)M , λw.Bpy∗f∗g∗(n+ 1)(r|n ∗ 〈w〉)

))
, f∗(n, (r|n)M )

max
(
f(n, (r|n)M ), g

(
n, (r|n)M , λw.Bpyfg(n+ 1)(r|n ∗ 〈w〉

))
, f(n, (r|n)M )

g
(
n, r|n, λw.Byfg(n+ 1)(r|n ∗ 〈w〉)

)
, f(n, r|n),

therefore

Bpy∗f∗g∗ns ≥∗


Bpy∗f∗g∗nr

Bpyfgnr

Byfgnr.

To conclude the proof, we use classical bar induction, that holds in M ω by Lemma 3.10, to get

∀n0 ∀x0→σ P (n, x|n), which is equivalent to our goal ∀n0 ∀x0→σ P (n, x).

Corollary 3.13. In M ω we have B ≤∗ B∗.

Proof. Let y ≤∗ y∗, f ≤∗ f∗, and g ≤∗ g∗ be of appropriate types for bar recursion, and r ≤∗ s be infinite

sequences. Using Theorem 3.12, we get that, for all n ∈ N,

Byfgnr ≤∗ Bpy∗f∗g∗ns, Bpyfgnr ≤∗ Bpy∗f∗g∗ns and Bpy∗f∗g∗nr ≤∗ Bpy∗f∗g∗ns.

Applying Lemma 3.6, yields

Byfgn ≤∗ Bpy∗f∗g∗n and Bpyfgn ≤∗ Bpy∗f∗g∗n,

for all n ∈ N, therefore, by Lemma 3.8, we get

Byfg ≤∗ (Bpy∗f∗g∗)M = B∗y∗f∗g∗ and B∗yfg = (Bpyfg)M ≤∗ (Bpy∗f∗g∗)M = B∗y∗f∗g∗.

Using again Lemma 3.6, we conclude B ≤ B∗.

Corollary 3.14. M ω is a model of bar recursion, that is, a model of PAω + BR.

Proof. The bar recursors Bσ,τ are strongly majorised by B∗σ,τ . Hence Bσ,τ is in M ω.

3.3 Bar induction

Bar induction is a principle of proof stemming from the bar theorem of Brouwer’s intuitionism [6]. There

are multiple variants of bar induction, see e.g. [24]. The version of bar induction relevant to this work is

called monotone bar induction. We first present bar induction informally — using the language of §3.1

— before presenting a formal version within finite-type Peano arithmetic — using the representation of

finite sequences described in §3.1.1.

Definition 3.15 (Monotone bar induction). Given formulas P (s) and Q(s), where s is intended to range

over the elements of S∗, the principle of monotone bar induction, or simply BI, is

Hyp1 ∧Hyp2 ∧Hyp3 ∧Hyp4→ Q(〈〉),
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where

• Hyp1 is ∀x ∈ SN ∃i ∈ N P (x|i) (well-foundedness)

• Hyp2 is ∀s ∈ S∗ ∀i ≤ |s|
(
P (s|i)→ P (s)

)
(monotonicity)

• Hyp3 is ∀s ∈ S∗
(
P (s)→ Q(s)

)
(base)

• Hyp4 is ∀s ∈ S∗
(
∀w ∈ S Q(s ∗ 〈w〉)→ Q(s)

)
(step)

Monotone bar induction is classically valid, despite its origin in intuitionism. Indeed, assuming ¬Q(〈〉),

we can use Hyp4 to get w0 ∈ S such that ¬Q(〈w0〉). Again, using Hyp4, we get w1 ∈ S such that

¬Q(〈w0, w1〉). Iterating this process — using dependent choices on the meta-level — we get an infinite

sequence x ∈ SN such that ∀i ∈ N ¬Q(x|i). Then, we can use Hyp3 to conclude ∀i ∈ N ¬P (x|i), proving

the negation of Hyp1. The monotonicity hypothesis Hyp2 is not needed in the classical case, but it is

necessary in the intuitionistic version, see [14, §5].

The existence and uniqueness of functions defined by bar recursion can be proven using monotone bar

induction, when the condition function Y is associated with a well-founded tree TY , that is, assuming

∀x ∈ SN ∃i ∈ N
(
Y (x|i) ≤ i

)
.

Let Y , F and G be of compatible types for a bar recursive definition. To prove existence, take P (s)

as ∃i ≤ |s|
(
Y (s|i) ≤ i

)
and Q(s) as

∃B ∀t ∈ S∗
([
P (s ∗ t)→ B(s ∗ t) = F (s ∗ t)

]
∧
[
¬P (s ∗ t)→ B(s ∗ t) = G(s ∗ t, λw.B(s ∗ t ∗ 〈w〉))

])
.

The well-foundedness hypothesis Hyp1 is equivalent to the tree TY being well-founded, and the mono-

tonicity hypothesis Hyp2 also holds. For the base hypothesis Hyp3, assume P (s). Then, for any t ∈ S∗,

we have P (s ∗ t). Taking B = F , we prove Q(s). Lastly, to prove the step hypothesis Hyp4, assume

∀w ∈ S Q(s ∗ 〈w〉), i.e., that, for each w, there is Bw such that, for all t′ ∈ S∗,

Bw(s ∗ 〈w〉 ∗ t′) =

F (s ∗ 〈w〉 ∗ t′) if P (s ∗ 〈w〉 ∗ t′)

G(s ∗ 〈w〉 ∗ t′, λz.Bw(s ∗ 〈w〉 ∗ t′ ∗ 〈z〉)) if ¬P (s ∗ 〈w〉 ∗ t′).

We want to prove Q(s). When t 6= 〈〉, we can write t = 〈w〉 ∗ t′ for some t′, hence we can take

B(s ∗ t) = Bw(s ∗ 〈w〉 ∗ t′). For t = 〈〉, take

B(s) =

F (s) if P (s)

G(s, λw.Bw(s ∗ 〈w〉)) if ¬P (s).

By construction, we have Bw(s ∗ 〈w〉) = B(s ∗ 〈w〉) for all w, thus we conclude Q(s).

Using monotone bar induction, it follows that Q(〈〉), that is, that there exists a function B defined

by bar recursion on Y , F and G.

To prove uniqueness, consider functions B and B′, and a condition function Y with a well-founded

tree. Take P (s) as above and Q(s) as ∀t ∈ S∗ B(s ∗ t) = B′(s ∗ t). Then Hyp3 and Hyp4 mean that,

for all s ∈ S∗, we have equality B(s ∗ t) = B′(s ∗ t) for all t, if either P (s) holds, or there is equality
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B(s ∗ t) = B′(s ∗ t) for all t 6= 〈〉. When B and B′ are defined by bar recursion on the same functions,

the hypotheses Hyp3 and Hyp4 hold. Indeed, if P (s) holds, then P (s ∗ t) also holds and

B(s ∗ t) = F (s ∗ t) = B′(s ∗ t).

On the other hand, if ¬P (s) holds and B(s ∗ t) = B′(s ∗ t) for all t 6= 〈〉, then

B(s) = G(s, λw.B(s ∗ 〈w〉)) = G(s, λw.B′(s ∗ 〈w〉)) = B′(s),

since B(s ∗ 〈w〉) = B′(s ∗ 〈w〉), for all w ∈ S.

By monotone bar induction, we conclude Q(〈〉), which means that B(s) = B′(s) for all s ∈ S∗.

3.3.1 Bar induction in finite-type arithmetic

Now we turn our attention to formalising bar induction in the theory of Peano arithmetic in all finite

types. We work with a simplified version of bar induction with the formula P being the same as Q.

Definition 3.16 (Simplified monotone bar induction). Given a formula P (n0, x0→σ), the principle of

simplified monotone bar induction, named BI−, is

Hyp1 ∧Hyp2 ∧Hyp3→ P (0, 00→σ),

where

• Hyp1 is ∀x0→σ ∃n0 P (n, x|n) (well-foundedness)

• Hyp2 is ∀n0 ∀x0→σ ∀i ≤ n
(
P (i, x|i)→ P (n, x|n)

)
(monotonicity)

• Hyp3 is ∀n0 ∀x0→σ (∀wσ P (n+ 1, x|n ∗ 〈w〉)→ P (n, x|n)
)

(step)

When we restrict P (n, x) to be an existential bounded formula, this principle is called existential simplified

monotone bar induction and denoted by BI−∃ .

The principle BI−∃ is known to hold for the theory PAω +BR, in the presence of quantifier-free choice,

see [14].

Our goal is to prove that the theory PAωE with bar recursion, the characteristic principles, and the

universal bounded truths of M ω proves BI−∃ . This is a known result, proven by Engrácia in [10] as a

consequence of bar induction holding in the intuitionistic setting and using a negative translation. Here

we prove the result directly for the classical case.

First, we prove a lemma from [32], showing that adding bar recursion to PAω entails that functions

Y : (0→ σ)→ 0 will always produce a well-founded tree TY .

Lemma 3.17 (Kreisel’s trick). The theory PAω + BR proves

∀Y (0→σ)→0 ∀x0→σ ∃i0
(
Y (x|i) ≤ i

)
,

for any type σ.
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Proof. Take Y and x of the types above. Define, by bar recursion, a function B : 0→ (0→ σ)→ 0 such

that

B(n, s) =

0 if ∃i ≤ n
(
Y (s|i) ≤ i

)
1 +B(n+ 1, s|n ∗ 〈x(n)〉) otherwise,

and let h(k) = B(k, x|k). Then,

h(k) =

0 if ∃i ≤ k
(
Y (x|i) ≤ i

)
1 + h(k + 1) otherwise.

Now, we prove that h(h(0)) = 0 and, hence, by definition of h, it must be ∃i ≤ h(0)
(
Y (x|i) ≤ i

)
.

Proceed by contradiction, assuming h(h(0)) 6= 0. In general, when h(k) 6= 0 and i ≤ k, we have

h(0) = i+ h(i). In particular, it follows that h(0) = k + h(k). If we had h(h(0)) 6= 0, then we would get

h(0) = h(0) + h(h(0)), that is, h(h(0)) = 0, a contradiction.

Therefore, we conclude h(h(0)) = 0 and ∃i ≤ h(0)
(
Y (x|i) ≤ i

)
.

As in [10], we use some semantic reasoning based on the model M ω. More precisely, we use some

sentences from the set ∆Mω of formulas whose flattening is true in M ω. The process of flattening is

essentially replacing the intensional symbol E with the extensional ≤∗.

Definition 3.18 (∆Mω ). We denote by ∆Mω the set of universal bounded sentences of the language of

PAωE whose flattening holds in M ω.

Before proving our main result, we must clarify an important matter about the consistency of the

theory PAωE extended simultaneously with the characteristic principles and with the sentences of ∆Mω .

After all, Example 2.8 shows that the theory PAωE + bC is incompatible with the axiom of extensionality,

yet we are adding to this theory sentences which are true in the model M ω, a model that satisfies the

axiom of extensionality. To the rescue comes the extended soundness theorem.

Theorem 3.19 (Soundness for ∆Mω ). Let A(z) be a formula of the language of PAωE + BR with free

variables z. If

PAωE + BR + mAC + bC + MAJ + ∆Mω ` A(z),

then there are closed monotone terms t, effectively obtainable from a proof of A(z), such that

PAωE + BR + ∆Mω ` ∀̃w ∀z E w ∀̃x A(z)U (x, twx).

Proof. Apply the soundness theorem extended with universal sentences (Theorem 2.11) taking ∆ =

BR + ∆Mω .

Using this theorem, if the theory PAωE + BR + mAC + bC + MAJ + ∆Mω was inconsistent, then

PAωE + BR + ∆Mω would be inconsistent as well. It follows that the former theory is consistent, since

M ω is a model for the latter, by Corollary 3.14.

Theorem 3.20 (Bar induction). The theory PAωE + BR + mAC + bC + MAJ + ∆Mω proves BI−∃ .
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Proof. This proof is based on the original by Howard [22] and on the variations by Engrácia in [9, 10]

and by Ferreira in [14].

Let P (n0, r0→σ) be the formula ∃aτ Q(n, r, a), with Q a bounded formula. Without loss of generality,

we can take Q(n, r, a) upward monotone in a in the sense that a E b and Q(n, r, a) imply Q(n, r, b).

To see why, write P (n, r) as ∃bτ Pbd(n, r, b), with Pbd a bounded formula. By MAJ, this is equivalent

to ∃aτ ∃b E a Pbd(n, r, b). Taking Q(n, r, a) as ∃b E a Pbd(n, r, b) we get an upward monotone bounded

formula.

Now assume the hypotheses of BI−∃ :

• ∀r0→σ ∃n0 ∃aτ Q(n, r|n, a) (Hyp1)

• ∀n0 ∀r0→σ ∀i ≤ n
(
∃aτ Q(i, r|i, a)→ ∃bτ Q(n, r|n, b)

)
(Hyp2)

• ∀n0 ∀r0→σ (∀wσ ∃aτ Q(n+ 1, r|n ∗ 〈w〉, a)→ ∃bτ Q(n, r|n, b)
)

(Hyp3)

By Proposition 2.7, the theory PAωE + mAC + bC proves bAC. In this proof, it will be useful to use

bounded choice instead of monotone choice. In fact, we will now use bAC on the hypotheses of BI−∃ to

get functionals that bound the existential witnesses.

Using bAC on Hyp1, we get monotone functionals Y : (0→ σ)→ 0 and H : (0→ σ)→ τ such that

∀̃s0→σ ∀r E s ∃n ≤ Y s ∃a E Hs Q(n, r|n, a),

using the monotonicity of Q, this is equivalent to

∀̃s0→σ ∀r E s ∃n ≤ Y s Q(n, r|n,Hs). (Hyp1’)

Using bAC on Hyp2, yields a monotone functional F : 0→ (0→ σ)→ τ → τ such that

∀n0 ∀̃s0→σ ∀r E s ∀̃cτ ∀a E c ∃b E F (n, s, c)
(
∃i ≤ n Q(i, r|i, a)→ Q(n, r|n, b)

)
,

and, by monotonicity of Q, we get

∀n0 ∀̃s0→σ ∀r E s ∀̃cτ ∀a E c
(
∃i ≤ n Q(i, r|i, a)→ Q(n, r|n, F (n, s, c))

)
. (Hyp2’)

Using bAC and the fact that Q is upward monotone, the formula ∀wσ ∃aτ Q(n+ 1, r|n ∗ 〈w〉, a) in the

hypothesis Hyp3 is equivalent to ∃̃fσ→τ ∀̃zσ ∀w E z Q(n+ 1, r|n ∗ 〈w〉, fz), thus Hyp3 is equivalent to

∀n0 ∀r0→σ ∀̃fσ→τ
(
∀̃zσ ∀w E z Q(n+ 1, r|n ∗ 〈w〉, fz)→ ∃bτ Q(n, r|n, b)

)
.

By applying bAC again, there is a monotone functional G : 0 → (0 → σ) → (σ → τ) → τ (we disregard

the witness for z) such that

∀n0 ∀̃s0→σ ∀r E s ∀̃gσ→τ ∀f E g ∃b E G(n, s, g)
(
∀̃zσ ∀w E z Q(n+ 1, r|n ∗ 〈w〉, fz)→ Q(n, r|n, b)

)
,

finally, as Q is monotone, we conclude

∀n0 ∀̃s0→σ ∀r E s ∀̃gσ→τ ∀f E g
(
∀̃zσ ∀w E z Q(n+ 1, r|n ∗ 〈w〉, fz)→ Q(n, r|n,G(n, s, g))

)
. (Hyp3’)
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Now, we use the Bp bar recursor of Definition 3.11 to define

B(n, s) = Bp
(
Y, λn, s.F (n, s,H(s|i0)M ), G, n, s

)
,

where i0 is the least i ≤ n such that Y (s|i)M ≤ i, if such i exists, and n otherwise. The value of i0 can

be effectively obtained as a function of n and s within the theory. Thus

B(n, s) =

F
(
n, (s|n)M , H(s|i0)M

)
if ∃i ≤ n

(
Y (s|i)M ≤ i

)
max

(
F
(
n, (s|n)M , H(s|i0)M

)
, G
(
n, (s|n)M , λw.B(n, s|n ∗ 〈w〉)

))
otherwise,

since s|n |i0 is the sequence s|i0.

With this definition, we claim that, for all n of type 0 and infinite sequences r and s such that

r(k) E s(k) for all k < n, we have

∀̃zσ ∀w E z Q(n+ 1, r|n ∗ 〈w〉, B(n+ 1, s|n ∗ 〈z〉))→ Q(n, r|n,B(n, s|n)).

To prove this, we prove two sub claims corresponding to the cases of bar recursion.

Claim 1a: ∃i ≤ n
(
Y (s|i)M ≤ i

)
→ Q(n, r|n,B(n, s|n)).

Let i0 be the least i ≤ n such that Y (s|i)M ≤ i. By Lemma 3.8, we have r|i0 E (s|i0)M . By

Hyp1’, there is n0 ≤ Y (s|i0)M such that Q(n0, r|i0 |n0, H(s|i0)M ). Because n0 ≤ Y (s|i0)M ≤ i0 ≤ n, the

sequence r|i0 |n0 is actually r|n0. Thus

Q
(
n0, r|n0, H(s|i0)M

)
.

Using Hyp2’, as r|n E (s|n)M by Lemma 3.8, as H(s|i0)M is monotone, and as n0 ≤ n, we get

Q
(
n, r|n, F (n, (s|n)M , H(s|i0)M )

)
,

which is Q(n, r|n,B(n, s|n)), since we are assuming ∃i ≤ n
(
Y (s|i)M ≤ i

)
.

Claim 1b:

∀i ≤ n
(
Y (s|i)M > i

)
→
(
∀̃zσ ∀w E z Q(n+ 1, r|n ∗ 〈w〉, B(n+ 1, s|n ∗ 〈z〉))→ Q(n, r|n,B(n, s|n))

)
.

Take f = λw.B(n+ 1, s|n ∗ 〈w〉). We can prove that this functional is monotone using the following

sentence from ∆Mω

∀̃y, f, g ∀n0 ∀r0→σ, s0→σ (∀k < n (rk E sk)→ Bpyfgnr E Bpyfgns
)
,

whose flattening holds in M ω by Theorem 3.12. Also, we have r|n E (s|n)M by Lemma 3.8. Assuming

∀̃zσ ∀w E z Q(n + 1, r|n ∗ 〈w〉, B(n + 1, s|n ∗ 〈z〉)), we can use Hyp3’ to get Q(n, r|n,G(n, (s|n)M , f)),

that is,

Q
(
n, r|n,G(n, (s|n)M , λw.B(n+ 1, s|n ∗ 〈w〉))

)
.
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In this case we are assuming ∀i ≤ n
(
Y (s|i)M > i

)
, hence

G
(
n, (s|n)M , λw.B(n+ 1, s|n ∗ 〈w〉)

)
E max

(
F
(
n, (s|n)M , H(s|i0)M

)
, G
(
n, (s|n)M , λw.B(n+ 1, s|n ∗ 〈w〉)

))
= B(n, s|n).

By monotonicity of Q, we conclude Q(n, r|n,B(n, s|n)). This concludes the proof of Claim 1b.

Claim 1: Joining these claims, it follows that, for all n of type 0, and for all infinite sequences r and

s such that r(k) E s(k) for all k < n, we have

∀̃zσ ∀w E z Q(n+ 1, r|n ∗ 〈w〉, B(n+ 1, s|n ∗ 〈z〉))→ Q(n, r|n,B(n, s|n)),

and using bAC there is a monotone functional T : 0 → (0 → σ) → (0 → σ) → σ such that, for all n of

type 0 and infinite sequences u and v, and for all r E u and s E v, if r and s are such that r(k) E s(k)

for all k < n, then we have

∀̃zσ E T (n, u, v) ∀w E z Q(n+ 1, r ∗ 〈w〉, B(n, s|n ∗ 〈z〉))→ Q(n, r|n,B(n, s|n)).

Define a functional x : 0→ σ by ordinary recursion with

x(0) = T (0, 00→σ, 00→σ) and x(n+ 1) = T (n, (x|n)M , (x|n)M ).

Claim 2: By induction on n, we can prove that, for all n of type 0, and for all infinite sequences r

and s, if

∀k < n (r(k) E s(k) E x(k))→ Q(n, r|n,B(n, s|n)),

then it follows that Q(0, 00→σ, B(0, 00→σ)).

Base. Taking n = 0, then we get Q(0, r|0, B(0, s|0)) → Q(0, 00→σ, B(0, 00→σ)), which is true since

the sequences r|0 and s|0 coincide with 00→σ.

Step. Assume that, for all infinite sequences r and s,

∀k < n+ 1 (r(k) E s(k) E x(k))→ Q(n+ 1, r|n+ 1, B(n+ 1, s|n+ 1)).

By the induction hypothesis, it suffices to prove ∀k < n (r(k) E s(k) E x(k)) → Q(n, r|n,B(n, s|n)) to

conclude Q(0, 00→σ, B(0, 00→σ)).

Let r and s be infinite sequences such that r(k) E s(k) E x(k) for all k < n. Then, for any

w E z E T (n, (s|n)M , (s|n)M ), we get that, for all k < n+ 1,

(r|n ∗ 〈w〉)(k) E (s|n ∗ 〈z〉)(k) E x(k).

In fact, since (s|n)M E (x|n)M by Lemma 3.8, and as T is monotone, we have z E T (n, (s|n)M , (s|n)M ) E

T (n, (x|n)M , (x|n)M ) = x(n).

By the initial hypothesis of the step case, we have Q(n+ 1, r|n ∗ 〈w〉, B(n+ 1, s|n ∗ 〈z〉)). Moreover,

by Claim 1, as w E z E T (n, (s|n)M , (s|n)M ) were arbitrary, and as r|n E (s|n)M and s|n E (s|n)M , it

follows that Q(n, r|n,B(n, s|n)).

This proves ∀k < n (r(k) E s(k) E x(k))→ Q(n, r|n,B(n, s|n)), and, using the induction hypothesis,
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we conclude Q(0, 00→σ, B(0, 00→σ)), ending the proof of the step case.

To conclude the proof, use Kreisel’s trick to get n0 such that Y (x|n0)M ≤ n0, i.e., apply Lemma 3.17

to the functional Y m(x) = Y (xM ). Now we use Claim 2: let r and s be arbitrary infinite sequences such

that r(k) E s(k) E x(k) for all k < n0. Then, by Lemma 3.8, we get (s|n0)M E (x|n0)M , thus, as Y is

monotone, we get Y (s|n0)M ≤ Y (x|n0)M ≤ n0. Using Claim 1a, it follows that Q(n0, r|n0, B(n0, s|n0)).

This proves

∀k < n0 (r(k) E s(k) E x(k))→ Q(n0, r|n0, B(n0, s|n0)),

and using Claim 2, we conclude Q(0, 00→σ, B(0, 00→σ)). That is, we prove ∃aτ Q(0, 00→σ, a), i.e.,

P (0, 00→σ), as we wanted.

Throughout the previous argument, we have used sentences from ∆Mω at will and often implicitly.

Now we draw explicitly the uses of M ω.

• The essential use of ∆Mω is in the form of Theorem 3.12, through the sentence

∀̃y, f, g ∀n0 ∀r0→σ, s0→σ (∀k < n (rk E sk)→ Bpyfgnr E Bpyfgns
)
.

• Lemma 3.8 is also used, in the form

∀n0 ∀r0→σ, s0→σ (∀k < n (rk E sk)→ r|n E (s|n)M ∧ (r|n)M E (s|n)M
)
.

• The theory PAωE is not endowed with the axiom of extensionality, hence we use ∆Mω for substitutions

of the form

∀n0 ∀r0→σ, s0→σ (∀k < n (rk = sk) ∧Abd[r|n/z]→ Abd[s|n/z]
)
,

for bounded formulas Abd(z).

3.4 Numerical comprehension

The addition of bar recursion significantly strengthens the theory of finite-type arithmetic. In fact, Gödel

[21] already proposes this addition to the theory T — a theory similar to the quantifier-free fragment of

PAω — in the context of the dialectica interpretation. Taking up this suggestion, Spector [39] extends

the classical version of the dialectica interpretation to interpret not only first-order arithmetic, but also

analysis — that is, second-order arithmetic PA2 — in the theory T + BR.

Likewise, the bounded functional interpretation extended with bar recursion can also interpret a

theory much stronger than PAωE. In fact, this extension can be used to interpret proofs that require full

numerical comprehension. In particular, it can also be used to interpret PA2. The key to showing this

lies in that the theory PAωE with the characteristic principles and bar recursion proves the principle of

numerical comprehension CA0.

Definition 3.21 (CA0). The principle of numerical comprehension, denoted by CA0, is

∃f0→0 ∀n0 (f(n) = 0↔ A(n)),
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where A(n) can be any formula where f does not occur free.

Before proving that CA0 holds in the theory PAωE + BR with the characteristic principles, we first

prove some related choice principles.

Definition 3.22 (DCω). The principle of dependent choices, denoted by DCω, is

∀xσ ∃yσ A(x, y)→ ∀wσ ∃f0→σ (f(0) = w ∧ ∀n0A(f(n), f(n+ 1))
)
,

where A(x, y) can be any formula where f does not occur free, and σ any tuple of types. When we restrict

A(x, y) to be a universal bounded formula, this principle is denoted by DCω∀ .

Definition 3.23 (AC0,ω). The principle of numerical choice, denoted by AC0,ω, is

∀n0 ∃xσ A(n, x)→ ∃f0→σ ∀n0A(n, f(n)),

where A(n, x) can be any formula where f does not occur free, and σ any tuple of types. When we

restrict σ to be type 0, this principle is denoted by AC0,0.

Proposition 3.24.

1. PAωE + BI−∃ ` DCω∀ ,

2. PAωE + mAC + bC + MAJ + DCω∀ ` DCω,

3. PAωE + DCω ` AC0,ω,

4. PAωE + AC0,0 ` CA0.

Proof. The proofs are based on similar proofs in [10, §4] and [14, §7].

1. Let A(x, y) be a universal bounded formula and assume ∀xσ ∃yσ A(x, y). Let w0 be of type σ.

Then there is w1 of type σ such that A(w0, w1).

We will use BI−∃ in the equivalent form

¬P (0, 00→σ) ∧Hyp2 ∧Hyp3→ ¬Hyp1,

taking P (n0, s0→σ) as

∃i ≤ n ¬A
(
〈w0, w1〉 ∗ s|n (i), 〈w0, w1〉 ∗ s|n (i+ 1)

)
.

Since A(x, y) is universal bounded, the formula P (n, s) is existential bounded.

The formula ¬P (0, 00→σ) is equivalent to A(w0, w1). Moreover, as P (n0, s) implies P (n, s) for all

n ≥ n0, it follows that

∀n0 ∀s0→σ ∀n0 ≤ n
(
P (n0, s|n0)→ P (n, s|n)

)
,

i.e., Hyp2 holds.

To prove the contrapositive of Hyp3, ¬P (n, s|n) → ∃wσ ¬P (n + 1, s|n ∗ 〈w〉), let n be of type 0 and

s be an infinite sequence such that ¬P (n, s|n), that is,

∀i ≤ n A
(
〈w0, w1〉 ∗ s|n (i), 〈w0, w1〉 ∗ s|n (i+ 1)

)
.
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By the hypothesis ∀x ∃y A(x, y), there is y such that A
(
〈w0, w1〉 ∗ s|n (n+ 1), y

)
. Hence, it follows that

∀i ≤ n+ 1 A
(
〈w0, w1〉 ∗ s|n ∗ 〈y〉 (i), 〈w0, w1〉 ∗ s|n ∗ 〈y〉 (i+ 1)

)
,

i.e., ¬P (n+ 1, s|n ∗ 〈y〉), and we get ∃wσ ¬P (n+ 1, s|n ∗ 〈w〉).

Now, using BI−∃ in the form above, we conclude ¬Hyp1, meaning that there exists an infinite sequence

z of type 0→ σ such that ∀n0 ¬P (n, z|n). In other words,

∀n0 ∀i ≤ n A
(
〈w0, w1〉 ∗ z|n (i), 〈w0, w1〉 ∗ z|n (i+ 1)

)
.

Defining f of type 0→ σ as

f(n) =


w0 if n = 0

w1 if n = 1

z(n− 2) otherwise,

we conclude that it is such that f(0) = w0 and ∀n0A(f(n), f(n+ 1)).

2. Now let A(x, y) be an arbitrary formula and assume ∀xσ ∃yσ A(x, y).

By the characterisation theorem for the bounded functional interpretation (Theorem 2.14), the formula

A(x, y) is equivalent to ∀̃uρ ∃̃vτ AU (x, y, u, v), where AU is a bounded formula, and ρ and τ are appropriate

types. Using mAC, this is equivalent to ∃̃gρ→τ ∀̃uρ ∃̃v E gu AU (x, y, u, v). Thus our initial hypothesis

∀xσ ∃yσ A(x, y) can be written equivalently as

∀xσ ∃yσ ∃gρ→τ
(
g E g ∧ ∀̃uρ ∃̃v E gu AU (x, y, u, v)

)
,

that is ∀xσ ∃yσ ∃gρ→τ B(x, y, g) for a universal bounded formula B.

Hence, we can use DCω∀ (in full rigour, we would have to add a universally quantified dummy variable

of the same type as g) to obtain

∀wσ ∀hρ→τ ∃f0→σ ∃ψ0→ρ→τ (f(0) = w ∧ ψ(0) = h ∧ ∀n0B(f(n), f(n+ 1), ψ(n+ 1)
)
,

i.e.,

∀wσ ∀hρ→τ ∃f0→σ ∃ψ0→ρ→τ (f(0) = w ∧ ψ(0) = h

∧ ∀n0
(
ψ(n+ 1) E ψ(n+ 1) ∧ ∀̃uρ ∃̃v E ψ(n+ 1)u AU (f(n), f(n+ 1), u, v)

))
.

Thus, discarding the upper bound v E ψ(n+ 1)u, we get

∀wσ ∃f0→σ (f(0) = w ∧ ∀n0 ∀̃uρ ∃̃vτ AU (f(n), f(n+ 1), u, v)
)
,

and using the characterisation theorem again, we conclude

∀wσ ∃f0→σ (f(0) = w ∧ ∀n0A(f(n), f(n+ 1))
)
.

3. Assume ∀n0 ∃xσ A(n, x). Then, we have

∀n0 ∃k0 ∃xσ (k = n+ 1 ∧A(k, x)).
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Take some x0 such that A(0, x0). Using DCω (again we would have to add a universally quantified

dummy variable with the same type as x), there are functions g of type 0→ 0 and f of type 0→ σ such

that g(0) = 0, f(0) = x0, and

∀n0
(
g(n+ 1) = g(n) + 1 ∧A(g(n+ 1), f(n+ 1))

)
.

Using induction, we can prove that, for all n, g(n) = n. Therefore, it follows that ∀n0A(n+ 1, f(n+ 1)).

Together with A(0, x0), we conclude ∀n0A(n, f(n)).

4. Applying AC0,0 to the formula ∀n0 ∃k0 (k = 0↔ A(n)), we get ∃f0→0 ∀n0 (f(n) = 0↔ A(n)).

Corollary 3.25. The theory PAωE + BR + mAC + bC + MAJ + ∆Mω proves CA0.

Using this result, the bounded functional interpretation can be used to interpret the theory of second-

order arithmetic PA2.

Second-order arithmetic Second-order arithmetic, denoted by PA2, is the extension of first-order

Peano arithmetic PA with set variables representing sets of natural numbers, usually denoted by capital

letters, e.g. X,Y, Z. These variables are then related to numerical terms t by t ∈ X, representing the

relation of belonging to a set.

The axioms of PA2 include the axioms of PA, the full second-order induction scheme

A(0) ∧ ∀n (A(n)→ A(n+ 1))→ ∀nA(n),

where A(n) can be any formula, and the comprehension scheme

∃X ∀n (n ∈ X ↔ A(n)),

where A(n) is an arbitrary formula where X does not occur free. More details about PA2 can be seen in

[38, I§2], where it is denoted by Z2.

The language of second-order arithmetic PA2 can be embedded in the finite-type language of PAω

by considering number variables as variables of type 0 and set variables as variables of type 0 → 0

representing the characteristic function of the set. Formulas t ∈ X are translated to X(t) = 0 (we

consider characteristic functions returning the value 0 for elements of the set). With this translation, the

syntactic similarity between the comprehension scheme above and CA0 is now explained — the principle

of numerical comprehension CA0 is the translation of the comprehension scheme of PA2.

With the embedding of the language of PA2 into the language of PAω, we can use the bounded

functional interpretation for proofs in second-order arithmetic PA2.

Theorem 3.26 (Soundness for PA2). Let A(z) be a formula of the language of PA2. If

PA2 ` A(z),

then there are closed monotone terms t, effectively obtainable from a proof of A(z), such that

PAωE + BR + ∆Mω ` ∀̃w ∀z E w ∀̃x Aω(z)U (x, twx),
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where Aω(z) is the translation of A(z) to the language of PAωE.

Proof. By Corollary 3.25, if PA2 proves A(z), then PAωE + BR + mAC + bC + MAJ + ∆Mω proves the

translation Aω(z). Then apply the soundness theorem for bar recursion (Theorem 3.19).

Recursive comprehension The theory RCA (named after the recursive comprehension axiom) is a

subsystem of second-order arithmetic PA2 with the full second-order induction scheme, and where the

comprehension scheme

∃X ∀n (n ∈ X ↔ A(n))

is restricted to recursive formulas A(n) where X does not occur free. A recursive formula, also known as a

∆0
1 formula, is a formula of the form ∃xAbd(n, x) that is equivalent to a formula of the form ∀xBbd(n, x),

with Abd(n, x) and Bbd(n, x) bounded. Hence the recursive comprehension scheme is commonly written

in the form

∀n (∃xAbd(n, x)↔ ∀xBbd(n, x))→ ∃X ∀n (n ∈ X ↔ ∃xAbd(n, x)).

Using the terminology of the arithmetical hierarchy, a recursive formula is a Σ0
1 formula that is equivalent

to a Π0
1 formula. The name recursive formula comes from the fact that the sets definable by recursive

formulas are precisely the recursive sets — being defined by a Σ0
1 formula means that the set is recursively

enumerable, and being defined by a Π0
1 formula means that its complement is also recursively enumerable.

The subsystem RCA0 of RCA, can formalise much of what is known as recursive mathematics, see I§8

and II of [38].

The correspondent of recursive comprehension in PAωE is the following principle from Example 2.5.

Definition 3.27 (CA0
∆). The principle of numerical comprehension for recursive formulas, denoted by

CA0
∆, is

∀n0 (∃x0Abd(n, x)↔ ∀x0Bbd(n, x))→ ∃f0→0 ∀n0 (f(n) = 0↔ ∃x0Abd(n, x)),

where Abd(n, x) and Bbd(n, x) are bounded formulas where f does not occur free.

By Example 2.5, the theory PAωE + bC proves CA0
∆. Therefore, at the second-order level, the bounded

functional interpretation without any bar recursion provides an interpretation of WKL, the subsystem of

PA2 that extends RCA with weak König’s lemma — an axiom stating that every infinite binary tree has

an infinite path (see Example 2.3).

Theorem 3.28 (Soundness for WKL). Let A(z) be a formula of the language of PA2. If

WKL ` A(z),

then there are closed monotone terms t, effectively obtainable from a proof of A(z), such that

PAωE ` ∀̃w ∀z E w ∀̃x Aω(z)U (x, twx),

where Aω(z) is the translation of A(z) to the language of PAωE.

Proof. By Example 2.5, if RCA proves A(z), then PAωE +mAC+ bC+MAJ proves the translation Aω(z).

Furthermore, by Example 2.3, the theory PAωE + bC proves weak König’s lemma. Thus, if weak König’s
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lemma is used in the proof of A(z), then we still have a proof of Aω(z) in PAωE +mAC+ bC+MAJ. Now

apply the soundness theorem (Theorem 2.10) to conclude the proof.

3.4.1 Arithmetical comprehension

The theory ACA (named after the arithmetical comprehension axiom) is a subsystem of second-order

arithmetic PA2 that is stronger than RCA. It includes the full second-order induction scheme, and the

comprehension scheme

∃X ∀n (n ∈ X ↔ A(n))

is restricted to arithmetical formulas A(n) — formulas without set quantifiers — where X does not occur

free. This restriction is equivalent to taking A(n) as a Π0
1 formula — a formula of the form ∀xAbd(n, x)

with Abd(n, x) bounded — in which X does not occur free, see [38, Lemma III.1.3]. Much of ordinary

mathematics can be formalised within the subsystem ACA0 of ACA, more details can be seen in I§3 and

III of [38].

In PAω, the arithmetical comprehension scheme corresponds thus to a similar restriction of the prin-

ciple of numerical comprehension CA0.

Definition 3.29 (CA0
∀). The principle of arithmetical comprehension, denoted by CA0

∀, is

∃f0→0 ∀n0 (f(n) = 0↔ A(n)),

where A(n) is a universal bounded formula where f does not occur free, and with unbounded quantifiers

only of type 0.

Definition 3.30 (AC0,0
∀ ). The principle of arithmetical choice of type 0, denoted by AC0,0

∀ , is

∀n0 ∃x0A(n, x)→ ∃f0→0 ∀n0A(n, f(n)),

where A(n) is a universal bounded formula where f does not occur free, and with unbounded quantifiers

only of type 0.

To prove the principle of arithmetical comprehension CA0
∀, we only need the bar recursor B0,0.

Proposition 3.31. The theory PAωE + BR0,0 + mAC + bC + MAJ proves CA0
∀, where BR0,0 is the bar

recursor axiom for B0,0.

Proof. This observation follows from the fact that CA0
∀ can be proven using AC0,0

∀ . Indeed, let A(n) be

∀a0Abd(n, a), with Abd(n, a) a bounded formula. It can be proven that ∀n0 ∃k0 (k = 0 ↔ A(n)), or

equivalently that

∀n0 ∃k0 ∃b0
(
(k = 0 ∧ ∀a0Abd(n, a)) ∨ (k 6= 0 ∧ ¬Abd(n, b))

)
.

Applying AC0,0
∀ , we get functions f and g of type 0→ 0 such that

∀n0
(
(f(n) = 0 ∧ ∀a0Abd(n, a)) ∨ (f(n) 6= 0 ∧ ¬Abd(n, g(n)))

)
.

From this, it follows that ∀n0 (f(n) = 0↔ ∀a0Abd(n, a)).
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Now we use the argument of Proposition 3.24 to check that only the bar recursor B0,0 is needed to

prove AC0,0
∀ . In the proof of 3.24.3, to prove AC0,0

∀ we apply DCω to the formula

∀n0 ∃k0 ∃x0 (k = n+ 1 ∧A(k, x)),

that is, we only use DCω∀ for type σ = 0. In turn, according to the proof of 3.24.1, to prove this instance of

DCω∀ , we use bar induction for sequences s of type 0→ 0 and a formula P (n, s) of the form ∃a0Q(n, s, a)

— that is, with an unbounded quantifier of type 0. Inspecting the proof of Theorem 3.20, we see that to

prove bar induction for a formula P (n0, s0→σ) of the form ∃aτ Q(n, s, a) we only need the bar recursor

Bσ,τ . Therefore, we only require B0,0 to prove AC0,0
∀ .

We conclude that the theory PAωE with the characteristic principles and the bar recursor B0,0 proves

the principle of arithmetical comprehension CA0
∀.

Using the argument above, it follows that the bounded functional interpretation extended with bar

recursion for type 0 can already provide an interpretation of the arithmetic comprehension scheme.

Theorem 3.32 (Soundness for ACA). Let A(z) be a formula of the language of PA2. If

ACA ` A(z),

then there are closed monotone terms t, effectively obtainable from a proof of A(z), such that

PAωE + BR0,0 + ∆Mω ` ∀̃w ∀z E w ∀̃x Aω(z)U (x, twx),

where Aω(z) is the translation of A(z) to the language of PAωE, and BR0,0 is the bar recursor axiom for

B0,0.

Proof. By Proposition 3.31, if ACA proves A(z), then PAωE + BR0,0 + mAC + bC + MAJ + ∆Mω proves

the translation Aω(z). Then apply the soundness theorem for bar recursion (Theorem 3.19) with BR0,0

instead of BR.

These soundness theorems for PA2, for ACA, and for WKL shed light on the proof-theoretic strength

added by the bar recursors to the theory PAωE+mAC+bC+MAJ already at the second-order level. Hence,

in the context of the bounded functional interpretation, they illustrate the strength of the axioms that

can be used in a proof so that we are guaranteed to find terms that bound the existential witnesses, this

strength varying with the bar recursors that can occur in said terms:

• if no bar recursion is added, then we are at the level of the theory WKL, a subsystem of PA2 with

recursive comprehension, and with weak König’s lemma,

• if bar recursion is added only for type 0, then we can prove the principle of arithmetical compre-

hension CA0
∀, hence we reach the level of ACA,

• if bar recursion is added for all finite types, then the theory proves the principle of full numerical

comprehension CA0, and is at the level of second-order arithmetic PA2.
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Chapter 4

Abstract type

Adding an abstract type means adding a new ground type that represents an abstract space, such as a

ring, a metric space, or a normed space. Up to this point, we have only considered types built from the

ground type 0, representing the natural numbers. By using an abstract type, we are no longer restricted

to working with spaces that have to be encoded. The typical example are Polish spaces — complete

separable metric spaces — whose standard representation is described in [28, §4]. In particular, we can

consider spaces that are not countable or countably based.

The use of an abstract type with a functional interpretation was introduced by Kohlenbach in [27] for

bounded metric spaces and later by Gerhardy and Kohlenbach in [20] for unbounded metric spaces, in the

context of the monotone functional interpretation. For the bounded functional interpretation, abstract

types were introduced by Engrácia in [9] for normed spaces, and by Engrácia and Ferreira in [11] for a

general space. This construction extends the possibilities for proof mining — that is, for the extraction

of bounds using a functional interpretation — as this method can be now applied to theorems about

arbitrary spaces. Moreover, even for spaces that can be represented by natural numbers, this approach

has the advantage that we can write clearer statements when working with the objects directly instead

of through their representatives.

In this chapter, we develop an extension of the bounded functional interpretation simultaneously with

bar recursive functionals and with an abstract type.

• In Section 4.1, we extend the theory of Peano arithmetic in all finite types with an abstract type,

extending the notion of strong majorisability to the extended types as well.

• In Section 4.2, we illustrate the general theory of abstract types with concrete examples from

mathematical practice.

• In Section 4.3, we present the bounded functional interpretation extended with an abstract type

and its characteristic principles. We also state the soundness and characterisation theorems.

• In Section 4.4, we extend the bar recursor axioms to the new abstract type, and check that the

extended model of strongly majorisable functionals is a model of these axioms.

• In Section 4.5, we generalise bar induction to the abstract type case and prove that this principle

of proof holds in a suitable extension of finite-type arithmetic.
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• In Section 4.6, we use bar induction to prove the principles of dependent choices and full numer-

ical comprehension. In an application of these principles, we show that the bounded functional

interpretation automatically completes metric spaces.

4.1 Extended arithmetic in all finite types

The theory of arithmetic in all finite types can be extended with a new type X, called an abstract type,

that represents a mathematical structure other than the natural numbers. We consider the addition of a

single ground type representing a mathematical structure X, through we could consider adding multiple

ground types simultaneously. This structure X can be a ring, or a metric space, for example. Some

concrete examples are presented in §4.2.

Types The extended finite types are defined recursively as follows:

• 0 and X are extended finite types — the extended ground types,

• if σ and τ are extended finite types, then σ → τ is an extended finite type — an extended higher

type.

The original finite types using only a single ground type 0 are called arithmetical types.

Language The language of extended finite-type arithmetic includes

• variables xτ , yτ , zτ , . . . of each extended type τ ,

• logical constants Πσ,τ and Σρ,σ,τ , for all extended types ρ, σ and τ ,

• arithmetical constants 0, S, and Rτ , for all non-empty tuples of extended types τ ,

• mathematical constants

– 0X of type X,

– other new constants related to the structure X,

• binary predicate symbols =0 between objects of type 0, and =X between objects of type X.

The constant 0X witnesses the fact that X is non-empty, and it is used for the canonical representation of

finite sequences. The other mathematical constants depend on the structure X at hand — for example,

if X is a ring, then one of these constants could be + of type X → X → X that represents an additive

operation; or, if X is a metric space, we could consider a constant d of type X → X → R representing a

metric, where R represents the type of the real numbers (more details in §4.2).

Besides equality between objects of type 0, we also have primitive equality for objects of type X. In

some cases, such as when the abstract type represents the real numbers, we may also want to have a

defined version of equality between objects of type X, in addition to primitive logical equality. As before,

equality for higher types is defined pointwise:

t =σ→τ s is defined as ∀xσ (tx =τ sx),

for any extended types σ and τ .
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Axioms The extended theory of Peano arithmetic in all finite types, denoted by PAω,X , is the extension

of the theory PAω with axioms that are the universal closures of the following formulas:

• equality axioms for type X

x =X x

x =X y ∧A[x/w]→ A[y/w]

where A(w) is an atomic formula,

• universal axioms related to the structure X.

The equality axioms for type X can be proven to hold for arbitrary formulas A(w) in PAω,X , as before.

The additional axioms are contingent upon the structure X. When X is a ring, we might have a

distributivity axiom (x+ y) + z = x+ (y+ z); or, when X is a metric space, we could add the symmetry

axiom d(x, y) = d(y, x). The axioms should be universal because universal axioms can be added to the

theory without any changes to the proof of the soundness theorem (as in Theorem 2.11). Otherwise, if

we consider axioms that are not universal, then we have to modify the proof of the soundness theorem

accordingly, by presenting bounding terms for the bounded functional interpretations of the new axioms.

Standard model The extended full set-theoretic model, denoted by S ω,X , is the intended model for

extended finite-type arithmetic. The type structure S ω,X is defined recursively as

• S0 = N,

• SX = X,

• Sσ→τ = SSστ , for all types σ and τ .

The function symbols are then interpreted canonically — the interpretation of the new constants depends

on the structure X — so that S ω,X is a model of PAω,X .

Majorisability The extended strong majorisability relation, due to Gerhardy and Kohlenbach [20],

is a relation between objects of an extended type and of its corresponding arithmetical type. To each

extended type τ we assign an arithmetical type τ̂ that is obtained from τ by replacing every occurrence of

type X with type 0 — that is, 0̂ and X̂ are 0, and σ̂ → τ is σ̂ → τ̂ . We define, by simultaneous recursion

on the type τ , the extended strong majorisability relation ≤∗τ and the sets Mτ as follows:

• n ≤∗0 m is simply n ≤ m and we define M0 = N,

• x ≤∗X n depends on the structure X and must satisfy

– if x ≤∗X n and n ≤ m, then x ≤∗X m,

– for each x ∈ X there is some n ∈ N such that x ≤∗X n,

and we define MX = X,

• x ≤∗σ→τ y holds when x ∈MMσ
τ , y ∈MMσ̂

τ̂ , and

∀u ∈Mσ ∀v ∈Mσ̂ (u ≤∗σ v → xu ≤∗τ yv) ∧ ∀u, v ∈Mσ̂ (u ≤∗σ̂ v → yu ≤∗τ̂ yv)

and we define Mσ→τ = {x ∈MMσ
τ | x ≤∗ x∗, for some x∗ ∈MMσ̂

τ̂ }, for all extended types σ and τ .
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The intuitive meaning of x ≤∗ y is the same as before — that y is an upper bound for x, and y is

monotone — but the strong majorants are exclusively arithmetical. The extended version coincides with

the original version of strong majorisability in Bezem [3] when τ is an arithmetical type, hence we use

the same symbol ≤∗ for both relations. The main properties of the original strong majorisability relation

still hold for the extended strong majorisability relation (for a proof see [9, Lemma 27]):

• reflexivity for strong majorants: if x ≤∗ y, then we have y ≤∗ y,

• transitivity: if x ≤∗ y and y ≤∗ z, then x ≤∗ z.

The extended model of strongly majorisable functionals, denoted by M ω,X , is now based on the new

majorisability relation, the type structure for M ω,X being defined with the sets Mτ defined above.

The function symbols are interpreted as in the standard model S ω,X , but we now need the new

constants — the ones related to the structure X — to have interpretations that are strongly majorisable.

In fact, to prove the soundness theorem (Theorem 4.5) in the abstract type case, for each added constant

c of type τ we require also a closed companion term tc of type τ̂ that is a strong majorant. Moreover,

the companion term of 0X must be 0.

Intensional majorisability The definition of extended strong majorisability can be adapted to an

extensional definition of majorisability within PAω,X :

• t ≤∗0 s is defined as t ≤0 s,

• t ≤∗X s is defined as BX(t, s) for some universal formula BX(x, n) such that

– PAω,X ` ∀xX ∀n0,m0 (BX(x, n) ∧ n ≤0 m→ BX(x,m)),

– PAω,X ` ∀xX ∃n0 BX(x, n),

• t ≤∗σ→τ s is defined as

∀uσ ∀vσ̂ (u ≤∗σ v → tu ≤∗τ sv) ∧ ∀uσ̂, vσ̂ (u ≤∗σ̂ v → su ≤∗τ̂ sv)

for all extended types σ and τ , assuming that u and v do not occur in t or in s.

The intensional definition of majorisability, as before, replaces the non-universal axioms of extensional

majorisability with corresponding rules. First, we add to the language new binary relation symbols Eτ

infixing between objects of type τ and of type τ̂ . We also add universal bounded quantifiers ∀x Eτ t ,

and the existential version ∃x Eτ t as an abbreviation for ¬∀x Eτ t ¬A.

The extended theory of Peano arithmetic in all finite types with intensional majorisability, denoted

by PAω,XE , is the extension of PAω,X with its axioms applying also to the new formulas with the symbol

E and the bounded quantifiers, and additionally with the universal closures of the formulas:

• bounded quantifier axioms

∀x Eτ t A↔ ∀x (x Eτ t→ A)

[∃x Eτ t A↔ ∃x (x Eτ t ∧A), a consequence of the abbreviation ∃x Eτ t A]

where A is an arbitrary formula, the variable x does not occur in the term t, and τ is any type,
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• extended strong majorisability axioms

n E0 m↔ n ≤0 m

x EX n→ BX(x, n)

x Eσ→τ y → ∀uσ ∀vσ̂ (u ≤∗σ v → xu ≤∗τ yv) ∧ ∀uσ̂, vσ̂ (u ≤∗σ̂ v → yu ≤∗τ̂ yv)

for all extended types σ and τ ,

• universal bounded axioms related to the structure X,

and the extended strong majorisability rules

Abd → BX(x, n)

Abd → x EX n

and

Abd ∧ u Eσ v ∧ u′ Eσ̂ v′ → tu Eτ sv ∧ su′ Eτ̂ sv′
Abd → t Eσ→τ s

where Abd is a bounded formula, and the variables u, v, u′, and v′ do not occur free in Abd, in t or in s.

For the advantage of having universal axioms, attained by the inclusion of the rules above, we pay

the price of not having a deduction theorem for PAω,XE . Besides universal axioms for the structure X, we

can also have universal bounded axioms for the same reason — using the argument for Theorem 2.11, we

can add them to the soundness theorem for free.

The intensional theory PAω,XE can prove the main properties of extended strong majorisability:

• x E y → y E y,

• x E y ∧ y E z → x E z.

A simple proof by induction can be found in [9, Lemma 28].

Flattening The formulas of the intensional theory PAω,XE can be mapped to formulas of the theory

PAω,X using the extensional version of strong majorisability ≤∗. This process is called flattening — the

flattening of a formula A of PAω,XE is the formula A∗ of PAω,X obtained from A by replacing the relation

symbols Eτ with ≤∗τ , and the occurrences of bounded quantifiers ∀x Eτ t A with ∀x (x ≤∗τ t→ A).

When the theory PAω,XE proves a formula A, it follows that PAω,X proves the flattening A∗ simply by

using the same proof as for the original formula A but instead of using the rules of the intensional E we

use the defining axioms of the extensional relation ≤∗.

4.2 Examples of abstract types

In the previous section, we paint a very general picture with an abstract type representing some math-

ematical structure X, and with the language, axioms and majorisability relation of PAω,XE varying with

each case. Now we present concrete examples of structures X and how these are embedded in the theory

of finite-type arithmetic.
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Rings The language is extended with constants related to ring theory:

• 0X and 1X of type X, representing the additive and multiplicative identities,

• + and · of type X → X → X, representing the additive and multiplicative operations,

• − of type X → X, representing the symmetric.

The constant 0X is part of the language for any abstract type, but here it has the additional mathematical

meaning of being the additive identity.

The standard axioms for rings do not require a symbol for the symmetric (−), and include an axiom

stating the existence of a symmetric element

∀x∃y (x+ y = y + x = 0).

The problem is that this axiom is not universal, so we use the universal algebra approach and consider

a constant for the symmetric (−) as part of the language and universal axioms from [4, I§8.1] that are

universal closure of the following formulas

• x+ (y + z) = (x+ y) + z,

• x+ y = y + x,

• x+ 0X = x,

• x+ (−x) = 0X ,

• x · (y · z) = (x · y) · z,

• x · 1X = 1X · x = x,

• (x+ y) · z = (x · z) + (y · z),

• x · (y + z) = (x · y) + (x · z),

where x, y, and z are of type X. If the abstract type represents a commutative ring, we add to this list

• x · y = y · x.

The majorisability relation for the ground type X is the trivial one — we have x ≤∗X n for any pair

(x, n). In this case, we can replace the majorisability rule for EX with the axiom ∀xX ∀n0 (x EX n). With

this majorisability relation, quantifications over the elements of the ring ∀xX are bounded quantifications

∀x EX 0 , effectively rendering the elements of the ring computationally empty. Now, the axiom of

existence of symmetric would not be problematic after all, as its quantifiers could be replaced by bounded

quantifiers.

The companion terms of the constants — the terms tc such that PAω,XE proves c E tc — are zero

terms

• the companion of 0X and 1X is 0,

• the companion of + and · is λn0,m0.0,

• the companion of − is λn0.0.

The abstract type of a ring has been used in proof mining studies to analyse a suitable version of

the theorem of commutative algebra saying that an element is nilpotent if and only if it is contained in
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every prime ideal, cf. [1, Proposition 1.8]. This analysis uses the bounded functional interpretation and

is performed by Ferreira in [15].

Real numbers There are a myriad of ways to incorporate the real numbers into the theory of finite-

type arithmetic. Some are based on representations of real numbers as functions N → N: one of them

uses rapidly converging Cauchy sequences of rational numbers, see [28, §4.1]; other uses the signed-digit

representation, see [9, §4.1.1]. The real numbers can also be added as an abstract type, see [17]. Instead

of the usual X, we use R to denote the abstract type of the real numbers.

The language is extended to encompass ordered domains with constants:

• 0R and 1R of type R, representing the real numbers 0 and 1,

• + and · of type R→ R→ R, representing the sum and product of real numbers,

• − of type R→ R, representing the symmetric,

• inv of type 0→ R, with inv n, sometimes written as 1
n+1 , representing the inverse of n+ 1,

and with a binary relation

• ≤R between terms of type R, representing the usual order relation.

Adding a binary relation can be seen as adding a constant that represents its characteristic function. In

fact, we could equivalently add a constant ≤R such that ≤R (x, y) = 0 when x ≤ y as real numbers, and

≤R (x, y) = 1 otherwise. The companion term for the constant ≤R would then be λn0,m0.1.

The axioms for real numbers extend those used for commutative rings with the universal closure of

the following formulas:

• x · y = 0R → x = 0R ∨ y = 0R,

• (n+ 1) · 1
n+1 = 1R,

• x ≤ y → x+ z ≤ y + z,

• 0R ≤ x ∧ 0R ≤ y → 0R ≤ x · y,

where n is of type 0, and x, y, and z are of type R. In the second formula, it appears that we are

multiplying a term of type 0 with a term of type R, an operation not defined in the theory. Instead,

we define a function (·)R of type 0 → R by recursion with (0)R = 0R and (n + 1)R = (n)R + 1R that

intuitively returns the real number corresponding to a natural number. When the intended type is clear

from context, we write n instead of (n)R.

The majorisability relation for the ground type R is defined as

x ≤∗R n when |x| ≤R n,

where |x| is a function of type R→ R such that

|x| =

x if 0R ≤ x

−x otherwise.

The companion terms for the constants are thus:
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• the companions of 0R and 1R are 0 and 1,

• the companions of + and · are λn0,m0.n+m and λn0,m0, n ·m,

• the companion of − is λn0.n,

• the companion of inv is λn0.1.

For proof mining purposes, there is a problem with the symbols =R and ≤R: they have the same

complexity as the corresponding symbols for type 0. For instance, equality between real numbers, which

should have complexity similar to equality between functions N→ N, is represented by a symbol =R with

the same syntactic complexity as equality between natural numbers =0. With this in mind, alongside

the primitive logical symbols =R and ≤R, we define symbols for equality =R and for inequality ≤R whose

intended meaning is equality or inequality as real numbers:

x =R y is defined as ∀n0

(
|x− y| ≤R

1

n+ 1

)
,

x ≤R y is defined as ∀n0

(
x ≤R y +

1

n+ 1

)
,

x <R y is defined as ∃n0

(
x+

1

n+ 1
≤R y

)
.

These defined symbols connect the abstract type R of the real numbers with the natural numbers, and

they define the relations of equality and inequality as they are frequently used in analysis. Furthermore,

the symbol =R induces a sort of Arquimedian property for R.

The abstract type R with equality =R and inequality ≤R in the sense of the real numbers can be

proven to satisfy the axioms of an ordered field. For instance, if x of type R is such that 0R <R x, then

there is y of type R such that x · y =R 1R, see [17] for a proof.

The following examples involve the real numbers. In the literature, these examples are presented using

representations for the real numbers such as the signed-digit representation or Cauchy sequences. In

what follows, we illustrate how these abstract types could be defined using the abstract type of the real

numbers defined above.

Bounded metric spaces A metric space X comprises a metric d : X × X → R. To consider metric

spaces with a real-valued metric, we require two abstract types: one is X, representing the metric space;

and the other is R, representing the real numbers.

The language is extended with a single constant to accommodate metric spaces:

• d of type X → X → R, representing the metric.

The axioms for a metric space with diameter bounded by b ∈ N are the universal closures of the

following formulas:

• d(x, x) =R 0R,

• d(x, y) =R d(y, x),

• d(x, z) ≤R d(x, y) + d(y, z),

• d(x, y) ≤R b,
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where x, y, and z are of type X. As =R and ≤R are defined by universal formulas, the axioms we consider

are indeed universal.

When the metric space is bounded, the majorisability relation for the ground type X is the trivial one,

with x ≤∗ n for any n. In this case, we can discard the rule for EX and have an axiom ∀xX ∀n0 (x EX n).

The companion term for the constant d that represents the metric is thus λn0,m0.b.

As for the real numbers, the metric spaces include a defined equality =X in the sense of metric space

equality

x =X y is defined as d(x, y) =R 0R.

The reason for this is twofold: on one hand equality between elements of the metric space should have

higher complexity than equality between natural numbers, that is, it should not be primitive recursive.

Unlike the primitive =X , the mathematical equality =X provides computational information. On the

other hand, metric spaces have the axiom

∀x∀y (x = y ↔ d(x, y) = 0),

and we cannot postulate the closure of d(x, y) =R 0R → x =X y, since it is not a universal formula,

because =R is defined by a universal formula.

Metric spaces The case of a general metric space X is treated in a similar way to the bounded case,

but with a different majorisability relation.

The axioms are the same axioms used for a bounded metric space, except for the axiom

∀xX ∀yX d(x, y) ≤R b

stating that the diameter is bounded.

The majorisability relation for the ground type X is defined now using the basepoint 0X

x ≤∗X n is defined as d(x, 0X) ≤R n,

and the companion term for the constant d is now λn0,m0.n+m.

Normed spaces A normed space is a vector space with a norm. We consider vector spaces over the

real numbers, hence we have two abstract types: one is X for the elements of the normed space, and the

other is R for the real numbers.

The language is extended with constants to deal with normed spaces:

• 0X of type X, representing the zero vector,

• + of type X → X → X, representing vector addition,

• · of type R→ X → X, representing scalar multiplication,

• − of type X → X, representing the symmetric,

• ‖ · ‖ of type X → R, representing the norm.

We consider as axioms the universal closures of the following formulas from [4, II§1.1] and [5, IX§3.3]:
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vector spaces are axiomatised by

• x+ (y + z) = (x+ y) + z,

• x+ 0X = x,

• x+ (−x) = 0X ,

• x+ y = y + x,

• a · (x+ y) = (a · x) + (a · y),

• (a+ b) · x = (a · x) + (b · x),

• a · (b · x) = (a · b) · x,

• 1R · x = x,

and the axioms for a norm are

• ‖0‖ =R 0R,

• ‖a · x‖ =R |a| · ‖x‖,

• ‖x+ y‖ ≤R ‖x‖+ ‖y‖

where a and b are of type R; and x, y, and z are of type X. The equalities between terms of type X are

primitive equalities =X .

The majorisability relation for the ground type X is defined in a way similar to the case of the real

numbers:

x ≤∗X n is defined as ‖x‖ ≤R n.

The companion terms for the constants are also similar:

• the companion of 0X is 0,

• the companions of + and · are λn0,m0.n+m and λn0,m0.n ·m,

• the companion of − and ‖ · ‖ is λn0.n.

A normed space can be seen as a metric space. Indeed, the function d(x, y) = ‖x − y‖ defines a

metric. Thus, a normed vector space is a metric space with 0X as the basepoint. As for metric spaces,

we consider a defined equality symbol

x =X y defined as ‖x− y‖ =R 0R,

for which the usual norm axiom

∀x (x =X 0X ↔ ‖x‖ =R 0R)

holds. This is not an axiom we could have for primitive equality, as the axiom ‖x‖ =R 0R → x =X 0X is

not universal, due to the definition of =R.

Theorems about metric spaces and normed vector spaces are frequently the topic of proof mining

studies, and having these spaces presented abstractly allows for greater generality. For example, the

Browder fixed-point theorem [7] is analysed using the bounded functional interpretation in [35, 18].
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4.3 Extended bounded functional interpretation

The extension of the theory of finite-type Peano arithmetic with abstract types is only worthwhile if we

can then set up a functional interpretation. In fact, we will see that the bounded functional interpretation

of §2.3 accepts additional abstract types with virtually no changes. In this section, we present the bounded

functional interpretation extended with an abstract type and directly for classical logic, as presented in

[9, §4.3].

First, we define the usual abbreviations for the monotone quantifiers — quantifiers ranging over

monotone objects x, that is objects such that x E x — as follows

• ∀̃xA is an abbreviation for ∀x (x E x→ A),

• ∃̃xA is an abbreviation for ∃x (x E x ∧A),

• ∀̃x E t A is an abbreviation for ∀x E t (x E x→ A),

• ∃̃x E t A is an abbreviation for ∃x E t (x E x ∧A).

As monotone objects are those strongly majorised by themselves, and strong majorants are of arithmetical

type, it follows that a monotone object must be of arithmetical type — that is, a type built using only

the symbols 0 and →.

Definition 4.1 (Extended bounded functional interpretation). To each formula A of the language of

PAω,XE we assign a formula AU , called the extended bounded functional interpretation of A, which is of

the form

∀̃x ∃̃y AU (x, y),

with AU (x, y) a bounded formula, and x and y are (possibly empty) tuples of variables. The formulas

AU and AU are defined recursively as follows:

• if A is an atomic formula, then AU and AU are simply A.

For the remaining cases, let the interpretation of A be ∀̃x ∃̃y AU (x, y) and the interpretation of B be

∀̃u ∃̃v BU (u, v). Then:

• (¬A)U is ∀̃f ∃̃x ∃̃x′ E x ¬AU (x′, fx′),

• (A ∨B)U is ∀̃x, u ∃̃y, v (AU (x, y) ∨BU (u, v)),

• (∀z A)U is ∀̃w, x ∃̃y ∀z E w AU (x, y),

• (∀z E t A)U is ∀̃x ∃̃y ∀z E t AU (x, y).

The formula inside the unbounded ∀̃ ∃̃ quantifiers of AU is defined to be AU .

The clauses of the definition above are the same as in Definition 2.1. As a matter of fact, the

interpretation is focused on the variables bound by the monotone quantifiers ∀̃x ∃̃y and these only have

meaning when x and y are of arithmetical type. Hence the bounded functional interpretation requires no

syntactic changes to its definition.

As before, bounded formulas A are invariant under the interpretation, with both AU and AU being

the formula A. Furthermore, the extended interpretation still yields formulas AU (x, y) that are upward

monotone in the variable y.
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Lemma 4.2 (Monotonicity). For any formula A of the language of PAω,XE , we have

PAω,XE ` ∀x ∀y ∀y′ E y (AU (x, y′)→ AU (x, y)).

Characteristic principles The original characteristic principles are naturally extended to the language

that includes an abstract type. The main difference is that we consider variables of extended type, except

for those bound by monotone quantifiers — in what follows, variables bound by a monotone quantifier

∀̃x are of arithmetical type, and variables bound by the usual quantifiers ∀x can be of any extended

type. The characteristic principles of the extended interpretation are:

• the monotone bounded choice principle, denoted by mAC, is

∀̃x ∃̃y Abd(x, y)→ ∃̃f ∀̃x ∃̃y E fx Abd(x, y),

where Abd(x, y) is a bounded formula where f does not occur free, and x and y are tuples of variables

of arithmetical type,

• the bounded collection principle, denoted by bC, is

∀x E a ∃y Abd(x, y)→ ∃̃b ∀x E a ∃y E b Abd(x, y),

where Abd(x, y) is a bounded formula where b does not occur free, and x and y are tuples of variables

of any extended type,

• the majorisability principle, denoted by MAJ, is

∀x ∃y (x E y),

where x is a variable of any extended type.

We use the same names for the characteristic principles in the context of abstract types, but they now

refer to more general schemata including extended types.

The majorisability principle MAJ now generalises the extension of Howard’s theorem (Theorem 2.6).

Theorem 4.3 (Howard extended). For any closed term t of the language of PAω,XE , there is a closed

term s such that PAω,XE proves t E s.

This result can be proven by induction using the companion terms for the new constants, see [9,

Lemma 31]. Later on, the existence of bounding terms is used to prove the extended soundness theorem

(Theorem 4.5), hence the need for companion terms.

The principle of monotone bounded choice mAC can be substituted for the principle of bounded choice,

denoted by bAC,

∀x ∃y Abd(x, y)→ ∃̃f ∀̃a ∀x E a ∃y E fa Abd(x, y),

where Abd(x, y) is a bounded formula where f does not occur free, and x and y are tuples of variables of

any extended type.

Proposition 4.4. The theory PAω,XE + bC proves mAC↔ bAC.

Proof. The argument for Proposition 2.7 still applies in the presence of an abstract type.
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Soundness The soundness theorem proves the consistency of PAω,XE +mAC+ bC+MAJ relative to the

consistency of PAω,XE , however, from the point of view of proof mining, the interest is in the existence of

bounding terms t.

Theorem 4.5 (Soundness extended). Let A(z) be a formula of the language of PAω,XE with free variables

z, and ∆ be a set of universal bounded sentences. If

PAω,XE + mAC + bC + MAJ + ∆ ` A(z),

then there are closed monotone terms t, effectively obtainable from a proof of A(z), such that

PAω,XE + ∆ ` ∀̃w ∀z E w ∀̃x A(z)U (x, twx).

Proof. The full proof by induction on the proof of A(z) can be found in [9, Theorems 28, 29, and 38].

We consider formal proofs use the proof calculus of Shoenfield [37, §8.3]. To clarify the requirement of

companion terms for the new constants, we prove only the induction step corresponding to the substitution

axiom ∀uA(u)→ A(t), where t is a term free for x in A.

First, it is useful to compute the bounded functional interpretation of an implication A → B, which

is defined as (¬A ∨B)U . Assume that AU is ∀̃x ∃̃y AU (x, y) and that BU is ∀̃u ∃̃v BU (u, v). Then

(¬A)U is ∀̃f ∃̃x ∃̃x′ E x ¬AU (x′, fx′)

(¬A ∨B)U is ∀̃f, u ∃̃x, v
(
∃̃x′ E x ¬AU (x′, fx′) ∨BU (u, v)

)
,

that is equivalent to ∀̃f, u ∃̃x, v
(
∀̃x′ E x AU (x′, fx′)→ BU (u, v)

)
.

Now to prove the case of the substitution axiom ∀uA(u) → A(t), we need to compute its bounded

functional interpretation:

(∀uA(u))U is ∀̃v, a ∃̃b ∀u E v A(u)U (a, b),

A(t)U is ∀̃c ∃̃d A(t)U (c, d),

(∀uA(u)→ A(t))U is ∀̃f, c ∃̃v, a, d
(
∀̃v′ E v ∀̃a′ E a ∀u E v′ A(u)U (a′, fv′a′)→ A(t)U (c, d)

)
,

Let z be a tuple with the free variables of A and the variables of t. We want to provide a tuple of

closed monotone terms t = (p, q, r) for the variables bound by the existential monotone quantifier ∃̃v, a, d

such that PAω,XE proves

∀̃w ∀z E w ∀̃f, c
(
∀̃v′ E pwfc ∀̃a′ E qwfc ∀u E v′ A(u)U (a′, fv′a′)→ A(t)U (c, rwfc)

)
.

The term λz.t[z] is a closed term, since all the variables of t are among z. By the extended Howard

theorem (Theorem 4.3), there is a closed monotone term λz.s[z] such that λz.t[z] E λz.s[z]. Hence, if

z E w, then t[z] E s[w]. Take

p as λw, f, c.s[w],

q as λw, f, c.c,

r as λw, f, c.f(s[w])c,
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that are closed monotone terms. Then PAω,XE proves

∀̃w ∀z E w ∀̃f, c
(
∀̃v′ E s[w] ∀̃a′ E c ∀u E v′ A(u)U (a′, fv′a′)→ A(t)U (c, f(s[w])c)

)
,

by taking v′ = s[w], a′ = c, and u = t, as we wanted.

The extended soundness theorem can also be applied to get bounding terms for witnesses of ∀∃ -

formulas. This is the fundamental theorem for proof mining.

Corollary 4.6 (Extraction extended). Let Abd(x, y) be a bounded formula with free variables x and y.

If

PAω,XE + mAC + bC + MAJ ` ∀x ∃y Abd(x, y),

then there are closed monotone terms t, effectively obtainable from a proof of ∀x∃y Abd(x, y), such that

PAω,XE ` ∀̃w ∀x E w ∃y E tw Abd(x, y).

Proof. Similar to the proof of Corollary 2.12.

Moreover, we can use the result above to conclude that the theory PAω,XE + mAC + bC + MAJ is

conservative over PAω,XE + MAJ for ∀∃ -formulas.

Corollary 4.7 (Conservation). Let Abd(x, y) be a bounded formula with free variables x and y. If

PAω,XE + mAC + bC + MAJ ` ∀x ∃y Abd(x, y),

then PAω,XE ` ∀̃w ∀x E w ∃y Abd(x, y). Moreover, we get

PAω,XE + MAJ ` ∀x ∃y Abd(x, y).

Characterisation In the presence of the characteristic principles, the theory of finite-type Peano arith-

metic proves that every formula is equivalent to its bounded functional interpretation.

Theorem 4.8 (Characterisation). Let A be a formula of the language of PAω,XE . We have

PAω,XE + mAC + bC + MAJ ` A↔ AU .

This result can be proved by induction on the formula A, see [9, Theorem 39].

4.4 Bar recursion

The principle of definition by bar recursion can be extended to abstract types simply by allowing bar

recursive definitions involving the extended types.

In the context of finite-type arithmetic, bar recursion deals with finite sequences represented by pairs:

an object of type 0 representing the length of the sequence, and an object of type 0 → σ representing

an infinite sequence to truncate. Due to multiple pairs n, x representing the same sequence, we choose a

canonical representative n, x|n with an infinite sequence that only has zeros after the truncation point.
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Now, the definition of the zero terms is extended to encompass the new ground type: 00 is the constant

0, 0X is the constant 0X , and 0σ→τ is the constant λxσ.0τ . As before, the truncated sequence x|n is

defined as

(x|n)(i) =

x(i) if i < n

0σ otherwise.

The operation of concatenation, denoted by ∗, is used as previously defined in §3.1.1.

We add arithmetical constants to the language, the bar recursors Bσ,τ , of type

(
(0→ σ)→ 0

)
→
(
0→ (0→ σ)→ τ

)
→
(
0→ (0→ σ)→ (σ → τ)→ τ

)
→ τ,

where σ and τ can be any extended type. Furthermore, we have the usual axioms:

• bar recursor axioms, denoted by BR,

∃i ≤ n
(
y(x|i) ≤ i

)
→
(
A[B(y, f, g, n, x)/z]↔ A[f(n, x|n)/z]

)
∀i ≤ n

(
y(x|i) > i

)
→
(
A[B(y, f, g, n, x)/z]↔ A[g(n, x|n, λw.B(y, f, g, Sn, x|n ∗ 〈w〉))/z]

)
where A(z) is an atomic formula.

These axioms evaluate the bar recursors using canonical representatives for the finite sequences, thus

ensuring that their value does not change depending on the particular representative. The theory PAω,X

proves that the bar recursor axioms generalise for arbitrary formulas A(z).

To denote the extended theory of finite-type Peano arithmetic with bar recursion we write PAω,X+BR

for the extensional version, or PAω,XE + BR for the intensional version.

The extended model of strongly majorisable functionals The intended model for bar recursion

with an abstract type is the model of strongly majorisable functionals M ω,X , defined in §4.1. The

possibility of a natural interpretation for the bar recursors — that is, one according to Definition 3.1 —

is justified by the fact that M ω,X satisfies the bounding condition of §3.1, and hence definitions by bar

recursion always yield a function defined for all inputs.

Proposition 4.9. M ω,X satisfies the bounding condition. That is, all Y : Mσ→0 → N in M ω,X satisfy

∀x ∈Mσ→0 ∃n ∈ N ∀i ∈ N
(
Y (x|i) ≤ n

)
.

Proof. The proof of Proposition 3.4 applies without any changes.

The lemmas used to prove that the bar recursors are strongly majorisable in M ω can be generalised

to the abstract type case. The proofs can be found in [28, §17.4].

Lemma 4.10. If x ≤∗ x∗, then x∗ ≤∗ x∗. Hence, if x ≤∗ x∗ and x∗ ∈MMσ
τ , then x∗ ∈Mσ→τ .

Lemma 4.11. Let x : Mσ1
→ · · · → Mσk → Mτ and x∗ : Mσ̂1

→ · · · → Mσ̂k → Mτ̂ . Then x ≤∗ x∗ if

and only if we have

xy1 . . . yk ≤∗ x∗y∗1 . . . y∗k and x∗ŷ1 . . . ŷk ≤∗ x∗y∗1 . . . y∗k,

for all yi ∈Mσi and ŷi, y
∗
i ∈Mσ̂i such that yi ≤∗ y∗i and ŷi ≤∗ y∗i , with i = 1, . . . , k.
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In what follows, the functionals (·)M are only used for arithmetical types, but the definition can accept

certain extended types.

Definition 4.12 (xM ). Let x ∈MM0
τ , where τ = τ1 → · · · → τk → 0 and τ1, . . . , τk are extended types.

We define

xM as λn0, vτ11 , . . . , v
τk
k .max{xiv1 . . . vk | i ≤ n}.

Lemma 4.13. Let x ∈MM0
τ and y ∈MM0

τ̂ , where τ = τ1 → · · · → τk → 0. If we have x(n) ≤∗ y(n) for

all n ∈ N, then

x ≤∗ yM and xM ≤∗ yM .

In particular, if x ≤∗ x∗ and y ≤∗ y∗, then x, y ≤∗ max(x∗, y∗) and max(x, y) ≤∗ max(x∗, y∗).

If τ is an arbitrary extended type, then we can only conclude that, if x(n) ≤∗ y(n) for all n ∈ N, then

x ≤∗ yM ; and that when x ≤∗ x∗ and y ≤∗ y∗, we also have x, y ≤∗ max(x∗, y∗).

Lemma 4.14. For each extended type τ , we have MM0
τ = M0→τ .

As we had for M ω, the principle of classical bar induction is valid in M ω,X and can be used to show

that M ω,X is a model of bar recursion. This principle says that from the hypotheses

• ∀x0→σ ∃n0 ∀n ≥ n0 P (n, x|n)

• ∀n0 ∀x0→σ (∀wσ P (n+ 1, x|n ∗ 〈w〉)→ P (n, x|n)
)

we can conclude ∀n0 ∀x0→σ P (n, x|n).

Lemma 4.15. Classical bar induction holds in M ω,X .

Proof. The reasoning for Lemma 3.10 applies to M ω,X as well.

The terms Bp and B∗ are defined as before — since these are used as strong majorants, we only need

to define them using arithmetical types.

Definition 4.16 (Bp, B∗). For each bar recursor Bσ,τ , we define the terms

Bpσ,τ as λy, f, g, n, x.Bσ̂,τ̂y
mfmgfnx,

B∗σ,τ as λy, f, g, n, x.(Bσ̂,τ̂y
mfmgf )Mnx,

where ym(x) = y(xM ), fm(n, x) = f(n, xM ), and gf (n, x, v) = max
(
f(n, xM ), g(n, xM , v)

)
.

The theorem below is fundamental for proving that the bar recursors are strongly majorised function-

als, that is, that they are part of M ω,X .

Theorem 4.17. Let y ≤∗ y∗, f ≤∗ f∗, and g ≤∗ g∗ be of appropriate types for bar recursion, and

ŷ ≤∗ y∗, f̂ ≤∗ f∗, and ĝ ≤∗ g∗ be of the corresponding arithmetical types. Let r be an infinite sequence,

and r̂ and s be infinite sequences of the corresponding arithmetical type.
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For all n ∈ N, it holds in M ω,X that, if r(k) ≤∗ s(k) and r̂(k) ≤∗ s(k) for all k < n, then

Bpy∗f∗g∗nr̂ ≤∗ Bpy∗f∗g∗ns

Bpŷf̂ ĝnr̂ ≤∗ Bpy∗f∗g∗ns

Byfgnr ≤∗ Bpy∗f∗g∗ns.

Proof. The proof is based on the proofs of [20, Lemma 9.9] and [28, Lemma 17.83], and uses the same

strategy as the proof of Theorem 3.12 — we use classical bar induction with the formula P (n, s) being

∀r0→σ ∀r̂0→σ̂ (∀k < n (rk, r̂k ≤∗ sk)→ Byfgnr,Bpŷf̂ ĝnr̂, Bpy∗f∗g∗nr̂ ≤∗ Bpy∗f∗g∗ns
)
.

The hypotheses are then proven using the generalised lemmas above.

Corollary 4.18. In M ω,X we have B ≤∗ B∗.

Proof. Just apply the argument for Corollary 3.13.

Corollary 4.19. M ω,X is a model of bar recursion, that is, a model of PAω,X + BR.

Proof. The bar recursors Bσ,τ are strongly majorised by B∗σ,τ . Hence Bσ,τ is in M ω,X .

4.5 Bar induction

Bar induction is to bar recursion as ordinary induction is to recursion — the former is the principle of

proof corresponding to the latter. The version of bar induction we consider is simplified monotone bar

induction, which is generalised to abstract types by letting σ be any extended type.

Definition 4.20 (Simplified monotone bar induction). Given a formula P (n0, x0→σ), the principle of

simplified monotone bar induction, named BI−, is

Hyp1 ∧Hyp2 ∧Hyp3→ P (0, 00→σ),

where

• Hyp1 is ∀x0→σ ∃n0 P (n, x|n) (well-foundedness)

• Hyp2 is ∀n0 ∀x0→σ ∀i ≤ n
(
P (i, x|i)→ P (n, x|n)

)
(monotonicity)

• Hyp3 is ∀n0 ∀x0→σ (∀wσ P (n+ 1, x|n ∗ 〈w〉)→ P (n, x|n)
)

(step)

When we restrict P (n, x) to be an existential bounded formula, this principle is called existential simplified

monotone bar induction and denoted by BI−∃ .

By Theorem 3.20, we know that the theory PAωE + BR + mAC + bC + MAJ + ∆Mω proves BI−∃ . Our

goal is now to have the same result for PAω,XE using a similar argument.

The first step is to prove Kreisel’s trick for PAω,X , showing that the bar recursion axioms restrict the

functionals Y of type (0→ σ)→ 0 to those that yield a well-founded tree TY in the sense of §3.1.
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Lemma 4.21 (Kreisel’s trick extended). The theory PAω,X + BR proves

∀Y (0→σ)→0 ∀x0→σ ∃i0
(
Y (x|i) ≤ i

)
,

for any extended type σ.

Proof. As definitions by bar recursion in PAω,X allow the use of extended types, the proof used for

Lemma 3.17 goes through without any changes.

The second step is to have some additional axioms from M ω,X , a model that allows definitions by

bar recursion. One of these axioms is a monotonicity property for the bar recursor Bp.

Definition 4.22 (∆Mω,X ). We denote by ∆Mω,X the set of universal bounded sentences of the language

of PAω,XE whose flattening holds in M ω,X .

Flattening a formula means replacing the intensional majorisability symbols E by the defined exten-

sional symbol ≤∗. The use of these universal bounded sentences is not by chance: with formulas of that

form, we can use the soundness theorem to ensure that the theory PAω,XE +BR+mAC+bC+MAJ+∆Mω,X

is still consistent.

Theorem 4.23 (Soundness for ∆Mω,X ). Let A(z) be a formula of the language of PAω,XE +BR with free

variables z. If

PAω,XE + BR + mAC + bC + MAJ + ∆Mω,X ` A(z),

then there are closed monotone terms t, effectively obtainable from a proof of A(z), such that

PAω,XE + BR + ∆Mω,X ` ∀̃w ∀z E w ∀̃x A(z)U (x, twx).

Proof. Apply the extended soundness theorem (Theorem 4.5) taking ∆ = BR + ∆Mω,X .

By the theorem above, if the theory PAω,XE +BR+mAC+ bC+MAJ+ ∆Mω,X was inconsistent, then

PAω,XE +BR+∆Mω,X would also be inconsistent. But M ω,X is a model of PAω,XE +BR+∆Mω,X , therefore

the theory PAω,XE with the characteristic principles and the axioms from M ω,X is consistent. Hence, it

makes sense to prove the principle bar induction for this theory.

Theorem 4.24 (Bar induction). The theory PAω,XE + BR + mAC + bC + MAJ + ∆Mω,X proves BI−∃ .

Proof. This proof is an adaptation of the proof of Theorem 3.20 to the setting with an abstract type.

Consider P (n0, r0→σ) as the formula ∃aτ Q(n, r, a), with Q a bounded formula. Without loss of

generality, we can assume that τ is an arithmetical type and that Q(n, r, a) is upward monotone in a in the

sense that a E b and Q(n, r, a) imply Q(n, r, b). Indeed, let P (n, r) be written in the form ∃bρ Pbd(n, r, b),

with Pbd a bounded formula. By MAJ, this formula is equivalent to ∃aρ̂ ∃b E a Pbd(n, r, b). Taking

Q(n, r, a) as ∃b E a Pbd(n, r, b), we get and upward monotone formula with τ = ρ̂ an arithmetical type.

From this point on the proof proceeds as that of Theorem 3.20. Assume the hypotheses of BI−∃ :

• ∀r0→σ ∃n0 ∃aτ Q(n, r|n, a) (Hyp1)

• ∀n0 ∀r0→σ ∀i ≤ n
(
∃aτ Q(i, r|i, a)→ ∃bτ Q(n, r|n, b)

)
(Hyp2)
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• ∀n0 ∀r0→σ (∀wσ ∃aτ Q(n+ 1, r|n ∗ 〈w〉, a)→ ∃bτ Q(n, r|n, b)
)

(Hyp3)

By Proposition 4.4, we can use the principle of bounded choice bAC, since it can be proved by

PAω,XE + mAC + bC. Using this principle on the hypotheses of bar induction and the monotonicity of Q,

we get monotone functionals (of arithmetical type) Y , H, F , and G such that

• ∀̃s0→σ̂ ∀r E s ∃n ≤ Y s Q(n, r|n,Hs) (Hyp1’)

• ∀n0 ∀̃s0→σ̂ ∀r E s ∀̃cτ ∀a E c
(
∃i ≤ n Q(i, r|i, a)→ Q(n, r|n, F (n, s, c))

)
(Hyp2’)

• ∀n0 ∀̃s0→σ̂ ∀r E s ∀̃gσ̂→τ ∀f E g
(
∀̃zσ̂ ∀w E z Q(n+ 1, r|n ∗ 〈w〉, fz)→ Q(n, r|n,G(n, s, g))

)
(Hyp3’)

Using the bar recursor Bp from Definition 4.16, we define

B(n, s) = Bp
(
Y, λn, s.F (n, s,H(s|i0)M ), G, n, s

)
=

F
(
n, (s|n)M , H(s|i0)M

)
if ∃i ≤ n

(
Y (s|i)M ≤ i

)
max

(
F
(
n, (s|n)M , H(s|i0)M

)
, G
(
n, (s|n)M , λw.B(n, s|n ∗ 〈w〉)

))
otherwise,

where i0 is the least i ≤ n such that Y (s|i)M ≤ i, if such i exists, and n otherwise.

Firstly, we claim that, for all n of type 0 and infinite sequences r and s such that r(k) E s(k) for all

k < n, we have

∀̃zσ̂ ∀w E z Q(n+ 1, r|n ∗ 〈w〉, B(n+ 1, s|n ∗ 〈z〉))→ Q(n, r|n,B(n, s|n)).

This is proven by considering the two cases of bar recursion

• ∃i ≤ n
(
Y (s|i)M ≤ i

)
→ Q(n, r|n,B(n, s|n)) (1a)

• ∀i ≤ n
(
Y (s|i)M > i

)
→
(
∀̃zσ ∀w E z Q(n+1, r|n ∗ 〈w〉, B(n+1, s|n ∗ 〈z〉))→ Q(n, r|n,B(n, s|n))

)
(1b)

as in the proof of Theorem 3.20, but now using Lemma 4.13 rather than Lemma 3.8.

Applying the principle of bounded choice bAC to this claim provides us with a monotone functional

T : 0→ (0→ σ̂)→ (0→ σ̂)→ σ̂ such that, for all n of type 0 and infinite sequences u and v, and for all

r E u and s E v, if r and s are such that r(k) E s(k) for all k < n, then we have

∀̃zσ̂ E T (n, u, v) ∀w E z Q(n+ 1, r ∗ 〈w〉, B(n, s|n ∗ 〈z〉))→ Q(n, r|n,B(n, s|n)).

Secondly, define a functional x : 0→ σ̂ by recursion with

x(0) = T (0, 00→σ̂, 00→σ̂) and x(n+ 1) = T (n, (x|n)M , (x|n)M ).

By induction on n, we prove that, for all n of type 0, and for all infinite sequences r and s, if

∀k < n (r(k) E s(k) E x(k))→ Q(n, r|n,B(n, s|n)),

then it follows that Q(0, 00→σ, B(0, 00→σ̂)). The proof by induction is similar to the one in the proof of

Theorem 3.20.
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Lastly, use the extended version of Kreisel’s trick to get n0 such that Y (x|n0)M ≤ n0, that is, apply

Lemma 4.21 to the functional Y m(x) = Y (xM ). Then, we use the second claim to conclude the proof.

Let r and s be arbitrary infinite sequences such that r(k) E s(k) E x(k) for all k < n0. By Lemma 4.13,

we have (s|n0)M E (x|n0)M , and, therefore, it follows that Y (s|n0)M ≤ Y (x|n0)M ≤ n0. Using (1a), it

follows that Q(n0, r|n0, B(n0, s|n0)), proving

∀k < n0 (r(k) E s(k) E x(k))→ Q(n, r|n0, B(n0, s|n0)),

and using the second claim, we conclude Q(0, 00→σ, B(0, 00→σ̂)). Hence we have proven ∃aτ Q(0, 00→σ, a),

that is, P (0, 00→σ), as we wanted.

In the previous proof, we have used some sentences from ∆Mω,X without explicit reference. We now

highlight them.

• The main use of ∆Mω,X is through Theorem 4.24, via the sentence

∀̃y, f, g ∀n0 ∀r0→σ ∀s0→σ̂ (∀k < n (rk E sk)→ Bpyfgnr E Bpyfgns
)
.

• Lemma 4.13 is used in the form

∀n0 ∀r0→σ ∀s0→σ̂ (∀k < n (rk E sk)→ r|n E (s|n)M
)
,

when σ is any extended type, and

∀n0 ∀r0→σ ∀s0→σ̂ (∀k < n (rk E sk)→ (r|n)M E (s|n)M
)
,

when σ is of the form σ1 → · · · → σk → 0.

• Bounded extensionality from ∆Mω,X is used for substitutions of the form

∀n0 ∀r0→σ, s0→σ (∀k < n (rk = sk) ∧Abd[r|n/z]→ Abd[s|n/z]
)
,

for bounded formulas Abd(z).

4.6 Numerical comprehension

The path to numerical comprehension is now the same we trod in §3.4: having added bar recursion and

bar induction to the theory of finite-type arithmetic, we also get the principle of dependent choices.

Definition 4.25 (DCω). The principle of dependent choices, denoted by DCω, is

∀xσ ∃yσ A(x, y)→ ∀wσ ∃f0→σ (f(0) = w ∧ ∀n0A(f(n), f(n+ 1))
)
,

where A(x, y) can be any formula where f does not occur free, and σ any tuple of extended types. When

we restrict A(x, y) to be a universal bounded formula, this principle is denoted by DCω∀ .

In a sense, the principle of dependent choices DCω is the contrapositive of bar induction BI−, as seen

in the proof of Proposition 3.24.1. From dependent choices, we derive the principle of numerical choice.
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Definition 4.26 (AC0,ω). The principle of numerical choice, denoted by AC0,ω, is

∀n0 ∃xσ A(n, x)→ ∃f0→σ ∀n0A(n, f(n)),

where A(n, x) can be any formula where f does not occur free, and σ any tuple of extended types. When

we restrict σ to be type 0, this principle is denoted by AC0,0.

By a simple application of the principle of numerical choice, we conclude the principle of numerical

comprehension.

Definition 4.27 (CA0). The principle of numerical comprehension, denoted by CA0, is

∃f0→0 ∀n0 (f(n) = 0↔ A(n)),

where A(n) can be any formula where f does not occur free.

In short, we have

Proposition 4.28.

1. PAω,XE + BI−∃ ` DCω∀ ,

2. PAω,XE + mAC + bC + MAJ + DCω∀ ` DCω,

3. PAω,XE + DCω ` AC0,ω,

4. PAω,XE + AC0,0 ` CA0.

Proof. Use the same arguments as for Proposition 3.24, but now using the extended types and the

extension of bar induction to those types.

Corollary 4.29. The theory PAω,XE + BR + mAC + bC + MAJ + ∆Mω,X proves CA0.

Space completion In an application of the principles deduced above, we prove that the bounded

functional interpretation automatically completes metric spaces. In particular, we show that, in the

presence of bar recursion, the principle of bounded collection bC introduces limits for all Cauchy sequences.

A sequence x : 0→ X is a Cauchy sequence if it satisfies

∀k0 ∃n0 ∀i, j ≥ n
(
d(xi, xj) ≤R

1

k + 1

)
,

and a rate of convergence for a Cauchy sequence is a function f : 0→ 0 such that

∀k0 ∀i, j ≥ fk
(
d(xi, xj) ≤R

1

k + 1

)
.

The existence of a rate of convergence implies that a sequence is a Cauchy sequence. In the presence of

numerical choice AC0,0, the converse holds — i.e., every Cauchy sequence has a rate of convergence.

Proposition 4.30. Consider a Cauchy sequence x : 0 → X. The theory PAω,XE + BR + mAC + bC +

MAJ + ∆Mω,X proves that x has a limit, that is,

∃zX ∀k0 ∀i ≥ fk
(
d(xi, z) ≤R

1

k + 1

)
.
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Proof. This proof adapts the proof of [17, Proposition 1] to a general a metric space.

As x is a Cauchy sequence, by applying the principle of numerical choice AC0,0, we get a rate of

convergence f : 0→ 0 for x. Without loss of generality, we can assume that f is monotone.

By MAJ, there is a bound m such that d(x(f0), 0X) ≤ m. Aiming to apply bC, we claim that

∀a0, b0 ∃z E m+ 1 ∀k ≤ a ∀i ≤ b
(
i ≥ fk → d(xi, z) ≤R

1

k + 1

)
.

(The bound i ≤ b is not necessary for the proof, but we write the claim in this form to apply bC)

To prove the claim, consider a and b of type 0 and take z = x(fa). As f is monotone, we get f0 ≤ fa.

Hence, by hypothesis, it follows that d(z, x(f0)) = d(x(fa), x(f0)) ≤R 1. Therefore

d(z, 0X) ≤R d(z, x(f0)) + d(x(f0), 0X) ≤R m+ 1,

that is, z E m+1. Now let k ≤ a and i ≤ b with i ≥ fk. By monotonicity of f , we get fa ≥ fk. Thus, by

hypothesis, we have d(xi, x(fa)) ≤R
1
k+1 , as we wanted. Now apply bC to the claim to get the result.
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Chapter 5

Epilogue

We have studied two extensions to the bounded functional interpretation, in the context of classical

logic, that allow the interpretation of stronger and richer theories. These extensions had been previously

studied in separation, for intuitionistic logic, in [9].

The first extension extended the bounded functional interpretation with bar recursive functionals in

a similar way to how Spector [39] extends Gödel’s dialectica interpretation. This extension allowed the

interpretation of theories that prove the principle of dependent choices and the principle of numerical

comprehension. In particular, we have checked that, for the interpretation of the principle of arithmet-

ical comprehension, we only required the bar recursor B0,0. These results have been applied for the

interpretation of subsystems of second-order arithmetic, namely RCA, ACA, and PA2 itself.

The second extension involved the addition of an abstract type — an additional ground type rep-

resenting some mathematical structure, such as a metric space or a ring — using a method inspired by

Kohlenbach’s extensions [27, 20] to the monotone functional interpretation. With an abstract type, the

bounded functional interpretation can interpret theories about spaces that do not have to be encoded.

We have checked in detail that the bounded functional interpretation can comport both extensions

at the same time. Indeed, we have successfully adapted, in the presence of an abstract type, the ar-

guments that prove the principle of dependent choices from the proof principle of bar induction — the

correspondent of bar recursion. In an application, we have shown that the extended bounded functional

interpretation automatically completes metric spaces.

Future work

The logical sequel to this work is the application of the bounded functional interpretation, now enriched

with bar recursion and an abstract type, to studies in proof mining. The first step in this direction

is taken in [35], the first use of the bounded functional interpretation for the proof mining of concrete

mathematical results in analysis. However, the theorems analysed there do not require the use of bar

recursion, even though they make use of an abstract type. The added strength of bar recursion may

enable the employment of proof mining techniques to a wider range of theorems.
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Speaking of a wider range, a parallel objective is the application of methods of proof mining to more

branches of mathematics. The pioneering work of Kohlenbach [26] bridges between logic and analysis —

the core results are from logic, but their deployment leads to new purely analytical results. Since then,

proof mining has been mostly focused on theorems from analysis. At any rate, there is no impediment

to the adoption of proof mining methods in other areas, as is evidenced by Ferreira in [15], where the

bounded functional interpretation is used to obtain proof mining results from a theorem in algebra.

More concrete suggestions for future work include a possible embellishment to our developments about

bar recursion, replacing the use of ∆Mω — the set of universal bounded sentences whose flattening holds

in M ω — with a more restricted set of axioms, akin to the list of sentences after the proof of Theorem 3.20.

A worthwhile further question is whether all of these sentences would have to be added as axioms, or if

the theories in question can already prove some of them.

Another concrete question concerns the computation of bounds for the interpretations of choice and

comprehension principles proven using bar induction. For example, by Proposition 4.28.3, the theory

PAω,XE +BR+mAC+ bC+MAJ+ ∆Mω,X proves the principle of numerical choice AC0,0. The soundness

theorem for bar recursion, Theorem 4.23, guarantees the existence of bounding terms t including the bar

recursors such that PAωE + BR + ∆Mω proves ∀̃x AC0,0
U (x, tx), where ∀̃x ∃̃y AC0,0

U (x, y) is the bounded

functional interpretation of AC0,0. Even though the interpretation of AC0,0 is admittedly a bit opaque,

it would be enlightening to see the bar recursors occurring in the bounding terms.
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