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Abstract

In the field of time series modeling, the problem of irregularly sampled data proves hard to overcome.

Neural ordinary differential equation models (neural ODEs) are a family of models that have proved to be

a successful approach to learning sparse and irregularly measured time series, having obtained several

state of the art results on data interpolation. Their ability to model data continuously in time give them

the ability to make accurate prediction in any time point of the time series.

In this thesis, we review the concepts necessary to understand neural ODEs, ranging from numerical

ODE solvers to various neural network architectures. We construct neural ODE models on top of multiple

widely used neural network architectures, and test their performance on multiple tasks on sparse medical

data.

This study aims at finding in what conditions does the increased performance of upgraded classical

neural networks with neural ODEs out weights the additional computational cost associated.

The main contributions of this work are, the further testing of this family of models in order to further

study its strengths and weaknesses, on multiple tasks and the testing of a new way to extrapolate data

using recurrent neural networks with a neural ODE, without re-feeding predictions and relying solely on

the dynamics of the neural ODE.

Keywords

Neural Differential Ordinary Equations, Variational Autoencoders, Recurrent Neural Networks, Sparse

Time Series.
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Resumo

Na área de aprendizagem de séries temporais, o problema de dados com medições irregulares é dificil

de ultrapassar. Equações diferenciais ordinárias neuronais (Neural ODEs) provou ser uma abordagem

fiável para aprender series temporais esparsas e com medições irregulares, tendo obtido vários resulta-

dos de estado da arte em interpolação de dados. A sua abilidade de modelar continuamente os dados

no tempo permite obter previsões precisas em qualquer ponto do tempo na série temporal.

Nesta tese, revemos os conceitos necessários para compreender Neural ODEs, desde calculadores

de ODEs a várias arquitecturas de redes neuronais. Construı́mos Neural ODEs usando várias arquitec-

turas de redes neuronais populares, cujas capacidades são testados em múltiplas tarefas sobre dados

esparsos médicos.

O objectivo deste estudo é encontrar quais as condições em que a melhoria dos resultados obtidos

pelas redes neuronais com Neural ODEs, relativamente às suas contrapartes clássicas, compensa o

custo computacional que vem associado.

As contribuições desta tese são, os testes adicionais a esta famı́lia de modelos, de forma a testar

os seus pontos fortes e fracos, em várias tarefas, assim como testar uma nova maneira de extrapolar

dados usado redes neuronais recorrentes com neural ODEs, não devolvendo previsões ao modelo e

usando apenas a dinâmica da neural ODE.

Palavras-chave

Equações diferenciais Ordinárias Neuronais, Auto-Codificadores Variacionais, Redes neuronais recur-

rentes, Series temporais esparsas.
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This chapter provides the motivation behind this thesis, as well as its main contributions and the

outline of the text.

1.1 Motivation

In the field of medical learning, time series carry immense importance. Some values necessary to diag-

nose and treat a patient appropriately are difficult to obtain, sometimes by requiring extensive laboratory

work, sometimes because the process of acquiring them is invasive and dangerous, meaning one has

minimal access to these values for each series. Therefore learning the dynamics of these specific fea-

tures proves an exciting problem with very tangible benefits, as it allows both, better automatic diagnosis

by inputting all missing values, and allows physicians to use approximated values when not deemed

entirely essential to use the real ones, or when the real ones are to risky to obtain. Leading to a safer

and less resource-intensive diagnosis for each patient. From this set of specific difficulties associated

with medical data, it arises the need for models which can learn sparse data sequences with arbitrary

lengths and irregular time stamps.

Specifically, we explore the neural ODE family of models, Chen et al. [2018], motivated by their

elegant solutions to the constraints mentioned above. All neural ODE models use a neural network to

approximate the dynamics of a relevant space in a neural ODE model, for example, the hidden space in

a recurrent neural network, and use numerical methods to extract the hidden state in all relevant points.

Adding this continuity to the modeled space allows making quality predictions for every timestamp and

provides better ways of dealing with missing values.

We wish to further identify what are the strengths and weaknesses of these models when applied to

medical data and continue to build empirical evidence to support, or dispute, the usage of these models

in medical machine learning products.

1.2 Contributions

This work provides a comprehensive and self-contained introduction to sparse time series modeling

(with neural ordinary differential equations), it highlights the most relevant constraints in this particular

area of learning and some popular solutions used on the models trained for this thesis.

Novel contributions in this thesis are the following:

• We present medical data, sourced from ICU patients and explore the performance of two different

neural ODE models, when compared to their non-ODE variants, at interpolation, extrapolation and

classification tasks.
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• We provide a way of extrapolating data using a neural ODE recurrent neural network without re-

feeding extrapolated values back into the model as in a classical recurrent neural network, and

instead relying solely on the dynamics. We test this approach on the previously mentioned data.

• We present a GitHub project containing the code so the experiments may be replicated,

https://github.com/PedroMGLopes/Masters.

1.3 Thesis Outline

In the following chapter we provide an overview of the concepts relevant for this thesis. We review

ordinary neural ordinary differential equations with a focus on numerical methods to solve them. We

introduce neural networks and gradient based optimization, and lay out the architectures used thorough

this work.

In chapter 3 we introduce neural differential equations, and explore the adjoint sensitivity method for

parameter optimization.

In chapter 4 we lay out the architecture of the neural ODE models which will be used in this thesis, as

well as explain what mechanisms must be introduced so these models can deal with sparse time series.

In chapter 5 we explore the data on which the tasks will be built upon, as well as define the objective

of every task. We explicitly show every model which is to be tested, and the data modifications that must

be made for every model to be able to do every single task.

In chapter 6 we investigate the results of every experiment, and try and draw conclusions from them.

Finally, a conclusion is made, highlighting the contributions made in this work and suggesting topics

to be studied as a continuation of this thesis.
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This chapter will provide the background knowledge for the following chapters. It will initially focus on

a brief introduction to ordinary differential equations and the numeric methods one can utilize to solve

them. We will continue by compiling some general knowledge on neural and how to train them.

2.1 Ordinary Differential Equations

An ordinary differential equation (ODE) of order n is an equation of the form

z(n) = f(z(n−1), ..., z(2), z, t),

with z being a function of t and z(i) = diz
dti . The function f is said to be the dynamics of the ODE.

An ODE is said to be linear if its dynamics is a linear combination of the derivatives of z.

If given an ODE and an initial condition z0 = z(t0), the problem of finding a solution to the restricted

equation is called an initial value problem (IVF). For n = 1 one can write the IVP as

dz

dt
= f(z, t) and

z(t0) = z0.

We can now move to giving sufficient conditions on the dynamics of the ODE to ensure the exis-

tence and uniqueness of a solution. As in this thesis we are focused mostly on first order ODEs, the

Picard–Lindelöf suffices.

Local Lipschitz condition: A function f(z, t) satisfies the locally Lipschitz condition on z if each

point has a neighborhood D0 where a constant L exists such that

||f(z1, t)− f(z2, t)|| ≤ L||z1 − z2||,

for any z1, z2 ∈ D0.

Theorem 2.1.1. (Picard–Lindelöf) If f(z, t) is a continuous function in t satisfying the local Lipschitz

condition in z then for the differential equation

7



dz(t)

dt
= f(z, t) and

z(t0) = z0,

there exists a unique solution z(t) on an interval containing t0.

Numerical Methods for Ordinary Differential Equations

This section will provide a small introduction to the numeric methods which are more commonly used to

solve ODEs. Even though they are not often explicitly mentioned in this thesis they stand at its very basis.

Consider the IVP

dz(t)

dt
= f(z, t)

z(t0) = z0.

For a predetermined step h the Euler’s method approximates the solution of the IVP at tk = t0 + hk

as

zk = zk−1 + hf(tk−1, zk−1).

The local error of the Euler method for a single step is O(h2). As for the global error, accumulated

error made for multiple steps, it is O(h). One notable problem of the Euler’s method is its numerical

instability.

Runge Kutta Methods: This family of methods follows a form

zk+1 = zk + h

s∑
i=1

biki,

with
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k1 = f(zk, tk)

k2 = f(zk + h(a2,1k1), tk + c2h)

...

ks = f(zk + h(as,1k1 + · · ·+ as,s−1ks−1), tk + csh).

To specify a particular method, one needs to provide the integer s, and the coefficients aij , bi and ci.

These methods work very well for adaptive step control. To control the step size and the error, one

uses two methods, one of convergence rate p and one of convergence rate p − 1 differing only on the

parameters bi. Since the intermediate steps are the same running both methods comes at a negligible

computational cost increase to running only one.

This way it is possible to estimate the single step error of the lower convergence rate method as

e = ||zk − z∗k|| = h

∣∣∣∣∣
∣∣∣∣∣
s∑
i=1

(bi − b∗i )ki

∣∣∣∣∣
∣∣∣∣∣,

where zk and z∗k refer to the outputs of the methods of order p and p−1 respectively. If e is greater than a

predetermined threshold the step is rejected and a new one is calculated with a smaller step, if e is lower

than another separate threshold the step is increased as to save computational time. This ensures an

almost optimal step size each iteration and removes the need from the user to find an appropriate step

size.

The most used method in this thesis is a variant of the Dormand-Prince method Dormand and Prince

[1980]. This is an adaptive Runge Kutta method of order five. This method has seven stages yet needs

only six function evaluations as it makes use of ”first same as last” property, evaluating the last stage of

each step at the same point as the first stage of the next step.

2.2 Neural Networks

Neural Networks are a class of functions, originally inspired by the circuits of the brain. The fundamental

idea behind neural networks are layers of interconnected processing units, called neurons. In this section

we will take a look at the most simple classes of neural networks and how their training algorithm works.

2.2.1 Feedforward Neural Networks

One can define the class of layers of a feedforward neural network as

9



L(i, o, g) := {f : Ri → Ro | x 7→ g(Wx+ b),W ∈ Ro×i, b ∈ Ro},

where g is a function, called activation function, W are called weights and b are the biases.

With the layers defined one can define the class of multi-layer feedforward neural network as

F({sk, gk}lk=0) := {f : Rs0 → Rsd | f = fl−1 ◦ · · · ◦ f0, fk ∈ L(sk, sk+1, gk)},

where ik = ok−1 for k > 0.

Figure 2.1 shows the most common representation of the architecture of a feedforward neural net-

work.

Figure 2.1: Feedfordward neural network F((3, g), (5, g), (5, g), (1, g)).

From the definition one can see that any non-linear behaviour of the neural network must come from

the activation function. The study of which activation functions are most adequate for each task is a

subject on its own, therefore we will merely mention the most widely used ones. The rectified linear unit

(ReLU)

g(x) = max(x,0),

is probably the most popular activation function used today. This function allows a much faster training

than the more complicated alternatives making its use very attractive on deep neural networks.

Two other widely used activation functions are the sigmoid and the hyperbolic tangent. The latter

differs a lot from the others as it can return negative values.

10



Figure 2.2: ReLU, sigmoid and hyperbolic tangent functions.

2.2.2 Backpropagation Algorithm

We can define feed forward neural networks as an arbitrary class of functions, yet their main purpose

lies approximating a variety of functions. The main problem then becomes finding the which neural

network better approximates our target function. From this point on we will call the set of weights and

biases the model’s parameters and its other components like depth, dimensions, etc, hyperparameters

or architecture.

Unfortunately there exists no efficient way of finding the best architecture for a certain problem.

Therefore we will focus on the task of, after deciding on an architecture, finding the parameters that work

best for the task at hand.

The most widely used way of approximating these parameters consists on declaring a cost function

C, and finding min
θ
C(y, fθ(x)) this function on a set of points {(x, y)k} where fθ is the neural network of

predefined architecture with parameters θ.

As for approximating the minimum the backpropagation algorithm is by far the most widely used. The

basics of continuous backpropagation were derived in the context of control theory by Kelley [1960] and

and by Bryson [1961]. The use of this algorithm on the training of neural networks was popularized by

Rumelhart et al. [1986].

The idea is to update each parameter by gradient descent with a certain learning rate ηk

θk+1 = θk −
ηk
l

l∑
i=1

∇θC(yi, fθ(xi)).

The essence of backpropagation is how to efficiently compute ∇θC(yi, fθ(xi)).

Denote the value of layer l before activation on an input x by al = W lhl−1 + bl, and the partial

derivative of C with regard al by δl, i.e,

δl =
∂C

∂al
.

Writing the derivatives with regard to al allows us to compute the error in the layer l by using the

11



error on l + 1 since

δl =W T
l+1δ

l+1 � g
′
(al),

where the operator � is the Hadamard product.

Finally we can calculate the gradient of the cost function with regard to the weights and biases on a

layer l by

∂C

∂bl
= δl

∂C

∂W l
= δl(hl−1)

T .

Updating the parameters only after reading the entire set is costly so more modern variations of this

algorithm split the dataset into minibatches and update θ every time a minibatch is processed.

2.2.3 Recurrent Neural Networks

Multivariate time-series analysis has always been an important problem in statistics, and one that, much

more than univariate time-series, presents a challenge for classical methods. For that reason neural

networks have gained a lot of popularity in this area. Feedforward neural networks can learn sequence

data by transforming a Rn ×Rd sequence into a Rn×d input and running it normally, this process brings

problems. The most obvious one is that it cannot work with sequences of varying size, as its input

dimension is fixed. The second one is that even for fixed size sequences it requires a greater amount of

parameters to learn the time dependency.

For that reason a special class of neural network, the recurrent neural network (RNN) were intro-

duced. This class of neural networks reads a different time step of the input sequence on every layer

and combines it with the output of the previous layer, one can write it as

ht+1 = g(Whht +Wxxt+1 + b)

y
′

t = gout(Woutht + bout),

where Wh, Wx and Wout are the hidden, input and output weights, b and bout the hidden and output

biases. The last layer is a simple feedforward layer to map the hidden state into the desired output

dimension. The most used activation function used is the hyperbolic tangent.

Figure 2.3 shows very simply how a RNN reads a sequence, it also becomes very apparent that by

allowing outputs per step it solves many to many sequence problems very elegantly, while also allowing

12
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Figure 2.3: Diagram of a RNN.

it to be used for many to one problems by altering the cost function as to only consider the relevant

output.

The backpropagation algorithm works very well on RNNs as for a sequence of size n it is very similar

to a feedforward network of depth n + 1 with the constraint of the parameters being the same for every

layer.

Based on the standard RNN there are quite a few variants of which the most widely used are the

Long-short term memory neural network(LSTM), which uses two different channels to pass information

down the chain of recursion, and the Gated recursive unit(GRU), which will be used in this thesis. When

it comes to GRU there are also different variants, yet what unifies all of them is the existance of a

mechanism called ”forget gate”. This mechanism can be seen as a more complex way of connecting

the previous hidden state and the new input in order to separate the tasks of ”updating” and ”forgetting”

previous information. For this thesis the following GRU type will be used

rt+1 = σ(Wirxt+1 + bir +Whrht + bhr)

zt+1 = σ(Wizxt+1 + biz +Whzht + bhz)

nt+1 = tanh(Winxt+1 + bin + r � (Whnht + bhn))

ht+1 = (1− zt+1)� n+ zt+1 � ht,

in this variant r, z and n are the reset, update, and new gates, respectively.

For the rest of this thesis when using the term RNN we will be referencing then GRU variant stated

above, as it will be used many times for different tasks, and further modifications made on RNN models

can be done on most variants.

The RNN belongs to the class of autoregressive models. Autoregressive models make a one-step-

ahead prediction conditioned on the history of observations, i.e. they factor the joint density p(x) =∏
i pθ(xi|xi−1, . . . , x0).
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2.2.4 Variational Autoencoder

Autoregressive models such as RNNs are easy to train and allow fast online predictions. However,

autoregressive models can be hard to interpret, since their update function combines both their model

of system dynamics, and conditioning on new observations. Furthermore, their hidden state does not

explicitly encode uncertainty about the state of the true system. In terms of predictive accuracy, autore-

gressive models are often sufficient for densely sampled data, but perform worse when observations

are sparse. An alternative to autoregressive models are latent-variable models. These models map the

input into a n-dimensional latent space, and work from there.

We introduce the variational autoencoder Kingma and Welling [2014], Rezende et al. [2014], as one

of these models.

2.2.4.A AutoEncoder models

Autoencoders (AE) Rumelhart et al. [1986], Bourlard and Kamp [1988] are neural networks which aim to

reconstruct its own input. They are composed by an encoder and a decoder, both of which are usually

neural networks. The encoder maps its input into a latent space, this image is usually called the code,

the decoder then maps the code from the latent space back into the input space.

The autoencoders training procedure consists of finding the set of parameters (θ, φ), with respect to

the decoder and encoder models, which minimize a loss function measuring the error of the approxima-

tion.

Autoencoders have the interesting property of being able to learn compressed representations of the

data. By mapping high dimensional data into a lower dimensional latent space autoenconders learn a

lower representation of the data holding the greatest amount of information as possible.

2.2.4.B Variational Inference

Consider the latent variable model of parameter θ with the following factorization:

pθ(x, z) = pθ(z)pθ(x|z),

where x are the observed variables and z the latent ones. We will call pθ(z) the prior of z as it is

not conditioned on any observations. The inference problem refers to the computation of the posterior

distribution pθ(z|x), which can be written as

pθ(z|x) =
pθ(x, z)

pθ(x)
,

where pθ(x) is the marginal distribution over the observed variables
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pθ(x) =

∫
z

pθ(x, z)dz.

The main difficulty is that the integral is intractable by analytical methods and does not have a closed

form solution. In order to solve this problem we use variational inference and turn it into an optimization

one.

Variational inference aims to find a variational approximation qφ(z|x) of the intractable true pos-

terior distribution pθ(z|x) by minimizing the Kullback-Leibler (KL) divergence between both. The KL-

divergence, despite not being a distance, measures how different two probability distributions are, thus

minimizing it allows us to approximate pθ(z|x). If q and p are two continuous probability distribution, the

KL-divergence is given by:

D(q||p) =
∫
z

q(z)log
q(z)

p(z)
dz.

The optimization consists in find the parameters φ which minimize the KL-divergence.

2.2.4.C Variational Autoencoder Arquitecture

Autoencoders were traditionally used for dimensional reduction and representation learning. The intro-

duction variational inference into this model resulted in the variational autoencoder, which is mainly used

as a generative model.

In the context of an autoencoder, we can view the unobserved latent variables z as the code of the

autoencoder. The recognition model qφ(z|x) can then be seen as the probabilistic encoder, which given

a data point x produces a distribution over the possible values of the code z from which x could have

been generated.

Since the true posterior pθ(z|x) is intractable, we use variational inference. The enconder then be-

comes a variational approximation qφ(z|x) of the true posterior. The prior distribution over the latent

variables, pθ(z), is often a standard isotropic normal distribution. In that case, the encoder is designed

to output the mean, µz, and the standard deviation, σz, of the approximate posterior distribution.

The decoder is designed to act as a generative model, given a code z it produces a distribution,

pθ(x|z), over the possible corresponding values of x.
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Figure 2.4: Arquitecture of a VAE.

A simplified overall architecture of these models can be seen in Figure 2.4. Both the encoder and

decoder networks have their own architecture, which can be any of the many types of neural networks

used for various tasks. For example, in this thesis, one VAE will utilize RNNs as both encoder and

decoder.

2.2.4.D Variational Lower Bound and Training

Variational autoenconders use a very specific loss function. Given we want to maximise the log-

likelihood of the data, log pθ(x), we can write

log pθ(x) = log

(∫
z

pθ(x, z)dz

)
= log

(∫
z

pθ(x|z)
p(z)

q(z)
q(z)dz

)
,

for any distribution q over z. Since the logarithmic function is concave and the integral can be written as

an expectation, we can use Jensen’s inequality to swap the logarithm and the expectation

log pθ(x) = log

(
Eq(z)

[
pθ(x|z)

p(z)

q(z)

])

≥ Eq(z)

[
log pθ(x|z) + log p(z)− log q(z)

]

= Eq(z)

[
log pθ(x|z)

]
−D(q(z)||p(z)).
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Since this holds for any q we can chose the tractable qφ(z|x) and write

log pθ(x) ≥ Eqφ(z|x)

[
log pθ(x|z)

]
−D(qφ(z|x)||p(z)) := L(θ, φ, x).

The loss function for variational autoencoders is then −L(θ, φ, x).

For training we need a final parametrisation trick. In order to train the network by backpropagation,

we need our model to be differentiable w.r.t. its learned parameters. For this, the model needs to be

deterministic, such that only the inputs are stochastic. Clearly this is not the case if we sample z based

on a probability distribution with parameters that come from inside the model. In order to solve said

problem we define auxiliary random variables ε following a standard normal distribution, which we treat

as input. We can now see z = µ+ σ � ε and treat the autoencoder as deterministic.
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In this chapter we introduce neural ordinary differential equations, we compare the backpropagation

algorithm with the adjoint sensitivity method for training and examine how these models can be used

together with other types of neural networks.

3.1 Residual Networks and Continuous Hidden State

As neural networks became more and more popular on image classification tasks, mostly due to the

introduction of the convolutional neural network, the problem of how to use depth to achieve better

results became an even more important area of investigation. Yet, He et al. [2015] showed empirically

that, for classical convolutional neural networks, greater depth sometimes leads to poorer results. One

of the major reasons to this phenomenon is the vanishing/exploding gradient problem. To alleviate this

effect on training residual neural networks were introduced. Very simply residual networks consist of

stacked residual units with ”skip connection” between them, one can write them as

ht+1 = ht + f(ht, θt),

where f is neural network.

These iterative updates can be seen as an Euler discretization of a continuous transformation Lu

et al. [2017], Haber and Ruthotto [2017], Ruthotto and Haber [2018].

What happens as we add more layers and take smaller steps? In the limit, we parameterize the

continuous dynamics of hidden units using an ordinary differential equation (ODE) specified by a neural

network:

dh(t)

dt
= f(hl, θl, t).

We can now define the output layer h(t) as an IVP with h0 = h(0) and use an ODE solver to arrive

at the solution. By pushing a lot of the calculations onto the ODE solver, and only evaluating the hidden

state when the ODE solver needs it, one can make use of the capabilities of modern ODE solvers, such

as adapting the evaluating strategy on the fly to achieve the specified level of numerical accuracy, and of

course monitor the numerical error, as to avoid the vanishing/exploding gradient problem which plague

very deep models.

3.2 Training of Neural Ordinary Differential Equations

Again training means approximating the set θ which minimizes a certain function,which we will call it

loss. This can still be done by backpropagation through the discretized version of the ODE, which would
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mean backpropagating through the ODE solver, however Chen et al. [2018] proposed an alternative

method for training, the adjoint sensitivity method Pontryagin [1962].

The adjoint sensitivity method

The main technical difficulty in training continuous-depth networks is performing the backpropagation

through the ODE solver. Even though backpropagating through the ODE solver steps is straightforward,

the memory cost is high and additional numerical errors occur. Chen et al. [2018] presents the ad-

joint sensitivity method as a solution which can be used regardless the choice of ODE solver and with

constant memory consumption. This section gives an overview of how the adjoint sensitivity method

works.

Consider optimizing a loss function L, whose input is the result of an ODE solver:

L(z(t1)) = L

(
z(t0) +

∫ t1

t0

f(z(t), θ, t)dt

)
= L(ODESolve(f(z(t0), t0, t1, θ))).

To optimize L, we require gradients with respect to θ. The first step towards this end is computing

the adjoint state

a(t) =
dL

dz(t)
,

whose dynamics are given by the differential equation,

da(t)

dt
= −a(t)∂f(z(t), t, θ)

∂z
.

We can then solve the differential equation backwards in time, in a similar way to the backpropagation

algorithm

a(t0) = a(tn) +

∫ t0

tn

da(t)

dt
dt = a(tn)−

∫ t0

tn

a(t)T
∂f(z(t), t, θ)

∂z(t)
dt.

Here we assumed that loss function L depends only on the last time point tn. If function L depends

also on intermediate time points t1, t2, ..., tn−1, etc., we can repeat the adjoint step for each of the

intervals [tn−1, tn], [tn−2, tn−1] in the backward order and sum up the obtained gradients.

We also need the gradients with respect to t and θ. To do this, we view t and θ as states and write

dt(t)

dt
= 1,

dθ(t)

dt
= 0,

combining these with z forms an augmented state
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d

dt

zθ
t

 = faug([z, θ, t]) :=

f(z(t), θ, t)0
1

 ,
with corresponding adjoint state,

aaug =

 aaθ
at

 , aθ(t) =
dL

dθ(t)
, at(t) =

dL

dt(t)
.

We then obtain the ODE

daaug(t)

dt
= −

[
a(t) aθ(t) at

] ∂faug(t)

∂[y, θ, t]
,

where ∂faug(t)
∂[y,θ,t] is the Jacobian of the augmented state

∂faug(t)

∂[y, θ, t]
=

∂f∂z ∂f
∂θ

∂f
∂t

0 0 0
0 0 0

 (t).

The second element can be used to obtain the total gradient with respect to the parameters, by

integrating over the full interval and setting aθ(tn) = 0

dL

dθ
= aθ(t0) = −

∫ t0

tn

a(t)
∂f(z(t), t, θ)

∂θ
dt.

Finally, we can also get gradients with respect to t0 and tn, the start and end of the integration interval.

dL

dtn
= a(tn)f(z(tn), tn, θ),

dL

dt0
= a(tn)−

∫ t0

tn

a(t)
∂f(z(t), t, θ)

∂t
dt.

For training the neural ODE the derivatives with respect to t0 and tn are not needed so we skip them.

The needed vector-Jacobian products can all be efficiently evaluated by automatic differentiation, at a

time cost similar to that of evaluating f . All integrals for solving z, a and dL
dθ can be computed in a single

call to an ODE solver, which concatenates the original state, the adjoint, and the other partial derivatives

into a single vector.

Most ODE solvers have the option to output the state z(t) at multiple times. When the loss depends

on these intermediate states, the reverse-mode derivative must be broken into a sequence of separate

solves, one between each consecutive pair of output times. At each observation, the adjoint must be

adjusted in the direction of the corresponding partial derivative dL
dz(ti)

.
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Recurrent neural networks and its variants are the most prominent model class for high-dimensional,

regularly-sampled time series data, such as text or speech. However, they are an awkward fit for

irregularly-sampled time series data, many times sparse, common in medical or business settings. A

standard trick for applying RNNs to irregular time series is to divide the timeline into equally-sized in-

tervals, and impute or aggregate observations using averages. To deal with the missing values it is

standard to use masks.

Neural ODE’s offer a way to generalize state transitions in RNNs to continuous time dynamics, natu-

rally allowing time gaps between observations, and remove the need to group observations into equally-

timed bins.

One can also apply Neural ODE’s on a variational autoencoder framework. The model represents

each time series by a latent trajectory. Each trajectory is determined from a local initial state, zt0 ,

obtained by encoding the input sequence, and a global set of latent dynamics shared across all time

series.

4.1 Sparse Data and Masking functionality

A very common problem with multivariate data is sparsity, meaning for every data point only a subset of

the input space actually has values and the rest is missing. Obviously neural networks can not receive

these missing values, therefore the problem on how to deal with them is very pertinent. One method

that immediately comes to mind is to input said missing data using a good predictor, maybe a generative

model trained on the data or on the worst case scenario just the average of said variable in the dataset.

All the imputation approaches carry their amount of issues of course. Choose an impute method to

simple and you might end up with inaccurate predictions sometimes by not considering interdependency

between variables, yet by trying to learn as much of the data behaviour as possible to correctly input it,

and at the end of the day one would be training two models equally as heavy, the one solving the original

task and the imputator. And as sparsity increases it carries the disadvantage of the model for the task

originally at hand being trained on data mostly generated, pilling errors one on top of another.

One way to limit the problem of training on imputed data when it comes to RNNs is by using masking.

Given one element from the dataset {xt}t=0...T one creates a mask {mt}t=0...T such that

mt,f =

{
1 if xt,f not missing

0 otherwise
,

and imputes the missing values on the original dataset with zeros.

The neural network can now read the input, should the mask be entirely zeros on a certain time point

the RNN can skip updating its hidden state. This is particularly important if the data is also measured on

irregular time frames meaning that bucketing the data end up with complete missing time steps. If the
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output space is also very sparse masking the output space allows skipping using the backpropagation

algorithm on the imputed targets. This becomes particularly useful when it comes to autoencoders

where both the input and the output masks are the same.

4.2 Ordinary Differential Equation Recurrent Neural Network

The main objective of introducing neural ODE machinery into the recurrent neural network family is

to model its hidden state between observations as a continuous state evolving over time instead of a

fix state until a new observation is made. For that we need to introduce a neural network fθ which

will model these dynamics. Following this one can define a pre-input hidden state at every point h′i =

ODESolve(fθ, ht−1, (ti−1, ti)).

Algorithm 4.1: ODE-RNN
Data: {xi, ti}i=0...N

h0 = 0
for i in 0. . . N do

h′i = ODESolve(fθ, hi−1, (ti−1, ti))
hi = RNNCell(h′i, xi)

oi = OutputNN(hi) for all i in 0. . . N
Result: {oi}i=0...N

One can see that ODE-RNNs consist of 2 main networks, and that as the sparsity of the data in-

creases the dynamics network would be the one with greater impact on the overall model, since there

would be less updates to the state because of the time steps of only missing features. Also, as argued

by Chollet [2017], given that no feature which is often missing can naturally be zero, ”the network will

learn from exposure to the data that the value 0 means missing data and will start ignoring the value”,

in this case the only information left is the hidden state provided by the dynamics.

4.3 Latent Ordinary Differential Equations

The latent variable models coupled with neural ODE machinery were proposed in Chen et al. [2018].

Using the variational autoencoder framework for both training and prediction, requires estimating the

approximate posterior qφ(z0|{xi, ti}ni=0). Inference and prediction in this model is effectively sequence-

to-sequence architecture, in which a variable-length sequence is encoded into a fixed-dimensional em-

bedding, which is then decoded into another variable-length sequence, as in Sutskever et al. [2014].

The initial approach was to use an RNN as encoder yet the ODE-RNN was shown to obtain better

results in Rubanova et al. [2019]. To get the approximate posterior at time point t0, we run the ODE-RNN

encoder backwards-in-time from tN to t0 in order to sample the initial state z0 for the IVF.
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The decoder is where the main neural ODE resides. After sampling the initial state z0 and observation

times t0, . . . , tn, an ODE solver is used to produce z1, . . . , zn which describe the latent state at each

observation time, one can then decode every point in the latent space. The entire process is:

z0 ∼ qφ(z0|{xi, ti}ni=0)

z0, . . . , zn = ODESolve(fθ, z0, {t0, . . . , tn})

xi
indep.∼ pθ(xi|zi),

where fθ is the neural network parameterizing the dynamics of the latent space and pθ is a neural

network which maps the hidden state at any point back into the input space.

Decoder and encoder are trained simultaneously by maximizing the variational lower bound (ELBO)

L(θ, φ) =

n∑
i=0

pθ(xi|zi) + log p(z0)− log qφ(z0|{xi, ti}ni=0), (4.1)

where p(z0) is a standard normal.

This latent variable framework comes with several benefits: First, it explicitly decouples the dynamics

of the system (ODE), the likelihood of observations, and the recognition model, allowing each to be

examined or specified on its own. Second, the posterior distribution over latent states provides an explicit

measure of uncertainty, which is not available in standard RNNs and ODE-RNNs. Finally, it becomes

easier to answer non-standard queries, such as making predictions backwards in time, or conditioning

on a subset of observations.

When compared with a VAE with RNN encoder and decoder it becomes apparent that the main

function of the neural ODE in this approach is to substitute the RNN decoder. The ODE-RNN encoder

latent ODE is also very parameter heavy, as one has 2 neural networks running for encoding, and

specifying the dynamics of the hidden state of the encoder, another neural network to serve as the

dynamics of the latent space and finally another one to project the latent space back into the input

space. Together with its heaviness also comes some advantages, as seen in previous chapters the main

challenge of variational learning is to approximate the posterior, and an ODE-RNN is more well equipped

at dealing with sparse data leading to a better approximation. Likewise by learning the dynamics of the

latent space instead of simply decoding with an RNN, the decoder becomes much more robust, obtaining

much better results when it comes to extrapolation in time for example, a task traditional autoencoders

are obviously not well equipped to do.
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Figure 4.1: Latent ODE with ODE-RNN encoder, left hand side shows the encoding of the data backwards in time
into z0, while right hand side shows how to obtain the latent state in any point of interest by solving the
IVP, and decode it back into the input space. Figure from Rubanova et al. [2019].

Figure 4.1 shows the entire process of computing the latent state in any point in time, and while it is

not explicit the sequence of time points to decode can be entirely different than the ones from the input,

as long as it is not in the training phase.
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This chapter will be divided in four sections. In the first we will define the characteristics we are

searching for in a dataset to showcase the properties of the models defined in the sections above, we

will introduce a dataset with said properties and do a small exploratory analysis. On the following one,

we will specify which are the problems on the dataset we will be experimenting on, how performance

will be measured in each of them and why these measures showcase the strengths and weaknesses of

the models. We will then define what models will be trained, how exactly they will be used and the loss

function to be used to achieve the intend results as well as initial challenges for each model. Lastly we

will focus on the treatment of the data.

5.1 Data analysis

Considering the main objective of this thesis is to empirically measure the benefit of introducing neural

ODE machinery into widely used neural networks, the data used to measure it should cater to the theo-

retical strengths one expects from the modified models. When it comes to time series, these strengths

would be sparsity of the data and irregularity of the measurements.

This was precisely the case on the PhysioNet challenge data used in Rubanova et al. [2019], and as

this thesis is built mainly on the conclusions extracted from that dataset, the choice for data in this thesis

should be made to complement these finds and broaden them.

One exciting conclusion on Rubanova et al. [2019] is that for binary classification for mortality, the

modified models did not present significant benefits when compared to their classical variants. This lack

of improvement in one of the most widely studied machine learning tasks in the medical field encouraged

the further study of this field, and it was decided that the data should present a binary classification

problem.

After compiling all the constraints, “PhysioNet Computing in Cardiology Challenge 2019” dataset

seemed very close to ideal. It shared the medical setting of the data used in Rubanova et al. [2019],

and despite not having irregular measurements, its data was very sparse. When it comes to binary

classification, the challenge provided a unique classification problem.

Feature overview

The dataset is a compilation of demographics, vital signs, and laboratory values corresponding to ICU

stays in two separate hospitals. The purpose of the data challenge was to train models capable of early

prediction of sepsis Singer et al. [2016], for this purpose each time series has a set of time points asso-

ciated to help position the occurrence of sepsis on the correct hour of the patient record.

The relevant time points are:
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tsuspicion

• Clinical suspicion of infection identified as the earlier timestamp of IV antibiotics and blood cultures

within a specified duration.

• If antibiotics were given first, then the cultures must have been obtained within 24 hours. If cultures

were obtained first, then antibiotic must have been subsequently ordered within 72 hours.

• Antibiotics must have been administered for at least 72 consecutive hours to be considered.

tSOFA

• The occurrence of end organ damage as identified by a two-point deterioration in Sequential Organ

Failure Assessment (SOFA) score within a 24-hour period.

tsepsis

• The onset time of sepsis is the earlier of tsuspicion and tSOFA as long as tSOFA occurs no more

than 24 hours before or 12 hours after tsuspicion; otherwise, the patient is not marked as a sepsis

patient. Specifically, if tsuspicion−24 ≤ tSOFA ≤ tsuspicion+12, then tsepsis = min(tsuspicion, tSOFA).

There are a total of 40 features of which 8 are vital signs, 26 are laboratory results and 6 are demo-

graphic values. There is also a label for each time point SepsisLabel.

SepsisLabel

• For sepsis patients, SepsisLabel is 1 if t ≥ tsepsis − 6 and 0 if t < tsepsis − 6. For non-sepsis

patients, SepsisLabel is 0.

For a more in detail analysis of the data there is Reyna et al. [2020].

5.2 Problem Specification

There is a particular interest in the ability of the models to both interpolate and extrapolate in the input

space. These experiments are intended to try and obtain further empirical evidence that in these tasks

the ODE machinery works particularly well, reinforcing the results obtained in Rubanova et al. [2019].

The interpolation and extrapolation problems can be defined as:

Interpolation experiment of probability p: Given a record {xt}t=t0,...,tn , create a random sub-

sampled record {x′
t}t=t0,...,tn , by cloning the original and for every non-missing value substitute it with

missing with probability 1 − p, while keeping a memory set m of all indexes (t, f) which were removed.
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Run {x′
t}t=t0,...,tn through a model M with an output space equal to input, on the set of time points of

the original sequence, in order to create a predicted record M({x′
t}t=t0,...,tn , {t0, ..., tn}). To measure

the quality of interpolation calculate 1
#m

∑
(t,j)∈m(x(t,j)−M({x′

t}t=t0,...,tn , {t0, ..., tn})(t,j))2 which is the

mean squared error on the subset of removed points.

Extrapolation experiment: Given a record {xt}t=t0,...,tn , create the subsequence {xt}t=t0,...,tk con-

taining every time point smaller than or equal to btn/2c. Run the subsequence through a model M with

an output space equal to input, on the set of time points of the original sequence greater than btn/2c,

in order to create a predicted record M({xt}t=t0,...,tk , {tk+), ..., tn}). To measure the quality of extrapo-

lation calculate MSEmasked({xt}t=tk+1,...,tn ,M({xt}t=t0,...,tk , {tk+1, ..., tn})), in which MSEmasked is the

mean squared error between inputs on the greatest subset of points in which neither input has missing

values.

To obtain the values for extrapolation and interpolation on the whole dataset, average each measure-

ment over all records on the dataset.

The final problem to consider will is the early prediction of sepsis as specified on the physionet

challenge. Essentially it is a cost sensitive classification problem per time point, meaning for every

record {xt}t=t0,...,tn we wish to create a binary sequence {yt}t=t0,...,tn which maximizes the following

cost function:

U(y, s, t) =


UTP (s, t) if positive prediction in y at time t for sepsis patient s,
UFN (s, t) if negative prediction in y at time t for sepsis patient s,
UFP (s, t) if positive prediction in y at time t for non-sepsis patient s,
UTN (s, t) if negative prediction in y at time t for non-sepsis patient s.

In which each bracket function is defined as

UTP (s, t) =


−0.05 if t ≤ tsepsis − 12,
1
6 (t− (tsepsis − 12)) if tsepsis − 12 < t ≤ tsepsis − 6,

1− 1
9 (t− (tsepsis − 6)) if tsepsis − 6 < t ≤ tsepsis + 3,

0 otherwise

UFN (s, t) =


0 if t ≤ tsepsis − 6,

− 2
9 (t− (tsepsis − 6)) if tsepsis − 6 < t ≤ tsepsis + 3,

0 otherwise

UFP (s, t) = −0.05

UTN (s, t) = 0.

35



This utility function rewards or penalizes classifiers using their predictions on each patient:

• For patients that eventually have sepsis (i.e., with at least one SepsisLabel entry of 1), we reward

classifiers that predict sepsis between 12 hours before and 3 hours after tsepsis, where the max-

imum reward is a parameter (1.0). We penalize classifiers that do not predict sepsis or predict

sepsis more than 12 hours before tsepsis, where the maximum penalty for very early detection is

a parameter (0.05) and the maximum penalty for late detection is also a parameter (-2.0).

• For patients that do not eventually have sepsis (i.e., all SepsisLabel entries of 0), we penalize

classifiers that predict sepsis, where the maximum penalty for false alarms is a parameter (0.05;

equal to the very early detection penalty). We neither reward nor penalize those that do not predict

sepsis.

The following figures illustrate the utility function for a sepsis patient (upper plot) with tsepsis = 48 as

an example, and a non-sepsis patient (lower plot).

Figure 5.1: Graphic representation of UTP (s, t) and UFN (s, t) on the relevant time window. Figure obtained from
https://physionet.org/content/challenge-2019/1.0.0/.
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Figure 5.2: Graphic representation of UFP (s, t) and UTN (s, t) on the relevant time window. Figure obtained from
https://physionet.org/content/challenge-2019/1.0.0/.

In order to compute a score for a classifier M sum U(M(s), s, t) over each prediction, i.e., over each

patient s and each time interval t (each line in the data file):

Utotal(M) =
∑
s∈S

∑
t∈T

U(M(s), s, t).

To improve interpretability, we normalized the above classifier score so that the optimal classifier

(highest possible score) receives a normalized score of 1 and that a completely inactive classifier (no

positive predictions) receives a normalized score of 0:

Unormalized(M) =
Utotal(M)− Uno predictions
Uoptimal − Uno predictions

.

This cost function has one dangerous detail within, it requires knowing if the patient has sepsis

and exactly when, to calculate what the cost of a prediction is. When looking at the problem as a cost

sensitive logistic regression problem, the issue becomes even more apparent. As shown in Elkan [2001],

the threshold probability to make optimal decisions is dependent on the cost matrix, yet our cost matrix

is dynamic and dependent on an unknown value, meaning we would have to somehow approximate said

threshold to be able to make predictions.

To still be able to make predictions without having to find the threshold which would provide the best

results we frame the classification problem as a regression problem on an alternative target variable.

We define the new label as
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=

{
UTP (s, t)− UFN (s, t) if sepsis patient s at time t,
UFP (s, t)− UTN (s, t) if non-sepsis patient s at time t.

.

This new variable quantifies the cost benefit of predicting a one instead of a zero, so the threshold

to turn it into a binary value is obviously 0. While this transformation carries disadvantages, such as

decreases on the MSE of predictions on the target variable for a patient record not implying increases

on
∑
t∈T U(s, t) for that patient. It, however, carries the major advantage that it encodes, while training,

the difference in costs over time. When compared to the binary approach, in which one either uses a

single threshold for simplicity and loses the cost dynamics or is forced to approximate a complicated

dynamic threshold, this approach provides a much needed balance between simplicity and preserving

the cost dynamics.

The problem can now be defined as:

Binary classification experiment: Given a record {xt}t=t0,...,tn and SepsisLabel, {yt}t=t0,...,tn ,

feed {xt}t=t0,...,tn to a model M with output space on the target variable, on the set of time points of

the original sequence, then create {y′t}t=t0,...,tn , which equals one when M({xt}t=t0,...,tn , {t0, ..., tn}) is

greater or equal to zero, and zero otherwise. Repeat for the entire dataset and calculate Unormalized(M).

5.3 Experimental Models

To effectively study the impact of ODE machinery, one needs to train models with and without it; there-

fore, it was chosen that four models architectures would be trained, one RNN, one ODE-RNN, one

RNN-VAE and one RNN-ODE encoder latent ODE.

In the problem specification section, however, we defined problems with two distinct output spaces.

We will however, not make two models for each architecture. Instead, each model will output the con-

catenation of input and label, through two different output neural networks, both of which will read the

same hidden/latent state. This is done for simplicity, as each model is heavy and takes a long time to

train, and because updating the parameters to learn better one task should not particularly hurt the other,

as the hidden/latent state should be able to encode both the input state and label, and the decoders are

updated independently from each other.

To this end, the loss functions for each model will be a weighted sum of the loss for each task.

Meaning for the RNN and ODE-RNN models, their loss function will be
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L(θ, θinput, θlabel, {xt, yt, t}t=t0,...,tn) = −α ∗ LLmasked(θ, θinput, {xt, t}t=t0,...,tn)

+ β ∗MSEmasked(θ, θlabel, {xt, yt, t}t=t0,...,tn),

where LLmasked is the Log-Likelihood for the subset of unmasked points, α, β are positive constants, θ

the parameters of the model except for output layers and θinput, θlabel the parameters for the input space

output layer and the label space output layers respectively.

When it comes to the autoencoder family of models, the way to use them changes dramatically in

this dataset. The classifier score function needs a label prediction for every timestep by looking at the

classifier score function. While on the RNN variant this is trivial, as each prediction only uses information

from previous time points, it does not apply to the autoencoders. By encoding the entire prior into an

initial state z0 and then predicting all labels from this state, one would be using future information to

classify the past, which is not the objective here. This way, while RNN’s want to turn an input sequence

on T time points into a label sequence on the same time points, autoencoders want to output a single

label on the last time point tT . If we require knowing the labels on previous time points, we need to

encode and decode the subsequences up to said points. This way, the loss function is

L(θ, φ, θinput, θlabel, {xt, yt, t}t=t0,...,tn) = −α ∗ ELBOmasked(θ, φ, θinput, {xt, t}t=t0,...,tn)

+ β ∗MSEmasked(θ, φ, θlabel, {xt, yt, t}t=t0,...,tn),

where ELBOmasked is the evidence lower bound for the subset of unmasked points, α, β are posi-

tive constants, θ,φ are the decoder and encoder parameters of the model except for output layers and

θinput, θlabel the parameters for the input space output layer and the label space output layers respec-

tively.

By looking at 4.1 one can see that the model only learns how to encode complete sequences, since

the term −log qφ(z0|{xi, ti}ni=0) always computes the encoding of the entire sequence, meaning the

only way of learning the encoder parameters to encode subsequences is to run those subsequences

through the model. Since each sequence is run backwards through time, one must encode the entire

subsequence instead of simply updating the encoding of smaller subsequences. This means the training

data for the autoencoder will be all subsequences of the training data for the RNN family.

In order to keep the data shape equal for every model, we allow the autoencoder models to still

output a label per time point, but since the loss function only reads the last the output layer will only be

calibrated to output the last label accurately.

The model hyperparameters were based on the findings of Rubanova et al. [2019]. Initial toy experi-
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ments were made to find parameters that would allow comparing the different models. A small ODE-RNN

network was used to find α and β for the respective loss function. From there one can extrapolate the

weights for the other loss functions, such that the balance between the parts in each loss function be

the same as the one found for the RNN. The network hyperparameters for an ODE model should match

their non-ODE version, on the overlapping components. Even though this means we will be comparing

models with quite a difference in the number of parameters, one can measure what benefit these extra

parameters bring and whether it proves beneficial enough to justify their use.

5.4 Data Treatment

It was decided that modifications to the data should be kept to a minimum, as the main objective was to

study how well the models can learn the original data and introducing new relevant features could skew

the experiment. This way, all modifications were deemed essential for the models to learn the original

data properly.

The first modification was to discard variables which were deemed unnecessary for learning, in this

case, the identifier of the hospital, and separate the time feature, so as to not have it as a network node

input.

The second modification was the scale normalization of the data, as having all features on the same

scale is of great help to the gradient descent algorithm, making the training process much faster, signifi-

cantly when feature ranges vary a lot, as in this case.

The third and most extensive modification was the downsampling of non-sepsis records in the data.

Sepsis patients number only 1790 out of the total 40643 records, a very significant class imbalance. If

this were to be kept as a logistic regression problem, downsampling would not be needed as changing

the acceptance threshold would solve the tendency to classify everything as non-sepsis. In the SepsisS-

core regression variant of this problem, the imbalance does prove an issue, with toy models showing

much better results if some form of downsampling was performed on the training data. The idea of why

the imbalance is a problem is roughly the same as the one in the logistic regression if the threshold was

not updated. The model is trying to approximate a function which will be constant of value −0.05 for

almost every record, and on those which are from sepsis patients a good chunk of the function is still

constant −0.05. This means that the easiest way of lowering loss is simply to predict −0.05 all the time.

There is then the additional problem that even if the model does, somehow, detect a good chance of

sepsis and increase its prediction it might not be enough to go over the 0 threshold. Because of the sim-

ilarity to the logistic regression problem, we try and adapt its solution to the issue, and even though we

do not want to change our threshold, we can take inspiration from the downsampling proportions shown

in Elkan [2001]. It can be noticed that when the sum of SepsisScore over a dataset is 0, equal to the
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threshold, its similarities with a logistic regression with a threshold of 0.5 on a balanced dataset become

apparent. We hypothesise that by random downsampling with proportions, such that the expected sum

of SepsisScore is 0 would obtain the best results.

The final modification is the removal of every record that does not start on t = 0. This is meant to help

calculate Unormalized for autoencoder models when batching is being used. We have already mentioned

that the training data for autoencoders will be increased by introducing all subsequences of each record

to the training data. When batching is being used, we must pad the sequences, so all have the same

length; by having records that do not start at t = 0 padding would also have to be added on the start of

sequences. For large batches it would become much harder to reconstruct one sequence of predicted

values from every subsequence of a record. It is worth mentioning that the model could promptly deal

with these missing entries on early time points; the added difficulty in calculating the score is the only

reason for their removal.

It is also worth mentioning that despite removing records on two steps, the dataset is still extensive,

and when subsequences are introduced, it becomes too large to work. To aggravate the problem even

more, since all sequences must be the same size for batching and there is a significant variance in se-

quence size, the average sequence size decreasing with the subsequences does not mean the average

batch length will decrease. All these reasons force a downsample on the entire dataset, in which for ev-

ery model it can be chosen to use n records for training. The downsampling process is very noticeable

on the autoencoder training data.

After treatment, we split the data into training, validation and testing. After considering that, on the

original Physionet challenge, the testing data for the classification problem was the entirety of the records

from a hospital, which is not available, it was decided to use the data from one of the two hospitals for

testing and the other for training and validation. This way 80% of Unit1 hospital’s records are used for

training, 20% for validation and Unit2 hospital’s records are used for testing. The training data received

all modifications mentioned, validation and testing data received only the first two.
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To find the random downsampling probability p on the train data, we summed SepsisScore over the

entire training dataset, obtaining −27402 for all non-sepsis and 15262 for all sepsis patients, therefore

p = 0.443 to remove a non-sepsis record from the dataset.

To approximate α and β it was decided to keep α constant and change the values of β, plotting the

LLmasked and Unormalized of each toy ODE-RNN model in the validation dataset.

Table 6.1: Utility score and Likelihood estimation for different values of β.

Value of β Sepsis Score LogLikelihood
500 0.1659 -26.505
1000 0.1852 -28.032
1500 0.1647 -26.546
2000 0.2101 -26.950
2500 0.1695 -27.735

As both Unormalized and the LLmasked did not vary much with the change of β, as shown in table

6.1 we decided to use to use α = 1 and β = 2000 for RNN type models as it performed the best in the

classification task.

For autoencoder models we train one toy model with β = 2000 and α = 1 and calculate the per-

centage of the loss due to β ∗MSEmasked, finally we simply multiply α by a constant in order to give the

classification task the same share of the loss as the RNN models, so we use α = 1
30 . We do not replicate

the Unormalized table for the toy autoencoders since it takes a very long time to calculate the utility score

for every model.

All models were trained using the following hyper parameters:

• RNN and ODE-RNN model

We used a hidden space of size 20 for both models, and for the ODE-RNN dynamics network we

used feedforward network of 3 layers with 50 nodes each.

• RNN-VAE

For the encoder we used a GRU with hidden space of size 40, and for the decoder a GRU with

hidden space of size 20, and a standard normal distribution as prior.

• Latent-ODE

For the encoder we used an ODE-RNN model with hidden space of size 40, and for the encoder

dynamics network we used a feedforward network of 3 layers with 50 nodes each. We use a latent

space of size 20 and for the latent dynamics network we used a feedforward network of 3 layers

with 50 nodes each; finally we use a single layer feedforward network decoder.
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For the classification task we equipped each model with an alternative single layer feedforward neural

network decoder.

Every autoregressive model was trained using the all available sequences in the training set, with

batches of 100 for 10 epochs with a learning rate of 10−2. All autoencoder models were trained using

subsequences of the available data, up to a maximum of the total number of sequences used for the

autoregressive models. Again we used batches of 100 for 10 epochs and learning rate of 10−2.

6.1 Interpolation Task

For the interpolation task we removed all constant variables from the evaluation metric, as what we

intend to evaluate is how well the model can provide information we don’t already know.

For the experiment we used probability of removal 25%, 50%, 75% and 90%, obtaining the following

results:

Table 6.2: Interpolation Test Mean Squared Error (MSE) (×10−2).

Probability of point removal
Model 25% 50% 75% 90%
RNN 0.6408 1.0921 1.8073 2.2678
ODE-RNN 0.5123 0.7758 1.1087 1.2772
RNN VAE 0.4303 0.4576 0.5132 0.5581
Latent ODE 0.6882 1.0404 1.5569 2.1399

One can see a major improvement on the interpolation task with the addition of ODE machinery for

the auto-regressive models, which becomes more pronounced the sparser the input sequences become,

which support our initial hypothesis.

As for the autoencoder models the Latent-ODE actually under performs, even though it is more

parameter intensive, which goes against what was observed in Rubanova et al. [2019], where the RNN

VAEs under performed when compared to both Latent ODEs and RNN-ODEs. We hypothesise that the

RNN VAE has obtained much better relative performance in this experiment due to regular measurement

times, which was not the case in Rubanova et al. [2019]. Therefore, while for the RNN missing values

pose a big challenge, the RNN VAE can deal with them quite well and its bigger weakness seems to be

measurement irregularity.

It is also surprising how much more the data sparsity affects the latent ODE when compared to the

RNN VAE.
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6.2 Extrapolation Task

We have again removed all constant variables from the evaluation metric, and have used 25%, 50% and

75% of each sequence for encoding and extrapolate what remains.

We hypothesise that running the ODE-RNN by re-feeding predictions just like a classic RNN will

obtain poorer results than just using its dynamics for extrapolation. To test this hypothesis we also tried

both types of extrapolation.

Table 6.3: Extrapolation Test Mean Squared Error (MSE) (×10−2).

Model 25% length 50% length 75% length
RNN 1.1330 0.8472 0.5819
ODE-RNN (pure dynamics) 0.3771 0.3659 0.3626
ODE-RNN (re-feed predictions) 1.6013 1.3788 1.0173
RNN VAE 2.4517 1.4545 1.1221
Latent ODE 0.4215 0.4241 0.4260

Again, the ODE-RNN outperforms its classic version, and one can explicitly see the benefit of relying

only on the dynamics for extrapolation. Here the Latent ODE outperforms the RNN VAE, we hypothesise

that the reason for this difference in performance is the same as the RNN and ODE-RNN, by not relying

on re-feeding predictions the Latent ODE becomes much more robust and is able to consistently return

better predictions.

To justify the much worse performance obtained when re-feeding predictions to the ODE-RNN we

have to look at difference in sparsity of the original input and the predictions. While the model was

trained on data which consisted mostly of missing values, and therefore learned that a value 0 would

mean missing, the re-fed predictions have no missing values, something the model never got to learn,

and therefore throwing it into disarray. This can still be overcome while using re-feeding, by, for example,

re-feeding predictions instead of observations during training with a probability p. This, however, also

carries disadvantages, since a missing value carries information a model can learn from, and therefore

would imply a worse performance in the other tasks. Another way of dealing with this problem is to

manually add sparsity to the re-fed predictions, by removing points with a certain probability per feature.

Still, it is not obvious if these approaches would obtain better results than using the dynamics without

GRU cell updates. Further testing would be needed to confirm what effects these approaches would

bring.

6.3 Classification Task

For this task we calculated the utility scores, our main evaluation metric, followed by accuracy, precision

and recall. We did not use the usual binary classification metrics such as the AUC as we were not using
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a logistic regression.

Table 6.4: Utility Score, accuracy, precision and recall for classification task.

Model Utility Score Accuracy Precision Recall
RNN 0.08002 0.721 0.049 0.593
ODE-RNN 0.13794 0.683 0.055 0.7304
RNN VAE 0.22745 0.897 0.081 0.417
Latent ODE 0.24384 0.877 0.078 0.478

In this task all ODE variants outperformed their classical variants, with autoencoder models being

dominant. The fact that the Latent ODE obtained the best results in this task is surprising considering

that it performed quite poorly on the interpolation task. Similarly the results of the ODE-RNN are also

surprising considering how well it performed in both interpolation and extrapolation. As expected the cost

function leads to a very low precision, as a false positive is penalized much less than a false negative.

6.4 Discussion

Every model trained was designed to be able to perform every task proposed, however this lack of

specialization affects the obtained results, so for this discussion it is important to take this multi-tasking

into account, since the benefit of not having to train one model per task comes at a cost.

We start with the autoregressive models. In all tasks the ODE-RNN outperformed the RNN by a

significant amount. This difference in results increases as the number of true points the models receive

decreases, both in sparsity when it comes interpolation and on the ratio of observed points to predicted

points in extrapolation. This helps cement the hypothesis that the ODE-RNN is consistently a better

model choice than the RNN when it comes to sparse data. One can also conclude that for sparse data,

relying solely on the dynamics for extrapolation obtains better results when using the ODE-RNN. The

ODE-RNN’s increased cost in training time and parameter size is very manageable, the ODE-RNN has

a total 141928 parameters and the RNN a total of 105658, and the ODE-RNN is 16% slower in training.

As for prediction time, the ODE-RNN is about 5 times slower when it comes to interpolation. This

difference aggravates on the extrapolation task where the ODE-RNN is 10 times slower at 25% length

encoding length. The ODE version also has the added benefit of being able to do predictions in between

time points. Considering autoregressive models are most commonly used in extrapolation tasks, the

robustness that the dynamics network provide is crucial if there is a need to extrapolate longer arbitrary

periods of time. The autoregressive models performed the worse in the classification task, tending to be

much more inert than their autoencoder variants.

As for the autoencoder, the picture is less clear than their autoregressive counterparts. The classical

version vastly outperformed all other models in the interpolation task, which is where this model type is

48



usually used the most, with the ODE upgraded version underperforming not only its classical version but

also the ODE-RNN, which is surprising since the latent-ODE is not only the most parameter intensive

model, at 162688 when compared to the RNN-VAE’s 123788. Further experiments are needed to identify

if the latent-ODE is really a worse model for interpolation on regularly timed sparse time series, or if it

is incapable of multitasking and needs one model trained for each. As for extrapolation, the RNN-VAE

obtained the poorest results out of all models, while the Latent ODE obtained the second best, and

reasonably close to the first. We attribute the vastly superior performance on not having to re-feed

predicted values, therefore leading to a slower accumulation of errors. As for the classification task

the Latent-ODE obtained the best results followed by the RNN-VAE. We consider this surprising as the

Latent-ODE did quite poorly on interpolation, so we expected it to be the same in this task, which was

not. We think that the Latent ODE is not good at multi-tasking and since we selected a loss function

weights that prioritize the classification task, the model did its function for the task it considered the

most important and somewhat ignored the others. As for training time the Latent-ODE is considerably

slower than the RNN VAE, by a factor of 5, with the same happening for the interpolation prediction time

where it is slower by 3 times, while extrapolation on 25% encoding is 5 times slower. When compared

to the autoregressive models, by having to consume a full sequence per timepoint-label prediction,

autoencoder models are significantly slower for the classification task.
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To conclude, we highlight the contributions of this thesis and present some topics which we think

should be further explored.

7.1 Contributions

This thesis was built upon the work of Rubanova et al. [2019], and designed to reinforce their empirical

results. To achieve this end, this work presented three tasks, interpolation, extrapolation and classifica-

tion, on a dataset with the characteristics necessary to further analyze the performance of the neural

ODE family of models.

We presented a classification problem on medical data with labels per time point as opposed to a

single label per sequence, to explore whether neural ODEs bring no major benefit as in the mortality

experiment in Rubanova et al. [2019], or if this model family can obtain better results on a label time

series, and obtained empirical results to back our hypothesis.

We presented an alternative way of using autoregressive neural ODEs for extrapolation by relying

solely on its dynamics and not re-feeding previous predictions to the model. We obtained results to show

that it achieves more accurate extrapolations and stays more stable as the extrapolated points increase.

7.2 Future Work

This thesis used the same neural ODE architecture as Rubanova et al. [2019], since its purpose was

to reinforce the empirical evidence that its use was beneficial. This does not mean, however, that

the models presented are the only ones one can build. Therefore attempting to create new neural

ODE architectures and testing their results is a promising area of research, as for example, instead of

upgrading the RNN-VAE into a latent ODE as in this thesis, one could try a ODE-RNN encoder and

decoder VAE, which would hold different benefits and challenges than the latent ODE, and still be able

to model the time series continuously.

Another possible path would be developing a Pytorch compatible package that would implement a

fundamental family of neural ODEs, and provide the tools for the user to construct new architectures

easily. This would prove very beneficial since, even though we already have an ODE solver package

used to create this family of networks, it forces one to build every net from scratch. In order to propel the

use of these network types, particularly in industry, one user-friendly package where one could create,

for example, an ODE-RNN with the same ease one creates a classic RNN would be very beneficial.
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