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Resumo

No presente trabalho, propomos uma posśıvel formulação teórica para o estudo do controlo ótimo
nos dados na fronteira para a classe das equações de Stokes com condições de fronteira mistas.
Fornecemos também uma explicação teórica do problema e dos espaços funcionais usados de forma
a deduzir (i) o problema de controlo ótimo está bem posto, e (ii) para fornecer as condições
necessárias de otimalidade de primeira ordem, que no nosso caso será também uma condição sufi-
ciente.
Consideramos custos quadráticos do tipo de velocity-tracking, de vorticidade ou então uma soma
dos dois com diferentes pesos.
Para o processo de otimização um método de descida é utilizado. São apresentados resultados
numéricos (2D) para vários casos, num domı́nio que pretende simular a bifurcação arterial que se
forma após um bypass.

Palavras-chave : Equações de Stokes com condições de fronteira mistas; problema não esta-
cionário; elementos Finitos; controlo ótimo na fronteira; equações diferenciais parciais; dinâmica
de flúıdos
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Abstract

In the present work er propose a possible framework for a optimal boundary control problem, for
the time dependent Stokes mixed boundary conditions.
We provide a theoretical framework to address (i) the well posedness analysis for the optimal
control problem related to this system and (ii) the derivation of a system of first-order optimality
conditions.
We consider the minimization of quadratic cost (e.g., tracking or vorticity) functionals of the ve-
locity. A descent method is then applied for numerical optimization.
Numerical results are shown for (2D) simulation of an arterial bifurcation after a bypass is done.

Keywords: Optimal boundary control; partial differential equations; fluid dynamics; Time- de-
pendent Stokes equations with Dirichlet-Neumann boundary conditions;finite element method
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1 Introduction

Optimal control problems (OCP’s) in the framework of partial differential equations, is a research
field with challenging theoretical questions, for mathematical analysis and definition of numerical
efficient algorithms, which has a large range of applicability on engineering, as for instance, in
aerodynamics. In the present work, we will focus on doing the minimization of quadratic cost
functionals, or a combinations of quadratic cost functionals (see for example [15; 4; 24; 11; 12;
9]), associated to a non-stationary, incompressible fluid dynamic problem, with mixed boundary
conditions. To be more precise, we are interested in minimizing a particular collection of cost
functionals, which are constrained to be evaluated at solutions (in some sense) to the following
mixed boundary time-dependent Stokes equation:

∂y

∂t
+∇p− µ∆y = f , in ΩT , (1)

∇ · y = 0 , in ΩT , (2)

y = g , in Γ1 × (0, T ) , (3)

y = 0 , in Γw × (0, T ) , (4)

µ∇y · n− pn = 0 , in Γout × (0, T ) , (5)

y(0, .) = y0 , (6)

(1)

where Ω and it’s boundary parts are illustrated in (1) (we denote by Γ1 = Γin ∪ Γc), T is a fixed
terminal time and Q = ΩT = Ω× (0, T ). The components (1) and (2) of this system of equations
describe the behavior of an imcompressible fluid with low viscosity in the domain Ω. The condition
(3) is the imposed Dirichlet condition, and (4) is the no-slip condition and is physically interpreted
as saying that the fluid aggregated to the wall has no movement. This condition in the framework
of blood flow may also be interpreted as saying that the walls have no movement. Lastly, the
condition (5) is an artificial condition, that is usually used in this type of problems, which appears
from a simplification for the variational formulation that appears when integration by parts is done
in (1) of (1).

One possible application of this theoretical problem, may be the study of the control of the blood
flow in an arterial bifurcation, after a bypass is done1, with the goal of knowing which velocity
profile must exist on Γc in such a way that the vorticity of the fluid is minimized, or the prox-
imity (in some norm which is usually the L2−norm) to some target velocity, that we know to be
representative of a well-behaved blood flow. Also is very common, and we do that in here, to
add a penalization parameter, to the cost functional, which in our case is a quadratic functional
depending on the control.

Boundary control problems in the context of fluid dynamics, isn’t a new subject, and a large amount
of theory and research has already been done, see for example the book [11] where the author shows
a collection of typical problems in boundary optimal control.

Figure 1: Omega Domain.

However, as far as we know, the type of bound-
ary conditions considered in the present work is not
yet fully studied, at least on the framework of a
time dependent problem. Also, notice that in our
case, we do not ask the boundary control function
u, to satisfy an integral condition

∫
Γc
u · nds =

0.

In what follows, we discuss some of the references that
can be found in the literature, which were relevant for

our work.

The stationary version of our problem, was studied in [24]. In that article, the authors considered
a similar domain as the one illustrated in figure (1), and they were also interested in minimizing
the vorticity and target velocity functionals, by controlling the input velocities in Γc, where this

1The bypass being the upper part of the bifurcation, and the obstructed the bottom one of the image (1).
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functionals were evaluated on a collection of pairs (y, u) (u being the control and y the velocity)
which are restricted to satisfy in some weak sense the stationary Navier-Stokes problem in Ω, given
by, 

−µ∆y + (y · ∇)y +∇p = 0 in Ω

∇ · y = 0 in Ω

y|Γc
= u

y|Γw = 0

y|Γin = vin

(∂ny − pn)|Γout
= 0

(2)

As we can see, this problem is very similar to ours, but, however, by introducing the time depen-
dence we fall into a problem which is not easily adapted by the work done in that paper. From
there, and the examples in [11] which are about boundary control problems, we also took the idea
of using, for our weak formulation, velocities which do not necessary have null trace in Γc ∪ Γin.
This type of functions play an important role in the first order conditions for optimality.

In [15] a boundary control problem in a time-dependent framework is considered, but in that
case, the control is done in the whole boundary,

yt − ν∆y + (y · ∇)y +∇p = 0 in Q

−∇ · y = 0 in Q

y = Bu in Σ

y(0, ·) = y0 in Ω

(3)

where Ω is a bounded domain in R2, Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ). In that article, the
method used to arrive to the first order optimality conditions were very useful to our problem.
The paper also provides, some guide steps for which functional spaces we should look for in this
type of problems, in order to define a proper weak formulation for our problem.

Lastly, we refer to the article of [12] were they also address a minimization problem for a ve-
locity target functional, associated with a time-dependent Navier-Stokes equation,

∂y

∂t
+ (y · ∇)y +∇p = 0 in Ω× (0, T )

∇ · y = 0 in Ω× (0, T )

y = g in Γc × (0, T )

y = 0 in (Γ \ Γc)× (0, T )

y(0, ·) = y0 in Ω

(4)

However, as can be seen, the problem has not a mixed boundary condition,and therefore, since the
solution must satisfy the equation ∇·v = 0 and the boundary value in Γ\Γc is null, we must have,
by a compatibility condition, that ∫

Γc

g · nds = 0 (5)

where n is the unitary normal to the boundary in Γc. This restriction is not realistic in our case
since it is possible to have a control with non zero boundary flux, as for example a parabolic inflow
in Γc.

Other works were also seen such as [4; 11; 9; 7] and were important for the present work.

This work is organized as follows. In section-2 we give a motivation for the weak formulation
and define the functional setting for our weak problem. This part is very important not only
for the state equation but also for the first order necessary conditions of optimality. In section-3
we analyze the well-posedness of the state equation, by using the classical Galerkin method for
a linear parabolic PDE. In section-4 we give a proof of the existence of an optimal solution for
the minimization problem and also we deduce the first order optimality conditions. In section-5
we turn our attention to the discretization of the problem and lastly in section-6 we present some
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numerical results, for a velocity tracking functional, with observations on the whole domain, and
also in some particular areas of the domain, in order to also study the influence of the observations
zone on efficiency of the numerical method to reach the target flow. A vorticity functional and a
combination of the two is also considered. On those simulations, we considered two cases for the
input and fixed velocity vin: (i) the case with the total obstruction vin = 0, and the case of a
strongly decreasing function with a high value on the center of Γin, in order to modulate a type of
almost total obstruction.

2 Functional Setting and Preliminary Results

In this section we start by giving a motivation for the definition of the functional spaces that we
will use in the weak formulation. After, we show a possible way of construction lifting operators,
for the Dirichlet boundary data, a norm that yields an Hilbertian structure for the set of boundary
functions on the control zone, and the set of admissible initial conditions. We close this chapter
with some important notes.

2.1 Motivation for the Functional Spaces

In classical terms, a solution of the problem (1) is a pair (y, p) that satisfies the equation, and such
that y ∈ C2,1(ΩT ), where the superscript indices correspond to the order of the derivatives in x
and in t, by this order, and p ∈ C1(ΩT ).
However this formulation is too strong. For instance, if we consider f ∈ L2(0, T ;L2(Ω)) (see the
subsection (7.3) of the appendix for the definition of this spaces), which is the case for many of
the applications, we have that in general f would be a discontinuous, both in the time and space
variables, and in this case , there is no hope in finding a classical solution u that satisfies (1), since
then we would get that the second space derivatives of u are equal to a discontinuous function,
and therefore y cannot be in C2,1(Ω).
Therefore we need to weaken the concept of solution to (1), in order to proof the well-posedness
for a more variability of forms of the equation (1). This corresponds to consider solutions in a
bigger space, which must contained the set of the classical ones. In some cases using regularity
improving results, which can be seen, for instance, in the books, [8] or [21], we can proof that, in
fact, the founded weak solution, is also a classical solution. These results are build under some
regularity assumptions on the force term f , the boundary conditions, the initial condition and also
on the regularity of the boundary ∂Ω, and we will talk about them on the chapter of the solution
regularity, but not in a deep way.

In order to accomplish the goal of weakening the concept of solution to (1), we will use the classical
Sobolev spaces (see the chapter (7.2) of the appendix for a quick review and the notation used)
or in more detail [8; 1; 32; 33; 22], the Lp(0, T ;X) spaces where X is a Banach space (appendix
section (7.3)) or in detail [8; 32; 33], and vector-valued (see appendix section or scalar distributions
(7.4)) or in detail [32; 33].

As usual we will denote by D(Ω) = {φ : φ ∈ C∞
0 (Ω)} the set of test functions whose dual

space D(Ω)∗, is called the set of distributions on Ω. Also to set notations, we will denote by (·, ·)
the L2(Ω) inner product, by ((·, ·)) the H1

0 (Ω) inner product, and lastly by ⟨f, φ⟩X∗,X the duality
product between a functional f ∈ X∗ and an element of X.
Let us now introduce a space that is fundamental for our construction (see [2] pag.3)

E (Ω) = {u ∈ C∞(Ω)2 : ∇ · u = 0 , supp(u) ∩ ΓD
2 = ∅}

where supp(u) is the support of u, i.e, is the biggest closed set where the function u is different from
zero. Notice that the functions of E (Ω), which is not an empty set, are characterized by having
null divergence and null trace in the Dirichlet boundary part of ∂Ω. E (Ω) has also functions which

2ΓD = Γc ∪ Γin ∪ Γc.
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have non-null traces on ∂Ω \ ΓD. By this fact, this set is not contained in D(Ω), but, and this is
very important, E (Ω) contains the set V = {φ ∈ D(Ω)2 : ∇ · φ = 0}.3

Now we introduce a formal motivation to the weak formulation, and therefore of the used func-
tional spaces.
We start by supposing that every term of 1-(1) is sufficient regular, both in time and in space4,
and multiply that equation by φ ∈ E (Ω) followed by integration in the space variables. We get,
by using Green formulas, which are valid if we assume enough regularity (see [10]), and the fact
φ|ΓD

= 0, that (∂u
∂t
, φ

)
− µ(∆u, φ) + (∇p, φ) = (f, φ)⇔(∂u

∂t
, φ

)
+ µ(∇u,∇φ) = (f, φ) +

∫
Γout

(
µ∇u · n− pn

)
φ

From the do-nothing condition (equation (5) of the system (1)), the last term on the right hand
side is zero, from where we get that for every φ ∈ E (Ω),(∂u

∂t
(t), φ

)
+ µ(∇u(t),∇φ) = (f(t), φ) for all t ∈ [0, T ] (6)

where we suppressed the space dependence.
Notice now that if, φ ∈ H1

ΓD
(Ω)2 := {u ∈ H1(Ω)2 : τ̂D(u) = 0}, where τ̂D is the trace operator

τ̂D : H1(Ω)→ L2(ΓD) ( for the definition and properties of this operators see the appendix section
(7.2)), the above argument still makes sense (see [10]).
This motivates the definition of the space

Ṽ = E (Ω)
H1(Ω)

(7)

Now since clearly Ṽ ⊂ H1(Ω)2, and is constituted by functions with null trace in ΓD, with |ΓD| > 0,

by theorem 7.3, the space Ṽ equipped with the inner product of H1
0 (Ω) is a Hilbert space.

Until now, we only weaken the space of test functions and not the solution u. Suppose now that
u is C1 in time (in particular we can fix t = t0 ∈ [0, T ]) but only H1(Ω)2 in the space coordinates,
that is, u can be seen as a vector valued function u : [0, T ]→ H1(Ω)2 which is C1 in the variable
t. In this case all the terms in the expression (6) still makes sense. But again , assuming classical
diferentiability for the solution u, can be restrictive, since as said above, we are interested in
analyzing a problem with a force term of the form f ∈ L2(0, T ;X), X being a Banach space, which
does only have L2 regularity in time.
So we want our solution u to also have at least L2 regularity in time5, but in this cases we need to
clarify the meaning of the time derivative. This can be done by using the notion of derivative in
the sense of vector-valued distribution (see appendix section (7.5)).
Notice now that from the no slip condition in Γw for almost every time, we are looking for a
solution, which has null trace on the lateral boundary Σw = Γw × (0, T ).
Therefore, it makes sense to introduce the space L2(0, T ;V) where,

V := {u ∈ H1(Ω)2 : ∇ · u = 0, and τ̂w(u) = 0} (8)

with τ̂w : H1(Ω)2 → L2(Γw) being the trace operator on the subset Γw of Γ, which is linear and
continuous as can be seen in the appendix section (7.2).
Let us see, that V is a Hilbert space, when equipped with the H1

0 (Ω)2 inner product.
Since the operator τ̂w : H1(Ω)2 → L2(Γw) is a continuous operator, when the spaces H1(Ω)2 and
L2(Γw) are equipped with the usual norms, τ̂w has a closed kernel. Moreover, since the divergence
operator div : H1(Ω)2 → L2(Ω)2 is also continuous and linear, we get that V is the intersection
of two closed sets, and therefore is a closed subset of H1(Ω)2 for the H1(Ω)2 norm. By the fact
that every closed subset of a complete space, is also complete, we get that V is complete. Notice

3This inclusion is fundamental for the application of the DE Rham’s theorem, which is used to the construction
of a pressure field.

4This regularity assumptions allows us to fix a time t ∈ [0, T ].
5The choice of L2 regularity can be explain by the fact that this space as a Hilbert structure, what can be more

easily work with, then only a Banach space.
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now, that from the Poincaré’s inequality (theorem 7.3), since Ω is bounded and the functions of
V have null trace in a subset of ∂Ω with positive Lebesgue measure, the H1 norm is equivalent to
the H1

0 norm in the subspace V. So the two norms are equivalent, and since V is complete for the
H1 norm is also complete for the H1

0 norm.
In conclusion V is a Hilbert space for the inner product of H1

0 (Ω).

In this context, motivated by (6), we are looking for a solution u(t) ∈ L2(0, T ;V) and a time
derivative u′(t) also in L2(0, T ;V) such that

(u′(t), v) + µ(∇u(t),∇v) = (f(t), v) a.e t ∈ (0, T ) and for all v ∈ Ṽ (9)

Notice however, that if u(t) ∈ L2(V) and f(t) ∈ L2(0, T ;L2(Ω)2) then from (9) we get that

(
∂u

∂t
, v) = (f(t), v)− µ(∇u,∇v) , ∀v ∈ Ṽ a.e t ∈ (0, T ) (10)

and the expression on the right defines a continuous functional in Ṽ for almost every t ∈ (0, T ).

Therefore the term on the left u′(t) should also be in Ṽ ∗ for almost every t ∈ (0, T ).

We conclude that u′(t) should be in the bigger space L2(0, T ; Ṽ ∗), and we arrive to the variational
formulation

⟨u′(t), v⟩Ṽ ∗,Ṽ + µ((u(t), v)) = (f(t), v) a.e t ∈ (0, T ) and for all v ∈ Ṽ (11)

The above reasoning, leads us to the introduction of the space

W̃(0, T ) := {u ∈ L2(0, T ;V) : u′(t) ∈ L2(0, T ; Ṽ ∗)}

on which we define the norm

||y||W(0,T ) :=
(
||y||2L2(V) + ||yt||2L2(Ṽ ∗)

)1/2

It is also useful to introduce the following time dependent Sobolev spaces,

W(0, T ) := {u ∈ L2(0, T ;V) : u′(t) ∈ L2(0, T ;V∗)}

with norm

||y||W(0,T ) =
(
||y||2L2(V) + ||y′||2L2(V∗)

)1/2

which is induced by the inner product (u, v)W(0,T ) =

∫ T

0

(y(t), u(t))Vdt+

∫ T

0

(y′(t), u′(t))V∗dt and

the space
W (0, T ) := {u ∈ L2(0, T ; Ṽ ) : u′(t) ∈ L2(0, T ; Ṽ ∗)}

with the norm with the norm

||y||W (0,T ) =
(
||y||2

L2(Ṽ )
+ ||y′||2

L2(Ṽ ∗)

)1/2

which is induced by the inner product (u, v)W (0,T ) =

∫ T

0

(y(t), u(t))Ṽ dt+

∫ T

0

(y′(t), u′(t))Ṽ ∗dt .

It is possible to proof by using the theorem 7.6, that W(0, T ) and W (0, T ) are Hilbert spaces for
the inner products introduce above. The introduction of this time-dependent spaces is by now not
intuitive. However we can antecede their justification, by saying that is from the space W(0, T )
that we will get the a proper lifting for the Dirichlet data, and the space W (0, T ) is the space from
where we will get a variational solution, for our variational problem to be define later.
It is possible to proof a certain time regularity for the functions in W(0, T ) and W (0, T ), which
will be useful for the weak formulation for the present problem, but first one needs to introduce
another two spaces , H̃ and H given by

H̃ = E (Ω)
L2(Ω)

5



and

H = {v ∈ H1(Ω)2 : ∇ · v = 0 and τ̂w(v) = 0}
L2

= VL2

and we give to H̃,H the inner product of L2(Ω) which gives to these spaces a Hilbertian structure.

By definition is clear that H contains the set V. To see that we also have Ṽ ⊂ H̃, notice that since
H1(Ω)2 ⊂ L2(Ω)2, by choosing a function y ∈ Ṽ ⊂ H1(Ω)2, y satisfies

||y − yn||H1(Ω) → 0

for a certain sequence {yn}n∈N in E (Ω). Now from the fact that for every x ∈ H1(Ω)2, ||x||L2(Ω) ≤
||x||H1(Ω), we also have that

||y − yn||L2(Ω) ≤ ||y − yn||H1(Ω) → 0

and therefore y is also in E (Ω)
L2

= H̃.
Now we proof a density result.

Lemma 2.1. The set Ṽ is dense in H̃.

Proof: For this proof we start by introducing the stationary version of the problem (1) with

homogeneous Dirichlet data on ΓD = Γw ∪ Γin ∪ Γc, and with f ∈ H̃
−µ∆u+∇P = f in Ω

∇ · u = 0 in Ω

u = 0 in ΓD

µ∇u · n− pn = 0 in ΓN

(12)

The weak formulation of (12), using the space Ṽ , is given by,

Find u ∈ Ṽ , such that µ((u, v)) = (f, v) , for all v ∈ Ṽ (13)

Notice that the application ((., .)) is an inner product in Ṽ , and therefore, is a bi-linear, bounded

and coercive application on Ṽ . Thus by the Hilbertian structure of Ṽ , and the Lax-Milgram
theorem (see [31]), the Stokes solver operator Λ : H̃ → Ṽ is well defined, linear and a bounded
operator.
Now, since6 by theorem 7.2, H1(Ω)2 ↪→↪→ L2(Ω)2, we also have that Ṽ ↪→↪→ H̃. In fact, let

{un}n∈N ⊂ Ṽ be a bounded a sequence, and let I : H1(Ω) → L2(Ω) be the compact embedding

operator. Thus, since Ṽ ⊂ H1(Ω) and I(Ṽ ) ⊂ H̃, the sequence {I(un)}n∈N is contained in H̃ and
by the compactness of I, has a subsequence which is convergent for an element of L2(Ω). But since

H̃ is closed in L2(Ω), the subsequence converges for an element in H̃, what yields Ṽ ↪→↪→ H̃. Let

Ĩ : Ṽ → H̃ be the compact injection.
Now, since the operator Λ : H̃ → Ṽ is continuous, the operator Λ̃ : H̃ → H̃ given by Λ̃ = I ◦ Λ, is
compact, since is the composition of a compact operator with a continuous one.
This operator is also positive7 and self-adjoint. In fact, for arbitrary f1, f2 ∈ H̃, let Λ(f1) = u1
and Λ(f2) = u2

(Λ̃f1, f2) = (u1, f2) = µ((u1, u2)) = (f1, u2) = (Λ̃f2, f1) , for allf1, f2 ∈ H̃

and
(Λ̃f1, f1) = µ((u1, u1)) ≥ C||u1||2Ṽ

where C is the coercive constant of ((.,.)). Notice also that the strict positiveness implies that Λ̃
is injective.

From the above properties we can conclude, by the spectral theorem for self-adjoint, compact

6In the case of two Banach spaces X ⊂ Y , we denote by X ↪→↪→ Y the fact that the injection I : X → Y , given
by I(x) = x is a compact and linear operator.

7An operator T : X → X, with X a Hilbert space, is a positive application if (Tx, x) ≥ 0 for all x ∈ X
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and positive operators, that exist a family {λ1, λ2, ...} of eigenvalues, which satisfy λi > 0 for

all i ∈ N and λi → 0 when i → ∞, and that also exists an orthonormal family of vectors in H̃
{u1, u2, ...} , such that Λ̃ can be written as

Λ̃(u) =
∑
n

λn(u, un)un , ∀u ∈ H̃ (14)

Now, since Λ̃(H̃) = Ṽ ⊂ H̃, the orthonormal vectors {un} are all in Ṽ , and they define a Hilbertean

base for Im(Λ̃) = Ṽ , and since Ṽ = Ker(Λ̃)⊥ = {0}⊥ = H̃, we conclude that Ṽ is dense in H̃ as
we wanted to show. □

Now, from definition V is dense in H, since H is the closure of V in the L2-norm, which is the norm
of H, and also, from lemma 2.1 that Ṽ is dense in H̃. Therefore, we have the Gelfand’s8 triples

V ↪→ H ↪→ V∗ Ṽ ↪→ H̃ ↪→ Ṽ ∗

what leads us to the conclusion, using the theorem 7.7, that W(0, T ) ↪→ C([0, T ],H) and W (0, T ) ↪→
C([0, T ]; H̃), i.e , any function in W(0, T ) is a continuous function from [0, T ] to H eventually after
a change in a set of measure zero, and the same for W (0, T ).

Now, since H̃ ⊂ H and they both have the same norm, we have that H̃ ↪→ H. This yields that
W (0, T ) ↪→ C([0, T ];H).
A very important consequence of this type of embedding is that an analogue integration by parts
formula is valid (see [30]).

Lemma 2.2. Let t ∈ (0, T ].

For every y(t), p(t) ∈W(0, T )∫ t

0

⟨y′(s), p(s)⟩V∗,Vds =
(
y(t), p(t)

)
−

(
y(0), p(0)

)
−

∫ t

0

⟨y(s), p′(s)⟩V,V∗ds (15)

And similarly, for every y(t), p(t) ∈W (0, T )∫ t

0

⟨y′(s), p(s)⟩Ṽ ∗,Ṽ ds =
(
y(t), p(t)

)
−

(
y(0), p(0)

)
−

∫ t

0

⟨y(s), p′(s)⟩Ṽ ,Ṽ ∗ds

Notice that in this formulas (., .)H̃ = (., .)H = (., .) and so we do not distinguish them, denoting
all simply by (., .)

We take here the chance, to make an observation, that clarifies some steps in the proof of theorem
(3.1). The equation (11) can be written in a equivalent integral formulation, which is sometimes
more convenient to work with, given by∫ T

0

⟨u′(t), v(t)⟩Ṽ ∗,Ṽ +

∫ T

0

µ(∇u(t),∇v(t)) =

∫ T

0

⟨f(t), v(t)⟩Ṽ ∗,Ṽ , for all v ∈ L2(0, T ; Ṽ ) (16)

or
⟨u′(t), v⟩Ṽ ∗,Ṽ + µ(∇u(t),∇v) = ⟨f(t), v⟩Ṽ ∗,Ṽ a.e. t ∈ (0, T ) , and for all v ∈ Ṽ (17)

Let us proof that in fact the formulation (16) is equivalent to (17).

Lemma 2.3. The formulation (16) is equivalent to (17)

Proof: Suppose that u ∈ W̃(0, T ) satisfies the formulation (17). If we proof that

⟨u′(t), v(t)⟩Ṽ ∗,Ṽ + µ(∇u(t),∇v(t)) = ⟨f(t), v(t)⟩Ṽ ∗,Ṽ a.e. t ∈ (0, T ) , and for all v ∈ L2(0, T ; Ṽ )

(18)

8For a Gelfand’s triple V needs to be densely and continuously inject in H.
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then, since f ∈ L2(0, T ;L2(Ω)), which can be seen as f ∈ L2(0, T ; Ṽ ∗), and from the fact that
u ∈ W(0, T ), the terms above are all in L1(0, T ) and thus (18) can be integrated from 0 to T to
obtain (16).
We just need to proof that (18) is valid, what can be seen by using step functions.

Let v(t) =

n∑
i=1

1Ei(t)vi, with Ei being Lebesgue mensurable sets in [0, T ] and vi ∈ Ṽ , then from

(17) and the linearity of the operators involved,

⟨u′(t), v(t)⟩Ṽ ∗,Ṽ + µ(∇u(t), v(t))− ⟨f(t), v(t)⟩Ṽ ∗,Ṽ =

=

n∑
i=1

1
Ei

(t)
(
⟨u′(t), vi⟩Ṽ ∗,Ṽ + µ(∇u(t), vi)− ⟨f(t), vi⟩Ṽ ∗,Ṽ

)
= 0 , for a.e. t ∈ (0, T )

Now from definition, every function v(t) ∈ L2(0, T ; Ṽ ) is the limit of a step function sequence vn(t)
such that vn(t)→ v(t) a.e in t. Then, due to continuity, and since (18) is valid for step functions,

it is also valid in every v(t) ∈ L2(0, T ; Ṽ ) .

Suppose now, that u(t) ∈ W̃(0, T ) satisfies (16) and we want to see that (17) is also valid. By

contradiction let us suppose that exists a z ∈ Ṽ and a Lebesgue mensurable set E with non zero
measure such that taking v = z in (17) the difference of the terms is, without lost of generality,
positive, almost everywhere in E. Then taking the function v(t) = 1

E
(t)z we get that

∫ T

0

⟨u′(t), v(t)⟩Ṽ ∗,Ṽ +

∫ T

0

µ(∇u(t),∇v(t))−
∫ T

0

⟨f(t), v(t)⟩Ṽ ∗,Ṽ > 0

and (16) fails, what is a contradiction. □

Now, since we do not have an homogeneous Dirichlet condition, we will, at some point, use the
lifting technique, in order to obtain an appropriate variational problem. As we mentioned in the
introduction, another way of addressing this type of boundary condition, is by introducing some
weak form of boundary conditions as is done for example in [24]. However in the present work we
prefer to use the lifting technique.
The liftings that we need to use must satisfy some conditions, such has the null divergence condi-
tion for almost every time, and this consequently will affect the type of boundary controls that we
can use. In fact we will only be permitted to use boundary controls, for which we know that there
exists a lifting for that boundary data, that satisfies the incompressible condition.
First we need to define the set of admissible trace functions for our problem, since not every
function in9 L2(0, T ;H1/2(∂Ω)) is appropriate, because may not satisfy the flux condition (a con-
sequence of the fluid being imcompressible ). A way of dealing with this problem is to first define
an appropriate lifting space, and then define the set of admissible traces functions as the set formed
by the traces of the functions in that lifting space. This approach have same limitations, from the
point of view of applications, since we do not know à priori which functions are in those set of
admissible traces.
This is a major difference from the problems with only Dirichlet boundary control, since the con-
trols g ∈ L2(0, T,H1/2(∂Ω)) in that case must necessary satisfy∫

∂Ω

g · nds = 0 for almost every t ∈ (0, T )

and in practice this can be known à priori.
Also in some references [11; 12], the type of boundary controls which are admissible, are for example
of the form

T =
{
u ∈ L2

(
0, T ;H1/2

(
Γin

))
:

∫
Γin

u(t) · nds = 0 for almost every t ∈ (0, T )
}

This spaces are not considered in this work, because they became unrealistic in the modulation
of , for instance, the blood flow in a artery, as we mentioned in the introduction, since we may

9The space H1/2(Ω) can be defined as the image of the trace operator τ̂ : H1(Ω) → L2(∂Ω). Therefore
H1/2(Ω) ⊂ L2(∂Ω).
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consider the case of parabolic inflow.
In what follows, we make a construction of the admissible set of controls for Σc, velocity inputs
for Σin and the constructions of the liftings operators.

2.2 Lifting and Admissible Boundary Functions

2.2.1 Lifting Lc and Admissible Boundary Functions for Σc

We want to treat the input velocity yin, and the control velocity yc in a separated way, since in the
control problem, we will fix yin, and make the control on the boundary function yc. To do this we
decoupled these two functions on the boundary, treating them as functions from different spaces,
and then we add them, to obtain a function that verifies the Dirichlet boundary conditions.

We begin by introducing the following trace operators,

τ̂in : L2(H1(Ω)2)→ L2(Σin) τ̂c : L2(H1(Ω)2)→ L2(Σc) τ̂D : L2(H1(Ω)2)→ L2(ΣD)

where Σin = Γin × (0, T ),Σw = Γw × (0, T ) and Σc = Γc × (0, T ). These applications are linear,
and, in the case that the spaces involved have the usual norms, they are also continuous .

Now we define the set

Wc(0, T ) :=
{
u ∈W(0, T ) : τ̂in(u) = 0

}
Notice that, Wc(0, T ) is composed by the functions of W(0, T ) which have null trace on the segment
Σin of the lateral boundary Σ. Also recall, that the functions in W(0, T ) have by definition a null
trace in Σw and they are null divergent for almost every instant.
We set the admissible boundary functions in Σc to be the set Tc = τ̂c(Wc(0, T )), and we define
the restriction of τ̂c to Wc(0, T ) by

τc(u) : Wc(0, T )→ Tc τc(u) = τ̂c(u) for all u ∈Wc(0, T )

We want the space Tc to have a complete norm induced by an inner product10. Also this norm
must allow, the linear lifting operator Lc : Tc →Wc(0, T ), (which we still need to define) and the
trace operator τc, to be continuous.
This requests can be fulfilled as we show in the following lemmas 2.4-2.9.

Lemma 2.4. There exists a lifting operator, that we will call Lc, that maps boundary functions
y ∈ Tc to elements of Wc(0, T ), with the property that (and that is why is called a lifting)

τc
(
Lc(y)

)
= y for every y ∈ Tc (19)

Proof: We start by admitting that the norm of the image space of τ̂in, L2(Σin), is the L2 norm,
in order to guarantee that the trace operator τ̂in : W(0, T ) → L2(Σin) is linear and continuous,
and therefore has a closed Kernel in W(0, T ).
Then, the vector space Wc(0, T ) is a closed subspace of the Hilbert space W(0, T ), and therefore,
is also a Hilbert space, when equipped with the same inner product of W(0, T ).
Now, we assume (H1) that the norm of the space Tc ⊂ L2(Σc) is the L2 norm, what again, leads to
the continuity of τc : Wc(0, T )→ Tc. The hypotheses (H1) will only be used in order to construct
an operator Lc : Tc →Wc(0, T ) that verifies

Lc(y) = g ∈Wc(0, T ) such that τc(g) = y

10For the control problem is important that the test space is reflexive. This is verified if it is a Hilbert space.
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and this operator is well defined independently of (H1), being this hypotheses only temporary.
Now with (H1), the quotient space Wc(0, T )/Ker(τc) is a Banach space for the quotient norm 11

||[g]||Wc(0,T )/Ker(τc) = inf
u∈Wc(0,T ):τcu=τcg

||u||W(0,T ) (20)

where we denote [g] the class of Wc(0, T )/Ker(τc) with g ∈Wc(0, T ) as it’s representative. Observe
that from the definition of this norm,

||[g]||Wc(0,T )/Ker(τc) = inf
u∈Wc(0,T ):τcu=τcg

||u||W(0,T ) = inf
u∈Wc(0,T ):τcu=τcg

||u− 0||W(0,T )

which tell us that the infimum if it is attained, is attained by the optimal approximation of 0 by
elements of the affine space S = {u ∈ Wc(0, T ) : τcu = τcg} ⊂ Wc(0, T ) . It is possible to proof
that the optimal approximation exists and it is unique. To see that we enunciate the next auxiliary
lemma (see [20]).

Lemma 2.5 (Optimal Approximation). Let X be a Hilbert space and A ⊂ X a subset which is
complete (close), convex and non-empty. Then for every x ∈ X there exists an unique element
a0 ∈ A such that

||x− a0||X = inf
a∈A
||x− a||X

The affine space S is clearly non-empty. It is also convex, since for every λ ∈ [0, 1] and for
every u, v ∈ S, by the linearity of τc,

τc
(
λu+ (1− λ)v

)
= λτc(u) + (1− λ)τc(v)

= λτc(g) + (1− λ)τc(g)

= τc(g)

and thus also λu+ (1− λ)v ∈ S.

To see that S is closed, let {un}n∈N ⊂ S be a convergent sequence to an element u ∈ Wc(0, T ),
and we want to see that u ∈ S. By the continuity of the trace τc (which is the case if H1 is valid),

lim
n→∞

τc(un) = τc( lim
n→∞

un) = τc(u)

On the other hand, the sequence τc(un) = τc(g) for every n ∈ N, by definition of S. Then

τc(g) = lim
n→∞

τc(un) = τc(u)

and thus u ∈ S.
Therefore since Wc(0, T ) is a Hilbert space, from lemma 2.5 we conclude that the infimum of (20)
is attained by a unique element in S. Now, let y be an arbitrary element of Tc, then by definition
of this space, exists at least one element gy ∈ Wc(0, T ) such that τc(gy) = y, and we can define
the affine set Sy = {u ∈ Wc(0, T ) : τc(u) = τc(gy) = y}. Moreover, this afine set has the same
properties as the set S above, being non-empty, convex and closed. Therefore, by lemma 2.5, for
every y ∈ Tc exists a unique g̃y ∈ Sy ⊂Wc(0, T ) such that

||g̃y||Wc(0,T ) = inf
u∈Sy

||u||Wc(0,T ) τc(g̃y) = y

This suggests the definition of the following lifting operator Lc : Tc →Wc(0, T ), given by

Tc ∋ y 7→ g̃ ∈Wc(0, T )

where g̃ is the (unique) element of Sy that attains the infimum of the quotient norm

||g̃||W(0,T ) = inf
u∈Sy

||u||W(0,T )

11In [20] we have the result that, the quotient space X/M , of a Banach space X, is complete for the quotient
norm, iff the set M is closed.
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where Sy is defined above.
In this way we have a well defined operator Lc : T →Wc(0, T ) that satisfies, the lifting property,
as we wanted to show. □

Let us proof that Lc is linear.

Lemma 2.6. The lifting operator Lc is linear.

Proof: Suppose that α ∈ R and y ∈ Tc, and let g = Lc(y). We want to proof that Lc(αy) = αg.
Let v ∈ Sαy be the element that attains the infimum, (as we saw this element exists and it is
unique). Then

||v||W(0,T ) = inf
u∈Wc(0,T ):τc(u)=αy

||u||W(0,T ) = inf
u∈Wc(0,T ):τc(

u
α )=y

||u||W(0,T )

= inf
w∈Wc(0,T ):τc(w)=y

||αw||W(0,T ), make the subs. w =
u

α

= |α| inf
w∈Wc(0,T ):τc(w)=y

||w||W(0,T )

= |α|||g||W(0,T ) = ||αg||W(0,T )

Thus, since by the linearity of τc, we have that τc(αg) = ατin(g) = αy. But as we saw, αg is also a
minimizer of the quotient norm, therefore by uniqueness v = αg, and so, L(αy) = v = αg = αL(y).

Before finishing the proof of the linearity, we make an observation. Let y be an element of Tc

and g = Lc(y), then

||g||W(0,T ) = inf
u∈Wc(0,T ):τc(u)=y

||u||W(0,T ) = inf
m∈ker(τc)

||g −m||W(0,T )

Let us see that the infimum are equal. First they are both achieved since, the left infimum was
already analyzed, and the right hand side infimum is obtained by the optimal approximation of g
by elements of Ker(τc), which is a closed subspace of Wc(0, T ), and thus lemma 2.5 guarantees the
existence and uniqueness of the infimum element.
By simplification we denote

I = inf
u∈Wc(0,T ):τc(u)=y

||u||W(0,T ) inf
m∈ker(τc)

||g −m||W(0,T ) = J

We want to see that J = I. Suppose by contradiction that I > J , and let g − m (with
m ∈ Ker(τc)) be the unique element whose norm is equal to J . Choosing u = g −m, we get that
u ∈Wc(0, T ), τc(u) = y, and

I ≤ ||u||W(0,T ) = J

which is a contradiction, and therefore I ≤ J . Using the same reasoning we conclude that I ≥ J ,
and thus J = I.

Now since
||g||W(0,T ) = inf

u∈Wc(0,T ):τc(u)=y
||u||W(0,T ) = inf

m∈ker(τc)
||g −m||W(0,T )

we conclude that choosing m = 0 we obtain exactly ||g|| which is the infimum, and since this m is
unique by lemma 2.5, we can say that the zero is the optimal approximation of g by elements of
ker(τc).
Now we enunciate the next lemma, which is valid only for closed subspaces (see [20]).

Lemma 2.7. Let X be a Hilbert space, x ∈ X and A ⊂ X, a closed subspace of X. Then, the
following affirmations are equivalent,

(i)a0 is the best approximation of x by elements of A

(ii)a0 ∈ A and (x− a0) ⊥ A

11



In our case, since Ker(τc) is a closed subspace of the Hilbert space Wc(0, T ), lemma 2.7 is
valid. Now since, zero is the best approximation of g by elements of Ker(τc) we have by lemma
2.7-(ii) that

g ⊥ m for every m ∈ Ker(τc) (21)

Returning to the poof of the linearity of the lifting Lc, let y1, y2 ∈ Tc have the liftings g1 = Lc(y1)
and g2 = Lc(y2), also let v = Lc(y1 + y2). We want to proof that v = g1 + g2, what finishes the
proof of the linearity of Lc.

Suppose by contradiction, that v ̸= g1+g2, then since τc(v) = τc(g1+g2) we have that v = g1+g2+m
where m ∈ Ker(τc) is non null.

Figure 2: Illustration of the reasoning.

Notice now, that since g1 and g2 are minimizers, they are orthogonal to the kernel of τc.
Therefore g1 + g2 ⊥ m and by the Pythagoras’s theorem we have that

||v||2W(0,T ) = ||m||2W(0,T ) + ||g1 + g2||2W(0,T )

and since, by hypotheses m ̸= 0, we arrive to a contradiction since ||g1 + g2||W(0,T ) < ||v||W(0,T )

and v is the element that attains the infimum.
Therefore, we must have L(y1 + y2) = v = g1 + g2 = Lc(y1) + Lc(y2). □

We introduce in Tc the norm12, given for every y ∈ Tc, by

||y||Tc = ||Lc(y)||W(0,T ) (22)

We have the following continuity result.

Lemma 2.8. The operators τc : Wc(0, T )→
(
Tc, || · ||T

)
and Lc :

(
Tc, || · ||T

)
→Wc(0, T ), where

|| · ||Tc
is the norm in (22), are continuous.

Proof: The trace operator τc : Wc(0, T )→
(
Tc, || · ||Tc

)
is still continuous, since it is linear, and

for every g ∈Wc(0, T )

||τc(g)||Tc
= ||Lc(τc(g))||W(0,T ) = inf

u∈Wc(0,T ):τc(u)=τc(g)
||u||W(0,T ) ≤ ||g||W(0,T )

where we used the fact that by construction of Lc,

||Lc(τc(g))||W(0,T ) = inf
u∈Wc(0,T ):τc(u)=τc(g)

||u||W(0,T )

and the fact that the space Wc(0, T ) is not modified by the hypotheses (H1)13, and thus the ele-
ment g is an element of the set Sg = {u ∈ Wc(0, T ) : τc(u) = τc(g)} which is the same set where

12We have to verify that this application is in fact a norm, what is done in the lemma 2.9.
13Notice that the space Wc(0, T ) is defined using τ̂in and thus is independent of the hypotheses (H1) .
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the infimum that defines the norm of the lifting result is calculated. Thus, with this norm for Tc

we still guarantee the continuity of the trace operator τc.

The lifting operator Lc is also continuous, since it is linear and bounded

||L(g)||Wc(0,T ) = ||L(g)||W(0,T ) = ||g||Tc ≤ ||g||Tc

□

Regarding the wanted Hilbertian structure for Tc, we have the following result.

Lemma 2.9. The space (Tc, || · ||Tc) is a Hilbert space, for the inner product given by:

for every g1, g2 ∈ Tc (
g1, g2

)
Tc

= (Lc(g1), Lc(g2))W(0,T )

Proof: Our first step is to see that, in fact, || · ||Tc
is a norm. This is a simple consequence of

the lifting operator being linear. In fact, for every g1, g2 ∈ Tc and α ∈ R,

(i) , ||g1||Tc
= ||Lc(g1)||W(0,T ) ≥ 0

(ii) if ||g1||Tc
= ||Lc(g1)||W(0,T ) = 0⇔ Lc(g1) = 0 in Wc(0, T ) and thus τc

(
Lc(g1)

)
= 0

(iii) ||αg1||Tc
= ||Lc(αg1)||W(0,T ) = ||αLc(g1)||W(0,T ) = |α|||Lc(g1)||W(0,T ) = |α|||g1||Tc

(iv)

||g1 + g2||Tc = ||Lc(g1 + g2)||W(0,T ) = ||Lc(g1) + Lc(g2)||W(0,T )

≤ ||Lc(g1)||W(0,T ) + ||Lc(g2)||W(0,T ) = ||g1||Tc + ||g2||Tc

Thus it is proofed that || · ||Tc
is a norm in Tc.

Now let us see that this norm makes the space complete. Let {gn}n∈N be a Cauchy sequence
in Tc and, from the continuity of the lifting operator we get that the image sequence yn = Lc(gn)
is a also a Cauchy sequence in Wc(0, T ), since

||yn − ym||W(0,T ) = ||Lc(gn)− Lc(gm)||W(0,T ) = ||gn − gm||Tc

Thus, the sequence {yn}n∈N has limit y ∈ Wc(0, T ) (since Wc(0, T ) is complete). Using the
continuity of the trace operator τc (which we saw that is continuous when Tc has this norm) we
have

lim
n→∞

gn = lim
n→∞

τc(yn) = τc
(

lim
n→∞

yn
)

= τc(y) ∈ Tc

and therefore every Cauchy sequence in Tc is convergent.

Lastly, we observe that we can induce the norm || · ||Tc
, by the inner product

(g1, g2)Tc
= (Lc(g1), Lc(g2))Wc(0,T ) = (Lc(g1), Lc(g2))W(0,T )

since the inner product of Wc(0, T ) is the same as the original space. Notice that ||g1||2Tc
=

(g1, g1)Tc
= (Lc(g1), Lc(g1))W(0,T ) = ||Lc(g1)||2W(0,T ), and therefore this inner product induces in

fact the norm which is complete.
To see that the application (·, ·)Tc

is in fact an inner product in Tc is a simple consequence of the
linearity of Lc and the properties of the original inner product (·, ·)W(0,T ). □

2.2.2 Lifting Lin and Admissible Boundary Functions for Σin

Now we focus in constructing an appropriate trace space for the input velocities function in Σin.
We define the set

Win(0, T ) := {u ∈W(0, T ) : τ̂c(u) = 0}
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where the operator τ̂c : W(0, T )→
(
L2(Σc), || · ||L2(Σc)

)
is the original trace operator. Notice that,

since τ̂c is continuous, the space Win(0, T ) is a Hilbert space.
In the above construction, the map τ̂in ∈ L (W(0, T ), L2(Σin)) was continuous since we used the
L2−norm in the image space. Now we define the restriction of this map to the set Win and the
respective image space to be

τin : Win(0, T )→ Tin τ̂in(u) = τin(u) for all u ∈Win(0, T )

By now Tin does not yet have a norm. However we will need to introduce a norm in this vector
space, that guarantees the existence of a linear and continuous lifting Lin : Tin → Win(0, T ). In
this case, we do not need the space Tin to have an hilbertian structure, since the only property
that we really need is an estimate of the lifting with respect to the traces.
Using the same method, as was used to obtain the lifting Lc, we can construct a linear and
continuous lifting Lin : (Tin, || · ||Tin)→Win(0, T ) where for every g ∈ Tin,

||g||Tin = ||Lin(g)||W(0,T ) (23)

We close this section about the traces spaces with the following proposition that is a simple con-
sequence of the above constructions.

Proposition 2.1. For every yc ∈ Tc and yin ∈ Tin, we can always find an element of u ∈W(0, T ),
that satisfies

u
∣∣
Σc

= yc

u
∣∣
Σin

= yin

u
∣∣
Σw

= 0

in the trace sense.

Proof: Given yin ∈ Tin and yc ∈ T , by using the lifting operators, we can define the object
u = Lc(yc) + Lin(yin), which is a function in W(0, T ).
Now, since W(0, T ) ⊂ L2(H1(Ω)), the function u has a well defined trace f = τ̂ΣD

(u) ∈ L2(ΣD)
and we want to see that the restriction of this trace function to the sets Σin, Σc and Σw coincide
with the trace imposed conditions, yin, yc and zero respectively.
The restriction of f to Σin is given by

χΣinf = χΣin ◦ χΣD
◦ τ̂Σ(u) = χΣin ◦ τ̂Σ(u) = τ̂in(u) = τ̂in(uin) + τ̂in(uc) = τ̂in(uin)

where we used the fact that χΣin ◦χΣD
= χΣin because Σin ⊂ ΣD, the definition of τ̂in (see section

7.2), it’s linearity and the fact that τ̂in(uc) = 0 since uc ∈Wc(0, T ).
Also from the definition of τin and the fact that uin ∈Win(0, T ) we have that

χΣin
f = τ̂in(uin) = τin(uin) = τin(Lin(yin)) = yin

Therefore, the function u ∈ W(0, T ) has a trace, that when restricted to the boundary part Σin,
coincides with the imposed trace data yin.
The same reasoning leads us to the conclusion that, we also have u

∣∣
Σc

= yc, in the trace sense.
For the part Σw of the lateral boundary, we need to verify that u has zero trace. From the
definition of W(0, T ), we get that τ̂w(u(t)) = 0 for almost every t ∈ (0, T ) and therefore the trace
of u restricted to that part of the boundary is null. □

2.3 Admissible Initial Conditions

Let us now discuss the admissible initial conditions. We want the initial condition u0 ∈ H to have
compatible information on the Dirichlet segment of the boundary, with the boundary information
of the liftings gin = Lin(yin), gc = Lc(yc) where yin ∈ Tin and yc ∈ Tc. That is, we want that,

u0 −
(
Lin(yin)(0) + Lc(yc)(0)

)
∈ H̃ (24)
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Let us see that the condition (24) makes sense. In the following arguments we use the notation
Win(0, T )⊕Wc(0, T ) to denote the set of functions g ∈W(0, T ) that may be written ( may not be
uniquely) in he form g = gin + gc where gin ∈Win(0, T ) and gc ∈Wc(0, T ).
Since the functions yin, yc, that impose the Dirichlet boundary conditions, belong to Tin,Tc re-
spectively, we get that the sum of the lifting g̃ = Lin(yin) + Lc(yc) is in Win(0, T ) ⊕Wc(0, T ) ⊂
W(0, T ) ↪→ C([0, T ];H), and therefore we can talk in the point evaluation g̃(0).
Now we define the following observation operator τ t0 : W(0, T ) → H, given by the following chain
of compositions,

W(0, T ) ∋ g ↪→C([0,T ];H)−−−−−−−−→ g
τ0−→ g(0)

where τ0 : C([0;T ];H) → H, is the observation operator on the instant t = 0. τ0 is linear and
bounded, and therefore continuous. Thus, since we have a chain of composition of linear and
continuous operators, τ t0 is also continuous and linear.

Definition 2.1 (Space H ). We define the set of admissible initial conditions as

H = τ t0
(
Lc(Tc)

)
⊕ τ t0

(
Lin(Tin)

)
where Lc, Lin are the above lifting operators.

We close this section with the following result.

Proposition 2.2. H ̸= ∅, and for every u0 ∈ H , there exists at least two functions yin ∈ Tin

and yc ∈ Tc , whose liftings, satisfies the compatibility condition with the given u0.

Proof: Let u0 be an arbitrary element of H . Then, by definition, exists yin, yc belonging to
Tin,Tc, respectively, such that

u0 = τ t0
(
Lc(yc)

)
+ τ t0

(
Lin(yin)

)
and therefore, the liftings of the boundary data yin, yc satisfy the initial compatibility condition,
since

u0 − (Lc(yc))(0)− (Lin(yin))(0) = 0 =⇒ u0 − (Lc(yc))(0)− (Lin(yin))(0) ∈ H̃

□

When dealing with the control problem, we fix yin ∈ Tin, u0 ∈ H , and in this case the con-
trol yc must be chosen from a proper set in such a way that the initial condition compatibility is
satisfied.

2.4 Chapter Final Notes

Note (1): We have that W(0, T ) ↪→ W̃(0, T ) To see that this is possible, (see footnote) we need

to show that the injection of W(0, T ) in W̃(0, T ) is continuous.

Let u be an element of W(0, T ), then u ∈ L2(V) and the derivative u′ ∈ L2(V∗). We define

the application F : L2(Ṽ )→ R by

F (v) =

∫ T

0

⟨u′(t), v(t)⟩V∗,Vdt , ∀v ∈ L2(Ṽ )

and the duality product makes sense, since Ṽ ↪→ V.
This application is linear since, for every α, β ∈ R and v, z ∈ L2(Ṽ )

F (αv + βz) =

∫ T

0

⟨u′(t), αv(t) + βz(t)⟩V∗,Vdt

= α

∫ T

0

⟨u′(t), v(t)⟩V∗,Vdt+ β

∫ T

0

⟨u′(t), z(t)⟩V∗,Vdt

= αF (v) + βF (z)
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and also bounded

|F (v)| = |⟨u′, v⟩L(V∗),L2(V)|
≤ ||u′||L2(V∗)||v||L2(V)

= ||u′||L2(V∗)||v||L2(Ṽ ∗)

where we used the fact that L2(Ṽ ) ↪→ L2(V), which cames from the fact that Ṽ ↪→ V. Therefore F

is an element of L2(Ṽ )∗, a space that, from theorem (7.5), is isometrically isomorphic to L2(Ṽ ∗),

therefore, exists a unique f ∈ L2(Ṽ ∗) such that for all v ∈ L2(Ṽ ),

F (v) =

∫ T

0

〈
f(t), v(t)

〉
Ṽ ∗,Ṽ

dt

Notice that from the isometrically isomorphism, ||f ||L2(Ṽ ∗) = ||F ||L2(Ṽ )∗ ≤ ||u
′||L2(V∗)

Thus, u ∈ L2(V) and u′|Ṽ = f ∈ L2(Ṽ ∗), so u ∈ W̃(0, T ) and we have the estimate

||u||W̃(0,T ) ≤ ||u||W(0,T )

Now that ũ is seen as an element of W̃(0, T ) the sum u = ũ + w is well defined and is an ele-

ment of W̃(0, T ).

Note (2): We do not have, for the space W̃(0, T ), where our solution is suppose to be, the
integration by parts formula. This seems to be a problem since we need it for some proofs. But
we can at least say that for a special set of functions we have this integration by parts formula.

In fact, the solution, will be obtained by a decomposition process such that, where W̃(0, T ) ∋ u =

ũ+ w, with ũ ∈W(0, T ) seen as an element in W̃(0, T ) and w ∈W (0, T ).
Now, to use integration by parts, we need to use as test functions a special set of functions, that
for our proofs is sufficient. Consider the function v(t) = V φ(t) where V ∈ Ṽ and φ is at least
a C1 function in [0, 1]. From the results of the appendix (derivative) we conclude that the weak
derivative of v(t) coincides with the strong derivative which is given by v′(t) = V φ′(t).
Thus we can conclude that, v(t) ∈W(0, T ) and v(t) ∈W (0, T ) at the same time. In fact, from the

fact that the weak derivative coincides with the weak derivative, we get that v(t), v′(t) ∈ L2(Ṽ ),

and thus the derivative u′ is also in L2(Ṽ ∗).

Also, v(t), v′(t) are in L2(V), since L2(Ṽ ) ↪→ L2(V), and from this we get that v′(t) ∈ L2(V∗). Let

us see, how we can use integration by parts. Let u ∈ W̃(0, T ) be of the form u = ũ + w where

w ∈W (0, T ) and ũ ∈W(0, T ) seen as an element in W̃(0, T ). Then for a function v(t) of the above
form we have ∫ T

0

⟨u′, V φ(t)⟩Ṽ ∗,Ṽ dt =

∫ T

0

⟨ũ′, V φ(t)⟩Ṽ ∗,Ṽ dt+

∫ T

0

⟨w′, V φ(t)⟩Ṽ ∗,Ṽ dt

=

∫ T

0

⟨ũ′, V φ(t)⟩V∗,Vdt+

∫ T

0

⟨w′, V φ(t)⟩Ṽ ∗,Ṽ dt

where in the last equality is due to the fact that∫ T

0

⟨ũ′(t), V φ(t)⟩Ṽ ∗,Ṽ dt = F (V φ(t)) =

∫ T

0

⟨ũ′(t), V φ(t)⟩V∗,Vdt

where the map F was defined on the note-1.
Now, since, as seen above, v(t) ∈ W (0, T ) ∩W(0, T ) and ũ ∈ W(0, T ), w ∈ W (0, T ), now we can
use integration by parts and obtain,∫ T

0

⟨ũ′, V φ(t)⟩V∗,Vdt+

∫ T

0

⟨w′, V φ(t)⟩Ṽ ∗,Ṽ dt = −
∫ T

0

⟨ũ, V φ′(t)⟩V,V∗dt+
(
ũ(T ), φ(T )V

)
−

(
ũ(0), φ(0)V

)
−
∫ T

0

⟨w, V φ′(t)⟩Ṽ ,Ṽ ∗dt+
(
w(T ), φ(T )V

)
−

(
w(0), φ(0)V

)
= −

∫ T

0

⟨ũ, V φ′(t)⟩V,V∗dt−
∫ T

0

⟨w, V φ′(t)⟩Ṽ ,Ṽ ∗dt

+
(
u(T ), φ(T )V

)
−

(
u(0), φ(0)V

)
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2.5 Functional Spaces

We close this section with a conclusion with the functional spaces that are used in this work. We
decided to add this page in order to facilitate the reading process.

E (Ω) := {u ∈ C∞(Ω)2 : ∇ · u = 0, supp(u) ∩ ΓD = ∅} (25)

Ṽ := E (Ω)
H1

||u||Ṽ = ||∇u||L2(Ω) (26)

H̃ := E (Ω)
L2

||u||H̃ = ||u||L2(Ω) (27)

V :=
{
u ∈ H1(Ω)2 : ∇ · u = 0, and τ̂w(u) = 0

}
||u||V = ||∇u||L2(Ω) (28)

H :=
{
u ∈ H1(Ω)2 : ∇ · u = 0, and τ̂w(u) = 0

}L2

||u||H = ||u||L2(Ω) (29)

W (0, T ) :=
{
u ∈ L2(Ṽ ) : u′ ∈ L2(Ṽ ∗)

}
||u||W (0,T ) =

(
||u||2

L2(Ṽ )
+ ||u′||2

L2(Ṽ ∗)

)1/2

(30)

W(0, T ) :=
{
u ∈ L2(V) : u′ ∈ L2(V∗)

}
||u||W(0,T ) =

(
||u||2L2(V) + ||u′||2L2(V∗)

)1/2

(31)

W̃(0, T ) :=
{
u ∈ L2(V) : u′ ∈ L2(Ṽ ∗)

}
||u||W̃(0,T ) =

(
||u||2L2(V) + ||u′||2

L2(Ṽ ∗)

)1/2

(32)

W (0, T ) ↪→ C([0, T ]; H̃) W(0, T ) ↪→ C([0, T ];H) both with the max norm (33)

Wc(0, T ) := {u ∈W(0, T ) : τ̂in(u) = 0} same norm as W(0, T ) (34)

Win(0, T ) := {u ∈W(0, T ) : τ̂c(u) = 0} same norm as W(0, T ) (35)

Tc := τc(Wc(0, T )) ||u||Tc
= ||Lc(u)||W(0,T ) (36)

Tin := τin(Win(0, T )) ||u||Tin
= ||Lin(u)||W(0,T ) (37)

H := τ t0

(
Lc(Tc)

)
⊕ τ t0

(
Lin(Tin)

)
same norm as H (38)

3 Analysis of the Forward Problem

In this section we start by introducing a weak formulation for the problem (1), followed by the
study of it’s well posedness which is the main goal of this chapter.

For a better exposition we introduce the following operators,

ã : Ṽ × Ṽ → R (u, v) 7→ µ(∇u,∇v)

and the same operation but with a different domain

a : H1(Ω)×H1(Ω)→ R (u, v) 7→ µ(∇u,∇v)
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This two operators are continuous, since they are linear, and bounded.
In fact, for every φ, ϕ ∈ Ṽ

|ã(φ, ϕ)| ≤ µ||∇φ||||∇ϕ|| = µ||φ||Ṽ ||ϕ||Ṽ

and for every u, v ∈ H1(Ω)2

|a(u, v)| ≤ µ||∇u||||∇v|| ≤ µ||u||H1(Ω)2 ||v||H1(Ω)2

We also define the following linear applications that are induced by these two bi-linear maps,

A : Ṽ → Ṽ ∗ u 7→ A u ∈ Ṽ ∗ defined by ⟨A u, φ⟩Ṽ ∗,Ṽ = ã(u, v) , ∀v ∈ Ṽ (39)

and similarly

A : H1(Ω)2 → (H1(Ω)2)∗ u 7→ Au ∈ (H1(Ω)2)∗ defined by

⟨Au, φ⟩(H1(Ω)2)∗,H1(Ω)2 = a(u, v) , ∀v ∈ H1(Ω)2 (40)

Notice that if ũ is an element of Ṽ , ũ is then, also in H1(Ω)2 and we have

ã(ũ, ṽ) = a(ũ, ṽ) , ∀ ṽ ∈ Ṽ (41)

Thus, ã may be interpreted as an restriction of a to the subset Ṽ ⊂ H1(Ω)2. Notice however

that the norm used in the space Ṽ is not induced by the norm in the bigger space H1(Ω)2, which
may lead to some confusion if we had denoted the operators a, ã with the same letter, since they
continuity constants are not the same.
The expression (41) has an important consequence. Suppose that ũ ∈ Ṽ is a function that for

every ṽ ∈ Ṽ has the value
ã(ũ, ṽ) = 0 , ∀ ṽ ∈ Ṽ

Therefore by (41) we have also that a(ũ, ṽ) = ⟨Aũ, ṽ⟩H1∗,H1 = 0 for all ṽ ∈ Ṽ . Now, since V ⊂ Ṽ
and Aũ ∈ H1(Ω)∗, we may use the theorem 3.2 for the construction of the pressure field. This is
the main reason why we introduce the operator A : H1 → H1∗ ⊂ H−1, since, if we had instead,
worked only with A : Ṽ → Ṽ ∗ the theorem 3.2 will stop to be valid, because we do not have
Ṽ ⊂ H−1.

We also denote by A u(t) the functional in L2(Ṽ ∗) given by

⟨A u(t), v(t)⟩L2(Ṽ ∗),L2(Ṽ ) =

∫ T

0

ã(u(t), v(t))dt =

∫ T

0

µ(∇u(t),∇v(t))dt

and similarly we denote by Au(t) the functional in L2([H1(Ω)2]∗) defined by

⟨Au(t), v(t)⟩L2(H1∗),L2(H1) =

∫ T

0

a(u(t), v(t))dt =

∫ T

0

µ(∇u(t),∇v(t))dt

We have the following lemma.

Lemma 3.1. For u(t) ∈ L2(Ṽ ) we have that A u(t) is in L2(Ṽ ∗). In the case of u(t) ∈ L2(H1(Ω)2)

we have that A u(t) ∈ L2(V∗) or in L2(Ṽ ∗) by restricting the evaluation to V or Ṽ respectively.

Lastly we have the following estimates

||A u(t)||L2(Ṽ )∗ ≤ ||A ||L (L2(Ṽ ),L2(Ṽ ∗)||u||L2(Ṽ ) for all u ∈ L2(Ṽ ) (42)

||Au(t)||L2(Ṽ ∗) ≤ ||A||L (H1,H1∗)C1||u(t)||L2(H1) for all u ∈ L2(H1(Ω)) (43)

||Au(t)||L2(V∗) ≤ ||A||L (H1,H1∗)C2||u(t)||L2(H1) for all u ∈ L2(H1(Ω)) (44)

where C1, C2 denote the Poincaré’s constants.
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Proof: Let us see that in fact A u(t) is in L2(Ṽ ∗).
The linearity is simple, therefore we only focus on the boundeness property. Let φ be an element
of L2(Ṽ ), then∣∣∣⟨A u(t), φ(t)⟩L2(Ṽ ∗),L2(Ṽ )

∣∣∣ ≤ ∫ T

0

||A u(t)||Ṽ ∗ ||φ(t)||Ṽ dt

≤
∫ T

0

||A ||L (Ṽ ,Ṽ ∗)||u(t)||Ṽ ||φ(t)||Ṽ dt

≤ ||A ||L (Ṽ ,Ṽ ∗)

(∫ T

0

||u(t)||2
Ṽ
dt
)1/2(∫ T

0

||φ(t)||2
Ṽ
dt
)1/2

and the above inequality implies

||A u(t)||L2(Ṽ )∗ ≤ ||A ||L (L2(Ṽ ),L2(Ṽ ∗))||u||L2(Ṽ )

which is the boundness of A u(t) and the estimate (42).
Using the same argument as above we can also conclude that Au(t) ∈ L2([H1(Ω)]∗) and that, for
every φ ∈ L2(H1(Ω))∣∣∣⟨Au(t), φ(t)⟩L2((H1)∗),L2(H1)

∣∣∣ ≤ ∫ T

0

||Au(t)||(H1)∗||φ(t)||H1dt

≤
∫ T

0

||A||L (H1,(H1)∗)||u(t)||H1 ||φ(t)||H1dt

≤ ||A||L (H1,(H1)∗)

(∫ T

0

||u(t)||2H1dt
)1/2(∫ T

0

||φ(t)||2H1dt
)1/2

what gives ||Au(t)||L2(H1∗) ≤ ||A||L (H1,H1∗)||u(t)||L2(H1). Now, if we restrict the evaluation of

Au(t) to Ṽ or V, and denote this operator by the same letter, the above estimations change if we

consider the norms of Ṽ or V instead of the H1−norm.

||Au(t)||L2(Ṽ ∗) ≤ ||A||L (H1,H1∗)C1||u(t)||L2(H1)

||Au(t)||L2(V∗) ≤ ||A||L (H1,H1∗)C2||u(t)||L2(H1)

For these estimates, we used the fact that, for example, for a u(t) ∈ L2(H1), and for every

v(t) ∈ L2(Ṽ )∣∣∣ ∫ T

0

⟨Au(t), v(t)⟩(H1)∗,H1dt
∣∣∣ ≤ ∫ T

0

||Au(t)||(H1)∗ ||v(t)||H1dt

≤
∫ T

0

||A||L (H1∗,H1)||u(t)||H1 ||v(t)||H1dt

≤ ||A||L (H1∗,H1)

√
(1 + c2p)

∫ T

0

||u(t)||H1 ||v(t)||Ṽ dt

≤ ||A||L (H1∗,H1)

√
(1 + c2p)||u||L2(H1)||v||L2(Ṽ )

where in the last step we used the Cauchy-Schwarz inequality. □

The fact that for a u(t) ∈ L2(H1), we have Au(t)
∣∣∣
Ṽ
∈ L2(Ṽ ∗) is important for the weak solu-

tion definition, since we need the lifting of the Dirichlet data to be mapped, via A, to a functional
in L2(Ṽ ∗) when restricted to Ṽ .

3.1 Weak Form and Variational Form

To simplify, we will say that we are in conditions of hypotheses-2 (H2) if we have a f(t) ∈
L2(0, T ;L2(Ω)), yin ∈ Tin yc ∈ Tc and an initial condition y0 ∈ H which is compatible with

19



the Dirichlet data.
In the case (H2) is valid, we know from propositions 2.1 and 2.2, that there exists liftings of yin, yc
denoted by, g̃in and g̃c respectively, and that the function W(0, T ) ∋ ỹ = g̃in + g̃c satisfies the
Dirichlet conditions, and the compatibility conditions with the initial condition

y0 − ỹ(0) ∈ H̃

We are now in conditions to give the definition of the weak solution of (1).

Definition 3.1. [Weak solution] Suppose that the hypotheses (H2) is valid. We say that y ∈
W̃(0, T ) is a weak solution to the problem (1) if it satisfies

∫ T

0

⟨y′(t), v(t)⟩Ṽ ∗,Ṽ dt+

∫ T

0

a(y(t), v(t))dt =

∫ T

0

(f(t), v(t))dt for all v ∈ L2(0, T ; Ṽ )

y(0) = y0

τ̂in(y) = yin

τ̂c(y) = yc

(45)

The initial condition y(0) = y0, at first sight may no make sense, since we do not have, at least

as far as we know, that W̃(0, T ) ↪→ C([0, T ],H). However in this particular case, since y0 is chosen
as an element of H and not arbitrarily in H, and, the solution is obtained by a decomposition
process which yields a specif form that we will specify bellow , we can in fact see by the proofs
to come, that this condition is always satisfied, and therefore this conditions makes sense in à
posteriori analysis.

The system of the definition 3.1 has the asymmetric problem, that we are seeking for a solu-

tion in W̃(0, T ) ⊂ L2(V) and using test functions in L2(Ṽ ). To avoid this we use the lifting
technique which allows to write the problem in definition 3.1 in the equivalent form

Find w ∈W (0, T ) such that


∫ T

0

⟨w′(t), φ⟩Ṽ ∗,Ṽ dt+

∫ T

0

ã(w(t), φ)dt =

∫ T

0

⟨L(t), φ⟩Ṽ ∗,Ṽ dt , ∀φ ∈ L2(Ṽ )

w(0) = y0 − ỹ(0)

(46)

where the operator L(t) ∈ L2(0, T ; Ṽ ∗) (see lemma 3.2) is given by

⟨L(t), φ⟩Ṽ ∗,Ṽ = (f(t), φ)− ⟨ỹ′(t), φ⟩Ṽ ∗,Ṽ − µ(∇ỹ(t),∇φ)∀ , v ∈ Ṽ a.e. t ∈ (0, T ) (47)

Problem (46) is a better variational problem then the one in definition 3.1, since this variational

problem has the good property, that we are seeking the solution in L2(Ṽ ), the same space of the
test functions.
Before proving the equivalence between the problems (46) and (45), let us see that in fact L(t)

belongs to the space L2(Ṽ ∗).

Lemma 3.2. In the case (H2) is satisfied, we have that the operator L defined in (47) is in L2(Ṽ ∗).

Proof:

|⟨L(t), v⟩Ṽ ∗,Ṽ | ≤ ||f(t)||L2Cp||v||Ṽ + ||∇ỹ(t)||L2 ||∇v||L2 + ||ỹ′(t)||Ṽ ∗ ||v||Ṽ

therefore for almost every t ∈ (0, T )

||L(t)||Ṽ ≤ Cp||f(t)||L2 + µ||ỹ(t)||Ṽ + ||ỹ′(t)||Ṽ ∗

From the Minkoski’s inequality if f, g ∈ L2(0, T ) then∫ T

0

|f + g|2dt ≤
∫ T

0

f2dt+

∫ T

0

g2dt
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Therefore the L2(Ṽ ∗) norm of L(t) is given by∫ T

0

||L(t)||2
Ṽ
≤

∫ T

0

(
||f(t)||L2 + µ||ỹ(t)||H1

0
+ ||ỹ′(t)||Ṽ ∗

)2

dt

≤
∫ T

0

||f(t)||2dt+ µ

∫ T

0

||ỹ(t)||2H1
0
dt+

∫ T

0

||ỹ′(t)||2
Ṽ ∗dt by Mink.’ ine. 2 times

≤ ||f ||2L2(L2) + max{1, µ}||ỹ||2W(0,T )

□

The initial condition in (46) makes sense, since the space W (0, T ) ↪→ C([0, T ], H̃), and by hy-

potheses (H2), the object y0 − ỹ(0) ∈ H̃. In the following lemma ỹ denotes the lifting of the
Dirichlet data, which is given by the sum of Lin(yin) + Lc(yc), where yin ∈ Tin and yc ∈ Tc.

Lemma 3.3. The problems (46) and (45) are equivalent in the sense that, if y ∈ W̃(0, T ) is a
solution of (45) then y − ỹ = w is a solution of (46), and on the other hand if w ∈ W (0, T ) is a
solution of (46) then the function y = ỹ + w is a solution of the problem (45).

Proof: Suppose that y is a solution of (45). Then the difference y − ỹ is in w(0, T ) since both
functions have the same trace on ΣD. We define w = y − ỹ. Then we have that

w ∈W (0, T )

w(0) = y(0)− ỹ(0) = y0 − ỹ(0)∫ T

0

⟨w′(t), v(t)⟩Ṽ ∗,Ṽ + ã(w(t), v(t))dt =

∫ T

0

⟨L(t), φ⟩Ṽ ∗,Ṽ

and therefore w is a solution to (46).

On the other direction, let w(t) ∈ W (0, T ) be a solution of (46). Then the function y = ỹ + w is

in W̃ and satisfies

y(0) = w(0) + ỹ(0) = y0 − ỹ(0) + ỹ(0) = y0∫ T

0

⟨y(t), v(t)⟩Ṽ ∗,Ṽ + a(y(t), v(t))dt =

∫ T

0

⟨f(t), φ⟩Ṽ ∗,Ṽ

and therefore u is a solution of (45). □

The problem (46) can also be written in the form, Find w ∈W (0, T ) such that{
⟨w′(t), v(t)⟩Ṽ ∗,Ṽ + ã(w(t), v(t))dt = ⟨L(t), v(t)⟩Ṽ ∗,Ṽ ∀v ∈ Ṽ a.e.t ∈ (0, T )

w(0) = y0 − ỹ(0)
(48)

in a more compact form by {
w′(t) + A w(t) = L(t) in L2(Ṽ ∗)

w(0) = y0 − ỹ(0)
(49)

or even in the form{
⟨w′(t), v⟩Ṽ ∗,Ṽ + ⟨A w(t), v⟩V ∗,V = ⟨L(t), v⟩Ṽ ∗,Ṽ , ∀v ∈ Ṽ and a.e. in (0, T )

w(0) = y0 − ỹ(0)
(50)

By the section (7.4) on the appendix, the problem (50) can be also written by using the continuous

extension of the map (·, i·)H̃ to the space Ṽ ∗ × Ṽ ,{
(w′(t), v) + (A w(t), v) = (L(t), v) , ∀v ∈ Ṽ and a.e. in (0, T )

w(0) = y0 − ỹ(0)
(51)
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3.2 Well Posedness of the Variational Problem

Before proceeding to the proof of existence and uniqueness of solution to the problem (46) (or
equivalently (49)-(51)), we proof a simple result.

Lemma 3.4. The operator ã : Ṽ × Ṽ → R is Ṽ - elliptic, i.e, exists a α > 0 such that

ã(u, u) ≥ α||u||2
Ṽ

, ∀u ∈ Ṽ

Proof: For every u ∈ Ṽ we have by the Poicaré’s inequality that, ||∇u||2 ≥ C2
p ||u||2, therefore

ã(u, u) = µ||∇u||2 = µ||u||2
Ṽ

□

We have the following well posedness result which is guided by [29] and [33].

Theorem 3.1. If assumptions (H2) are verified, then exists a unique solution g ∈ W (0, T ) to
(46).
Moreover, the solution satisfies the estimate,

||g||W (0,T ) ≤ K
(
||g0||2 +

∫ T

0

||L(t)||2
Ṽ ∗

)
where L is the functional define by (47), and g0 = y0 − ỹ(0).

Proof: (i) Existence:
For the proof of the existence we use the Galerkin method, which provides a constructive form of
obtaining the solution
We start by observing that Ṽ is a separable Hilbert space, therefore exists a set of linearly inde-

pendent vectors {vj}j∈N whose linear span is dense in Ṽ , i.e, {
m∑
j=1

αjvj : m is finite } = Ṽ .

The set {vj}j∈N is also linear independent in the set H̃ and with the Gram-Schmidt orthonor-
malization process14 we can obtain a new set (which we also denote by {vj}j∈N) of orthonormal

elements in inner product of H̃. By the footnote, we conclude that this new vectors, having the
same span, they have also the same closure in the Ṽ norm, and therefore their span is again dense
in Ṽ .

Now for m ∈ N fixed, we define the ansatz,

gm(t) =

m∑
i=1

gim(t)vi

where the coefficients functions gim are unknown scalar functions defined on [0,T]. We impose that
the function gm(t) satisfies the system of equations,( d

dt
gm(t), vj

)
+ µ(∇gm(t),∇vj) = ⟨L(t), vj⟩ for j ∈ {1, ..,m} and a.e. t ∈ (0, T ) (52)

The system (52) is incomplete, we need to introduce the initial condition. We want the solution

g ∈ W (0, T ) to satisfy g(0) = g0 in H̃. Therefore we impose that our ”approximate solution” gm
has an initial condition that converges, in the H̃ norm, to the imposed initial condition, i.e,

gm(0) =

m∑
j=1

gjm(0)vj =

m∑
j=1

ξjmvj → g0 in H̃ as m→∞ (53)

14By applying this process we obtain a new set of linear independent vectors vj whose span is the same as the
original vectors.
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Let us see how to determine a possible set of values {ξjm} such that the condition (53) is satisfied.
By intuition, we will try to define the sequence of initial values as the coefficients of the orthogonal
projection (using the H̃ inner product) of the element g0 in the space L

(
{v1, v2, ...vm}

)
. Therefore

we need to see that the sequence

gm(0) =

m∑
j=1

(g0, vj)vj → g0 in H̃

We start by seeing that, the point g0 is an accumulation point of the set {
m∑
j=1

αjvj : m is finite}.

Let ϵ > 0 be arbitrary, then by the density of Ṽ in H̃ exists a y ∈ Ṽ such (the H̃ norm is the L2

norm)

||g0 − y||H̃ <
ϵ

2
(54)

Also since y ∈ Ṽ , exists a element of the span L
(
{vj}j∈N

)
such that

1

Cp
||y −

m∑
j=1

αjvj ||Ṽ <
ϵ

2
(55)

and since || · ||Ṽ ≥ Cp|| · ||L2

By the triangular inequality

||g0 −
m∑
j=1

αjvj || ≤ ϵ (56)

Since the value of ϵ > 0 may be arbitrarily small we conclude that g0 has the representation

g0 =

∞∑
j=1

αjvj (57)

Now since the vectors vj are orthonormal in H̃, we can explicit calculate the coefficients αj by
using the inner product,

(
g0, vj

)
=

( ∞∑
i=1

αivi, vj
)

= αj

(
vj , vj

)
= αj

Using the Bessel’s inequality we have that

∞∑
i=1

|(g0, vj)|2 ≤ ||g0||2 (58)

and therefore using again the orthonormality of the vectors vj in the inner product of H̃, we obtain
the important estimate

||gm(0)||2 =
∑
i=1

|(g0, vj)|2 ≤
∞∑
i=1

|(g0, vj)|2 ≤ ||g0||2 (59)

and moreover

||g0 − gm(0)|| = ||
∞∑
i=1

vj(g0, vj)−
m∑
i=1

vj(g0, vj)|| = ||
∞∑

i=m+1

|(g0, vj)|| → 0 when m→∞

Thus to the system (52) we add the condition

gjm(0) = αj = (g0, vj) for j ∈ {1, ...,m} (60)
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Using the expression which defines gm on the system (52) and (60) we obtain the following differ-
ential system for the coefficients gim(t),{∑m

i=1(vi, vj)g
′
im(t) +

∑m
i=1 a(vi, vj)gim(t) = ⟨L(t), vj⟩ a.e t ∈ (0, T )

gim(0) = (g0, vi)
(61)

Notice now that, since the vectors {vi} are orthonormal in H̃ we have that the matrix (vi, vj)ij is
the identity, and so the system (61) is equivalent to{

g′im(t) +
∑m

j=1 αi,jgim(t) = ⟨L(t), vj⟩ a.e t ∈ (0, T )

gim(0) = (g0, vi)
(62)

for i ∈ {1, 2, ...,m}, where αij = a(vi, vj).
From a result of [9], the unique vector solution of the system (61), gm = (g1m, ..., gmm) ∈ [H1(Ω)]m

has absolute continuous functions as it’s components.

Now if we multiply (52) by gjm(t) and add the result from j = 1 to j = m we obtain in al-
most every t ∈ (0, T ) the expression( d

dt
gm(t), gm(t)

)
+ a(gm(t), gm(t)) = ⟨L(t), gm(t)⟩Ṽ ∗,Ṽ (63)

Notice that de time derivative in (63) makes sense, since the time coefficients gjm(t) are absolute
continuous functions, and so d

dtgm(t) exists almost everywhere in (0, T ).

Estimates for gm

As mentioned before the proof, the function L(t) belongs to L2(Ṽ ∗). This fact tells us that
the function ⟨L(t), vj⟩Ṽ ∗,Ṽ is square integrable since∫ T

0

|⟨L(t), vj⟩Ṽ ∗,Ṽ |
2dt ≤

∫ T

0

||L(t)||2
Ṽ ∗ ||vj ||2dt <∞

using the Holder’s inequality and the fact that the set (0, T ) is bounded, we also have that
⟨L(t), vj⟩Ṽ ∗,Ṽ is in L1(0, T ).

Thus we can integrate the term ⟨L(t), v⟩Ṽ ∗,Ṽ . Also, from the fact that ⟨L(t), vj⟩Ṽ ∗,Ṽ is square

integrable we get that the coefficients gim(t), g′im(t) from (62) are also in L2(0, T ) what leads us

to gm, g
′
m ∈ L2(0, T ; Ṽ ).

Now for an arbitrary but fixed τ ∈ (0, T ], we have, using integration by parts, the identity∫ τ

0

(
g′m(t), gm(t)

)
dt =

1

2

(
||gm(τ)||2 − ||gm(0)||2

)
Thus, integrating (63) over [0, τ ] yields

1

2
||gm(τ)||2 +

∫ τ

0

a(gm(t), gm(t))dt =
1

2
||gm(0)||2 +

∫ τ

0

⟨L(t), gm(t)⟩Ṽ ∗,Ṽ dt (64)

Using the Ṽ -coercivity of the application a(., .) the integral term with a(., .) in (64) is non-negative.
Also the integral with the term ⟨L(t), gm(t)⟩Ṽ ∗,Ṽ can be estimated by using the Cauchy-Schwarz
and Young inequalities.

∫ T

0

⟨L(t), gm(t)⟩Ṽ ∗,Ṽ dt ≤
∫ T

0

|⟨L(t), gm(t)⟩Ṽ ∗,Ṽ |dt

≤
∫ T

0

||L(t)||Ṽ ∗ ||gm(t)||Ṽ dt , Cauchy-Schwarz

≤
∫ T

0

1

2ϵ
||L(t)||2

Ṽ ∗ +

∫ T

0

ϵ

2
||gm(t)||2

Ṽ
, Young
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This leads us, using (64), the Ṽ -coercivity of a and the Bessel’s inequality (58) , to the following,

||gm(τ)||2 +

∫ τ

0

2µ||gm(t)||2
Ṽ
dt ≤ ||gm(τ)||2 +

∫ τ

0

2a(gm(t), gm(t))dy

= ||gm(0)||2 + 2

∫ τ

0

⟨L(t), gm(t)⟩Ṽ ∗,Ṽ dt

≤ ||g0||2 +

∫ τ

0

1

ϵ
||L(t)||2

Ṽ ∗ +

∫ τ

0

ϵ||gm(t)||2
Ṽ ∗

and choosing ϵ = 2µ,

||gm(τ)||2 ≤ ||y0||2 +

∫ τ

0

1

2µ
||L(t)||2

Ṽ ∗ ≤ ||g0||2H̃ +

∫ T

0

1

2µ
||L(t)||2

Ṽ ∗ (65)

(65) says in particular that the sequence {gm}m∈N is a bounded sequence in L∞(0, T ; H̃)
If instead we choose ϵ = µ we get

||gm(τ)||2 +

∫ T

0

µ||gm(t)||2
Ṽ
dt ≤ ||g0||2 +

∫ τ

0

1

2µ
||L(t)||2

Ṽ ∗ ≤ ||g0||2H̃ +

∫ T

0

1

µ
||L(t)||2

Ṽ ∗ (66)

what implies that {gm}m∈N is also a bounded sequence in L2(0, T ; Ṽ ).

Passage to the limit

Since the sequence {gm}m∈N is by (65) bounded in L∞(0, T ; H̃) we know from the Banach-Alaoglu-
Bourbaki theorem ([5] pág. 66 theorem 3.16), that exists a subsequence {gmk

} ⊂ {gm} which con-

verges in the weak∗ topology to a u ∈ L∞(0, T ; H̃). Note now that by the identification H̃ = H̃∗ ,

(which is possible since H̃ is an Hilbert space) we have L∞(0, T ; H̃) =
(
L1(0, T ; H̃)

)∗
.

Thus gmk

w∗

−−→ u implies that for every v ∈ L1(0, T ; H̃)∫ T

0

(
gmk
− u, v

)
dt→ 0 (67)

when k →∞.
On the other hand, from the fact that L2(0, T ; Ṽ ) is a Hilbert space, this implies that L2(0, T ; Ṽ ) is
a reflexive space, and thus every bounded sequence in this space has a subsequence which converges
weakly for some z ∈ L2(0, T ; Ṽ ).

So taking a subsubsequence gν ⊂ gmk
we have gν

w−→ z in L2(0, T ; Ṽ ).
Written in another way when ν →∞,∫ T

0

(
gν − z, v

)
dt→ 0 , ∀v ∈ L2(0, T ; Ṽ ) (68)

or even in another way ∫ T

0

〈
gν − z, v

〉
Ṽ ,Ṽ ∗dt→ 0 , ∀v ∈ L2(0, T ; Ṽ ∗) (69)

From the density of Ṽ in H̃ we have

⟨f, v⟩Ṽ ∗,Ṽ = (f, v)H̃ , ∀f ∈ H̃, ∀v ∈ Ṽ

and thus from (69) and the fact that H̃∗ ⊂ Ṽ ∗∫ T

0

(
gν − z, v

)
dt→ 0 , ∀v ∈ L2(0, T ; H̃) (70)

Notice now that by the Holder’s inequality L2(0, T ; H̃) ⊂ L1(0, T ; H̃), then by (67) we have∫ T

0

(
gν , v

)
dt→

∫ T

0

(
u, v

)
dt
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and from (70) ∫ T

0

(
gν , v

)
dt→

∫ T

0

(
z, v

)
dt

thus ∫ T

0

(
z, v

)
dt =

∫ T

0

(
u, v

)
dt

for each v ∈ L2(H̃).

So we have that u = z ∈ L2(0, T ; Ṽ ) ∩ L∞(0, T ; H̃).

We also have that gν(0)→ g0 strongly in H̃. To see this, observe that from (66) we can get

||gm(τ)||2
H̃
≤ ||g0||2H̃ +

∫ τ

0

1

µ
||L(t)||2

Ṽ ∗ (71)

Now since gm(t) is a continuous function in relation to the variable t, we get

||gm||C([0,T ];H̃) := max
t∈[0,T ]

||gm(t)|| ≤
(
||g0||2Ṽ +

∫ T

0

1

ϵ
||L(t)||2

Ṽ ∗

)1/2
= K̃ (72)

Now we see that for every t ∈ [0, T ] and every m ∈ N ||gm(t)||2
H̃
≤ K̃2 which is equivalent to say

m∑
i=1

|gim(t)|2 ≤ K̃2 , ∀t ∈ [0, T ] and ∀m ∈ N

This yields the strong convergence of gν(0) to g0 in L2(Ω).
In fact,

||gν(0)− g0|| = ||
ν∑

i=1

gνi (0)vi −
∞∑
i=1

(g0, vi)vi|| = ||
∞∑

i=ν+1

gi(0)vi|| → 0

Consider now j ∈ N arbitrary but fixed, and let N ∋ ν > j. From (52)( d
dt
gm(t), vj

)
+ µ(∇gm(t), vj) = ⟨L(t), vj⟩ para j ∈ {1, ..,m}

choosing φ ∈ C1[0, T ] such that φ(T ) = 0 and multiplying the above equation by φ we get( d
dt
gm(t), ϕj

)
+ µ(∇gm(t),∇ϕj) = ⟨L(t), ϕj⟩ para j ∈ {1, ..,m} (73)

where ϕj(t) = φ(t)vj .
Integrating the equation (73) from 0 to T , and using the formulas of integration by parts, which
are valid in this context (see [11]), we arrive at∫ T

0

( d
dt
gm(t), ϕj

)
dt+

∫ T

0

µ(∇gm(t), ϕj)dt =

∫ T

0

⟨L(t), ϕj⟩dt⇔

−
∫ T

0

(
gm(t),

d

dt
ϕj

)
dt+

∫ T

0

µ(∇gm(t),∇ϕj)dt =

∫ T

0

⟨L(t),∇ϕj⟩dt+
(
gν(0), φj(0)

)
Now notice that from the regularity of ϕj , this element is in L2(0, T ; Ṽ ).
Taking the limit ν → ∞ we arrive at, using the weak convergences and the strong convergences
seen above,

−
∫ T

0

(
z(t),

d

dt
ϕj

)
dt+

∫ T

0

µ(∇z(t),∇ϕj)dt =

∫ T

0

⟨L(t), ϕj⟩dt+
(
z(0), φj(0)

)
(74)

The expression (74) is also valid in D((0, T )), and thus we get that

d

dt
(z(t), vj) + a(z(t), vj) = ⟨L(t), vj⟩Ṽ ∗,Ṽ (75)
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in the sense of the scalar distributions.
On the other hand, since j ∈ N was chosen in an arbitrary way, (74) is valid for every Vj with

j ∈ N, which is a dense set of Ṽ .
Thus we have that (74) is valid in Ṽ and we arrive at

d

dt
⟨z(t), v⟩ = ⟨L(t)−A z(t), v⟩ , for all v ∈ Ṽ

But, this from lemma 7.9 is equivalent to say that

L(t)−A z(t) = z′(t)

where z′(t) is the derivative in the sense of the vector valued distributions, and since L(t)−A z(t) ∈
L2(0, T ; Ṽ ∗) we also have that z′(t) ∈ L2(0, T ; Ṽ ∗). So z(t) ∈W (0, T ).
It remains to check if the initial condition z(0) = g0 is satisfied.
To see this, we choose a function φ ∈ C1([0, T ]) such that φ(T ) = 0. With this differentiable

function we define a function in L2(Ṽ ) by v(t) = φ(t)v where v ∈ Ṽ . From an appendix result,

we know that the function v(t) has the weak derivative v′(t) = φ′(t)v which is again in L2(Ṽ ) and

therefore is also in L2(Ṽ ∗).

Now since z(t) ∈ W (0, T ) is the solution of z′(t) + A z(t) = L(t) in L2(Ṽ ∗), we have that, using
integration by parts∫ T

0

⟨z′(t), v(t)⟩Ṽ ∗,Ṽ dt+

∫ T

0

⟨A z(t), v(t)⟩Ṽ ∗,Ṽ =

∫ T

0

⟨L(t), v(t)⟩Ṽ ∗,Ṽ dt⇔

⇔ −
∫ T

0

⟨z(t), v′(t)⟩Ṽ ,Ṽ ∗dt+

∫ T

0

⟨A z(t), v(t)⟩Ṽ ∗,Ṽ = (z(0), v(0)) +

∫ T

0

⟨L(t), v(t)⟩Ṽ ∗,Ṽ dt

Now from the construction of z(t) we also have that for the same v(t) as above

−
∫ T

0

⟨z(t), v′(t)⟩Ṽ ,Ṽ ∗dt+

∫ T

0

⟨A z(t), v(t)⟩Ṽ ∗,Ṽ = (g0, v(0)) +

∫ T

0

⟨L(t), v(t)⟩Ṽ ∗,Ṽ dt

Therefore we conclude that

(g0 − z(0), v(0)) = (g0 − z(0), v)φ(0)

ans choosing φ ∈ C1([0, 1]) which has φ(0) ̸= 0 we arrive at

(g0 − z(0), v) = 0 , for all v ∈ Ṽ

and since the inner product is a continuous application and Ṽ is dense in H̃ we get that g0 = z(0),
that is, our solution candidate, z(t) satisfies the initial condition.

Uniqueness

Consider the homogeneous version of (49), i.e, L = 0 and g0 = 0. If this problem has only
the null solution, then the uniqueness is proven.
Writing the system (49) with a solution y as a test function (notice that y exists from the existence
argument seen above) we get

( d
dt
y, y

)
+ µ(∇y,∇y) = 0⇔ d

dt
||y(t)||2 ≤ −µ||y(t)||2

Ṽ
≤ 0

Thus y(t) is a non-increasing function, therefore ||y(t)|| ≤ ||y(0)|| = 0, and this leads to y(t) = 0
for t ∈ [0, T ].

Estimate for the solution:

We saw that gν
w−→ z in the sense of L2(0, T ; Ṽ ), and since the operator

∫ T

0

||g(t)||2
Ṽ
dt is a norm
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in that space, is convex and continuous, and thus is weakly lower semicontinuous.
Then, from (appendix) we have that∫ T

0

||g(t)||2
Ṽ
dt ≤ lim inf

ν→∞

∫ T

0

||gν(t)||2
Ṽ
dt ≤ C

(
||g0||2 +

∫ T

0

||L(t)||2
Ṽ ∗dt

)

As we saw our solution z, assumes z′(t) = L(t) − A z(t) in L2(0, T ; Ṽ ∗) and we have that, us-
ing triangular inequality

||z′(t)||2
Ṽ ∗ ≤

(
||L(t)||2

Ṽ ∗ + ||A ||2
L (Ṽ ,Ṽ ∗)

||z(t)||2
Ṽ

)2
and using Young’s Inequality, we get choosing ϵ = 1.

||z′(t)||2
Ṽ ∗ ≤ 2||L(t)||2

Ṽ ∗ + 2||A ||2||z(t)||2
Ṽ

Then we have the following chain of inequalities∫ T

0

||z′(t)||2
Ṽ ∗dt ≤ 2

∫ T

0

||L(t)||2
Ṽ ∗dt+ 2||A ||2

L (Ṽ ,Ṽ ∗)

∫ T

0

||z(t)||2
Ṽ
dt

≤ 2

∫ T

0

||L(t)||2
Ṽ ∗dt+ 2C||A ||2

L (Ṽ ,Ṽ ∗)

(
||g0||2 +

∫ T

0

||L(t)||2
Ṽ ∗dt

)
≤ 2(1 + ||A ||2

L (Ṽ ,Ṽ ∗)
C)

(
||g0||2 +

∫ T

0

||L(t)||2
Ṽ ∗dt

)
and we call K̃ = 2(1 + ||A ||2

L (Ṽ ,Ṽ ∗)
C).

Thus we can see that the solution g satisfies the estimate

||z||2W (0,T ) ≤ K
(
||g0||2 + ||L(t)||2

L2(0,T ;Ṽ ∗)

)
(76)

where K = K̃ + 1. □

Theorem 3.1 gives us the unique solution to the variational problem (46), which by construction
is an element of W (0, T ) that satisfies,

w′(t) + A w(t) = L(t)⇔ w′(t) + A w(t) = f(t)− ỹ′(t)− Aỹ(t) , in L2(0, T ; Ṽ ∗)

where Aỹ(t) is restricted to Ṽ .
Thus the function y(t) = ỹ(t) + w(t), is solution to the equation

y′(t) + A w(t) + Aỹ(t) = f(t)⇔ y′(t) + Ay(t) = f(t) , in L2(0, T ; Ṽ ∗)

where we used the fact that ⟨A w(t), φ⟩Ṽ ∗,Ṽ = ⟨Aw(t), φ⟩(H1)∗,H1 . Since as was seen in (note 1)

u ∈ C([0, T ];H), in particular y(0) is well defined. Moreover, since by construction w(0) = y0−ỹ(0)
we get that y(0) = y0, and the initial condition is satisfied.
Also, again by construction, the Dirichlet boundary condition are satisfied in the sense of the
traces, since we have that

w
∣∣
ΣD

= 0 and ỹ
∣∣
ΣD

= gD =⇒ ỹ + w
∣∣
ΣD

= gD

where

gD =


yin in Σin

yc in Σc

0 in Σw

(77)

Thus we have just proved that the problem (1) has a weak solution in the sense of definition 3.1.
To see the uniqueness, if we choose another lifting ỹ1, and determine another variational solution
w1 such that y1 = ỹ1 + w1is also a weak solution of (1), we get that y − y1 ∈ W (0, T ), because
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both y, y1 satisfy the same Dirichlet boundary condition on ΣD. Also y − y1 is a solution to the
homogeneous problem {

(y − y1)′(t) + A(y − y1)(t) = 0 in L2(0, T ; Ṽ ∗)

(y − y1)(0) = 0

Notice that, since (y−y1)(t) ∈ L2(Ṽ ), and A(y−y1)(t) has, in the above expression, the evaluation

restricted to Ṽ , we have that for all v ∈ Ṽ and for almost every t ∈ (0, T ),

⟨A(y − y1)(t), φ⟩(H1)∗,H1 = a((y − y1)(t), v) = ã((y − y1)(t), v) = ⟨A (y − y1)(t), v⟩Ṽ ∗,Ṽ

and therefore the system is equivalent to{
(y − y1)′(t) + A (y − y1)(t) = 0 in L2(0, T ; Ṽ ∗)

(y − y1)(0) = 0

By the uniqueness proved in the theorem 3.1, this system has only the zero solution, and we con-
clude that y = y1.

The following estimate result is important for the proof of the existence of an optimal solution in
control chapter.

Lemma 3.5. There exists a positive constant C̃ ′ such that

||y||C([0,T ];H) + ||y||W̃(0,T ) ≤ C̃
′
(
||y0||2 + ||f ||2

L2(0,T ;Ṽ ∗)
+ ||yin||2Tin

+ ||yc||2Tc

)1/2

(78)

Proof: We start by observing that15

||y||2W̃(0,T )
≤ 2

(
||ỹ||2W(0,T ) + ||w||2W (0,T )

)
(79)

To see this, we have the following chain of inequalities

||y||2W̃(0,T )
= ||ỹ + w||2W̃(0,T )

= ||ỹ + w||2L2(V) + ||ỹ′ + w′||2
L2(Ṽ ∗)

=

∫ T

0

||ỹ + w||2Vdt+

∫ T

0

||ỹ′ + w′||2
Ṽ ∗dt

≤ 2

∫ T

0

||ỹ||2Vdt+ 2

∫ T

0

||w||2Vdt+ 2

∫ T

0

||ỹ′||2
Ṽ ∗dt+ 2

∫ T

0

||w′||2
Ṽ ∗dt

= 2||ỹ||2W̃(0,T )
+ 2||w||2W (0,T )

≤ 2||ỹ||2W(0,T ) + 2||w||2W (0,T )

where we used the fact that ||w||2V = ||w||2
Ṽ

, the Young’s inequality with ϵ = 1 (see the lemma 7.1

and post commentary).

Now, we have from the estimates for the liftings of the Dirichlet’s data

||ỹ||2W(0,T ) = ||Lin(yin)+Lc(yc)||2W(0,T ) ≤ 2||Lin(yin)||2W(0,T )+2||Lc(yc)||2W(0,T ) = 2||yin||2Tin
+2||yc||2Tc

(80)
To estimate the term ||w||2W (0,T ) we use (76).
Thus,

||w||2W (0,T ) ≤ K
(
||g0||2 + ||L(t)||2

L2(0,T ;Ṽ ∗)

)
(81)

where g0 = y0 − ỹ(0).

15Notice that W(0, T ) ↪→ W̃(0, T ).
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From (79), and the above estimates we get that

||y||2W̃(0,T )
≤ 2

(
||yin||2Tin

+ ||yc||2Tc
+K

(
||g0||2 + ||f ||2

L2(0,T Ṽ ∗)
+ ||ỹ′||2

L2(0,T ;Ṽ ∗)

+ ||A ||2L (H1,(H1)∗)||ỹ||
2
L2(0,T ;V)

))
≤ 2

(
||yin||2Tin

+ ||yc||2Tc
+K

(
||g0||2 + ||f ||2

L2(0,T ;Ṽ ∗)
+ max{1, ||A ||2L (H1,(H1)∗)}||ỹ||

2
W̃(0,T )

))
≤ 2

(
||yin||2Tin

+ ||yc||2Tc
+K

(
||g0||2 + ||f ||2

L2(0,T ;Ṽ ∗)
+ max{1, ||A ||2L (H1,(H1)∗)}||ỹ||

2
W(0,T )

))
≤ 2

(
||yin||2Tin

+ ||yc||2Tc
+K

(
||g0||2 + ||f ||2

L2(0,T ;Ṽ ∗)
+ max{1, ||A ||2L (H1,(H1)∗)}||g||

2
TD

))
≤ K̃

(
||g0||2 + ||f ||2

L2(0,T ;Ṽ ∗)
+ ||yin||2Tin

+ ||yc||2Tc

)
≤ K̃

(
||y0||2 + ||ỹ(0)||2 + ||f ||2

L2(0,T ;Ṽ ∗)
+ ||yin||2Tin

+ ||yc||2Tc

)
Observe now that

||ỹ(0)||2 ≤ ||ỹ||2C([0,T ];H) ≤ c||ỹ||
2
W(0,T ) ≤ 2c

(
||yin||2Tin

+ ||yc||2Tc

)
and thus we arrive at the estimate

||y||W̃(0,T ) ≤ K̃
′
(
||y0||2 + ||f ||2

L2(0,T ;Ṽ ∗)
+ ||yin||2Tin

+ ||yc||2Tc

)1/2

(82)

Now, by the continuous embeddings W(0, T ) ↪→ C([0, T ];H) and W (0, T ) ↪→ C([0, T ];H) exist
constants c1, c2 > 0 such that

||y||2C([0,T ];H) ≤ 2
(
||ỹ||2C([0,T ];H) + ||w||2C([0,T ];H)

)
≤ 2

(
c21||ỹ||2W(0,T ) + c22||w||2W (0,T )

)
and using the estimate (82) we get

||y||C([0,T ];H) + ||y||W̃(0,T ) ≤ C̃
′
(
||y0||2 + ||f ||2

L2(0,T ;Ṽ ∗)
+ ||yin||2Tin

+ ||yc||2Tc

)1/2

(83)

□

3.3 Pressure Recover

Let us now see that with a velocity y ∈ W̃(0, T ) we can construct a pressure field, such that the
Stokes equation is satisfied in the distribution sense.
For that we need to use the next two results which are from [29].

Theorem 3.2. Let Ω be an open set of Rn, and let f = {f1, f2, ...fn} be a vector such that each
component fi ∈ D ′(Ω) for i ∈ {1, ..., n}. Then a necessary and sufficient condition for

f = ∇p , for some p ∈ D ′(Ω)

is that ⟨f, φ⟩ = 0 for every φ ∈ V (Ω).

The next theorem is also from ([29] pag. 14) and gives more regularity to the distribution p
obtain from theorem 3.2, under certain conditions.

Theorem 3.3. Let Ω ⊂ Rn be a Lipschitz and bounded set. If :
(i) p is a distribution which has all the derivatives Dip ∈ L2(Ω) then p ∈ L2(Ω) and

||p||L2
0(Ω) ≤ c(Ω)||∇p||L2(Ω)

(ii) p is a distribution which has all the derivatives Dip ∈ H−1(Ω) then p ∈ L2(Ω) and

||p||L2
0(Ω) ≤ c(Ω)||∇p||H−1(Ω)
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Let y(t) ∈ W̃(0, T ) be a weak solution of (1) in the sense of our definition 3.1. Thus, y satisfies

y′(t) + Ay(t) = f(t) in L2(0, T ; Ṽ ∗), which is equivalent to

⟨y′(t) + Ay(t)− f(t), v⟩ = 0 for almost every t ∈ (0, T ) and ∀v ∈ Ṽ

Integrating this expression from 0 to t ∈ (0, T ] we get∫ t

0

⟨y′(s), v⟩Ṽ ∗,Ṽ ds+ ⟨AY (t)− F (t), v⟩ = 0 for every t ∈ (0, T ) , ∀v ∈ Ṽ (84)

where Y (t) =

∫ t

0

u(s)ds belonging to C([0, T ];V) and F (t) =

∫ t

0

f(s)ds belonging to C([0, T ];L2(Ω)2)
.
In (84), the integral on the left can be evaluated using integration by parts. In fact by note-2,
we are in the special case of φ(t) = 1 which is a C1 function in [0, T ], with the particularity that
φ′ = 0. Thus we have∫ t

0

⟨y′(s), v⟩Ṽ ∗,Ṽ ds = (y(t)− y(0), v) for every t ∈ [0, T ],∀v ∈ Ṽ

Thus we arrive at the functional

y(t)− y(0) + AY (t)− F (t)

which is well defined in [H1
0 (Ω)2]∗, since for each t ∈ [0, T ], F (t) is an element in L2(Ω)2 and

therefore in [H1
0 (Ω)2]∗ , AY (t) is an element in (H1(Ω)2)∗ ⊂ H−1(Ω)2 and (y(t)−y0) ∈ H ⊂ L2(Ω)2.

Thus, this functional can be seen as an element of H−1(Ω)2 for each t ∈ [0, T ]. Moreover since this
functional has the property,

⟨y(t)− y0 + AY (t)− F (t), v⟩ = 0 for all v ∈ Ṽ

and V ⊂ Ṽ , we conclude from theorems 3.2-3.3 the existence of a function P (t) ∈ L2(Ω) for each
t ∈ [0, T ], such that

y(t)− y0 + AY (t) +∇P (t) = F (t) for each t ∈ [0, T ] (85)

Notice now that, when Ay is restricted to Ṽ it gives the same result as ⟨−∆y, v⟩.
Since y(t) − y0 + AY (t) − F (t) ∈ C([0, T ], H−1(Ω)) we get from the gradient isomorphism that
P (t) ∈ C([0, T ], L2

0(Ω)).
This regularity in P (t) is sufficient to let us differentiate (85) in time, in the sense of the distributions
in Q, to give us

y′(t)− µ∆y(t) +∇p(t) = f(t) in Q (86)

being this equation understood in the sense of the distributions in Q.

Suppose now, that we have more regularity on y and on the pressure p, for instance, y ∈ W̃(0, T )∩
L2(0, T ;H2(Ω)2) and p ∈ L2(0, T ;H1(Ω)2). Thus since

µ(∇y(t),∇v) + ⟨y′(t)− f(t), v⟩Ṽ ∗,Ṽ = 0 for all v ∈ Ṽ and a.e t ∈ (0, T )

substituting in this expression f by y′(t)− µ∆y(t) +∇p(t) we obtain

⟨µ∆y(t)−∇p(t), v⟩Ṽ ∗,Ṽ + µ(∇y(t),∇v) for all v ∈ Ṽ and a.e t ∈ (0, T )

and using integration by parts [10] we get

0 = ⟨µ∆y(t)−∇p(t), v⟩Ṽ ∗,Ṽ + µ(∇y(t),∇v) =

∫
Γ

(
µ∇y · n− pn

)
vdt

=

∫
Γout

(
µ∇y · n− pn

)
vdt

for every v ∈ Ṽ and a.e t ∈ (0, T ).
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3.4 Regularity

This section is dedicated to the regularity of the weak solution of problem (1). In our case we are
dealing with a second order parabolic operator

Pu = ut − aijDiju (87)

where in this case aij = δij to give the Laplacian. In fact the operator P is parabolic since we
have (Evans Definition for a parabolic operator) since exists a constant θ > 0 such that,

2∑
i,j=1

ai,j(x, t)ξiξj ≥ θ|ξ|2 for all (x, t) ∈ Q, ξ ∈ R2

Our method for a solution construction gave us a function y(t, x) which is in L2(0, T ;H1(Ω)).
Is natural to question if the weak solution y has more regularity both in space and time.
With respect to higher regularity for the space variables, one can proves (see Lieberman theorem
6.6) the following result,

Theorem 3.4. Let y be the weak solution of the second order parabolic equation Py = f where
f ∈ L2(0, T ;L2(Ω)), if the coefficients of the operator P satisfy

||Dai,j ||L∞ ≤ K

for a positive constant k. Then for any subset Ω′ ⊂⊂ Ω, we have D2y and yt in L2(0, T ;L2(Ω)).
Moreover, exists a constant C not depending in y such that

||D2y||L2(Ω′) + ||y||L2(Ω′) ≤ C
(
||Dy||L2(Ω) + ||f ||L2(Ω)

)
The theorem (3.4) yields that y(t, ·) is locally in H2 for almost every t ∈ (0, T ).

To extend this type of regularity to the all domain Ω, that is to have y(t, ·) ∈ H2(Ω) for almost
every t, every consulted book on PDEs solutions regularity asks the domain to have a smooth
regularity. This is not our case and therefore we only hope to have interior regularity.

Another possible way of improving the solution’ s regularity is done in the book [3]. However
the author in those results are using the semi-group theory and interpolation results, a topic that
we do not discuss in the present work.

4 Optimal Control Problem

In this section we turn our attention to our boundary control problem, on the Ω domain. We start
by giving a proper definition of our minimization problem, followed by analyzing if it has at least
one solution. We close this chapter with a deduction of the first order optimality conditions.

4.1 Preliminary Definitions for the Minimization Problem

We are interested in analyzing a similar optimal problem as what was done in [24], but with the
differences that in the present work, we consider only the Stokes equations, and we add the time
dependence.
We fix some input velocity in Σin, an initial condition y0, which both must be in some appropriate
spaces (see chapter 2.2 and 2.3 for their definition), and a force term f ∈ L2(L2(Ω)). In this
framework we want to minimize a cost functional, which will be defined shortly, with evaluation
constrained to the pairs (y, u), where y is the weak solution in the sense of the definition 3.1, which
depends on u, a boundary velocity (that also should be in a proper space U that we will define
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bellow) that we control, in order to minimize the cost.
Now we specify, which type of cost functionals are the ones that interested us and the space where
we will do the control.

We are interested in minimizing cost functionals of the form

J(y, u) = α1J1(y) + α2J2(y) + J3(u) (88)

where, for the functional J1 we are interested in the two following cases

J1 : L2(V)→ R J1(y) =
1

2

∫ T

0

||y(t)− yd(t)||2Vdt or J1(y) =
1

2

∫ T

0

||∇ × y(t)||2dt

with yd ∈ L2(V), and where, J2, J3 are given by

J2 : H→ R J2(y) =
1

2
||y − yd||2H (89)

with yd a fixed element of H

J3 : U → R J3(u) =
τ

2
||u||2U (90)

with τ ≥ 016.
In what follows, to simplify, we assume that α1 = α2 = 1, but the results are unchanged by that
assumption.

Now, we construct the framework for our minimization problem.
Consider that we have an initial condition y0 ∈ H , a fixed input boundary velocity yin ∈ Tin,
with lifting Lin(yin). Notice that this input velocity must be chosen not in arbitrary way, but in
the set

U y0

in := {yin ∈ Tin : ∃yc ∈ Tc such that Lc(yc) + Lin(yin)− y0 ∈ H̃}

Recall that by choosing y0 from H we have by lemma 2.2 that the set U y0

in is not empty.

Suppose now that, U is a Hilbert space17, for the inner product (·, ·)U , and let B ∈ L (U,Tc)
be a given operator,18 such that there exists an object u0 ∈ U and a closed subspace U0 ⊂ U that,(

Lc

(
B(u0)

))
(0)− (y0 − Lin(yin)(0) ∈ H̃

(
Lc(B

(
u1)

))
∈ H̃ for all u1 ∈ U0

Then, we define the affine space Ũ = u0 +U0, which is closed (since U0 is closed), convex, and has

also the property that B(Ũ) is a set of admissible velocities.

In fact, by the linearity of B and Lc we have that, for every x ∈ Ũ , since x has the form x = u0 + ũ
with u0 ∈ U0,

Lc(B(x)) = Lc(B(u0) +B(ũ)) = Lc(B(u0)) + Lc(B(ũ))

and therefore

Lc(B(x))(0)−
(
y0 − Lin(yin)(0)

)
= Lc(B(u0)) + Lc(B(ũ))−

(
y0 − Lin(yin)(0)

)
∈ H̃

Therefore, the afine space Ũ , is composed by the elements of U , with the property that they are
mapped, via B, to a boundary velocity in Tc, and whose lifting, together with the lifting yin, verify
the compatible property with the initial data y0. Thus, the control must be done in Ũ .

To simplify the notation, we will denote for a given yc ∈ Tc, Lc(yc) by ỹc, and we do this only for
Lc leaving the notation for Lin unchanged.

16In our study cases we will always consider the case τ > 0.
17I from here that cames the motivation to define a norm in Tc such that this space is a Hilbert Space.
18We use the notation L(X,Y ) to denote the set of all the linear and continuous operators from X to Y .
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Now, consider the following variational problem. Given Lc(B(u)) = B̃u ∈ Wc(0, T ) find w ∈
W (0, T ) such that{
⟨w′(t), v⟩Ṽ ∗,Ṽ + µ(∇w(t),∇v) = ⟨Fin(t), v⟩Ṽ ∗,Ṽ − µ(∇B̃u,∇v)− ⟨B̃u

′
, v⟩Ṽ ∗,Ṽ , ∀v ∈ Ṽ and a.e. t ∈ (0, T )

w(0) = (y0 − Lin(yin)(0))− B̃u(0)

(91)
where Fin(t) is the functional given by,

⟨Fin(t), v⟩Ṽ ∗,Ṽ = (f(t), v)− a
(
Lin(yin)(t), v

)
− ⟨Lin(yin)′(t), v⟩Ṽ ∗,Ṽ , ∀v ∈ Ṽ and a.e. t ∈ (0, T )

which may be written as

⟨Fin(t), v⟩Ṽ ∗,Ṽ = (f(t), v)−⟨A(Lin(yin))(t), v⟩Ṽ ∗,Ṽ−⟨Lin(yin)′(t), v⟩Ṽ ∗,Ṽ , ∀v ∈ Ṽ and a.e. t ∈ (0, T )

Notice that, if w(t) ∈W (0, T ) is the (unique by the theorem 3.1) solution to (91) then, B̃u+w is
the (unique) solution of{

(w + B̃u)′(t) + A(w + B̃u)(t) = Fin(t) in L2(Ṽ ∗)

(w + B̃u)(0) = y0 − Lin(yin)(0)

and has the traces 
0 in Σin

Bu in Σc

0 in Σw

Notice also that if we sum Lin(yin) to B̃u + w, we obtain a function y = Lin(in) + B̃u + w such
that, y is the weak solution of (1) in the sense of our definition 3.1, and has the traces,

yin in Σin

Bu in Σc

0 in Σw

and also satisfies the initial condition y(0) = y0.

Thus by defining the state equation e : W (0, T )× Ũ → L2(Ṽ ∗)× H̃ given by

e1(w, u) = ⟨w′(t), v(t)⟩L2(Ṽ ∗),L2(Ṽ ) +

∫ T

0

µ(∇w(t),∇v(t))dt− ⟨Fin(t), v(t)⟩L2(Ṽ ∗),L2(Ṽ )+

+

∫ T

0

µ(∇B̃u(t),∇v(t))dt+ ⟨B̃u
′
(t), v(t)⟩L2(Ṽ ∗),L2(Ṽ ) , ∀v ∈ L2(Ṽ )

e2(w, u) = Lin(yin)(0) + B̃u(0) + w(0)− y0

we consider the following minimization problem{
min J

(
Lin(gin) + B̃u+ w,

(
Lin(yin) + B̃u+ w

)
(0), u

)
e(w, u) = 0 for u ∈ Ũ

(92)

Let us now illustrate two possible cases for the definition of U .
Example 1: consider U = Tc, that from our construction is a Hilbert space when equipped with
the norm || · ||Tc

, and we set B ∈ L (Tc,Tc) as the identity map. In this case, we choose ũ as one
element in Tc that satisfies

Lc(ũ)(0)−
(
y0 − Lin(yin)(0)

)
∈ H̃

(such ũ exists by lemma 2.2), and the subspace U0 is defined as the set U0 := {u ∈ Tc =

U : Lc(u)(0) ∈ H̃}. This is the same as saying that U0 is the pre-image of H̃, via the map

τ t0 ◦ Lc : Tc → H. Since this composition map is continuous, and the set H̃ is closed in H, we
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obtain that U0 is a closed19 subset of Tc.

Example 2: consider the space U = Wc(0, T ) and B = τc : Wc(0, T )→ Tc which as we have seen
is linear and continuous.
In this case, we choose u0 as an element in U = Wc(0, T ) such that Lc(Bu0)(0)−

(
y0−Lin(yin)

)
∈

H̃, and for the subspace U0 we choose the set

U0 := {u ∈Wc(0, T ) : τ t0 ◦ Lc(τc(u)) ∈ H̃}

which is the pre-image of the closed set H̃ by the map τ t0 ◦ Lc ◦ τc : Wc(0, T ) → H, which is
continuous, and so U0 is a closed subset of U . In this work since we are interested in a boundary
control, we will focus on the first example.

4.2 Existence of an Optimal Solution

Now we focus on proofing that the problem (92) as at least one solution. For that, we first proof
two lemmas.

Lemma 4.1. The functionals J1, J2, J3 all satisfy the property of boundness from below, and they
are all weak lower semi-continuous .

Proof: The boundness from bellow is simple since this functionals assume only non-negative
values. To see the weak lower semi-continuity we will prove that these operators are convex and
continuous.
Before recall the lemma 7.2 of the appendix. Now, since the norm is a convex application and the
function [0,∞[∋ x 7→ x2 is convex and increasing, we may conclude that the composition || · ||2 is
always a convex map.
Therefore the maps J3, J2 defined above, are convex. They are also continuous since they are the
composition of continuous applications.
For the first example of J1, we also may use the above argument to conclude the continuity and
convexity, but for the case when J1 is given by

J1(y) =
1

2

∫ T

0

||∇ × y(t)||2dt

we need to be more careful.
First notice that in two dimensions the curl of a vector field u, is given by

∇× u =
∂u2
∂x1
− ∂u1
∂x2

Therefore the curl operator ∇× : V→ L2(Ω) is well defined and is linear20. Now, we have that for
λ ∈ [0, 1] and u, v ∈ L2(V),

||∇ ×
[
λu+ (1− λ)v

]
||2 = ||λ∇× u+ (1− λ)∇× v||2L2(V) ≤ λ||∇ × u||

2 + (1− λ)||∇ × v||2

where in the first step was used the linearity of ∇×, and in the second inequality, the convexity
of the norm squared. Thus the operator is convex. To see the continuity we only need to see that
the operator ∇× : L2(V) → L2(L2(Ω)) is bounded, since we already know it is linear. To see the
boundness, let u be an element of L2(V), then for almost every y ∈ (0, T ),

||∇ × u(t)||2 = ||∂u2
∂x1
− ∂u1
∂x2
||2 ≤ 2

(
||∂u1
∂x2
||2 + ||∂u2

∂x1
||2

)
≤ 2

(
||∂u1
∂x1
||2 + ||∂u1

∂x2
||2 + ||∂u2

∂x1
||2 + ||∂u2

∂x2
||2

)
= 2||∇u(u)||2 = 2||u(t)||2V

19Notice that H has the L2 norm and by definition H̃ is closed subset of L2(Ω). Since H̃ ⊂ H, we also have that
H̃ is a closed subset of H.

20The linearity is a simple consequence of the linearity of the derivation.
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Therefore ∫ T

0

||∇ × u(t)||2dt ≤ 2

∫ T

0

||u(t)||2Vdt = 2||u||2L2(V)

□

Lemma 4.2. The cost functional J defined in (88) is weakly lower semi-continuous.

Proof: We introduce the following operators to make the argument more precise . We define,

IVW (0,T ) → L2(V) W (0, T ) ∋ y(t) 7→ y(t) ∈ L2(V)

IVW(0,T ) → L2(V) W(0, T ) ∋ y(t) 7→ y(t) ∈ L2(V)

IT,H
W(0,T ) → H W(0, T ) ∋ y(t) 7→ y(T ) ∈ H

IT,H
W (0,T ) → H W (0, T ) ∋ y(t) 7→ y(T ) ∈ H

The above operators are linear and continuous. Now we introduce the operator I : W (0, T )× Ũ →
L2(V)×H× Ũ , and for simplification of notation, we will denote L2(V)×H× Ũ by X, given by,

for y ∈W (0, T ) and u ∈ Ũ ,

I(y, u) =
(
IVW (0,T )(y) + IVW(0,T )

(
Lc(B(u))

)
+ IVW(0,T )

(
Lin(yin)

)
, IT,H

W (0,T )(y)+

IT,H
W(0,T )

(
Lc(B(u))

)
+ IT,H

W (0,T )

(
Lin(yin)

)
, u

)
which may be also written in a not too heavy form,

I(y, u) =
(
y(t) + Lc(B(u))(t) + Lin(yin)(t), y(T ) + Lc(B(u))(T ) + Lin(yin)(T ), u

)
where the functions are seen in the appropriate spaces in order to have the vector image in X. The
operator I is not linear, is only affine linear, unless the term Lin(yin) = 0. However we have the

following important property. Given λ ∈ [0, 1] and (y, u), (w, v) ∈W (0, T )× Ũ ,

I
(
λ(y, u) + (1− λ)(w, v)

)
= I

((
λy + (1− λ)w, λu+ (1− λ)v

))
=

(
IVW (0,T )

(
λy + (1− λ)w

)
+ IVW(0,T )

(
Lc(B(λu+ (1− λ)v))

)
+ IVW(0,T )

(
Lin(yin)

)
, IT,H

W (0,T )

(
λy + (1− λ)w

)
+ IT,H

W(0,T )

(
Lc(B(λu+ (1− λ)v))

)
+ Lin(yin), λu+ (1− λ)v

)
= λI(y, u) + (1− λ)I(w, v)

where we use the linearity of the maps, and the decomposition Lin(yin) = λLin(yin) + (1 −
λ)Lin(yin) where λ ∈ [0, 1].
The operator I is also continuous, when we consider the spaces with the Cartesian norm. In fact,
let (yn, un)n∈N be a converging sequence to (y, u) in W (0, T )× Ũ , with the Cartesian norm, that
is, we have that

||(yn, un)− (y, u)||W (0,T )×Ũ =
√
||yn − y||2W (0,T ) + ||un − u||2Ũ

what in particular implies that

||yn − y||2W (0,T ) → 0 ||un − u||2Ũ → 0
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Then we have

||I(yn, un)− I(y, u)||2X =
∣∣∣∣∣∣(yn + B̃(un) + Lin(yin), yn(T ) + B̃(un)(T ) + Lin(yin)(T ), un

)
−
(
y + B̃(u) + Lin(yin), y(T ) + B̃(u)(T ) + Lin(yin)(T ), u

)∣∣∣∣∣∣2
X

=
(∣∣∣∣yn − y + B̃(un)− B̃(u)

∣∣∣∣2
L2(V) +

∣∣∣∣yn(T )− y(T ) + B̃(un)(T )− B̃(u)(T )
∣∣∣∣2
H+

+
∣∣∣∣un − u∣∣∣∣2Ũ)
≤ 2

(
||yn − y||2L2(V) + ||B̃(un)− B̃(u)||2L2(V) + ||yn(T )− y(T )||2H+

+ ||B̃(un)(T )− B̃(u)(T )||2H + ||un − u||2Ũ
)

where in the last step we used the Young’s inequality with ϵ = 1. Writing the above expression
with the operators in evidence becomes,

||I(yn, un)− I(y, u)||2X ≤ 2
(
||IVW (0,T )(yn − y)||2L2(V) + ||IVW(0,T )

(
B̃(un)− B̃(u)

)
||2L2(V) + ||IT,H

W (0,T )(yn − y)||2H+

+ ||IT,H
W(0,T )

(
B̃(un)− B̃(u)

)
||2H + ||un − u||2Ũ

)
and since the operators IVW (0,T ), I

V
W(0,T ), I

T,V
W (0,T ) and IT,V

W(0,T ) are bounded and linear we get,

||I(yn, un)− I(y, u)||2X ≤ 2
(
||IVW (0,T )||

2
L (W (0,T ),L2(V))||(yn − y)||2W (0,T )+

+ ||IVW(0,T )||
2
L (W(0,T ),L2(V))||Lc(B)||2

L (W(0,T ),Ũ)
||un − u||2Ũ+

+ ||IT,H
W (0,T )||

2
L (W (0,T ),H)||yn − y||

2
W (0,T )

+ ||IT,H
W(0,T )||

2
L (W(0,T ),H)||Lc(B)||2

L (W(0,T ),Ũ)
||un − u||2Ũ + ||un − u||2Ũ

)
→ 0

since ||yn − y||W (0,T ) → 0 and ||un − u||Ũ → 0. Therefore I is continuous and affine linear.

This fact yields that the sequence (yn, un) in W (0, T ) × Ũ that weakly converges to (y, u) is
transformed, via the map I, in a sequence (I1(yn, un), I2(yn, un), I3(yn, un)) which converges weakly
to (I1(y, u), I2(y, u), I3(y, u)) in X (see appendix commentary after property (R5)).

With this, the cost functional J : W (0, T )× Ũ → R is given by

J(y, u) = J1(Proj1(I(y, u))) + J2(Proj2(I(y, u))) + J3(Proj3(I(y, u)))

where the Projection operators Proj1, P roj2, P roj3 are the projections of the components of the
image vector I(y, u). These projections are linear, and continuous with respect to the norms that

we defined above. Notice that if (yn, un)
w−→ (y, u) in W (0, T ) × Ũ , by the continuity and affine

linearity of I, together with the linearity and continuity of projections we get that

Proj1(I(yn, un))
w−→ Proj1(I(y, u)) in L2(V) Proj2(I(yn, un))

w−→ Proj2(I(y, u)) in H

Proj3(I(yn, un))
w−→ Proj3(I(y, u)) in Ũ

Now since from lemma 4.1, the functionals J1, J2, J3 are weakly lower semi-continuous, we have by
(R3) from appendix that

J(y, u) = J1(Proj1(I(y, u))) + J2(Proj2(I(y, u))) + Proj3(I(y, u))

≤ lim inf n→∞J1(Proj1(I(yn, un))) + J2(Proj2(I(yn, un))) + J3(Proj3(I(yn, un)))

= lim inf n→∞J(yn, un)

□

We are now in conditions of giving a proof of existence of an optimal solution to (92).

Theorem 4.1. Given, f ∈ L2(L2(Ω)), u0 ∈ H , an input velocity gin ∈ U u0
in with the lifting

given by Lin(gin). Let U be the Hilbert space mentioned above, with the affine subset Ũ having the
properties also mentioned above. Then the problem (92) has at least one solution.
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Proof: Since the functional J is the sum of functionals which are bounded from bellow, J is
also bounded from bellow. Thus, exists a minimizing sequence {un} ⊂ Ũ . Since J3 is radially
unbounded, that is,

J3(u)→∞ when ||u||U →∞

we conclude that the sequence {un}n∈N ⊂ Ũ is bounded in U . Let yn = B̃un + wn where wn

is the unique solution of e(wn, un) = 0. From the estimates (83) we have that the sequence

{yn}n∈N ⊂ W̃(0, T ) has the estimate (notice that this solution has zero trace in Tin)

||yn||C([0,T ];H) + ||yn||W̃(0,T ) ≤ C
′
(
||u0 − Lin(yin)||2 + ||Fin||2L2(Ṽ ∗)

+ ||Bun||2Tc

)
Since ||un||U ≤ M for some M ∈ R and B is bounded we conclude that the sequence {yn} is also

bounded in W̃(0, T ) and in C([0, T ];H). Again, since yn = wn + B̃un, we conclude that {wn} is

also bounded in W̃(0, T ). But the norm of w in W (0, T ) coincides with the norm W̃(0, T ) and
therefore wn is bounded in W (0, T ). Consequently, by a method of successive subsequences we
conclude that there exists u ∈ U and w ∈W (0, T ) such that

un
w−→ u in U wn

w−→ w in W (0, T ) wn(0)
w−→ w(0) in H̃ wn(T )

w−→ w(T ) in H̃ (93)

The first to weak convergences are consequence of (R5 of the appendix). For the final two, the
weak convergence is consequence the following composition chain of continuous maps,

W (0, T )
↪→C([0,T ];H̃)−−−−−−−−→ C([0, T ]; H̃)

evaluation on t−−−−−−−−−→ H̃

v ∈W (0, T )→ v ∈ C([0, T ]; H̃)→ v(t) ∈ H̃

Since this composition is again continuous and linear, it conserves the weak convergence by (R2).

We have that the weak convergence also occurs in H since H̃ ↪→ H.
The expression (93) has also as consequence that

wn
w−→ w in L2(Ṽ ) w′

n
w−→ w′ in L2(Ṽ ∗) (94)

It is also possible to proof that in fact we have that wn converges to w strongly in L2(H̃) (see [15]),
but this result is not necessary for our case.

Now on the other hand, since the lifting operator Lc : Tc → Wc(0, T ) (denoted by the tilde
symbol) and the operator B ∈ L (U,Tc) are continuous, their composition is again linear and
continuous, and conserves the weak convergence of un in U for the space Wc(0, T ) (if it necessary
by taking another subsequences) and thus

B̃un
w−→ B̃u in Wc(0, T ) B̃un(0)

w−→ B̃u(0) in H B̃un(T )
w−→ B̃u(T ) in H (95)

Again this implies that

B̃un
w−→ B̃u in L2(V) B̃un

′ w−→ B̃u
′

in L2(Ṽ ∗) (96)

Let us see that the weak limit (w, u) found is admissible, that is, e(w, u) = 0 and u ∈ Ũ . u is

clearly in Ũ since this afine subspace is close for the weak convergence, and un ∈ Ũ for every n ∈ N.
To see that e(w, u) = 0, first recall (R1 of the appendix). For every v ∈ L2(Ṽ ) we have

⟨e1(wn, un), v⟩L2(Ṽ ∗),L2(Ṽ ) = ⟨w′
n(t), v(t)⟩L2(Ṽ ∗),L2(Ṽ ) +

∫ T

0

µ(∇wn(t),∇v(t))dt− ⟨Fin(t), v⟩L2(Ṽ ∗),L2(Ṽ )+

+ µ(∇B̃un(t),∇v(t)) + ⟨B̃un
′
(t), v(t)⟩L2(Ṽ ∗),L2(Ṽ )

= ⟨w′
n(t), v(t)⟩L2(Ṽ ∗),L2(Ṽ ) + ⟨A (wn)(t), v(t)⟩L2(Ṽ ∗),L2(Ṽ ) − ⟨Fin(t), v(t)⟩L2(Ṽ ∗),L2(Ṽ )+

+ ⟨A(B̃un)(t), v(t)⟩L2(Ṽ ∗),L2(Ṽ ) + ⟨B̃un
′
(t), v(t)⟩L2(Ṽ ∗),L2(Ṽ )

= 0
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for each n ∈ N, thus the sequence e1(wn, un) converges strongly to zero in L2(Ṽ ∗) and thus also
weakly. On the other hand since the operators A ,A are continuous and linear (they conserve the
weak convergence), by the weak convergence of (94), (96) we have that the limit is also

0 = lim
n→∞

⟨e1(wn, un), v⟩L2(Ṽ ∗),L2(Ṽ ) =⟨w′(t), v(t)⟩L2(Ṽ ∗),L2(Ṽ ) + ⟨A w(t), v(t)⟩L2(Ṽ ∗),L2(Ṽ )

−⟨Fin(t), v(t)⟩L2(Ṽ ∗),L2(Ṽ ) + ⟨A
(
B̃u

)
(t), v(t)⟩L2(Ṽ ∗),L2(Ṽ )

+ ⟨B̃u
′
, v(t)⟩L2(Ṽ ∗),L2(Ṽ )

Thus, since v ∈ L2(Ṽ ) was chosen arbitrary, we have e1(w, u) = 0 as we wanted to see.

For the convergence of e2(wn, un) = Lin(yin)(0) + B̃un(0) + wn(0) − u0 = 0 for every n ∈ N
we again have strong convergence of this sequence to zero in H̃. On the other hand by the weak
convergences of (93), (96) we have that

lim
n→∞

e2(wn, un) = Lin(yin)(0) + B̃u(0) + w(0)− u0

and thus also e2(w, u) = 0.

Then the pair (w, u) is admissible. Notice now that wn also converges weakly to w in L2(V),

a consequence of the continuous embedding L2(Ṽ ) ↪→ L2(V). Therefore the sequence wn + B̃un +

Lin(yin)
w−→ w+ B̃u+Lin(yin) in L2(V), and wn(T ) + B̃un(T ) +Lin(yin)(T )

w−→ w(T ) + B̃u(T ) +
Lin(yin)(T ) in H, (notice that W (0, T ) ↪→ C([0, T ];H)). Then invoking the weakly lower semicon-
tinuous property of J we get that

J(w + B̃u+ Lin(yin), w(T ) + B̃u(T ) +  Lin(yin)(T ), u) ≤ lim inf
n→∞

J(wn + B̃un + Lin(yin), wn(T )+

B̃un(T ) + Lin(yin)(T ), un)

= inf

and therefore the problem (92) has at least one solution. □

4.3 First Order Necessary Conditions

For that we start by recalling some classical results from optimization problems with PDE’s that
we took from [16]. Suppose that we are interested in analysing the following minimization problem,

min
w∈W

J(w) such that w ∈ C (97)

where W is a general Banach space, with C being a non-empty, convex and closed subset of W .
We have the following result which permits to characterize the optimal solutions for the problem
(97).

Proposition 4.1. Let W be a Banach space, C ⊂W a non-empty, convex and closed subset. Let
J : V → R where V is a open neighborhood of C . If w ∈ C is a solution of (97) and J is Gâteaux
differentiable at w, the following optimality condition holds,

w ∈ C , ⟨J ′(w), w − w⟩W∗,W ≥ 0 , ∀w ∈ C (98)

If additionally, the cost functional J is convex, the condition (98) is also a sufficient condition, to
w be a optimal solution of (97)

Proof: Let w ∈ C be arbitrary. We define the function W (t) = w + (1 − t)w = tw + (1 − t)w
and therefore, by the convexity of C , for each t ∈ [0, 1] W (t) ∈ C . Since w is an optimal solution
we have,

J(w + (w − w)t)− J(w) ≥ 0 for all t ∈ [0, 1]
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Also since J is Gâteaux differentiable at w, we may conclude that

0 ≤ lim
t→0+

J(w + (w − w)t)− J(w)

t
= ⟨J ′(w), w − w⟩W∗,W

This inequality is valid for every w ∈ C , since w was initially chosen as being arbitrary.

Suppose now that J is convex and that w ∈ C satisfies (98). Then since J is convex,

J(w + (w − w)t) ≤ tJ(w) + (1− t)J(W )⇔ J(w + (w − w)t)− J(w) ≤ t
(
J(w)− J(w)

)
and therefore, for each t ∈]0, 1] we have

⟨J ′(w), w − w⟩W∗,W ←t→p+

J(w + (w − w)t)− J(w)

t
≤ J(w)− J(w)

and since, by hypotheses (98) holds, we get that,

J(w)− J(w) ≥ 0 for all w ∈ C

and thus, w is an optimal solution of (97) □

The result of the proposition (4.1) is quite general, and we are interested in a particular case
of minimization problems that may be written as

min
(y,u)∈Y×U

J(y, u) such that e(y, u) = 0 and u ∈ Uad (99)

where J is a functional cost to minimize, which depends on the control u ∈ Uad and the state
equation y, which is a solution of the equation e(y, u) = 0.
In order to obtain well-known results for this type of problems, we will assume the following as-
sumption,

Hypotheses 3 (H3):

(i) Uad is a non empty, convex and closed set.
(ii) The applications J : Y × U → R and e : Y × U → Z are Fréchet differentiable, and the spaces
Y,U, Z are Banach spaces.
(iii) For all u ∈ V , where V is an open neighborhood of Uad, the equation e(y, u) = 0 has a unique
solution y = y(u).
(iv) The operator ey(y(u), u) ∈ L (Y,Z), has a bounded inverse for every u ∈ V .

Notice that with this assumptions, we may conclude that the solution map Uad ∋ u 7→ y(u)
is, by the Implicit theorem function, is locally Fréchet differentiable. Is also common, in the case
(H3) is valid, to introduce the reduce cost functional,

Ĵ : Uad → R Ĵ(u) := J(y(u), u)

and the initial minimization problem (99) is equivalent to

min
u∈U

Ĵ(u) such that u ∈ Uad (100)

Using the proposition (4.1) we have the following result.

Proposition 4.2. Suppose that the assumption (3) are satisfied. If u ∈ Uad is a local solution to
(100) the u satisfies the variational inequality,

u ∈ Uad and ⟨Ĵ ′(u), u− u⟩U∗,U ≥ 0 for all u ∈ Uad (101)

wE have the following.

Proposition 4.3. The hypotheses (H3) are satisfied.
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Proof: The proof is done in steps.

(i) The admissible set Ũ is clearly non-empty. It is also closed since Ũ = ũ + U0 and U0 is

closed. To see that is convex, is enough to recall that Ũ is an affine space.

(ii) To proof that the cost functional, J , is Fréchet differentiable, we have the following two lemmas

Lemma 4.3. The functionals J1, J2, J3 are Fréchet differentiable.

Proof: We start by recalling that if H is a Hilbert space, the function f : H → R given by,
H ∋ x → ||x||2H is Fréchet differentiable, and the derivative at the point x calculated in the
direction h is given by

f ′(x)h = 2⟨x, h⟩H
In fact, since in a Hilbert space ||x||2H = ⟨x, x⟩H we have that,

f(x+ h)− f(x) = ⟨x+ h, x+ h⟩H − ⟨x, x⟩H
= 2⟨x, h⟩H + ⟨h, h⟩H

and since the term ⟨h, h⟩H = O(||h||2H) we have the result.

With this simple result for the derivative of the square norm function in a Hilbert space, we
can conclude that our examples for the J2, J3 functionals are differentiable. In the case of J1 be
given by the velocity tracking functional,

J1 : L2(V)→ R J1(y) =
1

2

∫ T

0

||y(t)− yd(t)||2Vdt =
1

2
||y − yd||2L2(V)

we may also apply the above result, since the space L2(V) is a Hilbert space. However, for the
case of vorticity functional

J1 : L2(V)→ R J1(y) =
1

2

∫ T

0

||∇ × y(t)||2dt

we need to use the chain rule, since this functional is given by the composition of || · ||2L2(V) ◦ ∇×.
The curl operator ∇× is linear, therefore the derivative is the operator itself, and we get

J ′
1(y)h =

∫ T

0

(
∇× y(t)

)
·
(
∇× h(t)

)
dt

□

The following lemma is important also to see the application of the chain rule, since it will be
used in the derivation of the reduce cost functional.

Lemma 4.4. The cost functional J is Fréchet differentiable with the derivative given at the point
(y, u), in the direction (w, v), by

J ′(y, u)(w, v) = ⟨J ′
1(y, u), w + B̃(v)⟩L2(V∗),L2(V) +

(
J ′
2(y, u), w(T ) + B̃(v)(T )

)
+ ⟨J ′

3(y, u), v⟩U

Proof: This could be done by seeing that J is a sum of three Fréchet differentiable functions. As
an example we will proof the F-differentiability for the function J̃1 : W (0, T )× Ũ → R, given by

J̃1(y, u) = J1

(
Proj1

(
I(y, u)

))
which is sufficient, since the differentiability of the other terms is completely analogous.
Let (w, v) be in W (0, T )× U0 a direction for the derivative calculation21. From the chain rule we
have (which is valid since all the terms in the composition are F-differentiable),

J̃ ′
1(y, u)(w, v) = J ′

1(Proj1(I(y, u))) ◦ Proj′1(I(y, u)) ◦ I ′(y, u)(w, v)

21Notice that v must be chosen from U0 is order to have u+ v still in Ũ .
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Now, since the operator Proj1 : X → L2(V) is linear and bounded, the Fréchet derivative of this
operator is itself. For the operator I, as we saw, this operator is not linear but affine linear, and
therefore, the Fréchet derivative is given only by the linear part. More precisely, the derivative
loses the constant term that depends on Lin(yin),

I ′(y, u)(w, v) = (w + B̃(v), y(T ) + B̃(v)(T ), v)

Now, using the fact that J̃1 is a functional we may write the derivative as

⟨J ′
1(y, u), P roj1

(
(w + B̃(v), y(T ) + B̃(v)(T ), v)

)
⟩L2(V∗),L2(V) = ⟨J ′

1(y, u), w + B̃(v)⟩L2(V∗),L2(V)

where in the last inequality w and B̃(v) are being seen as elements of L2(V).

A similar argument holds for the derivatives of J2 and J3 and therefore we conclude that J is
Fréchet differentiable with derivative at the point (y, u) in the direction (w, v) given by,

J ′(y, u)(w, v) = ⟨J ′
1(y, u), w + B̃(v)⟩L2(V∗),L2(V) +

(
J ′
2(y, u), w(T ) + B̃(v)(T )

)
+ ⟨J ′

3(y, u), v⟩U

□

In the case of the Fréchet differentiability of the state equation we have.

Lemma 4.5. The state equation is Fréchet differentiable.

Proof: Suppose that (y, s) ∈ W (0, T ) × U0, and again, notice that s needs to be in U0 in order

to the sum u+ s still be an element of Ũ , and let us calculate the difference

e1(w + y, u+ s)− e1(w, u) = w′ + y′ + A (w + y)− Fin + A
( ˜B(u+ s)

)
+ ˜B(u+ s)

′
− w′ −A (w)

+ Fin − A(B̃u)− B̃u
′

= y′ + A (y) + A( ˜B(u+ s))− A(B̃u)− ( ˜B(u+ s))′ − B̃u
′

= y′ + A (y) + A(B̃s) + (B̃s)′

= (y + B̃s)′ + A(y + B̃s)

Therefore the map F (w, u) : W (0, T )× U0 → L2(Ṽ ∗) given by

F (w, u)(y, s) = (y + B̃s)′ + A(y + B̃s)

is our candidate to the Fréchet derivative of the map e1. To finish we only need to see that F (w, u)

belongs to L(W (0, T )×U0, L
2
(
Ṽ ∗)

)
. The operator is clearly linear since for any (y1, s1), (y2, s2) ∈

W (0, T )× U0 and α, β ∈ R we have that

F (w, u)(α(y1, s1) + β(y2, s2)) = F (w, u)(αy1 + βy2, αs1 + βs2)

= (αy1 + βy2 + ˜B(αs1 + βs2))′ + A(αy1 + βy2 + ˜B(αs1 + βs2))

= α(y1 + B̃s1)′ + αA(y1 + B̃s1) + β(y2 + B̃s2)′ + βA(y2 + B̃s2)

= αF (w, u)(y1, s1) + βF (w, u)(y2, s2)

For the boundness we have, that for every (y, s) ∈W (0, T )× U0

||F (w, u)(y, s)||2
L2(Ṽ ∗)

= ||(y + B̃s)′ + A(y + B̃s)||2
L2(Ṽ ∗)

≤ 2||(y + B̃s)′||2
L2(Ṽ ∗)

+ 2||A(y + B̃s)||2
L2(Ṽ ∗)

≤ 2||(y + B̃s)′||2
L2(Ṽ ∗)

+ 2||A||2L (H1,(H1)∗)(1 + c2p)||y + B̃s||2L2(H1)

≤ 4 max(||A||2L (H1,(H1)∗)(1 + c2p)3, 1)
(
||y′||2

L2(Ṽ ∗)
+ ||y||2L2(V)

)
+ 4 max(||A||2L (H1,(H1)∗)(1 + c2p)3, 1)

(
||B̃s

′
||2
L2(Ṽ ∗)

+ ||B̃s||2L2(V)
)

= 4 max(||A||2L (H1,(H1)∗)(1 + c2p)3, 1)
(
||y||2W (0,T ) + ||B̃s||2W(0,T )

)
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Now by definition we have

||B̃s||2W(0,T ) = ||Bs||2Tc
≤ ||B||2L(U,Tc)

||s||2U

Therefore, exists a constant K > 0 such that

||F (w, u)(y, s)||L2(Ṽ ∗) ≤ K
(
||y||2W (0,T ) + ||s||2U

)1/2

Now we focus on the derivative of the map e2. Again let (y, s) ∈W (0, T )×U0, and let us calculate
the difference

e2(w + y, u+ s)− e2(y, s) = Lin(gin)(0)) + ˜B(u+ s)(0) + (w + y)(0)− u0 − Lin(gin)(0))− B̃u(0)− w(0) + u0

= y(0) + B̃s(0)

where we used the linearity of the evaluation map τ t0 : C([0, T ],H)→ H, the map B and the Lifting
Lc.

Thus our candidate to the Fréchet derivative of e2 is the map F (w, u) : W (0, T )× U0 → H̃ given

by F (w, u)(y, s) = y(0) + B̃s(0). We just need to see that this operator is in L(W (0, T )× U0, H̃).
The linearity is simple,

F2(w, u)
(
α(y1, s1) + β(y2, s2)

)
= F2(w, u)

(
αy1 + βy2, αs1 + βs2

)
= (αy1 + βy2)(0) ˜B(αs1 + βs2)(0)

= α
(
y1(0) + B̃s1(0)

)
β
(
y2(0) + B̃s2(0)

)
= αF2(w, u)(y1, s1) + βF2(w, u)(y2, s2)

For the boundness

||F2(w, u)(y, s)||2H = ||y(0)B̃s(0)||2
H̃
≤ 2||y(0)||2

H̃
+ 2||B̃s(0)||2H

≤ 2||y||2
C([0,T ];H̃)

+ 2||B̃s||2C([0,T ];H)

≤ 2c2
(
||y||2W (0,T ) + ||B̃s||2W(0,T )

)
≤ 2c2

(
||y||2W (0,T ) + ||B||2L (U,Tc)

||s||2U
)

= K
(
||y||2W (0,T ) + ||s||2U

)
where c = max{c1, c2}, being c1, c2 the constants of the embeddings W (0, T ) ↪→ C([0, T ]; H̃) and

W(0, T ) ↪→ C([0, T ];H) respectively. Therefore the derivative e2x(w, u)(y, s) = y(0) + B̃s(0). □

(iii) This assumption in (H3) is valid by the theorem 3.1.

(iv) For this last verification we will calculate the Fréchet derivatives since they are useful later.

Notice that since the Fréchet derivative of e : W (0, T ) × Ũ → L2(Ṽ ∗) × H̃ exists, so does exists

too the partial derivatives ew : W (0, T ) → L2(Ṽ ∗) × H̃ and eu : U0 → L2(Ṽ ∗) × H̃. The partial

derivative in order to u, at u ∈ Ũ , in the direction δu ∈ U0, is given by

eu(w, u)(δu) =
(
B̃(δu)

′
+ AB̃δu, B̃(δu)(0)

)
in L2(Ṽ ∗)× H̃

For the partial derivative in order to w we have,

ew(w, u)(y) =
(
y′ + A (y), y(0)

)
(102)

what corresponds to the equation

ew(w, u)(y) = (f, v0) for (f, v0) ∈ L2(Ṽ ∗)× H̃ (103)

which has a unique solution y ∈W (0, T ), using the proof of theorem 3.1.

Notice that the operator ew(w(u), u) : W (0, T ) → L2(Ṽ ∗) × H̃ is an isomorphism. In fact, using
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the same reasoning as the one done in the existence theorem 3.1 we can conclude that, for every
f ∈ L2(Ṽ ∗) and v ∈ H̃ the variational problem (103) has a unique solution y ∈ W (0, T ), and
therefore ew(w(u), u) is a bijection. The theorem 3.1 also provides a estimate for the solution, and
thus, the operator ew is also bounded. Then, using the Banach’s open map theorem we conclude
that both ew(w(u), u) and ew(w(y), u)−1 are continuous. □

It is also useful to consider the adjoint equation

ew(w, u)∗y = g in W ∗(T, 0) for y ∈ L2(Ṽ )× H̃ (104)

where we have identified L2(Ṽ ∗)∗ = L2(Ṽ ) (see appendix theorem 7.5) and H̃ with it’s dual.

For the variational formulation of the adjoint equation (104), we suppose that g ∈ W ∗(0, T )
has the special form

⟨g, ϕ⟩W∗,W = ⟨g1, ϕ⟩L2(Ṽ ∗),L2(Ṽ ) + (g0, ϕ(T ))

where g1 ∈ L2(Ṽ ∗) and g0 ∈ H̃. In this case, the variational formulation (104) is given by, for
every ϕ ∈W (0, T )⟨−y′, ϕ⟩L2(Ṽ ∗),L2(Ṽ ) + µ

∫ T

0

(∇y(t),∇ϕ(t))dt = ⟨g1, ϕ⟩L2(Ṽ ∗),L2(Ṽ )

y(T ) = g0

(105)

As seen in proposition 4.3 ew(w(u), u) : W (0, T )→ L2(Ṽ ∗)× H̃, has a bounded inverse. Again

by proposition 4.3 the map e : W (0, T ) × Ũ → L2(Ṽ ∗) × H̃ is F-differentiable in W (0, T ) × Ũ .

Therefore, by the application of the Implicit Function Theorem (see [16]), given u ∈ Ũ we know

that locally, the map Ũ ∋ u 7→ w(u) is F-differentiable, and the derivative may be calculated by

w′(u) = −ew
(
(w(u), u

)−1
eu
(
w(u), u

)
(106)

Thus, for every direction δu ∈ U0 we have

w′(u)δu = −ew
(
(w(u), u

)−1
eu
(
w(u), u

)
δu ∈W (0, T )

The reduce cost functional is given by
Ĵ : Ũ → R

Ũ ∋ u 7→ J(w(u) + Lin(yin) + B̃u, w(u)(T ) + Lin(yin)(T ) + B̃u(T ), u)

It is important to know the evaluation of the derivative of the reduce cost functional on a direction
δu ∈ U0, since we know that a necessary condition for a point u ∈ Ũ to be an optimal solution is,
by proposition (4.2)

⟨Ĵ ′(u), v − u⟩U∗,U ≥ 0 , ∀v ∈ Ũ

Using the chain rule we have (we denote y(u) = w(u) + Lin(yin) + B̃u),

⟨Ĵ ′(u), δu⟩U∗,U = ⟨J ′
1(y(u)), y′(u)δu⟩L2(V∗),L2(V) + ⟨J ′

2(y(u)(T )), y′(u)δu(T )⟩H + ⟨J ′
3(u), δu⟩U

= ⟨J ′
1(y(u)), w′(u)δu⟩L2(V∗),L2(V) + ⟨J ′

1(y(u)), B̃δu⟩L2(V∗),L2(V) + ⟨J ′
2(y(u)(T )), w′(u)δu(T )⟩H

+ ⟨J ′
2(y(u)(T )), B̃δu(T )⟩H + ⟨J ′

3(u), δu⟩U

Now, notice that w′(u)δu belongs to W (0, T ). Moreover, J ′
1(y(u)) ∈ L2(V∗) and therefore the

restriction of this functional to the subset L2(Ṽ ) of L2(V) defines a functional in L2(Ṽ ∗) denoted
with the same letter. On the other hand this restriction is also an element in W ∗ since it defines
an element in that space, via the mapping

⟨J ′
1(y(u)), ϕ⟩W∗,W = ⟨J ′

1(y(u)), ϕ⟩L2(Ṽ ∗),Ṽ

We do the same reasoning for the functional J ′
2(y(u)(T )). This operator is in H∗ = H and thus it’s

evaluation can be restricted to the closed subset H̃ of H to give rise to a functional in H̃∗ = H̃.
In the same way this induces a functional in w∗ via the mapping,

⟨J ′
2(y(u)(T )), ϕ⟩W∗,W =

(
J ′
2(y(u)(T )), ϕ(T )

)
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Thus we have

⟨Ĵ ′(u), δu⟩U∗,U = ⟨J ′
1(y(u)), w′(u)δu⟩L2(Ṽ ∗),L2(Ṽ ) + ⟨J ′

1(y(u)), B̃δu⟩L2(V∗),L2(V) + ⟨J ′
2(y(u)(T )), w′(u)δu(T )⟩H̃

+ ⟨J ′
2(y(u)(T )), B̃δu(T )⟩H + ⟨J ′

3(u), δu⟩U

which can be written as

⟨Ĵ ′(u), δu⟩U∗,U = ⟨J ′
1(y(u)), w′(u)δu⟩W∗,W + ⟨J ′

1(y(u)), B̃δu⟩L2(V∗),L2(V) + ⟨J ′
2(y(u)(T )), w′(u)δu(T )⟩W∗,W

+ ⟨J ′
2(y(u)(T )), B̃δu(T )⟩H + ⟨J ′

3(u), δu⟩U

Recall now that we have the derivative w′(u) = −ew(w(u), u)−1eu(w(u), u), where the operators

ew(w(u), u) : W (0, T )→ L2(Ṽ ∗)× H̃ and eu(w(u), u) : Ũ → L2(Ṽ ∗)× H̃. Thus, the adjoint of the
derivative w′(u) is the operator

w′(u)∗ = −eu(w(u), u)∗ew(w(u), u)−∗ (107)

where ew(w(u), u)−∗ : W ∗ → L2(Ṽ )× H̃ and eu(w(u), u)∗ : L2(Ṽ )× H̃ → U∗ = U , and therefore
we have

⟨Ĵ ′(u), δu⟩U∗,U = ⟨−eu(w(u), u)∗ew(w(u), u)−∗J ′
1(y(u)), δu⟩U + ⟨J ′

1(y(u)), B̃δu⟩L2(V∗),L2(V)

+ ⟨−eu(w(u), u)∗ew(w(u), u)−∗J ′
2(y(u)(T )), δu⟩U + ⟨J ′

2(y(u)(T )), B̃δu(T )⟩H + ⟨J ′
3(u), δu⟩U

Defining the Φ(y(u)) = J ′
1(y(u)) + J ′

2(y(u)(T )) this defines an element in W ∗ via the mapping

⟨Φ, ϕ⟩W∗,W = ⟨J ′
1(y(u)), ϕ⟩L2(Ṽ ∗),L2(Ṽ ) + ⟨J ′

2(y(u)(T )), ϕ(T )⟩H̃ for every ϕ ∈W (0, T )

Introducing λ = −ew(w(u), u)−∗Φ(y(u)) ∈ L2(Ṽ )× H̃ we obtain

⟨Ĵ ′(u), δu⟩U∗,U = ⟨eu(w(u), u)∗λ, δu⟩U + ⟨J ′
1(y(u)), B̃δu⟩L2(V∗),L2(V) + ⟨J ′

2(y(u)(T )), B̃δu(T )⟩H + ⟨J ′
3(u), δu⟩U

The equation
λ = −ew(w(u), u)−∗Φ(y(u)) in L2(Ṽ )× H̃

is equivalent to solving the adjoint equation

ew(w(u), u)∗λ = −Φ(y(u)) in W (0, T )∗ (108)

We have the following lemma.

Lemma 4.6. The equation (108) has a unique solution λ = (λ1, λ0) ∈ L2(Ṽ )× H̃ . Moreover λ1
is the (unique) solution in W (0, T ) of the variational problem⟨−λ′1, ϕ⟩L2(Ṽ ∗),L2(Ṽ ) + µ

∫ T

0

(∇λ1(t),∇ϕ(t))dt = −⟨J ′
1(y(u)), ϕ⟩L2(Ṽ ∗),L2(Ṽ ) for all ϕ ∈W (0, T )

λ1(T ) = −J ′
2(y(u)(T ))

(109)
and λ0 = λ1(0).

Proof: First notice that the operator ew(w(u), u) : W (0, T )→ L2(Ṽ ∗)×H̃ is an isomorphism. In
fact, using the same reasoning as the one done in the existence theorem 3.1 we can conclude that,
for every f ∈ L2(Ṽ ∗) and v ∈ H̃ the variational problem (105) has a unique solution g ∈W (0, T ),
and therefore ew(w(u), u) is a bijection. The theorem 3.1 also provides a estimate for the solution,
and thus the operator ew is also bounded. Then, using the Banach’s open map theorem we con-
clude that both ew(w(u), u) and ew(w(y), u)−1 are continuous.
Now using a classical results from functional Analysis (see the lemma 7.5 of the appendix) we may

also conclude that the adjoint operator ew(w(u), u)∗ : L2(Ṽ )× H̃ →W ∗(0, T ) is an isomorphism.
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Since the operator ew is a bijection from W (0, T ) to L2(Ṽ ) × H̃, using the lemma 7.5, that the
image of e∗w is closed in W (0, T )∗ and is given by

Im(ew∗) =
(
Ker(ew)

)⊥
=

(
{0}

)⊥
= W (0, T )∗

what is simply the surjectivity.

On the other hand, since Ker(e∗w) = (Im(ew))⊥ = (Y )⊥ = 0 in Y ∗, what is the injectivity.
We also have that ||ew||L (W (0,T ),L2(Ṽ ∗)×H̃) = ||e∗w||L (L2(Ṽ )×H̃,W (0,T )∗), and thus using again the

Banach’s open map theorem we have that ew(w(u), u)∗ has a bounded inverse.

With this, we can conclude that the adjoint equation (108) has a unique solution, λ ∈ L2(Ṽ )× H̃,

that is, exists an unique λ = (λ1, λ0) with λ1 ∈ L2(Ṽ ) and λ0 ∈ H̃ such that they satisfy the
equation

⟨λ1, e1w(w(u), u)ϕ⟩L2(Ṽ ),L2(Ṽ ∗)+⟨λ0, e
2
w(w(u), u)ϕ⟩H̃ = −⟨J ′

1(y(u)), ϕ⟩L2(Ṽ ∗),L2(Ṽ )−⟨J
′
2(y(u)(T )), ϕ⟩H̃

for all ϕ ∈ W (0, T ). This, by the definition of the partial derivatives e1w, e
2
w, is equivalent to

λ = (λ1, λ0) be solution of the variational equation

⟨λ1, ϕ′⟩L2(Ṽ ),L2(Ṽ ∗)+µ

∫ T

0

(∇λ1(t),∇ϕ(t))dt+⟨λ0, ϕ(0)⟩H̃ = −⟨J ′
1(y(u)), ϕ⟩L2(Ṽ ∗),L2(Ṽ )−⟨J

′
2(y(u)(T )), ϕ⟩H̃

for all ϕ ∈W (0, T ), which may be written as∫ T

0

⟨λ1(t), ϕ′(t)⟩Ṽ ,Ṽ ∗dt+ µ

∫ T

0

(∇λ1(t),∇ϕ(t))dt+ ⟨λ0, ϕ(0)⟩H̃ = −⟨J ′
1(y(u)), ϕ⟩L2(Ṽ ∗),L2(Ṽ )−

− ⟨J ′
2(y(u)(T )), ϕ⟩H̃ for all ϕ ∈W (0, T )

Suppose now that the function λ1 is in W (0, T ), a fact that we will soon see, it is true. Therefore
the integration by parts formula is valid, and the above equation is equivalent to∫ T

0

−⟨λ′1(t), ϕ(t)⟩Ṽ ,Ṽ ∗dt+µ

∫ T

0

(∇λ1(t),∇ϕ(t))dt+ ⟨λ0 − λ1(0), ϕ(0)⟩H̃ = −⟨J ′
1(y(u)), ϕ⟩L2(Ṽ ∗),L2(Ṽ )−

− ⟨J ′
2(y(u)(T ))− λ1(T ), ϕ(T )⟩H̃ for all ϕ ∈W (0, T )

If we now, restrict ϕ to be only in the space C∞
c

(
(0, T ); Ṽ

)
⊂W (0, T ) we get, since the values

of ϕ(0) = 0 = ϕ(T ),∫ T

0

−⟨λ′1(t), ϕ(t)⟩Ṽ ,Ṽ ∗dt+µ

∫ T

0

(∇λ1(t),∇ϕ(t))dt = −⟨J ′
1(y(u)), ϕ⟩L2(Ṽ ∗),L2(Ṽ ) for all ϕ ∈ C∞

c

(
(0, T ); Ṽ

)
and since C∞

c

(
(0, T ); Ṽ

)
is dense in L2(Ṽ ) and the applications in the above expression are con-

tinuous, we have that∫ T

0

−⟨λ′1(t), ϕ(t)⟩Ṽ ,Ṽ ∗dt+ µ

∫ T

0

(∇λ1(t),∇ϕ(t))dt = −⟨J ′
1(y(u)), ϕ⟩L2(Ṽ ∗),L2(Ṽ ) for all ϕ ∈ L2(Ṽ )

(110)

In particular (110) is valid in W (0, T ) ⊂ L2(Ṽ ) and this implies that

⟨λ0 − λ1(0), ϕ(0)⟩H̃ + ⟨J ′
2(y(u))(T ) + λ1(T ), ϕ(T )⟩H̃ = 0 (111)

what yields

λ0 = λ1(0) λ1(T ) = −J ′
2(y(u)(T )) (112)

With this we conclude that, if instead of looking for a λ1 in the larger space L2(Ṽ ), we restrict
ourselves to searching for a solution λ1 ∈W (0, T ), we arrive at a an equation for λ1, which is,⟨−λ′1, ϕ⟩L2(Ṽ ∗),L2(Ṽ ) + µ

∫ T

0

(∇λ1(t),∇ϕ(t))dt = −⟨J ′
1(y(u)), ϕ⟩L2(Ṽ ∗),L2(Ṽ ) for all ϕ ∈W (0, T )

λ1(T ) = −J2(y(u)(T ))

(113)
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an equation that has a unique solution λ̃1 ∈W (0, T ). Therefore we know that exists a λ̃1 ∈W (0, T )
that by construction, satisfies the adjoint equation for the term λ1. Since, we have seen that the
solution of the adjoint equation is unique, we must have λ1 = λ̃1. Moreover, by the above calcu-
lations, the second term of the Lagrange’s multiplier satisfies λ0 = λ1(0). □

To resume we have the following result which characterizes a optimal solution.

Proposition 4.4. Let (w, u) be a optimal solution to the problem (92). Then exists an adjoint

state λ = (λ1, λ0) ∈ L2(Ṽ )× H̃ such that (we denote by y the function , w + B̃(u) + Lin(gin)

e(w, u) = e(w(u), u) = 0 , State equation

Adj. eq.

⟨−λ′1, ϕ⟩L2(Ṽ ∗),L2(Ṽ ) + µ

∫ T

0

(∇λ1(t),∇ϕ(t))dt = −⟨J ′
1(y), ϕ⟩L2(Ṽ ∗),L2(Ṽ ) for all ϕ ∈W (0, T )

λ1(T ) = −J ′
2(y(T ))

u ∈ Ũ and ⟨Ĵ ′(u), u− u⟩U∗,U = ⟨e∗u(w(u), u)λ, u− u⟩U + ⟨J ′
1(y), LcB(u− u)⟩L2(V∗),L2(V)+

+⟨J ′
2(y(T )), LcB(u− u)(T )⟩H + ⟨J ′

3(u), u− u⟩U ≥ 0 for all u ∈ Ũ , Variational Inequality

5 Numerical Implementation

5.1 Discrete Concepts and Results

Since our cost functional is constrained to be evaluated in the pairs (y(u), u) ∈ W̃(0, T )× Ũ where
y(u) is the weak solution in the sense of the definition 3.1, which depends on the control u, our first

step is to discretize the state equation in order to, given a u ∈ Ũ , obtain an approximate solution
for the forward problem.
By construction, if w(u) satisfies the state equation, i.e., e(w(u), u) = 0, then the function

y(u) = B̃(u) + w(u) + Lin(yin), where yin ∈ Tin is a given trace function, is a solution to the
weak problem of definition (3.1), where again the data u0, f are prescribed. Therefore by solving
the state equation we are in fact solving the weak formulation (3.1).

Now, solving the state equation numerically is not simple, since we are using as test functions
free-divergence functions, which are not trivial to implement. However we can avoid this problem
by using another problem from which the weak formulation (3.1) is the reduce form.
To introduce that we look again to the problem (1) and we introduce a weak formulation where
we do not use free divergence functions. The payback of this procedure is that, by doing this, we
will introduce another variable to our problem, the pressure P .

As done before, we will assume that the hypotheses (H2) are satisfied. Therefore the variational
formulation for the strong form where we do not use free divergence functions is given by the
following definition.

Definition 5.1. Suppose that H2 is valid. We say that y(t) ∈ L2(H1(Ω)2) with y′(t) ∈ L2([H1(Ω)∗]2)
is a weak solution for the problem with pressure, if exists and a pressure field p ∈ L2(L2(Ω)) such
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that (y, p) satisfy

∫ T

0

⟨y′(t), v(t)⟩(H1)∗,H1dt+ µ

∫ T

0

(
∇y(t),∇v(t)

)
dt−

∫ T

0

(
p(t),

(
∇ · v(t)

))
dt =

∫ T

0

(
f(t), v(t)

)
dt

for all v ∈ L2(H1
ΓD

(Ω)2)∫ T

0

((
∇ · y(t), q(t)

)
dt = 0 for all q(t) ∈ L2(L2(Ω))

y = yin in Σin

y = yc in Σc

y = 0 in Σw

y(0) = y0
(114)

Let us see that the problem (114) makes sense.
Since the function y(t) is in the set {u(t) ∈ L2(H1(Ω)) : u′(t) ∈ L2(H1(Ω)∗)}, and H1(Ω) is dense
in L2(Ω) (by the fact that Ω is a Lipschitz set) we conclude that y(t) is, after making a change in
a set of measure zero, a continuous function, that is, u(t) ∈ C

(
[0, T ];L2(Ω)

)
. Therefore, the initial

condition y0 = y(0) in the problem (114) makes sense, since y0 ∈H ⊂ L2(Ω).
The boundary conditions are to be understood in the trace sense, and finally the integrals in the
first and second equation of (114) are also well defined, by choosing the functions in the spaces
mentioned.

We have the following result.

Lemma 5.1. If y(t) is a solution in the sense of the definition 5.1, then is also the solution in the
sense of the definition 3.1.

Proof: We start by observing that, by choosing as a test function, in the second equation q(t) =
∇ · y(t), which is possible since,

||∇ · y||L2(L2(Ω)) =

∫ T

0

||∇ · y(t)||2L2(Ω)dt ≤ 2

∫ T

0

||∇y(t)||2L2(Ω) ≤ 2||y||L2(H1(Ω))

we get that, ∫ T

0

||∇ · y(t)||2L2(Ω)dt = 0

and so, the function∇·y(t) = 0 (zero in the space L2(Ω)) , for almost every t ∈ (0, T ). Therefore, for
a.e. t ∈ (0, T ) the function y(t) has null divergence that is y(t) ∈ {v(t) ∈ L2(H1(Ω)) : ∇·v(t) = 0},
and since satisfies the boundary conditions y|Σw

= 0 in the trace sense, we also have that for a.e.
t ∈ (0, T ), y(t)|Γw

= 0, and thus y(t) ∈ L2(V).

In the first equation, since the space Ṽ ⊂ H1
ΓD

(Ω), we may restrict the equation only to the

test functions v(t) ∈ L2(Ṽ ), and therefore, since this functions have null divergence, the integral
term with the pressure disappears, what yields,∫ T

0

⟨y′(t), v(t)⟩(H1)∗,H1dt+ µ

∫ T

0

(
∇y(t),∇v(t)

)
dt =

∫ T

0

(
f(t), v(t)

)
dt for all v ∈ L2(H1

ΓD
(Ω)2)

(115)
Now since the derivative y′(t) belongs to the space L2(H1(Ω)∗), we may define the restriction
operator

⟨Ry′, v⟩L2(Ṽ ∗),L2(Ṽ ) = ⟨y′, v⟩L2((H1)∗),L2(H1) =

∫ T

0

⟨y′(t), v(t)⟩(H1)∗,H1dt

which is the restriction of the derivative operator y′(t) to the set L2(Ṽ ) ⊂ L2(H1(Ω)). This

operator is also continuous when the space Ṽ is equipped with the norm of Ṽ .
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In fact, since the norm of H1(Ω) is equivalent to the norm || · ||Ṽ we get, by the continuity of y′(t)

that, for all v(t) ∈ L2(Ṽ ),

|⟨Ry′, v⟩L2(Ṽ ∗),L2(Ṽ )| ≤
(∫ T

0

||y′(t)||2(H1)∗dt
)1/2

×
(∫ T

0

||v(t)||2H1dt
)1/2

≤ ||y′(t)||L2((H1)∗)Cp||v||L2(Ṽ )

where Cp is a Poincaré constant.

Therefore the derivative y′(t) has a continuous restriction to the space L2(Ṽ ) (equipped with it’s
norm) that we denote by the same symbol y′(t). To conclude, since y(t) ∈ L2(V) and the derivative

is also in L2(Ṽ ), this implies by definition that , the solution of (114) y(t) is in the space W̃(0, T ).
Moreover it also satisfies the boundary conditions and equations of the definition 3.1 and therefore
To resume, y(t) is a solution to the problem in the definition 3.1. □

Now we turn to temporal discretization, and enunciate the following result which gives us a con-
sistency result for the time derivative approximation by finite differences.

Lemma 5.2. Let v, vt, vtt be function in L2(tn, tn+1;L2(Ω)) the we have,

||∂tvn+1 −
vn+1 − vn

∆t
||2L2(Ω) ≤ ∆t||utt||2L2(tn,tn+1;L2(Ω))

Proof: We start by calculating the weak-time derivative of the function (t− tn)ut.
So, let φ(t) be a function of C∞

0 (tn.tn+1), and we calculate∫ tn+1

tn

φ′(s)(s− tn)ut(s)ds (116)

Notice that v(t) = φ(t)(t− tn) is also in C∞
0 (tn, tn+1), thus∫ tn+1

tn

φ′(s)(s− tn)ut(s)ds =

∫ tn+1

tn

v′(s)(s− tn)ut(s)ds−
∫ tn+1

tn

φ′(s)ut(s)ds

= −
∫ tn+1

tn

φ(s)(s− tn)utt(s) + ut(s)φ(s)ds

that is we have that the weak time derivative of the function f(t) = (t − tn)ut(t) is f ′(t) =
(t− tn)utt(t) + ut(t) wich is in L2(tn, ttn+1;L2(Ω)).
Now by (7.9) we have that, by using the above equation

(tn+1 − tn)ut(tn+1) =

∫ tn+1

tn

(
(s− tn)ut(s)

)′
ds =

=

∫ tn+1

tn

(
(s− tn)utt(s)

)
+

∫ tn+1

tn

ut(s)ds =

∫ tn+1

tn

(
(s− tn)utt(s)

)
+ un+1 − un

which may be written as,

ut(tn+1)− un+1 − un
∆t

=
1

∆t

∫ tn+1

tn

(s− tn)utt(s)ds (117)

Therefore we have

||ut(tn+1)− un+1 − un
∆t

||2L2(Ω) =
1

∆t2
||
∫ tn+1

tn

(s− tn)utt(s)ds||2L2(Ω)

≤ 1

∆t2

(∫ tn+1

tn

||(s− tn)utt(s)||2L2(Ω)ds
)2

=
1

∆t2

(∫ tn+1

tn

|(s− tn)|||utt(s)||L2(Ω)ds
)2

≤ 1

∆t2

(( ∫ tn+1

tn

|(s− tn)|2ds
)1/2( ∫ tn+1

tn

||utt(s)||L2(Ω)ds
)1/2)2

=
∆t

3
||utt||2L2(tn,tn+1:L2(Ω))
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□

Now we will focus on space discretization. Since in the fully discretization method, we will solve
in each time step a steady Stokes problem, it is important to recall some concepts and results that
will be useful analysis of the numerical method.

Therefore we start by recalling some concepts for the general abstract saddle point problem (this
results are form [31]), which is given by finding (u, v) ∈ V ×Q (real Hilbert spaces) such that{

Au+B′p = f in V ′

Bu = r in Q′ (118)

where the operators A and B are given by

A : V → V ′ , defined by ⟨Au, v⟩V ′,V = a(u, v) B : V → Q′ , defined by ⟨Bu, q⟩V ′,V = b(u, q)

and where a : V × V → R and b : V ×Q→ R are two bi-linear and and bounded applications. We
say that the problem (118) is well posed if the application

Ψ : V ×Q→ V ′ ×Q′ given by Ψ(u, p) = (Au+B′p,Bu) = (f, r) (119)

is an isomorphism from V ×Q onto V ′ ×Q′.

Now we recall a well know result which uses the inf-sup condition concept. Before the result
let us introduce the imbbeding operator E0 : V ′ → V ′

0 given by,

⟨E0ϕ, v⟩V ′
0 ,V0

= ⟨ϕ, v⟩V ′,V for every ϕ ∈ V ′ and v ∈ V0

Notice that this operator is bounded. In fact for every ϕ ∈ V ′,

|⟨E0ϕ, v⟩V ′
0 ,V0
| = |⟨ϕ, v⟩V ′,V | ≤ ||ϕ||V ′ ||v||V

and thus ||E0ϕ||V ′
0
≤ ||ϕ||V ′ .

Proposition 5.1. Let V,Q be two real Hilbert spaces with inner products (·, ·)V and (·, ·)Q which
induce the complete norms ||·||V and ||·||Q respectively. Then the following properties are equivalent:

(i) There exists a constant βis > 0 such that

inf
q∈Q:q ̸=0

sup
v∈V :v ̸=0

b(v, q)

||v||V ||q||Q
≥ βis (120)

(ii) The operator B′ is an isomorphism from Q onto V̂ ′ and

||B′q||V ′ ≥ ||βis||q||Q for all q ∈ Q (121)

(iii) The operator B is an isomorphism from V ⊥
0 onto Q′ and

||Bv|| ≥ βis||v||V for all v ∈ V ⊥
0 (122)

The result of the proposition 5.1 is fundamental to obtain the well-posedness of the saddle point
problem. The following result makes that connection, and we show the proof to demonstrate how
the inf-sup condition is fundamental for the resolution of a general saddle point problem.

Theorem 5.1. The problem (118), (with r = 0 in our case) is well-posed if and only if the fol-
lowing two conditions are satisfied:

(i) The operator E0 ◦A is an isomorphism from V onto V ′
0

(ii) The bi-linear form b(·, ·) satisfies the inf-sup condition.
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Proof: The proof is guided by [31]. First we see that the conditions (i) and (ii) are sufficient.
Thus, suppose that (i) and (ii) are satisfied. Now we show that the reduced problem,

a(u, v) = ⟨f, v⟩V ′,V , for all v ∈ V0 = Ker(B) (123)

has a unique solution. The equation (123) can be written in an operatorial form

E0 ◦A(w) = E0(f) in V ′
0 (124)

and since E0◦A is, by (i), an isomorphism from V0 to V ′
0 , we conclude that existence and uniqueness

of the solution w for the equation (124), ant therefore there’s a unique solution to (123).
Now we see that with the w obtained above, we can construct in an unique way, a pressure p such
that (w, p) are the unique solution to (118) with r = 0 in Q′. Since E◦A is an isomorphism, is by
definition, a bijection from V0 onto V ′

0 and also continuous. Therefore by the Banach’s Open Map
theorem we have too that (E0 ◦A)−1 is bounded.
Thus,

||w||V = ||(E0 ◦A)−1 ◦ E0f ||V ≤ C||E0 ◦ f || ≤ C||f ||V ′ (125)

and so, we have a stability condition for the solution w.
Now we construct the unique pressure, by using the inf-sup condition. Notice that since, by (123)
we have that

a(w, v)− ⟨f, v⟩V ′,V ⇔ ⟨Aw − f, v⟩V ′,V = 0 for all v ∈ V0

that is,Aw − f ∈ V̂ ′, and by the proposition (5.1), we have a unique p ∈ Q that satisfies

B′p = Aw − f in V ′ (126)

Moreover we have the estimate, which again cames from the proposition (5.1)

||p||Q ≤
1

βis
||f −Aw||V ′ ≤ C ′||f ||V ′ (127)

Therefore the application of the definition is a isomorphism.

Now we show that the condition (i) and (ii) are also necessary. For that we assume that the
application Ψ : V ×Q→ V ′ ×Q′ is an isomorphism.
We start by seeing that in this conditions the inf-sup condition (ii) is satisfied. For that, consider
the operator B⊥ which is defined as the restriction of B to the subset V ⊥

0 ⊂ V .
Thus since V is a Hilbert space and V0 is a closed subset of V , we have the algebraic and topological
decomposition

V = V0 ⊕ V ⊥
0 (128)

and so, for every u ∈ V , u assumes a unique decomposition of the form u = u0 + ũ, where u0 ∈ V0
and ũ ∈ V ⊥

0 . With this decomposition we can observe that

B(u) = B(u0 + ũ) = B(ũ) = B⊥(ũ) (129)

Now since the application Ψ is, by hypotheses, an isomorphism, we must have that Range(B) = Q′,
but from (129), Range(B) = Range(B⊥) = Q′, that is B⊥ is surjective.
To see the injectivity, suppose that exists u1, u2 ∈ V ⊥

0 , with B⊥u1 = B⊥u2 = ϕ. Then B⊥(u1 −
u2) = 0 and therefore u1 − u2 ∈ V0. But since V ⊥

0 is a vector space, and u1, u2 both belong to
V ⊥
0 , then u1 − u2 is also in V ⊥

0 . But the only element that is in V0
⊥ ∩ V0 is the zero element, thus

u1 = u2 and B⊥ is injective, and then is a bijection from V ⊥
0 onto Q′.

By the Banach’s Open Map Theorem we also can conclude that, since B⊥ is linear and bounded,
that (B⊥)−1 is also linear and bounded, and therefore exists a strictly positive constant C such
that

||(B⊥)−1ϕ||V ≤ C||ϕ||Q′ (130)

and by choosing in (130) ϕ = B⊥v with v ∈ V0 we get

1

C
||v||V ≤ ||Bv||Q′ (131)
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and by the proposition (5.1) the inf-sup condition is satisfied.

Now let us see that the condition (i) is also verified. Let ϕ ∈ V ′
0 an arbitrary element. By

the Hanh-Banach’s theorem exists at least a function f ∈ V ′ such that,

E0f = ϕ in V ′
0

Defining (u, p) = Ψ(f, 0), then the element u is in V0, since it satisfies Bu = 0 (second equation of
the definition of Ψ), and we have

Au+B′p = f in V ′ (132)

On the other hand

⟨E0 ◦B′p, v⟩V ′
0 ,V0

= ⟨B′p, v⟩V ′,V = ⟨Bv, p⟩Q′,Q = 0 for all v ∈ V0 (133)

Therefore E0 ◦B′p = 0 in V ′
0 , and using the equation (132) we get

E0 ◦Au = E0f = ϕ

and since the element ϕ ∈ V ′
0 was chosen in an arbitrary way, we conclude that E◦A is surjective.

To see the injectivity we argue by contradiction. Suppose that exists v1 ̸= v2 in V0 with E0 ◦Av1 =
E0 ◦ v2 = ϕ, then E0 ◦A(v1− v2) = 0. Let q ∈ Q arbitrary and we define

Av1 +B′q = f1 Av2 +B′q2

where we must have, by the hypotheses that Ψ is an isomorphism and Bv1 = Bv2 = 0, that
f1 ̸= f2.
Therefore we have A(v1 − v2) = f1 − f2 ⇔ Ψ(v1 − v2, 0) = (f1 − f2, 0).
Now since, E0 ◦A(v1 − v2) = 0, we have,

0 =⟨E0 ◦A(v1 − v2), v⟩V ′
0 ,V0

=⟩A(v1 − v2), v⟩V ′,V =⟩f1 − f2, v⟩v′,V

and therefore f1 − f2 belongs to V̂ ′, and by the proposition22 (5.1) we get that ∃!p ∈ Q such that
B′q = f1 − f2.
But then we would have,

Ψ(v1 − v2, 0) = (f1 − f2, 0) = Ψ(0, q)

which is a contradiction since the application Ψ is an isomorphism. □

The following result, gives a sufficient condition on the bi-linear form a(·, ·), for the well-posedness
of the problem (118).

Lemma 5.3. If the bi-linear form a : V × V → R is V0-elliptic, i.e. , exists α > 0 such that

a(v, v) ≥ α||v||2V for all v ∈ V0

then we only need b(·, ·) to verify the inf-sup condition, in order to the problem (118) to be well-
posed.

As we said at the beginning of this chapter, we will need, in the fully discrete-method, at each
time iteration, to solve a saddle point problem. Therefore we give an analysis of this type of
problems in a discrete form, which are very similar to what we have done in the continuous case.
We begin to introduce the discretized form of the problem (118), which is given by,

Find (uh, ph) ∈ V h ×Qh such that,{
ah(uh, vh) + bh(vh, ph) = ⟨f, vh⟩V ′,V for all vh ∈ V h

bh(uh, qh) = ⟨r, qh⟩Q′,Q for all qh ∈ Qh
(134)

where V h and Qh are finite dimension spaces, which are said to be conforming if they satisfy
V h ⊂ V and Qh ⊂ Q. Also the applications ah : V h× V h → R, bh : V h×Qh → R are the discrete

22Notice that the inf-sup condition was already verified.
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forms of the applications a, b. In the case of V h, Qh are conforming, the discrete maps, are simply
the restriction of the continuous maps, to the finite dimensional subsets V h and Qh.
With analogy to the continuous case we also introduce the discrete inf-sup condition. We say that
the application bh : V h×Qh → R satisfies a discrete inf-sup condition, if exists a constant βdis > 0
such that

inf
qh∈Qh,qh ̸=0

sup
vh∈V h,vh ̸=0

bh(vh, qh)

||vh||V h ||qh||Qh

≥ βdis (135)

As we said,in the case that V h, Qh are conforming bh is equal to b. Also in that cases the norms
in (135) are the norms of the bigger spaces V,Q.

Continuing with the analogy with the continuous case, we define the operator

Bh : V h →
(
Qh

)′ ⟨Bhv
h, qh⟩Qh′,Qh = bh(vh, qh)

and the adjoint

B′
h : Qh →

(
V h

)′ ⟨vh, B′
hq

h⟩V h,V h = bh(vh, qh)

In our case the application b : V ×Q→ R is the negative divergent, i.e. ,

b(u, q) = −
∫
Ω

(∇ · u)qdx for u ∈ V = H1(Ω), q ∈ Q = L2(Ω) (136)

and therefore in this case Bh = −divh and the adjoint is the discrete gradient (Bh)′ = gradh.

We saw that the kernel of B plays an important role in the theory, and therefore seems natural to
introduce the discrete kernel, which we will call the set of discretely divergence-free functions

V h
div := {vh ∈ V h : bh(vh, qh) = 0 for all qh ∈ Qh} (137)

It is known that the Taylor-Hood spaces Pk/Pk−1 with k ≥ 2, are finite element spaces which make
the discrete form bh of the application b of (136) satisfy the discrete inf-sup condition (135). We
will in particular use the case P2/P1, and with this choice we can see that if vh is in V h

div then,
since23 ∇ · P2 ⊂ P1 we have

0 = b(vh,∇ · vh) =

∫
Ω

∇ · vh(x)2dx

and therefore vh has in fact a null divergence in the L2(Ω) sense.

Since we are dealing with finite dimensional subspaces of real Hilbert spaces, V h and Qh are
also24 real Hilbert spaces. Thus, by using the spaces P2/P1 for the space discretization, the inf-
sup condition is valid for b, and by the fact that a is also coercive, the same construction as in
the continuous case can be done, in order to establish the well-posedness of the discrete problem
(134).

Now we introduce the discrete spaces that we will use in the numerical simulations.

First we define a polygonal domain Ω̃ ≈ Ω see the images (3),(We do not do a analysis of this
approximation error). This approximate domain in our case was obtained by using the Gmesh
software, where using an image of the real domain Ω we define, by a sufficient number of bound-
ary points, a contour which is done by connecting the boundary dots with splines. Then using a
Gmesh command we can define a mesh for that contour. The final product, which can be seen in

23Let us see that this is true.
Let u be a function of P2, then it has the form u(x, y) = a1+a2x+a3y+a4xy+a5x2+a6y2 with ai, i ∈ {1, ...6} ∈ R.
If we calculate the divergence of u we get

∇ · u(x, y) = a2 + a3 + a4(y + x) + 2a5x+ 2a6y ∈ P1

Therefore we ∇ · P2 ⊂ P1.
24Recall that every finite dimensional subspace is closed. Therefore every finite dimensional subspace of a Hilbert

spaces is also a Hilbert space for the same inner product.
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image (3-right) is an approximation Ω̃ of Ω, where the borders are define as the arests of frontier
triangles, and so the domain is polygonal. Is important to notice that the boundary part Γc has
no error of approximation when we use the Ω̃.

(a) Original Domain (b) Our Ω

Figure 3: Our Ω̃ shown by using the Freefem++ software. This is our coarser mesh.

For the mesh refinement we used a Freefem++ command (the splitmesh command) which di-
vides every triangle on the previews mesh by a given number, which we call the order of refinement.

Figure 4: Example of a refinement of order two.

In image (4) we applied a splitmesh of order
two to the original mesh, a process that di-
vides every original triangle in a regular form.
If we continue to apply this type of refine-
ment of can define a regular family of tri-
angulation Th, h being the a mesh parame-
ter.

For this type of triangulation we will use the
classical P2 − P1 Taylor-Hood finite elements
spaces to define the discrete functional space
for the velocity and pressure, Vh, Ph respec-
tively, given by

Ph :=
{
qh : qh ∈ C0(Ω) with qh|K ∈ P 1(K),∀K ∈ Th

}
Vh :=

{
vh : vh ∈ C0(Ω)× C0(Ω) with vh|K ∈ P 2(K)× P 2(K),∀K ∈ Th

}
It is well known that this choice of functional discrete spaces for the velocity and pressure, satisfy
the discrete inf-sup condition25.

Now, let Nv,Np be the number of velocity and pressure nodes respectively. The Lagrangian base

functions are in this case given by continuous functions {ϕi}Nv
i=1, {ψi}

Np

i=1 in Ω̃26 such that

ϕi(vj) = δij ψi(pj) = δij

where δij is the Kronecker delta and {vj}Nn
j=1, {pj}

Np

j=1 are the velocity and pressure nodes respec-
tively.
Since the velocity vector field has dimension two, we need 2×Nv base functions to fully describe
the discrete velocity. This base functions are given by

{ϕi}2Nv
i=1 =

{
(ϕi, 0) if i ∈ {1, ..., Nv}
(0, ϕi mod Nv

) if i ∈ {Nv + 1, ..., 2Nv}

25In the 2-dimensional case, a sufficient condition for P2 − P1 discretization to satisfy the inf-sup condition, is
that the triangulation at hand , has at least 3 triangles. This result can be seen in [Volker lemma 3.128]

26We will also write sometimes Ω.
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Every uh ∈ V h and ph ∈ Ph assumes the form

uh(x, y) =

2Nv∑
i=1

uiϕi(x, y) ph(x, y) =

Np∑
i=1

piψi(x, y) (138)

This representation is fundamental for the sake of obtaining the variational formulations in the
discrete case. We take here the opportunity of introducing the following matrices which are used
in the numerical process.

M̃ =

[
M 0
0 M

]
with MNx,Nx

i=1,j=1 =

∫
Ω

ϕiϕj (139)

Ã =

[
A 0
0 A

]
with ANx,Nx

i=1,j=1 = µ

∫
Ω

∇ϕi : ∇ϕj (140)

B =
[
Bx By

]
with Bx

Nx,Np

i=1,j=1 =

∫
Ω

− ϕi
dx
ϕpj By

Nx,Np

i=1,j=1 =

∫
Ω

− ϕi
dy
ϕpj (141)

In practice the values on the matrices are not exactly the integrals, which are calculated by using
quadrature rules, and here is made another error of approximation for the Stokes solution. In the
case of a vorticity minimizing functional cost is also useful to introduce the vorticity matrix, since
for the computation of the cost it is necessary to calculate∫

Ω̃

(∇× ψ)(∇× φ)

for two given functions ψ,φ ∈ V h. Thus
In 2-D the vorticity of a vector field v is a scalar function given by

∇× v =
∂v2

∂x
− ∂v1

∂y

so if we use two base function ϕi,ϕj we get the following 4 cases

(V or)i,j =

∫
Ω̃

(∇× ϕi)(∇× ϕj) =



∫
Ω̃

∂ϕi
∂y

∂ϕj
∂y

if i, j ∈ {1, ..., Nv}∫
Ω̃

−∂ϕi
∂y

∂ϕj
∂x

if i ∈ {1, ..., Nv}j ∈ {Nv + 1, ..., 2Nv}∫
Ω̃

−∂ϕi
∂x

∂ϕj
∂y

if j ∈ {1, ..., Nv}i ∈ {Nv + 1, ..., 2Nv}∫
Ω̃

∂ϕi
∂x

∂ϕi
∂x

if i, j ∈ {Nv + 1, ..., 2Nv}

We also defined introduce the following discrete spaces 27:

V0h :=
{
vh ∈ Vh : vh|Γw

= 0
}

V00h :=
{
vh ∈ Vh : vh|Γw∪Γin

= 0
}

V000h :=
{
vh ∈ Vh : vh|Γc∪Γw∪Γin

= 0
}

Th = γDVh :=
{
µh : µh = γDvh with vh ∈ Vh

}
Th
1 = γ1Vh :=

{
µh : µh = γ1v0h with vh ∈ Vh

}
Now suppose that the conditions H2 are valid and. We set V = H1(Ω̃ = and P = L2(Ω̃), which
are approximated by the finite element spaces P2/P1.

We denote by Γ̃D the discretization of the Dirichlet boundary of Ω̃, and in the same way are defined
Γc,Γin,Γout.

27Here we used the same notation of the article [4]
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Now we focus on the time discretization. For that, let [0, T ] be the temporal interval of anal-
ysis and we define the time step ∆t (also denoted by dt sometimes). Therefore we have a list of

time instants {tn}n=Nt
n=0 where tn = ∆t× n and Nt =

T

dt
.

This time instants will be the nodes for the linear Lagrangian functions with respect with time

ϕti(tj) = δi,j

With this we may define the following time dependent discrete spaces (notation from [16]):

V h
dt :=

{
y : [0, T ]× Ω̃→ R : y(t, ·)|Ω̃ ∈ V

h, y(·, (x, y))|In ∈ P1, n = 1, ..., Nt

}
Ph
dt :=

{
π : [0, T ]× Ω̃→ R : π(t, ·)|Ω̃ ∈ P

h, π(·, (x, y))|In ∈ P1, n = 1, ..., Nt

}
where In = [tn−1, tn]. The spaces V 0h

dt , V
00h
dt are define on a similar way. In this framework every

function of V h
dt can be written in the form

V h
dt ∋ y(t, (x, y)) =

Nt∑
n=0

ϕtn(t)

2Nv∑
k=1

ynkϕk(x, y)

and a function of V h
dt is uniquely defined if we have the collection of values {ynk }

Nt,2Nv

n=0,k=1. Therefore
in order to define solutions for the Stokes non-stationary problem we need a way of determining
the coefficients {ynk }

Nt,2Nv

n=0,k=1. This can be achieved by using the Euler implicit scheme that we will
shortly define.

We close this part by noticing that, (we used the same notation of [4] ) if we define

Mh := {z ∈ V00h : for every K ∈ Th if K ∩ Γc = ∅ =⇒ z|K = 0}

The functions of Mh are the discrete liftings for the boundary data on Γc. In particular, given a
function y ∈ V00h, the can be written in the form28

y =
∑

i∈I\Ic

αiϕi +
∑
i∈Ic

αiϕi

and notice that ∑
i∈I\Ic

αiϕi ∈ V000h
∑
i∈Ic

αiϕi ∈Mh

Since this decomposition is unique for every element in V00h we have

V00h = Mh ⊕ V000h (142)

This fact will important for the gradient construction.

5.2 Euler Implicit Scheme

In the following we will denote y(tn, (x, y)) by yhn for every function y ∈ V h
dt or the analogous

spaces. Also uh0 = Πh(u0) is a discretization of the initial condition, where Πh : V → V h is an
interpolation operator, and lastly, we denote by fn the value of fn|Ω̃, and analogously gn .

With this, the Implicit Euler scheme is given by,

For n = 1, ..., Nt find (yhn+1, π
h
n+1) ∈ V h × Ph such that

∫
Ω̃

1

∆t
(yhn − yhn−1)φh + µ

∫
Ω̃

∇yhn : ∇φh −
∫
Ω̃

πh
n(∇ · φh) =

∫
Ω̃

fnφh for all φh ∈ V0h∫
Ω̃

(∇ · yhn)qh = 0 for all qh ∈ Ph

yhn = gn in Γ̃h
D

28The set indexes Ĩ is given by indexes of the nodes which are not in Γin ∪ Γw and therefore Ĩ ⊂ {1, ..., Nv}.
Then, in order to duplicate for the y component of the velocity, we define I = Ĩ + (Ĩ +Nv) ⊂ {1..., 2Nv}.
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This scheme defines a collection of Nt systems of equations on for each fixed n ∈ {1, ..., Nt} we

have a system to determine the coefficients {ynk }
2Nv

k and {pnk}
Np

k .
Let us now see that this scheme gives for an appropriate y0, f, g a unique discrete solution (yh, πh),
that is stable. In the following we will use an equivalent system for the Implicit Euler scheme,
where we introduce the boundary conditions in a weak form: For n = 1, ..., Nt find (yhn+1, π

h
n+1) ∈

V h × Ph such that

∫
Ω̃

1

∆t
(yhn − yhn−1)φh + µ

∫
Ω̃

∇yhn : ∇φh −
∫
Ω̃

πh
n(∇ · φh) + ⟨shn, λ⟩Th

1 ,(Th
1 )∗ =

=

∫
Ω̃

fnφh for all φh ∈ V0h∫
Ω̃

(∇ · yhn)qh = 0 for all qh ∈ Ph

⟨γ1(yhn), λ⟩Th
1 ,(Th

1 )∗ = ⟨gn, λ⟩Th
1 ,(Th

1 )∗ for all λ ∈ (Th
1 )∗

(143)

The equivalence between (in the sense that if (yhn, π
h
n, s

h
n) is a solution to the weak form then

(yhn, π
h
n) is also a solution to the original formulation) the above scheme and the original one is

given by the fact that, since for every λ ∈ (Th
1 )∗ we have ⟨γ1(yhn)λ⟩Th

1 ,(Th
1 )∗ = ⟨gn, λ⟩Th

1 , (T
h
1 )∗ we

must also have that γ1(yhn) = gn in Γ̃1.

We have the following property of this numerical scheme.

Lemma 5.4. The implicit Euler scheme produces a unique solution which is stable.

Proof: Uniqueness: To analyze the uniqueness we will focus on analysing the uniqueness for
each time step, since this is sufficient. Suppose that n ∈ {1, ..., Nt} is fixed and that the functions
on the previews times steps had already been calculated (in the case n = 1, notice that the
yh0 = Πh(y0) which is a give data), so to determine (yhn, π

h
n, s

h
n) ∈ V h × Ph × (Th

1 )∗
∫
Ω̃

yhn
∆t

φh + µ

∫
Ω̃

∇yhn : ∇φh + b̃h(φ, (πh
n, s

h
n)) =

∫
Ω̃

yhn−1

∆t
φ+

∫
Ω̃

fnφh for all φh ∈ V0h

b̃(yh, (q, λ)) = ⟨G, (q, λ)⟩Q∗,Q for all (q, λ) ∈ Q
(144)

where we have Q = Ph × (Th
1 )∗, and

b̃h(φ, (q, λ)) = −
∫
Ω̃

(∇ · φ)q + ⟨λ, φ⟩Γ1 , for (φ, q, λ) ∈ V0h ×Q ⟨Gn, (q, λ)⟩Q∗,Q = ⟨gn, λ⟩Γ1

The continuous analogous b̃ to the operator b̃h is given by

b̃(φ, (q, λ)) = −
∫
Ω̃

(∇ · φ)q + ⟨λ, φ⟩Γ1
, for (φ, q, λ) ∈ H1

Γ1
(Ω̃)× L2(Ω̃)× (T1)∗ ⟨Gn, (q, λ)⟩Q∗,Q = ⟨gn, λ⟩Γ1

where T1 = H
1/2
00 (Γ1).

It is possible to proof that the map b̃ satisfies the inf-sup condition (see [24]). Now, usually the
b application for the saddle point problem in the Stokes Equations framework in a bounded and
polygonal domain Ω, is only given by

b : H1(Ω)× L2(Ω)→ R b(v, p) = −
∫
Ω

(∇ · v)p

and in this case, when the space discretization is done by using conforming finite element spaces
(for example as in our case the P2/P1 Taylor-Hood), the discrete analogous bh of b is given by

bh : H1(Ω)h × L2(Ω)h → R bh(vh, ph) = b(vh, ph) for all (vh, ph) ∈ H1(ω)h × L2(Ω)h

and therefore since H1(Ω)h × L2(Ω)h ⊂ H1(Ω)× L2(Ω) we get that

bh(vh, ph) = b(vh, ph) ≥ β||vh||H1(Ω)h ||ph||L2(Ω)h
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that is, if b has the inf-sup condition, then bh has it too.
However, in our case, the above argument is not so linear since a linear functional λ ∈ (Th

1 )∗ is not
in general contained in (T1)∗. Notice that Th

1 ⊂ T1. Therefore every linear functional λ ∈ (Th
1 )∗

has, by the Hahn-Banach theorem, an extension (which may not be unique) λ̃ ∈ T1, which has

also ||λ||(Th
1 )∗ = ||λ̃||T ∗

1
.

Thus, for every (vh, ph, sh) ∈ V h
0h × Ph × (Th

1 )∗

b̃h(vh, (ph, sh)) = −
∫
Ω̃

(∇ · vh)ph + ⟨sh, vh⟩(Th
1 )∗,Th

1

= −
∫
Ω̃

(∇ · vh)ph + ⟨s̃h, vh⟩T ∗
1 ,T1

≥ β||vh||V0h

√
||ph||2

Ph + ||s̃h||2T ∗
1

= β||vh||V0h

√
||ph||2

Ph + ||sh||2(Th
1 )∗

= β||vh||V0h
||(ph, sh)||Q

and in this case we also have that b̃h. It is simple to see that the right-hand-side of the system
(144) is a linear functional in V0h ×Q. Also if we define the map ah : v0h × V0h → R by

ah(uh, vh) =
1

∆t

∫
Ω̃

uhvh + µ

∫
Ω̃

∇uh : ∇vh (145)

The map a is V0h − coercive since

a(vh, vh) =
||vh||2

L2(Ω̃)

∆t
+ µ||∇vh||2

L2(Ω̃)
≥ µ||∇vh||2

L2(Ω̃)

by consequence, we get that the saddle point problem (144) has a unique solution on each step.

Stability: This is important to see that in finite time the approximate solution does not blow up
in finite time.
For each n ∈ {1, ..., Nt} if we choose as a test function in (144) φ = ỹhn, of the decomposition

yhn = ŷhn + ỹhn with ŷhn being the lifting and ỹhn ∈ V h ∩Ker(B̃).

Then we get∫
Ω̃

yhn − yhn−1

∆t
ỹhn + µ

∫
Ω̃

∇yhn : ∇ỹhn =

∫
Ω̃

fnỹhn ⇔∫
Ω̃

ỹhn − ỹhn−1

∆t
ỹhn + µ

∫
Ω̃

∇ỹhn : ∇ỹhn =

∫
Ω̃

ŷhn−1 − ŷhn
∆t

ỹhn +

∫
Ω̃

fnŷhn − µ
∫
Ω̃

∇ŷhn : ∇ỹhn

Now we have the following identity, and in what follows we denote the L2(Ω̃) inner product by the
symbol (·, ·),

(
ỹhn − ỹhn−1

∆t
, ỹhn) ≥ 1

2∆t
||ỹhn||2 −

1

2∆t
||ỹhn−1||2 (146)

Also from the inf-sup condition,

||∇ĝhn|| ≤
1

β
||gn||L2(Γ1) (147)

By using the classical Cauchy-Schwarz inequality, the Poincaré inequality and (146),(147),

||ỹhn||2+2µ∆t||∇ỹhn||2 ≤ 2∆tCp||fn||||∇ỹhn||+2∆tµ||∇ŷhn||||∇ỹhn||+
2Cp

β
||gn−gn−1||L2(Γc)||∇ỹhn||+||ỹhn−1||2

(148)
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Now by Young’s inequality exists ϵ1, ϵ2, ϵ3 > 0 such that

2∆tCp||fn||||∇ỹhn|| ≤ 2∆tCp

(ϵ1||fn||2
2

+
||∇ỹhn||2

2ϵ1

)
(149)

2∆tµ||∇ŷhn||||∇ỹhn|| ≤ 2∆tCp

(ϵ2||ghn||2L2(Γ1)

2β2
+
||∇ỹhn||2

2ϵ2

)
(150)

2Cp

β
||gn − gn−1||L2(Γ1)||∇ỹhn|| ≤

2Cp

β

(ϵ3||gn − gn−1||2L2(Γ1)

2β2
+
||∇ỹhn||2

2ϵ3

)
(151)

Choosing ϵ1 =
3Cp

µ
, ϵ2 = 3, ϵ3 =

3Cp

∆tµ
yields,

||ỹhn||2 + µ∆t||∇ỹhn||2 ≤ ∆t
(
K1||fn||2 +K2||gn||2 +K3

∣∣∣∣∣∣gn − gn−1

∆t

∣∣∣∣∣∣2) + ||ỹhn−1||2 (152)

and by adding to (152) the term µ∆t||∇ĝhn||2, and using the inequality (147), we get (K4 = K2+ 1
β2 )

||ỹhn||2 +
µ∆t

2
||∇yhn||2 ≤ ∆t

(
K1||fn||2 +K4||gn||2 +K3

∣∣∣∣∣∣gn − gn−1

∆t

∣∣∣∣∣∣2)
Summing up from n = 0 to n = Nt, and using the telescopic sum we have

||ỹhNt
||2 +

Nt∑
n=1

µ∆t

2
||∇yhn||2 ≤

Nt∑
n=1

∆t
(
K1||fn||2 +K4||gn||2 +K3

∣∣∣∣∣∣gn − gn−1

∆t

∣∣∣∣∣∣2) + ||ỹh0 ||2 (153)

Now since g ∈ L2(L2(Γ1)), g′ ∈ L2(L2(Γ1)) and f ∈ L2(L2(Ω̃)) the Riemann sums on the right
hand side is bounded independently of ∆t and arrive at

Nt∑
n=1

∆t||∇yhn||2 ≤ K (154)

and by the Poincaré inequality also

Nt∑
n=1

∆t||yhn||2 ≤ CpK (155)

□

5.3 First Discretize then Optimize

In this section we will study the method discretize then optimize for the minimization problem at
hand.
This method consists in first discretizing all the terms in the PDE and the cost functional, deter-
mining a gradient for the discrete minimizing problem, and then apply a descent method to find
a possible minimum for the cost. There are other processes to find a possible minimum for the
discrete functional cost, but here we will only focus on the descent method.

Let Γc ⊂ Γ = ∂Ω be the boundary segment where we do the control, and let Σc = Γc × [0, T ] be
the lateral boundary. We denote by Σht,hx

c (also denoted by Σh
c for short) the discretization of the

lateral control boundary Σc.

Σht,hx
c is composed by a collection of Nt + 1 sets of Nc nodes, being Nt the number of time

intervals, and Nc the number of boundary nodes in Γc. For example, in figure (5) we considered 3
time intervals, or equivalently 4 times states, given by the number of lines in the figure, (which gives
Nt = 3), and for the space discretization we considered Nc = 4 nodes for each time state, given by
the number of red nodes. This gives a total of Nt×Nc = 12 parameters which we desire to control.
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Figure 5: Example time boundary dis-
cretization

Observation: Notice that we do not consider the
nodes in the lateral boundary, given by the orange
nodes, since these, already make part of the Γh

w

(boundary with the no-slip condition), and therefore
are fixed with the value zero. Also the nodes in
the initial time (t = 0) given by the color black,
are also not considered in the control since they are
fixed by the initial condition imposed on the prob-
lem.

Now the controls will be given by tensors in R(Nt)×Nc×2,
the number 2 comes from the number of directions for the

vector velocities at each node. The state solution is composed by the velocity yh ∈ R(Nt+1)×Nx×2

and the pressure πh ∈ R(Nt+1)×Np , where Nx is the number of velocities nodes and Np is the
number of pressure nodes.

Given an initial condition uh0 , we define the Stokes solver S
uh
0

h : Uh → V h
dt, by the operator

that for every control uh ∈ Uh gives the velocity solution yh which is the solution for the Implicit
Euler scheme.

We use the cost functional (in this case the velocity tracking cost)

J(uh) =
τ

2

∫ T

0

∫
Γc

||∇uh||2Γc
dsdt+

α

2

∫ T

0

∫
Ω̃

||Suh
0

h (uh)− zd||2dxdt

which can be discretized to

Jh(uh) =
τ

2

Nt∑
n=1

∫
Γc

||∇uh||2Γc
ds+

α

2

Nt∑
n=1

∫
Ω̃

||Suh
0

h (uh)− zd||2dxdt

where the time integrals were approximated by a trapezoidal rule.

We recall that the stokes solver is determined by the following collection of systems of equations

S
yh
0

h (uh) = yh such that



yh0 = Πh(y0)∫
Ω

(yhn − yhn−1

dt

)
· φ+ µ

∫
Ω

∇yhn : ∇φ−
∫
Ω

πh
n(∇ · φ) = 0, ∀φ ∈ V h

000∫
Ω

(∇ · yhn)q = 0 , ∀q ∈ Ph

yhn = gn in Γ̃in

yhn = uhn in Γ̃c

yhn = 0 in Γ̃w

which is equivalent to determine in each time step the solution (yhn, π
h
n) for the linear system[

M̃
dt + Ã BT

B 0

] [
yhn
πh
n

]
=

[
M̃
dt y

h
n−1

0

]
(156)

where the block matrices were defined in previews subsection. To solve this system we only used
a pressure stabilizer, by transforming the Stokes system matrix to

[
M̃
dt + Ã BT

B 0

]
⇒

[
M̃
dt + Ã BT

B C

]
where

C
Np,Np

i,j =

∫
Ω

ϵϕpi (x, y)ϕpj (x, y)
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Let us now differentiate the cost functional with respect to the control. Since in the derivative will
appear the Fréchet derivative of the Stokes solver we start by calculate that.

Notice that S
uh
0

h (uh) = S 0
h (uh) + S

uh
0

h (0). In fact, if S 0
h (uh) = zh and S uh

0 (0) = vh then,

zh0 = 0∫
Ω̃

1

∆t
(zhn − zhn−1)φh + µ

∫
Ω̃

∇zhn : ∇φh −
∫
Ω̃

phn(∇ · φh) = 0 for all φh ∈ V0h∫
Ω̃

(∇ · zhn)qh = 0 for all qh ∈ Ph

zhn = uhn in Γ̃h
c

zhn = 0 in Γ̃h
in ∪ Γ̃h

D

vh0 = uh0∫
Ω̃

1

∆t
(vhn − vhn−1)φh + µ

∫
Ω̃

∇vhn : ∇φh −
∫
Ω̃

ξhn(∇ · φh) =

∫
Ω̃

fnφh for all φh ∈ V0h∫
Ω̃

(∇ · vhn)qh = 0 for all qh ∈ Ph

vhn = 0 in Γ̃h
D ∪ Γ̃h

c

vhn = ggin in Γ̃h
in

then the sum satisfies the scheme of the Stokes solver.
The operator S 0

h is the linear part of S
uh
0

h and therefore, since is also bounded, is the Fréchet
derivative of the Stokes solver.
Now, let vh ∈ Uh be a control direction. then the derivative of the cost functional is given by29:

(J ′h
1 (uh), vh) = τ∆t

Nt∑
n=1

∫
Γc

∇uhn : ∇vhn + α∆t

Nt∑
n=1

∫
Ω̃

(
S

uh
0

h (uh)n − zdn
)
S 0

h (vh)n

(J ′h
2 (uh), vh) = τ∆t

Nt∑
n=1

∫
Γc

∇uhn : ∇vhn + α∆t

Nt∑
n=1

∫
Ω̃

(
∇×S

uh
0

h (uh)n
)
(∇×S 0

h (vh)n)

(J ′h
3 (uh), vh) = τ∆t

Nt∑
n=1

∫
Γc

∇uhn : ∇vhn + α

∫
Ω̃

(
S

uh
0

h (uh)Nt − zd
)
S 0

h (vh)Nt

Now we do the analysis for the type Jh
1 but the other are completely analogous. Our goal is to

calculate the gradient of this discrete cost.

To simplify the notation, given a direction δvh for the derivative, we will denote the solution
to the linearized Stokes solver S 0

h (δvh) by δyh, which is given by

δyh0 = 0∫
Ω̃

1

∆t
(δyhn− δyhn−1)φh + µ

∫
Ω̃

∇δyhn : ∇φh −
∫
Ω̃

δphn(∇ · φh) = 0 for all φh ∈ V00h∫
Ω̃

(∇ · δyhn)qh = 0 for all qh ∈ Ph

δyhn = δvhn in Γ̃h
c

δyhn = 0 in Γ̃h
w ∪ Γ̃h

in

(157)

Now suppose given a function zh ∈ V 00h
dt we will use for every n ∈ {1, ..., Nt} the function zhn

as a test function for the equation (157-2), to obtain for each n ∈ {1, ..., Nt}∫
Ω̃

1

∆t
(δyhn− δyhn−1)zh + µ

∫
Ω̃

∇δyhn : ∇zh −
∫
Ω̃

δphn(∇ · zh) = 0

29the gradient appearing in the boundary integral is the tangential gradient

61



By doing partial summation and using the fact that δyh0 = 0 we get

Nt∑
n=1

∫
Ω̃

zhn(δyhn − δhn−1) =

Nt∑
n=1

∫
Ω̃

δyhn(zhn − zhn+1) +

∫
Ω̃

δyhNt
zhNt+1

where we also needed to introduce the element zhNt+1 ∈ V00h.

Now by using the decomposition (142) we have that, for each n ∈ {1, ...Nt}, δyhn = δ̃yhn + δ̂yhn
with δ̃yhn ∈Mh and δ̂yhn ∈ V000h.
Therefore,

Nt∑
n=1

1

∆t

∫
Ω̃

δ̂yhn(zhn − zhn+1) +

∫
Ω̃

1

∆t
δ̂yhNt

zhNt+1 +

Nt∑
n=1

µ

∫
Ω̃

∇δ̂yhn : ∇zhn −
Nt∑
n=1

∫
Ω̃

δphn(∇ · zhn)

= −
Nt∑
n=1

1

∆t

∫
Ω̃

δ̃yhn(zhn − zhn+1)−
∫
Ω̃

1

∆t
δ̃yhNt

zhNt+1 +

Nt∑
n=1

µ

∫
Ω̃

∇δ̃yhn : ∇zhn

Let zh ∈ V 000h
dt but with time interval analysis [dt, T+dt], satisfy the following system of equations,

zhNt+1 = 0∫
Ω̃

1

∆t
(zhn− zhn+1)φh + µ

∫
Ω̃

∇zhn : ∇φh −
∫
Ω̃

σh
n(∇ · φh) = α

∫
Ω̃

(yhn − znd )φ for all φ ∈ V000h∫
Ω̃

(∇ · zhn)q = 0 for all q ∈ Ph

(158)
where (zhn, σ

h
n) ∈ V000h × Ph for each n ∈ {1, ..., Nt}. Th right hand side of (158-2) changes with

the cost functional. For example, we also may have

α

∫
Ω̃

(∇× yhn)(∇× φ) , n ∈ {1, .., Nt} if it is the vorticity cost functional0

α

∫
Ω̃

(yhNt
− zd)φ

if it is the final state functional

The solution zh of (158) is called the discrete adjoint state. By using the adjoint zh in the linearized

equation we get , (notice that

∫
Ω̃

(∇ · zhn)ph = 0 for all ph ∈ Ph)

Nt∑
n=1

1

∆t

∫
Ω̃

δ̂yhn(zhn − zhn+1) +

Nt∑
n=1

µ

∫
Ω̃

∇δ̂yhn : ∇zhn

= −
Nt∑
n=1

1

∆t

∫
Ω̃

δ̃yhn(zhn − zhn+1)−
∫
Ω̃

1

∆t
δ̃yhNt

zhNt+1 +

Nt∑
n=1

µ

∫
Ω̃

∇δ̃yhn : ∇zhn

but since δ̂yhn ∈ V000h the adjoint equation is satisfied by using δ̂yhn as a test function and we arrive
at,

Nt∑
n=1

α

∫
Ω̃

(yhn−znd )δ̂yhn+

Nt∑
n=1

∫
Ω̃

σh
n(∇·δ̂yhn) = −

Nt∑
n=1

1

∆t

∫
Ω̃

δ̃yhn(zhn−zhn+1)−
∫
Ω̃

1

∆t
δ̃yhNt

zhNt+1+

Nt∑
n=1

µ

∫
Ω̃

∇δ̃yhn : ∇zhn

(159)
Also notice that

0 =

∫
Ω̃

σh
n(∇ · δyhn) =⇒

∫
Ω̃

σh
n(∇ · δ̂yhn) = −

∫
Ω̃

σh
n(∇ · δ̃yhn) (160)

and that ∫
Ω̃

(yhn − znd )δyhn =

∫
Ω̃

(yhn − znd )δ̂yhn +

∫
Ω̃

(yhn − znd )δ̃yhn (161)
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By using (159),(160) and (161) we get,

⟨∂Jh(uh), δvh⟩ =τ∆t

Nt∑
n=1

∫
Ω̃

∇uh : ∇δvh +

Nt∑
n=1

∆t
(∫

Ω̃

σh
n(∇ · δ̃hn)− µ

∫
Ω̃

∇zhn :∇ δ̃yhn + α

∫
Ω̃

(yhn − zdn)δ̃yhn

)
−

Nt∑
n=1

∫
Ω̃

(zhn − zhn−1)δ̃yhn

the above expression leads us to an expression for the gradient of the discrete cost Jh at a point uh.
However this representation is not easy when we see the above calculations in the functional sense,
but they become much more easy in the matrices sense. To transform to the matricial form, notice
that the space Uh is of finite dimension30 and therefore is isomorphic to a subspace of RNt×2Nc ,
where the components of this vectors have a particular order, in fact the, given a function uh ∈ uh
(see footnote 31) the coefficients are mapped to a tensor

uh 7→
[
Y Y

]Nt,2Nc

n=1,i=1
Y Yn=ñ,i=ĩ = αñ

ĩ

and the vector u ∈ RNt×2Nt is given by the vertical concatenation of the lines of Y Y in such a
way that, to simplify, we will denote uk = Y Yn=k,i∈Ic the k-th block of the concatenation, which
is related to the solution at the time tk = k ×∆t. In RNt×2Nc we introduce the inner product31

⟨v, u⟩ = ∆t

Nt∑
n=1

vTnMΓcun for all u, v ∈ RNt×Nc×2

where (·, ·)2 denotes the usual RN inner product. Now we transform the gradient expression to
obtain a Riezs representative for the gradient, with respect to inner product in RNt×2Nc , which is
the scalar product in the control space.

⟨∂Jh(uh), δvh⟩ =τ∆t

Nt∑
n=1

∫
Ω̃

∇uh : ∇δvh +

Nt∑
n=1

∆t
(∫

Ω̃

σh
n(∇ · δ̃hn)− µ

∫
Ω̃

∇zhn :∇ δ̃yhn + α

∫
Ω̃

(yhn − zdn)δ̃yhn

)
−

Nt∑
n=1

∫
Ω̃

(zhn − zhn−1)δ̃yhn

= τ∆t

Nt∑
n=1

(uhn)TMΓc(δvhn)

+ ∆t

Nt∑
n=1

(
BTσh

n − µAzhn −M(zhn − zhn+1) + αM(yhn − znd )
)
i∈Ic

(δvhn)

where for a vector L ∈ RNt×2Nv we denoted by (L)i∈Ic the vector composed by the components of
the original L which have indexes i ∈ Ic.
Now it is easy to see that a representation for the gradient is given by the vector

R(∇Jh(uh))n = τuhn +M−1
Γc

(
BTσh

n − µAzhn −M(zhn − zhn+1) + αM(yhn − znd )
)
i∈Ic

for n ∈ 1, ..., Nt

This leads us to the following descent method for the purpose of finding the solutions to the dis-
crete minimum problem,

30Every function in uh ∈ Uh assumes a representation

uh(t, x, y) =

Nt∑
n=1

πt(t)
∑
i∈Ic

αn
i ϕi(x, y)

31it is easy to see that the application is in fact an inner product, since the matrix MΓc is positive definite.
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Algorithm:

1. Set m = 0

(i) Define an initial control (uh)0

(ii) Define the solution to the state equation(yh)0

(iii) calculate the initial cost Jh((uh)0)

2. Minimization Loop, set m = m+ 1

(iv) Solve the adjoint equation to get (zh, σh)m by using the state equation (yh)m−1

(v) Determine the gradient Jh((uh)m) by using the expression (...)

(vi) Step size Loop (Armijo Rule) k ∈ {1, ..., 10}

(vi).(1) Define the candidate to new control (ũh)m+1 = (uh)m − (2.0)(−k)∇Jh((uh)m)

(vi).(2) Determine the new state solution (yh)m+1

(vi).(3) if Jh((ũh)m+1) ≤ Jh(uhm) set (uh)m+1 = (ũh)m+1 otherwise go to (vi).(1) and set k = k + 1

(vii) Stop criterion test if Jh((uh)m+1)− Jh((uh)m) < ϵtol stop; otherwise go to (iv)

Lastly, we restricted our simulation to the observation on a small sub domain ω ⊂ Ω. In this
case the discrete functional will be given by

Jh
ω(uh) =

τ

2

Nt∑
n=1

∆t

∫
Γc

|∇uh|2ds+
α

2

Nt∑
n=1

∫
ω

|yh − zh|2dx (162)

The purpose will be to see the influence of the ω choice, in the rate of convergence in the minimizing
process (in the case it converges). In practice we are interested in evaluating the influence when ω
is in the following positions

Figure 6: positions.

Our intuition says that when ω assumes the position 1, the minimization process still must
work, in position 2 may work and that lastly in the case 3 does not work.

6 Numerical Results

In this section we give examples of application of the above numerical method. Our main goal is
to obtain a minimization process, for the cost functional J , which can be a velocity tracking func-
tional or a vorticity functional, in the bifurcation domain (see image 1) and analyze the influence of
the observations domains and the cost parameters τ, α in the efficiency of the minimization process.
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Before doing our main purpose, we show the application for a collection of simple problems, with
an increase on complexity, where we know what to expect the solution to be, by using the technique
of manufactured solutions. This technique consists on defining analytic solutions, in our case set
the target velocity and the respective pressure, and then define the right hand side such that they
all combined satisfy the non-stationary Stokes equations. This first step it is useful to test the
behavior of the numerical method implemented.

In the following, the PDE is on a rectangular domain Ω, Γ = ∂Ω will be divided by Γ1,Γ3 being
the bottom and top of the rectangular, respectively and Γ2,Γ4 the right and left sides respectively.

In our first test, and also the simpler, the target flow is given by the stationary velocity field,
which is a type of a Poiseuille flow, Zd(x, y) =

(
y(1− y), 0

)
and the corresponding pressure is set

to be p(x, y) = −2x+ 4. Notice that, both the velocity and pressure are independent of time, and

therefore in particular
∂Z(x,y)

∂t = 0. This velocity field and pressure combined, satisfy the following
Stokes system (notice that ν = 1 by simplification)

(Test− 1)



−∆Zd +∇p = 0 in Ω× (0, 1)

∇ · Zd = 0 in Ω× (0, 1)

Zd = 0 in Γ1,3 × (0, 1)

Zd =
(
y(1− y), 0

)
in Γ4 × (0, 1)

∂Zd

∂n
− pn = 0 in Γ2 × (0, 1)

u0 =
(
y(1− y), 0

)
in Ω

(163)

The second test consists in introducing to the above Poiseuille flow, a time dependency. This
can be done by, for instance, defining the target flow as Zd(x, y, t) =

(
sin(πt)y(1 − y), 0

)
and

the corresponding pressure to be p(x, y, t) = sin(πt)(−2x + 4). In this case we have to solve the
problem

(Test− 2)



∂Zd

∂t
−∆Zd +∇p = π cos(πt)

(
y(1− y), 0

)
in Ω× (0, 1)

∇ · Zd = 0 in Ω× (0, 1)

Zd = 0 in Γ1,3 × (0, 1)

Zd = sin(πt)
(
y(1− y), 0

)
in Γ4 × (0, 1)

∂Zd

∂n
− pn = 0 in Γ2 × (0, 1)

u0 =
(
y(1− y), 0

)
in Ω

(164)

In the last example we considered,

(Test− 3)



∂Zd

∂t
−∆Zd +∇p = F in Ω× (0, T )

∇ · Zd = 0 in Ω× (0, T )

Zd = 0 in Γ1,3 × (0, T )

Zd = sin(πt)
(
y(1− y), 0

)
in Γ4 × (0, T )

∂Zd

∂n
− pn = 0 in Γ2 × (0, T )

u0 =
(
y(1− y), 0

)
in Ω

(165)

where in this case Ω = [0.1, 0.5]× [0, 2], T = 2 and the field F is given by

F(x,y,t)=

[
sin(πt)π2(cos(πx) sin(πy)− sin(πy)) + π cos(πt) ∗ (cos(πx) sin(πy)− sin(πy))

sin(πt)π2(−3 ∗ cos(πy) sin(πx) + sin(πx)) + π cos(πt)(− cos(πy) sin(πx) + sin(πx))

]

In the third problem the target flow is Zd(x, y, t) = sin(πt)
(

cos(πx) sin(πy)−sin(πy),− cos(πy) sin(πx)+

sin(πx)
)

and the corresponding pressure p(x, y, t) = sin(πt)
(
− sin(πx) sin(πy)π). In this work we

were not concerned in analyzing the numerical method (which is the implicit Euler scheme) to
solve the Stokes system in the non-stationary case. However, is good practice to see that in
fact this first step of the minimizing process is well constructed, and so, in order to see that
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the Euler scheme is sufficiently good for the problem at hand, we in the test 3 (the more com-
plex one ) show the errors committed in the numerical approximation of the target velocity.

Figure 7: Space dis-
cretization error.

In table (7), we show the errors ||Zh
d − Zd||L2(Ω) at the final time t = T ,

and in table (8) we present the approximation errors in the and max-
imum norm of the collection ||(Zh

d )n − (Zd)n||L2(Ω). The errors com-
mitted in the numerical approximations are sufficient low for our pur-
pose. It is also possible to see that in this case seems that a refine-
ment in the time step has more impact than a refinement on the space
mesh.

Let us now turn our attention to the minimization process results. In what
follows we will always consider that the maximum number of iteration is 50
and that the time discretization is dt = 0.05, if is not said nothing more.

Also the minimization algorithm may stop in 4 cases: by reaching the maximum number of itera-
tions, by the relative error criterion, by the step-size criterion, or finally by the small decreasing
criterion. The latter 3 stopping criterion consist in stopping if

(i)relative error criterion: the following relative error is smaller then 0.01

Nt∑
n=1

dt

2
||uhn − (zhd )n||2 < 0.01

(ii) The step-size routine reaches the maximum value of iterations and even in that case we do not
see any decrease in the cost functional value.

(iii) If the difference Jh
(
(uh)n+1

)
− J

(
(uh)n

)
< ϵtol

As said before, we start by analyzing the numerical method in the square domain with the Test-1.
For the cost functional to minimize we choose the velocity tracking

Jh(uh, vh) =
τ

2

∫
Γ4

|∇vh|2 + α

∫
Ω

|uh − Zh
d |2

where in this and the following cases we will denote by uh the state equation with respect to
the boundary value (control) vh. In figure (9) we can observe the evolution of the absolute error
||uhn − (Zh

d )n||L2 along time. In (9) with fixed α = 3 we observe that the optimal solution strongly
depends on the parameter τ . This is expected since we increase the relative importance of the
term ||uhn − (Zh

d )n||L2 in the cost functional, when we decrease τ , leading the optimal solution to
the target flow. From (9) we may extrapolate that α needs to be 1000× higher than τ to one get a
optimal solution obtained by the stopping criterion of the relative error, and not from the criterion
of the maximum number of iterations. It is common to, in this type of minimization problems,
consider values of τ much lower then the ones choosed for α.
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Figure 9: With fixed α = 3, varying τ .

Figure 8: Time dis-
cretization error.

On the case of the Test-2, when we introduce time we increase the diffi-
culty and even in this simple case we start to obtain some results which are
contrary to some obtain in the stationary case. For example in image (10a)
we see that for the same α, in general when we decrease τ we obtain optimal
solutions which are more closer to what we expect, which is the known target
flow. However, for the case τ = 0.001 the algorithm stops by the maximum
iteration number criterion, not having time to converge to the expected so-
lution.
Also we observed that, in the case a bigger time interval, in order to have
a change of growth of the target flow, we see that this change makes the
optimal solution to have some difficulties to follow this change.

(a) With fixed α = 10, varying τ . (b) With fixed τ = 0.01, varying α.

Figure 10: Comparison of the numerical solution with the target flow.

Now we turn to our main goal, doing the minimization on the bifurcation. In this work, our
domain has the form of the set in image (6), with x = 0.09 and y ∈ [0.5143, 0.6086] for Γc,
x = 0.0021 and y ∈ [0.2682, 0.3649] for Γin and lastly x ∈ [0.87.92], y ∈ [0.0.35, 0.43] for Γout.
Also this domain is discretized in our experiments in such a way that we have 3616 triangles, 7541
velocity nodes (counting the ones on the Dirichlet boundary) and 1963 pressure nodes.
Similarly to [24] here we consider two different scenarios being, (i) a total occlusion of the host
artery which is done by imposing vin = 0 in Γin, and (ii) the presence of a residual blood flow in
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which case we have vin ̸= 0 in Γin. In the second case we will consider the following type of input
functions

vin(y) = c exp(−(y − y)2/(2b2))

where c is a positive constant, y is the mid point of Γin and b = 0.01. This type of functions can
modulate a strong obstruction but not total. Also notice that this type of functions do not have
zero trace, but in numerical terms their value on ∂Γin is so small that the computer makes it zero.

Starting with the case vin = 0, we defined the target flow in Ω to be the Stokes solution with
a parabolic inflow, given by32 −10000(y − 0.6086)(y − 0.5143) which leads to the numerical solu-
tion in (12a).

Figure 11: Costs and relative errors, with τ = 0.1 and α varying.

In the table (11) we show the value of the cost functional and the relative error for the first
10 iterations of the minimization process. In this process we consider dt = 0.05, τ = 0.1 and the
initial guess as the null control (vh)0 = 0, which yields the initial state equation to be also null.
It is possible to observe that in fact the minimization algorithm works, since in each iteration we
obtain a cost smaller then the previews one.
In the case of α = 1000, we see that the algorithm stops at the 7-th iteration, but not because the
target flow was reached, but because the difference between two consecutive iterations was smaller
than 0.0001. In particular we can see that in the case of this alpha the optimal solution is not
near the target flow, being however another solution which is near a stationary point of the cost
functional.

In the cases of α = 10, 100, the algorithm stops at iterations 37, 36 respectively. By the ob-
servation of table (11) we could argue that for this α′s the optimization method is converging to
the desired velocity, since the relative error is always decreasing. However when the process stops
we saw that for α = 10 the relative error was near 0.94 and for α = 100 was near 0.6 being the
descent method, in fact, converging to a minimizer which does not correspond to the target flow.
It is also possible to observe, that in the first iterations we have a strong decrease in the cost which
starts to fade. This is a typical characteristic of the steepest descent method. We also observed
that the optimal solutions are given for each of this α cases, by a parabolic flow but with different
maximum values for the parabola, being the highest value obtained in the case of the highest
α, what makes sense, since in that case we are giving a minor importance to the boundary cost
functional parameter.

In image (12) we represent the target flow (left) and the optimal solution (right) for the case
of α = 1000, τ = 0.01, and stopping in 9 iterations. This choice of parameters appears to be
sufficient to one obtain a very precise approximation of the target flow, with a relative error under
0.01.

32We multiply the boundary function by the term 10000 only to have bigger values for the cost functional.
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(a) Target flow. (b) Optimal solution.

Figure 12: Comparison of the numerical solution with the target flow, with α = 1000 and τ = 0.01.

For the second case, with vin ̸= 0 we considered the function

vin(y) = 40 exp
(−(y − 0.3165)2

2(0.01)2
)

Figure 13: Final state of the initial guess.

For this case, we also started with a null initial guess for the control (vh)0 = 0, which defines
the numerical solution represented in (13). The results of the first 10 iterations of the minimizing
process are presented in the table (14). In image (15) we show the comparison between the target
flow and the numerical solution. It is interesting to see that in the case of α = 10, 100 the costs
obtained in the first iterations are equal to the ones obtained in the case vin = 0. This would
suggest that for the minimization process the change in the boundary condition on Γin, from a
null to a non-null boundary function, does not influnciate the minimizing process, since we are
obtaining the some control values on each iteration, and therefore the same cost values. However,
for the case α = 1000 the costs are different.

Figure 14: Caption
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Notice that the optimal solution is very similar to the target flow, and was obtained in 9
iterations with a relative error under 0.01.

(a) Target flow.
(b) Optimal solution.

Figure 15: Comparison of the numerical solution with the target flow, with α = 100 and τ = 0.01.

Figure 16: Stream lines of the target flow.

Figure 17: Stream lines of the optimal flow.

Now we analyze the influence of the choice of the observations set ω (see image (6)). We will
on a first study, consider the functional

Jh
ω(vh, uh) =

τ

2

Nt∑
n=1

∆t

∫
Γc

|∇vhn|2ds+
α

2

Nt∑
n=1

∫
ω

|uhn − (Zh
d )n|2dx

where the target flow is represented in the image (12a), and again we start with the initial guess
(vh)0 = 0.
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In this case we are more interested in the relative error reduction than the cost functional reduc-
tion, since our analysis is motivated by seeing where to choose the subset ω in such a way that we
can easily obtain the target flow, without the need of using all the domain. In terms of applications
this would correspond to choose the best subset ω (possibly with some restrictions on this choice,
but here we are not concerned about that) on which we focus our observations in order to better
control the blood behavior on the bifurcation.

Notice that in the case of a partial observation set for the velocity tracking functional, a reduction
on the functional cost does not necessarily mean a reduction on the relative error of approximation
to the target flow. Because of this fact, the optimization method when applied on a subset ω of
zone-3, for the velocity tracking functional, will not reduce the Rel.error. In this case this cames
from the fact that, starting with the null control, ((vh)0) = 0, the initial cost Jh((vh)0) = 0 which
is a minimum and therefore ∇Jh((vh)0) = 0, and the process gives in the next iteration always the
same solution. For the case where we choose vin ̸= 0 happened the same, and we observed that
the relative error did not change.
Now turning our attention to the zones 1 and 2 we will define the following subsets of Ω: ω1.1, ω1.2

by being the intersection of [0.1, 0.2] × R, [0.3, 0.4] × R, with the upper channel, and ω2.1, ω2.2 by
being the intersection of [0.55, 0.65] × R, [0.7, 0.8] × R with Ω. Therefore, Ω1.i, i ∈ {1, 2, 3} are
subsets in the zone-1 and, Ω2.i, i ∈ {1, 2} are subsets in the zone-2. For the partial tests we fixed
the parameters in α = 10000 and τ = 0.001 in order to guarantee that the parameter has enough
importance.

In the case vin = 0 and the target flow is given by the one represented in (12a), and we set
the initial guess to be the null control. In images (18) we have the evolution of the functional costs
and the relative errors committed along the iterations.

(a) Relative errors evolution. (b) Costs evolution.

Figure 18: Partial observations in the case vin = 0.

It is possible to observe that the subset ω2.2 is the one who shows a stronger decrease, in the
relative error. However this is not enough to suggest that the zone ω2.2 is better that the other
ones, when the objective is to choose a subset that permits a faster (and a convergence) approach
to the target flow.

In the case vin ̸= 0, we chose the target flow to be given by the one represented in (27a) and
we set again, the initial guess to be the null control.
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(a) Relative errors evolution. (b) Costs evolution.

Figure 19: Partial observations in the case vin ̸= 0.

In image (19a) we can observe the evolution of the relative errors along the iterations, and
again it seems that the zone ω2.2 shows a faster decrease in the rel.error. However in comparison
with the other zones, the change in the rate of decrease is so low, and they all attained the same
finite relative error, that we can not argue that there is a better zone. Here we also considered 150
iterations, since we observed that after this number of iterations the relative error shows a very
low decrease.

We also show in image (20), the inlet function in Γc for the various simulations, depending on
the zone of observation in image, and for the two cases of vin = 0 or vin ̸=0. It is possible to see
that they are very close the exact inlet, for the various cases. This is contrary to what we were
expecting, since we thought that observations closer to the control boundary would impose a better
approximation to the exact inlet then the observations made far way from the control zone. Also,
since we are not giving to much importance to the parameter τ , which controls the gradient of the
control, we were expecting inlet functions (at least in the case of far way observations, such as in
the case of ω2.1, ω2.2), to have a less accentuated curvature, but permitting the some amount of
flux.

(a) Inlet for the case of vin = 0. (b) Costs evolution.

Figure 20: Inlet for the case of vin ̸= 0.
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We now consider the case of the vorticity functional cost given by

Jh(uh, vh) =

Nt∑
n=1

dt

2

(τ
2

∫
Γc

|∇vhn|2 + α

∫
Ω

|∇ × uhn|2
)

For this case we obtained the values in the table (21) where we considered α = 10 and a varying
τ . In there we considered the initial guess as the parabolic flow of (12a).

Figure 21: Evolution of the cost functional values for different values of τ , α = 10.

In the case of τ = 10, we gave too much force to this parameter, and in this case, the numerical
method will tend do the null solution, and we observed that this convergence is fast (in 5 itera-
tions). If we start to decrease τ we are permitting the minimization process to tend to non-null
solutions, but however this rate of convergence is slower (notice that in 6-th iteration with τ = 1
we still have a cost value of 43.3271).

Now we consider the case with vin ̸= 0 and starting with a function which is illustrated in image
(final state) (22a), which has the vorticity magnitude illustrated in (22b). After we applied the
minimization process, with the vorticity cost functional, and obtained the velocity field (final state)
showed in (24a) with a vorticity magnitude in (24b). Notice that the numerical solutions has an
exit of fluid in the control boundary Γc. Also this process seems to make the vorticity almost
uniform along the domain.

(a) Final state for the initial guess. (b) Initial Vorticity

Figure 22: Initial vorticity.
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Figure 23: Stream lines of the initial guess, final state.

(a) Final state
(b) Final vorticity.

Figure 24: Final vorticity.

Figure 25: Stream lines of the optimal solution, final state.

We close the numerical tests by giving an example with the functional cost

Jh(uh, vh) =

Nt∑
n=1

dt

2

(τ
2

∫
Γc

|∇vhn|2 + α

∫
Ω

|(uh − Zh
d )n|2 + α1

∫
Ω

|∇ × uhn|2
)

where the target flow is the one in image (18a) and the parameters are given by τ = 0.1, α =
10000, α1 = 10. As is expected the optimal solution should look closer to the target flow since we
are given much more importance to the least square part of the functional cost than the control
and vorticity term. We star with the initial guess represented in (27a), and after (x) iteration we
obtain the function represented in (27b). Notice that from the initial guess we the method starts to
converge towards a numerical solution which starts to have a parabolic flow on the upper channel,

74



and remains unchangeable the bottom channel. Also we do not exactly obtain the target flow due
to the vorticity minimization. The initial cost was 32408 and the minimized cost has the value
24797 what corresponds to a decrease of 23 per cent. We also obtain for the optimal solution a
rel.error of 0.51 in with respect to target flow.

(a) Target flow. (b) Optimal solution.

Figure 26: Comparison of the numerical solution with the target flow, with α = 10000, α1 = 10
and τ = 0.001.

(a) Target flow. (b) Optimal solution.

Figure 27: Comparison of the stream lines of numerical solution with the target flow, with α =
10000, α1 = 10 and τ = 0.001.
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7 Appendix

7.1 Functional Analysis

In this subsection we recall some important results from functional analysis, that we took from the
books [20] and [5].

(R1) If fn
w−→ f in σ(E∗, E∗∗) (that is a weak convergent sequence of functionals in E∗ ), then

fn
w∗

−−→ f in σ(E,E∗) that is ⟨fn, x⟩E∗,E → ⟨f, x⟩E∗,E for all x ∈ E.

(R2) This is a simple result but is just for completeness. Let A : X → Y be a continuous

application, where X,Y are Banach spaces. If xn
w−→ x in X then Axn

w−→ Ax in Y .

(R3) Every continuous and convex functional f : E → R is weakly lower semicontinuous, that

is, for every weakly convergent sequence xn
w−→ x in E we have

lim inf
n→∞

f(xn) ≥ f(x)

(R4) Every convex and closed subset of a Banach space is weakly sequential closed.

(R5) Every bounded subset of a reflexive Banach space is weakly sequentially relatively com-
pact. In particular we have that in every Hilbert space, the bounded sequences have at least one
subsequence that converges weakly to some element of the space.

The above results are crucial for the proof of an optimal solution for the control problem. In
our work, we do not, in general treat with linear and continuous operators, but instead, with con-
tinuous and affine linear operators.
Notice that if an operator is only affine linear and continuous, the result (R2) is still valid.
In fact, let T : X → Y be an affine linear and continuous operator. Then T assumes the form
T = L+b where L : X → Y is a liner and continuous, and b is a fixed element of Y . Now if {xn}n∈N
converges weakly to x in X, we have, by (R2), that Lxn

w−→ Lx. Also, since Txn = Lxn + b, and
the term b of the right hand side can be seen as a constant sequence in Y , and therefore strongly
converges to b, we have that Txn = Lxn + b

w−→ Lx+ b = Tx and therefore Txn
w−→ Tx.

Now, we mention some auxiliary simple results, that were used during the constructions of some
of the results in this thesis

In this work we use for many estimates the following result (from [31]),

Lemma 7.1 (Young’s inequality). Suppose that a, b ≥ 0 then for all ϵ > 0 we have

ab ≤ a2

2ϵ
+

ϵb2

2
(166)

This result allows us to obtain some upper estimates for ||x + y||2X , where x, y ∈ X and
|| · ||X is a norm. In fact due to the triangular inequality, and the fact that the square function
R ∋ x 7→ x2 ∈ R is an increasing function in [0,∞[, we have that

||x+ y||2X ≤
(
||x||X + ||y||X

)2
Now since || · ||X is a norm, is therefore non-negative, and we can apply the lemma 7.1, where we
chose ϵ = 1(
||x||X+||y||X

)2
= ||x||2X+||y||2Y +2||x||X ||y||X ≤ ||x||2X+||y||2X+2

(1

2
||x||2X+

1

2
||y||2X

)
= 2(||x||2X+||y||2X)

Thus we get that for every x, y ∈ X

||x+ y||2X ≤ 2
(
||x||2X + ||y||2X

)
(167)
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In the proof of the existence of an optimal solution for the minimization problem, we need a
convexity result which is given by the next simple lemma.

Lemma 7.2. Let g : R → R and f : X → R be two convex functions, where g is also assumed to
be an increasing function. Then the composition g ◦ f : X → R is a convex function.

Proof: Let λ ∈ [0, 1] and u, v be in X. Then,

g
(
f
(
λu+ (1− λ)v

))
≤ g

(
λf(u) + (1− λ)f(v)

)
≤ λg(f(u)) + (1− λ)g(f(v))

□

As a simple example of application of the lemma 7.2, one can see that the function X ∋ x 7→ ||x||2X
is a convex function. In fact by defining g : R → R, the function g(x) = x2, and f : X → R by
f(x) = ||x||X we get the result.

To finish this first subsection of the appendix, we recall a result from [1] with respect to the
equivalence of Cartesian norms.
Given two Banach spaces X,Y the product vector space X × Y with the norm ||(x, y)||X×Y =(
||x||2X + ||y||2Y

)1/2
is also again a Banach space. Moreover, since the product vector space X × Y

has finite dimension, the following norms are all equivalent to the norm considered

||(x, y)||X×Y p =
(
||x||pX + ||y||pY

)1/p
, p ∈ [1,∞[

||(x, y)||X×Y ∞ = max{||x||X , ||y||Y } , p =∞
Thus, without loss of generality we always consider the norm of the vector product space to be the
norm with p = 2.

7.2 Sobolev Spaces

In this subsection we recall the definition of the Sobolev spaces, and give some classical results
regarding them. We were mainly guided by [1], [33], [8], [25] or [22]. The Sobolev spaces are
defined as

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) , for |α| ≤ k}
where p ∈ [1,∞] and k ∈ N, with the norm

||u||k,p :=
( ∑

|α|≤k

||Dαu||pLp(Ω)

)1/p

with which this spaces became complete. In the case of p = 2, we denote W k,2(Ω) := Hk(Ω) to
highlight, that in this case we have a Hilbert space.
Still for the case p = 2, we define the Sobolev Spaces of fractional order Hk(Ω) 0 ≤ k, which are
defined by using interpolation techniques, (see [22]).

The following result is from [25].

Theorem 7.1 (Trace Theorem). Suppose that Ω is bounded and has a Lipschitz boundary. Then
there exists a linear and continuous operator τ̂ : W 1,p(Ω) → Lp(∂Ω), called trace operator, such
that

τ̂(u) = u|∂Ω for all u ∈ c1(Ω)

Ker(τ̂) = W 1,p
0 (Ω)

Range(τ̂) = W
1− 1

p ,p

0 (∂Ω) ⊂ Lp(∂Ω)

and exists a constant c > 0 such that for all u ∈W 1,p(Ω)

||τ̂(u)||Lp(∂Ω) ≤ ||τ̂(u)||
W

1− 1
p
,p
(∂Ω)
≤ C||u||W 1,p(Ω)
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From theorem 7.1 we see that, for instance, the space H1/2(∂Ω) may be characterize by being
the set of functions which are traces of functions in H1(Ω). This functions, are in particular in a
subset (strict subset) of L2(∂Ω), and the theorem 7.1, also says that the trace operator is contin-
uous if we consider in the image space the L2 or the Sobolev H1/2 norm.

In this work we use traces operator only on a subset of the boundary, ΓD ⊂ Γ = ∂Ω, and therefore
it is crucial to define the traces operators for this boundary parts, and analyze their properties.
We will only consider the case of the domain H1(Ω) for these operators.
A trace operator of this kind can be constructed in the following way. Let χD be the characteristic
function

χD(x) =

{
1 if x ∈ ΓD

0 otherwise

The we define τ̂D : H1(Ω)→ L2(ΓD) as the composition

τ̂D = χD ◦ τ̂ (168)

Therefore for a given u ∈ H1(Ω), the image τ̂D(u) is the restriction of the trace of u, τ̂(u), to the
subset ΓD of Γ. It is easy to see that this function is in L2(ΓD) since,∫

ΓD

|τ̂D(u)|2ds =

∫
Γ

χD|τ̂(u)|2ds ≤
∫
Γ

|τ̂(u)|2ds <∞ (169)

Also, (169) tells us that the operator τ̂D is bounded, since by theorem 7.1, for every u ∈ H1(Ω)

||τ̂D(u)||L2(ΓD) ≤ ||τ̂(u)||L2(Γ) ≤ C||u||H1(Ω)

By the fact that τ̂D is also linear, we have the continuity of this operators.
For the case of the traces for the lateral boundary, we can use the above operators to define them.
In fact, by using the same reasoning as done in [30] we have that, since the operator τ̂ is linear and
continuous from H1(Ω) to L2(Γ), we also have that the operator (we denote by the same letter)
τ̂ : L2(0, T ;H1(Ω)) → L2(0, T ;L2(Γ)) is linear and continuous. Therefore we can construct the
trace operators on subsets ΣD = ΓD × (0, T ) ⊂ Σ is the same way as we constructed τ̂D, and get
linear and continuous trace operators, for boundary sub parts.

The following two results are from [31].

Theorem 7.2 (Sobolev Imbeddings). Suppose that Ω ⊂ Rd is bounded and has a Lipschitz bound-
ary. Let j and m be non-negative integers and let p satisfy 1 ≤ p <∞ Then we have the following
cases:

(i) If mp < d, then the imbedding

W j+m,p(Ω) ↪→W j,q(Ω), for 1 ≤ q ≤ dp

d−mp

In particular we have that

Wm,p(Ω) ↪→ Lq(Ω), for 1 ≤ q ≤ dp

d−mp

(ii) If mp = d. Then
Wm,p(Ω) ↪→ Lq(ω), for 1 ≤ q ≤ ∞

(iii) Suppose that mp > d then
Wm,p(Ω) ↪→ CB(Ω)

where
CB(Ω) := {f ∈ C(Ω) : f is bounded }

(iv) Rellich–Kondrachov theorem: the imbeddings (i)-(ii) are compact for this same conditions on
Ω
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As a simple application of the theorem 7.2, we can see that, if Ω is a Lipschitz bounded set, then
H1(Ω) is compactly imbbeded in L2(Ω), that is, the application I : H1(Ω) → L2(Ω) is compact.
As a consequence, every bounded sequence in H1(Ω) is mapped via I to a sequence in L2(Ω) which
has at least a subsequence that converges strongly to an element of L2(Ω).

Theorem 7.3 (General Poincaré inequality). Let f ∈W 1,p
0 (Ω), then

||f ||Lp(Ω) ≤ CP ||∇f ||Lp(Ω) for p ∈ [1,∞[

In particular if f ∈ H1
Γ0
, where Γ0 ⊂ ∂Ω with positive Lebesgue measure |Γ0| > 0, then the above

inequality is again valid.

7.3 Lp(0, T ;X) Spaces

In this section we introduce the spaces Lp(0, T ;X) where X is a separable Banach space.
This spaces are fundamental when dealing with evolution PDE’s such as for example the Heat equa-
tion. Basically, they introduce the notion of measurability, integrability and weak differentiability
for functions of the type

t ∈ [0, T ] 7→ y(t) ∈ X

For detail about the next definitions and results see for example [8], [32], [33] or, on a more simple
way [16].

To define this spaces we start by the introduction of the Bochner integral, which is a general-
ization of the Lebesgue integral to vector valued functions 33.

Definition 7.1. (i) A function s : [0, T ]→ X is called a simple function, if it has the form

s(t) =

m∑
i=1

1Ei(t)yi

where the sets Ei ⊂ [0, T ] are Lebesgue mensurable, and yi ∈ X.

(ii) A function f : [0, T ]→ X is called strongly mensurable, if there exists a sequence {sn}n∈N, sn :
[0, T ]→ X of simple functions, such that

sn(t)→ f(t) , for almost every t ∈ (0, T )

With the definition 7.1, it is possible to introduce the notion of integrability of vector valued
functions.

Definition 7.2. (i) For a simple function s(t) =

m∑
i=1

1Ei(t)yi we define the integral in [0, T ] by

∫ T

0

s(t)dt =

m∑
i=1

|Ei|yi

where |Ei| is the Lebesgue measure of the set Ei ⊂ [0, T ].

(ii) We say that the function f : [0, T ] → X is Bochner-integrable if there exists a sequence of
simple functions {sn}n∈N, sn : [0, T ]→ X such that∫ T

0

||sn(t)− f(t)||Xdt→ 0 , when n→∞

33We call to a function y : [0, T ] → X, where X is a Banach space, a vector valued function.
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(iii) In the case that f is Bochner integrable, the integral of f in the interval [0, T ] is defined
by ∫ T

0

f(t)dt = lim
n→∞

∫ T

0

sn(t)dt

To see that the concepts, introduced in (7.2) are well defined34, see [32], where it is used the
Pettis’s theorem.
Also notice that with this definition the integral is not a value in C, as usual, but a element of the
Banach space X.
We have the following property for these integrals, which were took from [8].

Theorem 7.4. A strongly mensurable function f : [0, T ]→ X is Bochner-integrable if and only if
the function t 7→ ||f(t)||X is Lebesgue integrable, and in this case

∣∣∣∣ ∫ T

0

f(t)dt
∣∣∣∣
X
≤

∫ T

0

||f(t)||Xdt

Also, for every F in X∗ we have〈
F,

∫ T

0

f(t)dt
〉
X∗,X

=

∫ T

0

⟨F, f(t)⟩X∗,Xdt

This notion of integrability, motivated the introduction of a class function spaces, that are
analogous to Lebesgue spaces, which are used for evolutionary equations.

Definition 7.3 (Lp(0, T ;X) spaces ). Let X be a separable Banach space. We define for 1 ≤ p <
∞ the space ,

Lp(0, T ;X) :=
{
y : [0, T ]→ X strongly mensurable such that ||y||Lp(0,T ;X) :=

(∫ T

0

||y(t)||pXdt
)1/p

<∞
}

Moreover, for the case p =∞

L∞(0, T ;X) :=
{
y : [0, T ]→ X strongly mensurable such that ||y||L∞(0,T ;X) := ess supt∈[0,T ]||y(t)||X

}

When there is no confusion, we simplify the notation of Lp(0, T ;X) by Lp(X). This spaces are
Banach spaces when equipped with this norms (see theorem (7.5)), and when we see the elements
as equivalence classes, that is, y ∈ Lp(0, T ;X) is a equivalent class, composed by all the functions
ỹ ∈ L p(0, T ;X) which are equal almost everywhere to y.

We also enunciate the two following technical results, from [16].

Lemma 7.3. For any y ∈ Lp(0, T ;X) , 1 ≤ p < ∞ there exists a sequence {sn}n∈N of simple
functions with sn → y a.e in (0, T ), and sn → y in Lp(0, T ;X). Moreover functions of the form

m∑
i=1

φi(t)yi, , φ ∈ C∞
c ((0, T )), yi ∈ X

are dense in Lp(0, T ;X) for 1 ≤ p <∞.

Theorem 7.5. Let X a Banach separable space. Then for 1 ≤ p <∞ the spaces Lp(0, T ;X) are
also Banach spaces.
For 1 ≤ p < ∞ the dual space of Lp(0, T ;X) can be isometrically Lq(0, T ;X∗), where q is the
conjugate of p, by means of the pairings

⟨v, y⟩Lq(0,T ;X∗),Lp(0,T ;X) =

∫ T

0

⟨v(t), y(t)⟩X∗,Xdt

34In particular that the integral is independent of the sequence {sn}n∈N, of simple functions.

80



If X is a separable Hilbert space, the L2(0, T ;X) is a Hilbert space, for the inner product,

(v, y)L2(0,T ;X) :=

∫ T

0

(v(t), y(t))Xdt

In this work we use multiple times the following lemma.

Lemma 7.4. If X,Y are Banach spaces which X ↪→ Y then L2(X) ↪→ L2(Y ).

Proof: Since X ↪→ Y exists a constant c > 0 such that for every x ∈ X ||x||Y ≤ c||x||X .

Now suppose that x is a function of L2(X). Let us see that we have ||x(t)||Y ≤ c||x(t)||X a.e.
in t ∈ (0, T ). We need to see that this a class property, what means, that if x̃ and x̂ are two
different representatives of x(t) then the inequality holds.
Thus let x̂(t) be a representative of the class x(t) ∈ L2(X). Therefore, the pontual evaluation
makes sense, and since the function x̂(t) is defined and is equal almost everywhere, to x(t), we get
that

||x̂(t)||Y ≤ c||x̂(t)||X = c||x(t)||X for a.e. t ∈ (0, T )

by the embedding X ↪→ Y .
Let now, x̃(t) be another representative of the class x(t) ∈ L2(X). Since x̃(t) = x̂(t) a.e. in (0, T )
we also have

||x̃(t)||Y ≤ c||x̂(t)||X a.e. t ∈ (0, T ) (170)

Therefore, the inequality (170) is independent of the representatives x̃, x̂ of the class x ∈ L2(X)
and then is a class property. Thus we can write ||x(t)||Y ≤ c||x(t)||X and since x ∈ L2(X) we
conclude that (∫ T

0

||x(t)||2Y dt
)1/2

≤ c
(∫ T

0

||x(t)||2Xdt
)1/2

which is equivalent to say that for ever x ∈ L2(X), x is also in L2(Y ) and satisfies, ||x||L2(Y ) ≤
c||x||L2(X), or in other terms L2(X) ↪→ L2(Y ). □

7.4 Gelfand Triples

In this section we introduce the concept of Gelfand triples which play an important role in the
theory of abstract parabolic equations. Here we will mainly use the results given in [33]. We start
by recalling a definition and a classical result from functional analysis.

Definition 7.4. Let A be a non-empty set of X. We denote by A⊥ the set

A⊥ := {f ∈ X∗ : f(x) = 0 for all x ∈ A}

Let B ⊂ X∗, we define the set

⊥B := {x ∈ X : f(x) = 0 for all f ∈ B}

Lemma 7.5. Let X,Y be two Banach spaces, and let T ∈ L(X,Y ) with the adjoint T ∈ L(Y ∗, X∗).
Then the following are equivalent,

(i) Im(T ) is closed in Y .

(ii) Im(T ∗) is closed in X∗.

(iii) Im(T ∗) =
(
Ker(T )

)⊥
.

(iv) Im(T ) = ⊥
(
Ker(T ∗)

)
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As a consequence,

Lemma 7.6. Let X,Y be two Banach spaces and A : X → Y be a continuous and linear operator.
Then,

Im(A) is dense in Y ⇔ A∗ is injective

In general the canonical application J : X → X∗∗ is not an isomorphism, that is in general X
is not reflexive. But in the case it is, we may do the identification X = X∗∗ which yields that in
this case

A is injective⇔ Im(A∗) is dense in X∗ (171)

Also recall that form the Riesz’s representation theorem, every Hilbert space is reflexive. In the
case of H to be a Hilbert space, is usual to make the identification H = H∗, this corresponds to
identify every u ∈ H with the map (u, ·)H in H∗, or vice-versa. Now we introduce the concept of
a Gelfand triple.

Definition 7.5 (Gelfand Triple). Let V be a reflexive Banach space and H a Hilbert space, and
therefore we make the identification H = H∗. Assume that the embedding V −→

i
H is continuous,

injective and that the image of i, Im(i), is dense in H. Thus, we have that the injection map
i∗ : H → V ∗ is, by lemma 7.6, injective. Also by (171), Im(i∗) is dense in V ∗. Therefore both
i, i∗ are injective, continuous and have dense images. In this case we write

V ↪→i H ↪→i∗ V
∗

A scheme of this kind is called a Gelfand triple.

Since the map i is continuous

||iv||H ≤ c||v||V , ∀v ∈ V

If we re-norm the norm of V , we obtain an equivalent norm and we can achieve,

||iv||H ≤ ||v||V , ∀v ∈ V =⇒ ||i|| ≤ 1

and since ||i∗|| = ||i|| ≤ 1, we have that

||i∗iv||V ∗ ≤ ||iv||H ≤ ||v||V , ∀v ∈ V

or, by using an abuse of notation,

||v||V ∗ ≤ ||v||H ≤ ||v||V , ∀v ∈ V

(This chain of inequalities must be seen carefully since the same v denotes different objects).
Now denoting by (·, ·)H the inner product in H, by definition of the operator i∗, we have that for
every h ∈ H, and for every v ∈ V ,

⟨i∗h, v⟩V ∗,V = ⟨h, iv⟩H = (h, iv)H

(where we identified h with the functional (h, ·)H). Also we have that

|(h, iv)H | = |⟨i∗h, v⟩V ∗,V | ≤ ||i∗h||V ∗ ||v||V ≤ ||h||H ||v||V

Thus, every h ∈ H can be seen as a functional in V . Since Im(i∗) is dense in V ∗, for every f ∈ V ∗

we have a sequence hn ∈ H such that i′(hn)→ f in V ∗, or in other terms,

⟨f, v⟩V ∗,V = lim
n→∞

(hn, iv)H

Thus for every v in the unit ball on V , we have that the map (·, iv)H can be uniformly continuously
extended to V ∗. We denote by the same symbol the continuous extension of the map (·, i·)H to
V ∗ × V . Therefore sometimes can appear the expression (f, v)H with f ∈ V ∗ and v ∈ V , and we
must interpret this operation in the new extended operator sense.
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As an instructive example (see [33]) we consider the Gelfand triple

H1
0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω) = [H1

0 (Ω)]∗

Since the space D(Ω) is by definition dense in H1
0 (Ω), and it is possible to see that is also dense in

L2(Ω), thus H1
0 (Ω) is densely and continuously embedded in L2(Ω) and we get a Gelfand triple.

Also by the Riesz representation theorem, exists an isomorphism R : H−1(Ω) → H1
0 (Ω), which

coincides with the identity when H1
0 is equipped with it’s inner product.

Let v = Rf for some f ∈ H−1(Ω), then for every φ ∈ H1
0 (Ω)

⟨f, φ⟩ = (v, φ)1 =

∫
Ω

(

2∑
i

∂v

∂i

∂φ

∂i
+ v · φ)

= −
∫
Ω

(−∆v + v)φ = (−∆v + v, φ)L2

where the integrals must be understood in the distributional sense D∗(Ω).
Now using the continuous extension map we obtain

⟨f, φ⟩H−1,H1
0

= (f, φ)L2

and notice that in general f does not belong to L2(Ω). From this we take that

(f, φ) = (−∆v + v, φ) for every φ ∈ D(Ω)

what implies that f = R−1v = −∆v + v

Remark: It may happen that V,H are both Hilbert spaces, but in this case, since we are us-
ing the inner product of H, the Riesz isomorphism from V → V ∗ does not coincide with the
identity.

7.5 Space W (0, T )

Definition 7.6 (Distributions with values on a Hilbert space). Let Ω be an open set in Rn and H
be a Hilbert space. We say that a linear map T : D(Ω) → H is a distribution of D∗(Ω, H), if for
every compact subset K ⊂⊂ Ω there exists constants p, c ≥ 0 with

||⟨T, φ⟩|| ≤ c · sup
x∈K

∑
|s|≤p

|Ds(φ(x))| , φ ∈ D(Ω) with suppφ ⊂ K

Now we introduce the concept of differentiation for this type of distributions.

Definition 7.7 (Differentiation). Let s = (s1, ..., sn) the derivative DsT is defined by

⟨DsT, φ⟩ := (−1)|s|⟨T,Dsφ⟩ for all φ ∈ D(Ω)

It is possible to see that the derivative of a distribution, of any order, is again a distribution,
that is,

If T ∈ D∗(Ω, H) =⇒ DsT ∈ D∗(Ω, H)

Let f : Ω → H be locally integrable, that is, for all K ⊂⊂ Ω ⊂ Rn, K compact, f ∈ L1(K,H).
We associate to f the distribution from D∗(Ω, H)

f → Tf by ⟨Tf , φ⟩ :=

∫
Ω

f(x)φ(x)dx , φ ∈ D(Ω)

where the integral is in the Bochner sense. We have the following result.
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Lemma 7.7. The map L2(Ω, H)→ D∗(Ω, H) is injective and continuous.

Lemma 7.8. Let H1, H2 be two Hilbert spaces with H1 ↪→ H2 where the inclusion is continuous.
The we also have D∗(Ω, H1) ↪→ D∗(Ω, H2) continuously.

Now suppose that we have the Gelfand triple, V ↪→ H ↪→ V ∗.

Then, if f ∈ L2((0, T );V ), we have that
df

dt
∈ D∗((0, T );V ) and since V ↪→ V ∗, we also have from

lemma 7.8, that
df

dt
∈ D∗((0, T );V ∗).

This motivates the definition of the space W (0, T ) where we ask more regularity for the derivative,
being a functions and not only a distribution,

W (0, T ) :=
{
f ∈ L2((0, T );V ) :

df

df
∈ L2((0, T );V ∗)

}
equipped with the inner product

(f, g)W :=

∫ T

0

(
(f(t), g(t))

)
dt+

∫ T

0

(df(t)

dt
,
dg(t)

dt

)
V ∗
dt

We have the following and important result.

Theorem 7.6. The space W (0, T ) is a Hilbert space.

Lastly is also possible to see that the functions in W (0, T ) are continuous.

Theorem 7.7. We have the continuous imbedding

W (0, T ) ↪→ C([0, T ], H)

The next result can be seen in [29] or in [28], and makes the connection between the derivative in
the sense of the vector valued distributions and the derivative in the sense of the scalar distributions.

Lemma 7.9. Let X be a given Banach space with dual X∗ and let u and g be two functions
belonging to L1(0, T ;X). The following three conditions are equivalent,

(i) , u(t) = ξ +

∫ t

0

g(s)ds, , ξ ∈ X a.e t ∈ (0, T )

(ii) ,

∫ T

0

u(t)ϕ′(t)dt = −
∫ T

0

g(t)ϕ(t)dt , ∀ϕ ∈ D((0, T ))

(iii) ,
d

dt
⟨u(t), η⟩ = ⟨g(t), η⟩ , ∀η ∈ X∗ , and in the sense of the scalar distributions

(iii) is equivalent to say, that for all ϕ ∈ D((0, T )) we have∫ T

0

d

dt
⟨u(t), η⟩ϕ(t)dt = −

∫ T

0

⟨u(t), η⟩ϕ(t)dt

Also, notice that the item (ii) is the derivative of u(t) in the sense of vector-valued distributions.
This connection is important to the conclusion of theorem 3.1.

7.6 Weak Derivative

In this section we give the proof that if v(t) = V φ(t) where φ(t) is a regular function (at least
C1[0, T ]) and V ∈ X (X being a Banach space), then the weak derivative in time (derivative in
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the vector distribution sense) coincides with the classical derivative v′(t) = V φ′(t).
The classical derivative is indeed given by v′(t) = V φ′(t) since

lim
t→t0

||φ(t)V − φ(t0)V − φ′(t0)V ||X
|t− t0|

= lim
t→t0

||V ||X |φ(t)− φ(t0)− φ′(t0)

|t− t0|
= ||V ||Xo(|t− t0|)

Let f ∈ X∗ then, for every ϕ(t) ∈ D((0, T )). Notice that for every t ∈ [0, T ] , ⟨f, φ(t)V ⟩ =
⟨f, V ⟩φ(t), from the linearity of f ∈ X∗.
Thus ∫ T

0

⟨f, V φ(t)⟩X∗,Xϕ
′(t)dt =

∫ T

0

⟨f, V ⟩X∗,Xφ(t)ϕ′(t)dt

⟨f, V ⟩X∗,X

∫ T

0

φ(t)ϕ′(t)dt

= ⟨f, V ⟩X∗,X

∫ T

0

(φ(t)ϕ(t)
)′
dt− ⟨f, V ⟩X∗,X

∫ T

0

φ′(t)ϕ(t)dt

= −
∫ T

0

⟨f, V φ′(t)⟩X∗,Xϕ(t)dt

and thus we have proofed that ∀f ∈ X∗,
d

dt
⟨f, v(t)⟩ =

d

dt
⟨f, φ(t)V ⟩ =

d

dt
⟨f, φ′(t)V ⟩, which by

lemma 7.9, is equivalent to say that the derivative, in the vector distribution sense, of v(t) is the
function φ′(t)V , as we wanted.
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