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Abstract

During human-robot interactions, robots may break social norms (Social Norm Violations - SNV) or

perform erroneous behaviours due to sensor and actuator errors, and software issues (Technical Failures

- TF). If robots are unaware of these errors, the interaction may become unpleasant or even risk user

safety. While interacting, humans show various types of social signals that translate their inner state,

which is concurrently estimated by other humans that detect social norm violations and react to them.

To detect social errors and classify them as Social Norm Violations or Technical Failures, we propose

to rely on Eye Gaze, Head Movement, Facial Expressions (Actions Units), and Emotions, as seen by

the robot, along with the recent actions of the robot. We propose a two step cascaded decision, where

the first step is to detect if an error occurs, followed by the error type classification (SNV vs. TF). We

perform an extensive study of the various options on input data and classification algorithms, using a

game-based scenario with a humanoid robot. We focus on Vizzy robot and in a dataset where Vizzy

individually interacted with 24 participants in a block assembly game, where it had two moods. The

“good” mood would help the participants win the game. The “bad” mood would be rude, causing social

norm violations, and would clumsily destroy the assembled blocks, causing technical failures, and making

the participant lose the game. Regarding the impact of input data, we observe that: (i) emotions improve

the error detection step but not the error classification step, and (ii) the actions of the robot improves

both error detection and error classification. Regarding the learning algorithms, Random Forest achieves

the best performance both in error detection and error classification. The usage of the median filter on

the error classification result increased the performance of Random Forest to 79.63% mean accuracy.

Keywords

Social Signals; Human-Robot Interaction; Emotions; Error Detection;Social Norm Violations; Technical
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Resumo

Durante as interações humanos-robôs, os robôs podem violar as normas sociais (Violações de Normas

Sociais - SNV) ou realizar comportamentos errôneos devido a erros de sensor e atuador, e a falhas de

software (Falhas Técnicas - TF). Se os robôs não estiverem cientes desses erros, a interação pode se tornar

desagradável ou até mesmo colocar em risco a segurança do usuário. Enquanto interagem, os humanos

mostram vários tipos de sinais que traduzem seu estado interno, que é simultaneamente interpretado

por outros humanos que detetam violações das normas sociais e reagem a elas. Para detetar erros

sociais e classificá-los como Violações de Normas Sociais ou Falhas Técnicas, propomos contar com Olhar,

Movimento da Cabeça, Expressões Faciais (Unidades de Ações) e Emoções, vistas pelo robô, juntamente

com as ações recentes do robô. Propomos uma decisão em cascata em duas etapas, onde a primeira etapa

é detetar se ocorre um erro, seguida pela classificação do tipo de erro (SNV vs. TF). Realizamos um

amplo estudo das várias opções de dados de entrada e algoritmos de classificação, usando um cenário

baseado em jogo com um robô humanoide. Nós concentramos no robô Vizzy e em um conjunto de dados

onde o Vizzy interagiu individualmente com 24 participantes em um jogo de montagem de blocos, onde

havia dois humores. O “bom” humor ajudaria os participantes a vencer o jogo. O “mau” humor seria

rude, causando violações das normas sociais, e destruiria desajeitadamente os blocos montados, causando

falhas técnicas e fazendo com que o participante perdesse o jogo. Em relação ao impacto dos dados de

entrada, observamos que: (i) as emoções melhoram a etapa de deteção de erros, mas não a etapa de

classificação de erros, e (ii) as ações do robô melhoram a deteção de erros e a classificação de erros. Em

relação aos algoritmos de aprendizagem, Random Forest obtém o melhor desempenho tanto na deteção

quanto na classificação de erros. O uso do filtro de mediana no resultado da classificação do erro aumentou
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o desempenho do Random Forest para 79,63 % de precisão média.

Palavras Chave

Sinais Sociais; Interação Humano-Robô; Emoções; Deteção de erros; Violação da Norma Social; Falhas
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1.1 Motivation

The idea that robots will be part of our daily life is becoming more and more realistic. Social robots

will interact with us in many ways. For example, they will help us in education [3], in manufacturing [4]

or even in assisting our elderly [5]. However, interaction failures can happen, either they are caused by

a malfunction, Technical Failure (TF), or by a misunderstanding of the social conduct, that we use to

guide our interactions, by the robot, Social Norm Violation (SNV) [6].

According to Salem et al. [7], people lost confidence in robots that showed unexpected actions in

the context of the ongoing social interaction. Even though, some users continued to interact with the

robot [8], which highlights security concerns. If the robot continues its harmful behaviour, it can endanger

the user. For example, Morales et al. [9] conducted a study where the robot misbehaved, and even

though the willingness to participate diminished, people still entered the workspace of the robot. These

user behaviours point out the importance of the system to identify its own mistakes, to maintain user

trustworthiness and safety. Thus, ensuring the correct behaviour and functionality of the robot, while

interacting with humans, is fundamental.

A way to do this is by analysing the user feedback. Humans, while interacting with each other, use

signals consciously and unconsciously that show their inner state [10]. For instance, a person can laugh,

smile, or shake their head. Such signals vary according to the situation and the emotions felt. When

interacting with robots, people also show these signals [11]. As such, a robot can use the capacity to

detect user feedback automatically to verify and choose its actions. If a failure is detected, then the

robot will be able to employ a recovery strategy to maintain the trust of the user at a certain level.

Alternatively, the robot may implement a safety measure to avoid harming people around it.

1.2 Problem statement

In this work, we wish to answer the question: Can we identify the mistake of the robot by analysing

the social signals of the user? In the context of a given social interaction, which social signals are

more informative? There are many researchers that studied the latter question, where they analysed

various responses from people that interacted with robots with erroneous behaviour (see more details at

Chapter 2). These studies found the following promising social signals: eye gaze, head movement, facial

expressions, speech, body movement, hand movement and bio-signals.

We focus on the subset of social signals which a mobile social robot can feasibly capture using its

onboard sensors. Hence, we do not address bio-signals since they require invasive equipment. Moreover,

we do not use speech features because automatic speech recognition (ASR) and natural language under-

standing (NLU) face challenges that affect their reliability on mobile robots. Nonetheless, most studies

noticed that head movement, gaze shifting, and facial expressions/action units [12] [13] are the most
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relevant social signals. As such, we focus on these signals. Furthermore, we also decided to use emotions,

since, during human interaction, they also take an important part in communication, especially in an

erratic situation [14]. For example, negative emotions, such as shame, guilt, or fear, tend to be very

common when an error occurs in the workplace [15], or when teaching [16]. Additionally, we noticed that

some studies mention the need of contextualizing the reactions of the users [17], [18]. As such, we decided

to use the actions of the robot as the context, since there is a cause-effect relation between the actions of

the robot and the reactions of the users.

Therefore, we now rephrase our question: Can we identify the mistakes of the robot by analysing the

head movements, gaze patterns, facial expressions, emotions of the user and actions of the robot? Thus,

our focus for this work is in creating an automatic algorithm that identifies error situations and classifies

them as SNV or TF, based on the aforementioned social signals.

1.3 Challenges

Despite the general concordance of the most relevant social signals that people present during an error

situation, they still differ in some ways from personality to personality [19]. The reaction of a person to

an error is very susceptible to the context of the interaction, being difficult to interpret correctly due to

ambiguities, especially smiling. For instance, Kontogiorgos et al. [18] used different groups of people for

manual annotation of a dataset. There was an 85% agreement, showing that even humans cannot reach

a consensus in understanding erroneous situations through behavioural signals.

Another issue to be considered is the lack of public datasets in human-robot interaction. Avelino and

others [1] performed an experiment with Vizzy where it recorded a dataset with people reacting to its

erratic behaviour. In our work, this is an important dataset since we will also be using Vizzy [20] for

experiments and implementation of the algorithm.

1.4 Scope

Even though social robots are a rising theme, there still are not many people that have interacted with

them. As such, it is important to notice that people tend to react in a very enthusiastic way or in a

suspicious way when interacting with something they do not know or understand. In [21] the participants

had not interacted before with a robot and therefore were more captivated with the technology and hence

more patient with the mistakes. On the other hand, in [5] Vizzy interacted with elderly care residents,

their first reaction was mostly freezing, but after getting familiarized with the robot, they started to

become more active.

Since, in the general part of the studies, most experiments were performed with people that have not

interacted with the robot before, we decided that our work will focus on error detection during zero-
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acquaintance encounters between robots and people. Also, it is not yet very common to see social robots

daily so it is plausible to assume that most of the interactions will be of this type.

Since people react differently when in the presence of a group, especially in terms of gaze shifting [22],

[6], we decided that we will focus on interactions where only one person is interacting with the robot.

We focus on interaction with humanoid robots. During our work, we use the Vizzy robot [20].

1.5 Objectives

Our goal is to build an automatic algorithm to detect error situations during Human Robot Interaction

(HRI), that works in real-time with signals captured by the onboard sensors of the robot. TWe study

several types of input data to the algorithm. On the visual-based human perception, we consider: (i)

Head pose, (ii) Gaze direction, (iii) Facial action units, (iv) Emotions. On the robot context information,

we consider the following flags: (i) arm movement, (ii) speech. In addition, we consider previous action

executed and its corresponding time. Regarding the classification algorithm, we study various options

such as Random Forest, Isolation Forest, Naive Bayes, amongst others.

1.6 Outline

This document has a top-down approach, and the remainder is organized as follows: Section 2 - Related

work, where we analyse various works whose subject is related to ours and help us in reaching a solution;

Section 3 - Proposed Pipeline, where we present our solution, and talk about the means and tools to reach

it; Section 4 - Error Detector Experiments; And Section 5 - Error Classifier Experiments, where we test

the influence of each feature for our algorithm, and compare it to other solutions; Section 6 - Emotion

Recognition, where we show in more detail our emotion recognition algorithm; And finally, Section 7 -

Conclusion and Future Work.
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Human Robot Interaction (HRI) is an area that has been in constant development. During interac-

tions, robots should have mechanisms that ensure the trustworthiness and especially the safety of humans

which is of the utmost importance. So, many researchers studied how people react towards an erroneous

robot. These studies of human reactions are the key to define the principal features that should be taken

into account in an algorithm so that the robot can identify these error situations.

2.1 Social Signals for Error detection

Giuliani et al. [6], analysed 201 videos collected from various projects. Most of the video corpus consists

of interactions with mistakes, where the robot was assisting the participant with a task, such as building

a wooden toy or serving drinks. According to this analysis, head movements and gaze shift were the most

prevalent signals, especially looking back and forward between the robot and experimenter or a group

member or the object. Participants frequently nod, shakes, or tilt their head. On the other hand, hand

gestures and body movements were the least prevalent signals. Speech and facial expressions, especially

smiling, were the second more relevant features. While trying to understand their results, they hypothesize

that the reason for these signals can be due to the tasks performed by the participants. When interacting

with the robot, participants ”mostly stand still and do not show many body movements”. Another found

worth noticing is that people talked more during a social norm violation. In contrast, technical failures

provoked more smiles. They also detected in many experiment videos that at the beginning of an error

situation, the participants ”froze”, i.e. they kept standing still without moving. Finally, they highlight

the importance of head movements in an automatic algorithm and the need to know if the experimenter

or other humans are present since that influences the signals.

The same group of the previous paper, Mirning et al. [21], decided in this study to perform an

experiment rather than analyse existent ones. Their experiment consisted of two phases. The first one

was an interview, where the robot asked a few questions to the participant. The second was a more

active task, where the robot asked the participants to build simple objects using LEGO. Throughout

the experiments, they noticed that the type of error influences the type of social signal. Concerning

the features, gaze shifting, facial expressions (laughter/smiling), and head movements were still more

frequently made by people. However, this time body movement was also significant. They hypothesize

that that is due to the activity of the task in the study being more active. In contrast to their previous

study, people did not show many speech signals. Like before, they state that this is due to the nature of

the task being more hands-on.

So far, the least probable social signals shown by people while in an erratic situation are body and

hand movements. Even though the previous study analysed, presented, and argued that this is dependent

on task, the most critical social signals remained the same throughout the two works above described.

These are gaze shifting, head movement, facial expressions, especially laughing and smiling, and speech.
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Another study that reached the same important features is [23]. Participants taught a robot how

to dance, through learning from demonstration (LfD) setup and then observed the results. In error

situations, participants usually shook their heads, frowned, lowered their heads with an adverted gaze, or

closed their eyes for a long period of time. Participants especially showed a combination of smiling with

head tilting and scrunched eyebrows when the robot made a mistake. While answering questions, some

participants noted that towards the end, their patience had waned substantially, causing them to lose

focus on the task. So, this study also shows that emotions of frustration and bore can be an indicator of

something went wrong.

2.1.1 Non-humanoid robot

Until now, experiments shown were made using humanoid robots, which is also the case of our work. We

now wonder, if the predominant social signals presented so far, can also be relevant when the social robot

is non-humanoid. Stiber and colleagues [24] show that, despite using a robotic arm for their experiments,

people did not react so differently in comparison to the previous papers. Speech was the most noticeable

social signal, followed by gaze shifting, smile, head movement, laughter, scrunch, and brow raise. The

experimenters believe that the presence of an overseer during the experiment was a contributing factor to

the fact that people were talking and commenting so much during the error situations. They also noted

that the sequence of social signals is important and that considering the order of social events might be

of use. Finally, they state that reaction time and intensity may leverage the estimator of error severity.

2.1.2 Frequency and duration

The potential of the duration and frequency of the features has been pointed out by some studies.

Mirning et al. [25] continued their previous study [6], using the same dataset as before, but focusing

more on how often people react, how long it takes, and which social signals are frequently shown together.

Participants reacted faster to technical failures than to social norm violations. However, people show more

social signals during the second type of error, which they also noticed in their previous study. During

technical failures, surprisingly, people see less need to react. Also, concerning reaction times, some might

have taken longer because people were ”freezing”, a social signal that was not taken into account in this

study.

Cahya and colleagues [26] performed an experiment where they also focused on analysing the frequency

and duration of the reactions of the participants. The experiment consisted of 3 phases, one interview,

where the robot asked 5 questions, and 2 assembly sessions. In the first assembly session, the robot

gave step-by-step instructions and in the second the person had to ask the robot for the missing parts

of an assembly plan. There were in total of 50 participants. The error situations that they presented

was mostly adopted from [21], with the difference that they divided technical failures into Execution
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Error (EE), when a robot initiates the correct action but does it unsuccessfully, and Planing Error (PE),

when a robot executes the action correctly, but it is the wrong action.

The experiment was recorded using RealSense D415 RGB-D camera and the social signals were an-

notated automatically using openFace [27]. With it, they managed to extract 17 types of facial action

units, head orientation, head position, and gaze direction. The data shows that people show more facial

expressions, head gestures, and gaze shifts during erroneous situations compared to error-free situations.

More specifically, people tend to shift their gaze to the robot, and the study table more frequently. Also,

they noticed that people tilt and move their heads forward more often during error situations.

In terms of duration, gaze shifts last longer in error situations.They hypothesize that the reason for

eye gaze lasting so long is because people ’froze’ during EE.

2.1.3 Smart Speakers

One of the constant features to be noticed in studies is speech, especially utterance and prosody. As

such, studies, such as [28], that use smart speakers and search for error situations might be a good source

of information. But for our problem, the work of Barkhuysen et al. [29] is a better example, since they

combined speech and facial expressions to detect error situations during HRI with a smart-speaker. They

noticed that people show head movements and frowning when aware of a communication problem. When

they had to respond, hyper-articulation frequently occurs during an error situation. Smiling was also a

sign of a problem, frequently accompanied by frowning or raising eye brown.

2.1.4 Bio-signals

During the search for the most current methods to identify error behaviour in the robot using human

signals, we came across the usage of electroencephalogram (EEG) and other bio-signals [30], [31]. However,

the technology to obtain these signals is quite invasive and implies that the user must be standing still

and attached with wires, making it impractical to use. Nonetheless, it is an interesting area of this topic

and one that perhaps, with better technology, could be used. For instance, train a robot with EEG and

associate that signal with others easier to obtain, such as facial expressions.

2.2 Automatic algorithms for Error detection

To the best of our capabilities, we were only able to find 2 studies where they used an automatic method

for detecting mistakes in the actions of the robot using the social signals of the participants as input

features.

8



2.2.1 Random Forest

The main purpose of Kontogiorgos et al. [18], is to compare between smart-speaker and social robots and

to investigate how robot embodiment affects the behavioural response to failures of the user.

They set up a Wizard-of-Oz1 experiment where the participants were instructed to cook spring rolls

by either the smart-speaker or a humanoid robot. For annotation, they used two in-lab annotators,

where one watched the videos without audio, and the other with audio, and 192 online participants.

The automatic detector consisted of a binary choice classifier (failure/not-failure). A Random Forest

Classifier was implemented for that purpose. As features, they used gaze, head movements, and speech.

The first two were obtained using a hat with motion-capture markers. For the latter they used the service

Speech-To-Text of IBM Watson.

After the experiment, they noticed that head movement is the most important feature. Furthermore,

speech tends to be the most relevant social signal when people interact with smart-speaker. And, when

interacting with humanoid robots, gaze features are the most prominent social signals.

When comparing the various human annotators, Kontogiorgos et al. [18] also noticed that the one

without audio performed the worst. Then they state that this highlights the importance of contex-

tual information in assessing the response of people to robot failures. To finalize, for future work they

recommend the addition of temporal information to the features.

2.2.2 NaiveBayes, Ibk and Rule learner Part

The main question of Trung et al. [19] is whether head and body movements, signals that can be tracked

with RBG-D cameras, are enough to robustly detect errors.

This was the oldest paper in which we found an automatic algorithm, and they state that they did

not find any related work with automated error detection from HRI researchers. Hence, we believe this

one would be the first.

To collect the data between the interaction of the participants and a robot, that they programmed to

make two types of errors (social and technical), they used the Kinect V1 RGB-D for skeleton and face

tracking provided in Kinect SDK 1.8. The interaction consisted of two tasks, an interview, and a LEGO

construction task. Then, they trained a rule learner Part, a NaiveBayes classifier, and Ibk, a k-nearest

neighbour classifier, using six different sets of the collected data. These sets were meant to represent

the movements of the participants and their temporal aspects. For evaluation they used 10-fold cross

validation, to simulate a situation where the robot has seen the person before, and leave-one-out cross

validation, to simulate a situation where the robot has never seen the person.

According to their results, body features (e.g. height) are not relevant to recognize an error, but the

1An experiment in which a subject is interacting with a computer system that is operated or partially operated by an
unseen human

9



position the body takes is. The rule learner and k-nearest achieved a high classification rate (> 90%) when

having already data of the person. However, they performed poorly when not. Naive Bayes performed

better in this situation.

They noticed that the social signals shown during error situations are different from person to person,

and that could explain the better performance of 10-fold cross validation. Then they advise that the error

detector should have a 2-stage process. First, identify the error and then verify if it’s technical or social.

For future work, they intend to use an outlier detector and add more modalities. For instance, check

for smiles and laughter, and ’freeze’. Finally, after adding more features, a features selection algorithm,

such as Correlation-Based Feature Selection, should be used to analyse the predictive capabilities of all

features.

2.3 Emotion Recognition

Emotions are part of both human-human and human-robot interactions. The recognition of emotions is

a topic that generates some interest in the HRI community and that has been thoroughly studied. In the

studies mentioned in section 2.1, there were some that noticed how people changed their mood/emotions

throughout the experiments with erroneous robots [26], [23]. As such, we decided to analyse and use

emotion recognition for our error detection problem.

Most of the studies use the proposed idea of six basic emotions, happiness, anger, disgust, fear, sadness,

and surprise [32]. The main feature in these studies is facial expression [33], [34], [35]. But there is also the

increase of methods in emotion recognition using multimodal features such as body features [36], [37], and

thermal features [34]. As we have seen before, the context can also be an important feature, [38] produced

a publicly available automatic algorithm to identify emotions in an image considering the context shown,

more specifically, the background of the image.

Facial expressions can also be translated into Action Units (AU), and some studies aim to associate

specific action units to a corresponding emotion, more specifically the six basic ones [39], [40], [41].

2.4 Research Gaps

Even though there are numerous research on how people react during interaction with a faulty robot,

only a few researchers applied those experiences to build an automatic algorithm to detect them. And,

despite the numerous experiments, there are not many publicly available datasets with people interacting

with a robot that makes mistakes.

We also noticed that emotions have not been used before to detect an error. However, Mirning and

colleagues [21] did ask for the emotional state of the person during their experiments. And Cahya et

al. [26] correlated their most relevant action units to their specific emotions (fear and surprise).
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Thus, we intend to update the state-of-the-art with an automatic error detector algorithm that takes

into consideration emotions and the context of the interaction.
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3.1 Proposed Method

Our main goal is to build an algorithm to detect error situations and classify them as Social Norm

Violation (SNV) or Technical Failure (TF). We propose the pipeline in Figure 3.1. Our algorithm

detects and classifies errors frame by frame and, following Trung et. al. [19], does it in two steps. First,

a Random Forest error detector uses robot context features, gaze features, head pose, facial action units,

and emotions. If an error is detected, an error classifier, which is also a Random Forest model, uses all

the previous signals except emotions to classify it as SNV or TF. Otherwise, the algorithm outputs the

”No error” label. A median filter is also used on the error detector. This filter smooths the output by

using past results to reject spurious miss-classifications. Our shortest reaction has a duration of around

2 seconds. As such, we decided that the window of the filter is about 30 frames, which is equivalent to

one second.

You are 
doing great!

Robot context

- Speech (bool)
- Arm movements (bool)

OpenFace

AverageAU
(Emotion detector)

Error
Detector

Error 
Classifier

Error detection & classification

Yes

No

Error?

Camera Image

Facial
action units

Emotions

Three possible
labels:

No error

Technical Failure

Social Norm
Violation

- Gaze vector 
directions

- Gaze x,y angles
- Head pose

- Facial action
units

- Previous action
- Time since previous

action

Random
Forest

Random
Forest

Figure 3.1: Proposed System

Based on the previous automatic error detector works [18] [19], we compare Random Forest with Naive

Bayes and K-Nearest Neighbour in our problem. The reactions of the users to errors from the robot can

be considered deviations from the normal behaviour during an interaction, as such, these reactions could

be considered outliers. Thus, We also compare outlier detector methods with Random Forest.

In Algorithm 3.1 a pseudo-code that translates the general idea of the error detector is presented.

Algorithm 3.1: Error Detector

begin
for each frame in video do

[Gaze, Head, AU] = openFace(frame)
Emotions = emotionAlgorithm(frame, AU)
Action = getVizzyAction()

if classifyError(Gaze, Head, AU, Emotions, Action) then
classifySNVorTF(Gaze, Head, AU, Action)
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3.2 Dataset

Our work addresses conditions where the robot (Vizzy) interacts with a single person (one-to-one inter-

action) during a first encounter. Thus, the robot has no prior information about the person. Also, we

want to focus on data and experiments that happen in controlled environments, such as laboratories. For

this work, we also focus on interactions where the participants follow instructions with the assistance of

Vizzy, for instance during a block assembly game, during which Vizzy will have some functional failures

(error situations SNV and TF).

Figure 3.2: Vizzy experiment from [1]

Vizzy [20] is a wheeled humanoid social robot with an anthropomorphic upper torso, that can navigate

both indoors and outdoors. It is designed to interact with humans enjoyably, and combines easy mobility

in planar surfaces, grasping ability, eye-head movements, and arm gestures.

With the lack of available datasets, we were planning in performing experiments with Vizzy, to collect

more data. Unfortunately, due to the pandemic caused by covid-19, it is difficult to perform proper

experiments to create a good quality dataset.

3.2.1 Vizzy dataset

We use the dataset of Avelino et al. [1], obtained in human-robot interaction experiments with the social

robot Vizzy. The dataset consists of an experiment where 24 participants individually interacted with

Vizzy in a block assembly game, where a video was captured from a camera on the robot.

Vizzy had two personalities/conditions, the ”Kind robot” condition, and the ”Grumpy robot” condi-

tion. It would help the participants win, if it was in the ”Kind robot” condition, by giving them clues on

where to find the missing parts. In the ”Grumpy robot” condition it would make the participants lose the

game, by destroying the construction with its arm, causing TF, and then blaming the participants, and

tease them with sentences such as ”you can get it right, but you annoy me by being so slow”, generating

SNV.

During the experiment with Vizzy, a laptop was also present to show the score and the rules of the
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game. Because of this, during the interaction, the participants were not only interacting with Vizzy but

also with the computer to verify the score, and start and finish of the game, Figure 3.3. The main goal

of this work is to analyse data of people interacting with social robots, in our case Vizzy. As such, the

experiments will focus on the usage of the Vizzy dataset angle alone, and the usage of the Vizzy dataset

with the Laptop angle as an addition.

(a) (b)

Figure 3.3: Laptop Angle Sample

3.2.2 Dataset Annotation

Using openFace we automatically annotated each frame of the data to obtain the position and angle of

the head, direction of eye gaze, and intensity and presence of action units. For each frame, openFace also

outputted the confidence1 of the landmarks it classified. Frames that had a confidence lower of 80% were

discarded.

We annotated the actions of the robot and added the classes error, SNV and TF, which can be true

or false, to each frame (the SNV and TF mistakes can happen simultaneously). We divided the actions

of the robot into two categories, speak and move. We then labelled them as true on the frames where

Vizzy moved or spoke (both actions can happen simultaneously).

To annotate the error and error type of the dataset we analysed the reactions of the users and labeled

the beginning of an error as soon as we detected a reaction, and the end of the error when the reaction

started to fade. Errors were classified as SNV or TF depending on the action of the robot. In the dataset

of Avelino et al. [1], the majority of speak actions were SNV, while most move actions were TF. There

were also some speak actions where the voice of Vizzy failed a bit and confused the participants, those

were considered as TF. In Figure 3.4 we show the annotation of error and error type of a video from

Avelino dataset, where we note that the dataset is imbalanced since the number of no error frames is

significantly higher than the number of error frames (SNV and TF).

It is expected that this labelling method introduces some bias and error, because checking the exact

starting frame and ending frame of a reaction is difficult. Moreover, since there was only one annotator

1https://github.com/TadasBaltrusaitis/OpenFace/wiki/Output-Format
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Figure 3.4: Error and error type annotation, blue line is the error (bool), orange shade is Social Norm Violation,
green shade is Technical Failure

the length of the reaction, as well the reaction itself, can be biased.

3.3 Feature Extraction

To extract eye gaze, head movement and facial expressions(Action Units (AU)) we use openFace [27].

openFace is a state-of-the-art open-source facial behaviour analysis tool that is used by many researchers

[26]. It is capable of facial landmark detection, head pose estimation, facial AU recognition, and eye-gaze

estimation. The AU are values for individual components of muscle movements that brakes down facial

expressions.

For emotion acquisition of the data, we propose a method that we called AverageAU. We compare

it to some already built and trained emotion recognition algorithms. Surveys such as [42], and websites

like papers with code 2 are a good source of information to know the current state of the art of emotion

recognition tools, as well as to obtain the code made available of such works. The algorithms chosen to

compare with are DeepFace [43], and Efficient CNN [44], which we describe in section 3.3.2. During the

interaction between humans and robots, emotions should help in speeding up the process of detecting if

something went wrong. We can assume that if the person is suddenly angry, scared, disgusted, sad, or

surprised, then something happened that might be the fault of the robot [15].

3.3.1 Average of Action Units

To detect emotions, we propose a method that uses facial action units [45]. This way, we can use OpenFace

to compute all head and face signals, with reduced computational requirements, since there is no need

for an additional machine learning algorithm to obtain emotions.

By using the AU captured by openFace, we can associate them to the corresponding emotions 3 [40].

To do this, we performed the average of the action units for each of the emotions, equation 3.1. For

instance, happiness is related to the AU12 and AU06, equation 3.2. Finally, we select the emotion with

the highest average. A more detailed description and experiments of this algorithm are performed in

2https://paperswithcode.com/
3https://en.wikipedia.org/wiki/Facial_Action_Coding_System
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Chapter 6, and in section 6.1 we show the various combinations of AU for each emotion.

Emotion =
1

n

n∑
i=1

AUi (3.1)

Happy =
AU12 + AU06

2
(3.2)

The neutral emotion is selected if the highest value is not above a previously defined threshold. We

call this method AverageAU or avgAU.

3.3.2 DeepFace & Efficient CNN

DeepFace [43] is a lightweight face recognition and facial attribute analysis framework for python. It

is a hybrid face recognition framework wrapping state-of-the-art models: VGG-Face, Google FaceNet,

OpenFace, Facebook DeepFace, DeepID, ArcFace, and Dlib. It is capable to detect 7 emotions: Happiness,

sadness, disgust, anger, fear, surprise, and neutral. DeepFace has become quite popular in the github

community having over 130 thousand downloads. It is a new, constantly improving, and expanding

algorithm. It achieved a 57% accuracy on the FER20134 dataset.

The work of Siqueira et al. [44]5, Efficient Facial Feature Learning with Wide Ensemble based CNN,

is ranked as state of the art on papers with code for the FER+ dataset6 achieving 80% accuracy. It

outputs 8 emotions: Happiness, contempt, sadness, disgust, anger, fear, surprise, and neutral.

3.4 Actions of the Robot

Studies, such as [18], noticed that contextualizing the event could be important. In their case, they noticed

that the annotators had issues in understanding an error situation when they did not have access to the

sound of the video and could not listen to what the robot and the participants were saying (context).

In our case, we define the context of the events as the action of the robot. The actions of the robot are

what will, in the first place, provoke the reactions from the participants during the interaction. As such,

we consider it the contextualization of the events.

The actions of the robot consist of the current action, which consists of movement (Boolean) and

speech (Boolean), last performed action, which can be move, speech, or move&speech. And time since

the last action, which is measured in seconds.

4https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/

data
5https://github.com/siqueira-hc/Efficient-Facial-Feature-Learning-with-Wide-Ensemble-based-Convolutional-Neural-Networks
6https://github.com/microsoft/FERPlus
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3.5 Hypothesis Tests

To compare the proposed algorithm with other algorithms, we use the Wilcoxon test7 [46], a non-

parametric test that does not assume any properties regarding the distribution of the variables in analysis,

and also the Student’s t-test8 [47]. The Wilcoxon test is used, over the t-test, when the distribution of

the difference between the means of two samples cannot be assumed to be normally distributed. To

test for normality, we used the Shapiro test9 [48]. These hypothesis tests will tell us if there is a sta-

tistically significant difference between the algorithms: if the p-value is smaller than 0.05, then there is

a statistically significant difference between the algorithms. Students t-test is said to be more reliable

than Wilcoxon test when the assumption that the data has a normal distribution is assured [49]. On

section 4.2.4 we compare both hypotheses and see that generally, both tests agree when a statistically

significant difference is achieved.

The size effect is also used in some experiments when a statistically significant difference is achieved to

evaluate the magnitude of the difference. We use the Cohen’s d size effect [50]. If the d is below 0.2, then

the size effect is small, if it is between 0.2 and 0.8 is considered medium, above 0.8 is considered large.

3.6 Proposed Pipeline Results

In this section, we show the results of our proposed solution for the error detector and classification,

Figure 3.1. The error detector uses Random Forest with head, gaze, AU, emotions, and actions of the

robot. The error classifier uses Random Forest with all the previous features except emotions. We

compare it to the features used in previous automatic error detector works [18], [19], which used head

and gaze features. First, we detect if an error has occurred with the error detector. If so, then the error

type classifier is used. This is a multi-label problem with Error, SNV, and TF labels, hence, accuracy

and hamming loss are used for the experiments.

In Figure 3.5 we show the results. The statistically significant difference is represented with: * ==

p<0.05, ** == p<0.01, *** == p<0.001, **** == p<0.0001. As we can see, our algorithm achieves

a higher accuracy score of 72.77% while the head and gaze method achieved 57.21% with a statistically

significant difference. Our method also achieves a lower hamming loss than the head and gaze algorithm.

Cohen’s d size effect was also used, achieving a large size effect of 5.24, meaning that the difference

achieved has a large magnitude.

As such, our solution achieves better results in detecting and classifying an error than the one using only

head and gaze features, features used in previous error detector works.

In Figure 3.6 we compare the proposed error detector and classifier with and without a median filter.

7https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
8https://en.wikipedia.org/wiki/Student%27s_t-test
9https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test
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Figure 3.5: Comparing the proposed Error detector and classifier algorithm with the features used in previous
works. ↑ - higher scores are better; ↓ - lower scores are better

As we can see, with the median filter the algorithm achieved a statistically significant different result of

79.63% mean accuracy, with a large size effect of 2.27.

Figure 3.6: Comparing the proposed Error detector and classifier algorithm with and without median filter. ↑
- higher scores are better; ↓ - lower scores are better

In Figure 3.7 and Table 3.1 we show the results of the proposed error detector and classifier, using

Vizzy and Laptop dataset. The algorithm achieved 67.69% mean accuracy and 0.20 mean hamming loss.
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Figure 3.7: Multi-label accuracy and hamming loss
of error detector and classifier combined,
Vizzy and Laptop dataset

Individual
Score

Accuracy
mean SD

Error Detector 76.33 2.76
Error
Classifier

SNV 78.62 2.75
TF 73.74 3.53

Table 3.1: Scores for each individual
error detector and clas-
sifier, Vizzy and Laptop
dataset

In the Figures 3.8 and 3.9, we show the detection of the error and its classification throughout inter-

actions Vizzy had with one participant. We show the results with a median filter and without.

We can see that with the algorithm Vizzy can detect its own mistakes, even in cases that we did not

notice (Figure 3.8, explained in more detail in section 4.1.6.A), and classify the mistake as Social Norm

Violation and/or as Technical Failure.
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Figure 3.8: Error detection (blue line) and classification of SNV (yellow) and TF (green) in an interaction. The
upper graph is the Ground Truth.
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Figure 3.9: Error detection (blue line) and classification of SNV (yellow) and TF (green) in an interaction. The
upper graph is the Ground Truth.
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In this chapter, we describe and perform a set of experiments to evaluate the proposed error detector.

To do so, we compare its performance against distinct combinations of classifiers and input features,

where we use the accuracy and F1 score and check for statistically significant differences.

These experiments allow us to study the impact of the input features on the overall performance of

the algorithm, allowing us to test the following hypotheses:

Hypothesis 1 (H1). Adding Facial Action Units to the literature base feature vector (head, gaze) will

significantly improve error detection.

Hypothesis 2 (H2). The addition of the current action of the robot to the literature base feature vector

(head, gaze) will significantly improve error detection.

Hypothesis 3 (H3). The addition of temporal information of the actions of the robot to the literature

base feature vector (head, gaze) significantly improves error detection.

Hypothesis 4 (H4). The addition of emotion information of the user to the literature base feature vector

(head, gaze) significantly improves error detection.

4.1 Error Detector

Based on the previous automatic error detector works [18] [19], we compare Random Forest (RF) with

Naive Bayes (NB), and K-Nearest Neighbor (KNN). As planned, we start with the detection of the error,

and then the classification of the error in SNV or TF.

An initial experiment was performed to understand which method to use for the balancing and

splitting of the data. Regarding the balancing method, we tested under-sampling, and over-sampling.

The under-sampling method consists of randomly choosing frames with errors classified as false. For the

over-sampling, we performed data augmentation, namely horizontal flip, on the videos. However, even

with this additional data, it was not enough to reach a balanced dataset, so under-sampling was still

required, but now included more data. Nonetheless, we name this method over-sampling for comparison

simplification.

For the splitting of the data, we used the train test split method from sklearn1. With this method distinct

samples of the same video may appear during training and testing. We also used a random selector, where

25% of the videos of the dataset of Avelino et al. were for the test set. This way we are sure that the

algorithm never sees people on the test set, during training.

In tables 4.1 and 4.2 we show the results of these experiments, where all the scores presented were

obtained with an average of 10 runs for each condition. The base feature is the position and angle of the

head, angle of gaze, and intensity and presence of AU.

1https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
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We begin by analysing the performance of the Random Forest when splitting the data with the

test train split, Table 4.1. The algorithm achieved scores of around 98% accuracy. We hypothesize that

these high scores point out that random forest can classify error situations correctly when it has seen the

participant before.

Features Balanced
Accuracy F1

Average
Precision

Mean SD Mean SD Mean SD
Base Under 98.11 0.14 98.11 0.14 97.10 0.27
Base Over 98.28 0.091 98.28 0.091 97.31 0.17

Table 4.1: Results of Random Forest, using train test split

With the random selector, the error detector achieves lower scores than the other splitting method,

Table 4.2. Both methods to balance the data achieved similar results, so we decided to use the data

augmentation method for the following experiments.

Features Balanced
Accuracy F1

Average
Precision

Mean SD Mean SD Mean SD
Base Over 74.74 5.96 73.64 6.80 71.94 5.67
Base Under 73.71 3.88 72.58 4.77 70.74 3.25

Table 4.2: Results on Random Forest, randomly splitting the videos

We decided that for our experiments we will use the random selector for the splitting of the data

since we focus on situations where the participants have not dealt with the robot before. As such, the

robot has no previous data of that person. For the balancing of the data, we decided to use the data

augmentation method.

4.1.1 Hyper Parameter Tuning

We tuned our Random Forest using grid search. The resulting best settings were n estimators = 200,

criterion= ’entropy’, max depth=10, max features=’sqrt’, min samples leaf=15, min samples split=15.

The default Random Forest achieved a 74.87% mean accuracy score, while the tuned version achieved a

77.81% mean score, with a statistically significant difference.

The section when we compare the different usage of features (section 4.2 to section 4.2.1) uses the default

version of Random Forest.

4.1.2 Naive Bayes

In this section we compare Naive Bayes, a classifier that was used by [19], with Random Forest.
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4.1.2.A Hyperparameter tuning

For our Naive Bayes we are going to use GaussianNB from scikit-learn2. With grid search, we found

that the best settings for the GaussianNB are with a var smoothing = 0.0028. The default Naive Bayes

achieved a 67.76% mean accuracy score while the tuned version achieved a 77.94% mean accuracy score.

4.1.2.B Naive Bayes Vs Random Forest

In Table 4.3 and 4.4, we show the results of the experiment. We also present a comparison between the

two more efficient combinations of features.

On Naive Bayes, the combination of the base plus the actions and emotions and base plus emotions

achieved a Wilcoxon p-value above 0.05, and as such, they were not significantly different. On Random

Forest, comparing the two combinations of features, the results are similar, and the p-value is above 0.05.

Comparing Naive Bayes with Random Forest, Random Forest achieved better results, being statistically

significantly different according to the Wilcoxon test.

Features Classifier
Accuracy F1

Average
Precision Features

Wilcoxon
Accuracy

Mean SD Mean SD Mean SD p stat
+Actions
+Emotions(1)

Naive Bayes 78.34 2.09 78.19 2.08 71.93 1.97 (1) Vs (2) 0.54 203.0

+Actions(2) Naive Bayes 78.23 1.98 78.05 2.00 71.64 2.29 (1) Vs (3) 0.0003 57.0
+ Actions
+Emotions(3)

Random Forest 80.65 3.45 80.38 3.79 76.41 2.71 (2) Vs (4) 0.0011 74.0

+Action(4) Random Forest 80.66 3.58 80.39 3.92 76.44 2.82 (3) Vs (4) 0.42 193.0

Table 4.3: Naive Bayes and Random Forest, on Vizzy angle dataset.

Focusing now on the usage of both the Vizzy angle and laptop angle, Table 4.4. Random Forest

achieved higher accuracy mean scores, with a p-value below 0.05. When comparing the combination of

features, in both algorithms, the p-value was always above 0.05, meaning that there was no significant

difference between the two combinations.

Features Classifier
Accuracy F1

Average
Precision Features

Wilcoxon
Accuracy

Mean SD Mean SD Mean SD p stat
+Actions
+Emotions(1)

Naive Bayes 77.33 2.44 77.26 2.47 71.31 2.28 (1) Vs (2) 0.42 193.0

+Actions(2) Naive Bayes 77.33 2.22 77.24 2.23 70.68 2.32 (1) Vs (3) 0.00049 63.0
+ Actions
+Emotions(3)

Random Forest 78.88 1.96 78.66 2.11 74.58 1.65 (2) Vs (4) 0.0032 89.0

+Action(4) Random Forest 78.77 1.91 78.55 2.05 74.44 1.71 (3) Vs (4) 0.11 155.0

Table 4.4: Naive Bayes and Random Forest, on Vizzy and laptop angle dataset.

2https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_

bayes.GaussianNB
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We can conclude that Random Forest achieves better results than Naive Bayes, as proposed. Between

the usage of the base plus actions plus emotions and the usage of base plus actions, there was not a

significant difference, when using Random Forest and Naive Bayes.

4.1.3 K Nearest Neighbour Vs Random Forest

Besides Naive Bayes, Trung et al. [19] also used a k-nearest neighbour classifier to detect error. In this

section we compare Random Forest with KNN, both tuned.

In Table 4.5 we show the results. KNN proved to be computationally costly for our algorithm. Random

Forest took around 10 seconds to fit and predict, while KNN took around 100 seconds. Nevertheless,

according to the experiment, Random Forest achieves higher scores and is significantly different from

KNN (p-value < 0.05).

Concerning the combination of features, on KNN there was no significant difference. However, on

Random Forest the Wilcoxon test p-value achieved a value below 0.05, meaning that on these runs the

usage of base plus actions and emotions performed the best since it reached a higher mean accuracy score

with a lower variance.

Features Classifier
Accuracy F1

Average
Precision Features

Wilcoxon
Accuracy

Mean SD Mean SD Mean SD p stat
+Actions
+Emotions(1)

KNN 72.06 2.93 71.52 3.30 67.54 2.53 (1) Vs (2) 0.21 38.0

+Actions(2) KNN 72.23 3.01 71.64 3.42 67.81 2.56 (1) Vs (3) 0.00065 0.0
+Actions
+Emotions(3)

Random Forest 79.91 3.14 79.66 3.36 75.97 2.70 (2) Vs (4) 0.00065 0.0

+Actions(4) Random Forest 79.56 3.22 79.29 3.43 75.59 2.88 (3) Vs (4) 0.02 20.0

Table 4.5: KNN error detector, Vizzy angle

4.1.4 Random Forest Imbalanced data

We analyse how Random Forest behaves when classifying an imbalanced test set, with a balanced training

set. To evaluate the results we used accuracy score, for the balanced test set, and the imbalanced data,

we used Balanced Accuracy3, a score also used by [18]. Besides these, we also look at F1-score, precision,

sensitivity/recall, and specificity. We used only Vizzy dataset and show the results in Table 4.6. The

balanced test set is obtained by sampling the imbalanced test set, meaning that both test sets have frames

from the same video interactions.

Accuracy, balanced accuracy, sensitivity, and specificity reach similar results both in the balanced

and in the imbalanced test set. F1 score and precision reach a lower score in the imbalanced test set.

Concerning the hypothesis test to compare the two different features, in both test sets the same conclusion

is reached, with a p-value above 0.05, that there was no significant difference between the two algorithms.

3https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
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Features Test Set

Accuracy/
Balanced
Accuracy

F1 score Precision
Recall/
Sensitivity

Specificity
Features

Accuracy
Hypothesis

F1 score
Hypothesis

Mean SD Mean SD Mean SD Mean SD Mean SD p-value p-value
+Actions
+Emotions(1)

Balanced 80.45 3.05 78.69 4.87 86.14 5.15 73.53 10.22 87.38 6.99 (1) Vs (2) 0.80 0.80

+Actions(2) Balanced 80.41 3.23 78.63 5.26 85.90 4.87 73.66 10.68 87.16 6.67 (3) Vs (4) 0.60 0.25
+ Actions
+Emotions(3)

Imbalanced 80.37 2.95 61.03 7.19 54.77 13.21 73.53 10.22 87.20 7.19

+Action(4) Imbalanced 80.28 3.10 60.63 7.02 53.99 12.67 73.66 10.68 86.91 6.89

Table 4.6: Comparison of results with balanced and imbalanced test set

4.1.5 Outlier Detection for Error Detector

While evaluating the distribution of emotions on error interactions and no error interactions we noticed

that there is a different distribution of emotions, especially a spike of happiness, on the interactions with

error, Figure 4.1. After evaluating these results and noticing that the response of the participants, when

Vizzy made a mistake, is a deviation from the regular behaviour, we decided to try to use outlier detection

algorithms to identify these mistakes.

Figure 4.1: Distribution of emotions on train and test

We are interested in the following outlier detector methods, that are frequently used by the community

4 5, and available on sklearn6:

• Isolation Forest [51]

• Local Outlier Factor (LOF) [52]

• One-class SVM [53]

• Minimum Convariance determinant (Elliptic Envelope) [54]

Domingues et al. [55] performed a comparison study on various outlier detection algorithms, where

they concluded that Isolation Forest achieves better results in efficiently identifying outliers while showing

4https://machinelearningmastery.com/model-based-outlier-detection-and-removal-in-python/
5https://towardsdatascience.com/4-machine-learning-techniques-for-outlier-detection-in-python-21e9cfacb81d
6https://scikit-learn.org/stable/modules/outlier_detection.html#outlier-detection
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excellent scalability on large datasets. One-class SVM also performed well, but it is not suitable for large

datasets. Local Outlier Factor (LOF) reached the lowest performance.

4.1.5.A Training Set

The idea is that the frames that are labelled as errors are detected as outliers. Since we have those

points labelled, we then have a case of supervised outlier detection. More specifically, we deal with

novelty detection, which is similar to anomaly/outlier detection, but the models should be trained on

a dataset free of anomalies [55]. Algorithms such as one-class SVM prefer the data to be as clean as

possible, however, other unsupervised algorithms, such as Isolation Forest, can be fitted with a training

set containing outliers, which in our case are what we labelled as error.

In this section, we compare the results when training Isolation Forest with data with no outliers, and

with data with errors (outliers).

Training Set
Balanced
Accuracy

F1 score
Features

Hypothesis

Mean SD Mean SD p-value
Clean(1) 74.98 2.23 50.69 6.45 (1) Vs (2) 0.0003
Not Clean(2) 72.61 2.33 48.93 5.87

Table 4.7: Isolation Forest train with no error and with error

From Table 4.7, we can conclude that the outlier detector achieved higher scores when trained with

a clean dataset, a data with no outliers/error. So, in the following experiments, we train the different

outlier detectors with a clean training set.

4.1.5.B Tuning the outlier detectors

We tuned the outlier detectors and obtained the following parameters (parameters not mentioned are the

default of sklearn):

• Isolation Forest: max samples = 200, max features = 15, n estimators = 300, bootstrap = True,

random state = 16; (79%, t 6s)

• LOF: n neighbors = 40, metric = ’euclidean’; (50%, t 300s)

• One-class SVM: Default; (55%, t 3000s)

• Elliptic Envelope: contamination = 0.2, random state = 30; (75% t 200s)

4.1.5.C Comparing the outlier detectors

We now proceed to compare the outlier detectors. For this experiment, we use our dataset imbalanced.

As such, we used the balanced accuracy and f1 score.

One-class SVM, as expected [55], does not behave well with large datasets, and is computationally costly,
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as we have seen in the tuning section. Therefore, we will not be using this algorithm. On Table 4.8 we

show the results. Isolation Forest was the outlier detector with the highest score.

Outlier
Detector

Balanced
Accuracy

F1 score
Features

Wilcoxon

Mean SD Mean SD p-value
Isolation Forest(1) 74.51 2.64 50.28 4.54 (1) Vs (2) 5.96e-8
Local Outlier
Factor(2)

53.31 3.68 23.70 3.40 (1) Vs (3) 1.49e-6

Elliptic
Envelope(3)

69.43 5.65 41.54 7.05 (2) Vs (3) 5.96e-8

Table 4.8: Comparing different outlier detectors

4.1.6 Random Forest Classifier Vs Isolation Forest Outlier Detector

With the outlier detector chosen, in this section, we compare the Random Forest classifier and the

Isolation Forest detector. For the comparison, we used imbalanced data on the test set, and make use of

the student’s t-test for the hypothesis test, when the data follows a normal distribution.

The experiments were done with the outlier detectors on the previous sections, were done using the base

(head, gaze and AU) plus actions plus emotions features, in these experiments we will also see how the

Isolation Forest behaves when using base plus actions.

In Table 4.9 we show the results of both algorithms when using Vizzy dataset. Starting with the

different combinations of features on both algorithms the student’s t-test, achieved a p-value above

0.05 meaning that the two combinations are not significantly different. Nonetheless, on both feature

combinations, Random Forest classifier was the algorithm with the highest score, with (1) Vs (3) and (2)

Vs (4) having a p-value below 0.05, on both scores, with a size effect above 0.8, meaning that Random

Forest achieves a statistically significant different result from Isolation Forest, with a large size effect.

Features Algorithm
Balanced
Accuracy

F1 score
Features

Accuracy
Hypothesis

Accuracy
Size Effect

F1 score
Hypothesis

mean SD mean SD p-value Cohen’s d p-values
+Actions
+Emotions (1) Random Forest

80.13 3.22 62.68 1.78 (1) Vs (2) 0.14 0.15

+Actions(2) 79.96 3.49 62.15 1.72 (3) Vs (4) 0.12 0.06
+Actions
+Emotions (3) Isolation Forest

75.63 2.89 52.96 2.86 (1) Vs (3) 1.73e-6 1.47 1.73e-6

+Actions(4) 75.38 3.34 52.06 3.65 (2) Vs (4) 2.35e-6 1.34 2.6e-4

Table 4.9: Random Forest Vs Isolation Forest, on Vizzy dataset

In Table 4.10 we show the results using Vizzy and Laptop dataset, where the conclusions are similar

to the ones made above. Random Forest achieves better scores than Isolation Forest.
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Features Algorithm
Balanced
Accuracy

F1 score
Features

Accuracy
Hypothesis

F1 score
Hypothesis

Mean SD Mean SD p-value p-value
+Actions
+Emotions(1)

Random Forest 76.88 2.28 61.34 4.48 (1) Vs (2) 0.8 0.72

+Actions(2) Random Forest 77.01 2.31 61.49 4.31 (3) Vs (4) 0.36 0.08
+ Actions
+Emotions(3)

Isolation Forest 69.44 2.00 48.84 4.12 (1) Vs (3) 6.10e-5 6.10e-5

+Action(4) Isolation Forest 69.24 2.01 48.39 3.94 (2) Vs (4) 6.10e-5 6.10e-5

Table 4.10: Random Forest Vs Isolation Forest, on Vizzy and Laptop dataset

With this, we can conclude, that for the error detector algorithm, Random Forest with Actions Units,

Head position, and movement, Eye Gaze, Actions of the robot, and Emotions, is the better algorithm on

our dataset, as proposed.

4.1.6.A Median

We intend in this section to verify how a median filter would improve both Random Forest and Isolation

Forest. Since when an error happens, multiple error frames exist grouped, a single error frame or a small

group of error frames is potentially a miss classified error. With this in mind, we hope to rectify these

frames and improve our algorithm by applying a median filter to the output. The median filter has a

window size of 30 frames.

Median Algorithm
Balanced
Accuracy

F1 score
Accuracy
Hypothesis

F1 score
Hypothesis

Mean SD Mean SD p-value p-value
No

Random Forest
79.53 3.27 61.65 3.92

0.0002 6.10e-5
Yes 80.30 3.59 63.08 3.80
No

Isolation Forest
74.34 2.65 51.90 5.89

6.10e-5 6.10e-5
Yes 75.35 2.86 53.77 6.42

Table 4.11: Random Forest and Isolation Forest, with and without Median Filter, on Vizzy dataset

As we can see in Table 4.11, the addition of the median improves both algorithms, with a p-value

below 0.05, meaning that there was a statistically significant difference between the two algorithms.

In figures 4.2 and 4.3, we show how both algorithms behave when detecting an error in one video

recording of our dataset. With this, we hope to see in action the median filter, graphically.
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Figure 4.2: Error detector using Random Forest and Isolation Forest with and without Median Filter

Figure 4.3: Error detector using Random Forest and Isolation Forest with and without Median Filter

In Figure 4.3 and Figure 4.2 the first plot line represents the labelled dataset, the blue line is the

error, which is true when has value one, the green and yellow bars are when Vizzy speaks or moves,

respectively. The second and third lines are the results from Random Forest and Isolation Forest, and

the fourth and fifth lines are the results after the median filter. We can see that the median filter helps

the algorithms on both figures.

However, at the beginning of the plot of Figure 4.3, there is no error labelled, meaning that we did not
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find any reaction from this participant to the actions of the robot. It is important to remind that in this

interaction most of the actions of the robot were intended to be mean and grumpy. It is then interesting

that both algorithms detect an error situation in the same place after Vizzy spoke. This behaviour is

noticeable in other videos as well. This event can be caused by noise in the data, or an actual reaction

occurred which the algorithms detected, and could have been missed by us. Upon further inspection on

the video in cause, the reaction detected by both algorithms was indeed an out of the ordinary one, but

it was not a reaction to a mistake of the robot, but rather a reaction to a mistake that the user did and

Vizzy corrected. On the other hand, when Vizzy corrected the mistake of the user, we did not consider it

as rude, and hence did not label it as an error, but after evaluating it more, we can understand that for

some people the straightforward correction of the robot could be considered as a social norm violation.

Even though Isolation Forest achieves lower scores over Random Forest, as an outlier detection method

it has an advantage over Random Forest. Isolation Forest should be capable of detecting new types of

reactions to mistakes, that Random Forest has not seen/trained yet. In the next chapter, we perform

experiments to check this.

4.1.6.B Dealing with new mistakes

In this section, we test how Random Forest deals with new mistakes and compare them to Isolation

Forest. For this experiment, we use violin plots to show the results. In Figure 4.4 we show the results

with Random Forest trained with all the error examples from the dataset. As seen before, Random

Forest achieved higher scores than Isolation Forest. Then, we remove from the training set the SNV

errors, meaning that these types of mistakes are new on the test set. Figure 4.5(a) shows that in terms

of accuracy there was no significant change, but when comparing F1 score, Random Forest still achieves

higher scores with a statistical significance difference.

When removing the TF error type from the training set, Figure 4.5(b), Random Forest has a lower

performance than Isolation Forest.

Figure 4.4: Comparing Random Forest with Isolation Forest, with the entire dataset
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Figure 4.5: Random Forest and Isolation Forest when dealing with new types of mistakes

This shows that the outlier detector method is more suitable when dealing with new mistakes. Re-

garding the removal of the SNV errors, Random Forest managed to perform better than Isolation Forest

because it had the information of the reactions from the TF errors, which were more intense and distinc-

tive reactions. This is also why Random Forest failed when we removed the TF errors, it had no relevant

information to detect error.

Figure 4.6: Error detector using Random Forest and Isolation Forest with and without Median Filter, On No
Error Video

However, this advantage of the outlier detector when dealing with new error can also be a disadvantage.

During the experiments we noticed that the Isolation Forest does not deal as well as Random Forest

with interactions where no error occurs, resulting in more false positives. For instance, Figure 4.6 is

an interaction with no error, where the outlier detector accused many situations as an error, and even
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with the median filter it failed, while the Random Forest was more robust in this situation. This type

of situation occurs frequently, on Fig 4.7 we show a violin plot where we can see that Random Forest

achieves a statistically significantly different higher score than Isolation Forest when the test set only has

no error situations.
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Figure 4.7: Comparing Random Forest with Isolation Forest, test set with only no error situations

4.2 Input features of the Error Detector

In this section, we compare how the different combination of features influences the algorithm. As

mentioned before, the base is the use of Head, gaze, and AU features, to which we will then add the

emotions, the actions of the robot, and then both.

In Table 4.12, we show the results of the various tests. We used accuracy, F1-score, and average

precision score to evaluate the algorithms and run the hypothesis test for each score, to compare to the

base algorithm. We can see that the addition of emotions did not cause a statistical difference, p-value

above 0.05. But the addition of action and the addition of both actions and emotions, increased the mean

of all scores, with a statistically significant difference (p<0.05). From this experiment, we can conclude

then that the addition of actions of the robot helps Random Forest in detecting error situations, which

confirms hypothesis H2.

Features
Accuracy Wilcoxon F1 Wilcoxon

Average
Precision

Wilcoxon

Mean SD p stat Mean SD p stat Mean SD p stat
Base 72.67 5.34 70.96 6.65 70.37 4.62
+Emotion 72.62 5.34 0.7 214 70.90 6.66 0.7 214 70.32 4.54 0.64 210
+Action 72.94 5.28 0.017 166 71.27 6.57 0.018 168 70.63 4.47 0.015 162
+Action
+Emotion

72.79 5.25 0.035 187 71.11 6.54 0.030 182 70.50 4.49 0.024 175

Table 4.12: Comparing different combination of features
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With the use of both the data from Vizzy angle and the laptop angle, we proceed to another Wilcoxon

test to compare the different combinations of features. All the additions achieved a p-value lower than

0.05, showing that they are significantly different from the base features. The addition of action and

emotions to the base achieved the lowest p-value of the Wilcoxon test.

Features
Accuracy Wilcoxon F1 Wilcoxon

Average
Precision

Wilcoxon

Mean SD p stat Mean SD p stat Mean SD p stat
Base 70.01 3.02 67.95 4.01 67.86 2.59
+ Actions 70.19 3.05 0.098 152 68.14 4.04 0.015 163 68.10 2.63 0.028 126
+ Emotions 70.56 2.88 0.003 90 68.63 3.78 0.0028 87 68.42 2.48 0.0041 93
+ Actions
+ Emotions

70.47 2.84 0.0023 84 68.50 3.73 0.0024 85 68.36 2.44 0.0020 82

Table 4.13: Comparing different combination of features, laptop and Vizzy view

It is worth noticing that even though we are mentioning the use of head, gaze, and AU as the base

features, this is because these are the features that are considered the most relevant in the state of the art

(chapter 2). However, the previous works that performed an automatic error detector ( [19], [18]) only

used head and gaze features. As such, we compare the improvement of the algorithm with the addition

of the AU. We also check how the algorithm behaves with head, gaze, and emotions since the emotions

are related to the AU. The results of these experiments are on Table 4.14

The addition of AU to the head and gaze features achieved higher scores, in comparison to the

other two methods, and the Wilcoxon test resulted in a p-value below 0.05, showing that there is a

statistically significant difference between the algorithms, proving the hypothesis H1. However, there is

not a significant difference between the head and gaze features and the addition of emotions.

Features
Accuracy Wilcoxon F1 Wilcoxon

Average
Precision

Wilcoxon

Mean SD p stat Mean SD p stat Mean SD p stat
Head, Gaze (1) 58.96 3.64 53.80 6.01 56.83 3.00
Head, Gaze, AU (2) 70.63 6.00 68.40 7.89 68.12 4.81
Head, Gaze, Emotion (3) 58.21 5.27 54.26 6.97 54.30 5.33
(1) Vs (2) 1.73e-6 0.0 1.92e-6 1.0 1.73e-6 0.0
(1) Vs (3) 0.48 198 0.20 170 0.15 170
(2) Vs (3) 1.73e-6 0.0 1.73e-6 0.0 1.73e-6 0.0

Table 4.14: Addition of action units

4.2.1 Temporal addition to the actions

The previous addition of actions in this section did not account for past information, using only data

available on a single frame. As noted in past works [26], temporal information is relevant to detect whether

an error has occurred. As such, we decided to add two features to represent some information about past

events. The first feature encodes the last action (lastAction), with three possible values: speak, move,
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and speak&move. The second feature represents how long the last action occurred (t lastAction). The

time starts to count as soon as the last action ends.

The experiments presented on tables 4.15 and 4.16, were both conducted using the random splitting

of the videos, to ensure participants on the test set are not on the train set, with over-sampling.

In both tables, we compare the addition of actions and emotions to the base features, then the addition

of the last action to the previous features, and finally the addition of the time since the last action to the

previous features. The Wilcoxon test is performed by comparing the algorithm to the addition of action

and emotions to the base, except when the column features say (2) Vs (3). In that case, the Wilcoxon

test is performed with the addition of lastAction and the addition of lastAction and t lastAction.

Comparing the addition of these temporal features, we can see that the algorithm is improved, and

according to the Wilcoxon test the algorithms are significantly different (p − value < 0.05). When

comparing the (2) Vs (3) we can also see that the p-values are below 0.05 with Vizzy angle, and when

using both angles, indicating that these algorithms are also statistically significantly different.

Features
Accuracy Wilcoxon F1 Wilcoxon

Average
Precision

Wilcoxon

Mean SD p stat Mean SD p stat Mean SD p stat
+ Actions
+ Emotions(1)

73.43 6.61 71.84 8.04 70.80 5.79

(1) + lastAction
(2)

74.71 6.04 2.15e-5 21 73.38 7.24 2.16e-5 26 72.15 5.30 9.32e-6 17

(2) + t lastAction
(3)

75.85 5.80 1.24e-5 20 74.62 6.93 1.97e-5 25 73.62 5.08 2.35e-6 3.0

(2) Vs (3) 0.00066 67 0.0014 77 6.89e-5 39

Table 4.15: Addition of temporal actions, Vizzy view

Features
Accuracy Wilcoxon F1 Wilcoxon

Average
Precision

Wilcoxon

Mean SD p stat Mean SD p stat Mean SD p stat
+ Actions
+ Emotions(1)

70.34 3.65 68.36 4.68 68.09 3.28

(1) + lastAction
(2)

71.98 3.69 1.73e-6 0.0 70.29 4.63 1.73e-6 0.0 69.82 3.34 1.73e-6 0.0

(2) + t lastAction
(3)

73.30 3.57 1.73e-6 0.0 71.76 4.41 1.73e-6 0.0 71.43 3.20 1.73e-6 0.0

(2) Vs (3) 2.88e-6 5.0 3.52e-6 7.0 1.73e-6 0.0

Table 4.16: Wilcoxon test with temporal actions, laptop and Vizzy view

From these experiments we can conclude that the addition of the temporal features improves the

algorithm, verifying hypothesis H3.
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4.2.2 Usage of more detailed features from openFace

Besides the features that we have been using from openFace: Head pose and orientation, eye gaze

direction, and angle, and action units; OpenFace also outputs7 landmark information regarding the eye

region, face, and parameters of the rigid face and non-rigid face, Figure 4.8.

(a) Eye landmarks (b) Face landmarks

Figure 4.8: Landmarks

In this section, we added to our error detector the landmarks of the eyes and face. In Table 4.17

we present the results. The algorithm using all features (head, gaze, AU, emotions, actions) plus the

landmarks achieved a mean accuracy of 69.34%, lower than the usage of the base plus actions and base

plus actions and emotions, and is also significantly different (Wilcoxon p-value below 0.05). Besides not

being as efficient as the other algorithms, it is also more computationally expensive since it increased the

number of features from around 60 to 700.

Features
Accuracy F1 score

Average
Precision Features

Wilcoxon

Mean SD Mean SD Mean SD p stat
All + Landmarks (1) 69.34 3.88 67.88 4.82 65.96 3.51 (1) Vs (2) 1.73e-6 0.0
+Actions(2) 75.78 3.16 75.20 3.66 72.08 2.76 (1) Vs (3) 1.73e-6 0.0
+Action
+Emotions(3)

75.96 3.23 75.40 3.72 72.22 2.82 (2) Vs (3) 0.086 138.0

Table 4.17: Random Forest error detector, with eye and facial landmarks

4.2.3 Error Detector for People with half mask

There are situations where the facial expression of a person is not visible or is partially hidden, for

instance, with the current pandemic people use half masks to protect themselves and others. In this

section, we performed experiments to compare how the error detector algorithm behaves when using

7https://github.com/TadasBaltrusaitis/OpenFace/wiki/Output-Format
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features that can be obtained from these cases. As features, we used head pose and orientation, gaze

direction and angle, and the actions of the robot, including the last performed action and time since that.

In Table 4.18 we show the results from the experiment, where the use of Gaze, Head, and Actions

achieved a mean accuracy of 72.18%, a lower score when compared with the use of the other features, (2)

and (3) from the table, but still an efficient algorithm.

Features
Accuracy F1

Average
Precision Features

Wilcoxon
Accuracy

Mean SD Mean SD Mean SD p stat
Gaze, Head, Actions (1) 72.18 4.25 71.39 4.73 68.22 4.09 (1) Vs (2) 1.73e-6 0.0
Base +Actions(2) 79.86 3.06 79.57 3.32 76.00 2.58 (1) Vs (3) 1.73e-6 0.0
Base + Actions
+Emotions(3)

80.13 2.88 79.86 3.10 76.22 2.41 (2) Vs (3) 0.026 124.0

Table 4.18: Error Detector with Features ready to deal with people with masks

4.2.4 Usage of Emotions on Error Detector

So far, besides comparing different classifiers we also have been comparing two combinations of features,

base (head, eye gaze, and action units) plus actions and base plus actions plus emotions. It is noticeable

from the experiments that the addition of the actions of the robot improves the algorithm in detecting

error. However, when comparing the addition of actions to the addition of actions and emotions, there

is not an obvious improvement. For instance, on Table 4.18 and 4.5 the p-value when comparing these

combinations on Random Forest was below 0.05, meaning that on those runs they were significantly

different, with the addition of emotions having a higher mean accuracy score. On the other hand, in the

experiments shown in Table 4.4 and 4.3 the p-values of the Wilcoxon test were above 0.05, meaning that

there was not a significant difference.

In this section, we decided to focus more on these two combinations of features and perform various

runs to try to decide which one is better. Our dataset is composed of various video interactions of different

participants interacting with Vizzy. On each run, we randomly select 25% of those videos to be the test

set, and hence those participants do not enter the training set. So, what differs from run to run are the

videos that are used to train both algorithms. Note that on the same run, both algorithms use the same

training and test set. We performed 25 runs in total, with each run giving an accuracy score. We also

used the McNemar test for each individual run, to test the output of both algorithms. This test will tell

us that one algorithm makes more mistakes than the other, if the p-value of McNemar is below 0.05, and

if it is above then the algorithms fail similarly.

We repeated this process 10 times, using only Vizzy view and then the combination of Vizzy and Laptop

view.

The following tables show the results for each of the 25 runs. We show the mean accuracy score and

standard deviation, the number of runs that the combination achieved better results, which was classified
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as the one with the highest score when the McNemar test was below 0.05, and when this happened, we

also recorded the maximum difference achieved, and the mean difference. This time we also use another

hypothesis test, the Students t-test. This test is said to be more reliable than the Wilcoxon test when the

assumption that the data has a normal distribution is assured, we will use both for comparison purposes.

So, we will be using this test on the runs whose total accuracy scores output has a normal distribution.

Finally, we performed the hypothesis test on all the mean accuracy scores of the 10 sets.

In Table 4.19 we show the results when using Vizzy angle. Looking at the Wilcoxon test and t-test

we notice that there were 4 sets of 25 runs where the p-value achieved values below 0.05. On these sets,

the highest mean accuracy score was from the combination of actions and emotions. On the hypothesis

test that compared all the 10 sets of 25 runs, the p-value of both tests was below 0.05, meaning that

the algorithms were significantly different, with the combination of the base plus actions plus emotions

achieving a higher mean accuracy score.

So, we can conclude that using actions and emotions achieves better results. This verifies the hypothesis

H4.

Set
of 25
runs

Actions + Emotions (1)
Score

Actions (2) score Wilcoxon t-test hypothesis test
for all 250 runs

mean SD Runs
Max
Diff

mean
Diff

mean SD Runs
Max
Diff

mean
Diff

p-value p-value

1 79.99 3.21 13 1.30 0.73 79.77 3.41 3 2.37 1.50 0.11 0.30
wilcoxon:

0.027
t-test:
0.016
(1):

79.99
(2):

79.80

2 79.28 3.36 9 0.98 0.55 79.10 3.64 3 0.83 0.43 0.12 0.16
3 81.00 3.58 10 1.05 0.79 80.61 3.73 4 1.04 0.52 0.0094 0.0091
4 79.63 4.01 9 1.47 0.69 79.58 4.26 9 1.77 0.57 0.69 0.78
5 79.74 3.09 9 2.05 0.79 79.27 3.35 4 0.47 0.22 0.0027 0.0045
6 79.35 3.33 11 1.24 0.62 79.11 3.45 4 1.30 0.64 0.03 0.045
7 80.15 3.11 13 1.56 0.75 80.06 3.48 9 2.87 0.89 0.38 0.66
8 78.79 3.19 17 1.76 0.67 78.44 3.51 3 1.90 1.32 0.022 0.043
9 81.95 3.19 8 0.66 0.49 82.18 3.40 8 1.93 1.05 0.34 0.17
10 79.99 3.07 16 1.17 0.56 79.89 3.41 7 1.62 0.95 0.31 0.54

Table 4.19: Comparison between combination of features, with Vizzy dataset

Using now Vizzy and Laptop angle, Table 4.20, for each set there was one p-value below 0.05, and

when checking the p-value of all the sets, it achieved values below 0.05, with the actions having a higher

mean accuracy score on both cases.
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Set
of 25
runs

Actions + Emotions (1)
Score

Actions (2) score Wilcoxon t-test hypothesis test
for all 250 runs

mean SD Runs
Max
Diff

mean
Diff

mean SD Runs
Max
Diff

mean
Diff

p-value p-value

1 77.12 2.42 6 0.68 0.40 77.23 2.52 12 0.75 0.40 0.21 0.19
wilcoxon:

0.007
t-test:
0.0003

(1):
77.09
(2):

77.19

2 76.46 2.58 6 0.39 0.24 76.54 2.65 9 0.74 0.25 0.47 0.86
3 76.65 3.30 8 0.60 0.34 76.73 3.45 9 1.19 0.62 0.71 0.44
4 78.60 3.47 10 0.76 0.22 78.72 3.47 10 1.23 0.50 0.23 0.18
5 77.32 3.27 10 0.73 0.36 77.32 3.05 9 1.45 0.43 0.99 0.99
6 78.18 3.94 7 0.86 0.50 78.24 3.97 14 0.90 0.31 0.38 0.50
7 76.32 3.81 8 0.89 0.26 76.45 3.90 10 1.61 0.50 0.22 0.21
8 76.16 3.36 3 0.66 0.33 76.37 3.54 16 1.40 0.41 0.02 0.03
9 77.43 2.92 7 1.59 0.65 77.53 2.94 12 0.92 0.55 0.22 0.44
10 76.65 3.23 10 0.84 0.22 76.81 3.35 8 0.90 0.43 0.46 0.16

Table 4.20: Comparison between combination of features, with Vizzy and Laptop

With these experiments, we noticed that generally, both combinations are not significantly different.

However, when using only Vizzy angle, the combination of base plus actions plus emotions features tends

to achieve better results. When using both angles, the usage of base plus actions is the one that achieved

slightly higher results.

We believe that with Vizzy view, using emotions helps the algorithm decide if there was an error or

not because in the interactions where no error happens, most of the emotions are neutral. As such this

helps the algorithm decides that there is no error if the emotion is neutral.

As for Vizzy with laptop angle, in the laptop angle, the participants are mostly in a profile angle, this

makes it so that the action units from openFace are not as correctly calculated, which could explain the

general lower accuracy scores when comparing when using only Vizzy angle, and the addition of emotions

not helping the algorithm, since they are calculated with the action units.

In Conclusion, for the error detector the usage of Random Forest with head, gaze, AU, emotions, and

actions of the robot achieves the best results, which confirms the hypothesis H1, H2, H3, and H4, as it

was proposed in the pipeline.
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With the error detector built, we perform tests to identify the type of error that has occurred. The

classification of the error as a TF or/and SNV is a multi-label classification problem because, at a certain

time, both types of errors could have happened, and as such, an instance can be assigned with both.

For the score, since we are dealing with a multi-label classification, we are going to use the accuracy score

and the hamming loss. The hamming loss outputs values between 0 and 1, the closest it is to zero, the

better the algorithm.

As we did in the error detector, we start by comparing Random Forest with Naive Bayes and KNN. And

then, we test different combination of features to analyze the proposed feature combination.

These experiments allow us to study the impact of the input features on the overall performance of

the algorithm, allowing us to test the following hypotheses:

Hypothesis 5 (H5). Adding Facial Action Units to the literature base feature vector (head, gaze) will

significantly improve error classification.

Hypothesis 6 (H6). The addition of the current action of the robot to the literature base feature vector

(head, gaze) will significantly improve error classification.

Hypothesis 7 (H7). The addition of temporal information of the actions of the robot to the literature

base feature vector (head, gaze) significantly improves error classification.

Hypothesis 8 (H8). The addition of emotion information of the user to the literature base feature vector

(head, gaze) significantly improves error classification.

5.1 Error Classifier

We start by tuning the Random Forest classifier. We obtained the following hyperparameters: n estimators=200,

criterion=’entropy’, max depth=40, max features=’sqrt’, min samples leaf=1, min samples split=5. This

led to an increase of 71% to 74% of the algorithm, with a Wilcoxon p-value below 0.05.

5.1.1 Naive Bayes Vs Random Forest

We start by comparing Naive Bayes, used by [19], with Random Forest.

The implementation of Random Forest on Scikit-learn can deal with multi-label problems, however,

the Naive Bayes implementation can deal with multi-class but not with multi-label. As such, we need

to use additional methods to test Naive Bayes. These methods can be OneVsRest multi-label strategy,

Classifier Chain, or Label Powerset.

OneVsRest 1 uses binary relevance and assumes independence of the labels. Classifier Chain [56], assumes

label correlation, and is an improved method of binary relevance.

1https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html
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In table 5.1 we show the results using the different methods with Naive Bayes. The classifier chain

achieved the best result, as such it is the one that we are using with Naive Bayes for our multi-label

classification problem.

Methods
Acuracy
mean SD

OneVSRest 67.71 4.41
Classifier Chain 67.89 4.71
Label Powerset 64.12 1.01

Table 5.1: Multi label methods for Naive Bayes

We tuned the Naive Bayes and resulted with: var smoothing=0.231; We then compared the tuned

version and not tuned version and obtained the accuracy score of, 68% and 66%, respectively, with the

Wilcoxon p-value test below 0.05.

In the following tables we show the results for the two classifiers, Naive Bayes and Random Forest,

both tuned. For the experiment, we conducted 30 runs. Finally, we obtain the average and standard

deviation of all 30 runs for the accuracy score and the hamming loss. We also display the accuracy of

each label, SNV and TF.

Starting with Vizzy angle, table 5.2, Random Forest achieved the highest scores on accuracy mean

score, and the lowest on hamming loss, with a p-value below 0.05, meaning that they were statistically

significantly different. As such, Random Forest, when using only Vizzy angle, achieves better results on

our dataset than Naive Bayes, as proposed.

Concerning the comparison of the two combinations of features, on both classifiers the Wilcoxon test

showed that there was no significant difference when using base plus actions or base plus actions plus

emotions.

Features Classifier
Accuracy

Hamming
Loss

SNV
Accuracy

TF
Accuracy Features

Wilcoxon

Mean SD Mean SD Mean SD Mean SD p stat
+ Actions (1) Naive Bayes 70.80 8.82 0.178 0.0625 82.77 7.20 81.58 6.61 (1) Vs (2) 0.975 231.0
+Actions
+ Emotions(2)

Naive Bayes 70.98 7.71 0.180 0.0525 83.16 5.81 80.93 6.21 (1) Vs (3) 3.52e-6 7.0

+Actions(3) Random Forest 76.41 9.94 0.128 0.0551 85.97 4.82 87.74 9.47 (2) Vs (4) 3.72e-6 32.0
+Action
+Emotions(4)

Random Forest 76.11 10.26 0.130 0.0573 85.69 4.80 87.58 9.65 (3) Vs (4) 0.21 172.0

Table 5.2: Error type classifiers, Vizzy angle

Using Vizzy and Laptop angle, even though the accuracy is lower than before, the conclusions are the

same. Random Forest was significantly different from Naive Bayes, with higher accuracy scores and lower

hamming loss. And there was no significant difference in both classifiers when using either combination

of features.
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Features Classifier
Accuracy

Hamming
Loss

SNV
Accuracy

TF
Accuracy Features

Wilcoxon

Mean SD Mean SD Mean SD Mean SD p stat
+ Actions (1) Naive Bayes 63.33 7.01 0.223 0.0378 83.22 2.61 72.11 6.08 (1) Vs (2) 0.21 172.0
+Actions
+ Emotions(2)

Naive Bayes 63.70 7.27 0.224 0.0382 82.11 3.16 73.01 5.75 (1) Vs (3) 0.0008 70.0

+Actions(3) Random Forest 66.67 8.11 0.182 0.0416 83.92 3.34 80.06 8.97 (2) Vs (4) 0.0057 98.0
+Action
+Emotions(4)

Random Forest 66.64 8.30 0.182 0.0427 83.70 3.32 80.16 9.09 (3) Vs (4) 0.99 232.0

Table 5.3: Error type classifiers, Vizzy and Laptop angle

We can then conclude that on our dataset Random Forest performs better than Naive Bayes, as

proposed in the pipeline.

5.1.2 K Nearest Neighbour Vs Random Forest

In this section, we proceed to compare the usage of the K-nearest neighbour classifier(KNN), used by [19],

and Random Forest. On the following tables we compare the usage of KNN with Random Forest, both

tuned.

With Vizzy angle, table 5.4, Random Forest achieved higher accuracy mean scores and lower ham-

ming loss, with a p-value below 0.05 when comparing with the KNN, meaning that the classifiers were

significantly different, with Random Forest achieving better results.

About the two combinations of features, on KNN there was no significant difference, but on Random

Forest the p-value was 0.006, with the usage of base plus actions achieving a higher result (72.46%) than

base plus actions and emotions (71.83%).

Features Classifier
Accuracy

Hamming
Loss

SNV
Accuracy

TF
Accuracy Features

Wilcoxon

Mean SD Mean SD Mean SD Mean SD p stat
+ Actions (1) KNN 64.53 7.32 0.220 0.044 74.31 5.13 81.65 6.43 (1) Vs (2) 0.77 218.0
+Actions
+ Emotions(2)

KNN 64.64 7.56 0.223 0.045 74.45 4.94 81.02 6.40 (1) Vs (3) 3.88e-6 8.0

+Actions(3) Random Forest 72.46 8.96 0.148 0.048 84.73 4.64 83.30 9.63 (2) Vs (4) 3.52e-6 7.0
+Action
+Emotions(4)

Random Forest 71.83 9.00 0.152 0.049 84.34 4.55 83.00 9.64 (3) Vs (4) 0.006 100.0

Table 5.4: Error type KNN Vs Random Forest, Vizzy angle

In table 5.5 we present the results using Vizzy and Laptop angle. As before, Random Forest is

significantly different from KNN, with higher mean accuracy scores and lower hamming loss.

When comparing the two combinations of features, Random Forest was not significantly different, but

KNN was, with base plus actions having a higher accuracy mean score and lower hamming loss.
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Features Classifier
Accuracy

Hamming
Loss

SNV
Accuracy

TF
Accuracy Features

Wilcoxon

Mean SD Mean SD Mean SD Mean SD p stat
+ Actions (1) KNN 59.34 6.47 0.257 0.043 73.46 4.86 75.16 4.96 (1) Vs (2) 3.72e-5 32.0
+Actions
+ Emotions(2)

KNN 58.29 6.47 0.265 0.042 72.80 4.58 74.23 4.85 (1) Vs (3) 2.88e-6 5.0

+Actions(3) Random Forest 63.46 7.19 0.199 0.039 83.21 4.19 77.56 8.08 (2) Vs (4) 1.73e-6 0.0
+Action
+Emotions(4)

Random Forest 63.28 7.27 0.201 0.040 83.07 4.13 77.42 8.11 (3) Vs (4) 0.5 200.0

Table 5.5: Error type KNN Vs Random Forest, Vizzy and laptop angle

We can then reach the conclusion that on our dataset Random Forest performs better than KNN, as

proposed.

5.2 Input features of the Error Classifier

In this section, we perform experiments to compare the different combinations of input features, to

evaluate the impact they have in the system in classifying error into SNV and TF.

Concerning the features, the base remains the head, gaze, and AU features, the +Emotion is the addition

of the emotions, the +Action is the addition of the current action, last action, and time since last action.

On table 5.6 we show the results using Vizzy angle, and on table 5.7 we use Vizzy and laptop angle.

When using only Vizzy angle dataset, all the additions achieved a p-value below 0.05 when compared

to the base, meaning that the algorithms are statistically significantly different. Adding the actions

achieved better results, however when comparing the addition of actions and the addition of actions

and emotions, the p-value is above 0.05. As such, there is no statistically significant difference between

these combinations of features. When using both angles, the addition of emotions to the base achieved

a p-value above 0.05, so there is no statistically significant difference between these algorithms. The

addition of actions achieved better results, but like before, there is no significant difference, according to

the Wilcoxon test, between the addition of actions and the addition of actions and emotions.

With these results we can confirm the hypothesis H6 and H7.

Features
Accuracy

Hamming
Loss

SNV
Accuracy

TF
Accuracy Features

Wilcoxon

Mean SD Mean SD Mean SD Mean SD p stat
Base (1) 62.23 9.13 0.244 0.068 70.42 7.45 80.78 9.72 (1) Vs (2) 8.86e-5 0.0
+Actions(2) 74.56 8.47 0.136 0.045 86.38 4.08 86.46 8.88 (1) Vs (3) 0.033 48.0
+Emotions(3) 63.09 9.35 0.239 0.068 71.07 7.01 81.15 9.73 (1) Vs (4) 8.86e-5 0.0
+Action
+Emotions(4)

74.63 8.73 0.136 0.046 86.44 4.00 86.46 9.04
(2) Vs (3) 8.86e-5 0.0
(2) Vs (4) 0.68 94.0
(3) Vs (4) 8.86e-5 0.0

Table 5.6: Random Forest classify error type, combination of features, Vizzy angle
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Features
Accuracy

Hamming
Loss

SNV
Accuracy

TF
Accuracy Features

Wilcoxon

Mean SD Mean SD Mean SD Mean SD p stat
Base (1) 55.29 8.57 0.283 0.058 66.94 6.14 76.49 7.16 (1) Vs (2) 8.86e-5 0.0
+Actions(2) 66.88 6.99 0.183 0.038 83.38 3.91 80.11 5.78 (1) Vs (3) 0.295 69.0
+Emotions(3) 55.55 8.46 0.280 0.057 67.42 6.05 76.65 7.08 (1) Vs (4) 8.86e-5 0.0
+Action
+Emotions(4)

66.57 6.99 0.185 0.039 83.04 3.90 80.05 5.73
(2) Vs (3) 8.86e-5 0.0
(2) Vs (4) 0.14 65.0
(3) Vs (4) 8.86e-5 0.0

Table 5.7: Random Forest classify error type, combination of features, Vizzy and laptop angle

We proceed to evaluate the addition of the AU to the gaze and head, features used in previous

studies. According to the Wilcoxon test, when combining Vizzy and laptop angle, there was not a

statistically significant difference with the addition of the action units, table 5.8. As we mentioned

before, we hypothesize that a reason for the results obtained when using the laptop view being lower is

that in that point of view the participants are looking sideways, so openFace has a higher difficulty in

correctly acquiring the action units of the participants, this experiment is also an indication of this.

When only using Vizzy angle, there is a statistically significant difference between the algorithms, with

the addition of the action units improving the algorithm, table 5.9. This confirms the hypothesis H5.

Features
Accuracy

Hamming
Loss Features

Wilcoxon

Mean SD Mean SD p stat
Head and Gaze (1) 58.33 5.53 0.283 0.042 (1) Vs (2) 0.079 58.0
Head, Gaze and AU(2) 59.31 6.45 0.268 0.043

Table 5.8: Compare the addition of Action Units, Vizzy and laptop angle

Features
Accuracy

Hamming
Loss Features

Wilcoxon

Mean SD Mean SD p stat
Head and Gaze (1) 59.90 9.80 0.27 0.073 (1) Vs (2) 0.0001 5.0
Head, Gaze and AU(2) 64.11 10.0 0.24 0.073

Table 5.9: Compare the addition of Action Units, Vizzy angle

In the next experiment, we compare the use of only the actions with the previous combinations, table

5.10. The results indicate that to classify the type of error when using both Vizzy angle and laptop angle,

only using actions achieves a lower accuracy score. However, there is no significant difference between the

algorithms. With only Vizzy angle, using the combination of features is better than only using actions,

table 5.11.
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Features
Accuracy

Hamming
Loss Features

Wilcoxon

Mean SD Mean SD p stat
Only Actions (0) 64.64 2.63 0.222 0.014 (0) Vs (1) 0.10 61.0
Base + Actions(1) 67.42 5.27 0.179 0.040 (0) Vs (2) 0.062 55.0
Base + Actions
+ Emotions (2)

67.61 5.36 0.181 0.041 (2) Vs (1) 0.16 67.0

Table 5.10: Experiments with the features of Action, Vizzy and laptop angle

Features
Accuracy

Hamming
Loss Features

Wilcoxon

Mean SD Mean SD p stat
Only Actions (0) 70.08 2.72 0.20 0.0153 (0) Vs (1) 0.009 35.0
Base + Actions(1) 76.67 8.65 0.127 0.048 (0) Vs (2) 0.009 35.0
Base + Actions
+ Emotions (2)

76.44 8.59 0.128 0.048 (2) Vs (1) 0.35 72.0

Table 5.11: Experiments with the features of Action, Vizzy angle

5.2.1 Usage of Emotion for Error Classifier

Throughout the error classifier experiments, there was not a clear observation if the addition of emotion

to the actions improved the algorithm. So, in this section, we present an experiment similar to the one

done in the error detector, where we perform 10 set experiments, each constituted by 25 runs. To compare

the algorithms, we used the Wilcoxon test and the student’s t-test. To use the t-test the data has to

follow a normal distribution, so we only used the results where this happened. To verify if the score were

normal distribution, we performed the Shapiro test.

We used only Vizzy angle first, table 5.12, and then both angles Vizzy and Laptop, table 5.13. In

both cases the conclusions are similar. the usage of base plus actions more frequently achieves the highest

accuracy scores with a statistically significant difference. The overall hypothesis test also achieved a p-

value below 0.05, with the best performance achieved by the base plus actions of 75.48% accuracy. This

negates the hypothesis H8.
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Set
of 25
runs

Actions + Emotions (1) Score Actions (2) score
Wilcoxon t-test hypothesis test

for all 250 runs
Accuracy Hamming Accuracy Hamming
mean (SD) mean (SD) mean (SD) mean (SD) p-value p-value

1 74.58 (7.98) 0.133 (0.041) 75.43 (7.90) 0.128 (0.040) 0.00055 0.00058
wilcoxon:

0.0019
t-test:
0.014
(1):

74.65
(2):

75.48

2 73.79 (8.62) 0.14 (0.053) 74.20 (8.54) 0.137 (0.052) 0.027 0.016
3 75.52 (7.60) 0.13 (0.04) 76.15 (7.58) 0.127 (0.04) 0.01 0.008
4 74.12 (10.99) 0.14 (0.06) 74.47 (10.96) 0.139 (0.062) 0.28 0.22
5 72.18 (9.55) 0.149 (0.053) 72.93 (9.69) 0.144 (0.052) 0.0009 0.0002
6 76.05 (8.28) 0.129 (0.045) 76.86 (7.96) 0.124 (0.043) 0.0002 0.0003
7 73.28 (8.33) 0.142 (0.044) 73.51 (9.07) 0.14 (0.047) 0.24 0.44
8 77.02 (9.11) 0.123 (0.047) 77.80 (9.19) 0.118 (0.047) 0.0037 0.0079
9 75.82 (6.93) 0.113 (0.035) 79.03 (6.94) 0.11 (0.034) 0.011 0.009
10 74.20 (9.04) 0.139 (0.05) 74.46 (9.43) 0.136 (0.05) 0.29 0.30

Table 5.12: base + actions Vs base + actions + emotions on Vizzy angle

Set
of 25
runs

Actions + Emotions (1) Score Actions (2) score
Wilcoxon t-test hypothesis test

for all 250 runs
Accuracy Hamming Accuracy Hamming
mean (SD) mean (SD) mean (SD) mean (SD) p-value p-value

1 64.67 (7.15) 0.188 (0.037) 64.95 (7.41) 0.186 (0.038) 0.14 0.16
wilcoxon:

0.0019
t-test:
1.66e-6

(1):
67.12
(2):

67.48

2 66.74 (5.64) 0.179 (0.03) 67.10 (5.30) 0.176 (0.028) 0.07 0.1
3 67.09 (6.08) 0.176 (0.032) 67.30 (6.39) 0.176 (0.035) 0.19 0.13
4 69.12 (5.98) 0.167 (0.032) 69.46 (6.08) 0.165 (0.032) 0.06 0.036
5 66.45 (7.16) 0.179 (0.038) 66.73 (7.06) 0.178 (0.038) 0.33 0.21
6 70.59 (5.59) 0.159 (2.85) 71.00 (5.71) 0.156 (0.029) 0.03 0.03
7 68.55 (7.02) 0.169 (0.037) 69.12 (6.90) 0.166 (0.036) 0.003 0.01
8 64.86 (6.62) 0.187 (0.035) 65.21 (6.84) 0.185 (0.036) 0.12 0.11
9 65.79 (8.12) 0.181 (0.04) 66.27 (8.15) 0.178 (0.04) 0.02 0.04
10 67.31 (7.63) 0.174 (0.039) 67.64 (7.65) 0.173 (0.04) 0.08 0.14

Table 5.13: base + actions Vs base + actions + emotions on Vizzy and Laptop angle

Lastly, the usage of emotions helps in detecting an error but not in classifying its type. We hypothe-

size that that is due to the fact that, in the dataset used, there is a distinct change of emotional state of

the participants when an error occurs. However, the type of emotional reaction is similar for both types

of errors. For instance, people look happy or surprised in both SNV or TF. As such, the emotions do

not help in classifying the type of error.

We conclude then that for the error type classifier we use Random Forest with head, eye gaze, actions

units, current action, last action and time since last action as features, which confirms the hypothesis

H5, H6, and H7.
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In this chapter, we perform a set of experiments to evaluate the proposed emotion detector, averageAU,

and validate its use over alternative methods. Due to the widespread use of facial half masks due to the

COVID-19 pandemic, we also test the emotion detector algorithm in masked faces.

To evaluate the proposed emotion recognition method, averageAU, we perform three experiments.

First, we compare the combination of AU proposed by Ekman et al. [45] with other combinations proposed

by Ghayoumi et al. [40], Lucey et al. [57] and Karthick et al. [58]. We also test several thresholds for

neutral emotion. In the second experiment, we compare AverageAU with DeepFace [43] and Efficient

CNN [44]. In the third, we test the applicability of our algorithm when dealing with people using half-face

masks.

The AverageAU is a proposed algorithm where each emotion has a value that is obtained by the

average of their specific corresponding actions units (section 3.3.1). This is done to all 6 emotions, and

we select the one that has the highest value. Additionally, if this value is below a certain threshold, then

the emotion selected is neutral.

6.1 avgAU tests

We start by performing experiments with the AverageAU method. We experiment with various combi-

nations of AU that are related to emotions, and also change the threshold of the method.

In table 6.1 we present the combinations of the action units for each study that we used. Hussain et

al. [59] is a study worth mention since it summarized the works from the three last rows.

Method Anger Disgust Fear Happy Sad Surprise
Tautkute et al. (2019) [60] 4, 5, 7, 23 9, 15, 16 1, 2, 4, 5, 7, 20, 26 6, 12 1, 4 15 1, 2, 5, 26
Ghayoumi et al. (2016) [40] 2, 4, 7, 9, 10, 20, 26 2, 4, 9, 15, 17 1, 2, 4, 5, 15, 20, 26 1, 6, 12, 14 1, 4, 15, 23 1, 2, 5, 15, 16, 20, 26
Ekman et al. (1976) [45] 4, 5, 7, 23 9, 15, 16 1, 2, 4, 5, 20, 26 6, 12 1, 4, 15 1, 2, 5, 26
Lucey et al. (2010) [57] 4, 5, 15, 17 1, 4, 15, 17 1, 4, 7, 20 6, 12, 25 1, 2, 4, 15, 17 1, 2, 5, 25, 27
Karthick et al. (2013) [58] 4, 5, 7, 23, 24 9, 17 1, 4, 5, 7 6, 12, 25 1, 4, 15, 17 1, 2, 5, 26, 27

Table 6.1: Correspondence of AUs to emotions

In table 6.2 we display the results of the avgAU method on the CK+ dataset, using various combina-

tions of AU and different thresholds. The threshold is the value where a facial expression will be classified

as neutral if the average of the AU is not above it (section 3.3.1).

After the analysis of each combination, we decided to try using, for each emotion, the combination that

achieved the highest score, we called this MixedBest. The combination from Ghayoumi et al. [40] and

Lucey et al. [57], overall performed the worst, with the rest of the combinations achieving accuracy above

70%. Thus, we focus our attention on these combinations.

All combinations performed poorly, in terms of detecting neutral faces, with a threshold of 0.5. Tautkute

et al. [60] and Karthick et al. [58] achieved the lowest accuracy scores on detecting fear. MixedBest failed

the most on detecting anger. Ekman et al. [45] achieved high accuracy with the lowest being on fear,
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nonetheless, is the combination that offers the most balanced scores. It also achieved similar results with

thresholds 1 and 0.8, with fear, anger, and neutral having the most accuracy changes.

Method Threshold Anger(%) Disgust(%) Fear(%) Happy(%) Sad(%) Surprise(%) Neutral(%) Overall(%)
Ghayoumi et al. [40] 0.8 20.0 16.61 33.6 98.55 38.57 89.16 74.44 59.14
Lucey et al. [57] 0.8 6.67 0.0 44.0 99.7 7.14 90.84 68.89 52.78

0.8 37.33 82.71 8.0 100.0 63.57 87.95 74.44 73.64
1 27.11 76.61 4.0 100.0 61.43 85.54 87.78 70.76Tautkute et al. [60]
0.5 48.44 85.72 15.2 100.0 67.14 90.6 34.44 75.05
0.8 37.33 82.71 26.40 100.0 63.57 87.95 72.22 74.92
1 27.11 76.61 19.2 100.0 61.43 85.54 87.77 71.93Ekman et al. [45]
0.5 48.89 85.76 30.4 100.0 67.14 90.36 31.11 76.02
0.8 24.89 85.08 11.2 100.0 68.57 80.72 75.56 71.25
1 20.89 81.02 8.8 99.7 65.71 78.8 93.33 69.97Karthick et al. [58]
0.5 25.33 88.47 12.0 100.0 74.29 82.41 53.33 71.68
0.8 15.11 83.05 52.0 100.0 68.57 92.53 67.78 75.23
1 14.22 78.98 47.2 100.0 65.71 91.57 86.67 74.56mixedBest
0.5 15.56 86.44 52.8 100.0 74.29 94.70 22.22 74.50

Table 6.2: Variations thresholds to the best avgAU methods

Ekman et al. achieved the best results, so in the following experiments this is the combination we are

using for the avgAU method.

6.2 Experiments on Emotion algorithms

To compare the three algorithms for emotion recognition we first analyse each on our dataset. After

inspecting the dataset of Vizzy, we decided to analyse two representative cases: First, a girl, whose

facial expressions are visible, and where we noticed that all algorithms had almost no issue in detecting

emotions. Second, a boy with a beard where the algorithms have more issues in recognizing the correct

emotion.

In table 6.3, we show the results for all three algorithms, for our experiment. We present examples

for Data 1 (girl) and Data 7 (bearded boy) in Figure 6.1.

For this experiment, we decided first to evaluate the capability of the algorithm to detect happiness and

surprise during SNV errors. While annotating the dataset we noticed that, when a SNV occurred, the

participants either did not react or reacted with a smile and/or laughter. As such, we can evaluate if the

algorithms are effective, by checking if they can detect happiness or surprise during the SNV.

For data 1, all methods achieved over 80% accuracy. AverageAU performed best, with an accuracy of

94.3%. For data 7, Efficient CNN [44] performed worst while AverageAU performed best, with 13.74%

and 75.42% accuracy, respectively. Since Efficient CNN [44] was unable to deal with the bearded example

(Figure 6.1(b)) and was outperformed by all other algorithms, we argue that it is not suitable for our

application.

To test the algorithms in other conditions we added the cases of TF and No Error. We noticed that

generally when the TF error occurred (Vizzy arm destroying the construction), participants laugh, smile,

or stare at Vizzy. As such, we assume that the most relevant emotions during this mistake, are happiness,
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surprise, and neutral. When an error has not occurred (No Error cases), the participants were generally

with a neutral face.

Again, the AverageAU method outperforms the other algorithms. We also noticed that when the no

error situation was taken into consideration, the accuracy of DeepFace lowered considerably, meaning

that it has a lower performance in identifying other emotions than happiness.

Data SNV TF No Error Efficient CNN(%) DeepFace(%) avg AU(%)
1 Happy, Surprise 83.5 88.35 94.3
7 Happy, Surprise 13.74 54.7 75.42
1,7 Happy, Surprise 50.2 72 85
1 Happy, Surprise Neutral 53.65 37.05 60.7
7 Happy, Surprise Neutral 46.32 51.7 58.37
1.7 Happy, Surprise Neutral 50.23 43.89 59.63
1 Happy, Surprise Happy, Surprise, Neutral 86.19 88.04 88.5
1,7 Happy, Surprise Happy, Surprise, Neutral 66.85 81.06 84.34
1 Happy, Surprise Happy, Surprise, Neutral Neutral 57.58 43.02 63.75
1,7 Happy, Surprise Happy, Surprise, Neutral Neutral 52.49 47.71 61.87

Table 6.3: Experiments on Vizzy dataset

(a) Data1 sample (b) Data7 sample

Figure 6.1: Vizzy dataset images

To have a better comparison between DeepFace and the AverageAU method, we tested them on the

FER2013 dataset1 and the CK+ dataset [61].

In table 6.4 we present the results. DeepFace achieved 52% on FER2013, unfortunately, we could

not use the AverageAU method on this dataset because the images provided were 48x48 resolution

and openFace could not obtain the AU from the images. On the CK+ dataset, DeepFace achieved

overall 31.0% accuracy, while the average AU achieved 74.92%. We decided to look at how each method

performs for each emotion. Like we noticed in the previous experiment, DeepFace performs efficiently

when detecting happiness, achieving 83.48%, however, on the rest of the emotions the performance was

1https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/

data
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low. AverageAU outperformed DeepFace in all categories, having 100% accuracy on the happy emotion

and the lowest 26.4% on fear emotion. In Figure 6.2 we show the confusion matrix of the avgAU method,

we can see now in more detail that anger cases are classified as neutral, as well as disgust and sad. The

sad cases are confused with disgust emotion and neutral. The fear case is the one where it fails the most.

We also used the McNemar test [62] to check the statistical significance of the disagreement between

the two methods. McNemar test determined that there was a statistically significant difference between

the avgAU and deepFace, p < 0.01.

Method Dataset Anger(%) Disgust(%) Fear(%) Happy(%) Sad(%) Surprise(%) Neutral(%) Overall(%)
DeepFace FER2013 40.02 46.36 38.91 69.66 42.38 65.06 51.3 52.53
DeepFace CK+ 23.11 6.4 8.8 83.48 21.43 12.29 62.22 31.0
avgAU CK+ 37.33 82.71 26.4 100.0 63.57 87.95 72.22 74.92

Table 6.4: Experiments on FER2013 and CK+ dataset

Figure 6.2: Confusion matrix of avgAU on CK+ dataset

We can see that DeepFace is good at detecting happiness and neutral emotions, but it fails in other

emotions. The proposed emotion recognition algorithm AverageAU (avgAU) surprised us with its re-

sults:(i) It outperformed the other methods; (ii) It is computationally faster since it is just a calculation

and does not require any data for training; (iii) And reduces the uncertainty of the results by only

depending on the results of openFace, instead of another machine learning algorithm.

6.3 Fine-tuning AverageAU

Since Ekman et al. achieved the best results, we will fine-tune the algorithm, on an experiment similar

to the one done in table 6.3, by checking the threshold that performs the best, table 6.5.
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Data SNV TF No Error T0.8(%) T0.5(%) T1(%) T1.5(%)
1 Happy, Surprise 94.3 94.3 94.3 90.11
7 Happy, Surprise 75.42 79.76 72.05 48.67
1,7 Happy, Surprise 85 87.35 83.68 70.34
1 Happy, Surprise Neutral 60.7 39.65 72.42 94.0
7 Happy, Surprise Neutral 58.37 44.53 65.9 82.39
1.7 Happy, Surprise Neutral 59.63 41.93 69.38
1 Happy, Surprise Happy, Surprise, Neutral 88.5 78.99 95.3 95.3
1,7 Happy, Surprise Happy, Surprise, Neutral 84.34 76.67 90.59 88.73
1 Happy, Surprise Happy, Surprise, Neutral Neutral 63.75 43.62 75.15
1,7 Happy, Surprise Happy, Surprise, Neutral Neutral 61.87 44.66 71.64 89.4

Table 6.5: Ekman avgAU method

Thresholds 0.5 and 1.5 are excluded, they either remove important emotions or are too sensitive to a

change in the AU and do not detect neutral faces. As such, we choose values between these two, especially

0.8 and 1. To choose which threshold to use we will first, for each interaction, run a similar test to the

one presented, i.e. analyse how the method deals in identifying the emotions during SNV, TF and when

there is no error. For instance, on data 1 we will choose threshold 1 since it does not reduce the accuracy

during SNV but increases when there is no error.

6.4 AverageAU on faces with half masks

With the current pandemic going on, people now need to use masks to protect themselves and the people

surrounding them. In this section, we perform tests to see if it is possible with the avgAU method to

capture emotions using only the upper part of the face. In table 6.6 we present the action units from the

Ekman correspondence that can be used.

Method Anger Disgust Fear Happy Sad Surprise
Ekman 4, 5, 7 9 1, 2, 4, 5 6 1, 4 1, 2, 5

Table 6.6: Ekman AU from superior part of the face (covid Ekman)

In table 6.7 we show the accuracy and on Figure 6.3 the confusion matrix. It is hard to identify fear

with only the upper part of the face, however, the algorithm was able to identify the rest of the emotions.

This shows that having the AU of the upper part of the face, the one that the mask does not hide, it is

possible to identify emotions.

Method Anger(%) Disgust(%) Fear(%) Happy(%) Sad(%) Surprise(%) Neutral(%) overall(%)
covidEkman 36.0 94.58 0.0 89.28 52.86 83.13 88.88 71.38

Table 6.7: Results of covid Ekman on CK+ dataset
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Figure 6.3: Confusion Matrix for covid Ekman

6.4.1 openFace and People with Masks

The previous action units were obtained with the whole face available to openFace, in this next exper-

iment, we see how openFace behaves with faces with masks and check if the AU from the upper face

continues to be calculated correctly. For these experiments, we will use images from the CK+ dataset

and draw a mask on top of them for a direct comparison.

In Figures 6.4 we show an image from the CK+ dataset representing the neutral emotion, we also show

the original image, 6.4(a), the image with a mask drawn, 6.4(c), and the bounding boxes placed by open-

Face, 6.4(b) 6.4(d). We also show the action units obtained for each image for the Ekman covid and the

calculations to reach the emotion, table 6.8.

In Figure 6.5 we show representative images for each emotion, with and without a mask. OpenFace was

able to detect the face even with the mask drawn. On the legend of the figures, we show the results of

the avgAU method to obtain emotions, for the Ekman correspondence of specific AU to emotions and

the Ekman covid.

We were expecting that the results from the original image with the Ekman covid were the same as the

image with a mask using Ekman covid, however that was not the case, showing that the calculated upper

AU with the mask is different from the upper AU without the mask.

AU Mask No Mask Emotion AU Mask AU No Mask
01 0.0 0.0 Anger = (AU04 + AU05 + AU07)÷ 3 0.1967 0.2867

02 0.0 0.0 Sad = (AU01 + AU04)÷ 2 0.0 0.0

04 0.0 0.0 Happy = AU06 1.04 0.18
05 0.0 0.0 Fear = (AU01 + AU02 + AU04 + AU05)÷ 4 0.0 0.0

06 1.04 0.18 Surprise = (AU01 + AU02 + AU05)÷ 3 0.0 0.0

07 0.59 0.86 Disgust = AU09 1.75 0.0
09 1.75 0.0 Highest (Neutral < 0.8) 1.75 0.2867
Decision Disgust Neutral

Table 6.8: Action Units on Neutral image
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(a) Neutral,
Ekman:
Neutral;
Ekman
covid:
Neutral

(b) Neutral
Bounding
box

(c) Neutral,
Ekman
covid:
Disgust

(d) Neutral
mask
Bounding
box

Figure 6.4: covid test on CK+ dataset, bounding box

We also tested openFace with images of a person using a real face mask, Figures 6.6(a), 6.6(c) and

6.6(e). OpenFace was able to detect the face, Figures 6.6(b), 6.6(d) and 6.6(f), and the avgAU method

was able to correctly identify two emotions, the happy and the surprise.

(a) Anger;
Ekman
covid:
Happy

(b) Anger
bound-
ing
box

(c) Happy,
Ekman
covid:
Happy

(d) Happy
bound-
ing
box

(e) Surprise,
Ekman
covid:
Surprise

(f) Surprise
bound-
ing
box

Figure 6.6: covid test, with real face mask

Using an algorithm2 to automatically mask the faces from the CK+ dataset, we tested how our

emotion detector behaves in the entire dataset with masks, table 6.9 and Figure 6.7.

Method Anger(%) Disgust(%) Fear(%) Happy(%) Sad(%) Surprise(%) Neutral(%) overall(%)
Ekman Covid 1.5 100.0 0.0 0.0 0.0 5.07 0.0 20.6

Table 6.9: CK+ masked, avgAU result

2https://github.com/Prodesire/face-mask
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(a) Happy;
Ekman
Covid:Disgust

(b) Happy;
Ekman:
Happy;
Ekman
Covid:Happy

(c) Anger;
Ekman
covid:
Disgust

(d) Anger;
Ekman:
Anger;
Ekman
covid:
Sad

(e) Disgust;
Ekman
Covid:
Disgust

(f) Disgust;
Ekman:
Disgust;
Ekman
Covid:
Disgust

(g) Fear;
Ekman
covid:
Anger

(h) Fear;
Ekman:
Fear;
Ekman
covid:
Surprise

(i) Sad;
Ekman
covid:
Anger

(j) Sad;
Ekman:
Sad;
Ekman
covid:
Sad

(k) Surprise;
Ekman
covid:
Disgust

(l) Surprise;
Ekman:
Surprise;
Ekman
covid:
Surprise

Figure 6.5: covid test on CK+ dataset

Figure 6.7: Confusion Matrix for covid Ekman, masked CK+

A reason for the action units being different is that OpenFace uses specific facial landmarks to align

the face and to normalize it to compare to a neutral position [2]. The masks hide some of those landmarks,

Figure 6.8. The facial landmarks are also used to obtain geometry and appearance face features, to then

classify action units.
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Figure 6.8: Figure from Zadeh et al. [2]

These experiments show that openFace results AU differently when people are using half masks. The

results in table 6.7 show that the usage of only the upper action units are capable of detecting emotions,

as such this algorithm has much potential and it is worth for future work to make an algorithm that can

obtain AU from people that are using face masks.
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Conclusion
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In this work, we proposed an algorithm that detects and classifies error situations during one-to-one

human-robot interactions in a controlled environment. The proposed pipeline uses facial and head features

extracted from image frames of a robot onboard camera and information of robot actions. The proposed

pipeline achieved significantly higher results when using the proposed set of features, which includes head,

gaze, AU, emotions, and actions of the robot, than with features used in past works, that used head and

gaze features [18, 19]. With an average accuracy of 72.77%, our algorithm showed promising results in

the evaluation dataset. The usage of a median filter showed an improvement in the performance of the

algorithm, with an average accuracy of 79.63%. Further tests validated the use of Random Forest models

to detect errors and classify them with the proposed set of features. These results are obtained from an

exhaustive study of the combination of several input features and classification algorithms. We want to

stress the following results from the components of the pipeline:

• Random Forest classifiers work better on both error detection and error classification;

• Action units and robot context improve in a significant manner the performance of both error

detection and error classification;

• Emotion features improve the performance of error detection but not error classification;

• The emotion recognition algorithm proposed in this work outperforms state-of-the-art methods in

the case of our dataset. In addition, our method is computationally efficient when compared to

deep learning-based methods.

We obtained promising results using the Isolation Forest algorithm, which is able to cope with mislabeled

data while having similar performance to the conventional Random Forest. Future works should study

these findings in detail. In future works, we intend to perform actual human-robot interaction studies to

test our algorithm in real-time, making the robot react to error information. Moreover, we will explore

more contextual information, for instance age or culture, as well as temporal image and action features.

Finally, we also intend to evaluate the proposed emotion recognition algorithm in more challenging

scenarios, such as dealing with multiple participants simultaneously.
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[4] A. Sauppé and B. Mutlu, “The social impact of a robot co-worker in industrial settings,” in Pro-

ceedings of the 33rd annual ACM conference on human factors in computing systems, 2015, pp.

3613–3622.

[5] J. Avelino, H. Simão, R. Ribeiro, P. Moreno, R. Figueiredo, N. Duarte, R. Nunes, A. Bernardino,
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