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Abstract

Over the last two decades wind power has undergone an exponential growth globally. As the demand
for wind power systems increases, efficiency is sought to be maximized and operation and maintenance
costs reduced. Condition monitoring (CM) systems have become a field of high interest within the wind
turbine world. The main components of wind turbines constitute the focus of CM, as they are responsible
for frequent, large repair costs and operational downtime. Within the main components, the gearbox
accounts for one of the highest failure rates and is the component that causes the greatest amount
of downtime. This work will focus on the application of fuzzy clustering for wind turbine gearboxes
fault detection and classification. The Gath-Geva clustering algorithm is explored by applying the
observer biased clustering framework. The notion of an observer allows clustering to be an interactive
process, providing an intuitive way to control cluster formation and enabling domain knowledge to be
incorporated in the process. A domain expert can choose the level of granularity and is able to select
a particular region of the data space for a detailed view. The Gath-Geva with Focal Point algorithm is
tested with wind turbine gearbox vibrational data and compared with its unbiased version, the Fuzzy
C-Means biased and unbiased algorithms. Two metrics are employed to validate internal clustering: the
well known Xie-Beni index and the Kim-Lee index, the latter of which is based on relative degree of
sharing. The algorithms are compared by performing several independent runs and using the distribution
of the Adjusted Rand Index external validation metric.
Keywords: Fuzzy clustering, Wind turbine fault detection, Observer biased clustering, Focal Point,
Gath Geva with Focal Point (GGFP)

1. Introduction

From all the components within a wind turbine
drive train, the gearbox is responsible for 12% of
all failures (the second highest rate) [21] and is
also the component whose failure causes the largest
downtime [8]. These factors make it essential to en-
sure the healthy and stable operation of this type of
equipment, to address this problem, gearbox fault
diagnosis has already been the focus of many re-
searchers in the condition monitoring field.

Condition Monitoring (CM) aims to use mea-
sured data to predict deterioration and failure of
machine components, which has led CM systems to
become highly sought after in this industry. A re-
view of different techniques used in CM of wind
turbines (WT) can be consulted in [15], this re-
view includes traditional techniques such as vibra-
tion signals, acoustic emission, or ultrasonic test-
ing, it has been proven that vibrational analysis is
the technique that gives more information about
faults in rotating machinery, making vibration sen-
sors widely used in wind turbine applications [25].
The survey [26] gathers an extensive list of ap-

proaches based on vibration based condition moni-
toring for wind turbine gearboxes, ranging from sig-
nal processing methods to fault detection methods
including Artificial Intelligence and Machine Learn-
ing based approaches.

Methods based on supervised learning can be
used for fault diagnosis after having been trained
with known fault training samples. However, only
the patterns that are found in the training samples
can be classified. Wrong diagnosis can often oc-
cur when dealing with unknown faults, making it
hard to use supervised methods effectively. Thus,
the application of unsupervised pattern recognition
methods, such as clustering, becomes relevant.

Fuzzy clustering methods applied to WT gear-
box fault detection include the application of the K-
means Clustering Method [20] and the unsupervised
learning method Kernel C-Means [12]. In compar-
ison to WT gearbox fault detection, applications
that involve other machine parts, such as bearings,
display a much larger list of different approaches in
the literature, ranging from different variations of
the Fuzzy C-Means algorithm, to the application
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of the Gustafson-Kessel and Gath-Geva algorithm
[13, 14, 19, 27]. Motivated by the success of the
application of observer biased fuzzy clustering in
fault detection and classification for bearing CM,
the Gath-Geva with Focal Point (GGFP) cluster-
ing algorithm is here applied to untested, real world
data and compared with other state of the art fuzzy
clustering algorithms.

2. Fuzzy Clustering

In general terms, clustering can be divided into two
major groups: hard clustering and soft clustering,
the latter of which includes fuzzy clustering. Within
each category there is a diverse number of algo-
rithms, utilizing different approaches for the way
partitions are formed.

In hard, or non-fuzzy, clustering data is assigned
to clusters such that the degree of membership of
each data point to a particular cluster is either 0
or 1. These types of clusters are called crisp clus-
ters. In other words, a given data point belongs
to exactly a single cluster. There is an abundance
of hard clustering algorithms, among which some
of the most well-known are the K-Means algorithm
and hierarchical clustering [23].

Utilizing notions of fuzzy sets, data points in soft
clustering may belong to more than one cluster.
Each data point is then attributed membership val-
ues which indicate the likelihood of belonging to
different clusters [2]. In this work, the focus is di-
rected to the Gath-Geva algorithm and its observer
biased variant.

2.1. Gath-Geva

The Gath-Geva (GG) clustering algorithm was orig-
inally proposed by Gath and Geva in [7], and is
also known as fuzzy maximum-likelihood clustering.
The GG algorithm detects hyper-ellipsoidal clusters
with different orientations, sizes, and densities; it
aims at minimizing the objective function:

J =

c∑
i=1

n∑
j=1

um
ij ||xj − vi||2 (1)

where the distance metric is given by:

||xj−vi||2 =
|F i|1/2

Pr(i)
exp[−1

2
(xj−vi)

TF−1
i (xj−vi)]

(2)
where Pr(i) is the priori probability of the i-th clus-
ter, i.e.,

Pr(i) =

∑n
j=1 u

m
ij∑n

j=1

∑c
ι=1 u

m
ιk

(3)

and F i and |F i| are the fuzzy covariance matrix
of the i-th cluster (6) and its determinant, respec-
tively. Once (2) is computed the updates of uij ,

and vi can be found by (4) and (5), respectively.

uij = [

c∑
k=1

(
||xj − vi||2

||xk − vi||2

) 1
m−1

]−1 (4)

The updating expression for the prototypes:

vi =

∑n
j=1 u

m
ijxj∑n

j=1 u
m
ij

(5)

F i =

n∑
j=1

um
ij (xj − vi)(xj − vi)

T

n∑
j=1

um
ij

(6)

2.2. Evaluation of clustering results
There is a wide variety of indexes in the literature
that have been extensively explored [1]. In this
work, two internal indexes and one external index
are applied. The internal indexes are the Xie-Beni
(XB) index [22] and the Kim-Lee (KL) index [10].
For the internal validity measure, as the data used
for testing is labeled, the Adjusted Rand Index was
the measure chosen.

2.2.1 Xie-Beni Index

Tthe XB index has been proven to provide great
performance and to be quite reliable [16] when eval-
uating partitions produced by the FCM. The Xie
Beni index focus in the identification of compact
and well-separated clusters, for computational pur-
poses the inverse of the XB index was applied and
is given by:

XB−1 =
nmini ̸=j ||vi − vj ||2
c∑

i=1

n∑
j=1

um
ij ||xj − vi||2

(7)

This index can be seen as the ratio between de-
grees of intra-cluster distance and inter-cluster dis-
tance where the numerator represents the minimal
separation between fuzzy clusters and the denomi-
nator is the sum of the compactness of each fuzzy
cluster. The optimal partition is then obtained by
maximizing equation 7.

2.2.2 Kim-Lee Index

The shapes and sizes of the clusters in the GG al-
gorithm differs from the spherical and same sized
clusters of the FCM. This limits the applicability
of indexes, like the Xie-Beni, that rely solely on
the clusters’ centroid distance to evaluate cluster
separation. Since the GG algorithm involves the
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Gaussian metric, these type of indexes cannot dif-
ferentiate two different partitions with the same
centroid distance and different orientations. The
KL index’s goal is to calculate the average over-
lap between clusters using the definition of the rel-
ative degree of sharing between fuzzy clusters. The
higher the membership values of a data point to
a pair of clusters, the higher the relative degree of
sharing between the clusters, which is an indication
of cluster overlap. To take into account overlapped
data points a weighing parameter is introduced and
highly overlapped data points are given a bigger
weight over data that are classified clearly. The rel-
ative degree of sharing between two fuzzy clusters
is then defined by the weighted sum of the relative
degrees of sharing at each data point xk:

S(Ci, Cj) =

n∑
k=1

[c · [uik ∧ ujk]h(xk)] (8)

where, the fuzzy AND operator [24] is employed
: uik ∧ ujk = min(uik, ujk) and the entropy of
data points is used as weighing parameter: h(xk) =

−
c∑

i=1

uiklog uik, this allows vague (unclearly classi-

fied) points to be have a a bigger value, meaning
that partitions with highly overlapped data will be
penalized. This index has as its only input the par-
tition matrix, uij , and considers a partitioning op-
timal when the degree of overlap between clusters is
minimal. The KL index is then defined as the aver-
age relative degree of sharing for all possible cluster
pairs:

KL =
2

c (c− 1)

c−1∑
i=1

c∑
j=i+1

n∑
k=1

[c · [uik ∧ ujk]h(xk)]

(9)

The KL index can measure the ambiguity of a cer-
tain partitioning as well as the geometrical property
of overlap between clusters. It possesses the advan-
tage over other indexes of calculating the separation
between clusters without making use of inter-center
distances.

2.2.3 Rand Index and Adjusted Rand In-
dex

For external validation, cluster validity measures
Rand Index (RI) and Adjusted Rand Index (ARI),
[9], are employed . These indexes measure the
similarity of two partitions of a data set X =
(x1, ..., xn), the ground truth partition, G, and a
hypothesis partition H generated by a clustering
algorithm. The RI of random partitions is not con-
stant and two random partitions can produce high
RI values even if they don’t represent the structure

in the data. In order to deal with these drawbacks,
the RI is corrected for chance resulting in the more
reliable Adjusted Rand Index:
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where nij is the number of elements that cluster
together in the subsets Gi and Hj ; ni,nj are the
number of elements in Gi and Hj , respectively. The
ARI also attains its maximum value at 1 when both
partitions completely agree.

3. Observer Biased Clustering

The observer biased variant applied to fuzzy clus-
tering was first introduced in [4]. In theory, this ap-
proach can be applied to any clustering algorithm
that seeks to optimize an objective function. The
purpose of the observer biased technique is to give
a clustering algorithm the ability to change the po-
sition from which the data is observed, and thus
allowing for the possibility of viewing different per-
spectives of the data.

The inspiration for this algorithm surged from
a metaphor found in daily life depicted in [5]. It
uses the analogy of human perception of objects
depending on the point of observation;v the closer
the location of the observer, the more distinct each
object becomes. Conversely, the further away the
observer stands from the objects, the less detail is
visualized and the group objects begins to merge
into a single element. This is akin to the effect of the
zoom property found in an optical lens which can
cover a wide array of perspectives, ranging from fine
details when zoomed in and the ”bigger picture”
when zoomed out.

The approach follows a statistics concept known
as shrinkage. Usually, shrinkage is applied with the
goal of improving an unbiased estimate by adding a
regularization term. Clustering algorithms based
on shrinkage techniques have been proposed and
have proven through experimental results to have
advantages in comparison to unbiased traditional
algorithms [6, 17]. Although the observer biased
approach is based on shrinkage, it differs from previ-
ously proposed algorithms due to the regularization
coefficient being different from the ones previously
suggested, seeing that it originated from a distinct
motivation.
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Figure 1: Data set in R2 focal point in a higher
dimension, R3

The placement of the observer becomes a mat-
ter of significance, a pertinent question is to ask
where should the observer be located. The location
of the observer is not constrained, it can be placed
anywhere in the data space or even in a different
dimensional space. To fulfill the previously men-
tioned metaphor, the observer is placed in a higher
dimensional space than the data, this also has the
benefit of easily being able to distinguish the ob-
server point from data points. Figure 1 illustrates
this, in the case where the data belongs to the two
dimensional space, R2, and focal point is placed in
a higher dimension of the data, the tri-dimensional
space R3.

In summary, this approach allows for an intu-
itive way to control the process of cluster forma-
tion, by incorporating the knowledge of domain ex-
perts which can select the most appropriate level of
granularity and the relevance of regions of the data
space.

4. Gath Geva with a Focal Point
The GG objective function is modified to include
an additional term which depends on P and is given
by:

J =

c∑
i=1

n∑
j=1

um
ij
|M i|1/2

Pr(i)
exp[−1

2
(xj − vi)M

−1
i (xj − vi)

T]

+ ζ

c∑
i=1

|M i|1/2

Pr(i)
exp[−1

2
(P− vi)M

−1
i (P− vi)

T]

(11)

where, Pr(i) is given by (3) and under the constraints:

uij ∈ [0, 1], i = 1, . . . , c; j = 1, . . . , n
c∑

i=1

uij = 1, j = 1, . . . , n (12)

The regularization term in equation (11) is zero if
ζ = 0 or in the case that all prototypes vi are equal
to P. If the focal point is at a large enough distance
from the data, a prototype that is very near the focal
point will have values nearing zero in the partition ma-
trix, uij , this can be deduced by observing equation 4,

when the distance ||xj −vi||2 increases, uij will tend to
zero. These prototypes are considered empty and can
be neglected.

The clustering problem can then be formulated as:

U∗,V∗, {M∗
i }ci=1 = (13)

arg min
U,V,{Mi}ci=1

J(x;U,V, {M i}ci=1)

subject to (12)

Solving the clustering problem can then be accom-
plished applying Lagrange multipliers λj to eq. (11)
with constraints (12), which is to minimize:

L =

c∑
i=1

n∑
j=1

um
ij
|Mi|1/2

Pr(i)
exp[−1

2
(xj − vi)M

−1
i (xj − vi)

T]

+

n∑
j=1

λj

(
c∑

i=1

uij − 1

)

+ ζ

c∑
i=1

|Mi|1/2

Pr(i)
exp[−1

2
(P− vi)M

−1
i (P− vi)

T]

(14)

The parameter updating expressions are then com-
puted from the respective necessary conditions.

Noticing that the terms that have uij do not depend
on P, the resulting expression will be equal to the non-
biased one eq. (4) where the distance metric is (2).

To obtain the estimates of centroids V = [vi] ∈ Rc×d

equation (14) is solved in order to vi by applying the
constraint δL

δvl
= 0, resulting in:

vi =

∑n
j=1 u

m
ijxj + ζP∑n

j=1 u
m
ij + ζ

(15)

Analyzing the previous equation it can be seen that
ζ determines the degree of attraction of the prototypes
to the focal point, when ζ is large the prototype will
tend to P and if zeta is arbitrarily small the depen-
dency on P will diminish. Therefore, decreasing the
value of ζ results in a finer detailed data observation,
which is to say that more clusters are generated, due to
less prototypes being attracted to P; while increasing ζ
will produce the opposite reaction, the observation will
have a smaller number of clusters.

An updating expression for the matrix M i can be
obtained from δL

δM−1 = 0:

M i =

∑n
j=1 u

m
ij (xj − vi)(xj − vi)

T + ζ(P− vi)(P− vi)
T∑n

j=1 u
m
ij + ζ

(16)

Thus M i can be viewed as the fuzzy covariance ma-
trix regularized by P. For ζ = 0 it turns into the fuzzy
covariance matrix (6).

To avoid numerical errors in the calculation of M i

the following regularizer is employed [11]:

MR
i = αI +M i (17)
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4.1. GGFP with focal point in higher dimension
The GGFP, where the focal point is located in a dimen-
sion higher than that of the data space, is summarized
in Algorithm 1.

Algorithm 1: GGFP with a focal point in
a higher dimension of data space

Input : Unlabeled multivariate data set:
X ⊂ Rd; Number of clusters: c;
Fuzzifier: m > 1; Focal point:
P ⊂ Rw, w > d Regularization
coefficient: ζ Fuzzy Covariance matrix
regularization: α

Output: Partition matrix: U = [uij ];
Prototypes: V = [vi] ; Fuzzy
covariance matrix : M i

Initialize the clusters’ prototypes ;
Extend X and V to Rw by adding (w − d) null
coordinates per data point;

repeat
for i = 1 to c do

Compute M i using (16);

Apply regularization MR
i ← αI +M i

(17) ;
for j = 1 to |X| do

Compute the distance plugging MR
i

in (2);
Update uij using (4);

for i = 1 to c do
update vi using (15);

until a termination criterion was met ;
Project prototypes to the original feature space
Rd

4.2. Iterated GGFP
An alternative iterative process to the empirical selec-
tion of ζ, proposed in [4] is here applied to the GGFP al-
gorithm and can be seen in algorithm 2. For each value
of ζ the resulting clustering partition is evaluated by an
internal cluster validation index. In increasing ζ some
clusters will be attracted to P, these clusters become
neglectable clusters. A cluster is considered neglectable
when it does not possess any typical points belonging
to the data set. A data point xj is considered a typical
point of a cluster i, iff, the partition matrix for that clus-
ter satisfies the inequality: uij > ukj , ∀ k ̸= i [3]. A
new partition matrix U is then calculated together with
the centroids V and Mi.

5. Results
The observer biased algorithms, FCMFP and GGFP,
are compared against each other as well as to their corre-
sponding unbiased versions (FCM and GG). This com-
parison measures the quality of the resulting partitions
using the external validity measure Adjusted Rand In-
dex afterwards, there is also the verification for statisti-
cal significant differences between the obtained indexes,
this is done using non-parametric statistical tests; the
Wilcoxon signed-rank test for comparison of pairs of

Algorithm 2: Iterative GGFP

input : ∆ζ, ζmax, Cmax

output: The partition that optimizes the
internal validity measure

repeat
1) Run the GGFP algorithm
2) Remove negligible clusters using the
definition of typicality

3) Calculate internal validity of clusters
4) Update ζ = ζ +∆ζ

until ζ = ζmax;

samples and the Friedman test to compare more than
two sets of samples [18].

Experiments were performed with the planetary gear
box of a RCVA-300 vertical axis wind turbine. The
experimental setup consists of a blower positioned in
front of the wind turbine, a PCB 3-axis accelerometer
mounted on top of the gearbox, and a SQI data ac-
quisition system. 10 repetitions per experiment were
performed and 155520 data points with 787 features
were obtained. The vibrational data was acquired un-
der nominal conditions and for different types of faults
in components of the gearbox. A total of 17280 sam-
ples were selected for testing. From feature selection
the number of 787 features was reduced to 33, using
Random Forest feature selection. The data set ready
for clustering possesses 17280 data points each with 33
features. there are four classes which are divided as fol-
lows: 1) No fault - Healthy state , 2) Ring gear fault,
3) Sun gear fault and 4) Planetary gear.

5.1. Clustering Results
The iterated algorithm 2 is applied in order to obtain a
range of reasonable partitions for the data. By tracing
a vertical line through both graphs in the location that
the validity index is at a local minimum value ( for the
KL index ) or at a local maximum value ( for the XB
index) the number of clusters that produce that optimal
value is obtained.

Figure 2: Internal validity index KL and cluster
number as function of ζ (Objective is to minimize
KL index

)

Observing figures 2 and 3, the KL index reveals
as reasonable partitions of data the cluster numbers,
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Figure 3: Internal validity index XB inverted and
cluster number as function of ζ (Objective is to
maximize XB inverted index)

c = 2, 3, 4, 5 and 6 while the XB index reveals as rea-
sonable only c = 2. The KL index is able to evaluate
as reasonable more partitions of the data and also iden-
tifies the ground truth partition as reasonable (c = 4).
Looking at the maximum index value for XB−1 and the
minimum value for KL it is clear that the partition that
optimizes both indexes is the same, c = 2; the reason
for this can be deduced observing a visual representa-
tion of the data, such as figure 5, as the structure in the
data seems to be divided in two major parts.

There are ranges of ζ values for which the algorithm
gives the same amount of clusters and a similar val-
idation index. Looking more closely at one of those
ranges, 30 independent runs with different initial condi-
tions were performed and the performance of the algo-
rithm, in terms of ARI, is tested for the extreme values
and two intermediate values of ζ in the range of [0.2,
0.4] that all produce 6 clusters,the results can be seen
in figure 4 The Friedman test gives pFriedman = 0.6041

Figure 4: ARI boxplot of GGFP in the range of
zeta [0.7, 1.1]

revealing that there are no statistical differences in the
data thereby drawing the conclusion that it is possible
to change ζ within this range or any other range that
produces the same amount of clusters without great
change in the ARI values. It is verified here that the
GGFP algorithm can give different perspectives of the
data without sacrificing performance.

5.2. The healthy vs. faulty case
The data is clustered with c=2 clusters in order to anal-
yse the fault detection case. Figures 5 and 6 show a
typical run of the GGFP and FCMFP algorithm for the
fault detection case. The different symbols and colors
represent the four classes and the red ’x’ the prototypes.
The ten solid line curves representing a contour of equal
membership value (the color mapping from yellow to
dark blue colors signifies high to low membership).

Figure 5: GGFP algorithm UMAP projection of the
33-dimensional feature space into the plane for the
fault detection case (c = 2) for WT data set

Figure 6: FCMFP algorithm UMAP projection of
the 33-dimensional feature space into the plane for
the fault detection case (c = 2) for WT data set

Analyzing figure 5 it is observable that the majority
of the healthy data points ( labeled as class 1, repre-
sented in green) are clustered together, although there
are some mislabeled healthy points.

Most of the faulty points belonging to class 2 and
some from class 3 were clustered together with the
healthy samples. When comparing the two algorithms
visually, it can bee seen the GGFP algorithm managed
to cluster most of the healthy samples together and sep-
arated more faulty points from the healthy cluster than
the FCMFP.
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5.3. The multi-fault classification case
Inspecting the cluster validity KL index analysis, in
figure 2, partitions with number of clusters c =
2, 3, 4, 5 and 6 provide reasonable structural alterna-
tives. Figure 5.3 show the different partitions resort-
ing to UMAP projections in a sequence that appears
similar to zooming in on the data. Starting from fig-
ure 5, which corresponds to c = 2, the cluster where
the healthy samples belong gets subdivided into two in
figure 7(a), and the trend of the bigger cluster getting
subdivided into consecutive sub-clusters is continued in
the following figures 7(b) to 7(d).

In order to substantiate the observer metaphor in this
data set, the feature space is explored. In figure 8, the
focal point is placed in the location where the features
obtain their minimum and maximum values for a differ-
ent number of clusters. The same number of clusters is
visualized in each horizontal pair of sub-figures and it is
possible to see that different levels of detail, of a certain
region, can be obtained depending on the placement of
the focal point.

In figure 8, the benefits of being able to control the
cluster formation are displayed, for example, if the goal
is to analyze the specific region of the data where the
healthy samples lie, this could be achieved by placing
the focal point in the location where the features obtain
their maximum value, allowing the focus to be on a more
detailed visualization of the desired area. For example,
for the case of c = 3, figures 8(a) and 8(b) illustrate this
idea: in the right hand side figure there is more detail in
the region of the healthy samples when compared with
the left-side figure.

5.4. Comparison with the corresponding unbiased
algorithm and FCM/FCMFP

In this section, the algorithms are compared using box-
plots of the distributions of Adjusted Rand Index over
30 independent runs of each algorithm, for different
numbers of clusters.

The Friedman statistical test revealed a value of
pFriedman ≈ 0 for all clusters analyzed in figure 9, signi-
fying that there is statistical difference in the data. Per-
forming theWilcoxon test among the pairs of algorithms
revealed that there is no statistical difference in the data
produced from the FCM/FCMFP for c = 2 and 3 clus-
ters ( with pWilcox = 0.0527,pWilcox = 0.355, respec-
tively).

Analyzing figure 9, the GGFP algorithm is able to
outperform its unbiased version, as well as the FCM
and FCMFP for the reasonable clusters given in figure
2.

It can be observed that the ARI values are higher
for the GGFP in comparison to FCM/FCMP for all
the analyzed clusters; when compared to its unbiased
version, GG, the gap shortens as the number of clusters
is increased.

The shrinkage effect of the observer biased framework
is again verified and for this data set the benefits of em-
ploying the GGFP over the FCMFP or FCM are clear.
As for the comparison with its unbiased version, the re-
sults show that there is always a slight increase in per-
formance which is more noticeable when the number of

(a) c=3

(b) c=4

(c) c=5

(d) c=6

Figure 7: UMAP projections of the 33-dimensional
feature space into the plane for fault classification
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(a) Pmin, c=3 (b) Pmax, c=3

(c) Pmin, c=5 (d) Pmax, c=5

(e) Pmin, c=6 (f) Pmax, c=6

Figure 8: UMAP projections showing more detailed analysis in different regions of the feature space.
Left-side sub-figures correspond to P positioned in the region where features attain their minimum values
while right side sub-figures correspond to P positioned where features attain their max.
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(a) c=2

(b) c=3

(c) c=4

(d) c=6

Figure 9: Adjusted Rand Index boxplot comparison
for different numbers of clusters in the WT data set

clusters in question are lower. The fault detection case
is where the application of the GGFP more notably out-
performs the other algorithms.

6. Conclusions
The GGFP was able to produce statistically significant
better results in comparison to the FCM,FCMFP and
GG using as a metric the external validity measure,
Adjusted Rand Index. The WT gearbox data was of
difficult analysis due to the structure of the data which
made fault classification a complex task, despite this the
GGFP managed to be superior to the other algorithms
for all numbers of clusters.

More importantly, the application of the observer bi-
ased framework successfully allowed for the exploration
of the feature space, making the GGFP a very interest-
ing exploratory analysis tool. The performance increase
that the GGFP revealed comes with a price, the fact
that the algorithm needs to have a good initialization
for the prototypes in order to achieve optimal results
makes it a less a robust alternative to the FCMFP as
well as the fact that due to its more complex distance
metric, the computational time increases considerably.
There is a clear trade-off between performance and effi-
ciency and it its up to the user to balance the pros and
cons according to needs of the problem at hand.

For future work, the design of a simple and interac-
tive interface could be developed in order to facilitate
the exploration of the data space, where the user could
be allowed to easily tune parameters such as the loca-
tion of the focal point or the regularization coefficient.
The study of observer-biased clustering with multi-focal
points could also be considered and an evaluation on any
merits, if any, in applying it over the current version of
the observer-biased algorithm.
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