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Abstract

Over the last two decades wind power has undergone an exponential growth globally. As the demand

for wind power systems increases, efficiency is sought to be maximized and operation and maintenance

costs reduced. Condition monitoring (CM) systems have become a field of high interest in this industry.

The main components of wind turbines constitute the focus of CM, they are responsible for frequent,

large repair costs and operational downtime. Within the main components, the gearbox accounts for

one of the highest failure rates and is the component that causes the greatest amount of downtime.

The focus is on the application of fuzzy clustering for wind turbine gearboxes fault diagnosis. The

Gath-Geva clustering algorithm is explored by applying the observer biased clustering framework. The

notion of an observer allows clustering to be an interactive process, providing an intuitive way to control

cluster formation and enabling domain knowledge to be incorporated in the process. A domain expert

can choose the level of granularity and is able to select a particular region of the data space for a detailed

view.

The Gath-Geva with Focal Point algorithm is tested with wind turbine gearbox vibrational data and

compared with its unbiased version, the Fuzzy C-Means biased and unbiased algorithms. Two metrics

are employed to validate internal clustering: the Xie-Beni index and Kim-Lee index, the latter of which is

based on relative degree of sharing. The algorithms are compared by performing several independent

runs and using the distribution of the Adjusted Rand Index external validation metric.

Keywords: Fuzzy clustering, Wind turbine fault detection, Observer biased clustering, Focal

Point, Gath Geva with Focal Point (GGFP)
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Resumo

Nas últimas duas décadas, a energia eólica viu um crescimento exponencial. À medida que au-

menta a procura por sistemas de energia eólica, busca-se maximizar a eficiência e reduzir os custos de

operação e manutenção. Sistemas de monitoramento de condições tornaram-se num campo de grande

interesse nesta área. Dentro dos componentes principais, a caixa de engrenagens é responsável por

uma das maiores taxas de falha e é o componente que causa o maior tempo de inatividade .

O foco é a aplicação de agrupamento fuzzy para diagn de falhas em caixas de engrenagens de

turbinas eólicas. O algoritmo de agrupamento Gath-Geva é explorado aplicando a estrutura de agru-

pamento com observador. A noção de um observador permite que o agrupamento seja um processo

interativo, fornecendo uma maneira intuitiva de controlar a formação de agrupamentos e permitindo que

o conhecimento do domı́nio seja incorporado no processo. Um especialista do domı́nio pode escolher o

nı́vel de granularidade e é capaz de selecionar uma região especı́fica dos dados para análise detalhada.

O Gath-Geva com ponto focal é testado com dados vibracionais da caixa de engrenagens de

uma turbina eólica e comparado com a sua versão original, Fuzzy C-Means com e sem observador.

Para validação de agrupamento interno, duas métricas são comparadas, o popular ı́ndice Xie-Beni e o

ı́ndice Kim-Lee com base no grau relativo de partilha. Os algoritmos são comparados fazendo várias

execuções independentes e usando a distribuição da validação externa do ı́ndice Rand Ajustado.

Palavras-chave: Agrupamento Fuzzy , Deteção de falhas em turbinas eólicas, Agrupamento

com observador, Ponto focal, Gath Geva com ponto focal (GGFP)
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Chapter 1

Introduction

1.1 Motivation

The number of wind turbines that are harnessing the natural power of the wind and converting it into

electricity is increasing daily on a global level. The wind is a clean, reliable and free source of renewable

energy, and thus wind power generation plays a crucial role in the path to achieving a clean, sustainable

manner of powering our world. The wind power industry has experienced a rapid growth over the last

two decades, a report from by the Global Wind Energy Council (GWEC) shows that 2020 saw new wind

power installations surpass 90 gigawatts (GW), an astounding growth of 53% compared to 2019 (figure

1.1), bringing the global total installed capacity to 743 GW, an increase of 14% compared to 2019. The

total installed wind energy capacity currently satisfies approximately 7% of the global electricity demand

[1].

Figure 1.1: Global new wind power capacity per year, from 2001 to 2020. Source: Global Wind Energy
Council (GWEC) 2021 [1]

Wind Turbines (WT) allow for the transformation of wind power into energy. In basic terms, the power
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of the wind spins the turbine’s blades, thus triggering the rotation of the main shaft (low speed shaft),

connected to a gearbox within the nacelle. The gearbox, through the high speed shaft, transfers the wind

energy to the generator, where it is then converted into electricity. The electricity generated travels to a

transformer, where voltage levels are adjusted to the grid requirements. To illustrate this procedure, a

diagram of the components for the commonly used Horizontal axis wind turbine (HAWT) with a gearbox

can be seen in figure 1.2.

Figure 1.2: Diagram of wind turbine components. Source: National Renewable Energy Laboratory, U.S.
Department of Energy. [2]

The drive train on a turbine with a gearbox usually includes the rotor, main bearing, shafts, gearbox,

and generator. Due to all the moving parts that exist in the drive train it is considered the area more likely

to be subject to failure, leading to undesirable costs and downtime. From all the components within the

drive train, the gearbox is responsible for 12% of all failures (the second highest rate) [3] and is also the

component whose failure causes the most downtime [4]. These factors make it essential to ensure the

healthy and stable operation of this type of equipment. To address this problem, gearbox fault diagnosis

has already been the focus of many researchers in the condition monitoring field.

Condition Monitoring (CM) aims to use measured data to predict deterioration and failure of machine

components, which has led CM systems to become highly sought after in this industry. A review of

different techniques used in CM of wind turbines can be consulted in [5]. This review includes traditional

techniques such as vibration signals, acoustic emission, or ultrasonic testing. It has been proven that vi-

brational analysis is the technique that gives more information about faults in rotating machinery, making

vibration sensors widely used in wind turbine applications [6]. The survey [7] gathers an extensive list

of approaches based on vibration based condition monitoring for wind turbine gearboxes, ranging from

signal processing methods to fault detection methods including Artificial Intelligence (AI) and Machine

Learning (ML) based approaches.

Methods based on supervised learning can be used for fault diagnosis after having been trained with

known fault training samples. However, only the patterns that are found in the training samples can

2



be classified. Wrong diagnosis can often occur when dealing with unknown faults, making it hard to

use supervised methods effectively. Thus, the application of unsupervised pattern recognition methods,

such as clustering, becomes relevant.

This work focuses on the application of fuzzy clustering to fault detection and classification in wind

turbines gearboxes using vibrational data. More specifically, the integration of the observer biased frame-

work in the Gath-Geva (GG) clustering algorithm. Fuzzy clustering methods applied to WT gearbox fault

detection include the application of the K-means Clustering Method [8] and the unsupervised learning

method Kernel C-Means [9]. In comparison to WT gearbox fault detection, applications that involve

other machine parts, such as bearings, display a much larger list of different approaches in the litera-

ture, ranging from different variations of the Fuzzy C-Means (FCM) algorithm, to the application of the

Gustafson-Kessel and Gath-Geva algorithm [10–14]. Motivated by the success of the application of ob-

server biased fuzzy clustering in fault detection and classification for bearing CM, the Gath-Geva with

Focal Point (GGFP) clustering algorithm is here applied to new, untested, real world data and compared

with other state of the art fuzzy clustering algorithms.

1.2 Contributions

This dissertation aims to achieve the following goals:

• Implement, configure, and deploy the clustering algorithm Gath-Geva in the framework of observer-

biased clustering.

• Apply, for the first time, the Gath-Geva with Focal Point algorithm to real world data, with the main

purpose to analyze the feature space of vibrational signals from a wind turbine lab test rig.

• Evaluate performance of the Gath-Geva with Focal Point internally, using two different internal

validation indexes and establish a comparison to Fuzzy C-Means with Focal Point and its corre-

sponding original versions, using an external validation index.

1.3 Thesis Outline

This dissertation is structured as follows:

• Chapter 2: an overview of clustering is given with focus on the fuzzy algorithms Fuzzy C-Means

(FCM) and Gath-Geva.

• Chapter 3: the observer biased framework is presented and exemplified using the FCM.

• Chapter 4: application of the observer biased framework to GG algorithm.

• Chapter 5: results from the application of GGFP to three different data sets (two for verification

purposes and one for WT fault detection) are presented

• Chapter 6: main conclusions are drawn from the work developed and future work is proposed

3
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Chapter 2

Fuzzy Clustering

2.1 Clustering Overview

In the data driven world of today, increasingly large amounts of information are stored as data for

further analysis and processing. One of the most used tools to analyze data is clustering.

Clustering can be described as the process of separating data points into homogeneous classes or

clusters so that points in the same class are as similar as possible and points belonging to separate

classes are as different as possible. Alternatively, clustering can be considered a way to compress data,

by converting a large number of samples into a smaller number of representative clusters. Different types

of similarity measures may be used to identify clusters, depending on the data and the application, the

similarity measure controls how the clusters are created [15] . Similarity measures based on distance

are the most widely used type of metric. An overview of similarity measure functions commonly used for

clustering can be found in [16].

In general terms, clustering can be divided into two major groups: hard clustering and soft cluster-

ing, the latter of which includes fuzzy clustering. Within each category there is a diverse number of

algorithms, utilizing different approaches for the way partitions are formed.

In hard, or non-fuzzy, clustering data is assigned to clusters such that the degree of membership

of each data point to a particular cluster is either 0 or 1. These types of clusters are called crisp

clusters. In other words, a given data point belongs to exactly a single cluster. There is an abundance of

hard clustering algorithms, among which some of the most well-known are the K-Means algorithm and

hierarchical clustering [17].

Utilizing notions of fuzzy sets, data points in soft clustering may belong to more than one cluster.

Each data point is then attributed membership values which indicate the likelihood of belonging to dif-

ferent clusters [18]. In this work, the focus is directed to the Fuzzy C-Means algorithm (section 2.2), the

Gath-Geva algorithm (section 2.3) and its observer biased variants (chapters 3 and 4).

5



2.2 Fuzzy C-Means Algorithm

The Fuzzy C-Means Algorithm (FCM) is arguably the most well known fuzzy clustering algorithm. It

has been studied extensively and countless variations can be found in the literature. Due to its simplicity

and proven effectiveness in distinct applications, the FCM is the perfect candidate for alterations that aim

at improving the algorithm. The FCM is here presented as it is the basis of all the clustering algorithms

included in this dissertation.

Given an unlabeled multivariate data set, X = {x1, ..., xn} with xj ∈ Rd, where d is the number of

features in the data, the goal is to minimize the objective function, J , given by:

J =

c∑
i=1

n∑
j=1

umij ||xj − vi||2 (2.1)

under the constraints:

uij ∈ [0, 1], i = 1, . . . , c; j = 1, . . . , n
c∑
i=1

uij = 1, j = 1, . . . , n (2.2)

where c is the number of clusters, n is the number of data points, uij is the partion matrix that

represents the membership of xj in the i-th cluster, vi represents the clusters’ centers (or prototypes), m

is the fuzziness parameter, or fuzzifier, m must have a value larger than 1 and is a user-defined hyper-

parameter that controls cluster overlapping, and ||.|| is the distance norm responsible for the shape of

the clusters.

The FCM algorithm utilizes the well known Euclidean norm for the distance metric and achieves the

minimization of equation (2.1) by an iterative process where in each step the prototypes and membser-

ship values are updated. To find the updating equations, the objective function 2.1 is minimized using

Lagrangean Multipliers subject to constraints (2.2):

LJ =

c∑
i=1

n∑
j=1

umij ||xj − vi||2A +

n∑
j=1

λj

(
c∑
i=1

uij − 1

)
(2.3)

where ||xj − vi||2A = (xj − vi)TA(xj − vi) with A being a (d× d) positive definite norm-inducing matrix.

In the FCM, the distance metric is Euclidean thus A equals the identity matrix.

To obtain the updating expression for the prototypes, uij is fixed and applying the constraint δL
δvi

= 0,

the resulting expression is:

vi =

∑n
j=1 u

m
ijxj∑n

j=1 u
m
ij

(2.4)

To find the updating expression for the partition matrix, U = [uij ], this time vi is fixed and applying

the constraint δL
δuij

= 0 results in:
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uij = [

c∑
k=1

(
||xj − vi||2

||xk − vi||2

) 1
m−1

]−1 (2.5)

The steps of the iterative process for the FCM algorithm are gathered in Algorithm 1.

Algorithm 1: FCM Algorithm

Input : Unlabeled multivariate data set: X ⊂ Rd;
Number of clusters: c;
Fuzzifier: m > 1;
Sensitivity treshold: ε;
Maximum number of iterations: `

Output: Partition matrix: U = [uij ];
Centroids: V = [vi]

Initialize the centroids: vi ;
repeat

for i = 1 to c do
for j = 1 to |X| do

Update uij with eq. (2.5);

for i = 1 to c do
Update vi with eq. (2.4);

until a termination criterion was met ;

The termination criterion used in algorithm 1, is either when the number of maximum iterations (`)

is reached or until algorithm convergence, which occurs when the difference of the objective function

between two iterations is smaller than the given sensitivity threshold, ε, and is given by the following

equation :

Jk − Jk−1 < ε (2.6)

where ε is an arbitrarily small positive value and k is the current iteration. This stopping criterion will be

applied to all the algorithms in this work.

The FCM algorithm is dependent on the initialization of the clusters centers, the typical approach

is to initialize the centers randomly which may not always lead to the best results possible. In [19], an

alteration to the way centroids are initialized is proposed, the FCM++ variation, the seeding mechanism

of the K-Means++ algorithm [20] is employed and is proven to produce efficient results in both the

number of iterations needed for convergence and also the quality of the partitions produced. Moving

forward, when the FCM algorithm is referenced the initialization is performed using the K-Means++

algorithm.

2.3 Gath-Geva Algorithm

The Gath-Geva (GG) clustering algorithm was originally proposed by Gath and Geva in [21], and is

also known as fuzzy maximum-likelihood clustering. In contrast to the FCM algorithm which due to its
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Euclidean distance metric imposes the same spherical shape to its clusters, the GG algorithm detects

hyper-ellipsoidal clusters with different orientations, sizes, and densities. The GG algorithm aims at

minimizing the same objective function as the FCM, equation (2.1), the difference being the adoption of

the the Gauss metric:

||xj − vi||2 =
|Fi|1/2

Pr(i)
exp[−1

2
(xj − vi)TF−1i (xj − vi)] (2.7)

where Pr(i) is the priori probability of the i-th cluster, given by:

Pr(i) =

∑n
j=1 u

m
ij∑n

j=1

∑c
ι=1 u

m
ιk

(2.8)

and F i and |F i| are the fuzzy covariance matrix of the i-th cluster (2.9) and its determinant, respectively.

Once (2.7) is computed the updates of uij , and vi can also be found by (2.5) and (2.4), respectively.

Fi =

n∑
j=1

umij (xj − vi)(xj − vi)T

n∑
j=1

umij

(2.9)

The GG algorithm follows the same structure as algorithm 1, they differ in the way that the distance

metric is computed, and is summarized in algorithm (2).

Algorithm 2: Gath-Geva Algorithm

Input : Unlabeled multivariate data set: X ⊂ Rd;
Number of clusters: c;
Fuzzifier: m > 1;
Sensitivity treshold: ε;
Maximum number of iterations: `

Output: Partition matrix: U = [uij ];
Centroids: V = [vi]

Initialize the centroids: vi ;
repeat

for i = 1 to c do
Compute F i using (2.9);
for j = 1 to |X| do

Compute the distance plugging F i in (2.7);
Update uij with eq. (2.5);

for i = 1 to c do
Update vi with eq. (2.4);

until a termination criterion was met ;

Similarly to the FCM algorithm, the GG algorithm also possesses the condition of having the clusters’

centers initialized. In the FCM the centroids are, standardly, initiliazed randomly. However the GG

algorithm is even more dependent on a good initialization of the centroids, the exponential element

of the distance function makes the algorithm seek an optimum in a narrower local region making it
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converge to a local optimum. A random initialization will, most likely, incur in poor results, as such one

has to be conscient of the way centroids are initialized. For many applications using the output of the

FCM algorithm in itself to initialize the GG algorithm is a sensible choice. [21]

2.4 Evaluation of clustering results: Validity Measures

Due to the unsupervised nature of clustering, it becomes necessary to find a way to determine if the

partition produced is a good representation of the inherent structure found in a given data. To achieve

this, there must be systematic measurements that can be employed regardless of the algorithm or the

application. These measurements are called Clustering Validity Indexes (CVI) and there is wide range

of CVIs that use different criteria for evaluation. The calculation of these indexes is performed in such a

way that they can be compared when evaluating different partitions resulting from various algorithms as

well as partitions generated by the same algorithm with different parameters.

Clustering validity indexes can be generalized into two categories: internal and external indexes.

Internal indexes are independent of any information about the real structure of the data (labels), and

metrics such as compactness, level of separation, similarity of the clusters are some examples of criteria

used in internal indexes. In contrast, external indexes are used when there is knowledge about the data

labels and this information is used in the evaluation process.

There is a wide variety of indexes in the literature that have been extensively explored [22]. In this

work, two internal indexes and two external index are investigated. The applied internal indexes are

the Xie-Beni (XB) index [23] and the Kim-Lee (KL) index [24], these validity measures were chosen

considering the two clustering algorithms studied are the FCM and the GG algorithms (and its variants).

As for the internal validity measure, as the data used for testing (in chapter 5 ) is labeled, the Adjusted

Rand Index was the measure chosen.

2.4.1 Xie-Beni Index

Several internal validation measures in relation to the FCM algorithm have been studied in the liter-

ature and the XB index has proven to both perform well and be quite reliable [25], making the XB index

a good choice to evaluate partitions produced by the FCM. The Xie Beni index focuses on the identifi-

cation of compact and well-separated clusters, for computational purposes the inverse of the XB index

was applied and is given by:

XB−1 =
nmini 6=j ||vi − vj ||2
c∑
i=1

n∑
j=1

umij ||xj − vi||2
(2.10)

This index can be seen as the ratio between degrees of intra-cluster distance and inter-cluster dis-

tance where the numerator represents the minimal separation between fuzzy clusters and the denom-

inator is the sum of the compactness of each fuzzy cluster. The optimal partition is then obtained by

maximizing equation 2.10.
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2.4.2 Kim-Lee Index

As mentioned in section (2.3), the shapes and sizes of the clusters in the GG algorithm differs from

the spherical and same sized clusters of the FCM. This limits the applicability of indexes, like the Xie-

Beni, that rely solely on the clusters’ centroid distance to evaluate cluster separation. Since the GG

algorithm involves the Gaussian metric, these type of indexes cannot differentiate two different partitions

with the same centroid distance and different orientations. This is shown in figure 2.1, in spite of partition

1 resulting in a better division of the data, this cannot be reflected in an index that only relies on centroid

distances.

To tackle this issue in [24], an alternative cluster validation index based on relative degree of sharing

was applied to the Gustafson-Kessel (GK) algorithm (which also generates hyper-ellipsoidal clusters)

and revealed promising results. In view of this similarity in the cluster shapes between the GG and GK

algorithms, this index was here applied to the GG algorithm.

(a) Partition 1, (U(1), V (1))

(b) Partition 2, (U(2), V (2))

Figure 2.1: Two different partitions of the same data which have the same centroid distance and different
cluster orientation, reproduced from [24]

The KL index’s goal is to calculate the average overlap between clusters using the definition of the

relative degree of sharing between fuzzy clusters. The higher the membership values of a data point to

a pair of clusters, the higher the relative degree of sharing between the clusters, which is an indication

of cluster overlap. Figure 2.2 shows two different partitions of the same data with the same distance

between the clusters’ centroids, here partition 2 provides a better representation of structure in the data,

again, this also cannot be reflected in centroid distance reliant indexes. To take into account overlapped

data points a weighing parameter is introduced and highly overlapped data points are given a bigger
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weight over data that are classified clearly.

(a) Partition 1, (U(1), V (1))

(b) Partition 2, (U(2), V (2))

Figure 2.2: Two different partitions of the same data which have the same centroid distance , reproduced
from [24]

The relative degree of sharing between two fuzzy clusters is then defined by the weighted sum of the

relative degrees of sharing at each data point xk:

S(Ci, Cj) =

n∑
k=1

[c · [uik ∧ ujk]h(xk)] (2.11)

where, the fuzzy AND operator [26] is employed : uik∧ujk = min(uik, ujk) and the entropy of data points

is used as weighing parameter: h(xk) = −
c∑
i=1

uiklog uik. The partition entropy attains its maximum value

when all data points are ambiguously assigned to clusters, this occurs when the membership degrees

of all data points to all clusters are 1
c , which means that all data points have the same membership value

to all clusters and the entropy takes a value near 1. In the case where all data points are clearly divided

into all clusters and the amount of uncertainty is minimal, the partition entropy has a value close to 0.

Using the entropy as weighing parameter allows vague (unclearly classified) points to have greater

impact, meaning that partitions with highly overlapped data are penalized.

This index has as its only input the partition matrix, uij , and considers a partitioning optimal when

the degree of overlap between clusters is minimal. The KL index is then defined as the average relative

degree of sharing for all possible cluster pairs:

KL =
2

c (c− 1)

c−1∑
i=1

c∑
j=i+1

n∑
k=1

[c · [uik ∧ ujk]h(xk)] (2.12)

The KL index can measure the ambiguity of a certain partitioning as well as the geometrical property
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of overlap between clusters. It possesses the advantage over other indexes of calculating the separation

between clusters without making use of inter-center distances.

2.4.3 Rand Index and Adjusted Rand Index

For external validation, cluster validity measures Rand Index (RI) and Adjusted Rand Index (ARI),

[27], are employed . These indexes measure the similarity of two partitions of a data set X = (x1, ..., xn),

the ground truth partition, G, and a hypothesis partition H generated by a clustering algorithm and is

given by:

RI(G,H) =
a+ b

nt
(2.13)

where a is the number of pairs of elements in X that are clustered together in both partitions, b is

the number of elements that are separated in both partitions, nT is the total number of possible pairs

nt =
(
n
2

)
= n(n−1)

2 . The RI index takes values in the of 0 to 1, where 0 means the two partitions do not

agree on any pair of points and 1 indicating that the partitions are exactly the same. However, the RI

of random partitions is not constant and two random partitions can produce high RI values even if they

don’t represent the structure in the data. In order to deal with these drawbacks, this index is corrected

for chance resulting in the more reliable Adjusted Rand Index:

ARI(G,H) =

∑
i,j

(
nij

2

)
− [
∑
i

(
ni

2

)∑
j

(
n.j

2

)
/
(
n
2

)
]

1
2 [
∑
i

(
ni

2

)
+
∑
j

(
nj

2

)
]− [

∑
i

(
ni

2

)∑
j

(
n.j

2

)
/
(
n
2

)
]

(2.14)

where nij is the number of elements that cluster together in the subsets Gi andHj ; ni,nj are the number

of elements in Gi and Hj , respectively. It also attains its maximum value at 1 when both partitions

completely agree. The ARI is the main external validation index applied throughout this work.
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Chapter 3

Observer Biased Fuzzy Clustering and

its Application to Fault Detection

3.1 The Observer Biased Clustering Algorithm

The observer biased variant applied to fuzzy clustering was first introduced in [28]. In theory, this

approach can be applied to any clustering algorithm that seeks to optimize an objective function. The

purpose of the observer biased technique is to give a clustering algorithm the ability to change the posi-

tion from which the data is observed, and thus allowing for the possibility of viewing different perspectives

of the data.

The inspiration for this algorithm surged from a metaphor found in daily life depicted in [29]. It uses the

analogy of human perception of objects depending on the point of observation; the closer the location of

the observer, the more distinct each object becomes. Conversely, the further away the observer stands

from the objects, the less detail is visualized and the group objects begins to merge into a single element.

This is akin to the effect of the zoom property found in an optical lens which can cover a wide array of

perspectives, ranging from fine details when zoomed in and the ”bigger picture” when zoomed out.

The approach follows a statistics concept known as shrinkage. Usually, shrinkage is applied with the

goal of improving an unbiased estimate by adding a regularization term. Clustering algorithms based

on shrinkage techniques have been proposed and have proven through experimental results to have

advantages in comparison to unbiased traditional algorithms [30, 31]. Although the observer biased

approach is based on shrinkage, it differs from previously proposed algorithms due to the regularization

coefficient being different from the ones previously suggested, seeing that it originated from a distinct

motivation.

The observer approach can be related to fuzzy hierarchical clustering [32]. For instance, by gradually

varying the position of the observer, imagining that the starting point is far away from the data and

then gradually bringing it closer, a hierarchical cluster tree can be formed with greater efficiency than

the available techniques according to [29]. The most significant advantages in relation to hierarchical

clustering are the possibility of exploring selected regions of the data in detail and its ability to reassign
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data points to clusters when the number of clusters is changed, something that is impossible in traditional

hierarchical clustering.

Figure 3.1: Data set in R2 and focal point (FP) in a higher dimension, R3

The placement of the observer becomes a matter of significance and the pertinent question that

emerges is where the observer should be located. The location of the observer is not constrained, it can

be placed anywhere in the data space or even in a different dimensional space. To fulfill the previously

mentioned metaphor, the observer is placed in a higher dimensional space than the data, which also has

the benefit of easily being able to distinguish the observer point from data points. Figure 3.1 illustrates

this, in the case where the data belongs to the two dimensional space, R2, and focal point is placed in a

higher dimension of the data, the tri-dimensional space R3.

All of the above allows for the user to obtain different reasonable clusters, for a given data, depending

on the position of the observer. The term ”reasonable cluster” is used as described in [33]: A reasonable

cluster belongs to a certain partition that possesses “reasonably good similarity groups”, validated by

a given internal cluster validity index, which is not to be mistaken for the term: ”meaningful cluster” , a

partition that is recognized by a domain expert to be representative of the data structure.

In summary, this approach allows for an intuitive way to control the process of cluster formation, by

incorporating the knowledge of domain experts which can select the most appropriate level of granularity

and the relevance of regions of the data space.

The observer biased framework has already been successfully applied and tested in fuzzy clustering

algorithms , namely the Fuzzy C-Means with a focal point (FCMFP) algorithm and the Gustafson-Kessel

with a focal point (GKFP) algorithm. In order to achieve a deeper understanding of the observer based

paradigm, in the following sections the FCM algorithm exemplifies the application of the observer biased
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framework to a clustering algorithm.

3.2 Fuzzy C-means with Focal Point Algorithm

In this section, the observer biased variant is formulated and expanded in detail, using the FCM

algorithm, as proposed in [29]. A term that depends on the focal point (p) is added to the FCM objective

function (2.1):

JFCMFP =

c∑
i=1

n∑
j=1

umij ||xj − vi||2 + ζ

c∑
i=1

||p− vi||2 (3.1)

where ζ is a user-defined regularization parameter. All the other terms continue having the same mean-

ing as in section 2.2 including the Euclidean distance metric and the constraints (2.2).

The regularization coefficient ζ imposes a balance between the unbiased algorithm (it degenerates

to the original FCM objective function when ζ = 0) and a biased estimate when ζ > 0.

The regularization term in equation 3.1 is zero if ζ = 0 or in the case that all prototypes vi are equal

to p. If the focal point is at a large enough distance from the data, a prototype that is very near the

focal point will have values nearing zero in the partition matrix, uij , this can be deduced by observing

equation 2.5, when the distance ||xj − vi||2 increases, uij will tend to zero. These prototypes are

considered empty and can be neglected.

In order to calculate the updating equations for the prototypes V = [vi] and the membership values

U = [uij ], similarly to FCM algorithm, optimization of the objective function is performed using Lagrange

Multipliers and the following equation is obtained:

LJFCMFP
=

c∑
i=1

n∑
j=1

umij ||xj − vi||2A +
n∑
j=1

λj

(
c∑
i=1

uij − 1

)
+ ζ

c∑
i=1

||p− vi||2A

where ||xj − vi||2A = (xj − vi)TA(xj − vi) and ||p − vi||2A = (p − vi)TA(p − vi), with A being a (d × d)

positive definite norm-inducing matrix. If the distance metric is Euclidean then A equals the identity

matrix.

By fixing either one of the parameters uij and vi in equation (3.1) it is possible to obtain the optimizing

expression for the other. The calculation for each parameter is shown in the following subsections.

3.2.1 Estimation of Partition Matrix

To estimate the fuzzy partition matrix U = [uij ] ∈ [0, 1]c×n the objective function 3.2 is solved in order

to uij , by applying the constraint: δJL
δuij

= 0 . Noticing that the terms that have uij do not depend on

p, the resulting expression will be equal to the non-biased one, derived for the FCM algorithm, (2.5), in

section 2.2.
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3.2.2 Estimation of Cluster Centroids

For obtaining the estimates of centroids V = [vi] ∈ Rc×d the objective function (3.2) is solved in order

to vi by applying the constraint δJLδvl = 0 :

δJL
δvi

= −2

n∑
j=1

umijA(xj − vi)− 2ζA(p− vi) = 0 (3.2)

Simplifying and rearranging in order to vi:

vi =

∑n
j=1 u

m
lj xj + ζp∑n

j=1 u
m
lj + ζ

(3.3)

The equation to update the prototypes is then given by equation (3.3). Analyzing the previous equa-

tion it can be seen that ζ determines the degree of attraction of the prototypes to the focal point, when

ζ is large the prototype will tend to p and if zeta is arbitrarily small the dependency on p will diminish.

Therefore, decreasing the value of ζ results in a finer detailed data observation, which is to say that

more clusters are generated, due to less prototypes being attracted to p; while increasing ζ will produce

the opposite reaction, the observation will have a smaller number of clusters.

3.2.3 The FCMFP algorithm with a focal point in a higher dimension of the data

space

Once the focal point and the regularization coefficient ζ ≥ 0 are defined, the clusters’ prototypes are

initialized. After initialization, the algorithm follows an iterative process similar to FCM with consequent

updates of the partition matrix and prototypes until the termination criteria is reached. The options for the

termination criterion are essentially the same as in the FCM algorithm; the algorithm will stop if there are

no significant changes in the partition matrix or prototypes between iterations, causing no improvement

in the cost function or if the number of maximum iterations is reached.

As previously mentioned the point of observation is not restricted to the original input space Rd, in

fact, its more interesting application is to be placed in a higher dimension w where w ≥ d. Placing the

observer in a higher dimension requires two extra steps, one before the updating of the partition matrix

and prototypes and the other after the termination criterion has been reached. The first extra step is the

extension of the data and prototypes to the focal point dimensional space. This is easily achieved by

adding (w− d) null coordinates for each data point. The final step is projecting the estimated prototypes

back to its original feature space, using the intersection of the lines defined by p and cluster vi with the

original data space, this step is illustrated in figure 3.2, where the prototypes Ci estimated in R3 are

projected back to its original dimensional space R2.
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Figure 3.2: Projection of prototypes in R3 back to original dimension R2, where Ci corresponds to the

computed prototypes and C∗i to the projected prototypes.

Summarizing the previously described steps in algorithmic form:

Algorithm 3: FCMFP - The FCM clustering algorithm with a focal point in a higher dimension
of the data space

Input : Unlabeled multivariate data set: X ⊂ Rd;
Number of clusters: c;
Fuzzifier: m > 1;
Focal point: p ⊂ Rw, w > d
Regularization coefficient: ζ

Output: Partition matrix: U = [uij ];
Prototypes: V = [vi]

Initialize the clusters’ prototypes ;
Extend X and V to Rw by adding (w − d) null coordinates per datapoint;
repeat

for i = 1 to c do
for j = 1 to |X| do

Update uij using (2.5);

for i = 1 to c do
update vi using (2.4);

until a termination criterion was met ;
Project prototypes to the original feature space Rd

3.2.4 The Iterated FCM Algorithm with a Focal Point

The number of clusters, c, is considered one of the most critical parameters of the FCM algorithm.

Only in the case of c being equal to the number of classes in the data is there a possibility that the

outcome of the clustering process is in agreement with the existent data structure.

If there is no prior knowledge about the optimal number of clusters, usually, the selection of the
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number of clusters is performed using cluster validity indexes. A common way to ascertain the optimal

number of clusters is to compare multiple outcomes of the same algorithm with different initializations for

a range of values of c. The value c that optimizes the validity measure is then selected. In [28] an iterative

process to find the number of reasonable clusters was proposed for the FCMFP. It consists of running

the FCMFP algorithm while increasing ζ in each iteration. It has as its inputs an overestimation of the

cluster number (cmax), a focal point p, the increment of ζ for every iteration (∆ζ) and the maximum value

for ζ (ζmax). In each iteration the number of candidate clusters is determined and a validity measure

is calculated. In increasing ζ some clusters will be attracted to p, these clusters become neglectable

clusters. A cluster is considered neglectable when it does not possess any typical points belonging to

the data set. The concept of typicality is used from [34] , a data point xj is considered a typical point of a

cluster i, if and only if, the partition matrix for that cluster satisfies the inequality: uij > ukj , ∀ k 6= i,

which is to say that, if for all data points a given cluster does not have a single point with maximum

membership value relative to the other clusters, then it is considered negligible. This iterative process is

summarized in Algorithm 4.

Algorithm 4: Iterative FMCFP
input : ∆ζ, ζmax, Cmax

output: The partition that optimizes the internal validity measure
repeat

1) Run the GGFP algorithm
2) Remove negligible clusters using the definition of typicality
3) Calculate internal validity of clusters
4) Update ζ = ζ + ∆ζ

until ζ = ζmax;

3.3 Application to Fault Detection

Considering one of the goals of this dissertation is to apply an observer biased clustering algorithm

to a fault detection problem it is of interest to verify the work done using observer biased algorithms in

the field of fault detection. In [35], the FCM with a Focal Point (FCMFP) was applied to bearing condition

monitoring, in [36] the Gustafson-Kessel with a Focal Point (GKFP) was studied for a different data set in

the field of bearing fault diagnosis. A comparison of Fuzzy C-Means (FCM), the Gustafson-Kessel (GK)

algorithm, FN-DBSCAN, and FCMFP is performed in [37] also for bearing fault diagnosis.

The results from the above-mentioned work revealed that applying the observer bias framework to

clustering enhanced the performance of the algorithms although this was not the main objective, it is a

side effect of the inherent shrinkage encompassed in the algorithm. Moreover, it was proven that the

observer metaphor can be applied successfully, providing different views of the data and allowing to shift

the focus of a clustering analysis depending on the end goal.
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Chapter 4

Gath Geva Algorithm with Focal Point

The empirical evidence obtained from introducing a focal point in fuzzy C-means (FCM) [29, 35] and

to the Gustafson-Kessel (GK) algorithm [36], served as motivation to further explore this idea in the

realm of other fuzzy clustering algorithms. In this chapter, the Gath-Geva algorthm with a Focal Point

(GGFP) is introduced along with a detailed formulation and derivation of the algorithm. Similarly to the

FCMFP, in GGFP the focal point (p) can also be located in a higher dimension in relation to the data,

if the data dimensional space is Rd then p may belong to Rd+1, much like in figure 3.1 where this idea

is illustrated. In the case of the feature space being equally relevant, the focal point can be placed at

the barycenter of the data, in placing p in a different position the focus of the analysis will shift to that

particular location.

4.1 Formulation

The GGFP shares the same foundational idea as the FCMFP in incorporating a focal point to an

otherwise unbiased algorithm. To achive this, here the GG objective function is modified to include an

additional term which depends on p. The GGFP objective function is then given by:

JGGFP =

c∑
i=1

n∑
j=1

umij
|Mi|1/2

Pr(i)
exp[−1

2
(xj − vi)M−1i (xj − vi)T] (4.1)

+ ζ

c∑
i=1

|Mi|1/2

Pr(i)
exp[−1

2
(p− vi)M−1i (p− vi)T]

where, Pr(i) is given by (2.8) and under the constraints (2.2).

The clustering problem can then be formulated as:

U∗,V∗, {M∗
i }ci=1 = arg min

U,V,{Mi}ci=1

JGGFP (x; U,V, {M i}ci=1) subject to (2.2) (4.2)

Which is to say that the problem lies in finding the optimal values for the partiton matrix, prototypes

and fuzzy covariance matrix, U,V,M i, that minimize J for a given data set X = [xj ].
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4.2 Derivation

Solving (4.2) can be accomplished using Lagrange multipliers λj and minimizing:

LGGFP =

c∑
i=1

n∑
j=1

umij
|Mi|1/2

Pr(i)
exp[−1

2
(xj − vi)M−1i (xj − vi)T]

+

n∑
j=1

λj

(
c∑
i=1

uij − 1

)

+ ζ

c∑
i=1

|Mi|1/2

Pr(i)
exp[−1

2
(p− vi)M−1i (p− vi)T] (4.3)

Taking the logarithm of (2.7):

log ||xj − vi||2 ∝ log(|M i|)− (xj − vi)TM−1
i (xj − vi) (4.4)

thus minimizing (4.3) is to minimize:

L =

c∑
i=1

n∑
j=1

umij [log |M i| − (xj − vi)TM−1
i (xj − vi)]

+

n∑
j=1

λj

(
c∑
i=1

uij − 1

)

+ ζ[

c∑
i=1

log |Mi| − (p− vi)TM−1i (p− vi)]

(4.5)

whereMi is the to be estimated adaptive matrix from the metric (2.7), for the case of the GG algorithm

corresponds to the fuzzy covariance matrix (2.9).

The parameter updating expressions are then computed from the respective necessary conditions

which are presented in the following subsections.

4.2.1 Estimation of the Partition Matrix

To calculate the fuzzy partition matrix U = [uij ] ∈ [0, 1]c×n the objective function 4.3 is solved in order

to uij , by applying the constraint: δJL
δuij

= 0 . Noticing that the terms that have uij do not depend on p, the

resulting expression will be equal to the non-biased one equation (2.5), derived for the GG algorithm,

where the distance metric is (2.7).

4.2.2 Estimation of the Cluster Centroids

For obtaining the estimates of centroids V = [vi] ∈ Rc×d the objective function (4.3) is solved in order

to vi by applying the constraint δLδvl = 0. Considering that for any symmetric matrix A and any compatible
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vector x:
∂xTAx

∂x
= 2Ax

∂L
∂vi

=

n∑
j=1

umljM
−1
i (xj − vi) + ζM−1i (p− vi) = 0 (4.6)

multiplying both terms by Mi and rearranging yields :

vi =

∑n
j=1 u

m
ijxj + ζp∑n

j=1 u
m
ij + ζ

(4.7)

It is worth noticing that the above updating expression for the centroids is equal to the one found for

the FCMFP algorithm in section and it degenerates into the GG (and FCM) updating expression (2.4) if

ζ = 0.

4.2.3 Estimating the Matrix of the Distance Metric

An updating expression for the matrixM i of the distance metric (4.4) can be obtained from ∂L
∂M−1

l

= 0

as follows. Keeping in mind that for a square non-singular matrix A and any compatible vector x,
∂|A|
∂A−1

= −|A|A,
∂xTAx

∂A
= xxT, and from (4.5):

∂L
∂M−1

i

= 0

n∑
j=1

umij [(xj − vi)(xj − vi)T)−M i] + ζ[(p− vi)(p− vi)T −M i] = 0

M i =

∑n
j=1 u

m
ij (xj − vi)(xj − vi)T + ζ(p− vi)(p− vi)T∑n

j=1 u
m
ij + ζ

(4.8)

Thus, M i can be viewed as the fuzzy covariance matrix regularized by p. For ζ = 0 it turns into the

fuzzy covariance matrix (2.9).

4.2.4 Regularization of the Estimation of the Covariance Matrices

The Gath-Geva algorithm is a clustering algorithms that relies on a fuzzy covariance matrix for each

cluster. The covariance matrix allows for the generation of ellipsoidal clusters with independent orienta-

tions and sizes, however their estimation during the algorithm execution is often likely to incur numerical

problems, especially if there are a large number of features and the values of the matrix are relatively

small due to matrix operations such as the inverse or multiplication .

In order to attenuate these problems, in [38] a Bayesian framework for the estimation of the covari-

ance matrices is proposed. This method is a remarkably simple but effective regularizer, in comparison

to existing regularizers. The regularizer in its simpler form can be reduced to the following equation:

MR
i = αI +M i (4.9)
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where α is a user-defined positive value and I the identity matrix.

4.3 The Gath-Geva Algorithm with a Focal Point in a Higher Di-

mension of the Data Space

The GGFP, where the focal point is located in a dimension higher than that of the data space, is

summarized in Algorithm 5.

The algorithm follows the same procedure as of the FCMFP algorithm, although here the different

distance metric requires the calculation of the fuzzy covariance matrix and its regularization.

Algorithm 5: GGFP - The Gath-Geva clustering algorithm with a focal point in a higher dimen-
sion of the data space

Input : Unlabeled multivariate data set: X ⊂ Rd;
Number of clusters: c;
Fuzzifier: m > 1;
Focal point: p ⊂ Rw, w > d
Regularization coefficient: ζ
Fuzzy Covariance matrix regularization: α

Output: Partition matrix: U = [uij ];
Prototypes: V = [vi] ;
Fuzzy covariance matrix : M i

Initialize the clusters’ prototypes ;
Extend X and V to Rw by adding (w − d) null coordinates per data point;
repeat

for i = 1 to c do
Compute M i using (4.8);
Apply regularization MR

i ← αI +M i (4.9) ;
for j = 1 to |X| do

Compute the distance plugging MR
i in (2.7);

Update uij using (2.5);

for i = 1 to c do
update vi using (4.7);

until a termination criterion was met ;
Project prototypes to the original feature space Rd

As mentioned before for the Gath Geva algorithm, the initialization is an absolutely critical step for

this algorithm. In this work, usually the FCM++ algorithm is used to initialize the prototypes and if the

FCM++ does not provide acceptable results then the FCMFP algorithm is considered for initialization.

4.4 The Iterated Gath-Geva Algorithm with a Focal Point

The alternative iterative process to the empirical selection of ζ, used for the FCMFP (section 3.2.4)

is here applied to the GGFP algorithm. For each value of ζ the resulting clustering partition is evaluated

by an internal cluster validation index, due to its hyper-ellipsoidal clusters, both the XB and KL indexes
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are employed in order to compare them. A cluster without typical points is viewed as irrelevant and is

eliminated. A new partition matrix U is then calculated together with the centroids V and Mi.

Algorithm 6: Iterative GGFP
input : ∆ζ, ζmax, Cmax

output: The partition that optimizes the internal validity measure
repeat

1) Run the GGFP algorithm
2) Remove negligible clusters using the definition of typicality
3) Calculate internal validity of clusters
4) Update ζ = ζ + ∆ζ

until ζ = ζmax;

23



24



Chapter 5

Results

The application of the GGFP algorithm to real world, experimentally collected data is presented in

this chapter. Three data sets were tested using the GGFP algorithm: the well known Iris plants data

set [39], the bearing condition data set from [35] and finally the experimental data collected from a wind

turbine gearbox in a laboratory setting.

The first two data sets serve, mainly, as verification for the implementation of the GGFP algorithm,

detailed in chapter 4. The Iris data set was chosen due to being, perhaps, the most well known data

set in clustering and regularly used for bench-marking, while the bearing condition monitoring data set

is tested here due to the extreme relevance of its application in the field of fault detection and multi-fault

classification to the topic of the wind turbine data set explored in this dissertation. Furthermore, having

already been studied in depth, it also serves as common ground for comparison with the work developed

for the FCMFP algorithm.

This chapter is divided into three sections, one for each data set, where there is a presentation of the

analysis of the clustering results obtained. In the case of the bearing condition monitoring and the wind

turbine data sets both the fault detection and multi-fault classification cases are analyzed. This includes

experimental verification on the merits of employing the GGFP algorithm and its iterated version, in

providing an intuitive way to control the cluster formation process, and therefore allowing the user to

select a suitable level of granularity while searching for meaningful clusters in a specific region of the

feature space.

The observer biased algorithms, FCMFP and GGFP, are compared against each other as well as

to their corresponding unbiased versions (FCM and GG). This comparison measures the quality of the

resulting partitions using the external validity measure Adjusted Rand Index, for this, boxplots of 30 in-

dependent runs of the algorithms are obtained (outlier points in the boxplots are represented by circles).

Afterwards, there is also the verification for statistical significant differences between the obtained in-

dexes, this is done using non-parametric statistical tests; the Wilcoxon signed-rank test for comparison

of pairs of samples and the Friedman test to compare more than two sets of samples [40].
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5.1 Iris Dataset

The iris data set is quite possibly one of the best known databases found in the literature [39]. The

data set contains 3 classes of 50 instances each, where the classes refer to three different types of

iris plants (Setosa, Versicolour and Virginica). One of the classes is linearly separable from the others,

while the other two cannot be separated linearly. The four features in this data set are the petal length,

petal width, sepal length and sepal length measured in centimeters. Containing 150 samples, each with

4 features, the data set is a list of 150 x 4. This data set is quite simple and is very frequently used for

bench-marking purposes.

5.1.1 Clustering results

The analysis starts by applying the iterative algorithm (6) to the iris data set in order to find the

reasonable number of clusters, which are validated by using the two different internal validity indexes

from section 2.4, the XB and the KL indexes. Figure 5.1 and 5.2 present the results obtained.

Figure 5.1: Internal validity index KL and cluster number as function of ζ (Objective is to minimize KL
index)

Observing figures 5.1 and 5.2, there are two graphs per figure that share the same horizontal axis (

they are both in function of ζ ), in the upper graph the value calculated for the respective validity index

is shown, while the bottom graph shows the evolution of the number of clusters as ζ is progressively

increased. By tracing a vertical line through both graphs in the location that the validity index is at a local

minimum value ( for the KL index ) or at a local maximum value ( for the XB index) the number of clusters

that produce that optimal value is obtained.

For the Iris dataset using the GGFP algorithm the KL index gives as reasonable numbers of clusters,

c = 2, 3, 6, 7 and 9 and the XB index reveals as reasonable c = 2 and 3. Interestingly, from the reason-

able clusters both indexes evaluate c = 2 as the ”optimal” (minimum and maximum index value for KL

and XB respectively) number of clusters, this is due to the structure in the data where one of the clusters
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Figure 5.2: Internal validity index XB−1 and cluster number as function of ζ (the objective is to maximize
XB−1)

can clearly be separated from other two. For visualization purposes, Sammon mapping—an algorithm

that maps highly dimensional data to lower dimensions while at the same time maintaining the structure

of the data—is employed. [41]. A typical run of the GGFP algorithm can be visualized in figure 5.3 and

of the FCMFP algorithm in figure 5.4.

Figure 5.3: GGFP algorithm Sammon projection of the 4-dimensional feature space, of the Iris dataset,
into the plane

Around each cluster center (marked with a red ’x’) there are ten solid line curves, each representing

a contour of equal membership value. The further away a curve is from the center, the smaller the

membership value (the color mapping from yellow to dark blue colors signifies high to low membership).

Inspection of figures 5.3 and 5.4, makes it possible to see how the different algorithms create different

partitions. In the GGFP case, the possibility of having different hyper-ellipsoidal shapes, sizes and
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Figure 5.4: FCMFP algorithm Sammom projection of the 4-dimensional feature space, of the Iris dataset,
into the plane.

orientation of clusters allows for a better fit of the data structure, while the FCMFP algorithm is limited

by imposing the same sized spherical clusters.

5.1.2 Comparison with the corresponding unbiased algorithm and FCM/FCMFP

To compare the algorithms, 30 independent runs of each algorithm were performed and the resulting

distributions of the Adjusted Rand Indices displayed in the form of boxplots, for different numbers of

clusters.

To evaluate the statistical difference in the results Friedman and Wilcoxon signed-rank tests were

used. The significance level considered for both the Friedman and Wilcoxon signed-rank test was α =

0.05 which corresponds to a confidence interval of 95%. If pvalue < 0.05 it is considered a statistically

significant difference between the distributions, otherwise no statistical significant difference is noted.

Figure 5.5: Adjusted Rand Index (ARI) boxplot comparison for 3 clusters in Iris data set
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An analysis of figure 5.5 demonstrates that the boxplot results appear as a line, meaning that there

is little variability in the results over the 30 runs. This can be attributed to a good initialization of the

algorithms and that for this simple data set the algorithms converge to the same result. The value

obtained by the Friedman test was pFriedman ≈ 0 which reflects a statistical difference in the results. The

results obtained for the ARI demonstrate a noticeable improvement that results from using the GG/GGFP,

as it clusters this data with a very high accuracy, with a ARI = 0.9038 and ARI = 0.9410 for the GG

and GGFP respectively. Although the difference in using the biased version as opposed to its non

biased version is not as large, the effect of the shrinkage aspect of the observer biased algorithm can

be observed.

5.2 Bearing Condition Data set

This data set is studied in [35], for the FCMFP, with the aim to monitor bearing condition, for both

fault detection and fault classification. Two bearings are installed in a shaft driven by a controlled motor.

Flywheels are mounted on the shaft to exert a load when required. An accelerometer is installed in

each of bearing housing to measure the vibration signals that are then collected via an data acquisition

card. The experimental setup can be see in figure 5.6. A total of 315 experiments were performed, with

different shaft speeds and total applied loads for different bearing conditions . A total of 817 features

were computed for each accelerometer distributed as 7 time domain features, 730 frequency domain,and

80 time-frequency features. In the frequency and time-frequency domains, the signals are divided into

80 bands of 20 KHz each, thus features are calculated for each band.

The features considered for the time domain were: the mean (µ), standard deviation (σ), variance

(σ2), root mean square (rms), kurtosis, skewness and crest factor (cf).

The time-domain signals are transformed into frequency signals utilizing Fast Fourier Transform

(FFT). A total of 730 frequency domain features are computed for each accelerometer ( features in-

clude mean, root mean squares, standard deviation, and kurtosis).

In the time-frequency domain, for each of the 80 bands five wavelets packet transforms are calcu-

lated. The list of wavelets employed consists of: Biorthogonal (bior6.8), Coiflets (coif4), Daubechies

(db7), Symlets (sym3), Reverse Biorthogonal (rbio6.8). For a detailed description of all the features, the

reader is referred to [35].

Table 5.1: Bearing State

ID Bearing 1 Bearing 2

1 Healthy Healthy
2 Inner race fault Healthy
3 Outer race fault Healthy
4 Ball fault Healthy
5 Inner race fault Outer race fault
6 Inner race fault Ball fault
7 Outer race fault Ball fault
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(a) Diagram of Experimental Setup

(b) Laboratory Setup

Figure 5.6: Bearing Laboratory Test Rig

Feature selection was performed by employing entropy based feature selection [42] which resulted

in 12 relevant features. Accelerometer 1 was found to be the most relevant accounting for the capture

of 9 out of the 12 selected features. The 12 selected features are distributed as follows: 5 Wavelets or

time-frequency domain features, 5 time domain and 3 frequency domain features.

The treated and ready to test data was kindly made available by the authors. The testing ready data

set presents 7 classes each with 12 features, there is one class that represents the healthy state of both

bearings and the other classes represent faulty states which are combinations of faults in one or both of

the bearings and can be seen in table 5.1. The purpose of this section is to evaluate the GGFP algorithm

in a previously tested and studied data set , which allows for further verification on a more complex data

set than the Iris one.

5.2.1 Clustering results

Following the process as for the Iris data set, the iterative algorithm 6 is applied to the above men-

tioned 12 features, a wide range of reasonable partitions were revealed in figures 5.7 and 5.8.

The KL index (fig. 5.7) reveals a range of reasonable cluster numbers, c = 2, 3, 5, 6 and 7, whereas

the XB index (fig. 5.8) gives as reasonable clusters, c = 2, 3 and 4. It is worth mentioning that the KL

index is able to identify the ground truth number of clusters as a reasonable cluster (c = 7), unlike the

XB index.

There are ranges ζ values for which the algorithm gives the same amount of clusters and a similar
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Figure 5.7: Internal validity index KL and cluster number as function of ζ (Objective is to minimize KL
index in bearing condition data set

Figure 5.8: Internal validity index XB−1 and cluster number as function of ζ (objective is to maximize
XB−1 in bearing condition data set
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validation index. Within this range the values for ARI and RI vary depending on the ζ chosen. Looking

more closely at one of those ranges, 30 independent runs with different initial conditions were performed

and the performance of the algorithm, in terms of ARI, is tested for the extreme values and two interme-

diate values of ζ in the range of [1.6, 3.8] that all produce 6 clusters.

Figure 5.9: Adjusted Rand Index (ARI) boxplot of GGFP in the range of zeta [1.6, 3.8] in bearing condition
data set

The Friedman test reveals pFriedman = 0.7022 meaning that there is no statistical difference in the

results of figure 5.9. It is possible to change ζ within this range without affecting the ARI drastically; this

highlights the fact that the GGFP algorithm can give different perspectives of the data even for the same

focal point and number of clusters without compromising performance.

5.2.2 The healthy vs. faulty case

This section will centre around the fault detection case, i.e., the case where the goal is to verify

whether a fault (no matter which) exists. This is equivalent to cluster the data with c = 2 clusters.

The colored symbols represent the truth classification of a sample. Samples in the same class are

represented by the same color and symbol according to the legend in the figures, the healthy state is

class 1 represented in green. The 10 contour lines around the cluster centers (red ’x’) have the same

meaning previously mentioned in section 5.1.1.

Analyzing figure 5.10 it is possible to observe that all the healthy data points (P1 - healthy state) are

classified together. Comparing the GGFP with the FCMFP, which has clusters of same size and shape,

it is observable that although both algorithms correctly classify the healthy samples, the GGFP algo-

rithm is able to more accurately distinguish between either faulty and healthy states while the FCMFP

algorithm classifies more faulty data as healthy. The nature of the GGFP algorithm (clusters of different

shapes, sizes and densities) allows data to be clustered more accurately, the drawback being the fact

the algorithm is not very robust as it requires a good initialization in order to produce good results.

The multi-fault classification case

From the analysis of the cluster validity index of figures 5.7 it follows that different structural divisions

of the data are reasonable. In particular, partitions with number of clusters c = 2, 3, 5, 6, 7 provide

32



Figure 5.10: GGFP Sammon projection of the 12-dimensional feature space into the plane for the fault
detection case (c = 2) in bearing condition data set

Figure 5.11: FCMFP Sammon projection of the 12-dimensional feature space into the plane for the fault
detection case (c = 2) in bearing condition data set
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reasonable structures. Figure 5.12 demonstrates these different perspectives making use of Sammon

projections in a sequence that appears similar to zooming in on the data.

Starting from figure 5.10 , which corresponds to c = 2, and transitioning to figure 5.12(a), a cluster

corresponding the to the blue state 3 is formed. From 5.12(a) to 5.12(b), the initial cluster corresponding

to the healthy state has been split into two. The rest of the figures show this continued trend where the

current bigger cluster gets progressively subdivided into consecutive sub-clusters.

(a) c=3 (b) c=5

(c) c=6 (d) c=7

Figure 5.12: GGFP Sammon projections of the 12-dimensional feature space into the plane for fault
classification for bearing condition data set

In order to see the effect of the observer metaphor, the feature space is explored in figure 5.13. This

is accomplished by placing the focal point in the location where the features obtain their minimum and

maximum values (instead of the barycenter of the data) for a different number of clusters. Even though

the same number of clusters is visualized in each horizontal pair of subfigures, different levels of detail

can be seen depending on the placement of the focal point.

5.2.3 Fuzzy parameter sensitivity analysis

The fuzzy parameter,m, relates to the degree of fuzziness of the partition. Typically for large values

of m, the classes will tend to blend together and the clusters will share more datapoints.

During testing it was observed that the GGFP algorithm would perform differently when this param-
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(a) pmin, c=5 (b) pmax, c=5

(c) pmin, c=6 (d) pmax, c=6

(e) pmin, c=7 (f) pmax, c=7

Figure 5.13: Sammon projections with more detailed view of different regions of the data space in
bearing condition data set. Left side sub-figures correspond to the focal point placed in the region where
features attain their minimum values (pmin). Right side sub-figures correspond to the focal point placed
where features attain their maximum value (pmax).
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eter was changed, but unlike the FCMFP that when increased above m = 2 would produce a single

cluster due to cluster overlap, this parameter was more sensitive in the GGFP algorithm. That is to say,

increasing it to certain values would produce better results in terms of ARI.

An analysis was performed on the sensitivity of the fuzzy parameter in the GGFP algorithm, the re-

sults of which are shown in figure 5.14 for different numbers of cluster. It can be extracted that depending

on the number of clusters there is an optimal value of the fuzzy parameter, m. This value was found to be

experimental and trial and error was employed. This can be explained due to the exponential nature of

the distance metric in the GGFP algorithm; the distance between clusters can be sometimes extremely

large and thus by fuzzifying the partition can help the algorithm find better partitions [43].

(a) c=2 (b) c=5

(c) c=6 (d) c=7

Figure 5.14: GGFP fuzzy parameter boxplot comparison for different numbers of clusters in bearing
condition data set

5.2.4 Comparison with the corresponding unbiased algorithm and FCM/FCMFP

In this section the goal is to assess the quality of the final results produced by the GGFP, the FCMFP,

and their respective unbiased versions. Momentarily, the ability of the observer biased algorithms to

explore different regions of the feature space is ignored and the parameters that produce better results

are selected for all algorithms. In this scenario, the question of how the GGFP compares to its unbiased

version and to the FCM/FCMFP algorithm is posed.

To answer this question, the algorithms are compared resorting to boxplot graphs of the distributions

of the Adjusted Rand Index over 30 independent runs for each algorithm for a different number of clus-

ters. The statistical difference tests used and their significance levels are the same as in section 5.1 and

the results are shown in figure 5.15. It is observable that the FCM (with kmeans++ initialization) results
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in a low ARI, especially for c = 2 and c = 3, which turned out to be a very poor initialization for the Gath-

Geva algorithm. Hence, the FCMFP due to its improved performance over the FCM was used to initialize

the GG/GGFP. The GGFP algorithm outperforms its unbiased version as well as the FCM and FCMFP

for most of the reasonable clusters given by figure 5.7 and the values of the Friedman test ( pFriedman ≈ 0 )

reveal that there is statistical difference in the results obtained. The most noticeable improvements are

observed for smaller numbers of clusters, the biggest being in the fault detection case.

(a) c=2 (b) c=3

(c) c=5 (d) c=7

Figure 5.15: Adjusted Rand Index (ARI) boxplot comparison for different numbers of clusters in bearing
condition data set

5.3 Wind Turbine Fault Diagnosis Application

Experiments were performed with the planetary gear box of a RCVA-300 vertical axis wind turbine.

The experimental setup consists of a blower positioned in front of the wind turbine, a PCB 3-axis ac-

celerometer mounted on top of the gearbox, and a SQI data acquisition system as shown in the diagram

5.16(a). The PCB accelerometer is responsible for the measurement of the vibrational data, followed

by transmission of acquired data to the SQI data acquisition system analog to digital conversion with

100 kHz of sampling rate and a sampling interval of 20 seconds. 10 repetitions per experiment were

performed and 155520 data points with 787 features were obtained.

A total of 787 features were computed: 11 time domain features, 687 frequency domain and 89 time-

frequency features. For the time domain the 11 considered features were: the mean, root mean square

(rms), standard deviation, kurtosis, signal peak, crest factor, rectified average, form factor, impulse factor,

variance and the signal mininum.

To obtain the frequency signals, Fast Fourier Transform (FFT) is applied to the time domain signal

37



and for 89 bands a total of 687 frequency domain features are computed.

In the time-frequency domain, the same five wavelets packet transforms as for the bearing data

(bior6.8, coif4, db7, sym3 and rbio6.8). They are calculated for all of the 89 bands.

The vibrational data was acquired under nominal conditions as well as under different types of faults

in components of the gearbox, namely: in the ring gear, the planetary gear and the sun gear. Figure

5.16(b) shows the structure of the gearbox .

(a) Diagram of Experimental Setup (b) Gearbox Structure

(c) Laboratory setup

Figure 5.16: Laboratory Test Rig

Random Forest feature selection was employed and the number of 787 features was reduced to 33.

The data set ready for clustering possesses 17280 data points each with 33 features. there are four

classes which are divided as follows: 1) No fault - Healthy state , 2) Ring gear fault, 3) Sun gear fault

and 4) Planetary gear fault as shown in table 5.2.

Table 5.2: Condition of Gearbox
ID Ring Gear Sun Gear Planetary Gears

1 Healthy Healthy Healthy
2 Fault Healthy Healthy
3 Healthy Fault Healthy
4 Healthy Healthy Fault

Due to the above-mentioned large number of samples and high number of dimensions, this data
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set presents itself as more complex and computationally demanding compared to the previously tested

datasets, and thus gives rise to the problem of representing the data in two dimensions for visualization.

The Sammon projection highly depends on the number of samples, and data sets with a high number

of data points cause the algorithm to become computationally expensive [44]. Due to the large amount

of samples in this dataset it was found to be unfeasible to employ Sammon Mapping as a visualization

technique. The more recent UMAP visualization technique provides several advantages over Sammon

Mapping, in particular when it comes to handling large data sets [45]. This was the was chosen visual-

ization method from this point forward.

5.3.1 Clustering results

Following the same procedure as in the previous sections, algorithm 6 is applied in order to obtain a

range of reasonable partitions for the data.

Figure 5.17: Internal validity index KL and cluster number as function of ζ (Objective is to minimize KL
index) in WT data set

Observing figures 5.17 and 5.18, the KL index reveals as reasonable partitions of data the cluster

numbers, c = 2, 3, 4, 5 and 6 while the XB index reveals as reasonable only c = 2. In this data set the

difference in using the KL index is more noticeable than in the previous data sets. The KL index is able

to evaluate as reasonable more partitions of the data and also identifies the ground truth partition as

reasonable (c = 4). Interestingly, looking at the maximum index value for XB−1 and the minimum value

for KL it is clear that the partition that optimizes both indexes is the same, c = 2; the reason for this can

be deduced observing a visual representation of the data, such as figure 5.20, as the structure in the

data seems to be divided in two major parts.

There are ranges of ζ values for which the algorithm gives the same amount of clusters and a

similar validation index. Within this range the values for ARI and RI vary depending on the ζ chosen.

Looking more closely at one of those ranges, 30 independent runs with different initial conditions were

performed and the performance of the algorithm, in terms of ARI, is tested for the extreme values and
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Figure 5.18: Internal validity index XB inverted and cluster number as function of ζ (Objective is to
maximize XB inverted index) in WT data set

two intermediate values of ζ in the range of [0.2, 0.4] that all produce 6 clusters, the results can be seen

in figure 5.19. The Friedman test gives pFriedman = 0.6041 revealing that there are no statistical differences

Figure 5.19: Adjusted Rand Index (ARI) boxplot of GGFP in the range of zeta [0.7, 1.1] in WT data set

in the data thereby drawing the conclusion that it is possible to change ζ within this range or any other

range that produces the same amount of clusters without great change in the ARI values. Similarly to

the previous data set, it is verified here that the GGFP algorithm can give different perspectives of the

data without sacrificing performance.

5.3.2 The healthy vs. faulty case

The data is clustered with c = 2 clusters in order to analyse the fault detection case. Figures 5.20

and 5.21 show a typical run of the GGFP and FCMFP algorithm for the fault detection case. The different

symbols and colors represent the four classes according to the legend in the following figures and the

red colored ’x’ the cluster centers. The 10 solid curves around the cluster centers maintain the same
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meaning as in the previous data sets.

Figure 5.20: GGFP algorithm UMAP projection of the 33-dimensional feature space into the plane for
the fault detection case (c = 2) for WT data set

Figure 5.21: FCMFP algorithm UMAP projection of the 33-dimensional feature space into the plane for
the fault detection case (c = 2) for WT data set

Upon analyzing figure figure 5.20 it can be observed that the majority of the healthy data points (

labeled as class 1, represented in green) are clustered together, although there are some mislabeled

healthy points.

Most of the faulty points belonging to class 2 and some from class 3 were clustered together with

the healthy samples. It is clear that, for this data set, fault classification is a difficult task, and that the
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structure in the data—especially as it pertains to classes 3 and 4—is not easily distinguished between

classes. It can be said that if data belongs to the cluster in the right (in figure 5.20) then it is very likely

that it is not a healthy sample. When comparing the two algorithms visually, it becomes clear that the

GGFP algorithm managed to cluster most of the healthy samples together and separated more faulty

points from the healthy cluster than the FCMFP.

5.3.3 The multi-fault classification case

Inspecting the cluster validity KL index analysis, in figure 5.17, partitions with number of clusters

c = 2, 3, 4, 5 and 6 provide reasonable structural alternatives. Figure 5.22 show the different partitions

resorting to UMAP projections in a sequence that appears similar to zooming in on the data. Starting

from figure 5.20, which corresponds to c = 2, the cluster where the healthy samples belong gets subdi-

vided into two in figure 5.22(a), and the trend of the bigger cluster getting subdivided into consecutive

sub-clusters is continued in the following figures 5.22(b) to 5.22(d).

(a) c=3 (b) c=4

(c) c=5 (d) c=6

Figure 5.22: UMAP projections of the 33-dimensional feature space into the plane for fault classification

In order to substantiate the observer metaphor in this data set, the feature space is explored. In figure

5.23, the focal point is placed in the location where the features obtain their minimum and maximum

values for a different number of clusters. The same number of clusters is visualized in each horizontal

pair of sub-figures and it is possible to see that different levels of detail, of a certain region, can be
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obtained depending on the placement of the focal point.

(a) pmin, c=3 (b) pmax, c=3

(c) pmin, c=5 (d) pmax, c=5

(e) pmin, c=6 (f) pmax, c=6

Figure 5.23: UMAP projections with more detailed view of different regions of the data space in WT
data set. Left side sub-figures correspond to the focal point placed in the region where features attain
their minimum values (pmin). Right side sub-figures correspond to the focal point placed where features
attain their maximum value (pmax).

In figure 5.23, the benefits of being able to control the cluster formation are displayed, for example, if

the goal is to analyze the specific region of the data where the healthy samples lie, this could be achieved

by placing the focal point in the location where the features obtain their maximum value, allowing the

focus to be on a more detailed visualization of the desired area. For example, for the case of c = 3,

figures 5.23(a) and 5.23(b) illustrate this idea: in the right hand side figure there is more detail in the
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region of the healthy samples when compared with the left-side figure.

5.3.4 Comparison with the corresponding unbiased algorithm and FCM/FCMFP

In this section, just as with the bearing dataset, the algorithms are compared using boxplots of

the distributions of the Adjusted Rand index over 30 independent runs of each algorithm for different

numbers of clusters. The significance level considered was the same that was used in previous sections,

α = 0.05 which corresponds to a confidence interval of 95%.

(a) c=2 (b) c=3

(c) c=4 (d) c=6

Figure 5.24: Adjusted Rand Index boxplot comparison for different numbers of clusters in the WT data
set

The Friedman statistical test revealed a value of pFriedman ≈ 0 for all clusters analyzed in figure 5.24,

signifying that there is statistical difference in the data. Performing the Wilcoxon test among the pairs of

algorithms revealed that there is no statistical difference in the data produced from the FCM/FCMFP for

c = 2 and 3 clusters ( with pWilcox = 0.0527,pWilcox = 0.355, respectively).

For this data set the FCM and FCMFP algorithms performed at about the same level, either of them

could be used as initialization for the GG/GGFP. The initialization was then performed with the FCMFP

algorithm.

Analyzing figure 5.24, the GGFP algorithm is able to outperform its unbiased version, as well as

the FCM and FCMFP for the reasonable clusters given in figure 5.17. For the fault detection case,

c=2, the FCM, FCMFP and GG the ARI values are nearly zero, while the GGFP manages to obtain,

approximately an ARI of 0.22.

The GGFP always seems to give a better partition as evaluated by the ARI metric. It can be observed

that the ARI values are higher for the GGFP in comparison to FCM/FCMP for all the analyzed clusters;
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when compared to its unbiased version, GG, the gap shortens as the number of clusters is increased.

The shrinkage effect of the observer biased framework is again verified and for this data set the

benefits of employing the GGFP over the FCMFP or FCM are clear. As for the comparison with its

unbiased version, the results show that there is always a slight increase in performance which is more

noticeable when the number of clusters in question are lower. Similarly to the bearing data set, the fault

detection case is where the application of the GGFP more notably outperforms the other algorithms.

These results showcase the benefits of employing the GGFP for this type of application, especially

coupled with its inherent ability to explore the feature space. The GGFP proved to be a powerful tool to

be considered when tackling fault detection and classification problems.
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Chapter 6

Conclusions and Future Work

In this dissertation, the problem of wind turbine gearboxes fault detection and classification was

addressed and observer biased fuzzy clustering was explored for the classification of the data. The

observer biased paradigm permits users to interactively select different levels of granularity in the search

for clusters that accurately represent the structure embedded in the data. Using the, already successful,

implementation of the observer biased framework in the FCM and GK algorithms as motivation to explore

other fuzzy clustering algorithms, the Gath-Geva with a Focal Point (GGFP) was implemented and the

benefits of employing this algorithm in comparison to the existent observer biased clustering algorithms

were evaluated.

The GGFP algorithm, which had never been implemented and tested, was the focus of the analysis.

The GGFP can be regarded as a generalization of the GG and FCMFP algorithms. In applying the

iterative process to find reasonable numbers of clusters to GGFP, it was possible to see how the two

employed internal validations differ for an algorithm that allows its clusters to have different shapes and

sizes. The XB index revealed less reasonable partitions for the bearing and WT data sets than the KL

index, and only for the Iris data (the simplest of the three tested data sets) the XB index gave as a

reasonable cluster number the ground truth number of clusters (c=3). This leads to the conclusion that

although the XB index may be used for the GG/GGFP when considering data sets with a structure that

allows the clusters to present a spherical shape. It cannot be generalized for all data sets to produce

optimal results. Therefore, utilizing the KL index for the GG/GGFP was proven to be a good alternative

to internal indexes that only rely on the distance between cluster centroids.

For the bearing and WT data sets, when performing the iterative process to find reasonable numbers

of clusters, it was noted that for some ranges of ζ the number of clusters would remain the same for

varying internal validity indexes values. A closer look at these ranges (in c=6 for both bearing and

WT data sets) showed that the effect of changing the ζ coefficient within these ranges was minimal in

performance as evaluated by the Adjusted Rand Index (ARI). Changing ζ signifies changing the view

of the data and so this allowed the confirmation of the capability of the GGFP to generate different

perspectives of the data without compromising the quality of the partitions.

With the aid of projection techniques to visualize high dimensional data, the differences in using the
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FCM and GG based algorithms was shown across the three data sets. The hyper-ellipsoidal cluster

shapes generally allowed for a better fit to the data structure including in the fault detection and classifi-

cation cases.

An analysis on the sensitivity of the fuzzifier parameter, m, was performed which it revealed that

depending on the data and the number of clusters there are values for m that produce better results

when using the GG/GGFP algorithm, unlike in the FCM/FCMFP where increasing m > 2 will usually

result in an overlap of clusters. This threshold to encounter cluster overlap was noted to be larger in the

GGFP and in between m > 1 and this threshold, an optimal value for m can be found.

Furthermore, GGFP was able to produce statistically significant better results,in all three data sets, in

comparison to the FCM,FCMFP and GG using as a metric the external validity measure Adjusted Rand

Index. The WT gearbox data was of difficult analysis due to the structure of the data which made fault

classification a complex task, despite this the GGFP managed to be superior to the other algorithms

for all numbers of clusters. It is not unreasonable to think that even better results could be achieved by

further processing the data; one option could start by reducing the number of features or scaling the

data set to a lower, but still representative, number of samples.

More importantly, the application of the observer biased framework successfully allowed for the ex-

ploration of the feature space, making the GGFP a very interesting exploratory analysis tool. The per-

formance increase that the GGFP revealed comes with a price, the fact that the algorithm needs to have

a good initialization for the prototypes in order to achieve optimal results makes it a less a robust alter-

native to the FCMFP, as well as the fact that due to its more complex distance metric, the computational

time increases considerably. There is a clear trade-off between performance and efficiency and it its up

to the user to balance the pros and cons of employing either of the algorithms, according to needs of the

problem at hand.

For future work, the design of a simple and interactive interface could be developed in order to

facilitate the exploration of the data space, where the user could be allowed to easily tune parameters

such as the location of the focal point or the regularization coefficient. The study of observer-biased

clustering with multi-focal points could also be considered and an evaluation on any merits, if any, in

applying it over the current version of the observer-biased algorithm.
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