
Distributed Ledger Technology to Enable Secure
Management of IT Infrastructures

Miguel Rodrigo Moreira Oliveira

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Rui António dos Santos Cruz

Examination Committee

Chairperson: Prof. Nuno João Neves Mamede
Supervisor: Prof. Rui António dos Santos Cruz

Member of the Committee: Prof. José Carlos Martins Delgado

November 2021

This work was created using LATEX typesetting language
in the Overleaf environment (www.overleaf.com).

Acknowledgments

I would like to thanks my parents for their support during this academic journey that culminated with

the writing of this Thesis. For all the encouragement, love, friendship throughout the years, both in

the good and specially in the bad moments, enabling me to do my best and to get the best education

possible.

To my brother, that despite not fully understanding what ”i do”, is always present, being one of the

most important people in my life, with a bond that only brothers may understand.

To my friends, my second family, that have been always present, either in person or virtually, not only

during the development and writing of this Thesis, but also by taking part in my life, both in the good and

bad moments, encouraging, supporting, and helping me grow as a person.

I would also like to thank Professor Rui Santos Cruz for his insight, guidance and knowledge sharing

during the development of this Thesis, ultimately making this work possible, and enabling me to gain

extra knowledge in this field.

To each and every one of you – Thank you.

i

Abstract

IT Infrastructures have grown in both size and complexity. To help administrators to manage their in-

frastructure, several Infrastructure Management Tools have been created. However, none of them im-

plements a secure a traceable log of changes that can bring accountability to the management of such

infrastructures. On the other hand, recent research and development in blockchain technologies have

allowed for the creation of Distributed Ledgers that can, in theory, solve the problem by providing a

secure, immutable and traceable ledger that can store the changes that the infrastructure management

tools apply to the infrastructure. In this Thesis, we develop a proof-of-concept solution that incorporates a

Distributed Ledger, Hyperledger Fabric, and infrastructure management tools, Ansible and Terraform, to

prove the suitability of the usage of a distributed ledger to provide a secure inventory and log of changes

in a manner that enables for traceability and accountability for all modifications to the infrastructure, while

also providing user identity management and verification of business constraints.

Keywords

Infrastructure Management; Blockchain; Distributed Ledger Technology; Software Defined Infrastruc-

ture; Provisioning; Ansible; Terraform; Hyperledger Fabric; Traceability; Accountability;

iii

Resumo

As Infraestructuras de TI têm crescido tanto em tamanho como complexidade. Para ajudar os ad-

ministradores a gerir a sua infraestructura, diversas Ferramentas para Gestão de Infraestructuras foram

criadas. No entanto, nenhuma delas implementa, de uma maneira segura, um registo de alterações que

consiga providenciar rastreabilidade na gestão de tais infraestructuras. Por outro lado, investigação e

desenvolvimento recentes na área das tecnologias de blockchain permitiram a criação de Notários Dis-

tribuı́dos que conseguem, em teoria, resolver o problema, providenciando um notário seguro, imutável

e rastreável, que consegue guardar as alterações que as ferramentas de gestão de infraestructuras

aplicam nas infraestructuras. Nesta Tese, desenvolvemos uma solução prova-de-conceito que incor-

pora um Notário Distribuı́do, Hyperledger Fabric, e ferramentas de gestão de infraestructuras, Ansible e

Terraform, para provar a possı́vel utilização de um notário distribuido para providenciar um inventário e

registo de alterações seguros, de uma maneira que permita a rastrabilidade e apuramento de respons-

abilides para todas as modificações à infraestructura, e, ao mesmo tempo, providenciando ferramentas

para a gestão de identidades de utilizadores e verificação de regras de negócio.

Palavras Chave

Gestão de Infrastructuras; Blockchain; Tecnologia de Notários Distribuı́dos; Infraestructura Definida por

Programa; Provisionamento; Ansible; Terraform; Hyperledger Fabric; Rastreabilidade; Responsabili-

dade;

iv

Contents

1 Introduction 1

1.1 Motivation . 5

1.2 Goals . 6

1.3 Organization of the Document . 7

2 Background 8

2.1 Similar Tools and Solutions . 9

2.2 Distributed Ledger Technology . 9

2.2.1 Information Storage . 10

2.2.2 Blockchain . 11

2.2.2.A Public and Private Blockchains . 11

2.2.3 Smart Contracts . 11

2.2.4 Hyperledger . 12

2.2.4.A Hyperledger Fabric . 12

2.2.5 Using Distributed Ledger Technology . 13

2.3 Infrastructure Management . 15

2.3.1 Direct Connection . 15

2.3.2 Infrastructure Management Tools . 16

2.3.2.A Specialized Tools . 17

3 Proposed Solution 18

3.1 Application Requirements . 19

3.2 Approach . 20

3.2.1 General Architecture . 21

3.2.1.A Broker Module . 22

3.2.1.B Ledger Module . 22

3.2.1.C Tool Module . 22

3.2.2 General Data Flow . 22

3.2.2.A Login . 22

v

3.2.2.B Read/Write to the Ledger . 23

3.2.2.C Tool execution . 23

3.3 Design Decisions . 25

3.3.1 Infrastructure Management Tools . 25

3.3.1.A Provisioning . 25

3.3.1.B Configuration Management . 26

3.3.2 Distributed Ledger . 26

3.3.3 Programming Language . 27

4 Implementation 28

4.1 Development Methodology . 29

4.2 Environment . 29

4.3 Hyperledger Fabric . 30

4.3.1 Certificate Authorities . 31

4.3.2 Identity Generation . 31

4.3.3 Peer Configuration . 32

4.3.4 Orderer Configuration . 33

4.3.5 Channel Creation . 33

4.3.5.A Genesis Block . 33

4.3.6 Chaincode Development . 34

4.3.6.A Asset Type Management . 37

4.3.6.B Asset Management . 37

4.3.6.C Dependency Management . 38

4.3.6.D Applied Tool Management . 38

4.3.7 Chaincode Installation . 39

4.4 Modules Development . 40

4.4.1 Module Architecture . 41

4.4.2 Ledger Module . 42

4.4.3 Broker Module . 43

4.4.4 Tools Modules . 45

5 Evaluation and Result Analysis 47

5.1 Test Scenarios . 49

5.2 Scenario 1 - Authentication . 50

5.3 Scenario 2 - Normal Workflow . 51

5.3.1 Asset Management . 51

5.3.2 Tool Management . 53

vi

5.3.2.A Execution Request . 54

5.4 Scenario 3 - Authorization . 57

5.5 Scenario 4 - Dependency processing . 58

5.5.1 Automatic Dependency Detection Shortfall . 59

5.6 Scenario 5 - Rollback of tool applied actions . 60

5.6.1 Tool Rollback Limitations . 60

5.6.2 Proven Solution . 61

5.6.3 Integration with our solution . 62

5.7 Load and throughput . 62

5.8 Result Discussion . 66

6 Conclusion 68

6.1 Objectives . 69

6.2 Conclusions . 70

6.3 System Limitations and Future Work . 71

Bibliography 71

A Sample Smart Contract Code 75

vii

viii

List of Figures

1.1 Logical Location of the tool . 6

2.1 General RBAC model architecture . 14

3.1 General Solution Architecture . 21

3.2 Login Data Flow . 23

3.3 Read/Write Requests Data Flow . 23

3.4 Tool Invocation Data Flow . 24

4.1 Host-VM-Container architecture . 30

4.2 Module Architecture and Data Flow . 41

5.1 User and Admin Permissions Diagram . 57

5.2 Response times for different request types . 64

5.3 Throughput for different request types . 65

ix

List of Tables

2.1 Comparison between provisioning and configuration management tools 16

4.1 Broker Module public API . 44

x

Listings

4.1 Registration and Enrollment of an Identity . 32

4.2 Asset Structure . 35

4.3 Asset Structure . 36

4.4 Installation of a Smart Contract . 39

4.5 Fabric SDK Connection . 42

5.1 Successful Login Request . 50

5.2 Unsuccessful Login Request . 50

5.3 Successful Asset Registration . 52

5.4 Successful Asset Deletion . 53

5.5 Successful Asset Registration . 54

5.6 Refused Request due to lack of permissions . 58

5.7 Refused Asset removal due to Dependency check . 59

A.1 Asset Registration . 75

A.2 Remove Asset . 77

A.3 Get Asset . 78

xi

Acronyms

API Application Programming Interface

CA Certificate Authority

CD Continuous Delivery

CI Continuous Integration

CLI Command-Line Interface

DAG Directed Acyclic Graph

DL Distributed Ledger

DLT Distributed Ledger Technology

GUI Graphical User Interface

HTTPS Hypertext Transfer Protocol Secure

IaaS Infrastructure as a Service

ID Identifier

JSON JavaScript Object Notation

MSP Membership Service Provider

OS Operating System

RAM Random Access Memory

RBAC Role Based Access Control

SDK Software Development Kit

SDN Software Defined Networking

TLS Transport Layer Security

TPS Transactions per Second

VM Virtual Machine

xii

1
Introduction

Contents

1.1 Motivation . 5

1.2 Goals . 6

1.3 Organization of the Document . 7

1

2

Currently, due to the continuous development of new and more complex software systems, tools, and

applications, employing new development methods like Continuous Integration (CI) [1] and Continuous

Delivery (CD) [2], the IT Infrastructures have grown in size and complexity, both in large datacenters,

typically of service providers, and in smaller ones of private businesses that still maintain their own

physical infrastructures. New technologies were introduced to ensure the necessary adaptability and

versatility of the Infrastructures to enable them to be constantly changing on a logical level with minimal

physical level changes, aiming to separate the underlying hardware from the software running in those

infrastructures [3].

From the computing perspective, the most promising and used technologies are based on virtual-

ization. Virtualization is ”the creation of a virtual (rather than actual) version of something, such as an

operating system, a server, a storage device or network resources. It allows a single physical resource

(such as a server, operating system, application, or storage device) to function as multiple logical re-

sources” [4]. This means it is possible to have the same physical server running more that one operating

system. This brings several benefits in cost-of-ownership, enables a much faster and easier creation

of new (logical) systems, enables portability of the virtualized systems, sometimes being possible to

move a virtual resource between physical machines without turning off that resource, ultimately making

management easier and more effective.

Other popular technology is containerization. This technology is very similar to virtualization but,

instead of virtualizing entire Operating Systems (OSs), enables the virtualization of specific applications

or services, avoiding the problem of having the overhead of an entire OS running just to execute said

service. With this technology, it is possible to have a system, with only one OS, executing several

services while isolating each of them, ensuring the security and separation between services [5] [6] [7].

From the networking perspective new technologies were also introduced with the same goal of de-

coupling the physical data plane from the control plane, introducing the term Software Defined Network-

ing (SDN). This separation enables all the network to be managed from a central location, instead of

static configurations in each networking equipment via well defined protocols like OpenFlow [8], which

makes possible to create dynamic networks that automatically adapt to the needs (i.e., ensuring con-

nectivity between certain hosts) and to possible failures, routing packets through alternative routes,

minimizing downtime. The SDN concept can be also extended to manage the virtual networks created

when more and more Virtual Machines (VMs) are being executed in a single physical host, by using vir-

tual switches that can be managed using flows. This enables the network to be constantly re-configuring

itself to ensure the needed connectivity without the need for physical interaction and ensuring fast adap-

tation to new requirements. [9] [10]

By combining the benefits of software defined computing infrastructure, using virtualization and con-

tainerization technologies, and the SDN concept, was possible to create large infrastructures that can

3

be controlled and managed from one point (with the necessary redundancies) and that enable users

to have a limited access to a part of the computing and storage resources of the infrastructure. This

also enables the users to create and destroy resources (i.e. Virtual Machines) on demand and with total

abstraction of the underlying hardware and management software via Application Programming Inter-

faces (APIs). This concept of total abstraction is known today as the cloud, and it can be implemented

in very large and public scales, like Google Cloud [11], AWS [12] and more, or in a private environment,

usually created within a company for self use [10].

To manage these software stacks, several tools were created. These tools usually accept as input

plans or scrips, written in a declarative language that may or not be specific for the tool (instead of being

specific for the hardware and software running in the infrastructure). The tools are capable of converting

these plans into actions that are executed against the several components of the infrastructure, and then

can detect all errors and misconfigurations, allowing for the easy monitoring of the changes being applied

and enable for the easy detection of inconsistencies across the several assets in the infrastructure [3].

However, since different tools have different objectives, it is common practice for the administrators

of the infrastructures to to use different tools of their preference to completely cover the lifecycle of

the resources. This can lead to inconsistencies (for example, trying to configure a resource that has

not been provisioned), lack of awareness about the global state of the infrastructure, and also lack of

a trusted environment where auditability and traceability are ensured. Furthermore, since little or no

history of changes is kept, it is very difficult to trace back individual actions, consequently being very

difficult to revert them or investigate who executed some change and when [3].

Some of these problems can be solved by using an orchestrator, able to monitor and control the ac-

tivity of each tool and to keep a resource inventory of the Logical and Physical Infrastructure status, with

information about the available resources, currently allocated resources and their ownership, and even

some knowledge base related with those resources. This information is typically stored in a database,

where it can be readily modified and accessed, allowing for the system administrators to keep track of

the individual assets of the infrastructure, improving therefore the awareness on their status, and, at the

same time, providing information about ownership and utilization of the resources [3].

Although, at first, the idea of a database to keep a resource inventory can appear to solve all problems

described, it does not. A database can be very good to provide information on the current state of the

infrastructure. However, this type of solution does not ensure the traceability of the all the actions that

brought the infrastructure to the current state (i.e., the actual state stored in the database) and does not

ensure an immutable historic record of previous actions over the infrastructure or over the database (for

example, it is possible for someone to delete information from the inventory, allowing for the cover up of

malicious activities without leaving a trace).

From a security and traceability perspective, as the infrastructures grow larger and more valuable

4

services are run on them, the need for ensuring the security of the infrastructure increases. At the same

time, as more people need to integrate the management teams, it is increasingly important to ensure

everyone can know what has been done, what is pending and how to revert changes. This can be solved

by introducing access control to the management tools and by keeping a log of all the changes that have

been committed [3].

It is also important to ensure that the generated logs are immutable to prevent malicious users from

deleting or changing the logs. The use of Distributed Ledger Technology (DLT) and a Distributed Ledger

(DL) can help to ensure these security constraints while also taking an active role in the verification of

the state of the infrastructure and verification of business logic, for example, dependency verification

when modifying assets. This behaviour is ensured by using chaincode, or smart contracts, that are in

fact general purpose code that the ledger executes in order to register or modify new entries in the state

database, while also building the logs of actions.

1.1 Motivation

This Thesis’ project focus is in the middle layer of software present in such environments, between the

hardware and the users. More specifically, it focuses on orchestrating different tools while ensuring that

all the changes are registered and verified by the ledger.

Due to different design philosophies and goals, there are different tools that aim to provide the same

of different subsets of the provisioning, configuration and deployment processes. Since different tools

satisfy different objectives, it is normal to use several such tools in a single environment. Due to the

need of using different tools to accomplish different tasks, it is then needed for the engineers in charge

of managing the infrastructure to use different tools independently, making the management harder,

more difficult to keep track of all the changes and ultimately making easier to commit mistakes and more

difficult to spot and correct them.

Another issue with this lack of centralized control is the lack of traceability of changes that are made

using each individual tool, and by whom. Most of the tools, even though they can analyze and sometimes

store the state of the infrastructure, they do not keep track of who triggered the changes, when those

changes occurred, and the history of changes. With the ever growing size of the infrastructures and

teams, it is essential to keep a timeline of all changes to the infrastructure and who is responsible for

each.

With the traceability perspective in mind, it is important to have then a sequence of the actions that

were made, and to make sure that that sequence is immutable and tamper proof, to eliminate the risk of a

malicious agent making changes to the infrastructure and then wipe the records of those changes. A DL

suits this requirement perfectly, by allowing decentralized recording (improving safety and redundancy)

5

and by providing an immutable sequence of blocks by design.

1.2 Goals

Our objective with this work is to evaluate the suitability of a Blockchain-based DL to provide a secure

log storage and inventory (state database) of the infrastructure, while also harnessing its chaincode

capabilities to ensure business logic verification automatically, such as ensuring that new actions do not

break dependencies between different infrastructure assets.

To make this evaluation a Proof-of-Concept tool that acts as infrastructure status tracker will be

developed, employing a DL to maintain a log of changes as well as a secure inventory that represents

the state of the infrastructure. In order to track changes being applied, it will also act as an orchestrator

between the different infrastructure management tools, allowing the user to have a single point of contact

to manage the entire infrastructure.

The DL will also be programmed with proof-of-concept chaincode to evaluate all the actions taken

over the infrastructure, ensuring their correctness, verification of permissions and dependency tracking

between assets.

Users

Provisioning and
Deployment tools

Ledger /
State Database

This tool

Infrastructure/
Cloud Endpoint

Figure 1.1: Logical Location of the tool

The tool is to be used as a orchestrator for the various provisioning and management tools, while

also acting as an authentication point and ledger. As Figure 1.1 illustrates, the tool will serve as an

6

abstraction layer between the User and the underlying tools. The tool is to be developed following a

modular architecture, ensuring that it is possible to add support to new southbound tools without needing

for a major reprogramming. The tool will be developed to support connections to Ansible, Terraform as

a proof-of-concept, but ensuring the possibility of connecting to different tools with just the addiction of

an API.

The tool will receive as input configuration files written in the language the Southbound tools may

use, forwarding them to the corresponding tool, while also analyzing its output in order to register the

taken actions in the ledger. It will be also possible for the user to manually insert new actions or assets

into the state database, provided that the modifications comply with the chaincode.

From the security perspective, the tool is to be able to connect to some Ledger, via a universal API.

Hyperledger Fabric [13] will be used in this proof of concept, as it is a DL that can provide both the

traceability and authentication needed. The tool will then register in the Ledger all of the actions taken

over the infrastructure, forming a flow of actions that can be retrieved later and presented to the user.

1.3 Organization of the Document

This thesis is organized as follows:

• Chapter 1 - Introduction: describes the motivation, the problem, and the goals of the thesis;

• Chapter 2 - Background: explores the current state of the art, and related works;

• Chapter 3 - Proposed Solution: Describes the chosen architecture and the requirements for imple-

mentation;

• Chapter 4 - Implementation: Describes the implementation of the tool, together with the explana-

tion for several design choices;

• Chapter 5 - Evaluation and Result Analysis: proposed methodology for the evaluation of the work

and its evaluation;

• Chapter 6 - Conclusion: presents the conclusions taken from the developed and presented work.

7

2
Background

Contents

2.1 Similar Tools and Solutions . 9

2.2 Distributed Ledger Technology . 9

2.3 Infrastructure Management . 15

8

To develop this tool, it is important to understand the current state of the art in the related areas.

Firstly, we will discuss the existence of similar tools and systems that enable a centralized manage-

ment and logging point for an infrastructure. Secondly, as it is the main area of analysis of this

project, it is needed to understand the DLT, the DLs and, more specifically, the workings and capabili-

ties of the DL that will be used in this proof of concept, while also comparing it to some other relevant

DLs. We will also present some examples from the literature of the usage of DLs, in areas different

from IT Infrastructure Management, but at the same time with similarities to the work we present on this

project. Thirdly, we will evaluate, compare and discuss different Infrastructure Management Tools,

since they ensure the connection between this tool and the physical infrastructure, and will be present

in this proof-of-concept tool as an example of the adaptability of this tool.

2.1 Similar Tools and Solutions

There are several similar tools and toolsets that aim to centralize an infrastructure management and pro-

vide a central logging database with authentication and access control capabilities. However, we could

not find any that was either open sourced or free, since most of them are commercial solutions with

high costs and developed by companies that use them as a source of profit. Although by being closed

sourced and payware the available information is sparse and not technical, avoiding a meaningful com-

parison with the proposed project, this shows that there is a need for tools with these objectives in the

industry. Additionally, from our research, none of those tools harness the capabilities of DLTs to im-

prove their functionality or security, instead relying on traditional technologies such as normal database

systems. It must also be noted that many of these tools are developed and published by the hardware

vendors (for example Cisco [14], Juniper [15], HPE [16] and Dell [17]), tailor made to their hardware

and environments, while some other frameworks are hardware agnostic, supporting multiple vendors

and even integrating with existing open sourced tools like Nuage Virtualized Services Platform [18] or

Ansible Tower [19]. In general, these frameworks, similarly to the one proposed in this project, work as a

middle layer between the users and the tools that manage the hardware and software, sometimes open

sourced, like the ones presented below in section 2.3.2, or have those tools already integrated in the

framework and connect to the hardware via custom and proprietary protocols (e.g., custom implemen-

tations of Command-Line Interfaces (CLIs) and/or APIs).

2.2 Distributed Ledger Technology

DLT, as its name implies, is a technology that enables a ledger to be distributed over several

machines while maintaining synchronization between all of them [13,20]. A DL has several advan-

9

tages over a traditional centralized ledger, both in redundancy of data storage and security, due to the

distributed design philosophy and the secure design of Blockchain [21].

From the security and traceability standpoint, it is needed to ensure the logging of information in a

highly available, append-only database. DLT ensures this premises by using physically distributed stor-

age and computing devices, even in an untrustworthy environment. There are many implementations of

this technology, with different objectives and employment of different designs, based on Blockchains or

Directed Acyclic Graphs (DAGs). In general, DLs are highly available, append-only distributed databases

that work on untrustworthy environments, where Byzantine failures can happen, like crashed or unreach-

able nodes, occurrence of big network delays, and even malicious behavior of nodes can happen. DLs

are comprised of separate Nodes that work together to maintain a consistent state of the ledger across

all Nodes, that is replicated in every Node [22, 23]. There are many comparative studies about DLs

like [22] and [24]. We will focus this work on the Hyperledger Fabric [13] solution because of its large ac-

ceptance, performance, modularity, available documentation and general architecture and assurances

that are closely related with the ones of this project (e.g., high Transactions per Second (TPS) rate, high

security and restricted participation) [23].

2.2.1 Information Storage

Distributed ledgers usually maintain a database where assets are stored. Depending on the specific

implementation of the DL, these assets can represent different entities, such as a cryptocurrency, a

physical asset or even files or abstract concepts. The DL implementation will determine what is possible

to store in that database, the format of the database (e.g., relational database, key-value store) and

how the users interact with said data. This database is usually called the State Database [13]. All the

changes to the state database are registered in what is in fact the ledger, and that is the main focus in

the DLT. The two most used technologies by distributed ledgers to store the changes are DAGs and

Blockchains. Both these data structures are comprised of nodes, and relations between nodes. The

main difference between them is the number of child nodes of each node. In DAGs, each node can

have any number of child nodes whereas in a Blockchain each node only has one node, forming a

chain [3,13].

The motivation behind these nodes is that each node represents a modification to the state of the

Ledger [13]. For this application it is only conceivable to have one state at a time, since it is in fact an

inventory and from an Infrastructure perspective having more than one concurrent inventory does not

make sense, we will further investigate the usage of Blockchain based Distributed Ledgers.

10

2.2.2 Blockchain

A Blockchain is a distributed and decentralized data structure that works as chain of data nodes

where each node ensures the integrity of the previous one using cryptographic functions [21,25].

This data structure is comprised of several nodes where each one stores user set data, but also

information about the node itself and the preceding node in the chain. By storing an Hash [26] of the

preceding block in the chain, we can ensure the the preceding block in the chain has not been modified

since it was referenced in the current block since it would change the hash of the preceding block and

consequently the hash of the current block, because, since the hash of the preceding block is part of the

current block, any change in that hash would also change the hash of the current block. This way, each

block ensures the integrity of all the previous blocks, and any change in a random block would break the

whole chain. This turns a blockchain in an append only database [21,25].

Apart from the specific details about the blockchain definition, it is also important to understand the

two main types of blockchains in existence: public and private.

2.2.2.A Public and Private Blockchains

A Public Blockchain is a blockchain implementation where all the information comprised in the blockchain,

and the blockchain itself are public [13,25]. Also, the computers used to manage and store the chain are

not trusted. By being public, this enables anyone to modify the chain, usually by appending new blocks.

This is the type of blockchain used in most cryptocurrencies, where everyone can read and write to the

blockchain, registering new transactions. Usually these blockchains use some algorithm to regulate the

addition of new blocks to the chain such as proof-of-work, as used on Bitcoin. These algorithms rely

on verifiable parameters such as the passage of time, computing and processing work and usage of

storage space [13].

In contrast, a Private, or Permissioned, Blockchain is an implementation where all the information

that comprises the blockchain is private and all access to the chain, being it for reading or writing, is

controlled. In order to ensure the access control and privacy, all the computing nodes related to the

blockchain must be identified and secured, and all users must also be identified. This is usually done

using cryptographic certificates and keys that identify and ensure the identity of people and machines

[13]. Since all access is controlled, in this type of Blockchains normally there is no algorithm to regulate

the addiction of new blocks to the chain, making it faster and less resource demanding.

2.2.3 Smart Contracts

Smart contacts, also called Chaincode, are programs that are executed in order to change the state of

the ledger [20]. While in a traditional database it is usual to simply commit information to the database,

11

in a DL all the changes to the state database are committed via smart contracts. These smart contracts

are coded in some programming language, being it general purpose or not, depending on the specific

implementation of the DL [20, 23]. This software layer enables custom processing of all the actions

submitted to the ledger, enabling both fine grained access control (while the DL itself usually only does

more general access control) for example such as a Role Based Access Control, or Attribute Based

Access Control, and the verification of business logic, for example verification of constraints for the

deletion or modification of assets based on the state of the ledger or even external factors [20, 27, 28].

It is important to note that all transactions, both write or read, must be implemented as functions in

a smart contract, and, to be executed, must be executed by calling the corresponding function on the

smart contract [13].

2.2.4 Hyperledger

There exist many Blockchain based DLs that, although made to fulfill similar requirements, have in fact

different implementations and design choices, mainly about the programming language in which they are

written, that can affect the supported languages for the smart contracts and execution speed, modular

or monolithic design, that can improve adaptability to different setups, and the consensus algorithms

implemented to manage and replicate the blockchain over all the computing nodes.

In this project we will analyze in more detail the Hyperledger Family, that is a family of several DL

implementations, each with specific features to specific implementation scenarios and different levels of

modularity and adaptability, that often increase in exchange for more complex configuration and setups.

The family is composed of 6 different DL implementations. The Hyperledger website1 provides a good

summary of each of them. The two implementations that would make sense to use in this solution

would be both Hyperledger Fabric and Hyperledger Sawtooth, due to their modularity and high flexibility,

that enables complex Smart Contracts, written in general purpose programming languages, their high

performance, and adaptability of their state database. However, Hyperledger Fabric will be analyzed in

more detail in section 2.2.4.A, and the reasons to choose it for this solution will be presented later in

Chapter 3.

2.2.4.A Hyperledger Fabric

Hyperledger Fabric is a “modular and extensible open-source system for deploying and operating per-

missioned blockchains” [13]. Since it is intended to be used as a part of bigger solutions and systems, it

is very configurable, modular, and offers complete APIs in Golang, Java, Javascript and Typescript that

enable it to be controlled from other systems. From an architecture perspective, Fabric has two types of

nodes, Peers and Orderers.
1https://www.hyperledger.org/use/distributed-ledgers accessed on 6th September 2021

12

Peers are responsible for the execution of the smart contracts, as well as maintaining the state

database together with a copy of the Blockchain. For each installed Smart Contract, each Peer creates

a docker container where all executions of said smart contract will take place. The documentation calls

for at least two Peers in any deployment for redundancy reasons [13].

The Orderer nodes are responsible for the ordering of the blocks and actions in the chain. The

Orderer nodes also verify that the executions of the smart contracts terminated with success and are

also responsible for some of the permissions management. The documentation recommends a minimum

of three Orderer nodes in any deployment due to the need of consensus between Orderers in order to

commit changes to the chain [13].

Another important component of any Fabric deployment is the Identity Management. Each user and

machine connection to the deployment has to have an identity, in a form of a cryptographic key pair,

together with a Certificate signed by a trusted Certificate Authority (CA). These files are then organized

in an Membership Service Provider (MSP), that is a folder structure that identifies some identity (user

or machine). The Hyperledger Fabric project provides an implementation of a CA that is customized

to automatically produce the cryptographic material in the format required by Fabric (MSP). However,

any CA can be used, provided that the operator manually organizes the cryptographic material to be

compliant with the format required. All identities in Fabric are organized in organizations, that can be

implemented to reflect different real life organizations/companies, or simply to provide some separation

and organization in the logical Fabric Network [13].

As explained in detail in [13], the main difference in Hyperledger Fabric in comparison to other DLs

is the workflow for any given transaction. Instead of the traditional Order - Execute flow, Hyperledger

Fabric uses a Execute - Order - Validate flow that increases throughput and reduces execution times for

the transactions. It also helps mitigating some issues with smart contracts such as non-termination and

infinite looping.

2.2.5 Using Distributed Ledger Technology

AS explained in [20], since DLs can provide a trusted environment in untrusted and opaque environ-

ments, it can be used as a base for the processing of inter-organizational business processes. These

processes can be fully represented in smart contracts, since they are programmed with general purpose

programming languages that can execute logic and conditions. Since the translation from the business

process’s logic to the smart contracts can be modeled, the inverse translation is also possible, enabling

the monitoring of the processes by people that do not need to understand the logic behind a DL, by

presenting them with a Graphical User Interface (GUI). Since the management of IT Infrastructures can

be also represented as business models, a similar process can be employed to enable monitoring of IT

infrastructures using a DL and smart contracts.

13

It is also possible to use Hyperledger Fabric and its smart to contracts to enable user authentication

and Attribute-Based access control. As the authors in [29] demonstrate, this technology can ensure the

required auditability for Access Control Systems. Using a blockchain as base technology, this system

also ensures a high level of transparency. The study also provides an experimental performance eval-

uation that shows this system can process large numbers of requests. This indicates that it should be

possible to use Hyperledger Fabric’s technology in this project in order to enable user authorization and

authentication with acceptable performance and fulfilling the goals.

Similarly, the work in [30] presents an investigation for Access Control for Knowledge Management

Systems using Blockchain. In this paper, a Role Based Access Control (RBAC) model, whose general

architecture is shown on Figure 2.1, is developed, using the Elliptic Curve Digital Signature Algorithm

as the base for key generation and authentication of the users, as it is widely accepted. The innovation

comes from the use of a blockchain and its smart contracts to manage both the authorization and roles,

and the management of the knowledge. Since the blockchain is tamper proof, secure and distributed,

this advantages directly increase the security of the whole model. The paper also describes each of the

smart contracts and steps in the process in a detailed manner. This can be of great use in this project,

by providing a secure method for both user authentication and authorization for the execution of actions

over the infrastructure and logging of those actions (knowledge in the model).

Figure 2.1: General RBAC model architecture

As seen in [31], the authors present the problem of (Distributed) Databases’ tampering detection, and

propose some methods and technologies to provide tampering detection, including the use of One-Way

Cryptographic Hash Functions, Digital Watermarking, Audit Logs, Page Carving, and the use of Decen-

14

tralized Databases. Although these methods are already well known, the paper discusses Blockchain

and Blockchain based Ledgers as solution to complement those existing methods, since this technol-

ogy can provide an immutable ledger with high degrees of security and dependability by design. In our

paper, we also propose a blockchain based solution as a complement for a database system, although

aiming for traceability assurance, but relying on the same principles of immutability and dependability.

The work presented in [27] also focus on the benefits of integrating blockchain a based solution into

already existing systems. In this paper, the Hyperledger Fabric, one of the major Blockchain based

Distributed Ledger Projects, is presented as a tool to enable supply chain management. The possibility

of running code integrated with the blockchain, the so called chaincode or smart contract, enables the

verification and execution of business logic and supply chain specific conditions in order to automate

most of the tasks related to the management of the products. The introduction of smart contracts to

manage assets is also considered in our proposed solution, since it enables automatic verification of

inventory conditions to accept or abort some new inventory changing operations.

The authors in [28] demonstrate the advantages of using a Distributed Ledger, based on blockchain,

as a foundation for a platform for Pharmaceutical Cold Chain Management. In that paper, the authors

provide an example of how the smart contract technology can be used to verify real world conditions. The

proposed platform uses the blockchain as a ledger for the tracking of products and also smart contracts

that verify the packaging conditions of the products. By reading information from sensors close to the

package, the platform can automatically flag the package and abort the tracking process

2.3 Infrastructure Management

Since our goal is to develop a tool that can centralize and monitor tasks and actions taken over the

infrastructure, it is important to analyze how to do so.

2.3.1 Direct Connection

One possibility would be to manually develop an ssh and API client that would connect to each and every

system on the infrastructure. This would be a bad approach and against current trends in infrastructure

management, since this approach has several drawbacks, such as:

• Since different systems have different APIs and different ssh commands, it would be needed for

the user to still know all different commands and endpoints of the different systems;

• Due to the differences in the systems, it would be impossible to execute similar actions in different

systems with deep refactoring of the scripts and instructions;

15

On account of the lack of desired uniformity, the industry has veered towards the development of

tools that create an abstraction layer over the management of the infrastructure.

2.3.2 Infrastructure Management Tools

The infrastructure management tools aim to create, via an abstraction layer, a common format in which

the infrastructure operator can specify the changes to be made in a standardized language, that the tool

will then translate in the specific commands and API calls exposed by the systems.

Table 2.1: Comparison between provisioning and configuration management tools

Tool Objective Language Client
Agent Contributors Stars

Ansible Configuration
Management

Procedural
(YAML) No 5177a 46.1k

Chef Configuration
Management

Procedural
(Ruby) Yes 638b 6.4k

Puppet Configuration
Management

Declarative
(PuppetDSL) Yes 548c 6k

Heat Provisioning Declarative No 384d 367

Terraform Provisioning Declarative
(HCL) No 1531e 24.9k

a https://github.com/ansible/ansible accessed on 21st December 2020
b https://github.com/chef/chef accessed on 21st December 2020
c https://github.com/puppetlabs/puppet accessed on 21st December 2020
d https://github.com/openstack/heat accessed on 21st December 2020
e https://github.com/hashicorp/terraform accessed on 21st December 2020

Must be noted that there are two different types of tools. Provisioning tools have as objective the

provisioning of new resources, being them virtual machines, containers, networks, etc. Configuration

Management tools are developed to help in the configuration of those resources, by executing actions

in the virtual resources themselves (e.g., installing software, deploying configurations). This further con-

firms the need of more than one tool to fully manage the complete infrastructure (e.g., using Terraform

to provision the resources and Ansible to configure them).

There are also differences between the tools in regards to human interaction. While all of them use

configuration files as input, they can use different languages, and different logical approaches (Declara-

tive or Procedural).

For the Configuration Management tools, it is important to note the necessity of a client agent for

some of the tools. Since the tool cannot manage a resource that does not have the client agent installed,

it is necessary to install that agent before the use of the tool. This must be done manually or with some

other automatized method. As such, agent-less tools are easier to deploy, by only needing to be installed

in the control host.

16

Since all these tools are open sourced, the number of contributors and stars on the repositories will

reflect the the size of the community supporting the tool, which, in turn, will influence the documentation,

information and guides available for said tool. It can also represent the tools that are more likely to

incorporate new technologies and have faster development and bug fixes.

Table 2.1 summarizes main the characteristics of the most used and well known provisioning and

configuration management tools. These tools are used both in private and public clouds to enable

the automatic and scripted provisioning and configuration of machines by connecting via APIs to the

underlying infrastructure management software. All tools presented are open source and/or free to use.

2.3.2.A Specialized Tools

It is, however, important to note that there are more tools for the management of infrastructures that are

either specialized to more specific components of the infrastructure, such as to manage containers, SDN

controllers, or proprietary tools to manage proprietary solutions, such as tools from hardware vendors

to manage their own Servers. All of these are not further detailed here due to their smaller relevance

in the general infrastructure and not being representative of the majority of the usage of infrastructure

management tools. Additionally, since the objective of this thesis is to develop a proof-of-concept tool, it

makes no sense to include such specialized and specific tools.

17

3
Proposed Solution

Contents

3.1 Application Requirements . 19

3.2 Approach . 20

3.3 Design Decisions . 25

18

As it is briefly presented in Chapter 1, our aim is to develop a proof-of-concept tool to investigate the

viability and benefits of utilizing a DL to maintain an inventory of an IT Infrastructure, and the possibility

of this tool to be integrated with other infrastructure management tool to provide a central, but distributed

and secure, point of management of an infrastructure while enabling accountability and traceability of

changes made by operators.

3.1 Application Requirements

As said previously, the systems needs to address the security concerns naturally related to the man-

agement of the infrastructure primarily, but it is also important to ensure both speed and efficiency, and

also adaptability to enable customization. A list of requirements was created to help the fulfilment of the

goals:

• The system must be developed using a microservices architecture, deploying modules with

simple objectives, improving adaptability.

• All modules should be stateless, in order to enable them to be more resilient to crashes and

reboots;

• It is needed for the modules that handle communication to the infrastructure management tools to

be plug-and-play, enabling the addition of support to new tools without the need to change code

in other modules.

• The Ledger communication module must also be plug-and-play, to enable the utilization of differ-

ent ledgers by creating just the ledger module responsible for the interface with the Ledger itself.

• All the modules’ communication will be done via REST APIs, that must be Tool/Ledger agnostic

in order to support the plug-and-play philosophy.

• The user communication with the tool will be made via a REST API.

• It must be possible for the user to register the creation, modification or deletion of assets in

the infrastructure manually.

• The user will be enabled to submit plans for the infrastructure management tools via our tool, that

will be responsible for the automatic registration on the ledger and implementation of the plans

using the underlying infrastructure management tools.

• The tool must provide user access control, via user attributes (i.e., user attribute and admin

attribute), that is supported and verified by the ledger. The ledger must refuse any changes or

queries made by non-authenticated or non-authorized users.

19

• The ledger must be responsible, by using chaincode, of the verification of the possibility of

modification and deletion of assets based on dependencies (e.g., if the asset B depends on

asset A, asset A cannot be deleted before the dependency is removed or asset B is deleted).

• Any actions taken over the infrastructure using the connected tools must not be implemented

before they are registered in the ledger and approved by it.

• The tool must be able to register in the ledger and show to the user the return status of the

infrastructure management tools even if they fail.

• If the execution of some action fails, the tool must update the ledger so that the inventory database

continues to represent the real status of the infrastructure.

• If it is detected that some infrastructure management tool has failed to implement an action, our tool

must be able to retry that action a predefined number of times to try to circumvent temporary

failures, granted that the infrastructure management tool grants idempotency of applied actions

(e.g., if some plan is applied more than one time, the output must be the same as applying it just

once).

3.2 Approach

Having in mind the requirements defined in section 3.1 the goal is to to develop a solution that harnesses

the security and data storage benefits of a DL, by using it to store the inventory database for the infras-

tructure and make the necessary verifications to approve or deny infrastructure changes and inventory

read operations (write/read operations) based on constraints expressed in smart contracts that will verify

both user permissions and business constraints.

Since the presented solution is a proof-of-concept, the aim will be to implement and present key

features that will be proven or disproven as viable, and, if viable, will indicate the viability of more complex

features that are the evolution and more tight specifications of the ones implemented in this proof-of-

concept. The main features to explore, according to the requirements will then be:

• Attribute based access control - In our proof of concept only two roles will be implemented (user

and admin) but this will show the possibility to implement a much larger array of attributes, and

with attribute hierarchy (i.e., admin is a ”member” of the users);

• Dependency creation and checking - In this prototype, only direct hardware dependencies will

be implemented (i.e., a VM will depend on its Host). However this will prove the possibility of

implementation of a more advanced dependency detection algorithm, more tightly related to the

tools used and the infrastructure;

20

• Only one DL will be supported and implemented. However, since the APIs will be generic, any

similar DL can be possibly used;

• Similarly, only two infrastructure management tools will be incorporated: Ansible and Ter-

raform, but, as the Tools API will also be generic, any tool can be incorporated, even different

types of tools, such as SDN controllers;

3.2.1 General Architecture

In order to satisfy the requirements for adaptability and modularity, a general architecture for the solution

was designed. As shown on Figure 3.1, there are three main types of modules: Broker, Ledger and

Tool. Each of these modules has a specific function, and the communication between them is, as

specified in the diagram, done via REST APIs.

Ledger Module

Ledger REST API

Hyperledger API

Broker
Module

User Interface REST API

Tool module

Tool REST API

IT Infra. Mgt. Tools

Ledger REST API

Inventory
Database

Tool REST API

User

Infrastructure
Distributed

Ledger

Figure 3.1: General Solution Architecture

We will now discuss in more detail the function of each of the modules.

21

3.2.1.A Broker Module

The Broker module acts as a central routing module for information. It handles the user interface,

and relays the requests and information to the corresponding modules. The processing done in this

module is to be kept at a minimum to keep it as generalized as possible, to enable it to accept

connections to different tools and ledgers.

3.2.1.B Ledger Module

The ledger module is responsible for the implementation of the DL API, and to convert all requests

and information sent by the Broker module to the specific Ledger requests. The processing done

here should also be kept as a minimum, as only related to the conversion between request types. It is

important to note that the logic implemented in chaincode is part of the Ledger itself, and it is not

present in this module.

3.2.1.C Tool Module

The Tool module is the one that will make all processing that is tool specific. This module will receive

requests from the broker module using the common tool API, process those requests and execute

the tools to fulfill them. The module will then also parse the tool’s response and convert it back to

the common types present in the Tool’s API, to be sent back to the Broker.

It is important to be noted that there may be more than one tool modules in the same deployment

of this tool, as each tool module implementation only connects to one tool, and the implementation of

the module is tool dependant.

3.2.2 General Data Flow

To ensure the modularity of this solution, specification of the interactions between the different modules

is necessary. There are three main types of interactions between the user and the tool: Login, Tool

Execution, Read/Write information from the Ledger. Although these interactions and data flows will

be further explored and specified in Chapter 4, here we present an overview of said interactions.

3.2.2.A Login

Since the tool will support Session based access, a Login functionality is needed. As depicted in

Figure 3.2, to login itself, the user will send its credentials to the broker module, that will send them

to the ledger module, where they will be sent to the Ledger, running a specific login function on a

Smart Contract that will make the necessary verifications to authenticate the user and provide a Session

22

Identifier (ID). That Session ID is then returned to both the Broker Module and the user for subsequent

connections.

Broker Module Ledger Module

Register Login
on Ledger

Login
Login

return Session ID
return Session ID

Figure 3.2: Login Data Flow

3.2.2.B Read/Write to the Ledger

One of the Infrastructure Management actions that the user can make is to directly read or write to

the ledger. This can happen if the user wants to check the status of some asset (read) or register

manual interactions that were not made with a Infrastructure Management Tool connected to our tool,

or manually made (i.e., installing a new physical server). In this case, the user has to already have a

Session ID that will accompany all its requests in order to authenticate and authorize itself. As presented

in Figure 3.3, the user will again make the request to the broker, that will redirect the request to the

Ledger module that will run the corresponding Smart Contract functions in order to fulfill the request.

The Smart Contract Function’s return value will then be redirected back, through the broker module, to

the user.

Broker Module Ledger Module

Execute Request
on Smart Contract

Request
Request

return
return

Figure 3.3: Read/Write Requests Data Flow

3.2.2.C Tool execution

The most important feature of our tool is to automate the invocation of Infrastructure Management

tools, while keeping all the actions taken registered and verified by the ledger. Also in this case, the

23

user already has to have a Session ID that will accompany all its requests in order to authenticate and

authorize itself. As shown on Figure 3.4, the user will make a request to invoke the tool, this request

will include the necessary plan files to the tool execution. The request will then be verified for a valid

session ID by the broker and sent to the Tool module to execute a dry-run, where the tool will verify

the validity of the plans and return an estimation of the changes that will be made. Those changes are

then sent to the ledger, by the broker module, that will verify if they are possible and valid using the

business logic present in the smart contracts. It will also register the actions as being planned but not

executed. The results of both the dry-run of the tool and the ledger return will then be sent to the user

for final confirmation. If the user confirms the intent to execute said tasks/plans, the broker will then

command the tool module to execute the Infrastructure management tool, this time committing changes

to the infrastructure. The return values from the tool will then be processed by the broker and sent to

the ledger for registration in the Ledger and Inventory. In the end, the user will get a summary of the

changes.

Broker Module Ledger Module

Run Smart Contract

Tool Module

Run Tool

Invoke Tool

Register/Verify Intent

return

Invoke Tool

return

Run Smart Contract

Register Tool execution

return
return

Dry-run Tool

Invoke Tool for Dry-run

return

return

Confirm Invocation

Figure 3.4: Tool Invocation Data Flow

Even tough the presented tool will be a proof-of-concept, design choices were taken into considera-

tion to make it reflect the most recent tendencies both in software development and tool usage. In the

next section we will present the taken considerations in the various decisions.

24

3.3 Design Decisions

Due to the immense variety of solutions in existence, it was needed to make choices about three main

aspects in this solution: Programming Language, DL implementation and integrated infrastructure

management tools. In the next sections we will present the reasoning for the choices taken for each

aspect.

3.3.1 Infrastructure Management Tools

As presented on Section 2.3.2, there are many solutions and tools that aim to streamline and uniformize

the process of management of the infrastructure. For this proof-of-concept tool, we chose to focus

on the general purpose tools of provisioning and configuration management since they represent

the management of most part of the infrastructure. This choice leaves behind container-specific tools,

SDN controllers and other more specific management tools since they are less used in a general com-

puting infrastructure and can always be implemented as new modules since our proposed tool will be

generalized to be able to process requests from any type of tool.

Since there exists several general purpose tools, we choose to select one tool for each branch of

operations: Provisioning and Configuration Management.

3.3.1.A Provisioning

As an example of a provisioning tool, we chose Terraform1 due to its high popularity and ease of

use. Due to its high popularity and usage in the industry, development for this tool is fast, with

thousands of contributors to its public repository, while being maintained by HashiCorp2, a well known

and established company in the infrastructure business.

From a technical perspective, Terraform, due to its high popularity, already implements APIs to con-

nect and provision resources in the major providers, such as OpenStack3, Google Cloud4, AWS5

and Microsoft Azure6, enabling users to provision resources in any of those Infrastructure as a

Service (IaaS) providers with a common configuration file.

1https://github.com/hashicorp/terraform, accessed on 21st December 2020
2https://www.hashicorp.com/, accessed on 10th September 2021
3https://www.openstack.org/, accessed on 10th September 2021
4https://cloud.google.com/, accessed on 10th September 2021
5https://aws.amazon.com/, accessed on 10th September 2021
6https://azure.microsoft.com/, accessed on 10th September 2021

25

3.3.1.B Configuration Management

As an example of a configuration management tool, we choose Ansible7 also due to its high popular-

ity, that, along the support from RedHat8, maintainer of the project, that also provides a paid version, is

one of the most used configuration management tools. Once again, due to the very high popularity and

contributor count, Ansible implements, as independent modules, abstraction layers to enable the man-

agement of a very large count of OSs, together with their OS specific commands, such as package

managers, and physical equipment, such as network devices. This large array of supported devices

is a strong indicator of the acceptance of this tool in the industry, since its main objective is to provide

an abstraction layer to enable the management of devices with a common format, and that abstraction

layer must be implemented manually for each new supported endpoint (device, OS).

3.3.2 Distributed Ledger

The Ledger to be used will be Hyperledger Fabric. This solution is an implementation of a Blockchain-

based DL, part of the Hyperledger family. Firstly, we chose to use a member of the Hyperledger9 family

due to the high popularity, compared to other Permissioned Blockchain based DL, and the support

from the Linux Foundation10, a major player in the universe of open source solutions. This makes the

members of this family active developed and documented solutions, an important aspect due to the

current research in the blockchain solutions area and in the security area, both closely related to these

solutions.

From the Hyperledger family, we chose to use Hyperledger Fabric in our solution due to several

factors:

• It has the biggest community of users and contributors, which contribute to several factors:

– The comprehensive and in-depth documentation;

– Fast implementation of the newest security patches and optimizations;

– Fast implementation of new features;

– Fast correction of bugs.

• It is a Permissioned Blockchain based DL;

• It implements a new system of transaction evaluation and registration, as explained in Section 2.2.4.A,

that increases the speed of the Ledger to close to 2000 TPS, a great increase when compared to

similar solutions [24];
7https://www.ansible.com/, accessed on 10th September 2021
8https://www.redhat.com/, accessed on 10th September 2021
9https://www.hyperledger.org/, accessed on 10th September 2021

10https://www.linuxfoundation.org/, accessed on 10th September 2021

26

• Allows for the usage of general purpose programming languages in the development of chaincode,

such as Golang, Java, Javascript and Typescript;

• Utilizes LevelDB as a state database, that enables information to be stored in a fast accessing

key-value store, ideal to store the assets as JavaScript Object Notation (JSON) dictionaries and

with string keys, also providing immediate consistency, opposed to the more popular but worse

eventual consistency;

• Since it is designed to be used as part of a bigger system, it has both an SDK and APIs in several

languages that allow for interaction with the ledger integrated in other solutions like in our case.

These characteristics make Fabric the best choice for this solution, by giving the best performance

and design characteristics that will improve the ability of our proof-of-concept tool to comply with all the

requirements. However, it is important to keep in mind that the tool will be implemented in order to allow

for the usage of different DL implementations (with the implementation of a module to interface with said

DL).

3.3.3 Programming Language

Our solution will be entirely implemented in Golang11. This language was chosen due to several rea-

sons:

• The usage of a single language decreases complexity of the system and eliminates the need for in-

terfaces to exchange information between parts of the system implemented in different languages;

• The Hyperledger Fabric is implemented in Golang, and, because of that, the most well docu-

mented, complete and best performing API is the one in Golang;

• Golang is a recent programming language, with support for the newest software development

trends such as library management;

• Although recent, Golang has a large number of libraries that implement key features needed for

this solution such as a Web Server for serving the REST APIs, support for management of cryp-

tographic material in a secure manner and concurrency mechanisms that enable multithreaded

operations, important for the concurrent processing of requests;

• Golang is a compiled and strongly typed language, improving performance, that benchmarks show

to be close to C and C++, and increasing security and reducing bugs due to compiler checks.

11https://golang.org/, accessed on 10th September 2021

27

4
Implementation

Contents

4.1 Development Methodology . 29

4.2 Environment . 29

4.3 Hyperledger Fabric . 30

4.4 Modules Development . 40

28

After the definition and specification of the general aspects of the solution in Chapter 3, we will now

analyse in more detail the specific implementation of the tool, in accordance to the requirements and

following the general architecture and data flows previously established. In this chapter we will first

present the methodology for the development, then explain the development/running environment

and finally go step by step over the development process, explaining the taken decisions over the

development of the solution.

4.1 Development Methodology

For this project, we followed a bottom-up approach in development. After setting up the environment in

which development and solution execution will take place, that we will present in section 4.2, we started

setting up the ledger, since the solution we will develop will base all the main logic, both for business

logic and user authentication, in the ledger, via Smart Contracts, and the storage in the Ledger state

database. This way it made sense to setup those bases first and only then develop the tool’s modules.

This methodology of development also enables us to incrementally test the system since each im-

plemented part or feature will always have all its dependencies already implemented. This way we could

ensure that the tested component was always working over other already tested components, reducing

each test’s scope. However, this methodology also presented some challenges because when imple-

menting some feature we had to always plan the upcoming features to ensure that all future feature’s

implementation would not depend on something that was not thought before and not implemented. For

example, if feature X depends on some subfeature Y.a, since Y was always developed first, we had to

plan subfeature Y.a before it was actually needed. Since there were some minor changes during devel-

opment, it was needed to revisit already implemented features and modules some times. For simplicity,

in this document we will omit those minor setbacks and present the development as if those setbacks

did not occur and present the development that lead to the final version of the solution.

4.2 Environment

The project was developed in and for an environment that aims to represent a common approach in the

industry, by using containers to host different services, that run in virtual machines. Furthermore, this

type of environment is very flexible, enabling us to make changes and apply them very easily.

To setup the environment, Vagrant, together with VirtualBox, were used. Vagrant enabled us to

automate the provisioning and configuration of all assets related to this solution, given that scripts to do

so were supplied. The central configuration file for the environment is called Vagrantfile, and it specifies

the architecture of the infrastructure.

29

For this deployment, we choose to provision two virtual machines, one to run the Hyperledger Fabric

components, and another to host and run our solution. Both machines are running Ubuntu 20.04 LTS,

and have 4GB of Random Access Memory (RAM) and 4 CPU cores each. We choose 4GB of RAM

since it was a manageable value for our VM host and both virtual machines were not constrained by it

(not displaying high RAM usage), and we followed the same reasoning for the CPU core count. Files

and folders are shared between the machines using shared folders between the machines and the host.

Using this shared folder structure enabled us to easily emulate the physical distribution of files (mostly

keys) from the CAs to the services using them.

 Host - Vagrant Environment

 VM - Ledger VM - Application

CA
Containers

Orderer
Containers

Peer
Containers

Broker module
Container

Ledger module
Container

Tool module
Containers

Figure 4.1: Host-VM-Container architecture

Each machine then has docker and docker-compose installed. The docker-compose system en-

ables for the automatic setup of more complex docker container environments using YAML files. Each

VM has a configuration file that specifies the architecture of all containers in that machine. The diagram

in Figure 4.1 summarizes and schematizes this architecture.

There are then a large amount of scripts that specify the configuration, installation and compilation

of both the Ledger and our developed code. All the instructions in those scripts will be discussed

in the following sections, where we will explain how this tool is set up and developed, component by

component.

4.3 Hyperledger Fabric

Since Hyperledger Fabric is an already existing solution, for this project, no code related to Fabric

development was produced. However, it was needed to configure an implementation of Hyperledger

Fabric to use as a DL base of this solution. In the next sections we will present the configuration steps for

the Ledger, along with the justifications for some decisions taken in said configuration and deployment.

30

4.3.1 Certificate Authorities

Since Hyperledger Fabric is a permissioned ledger, every participant in the Ledger must be authenti-

cated. For this authentication to be secure and cryptographically sound, the best method of identification

is via the generation, for each entity of an identity based on a key pair, together with the correspond-

ing certificate, that must be signed by some trusted identity. The identity that has the power to sign

such certificates is called a CA. They are the first components of the Hyperledger Fabric system to be

deployed.

For our solution we will use the Fabric CA, an implementation of a CA created by the Fabric project,

since it is already tuned to generate the correct cryptograpic material that the Fabric system consumes,

as previously explained in Section 2.2.4.A. We will deploy three instances of CAs. Since it is recom-

mended to have, at minimum, one organization for the Orderer nodes and another for the Peer nodes,

we will name those organizations Org0 and Org1, respectively. It is important to understand that this

recommendation is just to simplify the deployment, as stated in the documentation, and it is possible

to have any number of organizations with any combination of nodes. There will be a third CA instance

that will act as a Transport Layer Security (TLS) CA. There are two types of certificate usage in Fabric,

one is for identification of an identity over the Ledger, while the other usage is for authentication of

the communication between nodes. The two Org0 and Org1 CAs are responsible for the emission of

certificates for each Organization’s Identities Identification. The TLS CA will then be responsible for the

emission of certificates that will be used to secure TLS communication between the nodes.

It then makes sense that each user will only have a Org0 or Org1 certificate, while nodes (Orderers

and Peers) will need to have both a certificate from its Organization’s CA and another from the TLS CA.

From a security perspective, the root certificates of the CAs will be self-signed since the tool will

be only used as a proof-of-concept, but it is possible, and recommended, that in a real deployment the

certificates be signed by a trusted external CA, forming a certificate chain that follows back to a trusted

root CA.

From a deployment perspective, all the CAs are deployed as containers on the Ledger VM.

4.3.2 Identity Generation

After the deployment of all the CAs, the necessary basic identities are created. The only identities

already created are the CA bootstrap identities, only used to initialize and to provide authentication to

the creation of the new identities that will be used throughout the whole system.

The identity creation process is straightforward, and using a provided tool, called fabric-ca-client, that

is responsible to communicate with the CAs and both creating the users identities and retrieving their

certificates.

31

The first step is then to register the user on the CA, a process similar to creating an user account.

At this moment, we supply the username (that will be part of the Common Name in the certificate),

a password and the type of user we are creating (that can be admin, user, orderer or peer). It must

be noted that an admin user in this scenario is a Ledger admin user, that can configure nodes or its

organization, it must not be confused to an attribute of ”admin” as part of any solution that is using Hy-

perledger Fabric as its Ledger, such as ours. This process only creates the user identity, not generating

any cryptographic material yet.

The next step is to then generate the certificate and keys that identify the identity in a process

called Enroll. Similarly to the register process described earlier, it is done using the fabric-ca-client,

this time authentication with the username and password specified earlier. This is the only usage for

said password. The tool will then create an MSP folder with all cryptographic material that identifies the

identity over some CA.

Listing 4.1 exemplifies the process of registering and enrolling an identity, in this case a Peer for

Org1.

Listing 4.1: Registration and Enrollment of an Identity

1 ./fabric-ca-client register --id.name peer1-org1 --id.secret peer1PW

2 --id.type peer -u https://tls-ca:7054

3 ./fabric-ca-client enroll -u https://peer1-org1:peer1PW@org1-ca:7054

4.3.3 Peer Configuration

After the creation of the identities, the next step is to configure and deploy the peers. The peers are

responsible for the execution of the smart contracts, using one container for each installed smart

contract.

In the previous step, identities for two peers were created. In our implementation we choose to

deploy two peers due to the documentation’s recommendation for redundancy. Although the peers

communicate between themselves, in a process called gossip, they don’t make any type of consensus or

synchronization, so the recommendation for a minimum of two peers is purely for redundancy in case of

failures. By having two peers we also prove that the system is scalable for larger numbers of peers. In our

implementation both peers belong to Org1, however, it is possible for peers from different organizations

to work together in the same channel, with the same smart contracts. In larger implementations with

large numbers of smart contracts, it is also possible to install those smart contracts so that not all peers

are responsible for the execution of all smart contracts.

The configuration of the peers is simple, just requiring access to the generated MSPs of the peers.

32

Since the peers are nodes that will handle communication, each peer has two MSPs, one coming from

the Org1’s CA, with the identity of the peer as belonging to that organization, and another generated by

the TLS CA, with the purpose to secure the TLS secured communications of the peer.

Since each peer will run the smart contracts in containers, it is also needed to provide the peer with

access to the Docker’s socket, so that the peer can create, delete, and modify the needed containers to

run the smart contracts. The peers are also deployed inside containers.

4.3.4 Orderer Configuration

Similarly to the peers, after having the needed identities created, the orderers were configured and

deployed. The Orderers are responsible for maintaining the blockchain across all of them. For this, they

receive the approved executions of smart contracts from the peers and generate the blocks that

will be appended to the blockchain. Since the blockchain must be equal across all peers, they run a

consensus algorithm, that, together with a deterministic algorithm to order the blocks to be appended,

ensure the uniformity of the chain across all nodes. They are also responsible for handling the reading

of the chain if it is needed, either by request from the peers or by a user directly using the orderer

command line. Since the orderers run a consensus algorithm across them, it is recommended to have

at least three orderers, so that, even if one of them fails, the remaining two can still make decisions. It is

also possible to only have one orderer but that configuration is not recommended.

The configuration for the orderers is similar to the peers’ configuration, also requiring an identity from

an organization, in our case that organization is Org0 for all orderers, and a MSP from the TLS CA

to enable secure communications between the nodes. The orderers are also deployed in containers,

requiring persistent storage to store the blockchain.

4.3.5 Channel Creation

After having all the nodes configured and deployed, the next step is to create a Channel. A channel is

effectively an instance of a blockchain, that supports a policy of access, together with the corresponding

smart contracts.

In order to start the blockchain it is needed to generate its first block, or genesis block. The genesis

block is where the general configuration of the channel is stored. Since after it is added to the blockchain

it becomes immutable, if there is a need to change the configuration, an update block is generated.

4.3.5.A Genesis Block

To generate the genesis block, a specific tool, configtxgen is used. This tool will read a configuration

file, usually called configtx.yaml, is a YAML file that specifies all the policies related to the channel it will

33

start.

It is divided in several sections, the first being organizations. In this section, all organizations that will

participate in the channel are registered, together with their nodes, and policies. In our case, we only

create one channel, where the two organizations, Org0 and Org1, participate. There are four policies,

that in our case are configured identically for both organizations:

• Readers - This is the policy for reading the chain, in this implementation only Admins, Peers and

Clients can read the chain. Clients are in fact the users of the chain, they are required to have read

access to the chain in order to commit changes (after being always approved via smart contracts).

• Writers - This is the policy for writing new blocks to the chain. Only Admins and Clients are able

to do so.

• Admins - This policy refers to administrative actions over the channel, such as configuration

changes.

• Endorsement - The endorsement is made by the peers. This is the process used by the peers

to certify that a modification registered in some block is accepted by the peers, after running the

corresponding smart contract. As such, only peers have permission for endorsement.

In this section, we also register the nodes that will take part in the channel, by organization. In our

implementation, from Org0 we registered the three Orderers, and from Org1, we registered the two

Peers.

The next relevant section is the Orderer section, in which the type of consensus used is defined. In

this solution we are using the Raft algorithm since it is the most recent and capable one, and recom-

mended by the documentation for new deployments that don’t have to maintain retro compatibility.

The next two sections, Channel and Profiles are where the configurations are organized in a struc-

ture. In our case, we also had to specify the number of members of each policy is needed for the

request to be approved. For both Read and Write, it will require only one identity from the authorized

group. However, to execute administrative tasks, a majority of the Admins is needed.

4.3.6 Chaincode Development

After the setup of the channel, the Ledger is in fact working. However, to make transactions, Smart

Contracts, or Chaincode, needed to be implemented. In our case, only one Smart Contract is needed,

that will handle all asset modifications. Before the implementation of any logic, it was needed to

create specifications for the storage of the information. With this in mind, two types of Assets were

created:

34

• Asset - Represents any asset in the infrastructure, such as Servers, VMs, Containers, and others.

• Applied Tools - This data structure stores information about each and every tool execution against

the infrastructure, such as the execution of an Ansible Playbook.

These data structures were coded to be as general as possible while retaining all the needed informa-

tion about each asset. This way we achieve the goal of expandability with no need for code refactoring.

Since the developed tool is to be used as a proof-of-concept, only key values, representative of the

possible information to be stored were indeed stored and later processed in the Smart Contract.

Listing 4.2: Asset Structure

1 type Asset struct {

2 ID string `json:"id"`

3 Type string `json:"type"`

4 Location string `json:"location"`

5 Owner string `json:"owner"`

6 SpecRamGB int `json:"spec ram gb"`

7 SpecCpuCores int `json:"spec cpu cores"`

8 AppliedTools []string `json:"applied tools"`

9 IpAddrs []string `json:"ip addrs"`

10 Dependencies []*DependencyRelation `json:"dependencies"`

11 Dependants []*DependantRelation `json:"dependants"`

12 Implemented bool `json:"implemented"`

13 }

In Listing 4.2 we can observe the structure for a typical infrastructure asset, as it is implemented in

Golang. For storage and communication purposes, it is directly converted to JSON format. Each field

has a specific purpose:

• Location, SpecRamGB, SpecCPUCores and IPAddrs - These will not be used in any type of verifi-

cations in the Smart Contract and are just present as an example of different types of asset related

data storage;

• ID - Unique ID for identification the asset;

• Type - Identification of the type of the asset (e.g., Server, VM, Switch, Cluster);

• Owner - Owner identification, used for permission verification;

• AppliedTools - List of Identifiers of the Applied Tools structures that represent tool executions that

affected this asset;

35

• Dependencies and Dependants - Lists of pairs (Asset ID, Applied Tool ID) that represent all the

dependencies and dependants of the Asset, together with their origin.

Listing 4.3: Asset Structure

1 type AppliedTool struct {

2 ID string `json:"id"`

3 AppliedTo []string `json:"applied to"`

4 AssocDependencies []*DependencyRelation `json:"assoc dependencies"`

5 ToolName string `json:"tool name"`

6 FileName string `json:"file name"`

7 FileHash string `json:"file hash"`

8 FinalState *State `json:"final state"`

9 Reverted string `json:"reverted"`

10 }

In Listing 4.3 we present the structure for the registry of the execution of some infrastructure man-

agement tool. Similarly to the Asset structure, this structure is also implemented to be as general as

possible, so that it can be used with any tool. The data fields of this structure are all used in the Smart

Contract and in our application:

• ID - Unique ID for the identification of the tool execution;

• AppliedTo - List of identificators of the Assets affected by the execution;

• AssociatedDependencies - List of new dependencies introduced by this execution;

• ToolName - Identificator of the used infrastructure management tool;

• FileName and FileHash - Used to identify the files used as input to the tool, that are stored on the

Tool’s modules;

• Final State - Stores the final state reported by the tool, used to check for failures, successes and

modifications to the infrastructure;

• Reverted - Indicator of whether the execution was reverted or not;

After the definition of these basic and universal data structures, the development of the Smart Con-

tract started. The Smart Contract has several sections, that we will now analyze one by one.

36

4.3.6.A Asset Type Management

As stated previously, the Assets must have a type. To allow for the dynamic management of types, those

are not directly coded in the Smart Contract, instead having a mechanism for adition and removal of

types. For this mechanism to work, a special asset in the ledger was created, TypeTracker, that is in

fact just a list of the existing and allowed Asset types. This structure is created when the contract is

initialized, via its function InitLedger().

For the mechanism to work, functions to Get, Add and Remove Asset Types were implemented.

Although any user can Get the list of Asset Types, only Admins can Add or Remove Asset Types. This

introduces the first form of permission management, where we verify if the user making the request has

a specific identifier in its identity certificate, thus in fact implementing a Role or Attribute Based Access

Control. Those identifiers can be managed when registering a user on the CA. On the Smart Contract,

the verification is trivial since the Hyperledger Fabric Smart Contract API exposes the calling Client

Identity within the Transaction Context that is provided as argument to every function in the contract.

4.3.6.B Asset Management

After the introduction of the Asset Types, the Assets can be coded in the Smart Contract. The Assets

have four main associated functions, to Get, Register a new Asset, Modify an existing Asset, and

Remove an Asset. From a logic and coding perspective, the action of getting information about an

asset is simple. However, we have to have in mind the need for privacy and that a user can only see

its Assets. In chaincode, this verification is very easy due to the presence of the ID of the owner of

some Asset in the Asset’s data and the possibility to get the ID of the client calling the Smart Contract’s

function from the Hyperledger Fabric Smart Contract API that exposes the calling Client Identity within

the Transaction Context that is provided as argument to every function in the contract. The code for the

get asset function is exemplified in Listing A.3.

From a business logic perspective, the registration of a new Asset is more complex since it is needed

to verify that all essential data fields about the Asset are present, that the Asset Type is valid and it

is needed to parse the dependency list. By default, an Asset is created without any dependencies

or dependants. However, it is possible to specify dependencies for that Asset. When the Asset is

registered, the logic present in the Smart Contract will automatically parse those dependencies, check

if they are possible (e.g., the Asset from which the new Asset depends exists) and automatically add

the newly registered Asset to the Dependants List of the Asset the new Asset depends on. It also verifies

that the new Asset has a maximum of one Applied tool, since the Asset can only be created once and

by only one tool, as it can be seen from the sample code in Listing A.1

On the opposite side, the removal of an Asset is simple, with the only verifications to be carried being

the check for permissions by the calling client (that must be the owner of the asset or an admin) and

37

that the Asset to be removed doesn’t have any Dependants, as exemplified in Listing A.2.

The remaining action is the modification of an Asset. In this action several constraints are checked:

The permission of the calling client to modify the Asset, and that the basic Asset identifying information

is no changed (such as the ID, the Type and Owner). The removal of applied tools is also not possible,

because it must be done using the proper Applied Tool removal method. Any dependency changing is

parsed and verified for the conditions both to removal and addition, as specified for the creation of a new

Asset.

4.3.6.C Dependency Management

Although dependencies are properties and relations between Assets, and can be created by Applied

Tools, they also specific public functions to provide the functionality of manual creation and deletion of

dependencies without the need for the explicit modification of an Asset. Both the functions to create

and to delete dependency relations verify the permissions of the user to do so, by comparing the owner

of the Assets that will form the dependency relation with the calling user. For the dependency to be

created or removed, the user identifiers must match, which signifies that the user calling the functions is

the owner of both Assets.

4.3.6.D Applied Tool Management

The management of the Applied Tools is done in a similar manner to the one applied to the Assets.

However, due to the context, the functions that will be presented will be done to handle several actions:

• Creation of new Applied Tools - this creation will only represent that the Applied tool will run, and

represents that a tool is currently running.

• Finish of the Applied Tool - this action is what confirms the termination of the execution of said

tool, and, depending on the success of the execution, will change the affected Assets, adding the

Applied Tool data structure ID to the list of applied tools present on each Asset, and creating the

dependencies specified by the tool (such dependencies are already specified in the Applied Tool

data structure, and the Smart Contract is only responsible for the distribution of the information

about the dependency across the affected Assets).

• Reversion of the Applied Tool - this action is responsible for the removal of the dependencies

introduced by the Applied Tool, and will mark the Applied Tool as reverted, for documentation

purposes.

• Getting an Applied Tool - this function is responsible for the handling the user requests for infor-

mation about a specific Applied Tool. A user can only get such information if any asset of it was

38

affected by this Applied Tool.

It is important to be noted that the Smart Contract receives information about the Assets, Depen-

dencies and Applied Tools in an already normalized format, ready to be stored, being only responsible

for the verifications of validity of data (for example, that all supplied IDs are valid, that the Asset Type

exists), permission verification varying with the function to be executed (for example, it can check for the

ownership of Assets, verify if the calling user is an admin) and correct storage of the received information

(for example, when receiving an Applied Tool, all new dependencies must be propagated to all involved

Assets). The conversion of the information to these uniformed types, that will be used across the whole

solution is a responsibility of the creator of said information, being it the user or any of the tools modules

after the execution of said tools. It is also important to note that since this solution is to be used as

proof-of-concept, the set of verifications implemented is not exhaustive, and it is to be understood as a

significative representation of the capabilities of the Smart Contracts, both in permission management

(where more roles and attributes can be easily added, with more complex verifications) and business

logic verification (where more aspects about Assets could be tracked and processed).

4.3.7 Chaincode Installation

After the coding of the Smart Contract, it is needed to submit it to the ledger so that it becomes avail-

able. This step is usually called Chaincode Installation. The whole process is well documented in the

Hyperledger Fabric documentation:

• Compilation, since the Smart Contract is coded in Golang;

• Packaging into a universal format used by Fabric, using the peer CLI, supplying the executable

location, programming language and a name for the Smart Contract;

• Installation on every peer that will run requests for the Smart Contract. In our case, both Peers will

have it installed;

• Authenticated as admin, approval of the Smart Contract for the channel;

• Still authenticated as admin, commit of the Smart Contract to the chain, making it usable;

• Manually invoke the init function of the Smart Contract in order to initialize any needed state.

Listing 4.4: Installation of a Smart Contract

1 peer lifecycle chaincode package inventoryMgt.tar.gz

2 --path ./inventory-management/

39

3 --lang golang --label inventoryMgt 1.0

4

5 peer lifecycle chaincode install inventoryMgt.tar.gz

6

7 peer lifecycle chaincode approveformyorg -o orderer1-org0:7050

8 --channelID channel1 --name inventoryMgt --version 1.0

9 --package-id $CC PACKAGE ID --sequence 1 --tls

10 --cafile tls-cert.pem

11

12 peer lifecycle chaincode commit -o orderer1-org0:7050

13 --channelID channel1 --name inventoryMgt --version 1.0

14 --sequence 1 --tls --cafile tls-cert.pem

15 --peerAddresses peer1-org1:7051 --tlsRootCertFiles tls.pem

16

17 peer chaincode invoke -o orderer1-org0:7050 --tls --cafile tls-cert.pem

18 -C channel1 -n inventoryMgt --peerAddresses peer1-org1:7051

19 --tlsRootCertFiles tl.pem -c '{"function":"InitLedger","Args":[]}'

Listing 4.4 exemplifies, for a single Smart Contract and a single Peer, the process of installation of

chaincode, as done in our configuration. It must be noted that the approval and commit processes, while

done using the Peer CLI are in fact done over the Orderers since they are the ones that manage the

aspects related to the administration of the channel and chaincode.

Having the Ledger running and serving requests, the focus then turned to the development of the

modular solution that will harness the powers of the Ledger, and the invoke the logic retained in the

Smart Contract, as specified in Section 4.3.6.

4.4 Modules Development

As exposed before in Chapter 3, our solution is a developed set of modules that harness the powers of

the DL to enable for easier and more secure management of IT infrastructures. Following the develop-

ment methodology explained in Section 4.1, we start with the Ledger module, since it will only depend

on the Ledger, that is already implemented and deployed, and will be needed by all the other modules,

either directly, such as the Broker module, or indirectly, such as the Tools modules that will depend on

the Broker, followed by the Broker module, leaving the tools modules for last. However, before presenting

any specific modules, there are some module design considerations to address.

40

4.4.1 Module Architecture

Although every module has a different purpose within the application, we followed a general architecture

for each module, that simplifies the data flows inside the modules and is easier to code, leading to less

mistakes or poorly implemented data paths.

Module

API Server
Endpoint Processor API Client

Endpoint(s)

Figure 4.2: Module Architecture and Data Flow

As presented on Figure 4.2, each module has three basic components: API Server endpoint, Pro-

cessor and API Client Endpoint. The API Server Endpoint component is responsible for serving the

public API of the module and handling requests made to it. Since all the APIs in this project are REST

APIs, this server module is in fact a Hypertext Transfer Protocol Secure (HTTPS) web server, using

the Gin-Gonic Framework1, that enables us to set the endpoints addresses and an handler function for

that specific address. In our implementation, the handler function will parse the received information,

being it via URL encoded values or as the Body of a POST request, and marshall it to already defined

structures in Golang, to enable further processment. The information will then be sent to the Processor

component, that is responsible of applying any needed logic (that is module and request specific), and

can automatically return some information to the API Server module to be returned to the calling client,

or request more information from other modules.

To request information from other modules, a third component is implemented: the API Client End-

point. This component is responsible to make API calls to other modules. It receives a request from

the Processor component, converts any needed information to JSON, so that it can be sent easily in a

body of a request, and makes an HTTPS request to the API Server of other module. It must be noted

that a module can have more that one API Client Endpoint if it is needed to make requests to more that

one other module. To keep the code organized, it was decided to restrict each API Client component to

connect to only one type of module. Although for simplicity the Client component has been called API

Client Endpoint, it can serve other client-like functions, such as being a command line interface, or the

client for the file system (that provides abstraction over the command line/ file system activities).

1https://github.com/gin-gonic/gin, accessed on 19th September 2021

41

4.4.2 Ledger Module

The Ledger Module is the first module to be implemented. This module is responsible for providing an

abstraction layer over the Ledger, by receiving the requests as a REST API, as used by all other modules,

and converting them in requests to Hyperledger Fabric, using the Fabric Go Software Development Kit

(SDK). The API Server implementation is simple, reflecting the methods present in the Smart Contract,

since this module does not implement any logic besides the minimum needed for the conversion of the

requests. Since the use of this API is purely internal to the tool and just reflects the functions present

on the Smart Contract, its specification will not be presented here in full. The only addition to the API

that is not present in chaincode is the login endpoint, that receives the user credentials, together with

the user’s Session ID, that are cached on the module, and used to identify following requests made by

the user and to make the authentication of each request over the Ledger.

In order to make a transaction on the Ledger (in other words, running a Smart Contract function), it

is necessary to use the Fabric SDK. In order to establish a connection to the Ledger, firstly it is needed

to create a connection configuration file, in YAML format, that contains the addresses of the Orderers

and Peers of the network, along with the root certificates in order to enable the SDK to avoid possible

man-in-the-middle attacks by being able to reconstitute the certificate chain received from each of the

nodes up to the provided root certificates that are assumed to be trustworthy.

After writing the configuration file, it is possible to, in code, create a connection to the Ledger. Firstly,

it is needed to create a wallet to store the received user credentials and to send them in a secure way

to the Ledger to be verified. Using a gateway object (provided by the SDK) and providing the wallet and

the configuration file written before we start a connection to the Ledger. After the establishment of said

connection, we must specify the Channel we are connecting to, and then the Smart Contract we want

to call functions from. It must be noted that the connection can be reused for different Smart Contract

invocations, even in different Channels. This reuse is encouraged because it avoids the delays and

processing associated with an entirely new connection. After the specification of both the Channel and

Smart Contract it is then possible to call functions from the Smart Contract. The Fabric SDK provides two

different ways of doing so: Submission and Evaluation, the difference between the two being whether

the results are stored in the Ledger or not. We can thing of an Evaluation as a dry run of the Smart

Contract, that can be useful to verify the possibility of making some change without effectively making

that change, since the process is similar, apart from the effective writing to the Ledger state database

and blockchain. In both methods, it is possible to send information along the request as parameters and

to receive information from the Smart Contract as the return values.

Listing 4.5: Fabric SDK Connection

42

1 Wallet.Put(sessId, identity)

2 gw, := gateway.Connect(

3 gateway.WithConfig(config.FromFile(configPath)),

4 gateway.WithIdentity(Wallet, sessId),

5)

6 network, := gw.GetNetwork("channel1")

7 contract := network.GetContract("inventoryMgt")

8

9 result, := contract.EvaluateTransaction("GetAssetTypes")

Listing 4.5 exemplifies the connection process from the Fabric SDK to the Ledger, as explained in the

paragraph before. It must be noted that all errors are ignored in this example for simplicity. In this case,

a connection is made to the Ledger in the name of the user with Session ID sessID and credentials

stored in identity, specifying then the Channel as channel1 and the Contract as inventoryMgt. Then

an Evaluation is made for the method GetAssetTypes. In this case an Evaluation is made (opposed

to a Submission) because the called method is a ”read” method that will never change the state of

the Ledger. This way it is possible to save time on read methods since it avoids the whole process of

committing information.

The Ledger Module work and data flow can then be resumed as receiving requests over its API

Server, parsing and marshalling that information over to Golang data structures, calling the correspond-

ing method on the Ledger using its SDK, and then, after receiving the result, convert it back to JSON,

and send it as response to the original request.

4.4.3 Broker Module

After the implementation of the Ledger Module, the Broker module is implemented. Although according

to the development methodology presented in Section 4.1, we should firstly develop the Tools Modules,

since the Broker Module also depends on them, we chose to implement the Broker Module firstly be-

cause it connects to the Ledger module and we wanted to ensure it was working as intended, specially

the user session feature, that must coexist in both the Broker and Ledger modules.

The Broker module works as a center piece in this solution, being a sort of work distributing module,

and also the user endpoint for making requests. Since the Ledger Module was already implemented,

we started by implementing the Ledger Client Component (following the general architecture presented

in Section 4.4.1). The implementation of this component is basically the reverse process of the Server

Component of the Ledger Module: for each endpoint in the Server Component we create a function in

the Client that is responsible for the conversion of the Golang data structures used inside the module to

JSON and makes an HTTPS request to the Ledger Module. It must be noted that for this, the Broker

43

had to store the connected users’ session IDs and send them along the requests as a Cookie in order

to enable the Ledger Module to distinguish between users.

After the implementation of the Ledger Client component, we decided to implement the API Server

component, creating the specification for the user accessible API Endpoint to control the tool.

Table 4.1: Broker Module public API

Endpoint Method Description Receives Responds
/login POST Handles user login Zip file containing credentials Session ID Cookie
/logout POST Handles user logout Session ID Cookie -
/assets/types GET Get Asset Types - List of Asset Types
/assets/types POST Add Asset Type New Asset Type List of Asset Types
/assets/types DELETE Remove Asset Type Asset Type to be removed List of Asset Types
/assets/{type} GET Get assets by type Asset Type List of Assets
/asset/{id} GET Get asset by id Asset ID Asset

/asset POST Add new asset Asset The added asset with its
generated ID

/asset/modify POST Modify existing asset Modified Asset -
/asset/{id} DELETE Delete Asset Asset ID -

/asset/{assetId}/dependencies/{dependencyId} POST Adds a dependency where
assetId depends on dependencyId Asset and dependency IDs -

/asset/{assetId}/dependencies/{dependencyId} DELETE Removes a dependency where
assetId depends on dependencyId Asset and dependency IDs -

/tools/{toolName}/plan POST Simulates tool execution
and returns changes

Tool name and Zip file
containing tool plans Applied Tool

/tools/{toolName}/execute POST Starts tool execution and returns
changes for final approval

Tool name and Zip file
containing tool plans

Applied Tool with
generated ID

/tools/{toolName}/{appliedToolId}/confirm POST Approves tool execution, makes
tool execute Tool name and Applied Tool ID Applied Tool with final status

/tools/{toolName}/{appliedToolId} GET Gets information about a previous
tool execution Tool name and Applied Tool ID Applied Tool with final status

Table 4.1 summarizes the exposed API. We can divide this API in three main sections: Login, Asset

Management and Tool Management. The Login section provides two methods for login and logout of

the user, necessary due to the session based nature of the solution. To make a login, the user must

submit the zip file containing its Certificate and Key, generated by the user’s organization CA, that will

be evaluated by the ledger, and, if correct, will generate a unique Session ID, served as a Cookie, that

must be present in all calls to the API in order to authenticate and authorize the user.

The Asset Management section provides methods for the creation, deletion and modification of

assets and their dependencies. It must be noted that all asset information sent and received is done via

a JSON representation of the Asset, equal in format to the one presented in Section 4.3.6, and that the

ID of the Asset is always generated by the Ledger when registering the Asset, and when creating an

Asset, if the ID field is populated by the user manually, it will be ignored. All the Asset related requests

are forwarded directly to the Ledger, where they will be processed according to the Smart Contract rules.

The Tool Management section provides the necessary methods for the automatic invocation of the

infrastructure management tools, that will lead to the automatic detection of changes and subsequent

modification of the state database. Both the Plan and Execute methods receive a zip file containing

the tool specific plans, already written and formatted in the tool’s specific language. The main difference

between those two methods is that the Plan method only runs the tool and the smart contract processing

in dry mode, not making any changes to the infrastructure or state database, but making all the verifica-

tions either done by the tool or the smart contract, and returning the result of those verifications to the

44

user. On the other hand, the execute method will trigger the full tool execution process as specified in

Section 3.2.2.C, that will return to the user the same results as the plan method would, however, provid-

ing a tool execution ID, that the user can then confirm using the Confirm method, making the changes

to the infrastructure and state database permanent.

After the implementation of the API Server Component, the Processor Component is implemented.

For the methods concerning Asset Management, the processor does not make any actions or verifi-

cations, just forwarding them to the Ledger module. However, for the Tool management methods, the

logic specified both in the last paragraph and in Section 3.2.2.C was implemented, making the broker

responsible for the several requests made to both the Ledger and Tool modules.

The last component of the broker module to be implemented is the Tools Client component. This

component, similarly to the other Client components, is responsible for the conversion of the internal

representation of the information to JSON and for making requests to the specific API Server, in this

case, the API Servers of the various tool modules. The only particularity of this component was that,

since every tool has a module, there are in fact different addresses that this component may need to

connect. We chose to make a single Tool Client component to enable the addition of more tool modules

without the need to implement more client components in the Broker module. This client component

reads a configuration file where all the tools are specified, along with their modules’ addresses. When

the component is triggered to make a request to some tool, it will read the file, and get the correct

address to the specific tool, making the request to that address. This enables the Broker module to

support new tool modules even without a reboot.

4.4.4 Tools Modules

The last modules to be implemented are the tool modules. These modules, one per tool, are respon-

sible for the receival of the requests from the Broker Module, and to convert them in executions of the

corresponding tool using a shell emulator, and then to convert the output of the tools to the standard

formats for Assets and Applied Actions used in out solution, as specified in Section 4.3.6.

The modules follow the same general module architecture, having an API Server component, that

implements the handling of the requests that the Broker may execute, and that converts the received data

to the standard formats used inside the module. The requests are then passed over to the Processor

component that is responsible for the usage of the Client components to fulfil the request. However, in

the tools modules the Client components side, instead of providing connections to other APIs, provide

abstraction layers over the file system and the shell. Since the tool modules will need to store the

executed plans (since the Ledger will only store hashes of those files) and the tools consume their plans

from the file system, it is needed to organize and place them in the correct folders. A file system client

module provides a set of functions that receive and return in memory copies of the files, taking care of

45

their storage in the file system. The shell abstraction module, in its turn, is responsible for the calling

and execution of the tools, via a emulated shell, and then the parsing of the output of the tools in order

to detect changes to the infrastructure, being responsible to convert the output of the tool into a set of

new and/or modified Assets and a Applied Tool, with the correct fields correctly filled.

This way, when receiving a request, the processor can then call the file system component in order

to store the received plans in the plans archive and to create the execution folder for the execution of the

corresponding tool. Then, it calls the shell emulator component in order to effectively execute the tool

and parse its output into the default data structures used in our tool. The processor then calls the file

system component again to do a cleanup of the working directory of the tool, while saving in the plans

archive all relevant files. The processor can then return to the Server component all the information

about the execution, that will be sent back to the Broker module for further processing and storage in

the Ledger.

However, it is important to note that in the implemented solution, the dependency creation must be

done manually since it is not possible, from the general Terraform or Ansible plans, to detect depen-

dencies between Assets. The only dependencies that can be detected are the ones involving Terraform

provisioning VMs in a cluster or host. In that case, if the cluster or host is present in the inventory, a

dependency relation will be created.

46

5
Evaluation and Result Analysis

Contents

5.1 Test Scenarios . 49

5.2 Scenario 1 - Authentication . 50

5.3 Scenario 2 - Normal Workflow . 51

5.4 Scenario 3 - Authorization . 57

5.5 Scenario 4 - Dependency processing . 58

5.6 Scenario 5 - Rollback of tool applied actions . 60

5.7 Load and throughput . 62

5.8 Result Discussion . 66

47

48

The focus of this dissertation is the evaluation of the possibility of harnessing the capabilities of a

Blockchain based DL to improve the security and automate constraint verification in the management

and logging of actions taken over an IT Infrastructure. To enable for this evaluation, a proof-of-concept

tool was developed. This tool can be divided in two main components: The Ledger and the user and

infrastructure management tool interface. While the ledger used, Hyperledger Fabric, is a already de-

veloped solution, we had to correctly configure it for our use scenario and develop the Smart Contracts,

or chaincode, that controls all the information that is written in the ledger, along all the associated per-

mission and business constraints verifications, thus turning the ledger into the processing center of the

tool. The user and tools interface was entirely coded by us, in order to provide an interface for the user

to communicate with the ledger and also to integrate the tools into this solution by enabling the user to

trigger tool execution that is automatically registered and processed by the logic present in the Smart

Contracts.

In this chapter, we will present a qualitative and quantitative evaluation of the developed solution,

resorting to the creation of different scenarios that can both evaluate the tool characteristics, according

to the previously set requirements, and represent real world and industry representative use cases. Af-

ter the presentation of the results obtained in each of the scenarios we will discuss those results. The

scenarios will be simulated, with the tool running in the same environment as used for the development,

utilizing an host supporting two VMs that run several containers for the execution of the several compo-

nents of the tool. This environment is further detailed in Section 4.2. The target infrastructure is also

simulated via the usage of an OpenStack1 environment deployed on several VMs running in a physical

server. Although this will result in nested virtualization, that can negatively impact performance, this

factor can be ignored since there will be no performance evaluation of this simulated infrastructure.

5.1 Test Scenarios

As briefly explained in the paragraph above, in order to evaluate the developed tool, we setup different

usage scenarios that aim to test different aspects of the tool, as well as exemplify its usage, at the

same time trying to give a representation of realistic scenarios according to possible industry usage

for this tool. Each simulated scenario will evaluate or prove a particular functionality of the developed

solution, usually via a qualitative analysis of several aspects, but also via quantitative analysis of some

key metrics of our solution. The evaluated aspects will be presented and explained for each scenario.

Since the user interaction with the tool is done via a REST API, served by the Broker Module, we use

cURL2 to generate and send the requests and receive their output. Since cURL is accessed via a CLI,

it is easy to setup the repetition of requests and their verification using Bash scripts.

1https://www.openstack.org/, accessed on 24th September 2021
2https://curl.se/, accessed 22nd September 2021

49

5.2 Scenario 1 - Authentication

The first scenario to be presented has as its objective to demonstrate and test the Login process. This

process, as defined and explained in Chapter 4, consists in the execution of a login request, carrying a

Zip file containing the user’s credentials, that are evaluated by the Ledger, returning a Session ID as a

cookie if the supplied credentials are correct. If the credentials are incorrect, the system will return an

HTTP return code 401 - Unauthorized.

Listing 5.1: Successful Login Request

1

2 wigu@DESKTOP:~$ curl -i --location \

3 --request POST 'https://broker-module:8080/login'\

4 --form 'identityFile=@"user.zip"'

5

6 HTTP/2 200

7 content-type: text/plain; charset=utf-8

8 set-cookie: SESSION ID=JrV6hAzNN w66NMWQJbp5tE4MwtH GdC65Etr60MeCEQQ%3D%3D;\

9 Path=/; Domain=broker-module; Max-Age=86400; HttpOnly; Secure

10 content-length: 11

11 date: Sat, 25 Sep 2021 16:52:02 GMT

12

13 Logged in!

Listing 5.2: Unsuccessful Login Request

1 wigu@DESKTOP:~$ curl -i --location \

2 > --request POST 'https://broker-module:8080/login'\

3 > --form 'identityFile=@"user deny.zip"'

4

5 HTTP/2 401

6 content-type: text/plain; charset=utf-8

7 content-length: 20

8 date: Sat, 25 Sep 2021 16:52:15 GMT

9

10 Invalid credentials

As shown on Listing 5.1, when requesting a login for a user with correct credentials, the system

appends to the header of the returning packet the set-cookie entry with the Session ID for that user, that

50

must be present on any upcoming requests. On the other side, when supplied with incorrect credentials,

as seen on Listing 5.2, the system returns the 401 status code, indicating the login was unsuccessful.

It is worth to note that both login attempts are registered on the ledger. It is important to note that

the process of obtaining credentials via brute force is unfeasible since, while it is easy to generate a

public and private key pair and generate a user certificate with the necessary information, it is unfeasible

to generate the needed certificate signature, since the certificate must be signed by the CA, using its

private key, that is never distributed. Any existing user certificate modification, for example, by a user

adding an admin attribute to its certificate, is also unfeasible since the existing signature would then be

invalid and the certificate must again be signed by the CA.

Also, if a user tries to use a invalid Session ID (either an non existent or an expired one) in any

request, the system returns with a 403 - Forbidden status code, indicating that the user must login

again.

All following scenarios will skip the login process, and it is to be assumed that all requests are

accompanied by a valid session ID in order to be accepted, to improve clarity.

5.3 Scenario 2 - Normal Workflow

The second scenario is dedicated to the demonstration of the capabilities of the tool for the support of a

normal infrastructure management workflow, without considering failures. In this scenario we start the

tool with a blank infrastructure, with no assets registered in the ledger. We will then manually create a

series of Assets, with the purpose of demonstrating both the capability of manually adding Assets and

populating the Ledger to provide a more realistic initial ledger state for the remaining actions to be carried

out. We then modify and delete some Assets. After the demonstration of the manual Asset management

capabilities, we will trigger the execution of actions using both implemented tools, Terraform and Ansible,

to provision and automatically register new Assets in the Ledger, and to make configuration changes to

those Assets, while also registering the execution of this action.

5.3.1 Asset Management

The first action to be taken is the manual registration of new Assets. To register an Asset, the user must

create the Asset JSON structure, with the necessary fields populated. Then, the user uses the register

API method to register the Asset on the Ledger, that will return the same Asset structure with the ID

field populated, since that information is randomly generated by the ledger itself. We can then verify the

presence of said Asset in the ledger using the correct API method.

The process for the modification of an Asset is similar, with the difference of the method called, that

is the modify method instead of the register one, and that the Asset the user sends already has its ID

51

field populated with the ID of the already existing Asset that is to be modified. It is important to note that

there are fields that cannot be modified, such as the owner field. These modifications are verified by the

Smart Contract and rejected.

The Asset removal method simply requires that the user supplies the Asset ID. Again, we can verify

the function of this method by then querying the Ledger either for the deleted Asset, that will return an

error stating the Asset was not found, or by querying the Ledger for all assets of the relevant type, and

verifying that the removed Asset is not present.

Listing 5.3: Successful Asset Registration

1

2 wigu@DESKTOP:~$ curl --location -i \

3 > --request POST 'https://broker-module:8080/asset' \

4 > --header 'Content-Type: application/json' \

5 > --header 'Cookie: SESSION ID=CZMZ-HyALZ1SEX4reFKTPKt084RqyZefxw%3D%3D' \

6 > --data-raw '{

7 > "asset": {

8 > "type": "Server",

9 > "Location" : "Rack1",

10 > "spec ram gb": 4,

11 > "spec cpu cores": 8,

12 > }

13 > }'

14

15

16 HTTP/2 200

17 content-length: 452

18 date: Sat, 25 Sep 2021 17:50:54 GMT

19 {

20 "asset": {

21 "id": "Server i2SMtYv",

22 "type": "Server",

23 "location": "Rack1",

24 "owner": "x509::CN=user1-org1,OU=user1+OU=org1+OU=sysadmins,O=Hyperledger

25 ,ST=North Carolina,C=US::CN=org1-ca,OU=MasterThesis,

26 O=MiguelOliveira,ST=Lisbon,C=PT",

27 "spec ram gb": 4,

28 "spec cpu cores": 8,

52

29 "applied tools": [],

30 "ip addrs": [],

31 "dependencies": [],

32 "dependants": [],

33 }

34 }

Listing 5.3 exemplifies the Asset Registration process as done on the terminal, with lines 1 to 14

being the request, and lines 15 to 34 the response. It is important to note that all specified fields, as

long as they are not mandatory, are automatically created as empty by the Ledger. We can also note

that the ID was automatically generated as a form of AssetType ID and that the owner field is populated

with the identity of the user that submitted the request. The owner field is always compared to the

identity of the user making a request in order to verify ownership and permissions related to each Asset.

The Modification request is not present here due to its similarity with the Registration request, the main

difference being that the Asset ID must be present and all not specified fields are not modified.

Listing 5.4: Successful Asset Deletion

1

2 wigu@DESKTOP:~$ curl --location -i \

3 > --request DELETE 'https://broker-module:8080/asset/Server i2SMtYv' \

4 > --header 'Cookie: SESSION ID=CZMZ-HyALZ1SEX4reFKTPKt084RqyZefxw%3D%3D'

5

6

7 HTTP/2 200

8 content-length: 0

9 date: Sat, 25 Sep 2021 17:54:34 GMT

As presented on Listing 5.4 the deletion of an Asset is carried out by sending a DELETE request with

the ID of the Asset to be deleted. The system returns just an empty response with the success code

(status 200 - OK), representing a successful deletion. We can then list the existing assets and verify that

the deleted asset is not present (not represented here for simplicity)

5.3.2 Tool Management

The automatic Asset management, using the infrastructure management tool should be the main in-

teraction method with the tool and the infrastructure, since it reduces the error chances when making

modifications, since it automatically registers the actions made by the infrastructure management tools

in the Ledger, reducing human interaction, and thus, mistake opportunities.

53

The normal workflow for this type of management consists of just two requests: The execution re-

quest and the confirmation request.

5.3.2.A Execution Request

The execution request is made by the user to start the tool execution process, as specified before in

Section 3.2.2.C. The request, apart from the session ID, must contain the name of the tool to be used,

as a request can only comprise the execution of one single plan from a single tool, and the plan files that

are to be consumed by the tool, in their format and folder structure. Our tool will then analyze the dry-run

of the tool and generate an Applied Tool structure with all the information that will be registered. If the

tool to be used is Terraform, it will also create a list of new Assets that will be registered in the Ledger.

All these generated structures are then presented to the user, along with a unique ID that represents the

specific execution the user is carrying out.

The user then can see the information that represents the changes to be made to the infrastructure in

the form of those data structures and confirm the execution, making a request for confirmation with the

execution unique ID. In Listing 5.5 we can see an example response to the execute request made with a

Terraform plan that will create two VMs in a specific Server. We can observe that the response contains

the ID of the execution, an Applied Tool structure, and a list of Assets. The list of Assets represents

the Assets that will be modified or created, in this case created. We must note the dependencies that

are created automatically, creating a dependency relation between the host and the two VMs and that,

since the tool has only run in dry-run mode, that status of the implementation is False. The Applied

Tool structure contains all the available information about the execution of the tool, including modified or

created Assets, information about the Terraform Plan files and if the tool has already implemented the

changes. Since the confirmation is not yet given by the user, the changes are not implemented in the

infrastructure and the final status of the execution is still empty.

Listing 5.5: Successful Asset Registration

1

2 wigu@DESKTOP:~$ curl --location -i \

3 > --request POST 'https://broker-module:8080/tools/Terraform/execute' \

4 > --form 'toolResources=@"terraform plan.zip"' \

5 > --header 'Cookie: SESSION ID=CZMZ-HyALZ1SEX4reFKTPKt084RqyZefxw%3D%3D'

6

7

8 HTTP/2 200

9 content-length: 2077

54

10 date: Sat, 25 Sep 2021 18:13:25 GMT

11 {

12 "id": "3Dfs6fdX",

13 "asset list": [

14 {

15 "id": "VM 01ioKoK",

16 "type": "VM",

17 "location": "Server i2SMtYv",

18 "owner": "x509::CN=user1-org1,OU=user1+OU=org1+OU=sysadmins,

19 O=Hyperledger,ST=North Carolina,C=US::CN=org1-ca,

20 OU=MasterThesis,O=MiguelOliveira,ST=Lisbon,C=PT",

21 "spec ram gb": 4,

22 "spec cpu cores": 2,

23 "applied tools": [],

24 "ip addrs": [],

25 "dependencies": [

26 {

27 "dependency": "Server i2SMtYv",

28 "origin": "Terraform 9dF8Sa2"

29 }

30],

31 "dependants": [],

32 "implemented": false

33 },

34 {

35 "id": "VM SgD5xAV",

36 "type": "VM",

37 "location": "Server i2SMtYv",

38 "owner": "x509::CN=user1-org1,OU=user1+OU=org1+OU=sysadmins,

39 O=Hyperledger,ST=North Carolina,C=US::CN=org1-ca,

40 OU=MasterThesis,O=MiguelOliveira,ST=Lisbon,C=PT",

41 "spec ram gb": 4,

42 "spec cpu cores": 2,

43 "applied tools": [],

44 "ip addrs": [],

45 "dependencies": [

46 {

47 "dependency": "Server i2SMtYv",

55

48 "origin": "Terraform 9dF8Sa2"

49 }

50],

51 "dependants": [],

52 "implemented": false

53 }

54],

55 "applied tool": {

56 "id": "Terraform 9dF8Sa2",

57 "applied to": [

58 "Server i2SMtYv"

59],

60 "assoc dependencies": [

61 {

62 "dependency": "VM 01ioKoK",

63 "origin": "Terraform 9dF8Sa2"

64 },

65 {

66 "dependency": "VM SgD5xAV",

67 "origin": "Terraform 9dF8Sa2"

68 }

69],

70 "tool name": "Terraform",

71 "file name": "terraform example.zip",

72 "file hash": "024addc35de4acb775bbd2ea3a59aef0852

73 fde90640ffacb234cd0177a4ba310",

74 "finished": false,

75 "final state": "",

76 "reverted": ""

77 }

78 }

After reviewing the output of the execution request, the user has the option to either confirm the

execution plan, making the tool invoke the Terraform tool to implement the changes or to discard this

plan by not confirming it. In a normal workflow, the user will then confirm the plan, making the confirm

request with the unique ID of the execution. This action would then trigger the execution of the tool and,

after that, the user will receive an output similar to the one presented in Listing 5.5, but this time with all

Assets marked as implemented and the Applied tool would then have the final state field populated with

the output of the tool.

56

We can then conclude that for this scenario, representing a realistic workflow for the usage of this

tool, our tool can satisfy the requirements, by not only ensuring the execution of the plans, but also

guaranteeing that all the changes are correctly registered in the Ledger, with all the information needed

to identify the user responsible for the action, timestamp of the execution of each request, and without

the possibility for anyone to modify, delete or tamper with these registries.

5.4 Scenario 3 - Authorization

Our solution aims to introduce both accountability and traceability to the management of IT infrastruc-

tures, and that is automatically ensured by the ledger together with the logic present on the Smart

Contract, as seen in the scenario presented before. However, it is also important to ensure access

control on both modifying the infrastructure or simply read read data from the inventory.

As stated on the requirements, an access control scheme is necessary. Using the Smart Contract

capabilities, we implemented a simple role based access control scheme, with two different permission

levels, user and admin. An user can only see and modify its Assets. When listing all Assets by type, only

the ones where it is the owner will appear, and when requesting information about a specific Asset, via

its ID, the tool will only return the information if the user is the owner, returning a 403-Forbidden status

code if not. On the other hand, an admin can see all the Assets registered in the infrastructure and is

able to modify all of them. Figure 5.1 systematizes the implemented permissions scheme in a simple

diagram with two users, an admin and three assets belonging to each of the participants.

User A Admin CUser B

Asset A1
Owner: A

Asset B1
Owner: B

Asset C1
Owner: C

Figure 5.1: User and Admin Permissions Diagram

57

To test and present this behaviour, we chose to create three different users, A, B and C, with both

A and B being normal users, and C being an administrator. All the users, A, B and C, created one

Asset each, that we will just call A1, B1 and C1, respectively. We then tested the authorization system

by verifying that both A and B could only see and modify the assets of which they are the owners, and

that C could see and modify all of the Assets. On Listing 5.6 we can observe the result of user A trying

to query the ledger for Asset C1. As expected, the system returned an empty response with the status

code of 403 - Forbidden, since the owner of C1 is user C.

Listing 5.6: Refused Request due to lack of permissions

1 wigu@DESKTOP:~$ curl -i --location \

2 > --request GET 'https://broker-module:8080/asset/VM 2fD7Se9'\

3 > --form 'identityFile=@"user A.zip"'

4

5 HTTP/2 403

6 content-type: text/plain; charset=utf-8

7 content-length: 25

8 date: Sat, 26 Sep 2021 10:24:37 GMT

9 Insufficient permissions

With this scenario’s verifications we can ensure not only that a simple access control scheme is

possible to be implemented successfully using Smart Contracts, but also that, since the Smart Contracts

are written in a general purpose programming language, it is possible to write any type of attributes into a

user’s identity certificate and an Asset can have any size and information in it, it is possible to implement

complex access control schemes, with and indefinite group or attribute count and very high granularity.

One example of a possible to implement system is the system used by Linux to specify file and directory

permissions, with separate permissions for the owner, a group and others.

5.5 Scenario 4 - Dependency processing

As explained before, our solution supports the specification of dependencies between different Assets

as an example of real world business logic verification. In a real IT Infrastructure, dependencies are very

common, either between physical Assets (for example a Server depending on a Smart Power Distribution

Unit), physical and logical Assets (for example a VM depending on its host Server) or between different

virtual Assets (for example when a web server VM or Service (that can be configured as an Asset) and

a backend database provider VM or Service. By programming the verification of dependencies in the

Smart Contract, every time some user makes modifications to the infrastructures, the dependencies are

58

automatically validated, preventing the user from making changes that could break dependencies.

Dependencies may be registered into the Ledger either automatically or manually. Automatic de-

pendency registry happens when the user uses our tool to invoke the infrastructure management tools.

As demonstrated in Section 5.3, our tool automatically detects a dependency between the newly provi-

sioned VMs, using Terraform, and their host. Since not all dependencies can be detected automatically,

it is also possible for the user to both register and remove dependencies between already registered

assets using the tool API. Since automatic dependency detection and registry was already proven in

Section 5.3, we will now test the manual dependency registration and removal, together with testing their

enforcement. For this, we create two Assets, A and B, then we register a dependency from A to B (e.g.,

Asset A depends on Asset B), so, as per the requirements, Asset B cannot be removed either before

Asset A is removed or the dependency is removed. When trying to remove Asset B we observe that the

Ledger denies the operation as expected, as seen on Listing 5.7. After the removal of the dependency

the Ledger now allows for the deletion of Asset B. We also are allowed to remove Asset B after removing

Asset A, since the operation of removing A automatically removes the dependency.

Listing 5.7: Refused Asset removal due to Dependency check

1 wigu@DESKTOP:~$ curl -i --location \

2 > --request DELETE 'https://broker-module:8080/asset/VM Erd2Kv4'\

3 > --form 'identityFile=@"user A.zip"'

4

5 HTTP/2 403

6 content-type: text/plain; charset=utf-8

7 content-length: 40

8 date: Sat, 26 Sep 2021 11:32:41 GMT

9

10 Deletion denied due to dependency break

It is important, however, to note that, although both the manual and automatic dependency manage-

ment proves that dependency verification as part of the business constraints’ verification is a viable use

case for a DL using its Smart Contracts, as shown on this scenario, automatic dependency detection is

very hard to fully implement.

5.5.1 Automatic Dependency Detection Shortfall

Although the Tools Modules are developed for a single tool, enabling for very accurate parsing of both

the tool plans and output, which enables the detection of some types of dependencies, such as Host-VM

dependencies when using a Provisioning Tool by, for example, parsing the Terraform execution output to

59

check the target of the modifications and the newly provisioned resources, there are dependencies that

come from the specific usage of the Assets. This type of dependencies is very difficult to detect due to

the near infinite configuration possibilities for a given resource, and the fact that proof of these depen-

dencies is usually stated either in deployed code, or in configuration files. Both these usual locations

are unfeasible to be parsed due to the very large amount of very different configuration and code possi-

bilities. A good example of this difficulty is a typical Web server dependency on a Database: evidence

of this dependency will only be present in specific Web Server configuration files, or even in its code. It

is unfeasible to develop a tool module that would be able to scan for all those very specific scenarios in

order to detect all the dependencies. In these cases, our tool must rely on the user to manually regis-

ter/unregister those dependencies on the Ledger when invoking the tools that may generate them in the

real infrastructure.

5.6 Scenario 5 - Rollback of tool applied actions

This scenario is dedicated to demonstrate the rollback of actions that were made using one of the

infrastructure management tools, using the process further explained in Section 5.3.2. The original goal

was to develop an API endpoint that could receive the ID of the applied tool, and, with access to all

the original plans from the tool, generate a new plan that would undo the original plan. However, after

research both in academic publications and industry oriented support websites, it was concluded that

this process is not always possible at all, and unfeasible for the majority of the remaining cases.

5.6.1 Tool Rollback Limitations

The main constraint that renders automatic rollback of infrastructure management tools actions unfeasi-

ble is the the fact that the large majority of them, including the two present in our solution, Ansible and

Terraform, work on the principle that the target state is the one that must be preserved and attained.

This makes sense since the objective of these tools is to read the plan, with either a declarative list of

changes to apply or a target state to attain, so they usually read the current state of the resources they

are to modify, and calculate a list of actions to make. The tools then apply this list of actions, bringing

the state of the resources to the one desired by the user. In this process they can detect changes that

are redundant or already in place, and save time and resources by not applying them twice. This also

ensures idempotency, that is, if we apply the same plan more that one time, the end result should be the

same as applying it once, assuming no failures occur.

However, although the tools can present the user with a list of modified parameters, they do not

systematically track and store the previous state of the resource. A good example for this case is the

overwriting of a file. The tool can detect if the file contents are already equal to the ones the user wants

60

to copy, and in that case ignore the copying operation. In this case the tool will present a ”not modified”

status for that operation. However, if the file is in fact different, the tool will overwrite the file with the new

version as commanded, and show a ”modified” status for the operation. The problem is that, although

the tool reports that the file has been modified, it does not store the previous contents of the file.

When trying to revert an action, if the state of an operation is ”not modified”, the rollback action is to

not do anything. However, if the stored state of the original operation is ”modified”, we have no way of

knowing what was exactly the state of the resource before the tool execution. Continuing on the previous

example of the file modification, if the state was ”not modified” the rollback action would be to do nothing.

However, if the state was ”modified”, we would have no means to restore the original contents of the file,

or even to know if the file existed at all originally.

The solution to circumvent this limitation would then be to modify the infrastructure management tools

to make them store copies, or reports of the previous state of all modified resources, and even then there

would be unpredictable possibilities of failures when reverting actions due to automatic actions taken by

the systems themselves, that the tool could not account for. Other solution would be for our tool to modify

all the plans that the users submitted in order to pair each action with some action that would save the

state of the resource to be modified. However, this approach would be unfeasible due to the variety of

modifications a tool like Ansible, for example, can make, and would suffer from the same setbacks as

the previous approach of modifying the tools themselves.

However, the industry has already solved this problem with another set of tools and features, that we

will present in the next section.

5.6.2 Proven Solution

Since the rollback of actions is a common event in a typical infrastructure, some solutions were devised.

The main solution, since the majority of resources are in fact VMs running in some sort of hypervisor,

it to then harness the features of said hypervisor to make the rollback of the state of the VMs using

snapshots. The large majority of hypervisors support this technology that is the storage of the state of

the VM, that can include the associated persistent memory (for example the Hard Drive, that may be

virtual or not), the state of the volatile memory and even the processor state, in a persistent manner.

The hypervisor is able to store all this information in a compact manner, that enables the snapshot of

a resource to only occupy a fraction of the size the resource itself occupies, enabling for regular taking

of snapshots that are stored for a predefined amount of time. When it is needed to rollback the state of

some resource, the hypervisor is then able to get the information contained in the snapshot and setup

the resource to be exactly as it was when the snapshot was taken, most of the times with unnoticeable

downtime.

Another solution that can be used is to resort to some file systems’ ability to create snapshots of

61

the entire file system, or to maintain a log of all the modifications, enabling the user to revert the file

system state to a previous state. This method is usually employed in physical resources, and has some

limitations due to the fact that only the file system’s state is restored, and volatile memory contents are

lost. Usually this method involves a reboot of the resource so that the OS reloads all information from

the file system.

5.6.3 Integration with our solution

The integration of automatic rollback operations in our tool is possible, however, it would require for

the hypervisor to be connected to our solution as a Infrastructure management tool, a situation that we

consider as being out of scope for this work.

Nonetheless, the rollback of the state of Assets is fully supported by our tool in a manual manner.

The process for rollback then consists of the user triggering said rollback manually in the correct tool/hy-

pervisor, and then registering it in our tool, so that the inventory database continues to represent the

actual state of the real infrastructure. The user accessible API implements methods that allow the user

to both delete Assets, modify them, to mark Applied Tools as reverted, or to even delete them. With

the set of methods, the user can, manually, undo the changes made after the moment to which the real

resource was rolled back to. For example, if the user is to rollback the execution of an Ansible playbook,

it would then do that rollback manually in the infrastructure, for example using the snapshot feature of

the hypervisor hosting the target of said playbook, and then deleting the Applied Tool registered in the

Ledger, which would, in turn delete all possible dependencies created by that Applied Tool, effectively

rolling back the state of the Ledger too.

5.7 Load and throughput

After the qualitative analysis presented in the different scenarios above, we will also make an evaluation

on the performance of this tool. Since the tool is intended to be used as a middle layer between the user

and the infrastructure or the infrastructure management tools, it is important to ensure that the tool is

then able to serve multiple requests in parallel, while also adding a minimal time delay to the operations

that are relayed through this tool. We will then test both the throughput and response times of different

requests made to the tool, testing both the variability between different request types, mainly read and

write, and if there is any noticeable performance drop when the number of Assets registered in the State

database increases.

For all the tests, we used Apache JMeter3 to generate the requests and collect results. JMeter

allows us to create any type of request, set the concurrency level (number of concurrent requests) and

3https://jmeter.apache.org/, accessed 27th September 2021

62

the total number of requests to be executed. It then collects information about every request and its

response. For our tests, the main metrics we collected were the response time, in milliseconds, the

general throughput (the number of requests answered per second) and lastly, as a control the success

rate based on the HTTP return status of every request.

Since our solution has several API endpoints, we will make throughput evaluations only for the most

relevant ones:

• Read Requests:

– R1 - Get Asset by ID

– R2 - Get Applied Tool by ID

• Write Requests:

– R3 - Register Asset

– R4 - Modify Asset

– R5 - Register Applied Tool

Both the login and Asset Type handlers were excluded from this evaluation since they are less used

endpoints, and where performance is not as important. However, these requests, being very simple

from a Ledger perspective, are in fact faster than most other requests. The request to get assets by

their type is also not evaluated since its response time is directly dependent from the number of assets

with the specific type the user has access to, with the bottleneck in this request being the transmission

of possibly very large amounts of data due to a large number of Assets. It is also important to note

that the automatic tool execution endpoints are also not benchmarked since they depend heavily on the

execution time of the tools, that is out of scope for this project, and all the requests internally made to

the ledger are the same as the manual requests that we are already evaluating.

We will benchmark each request in two different scenarios: with a minimal number of Assets regis-

tered in the ledger, and then with the ledger populated with around 100000 Assets, in order to simulate

a large infrastructure. We can then compare the response times and throughput in both scenarios and

verify if there is any performance degradation with the increased number of stored assets. For each sce-

nario, we will run each request 1000 times with a parallelism of 100 concurrent requests, and average

the response times and throughput, in order to get a significant performance measure. The number of

1000 executions was chosen due to it being a large enough value that allows for the tool to stabilize,

and provide consistent results. The number of 100 concurrent requests was obtained by testing different

values of concurrency until the throughput value maximized and stabilized, due to the tool being work-

ing at 100% capacity. With larger concurrency values the throughput maintained, however increasing

response times. With lower values the response times did not change, however making the throughput

63

value decrease. However, it is important to note that in experiments with larger core counts and larger

RAM sizes, the throughput increased with increased concurrency values. The standard deviation values

for the response times in each test were also recorded, being always lower than 100ms, meaning that

there is little dispersion of values between all the individual requests in each test.

R1 R2 R3 R4 R5
Request type

0

500

1000

1500

2000

2500

3000

R
es

po
ns

e
Ti

m
e

(m
s)

2201 2216 2237

2619

2301
2192 2236 2213

2605

2298

Empty database
Populated Database

R1 - Get Asset by ID; R2 - Get Applied Tool by ID; R3 - Register Asset; R4 - Modify Asset; R5 - Register Applied Tool;

Figure 5.2: Response times for different request types

As we can observe from both graphics in Figure 5.2 and Figure 5.3, as expected, there is a inverse

correlation between response times and throughput: when the response time is greater, the throughput

is lower. However, when repeating the tests with increased computing resources allocated to the Ledger,

by increasing the number of concurrent requests, the throughput values increased substantially (when

tested with 6 CPU cores and 1000 concurrent requests, the tool achieved throughputs of around 200

requests per second). This is one factor that indicates that the requests are processed independently

of each other by the ledger, with the limit being the concurrent processing capacity of the ledger nodes.

This results are on par with the ones published in several studies about performance of distributed

Ledgers, and more specifically Hyperledger Fabric such as [22,24].

We can also observe in the graphics that, unexpectedly, both read and write methods achieve similar

performances, both in response time and throughput. All the methods achieved similar metrics, with the

exception of the Asset modification method. However, the lower performance of the Asset modification

method can be explained because, for the Smart Contract to approve a modification of some Asset, it

must first read it from the state database in order to make all the necessary verifications for the validity

of all modifications before writing the updated Asset version to the Ledger.

64

R1 R2 R3 R4 R5
Request type

0

5

10

15

20

25

30

35

40

45

50

55

Th
ro

ug
hp

ut
(r

eq
ue

st
s/

se
c)

45.3 44.9 44.6

37.8
40.2

45.5 44.6 45.1

37.6
39.6

Empty database
Populated Database

R1 - Get Asset by ID; R2 - Get Applied Tool by ID; R3 - Register Asset; R4 - Modify Asset; R5 - Register Applied Tool;

Figure 5.3: Throughput for different request types

Also unexpectedly, methods with different complexity levels of logic programmed into the Smart Con-

tract behaved similarly. However, this behaviour can also be explained easily, by understanding that the

main time taking operations in a request are not part of the Smart Contract execution, but in all the com-

putations that the Ledger must execute in order to process a transaction, such as the process to launch

a new process to run the smart contract instance dedicated to each transaction, the cryptographic sign-

ing and verification operations, and the ordering of nodes by the ordering service, that involves reaching

consensus between all orderers. The network delays may also introduce some latency in the requests,

although in our testing said delay is minimized since all nodes of the Ledger run in containers in the

same virtual machine. We can then also conclude that the execution of the Smart Contracts in very fast,

allowing for more complex logic to be programmed in them without major performance concerns.

Another conclusion that we can draw from the obtained results is that there is no noticeable per-

formance degradation from the increase of number of assets in the database and nodes in the ledger

blockchain itself. A value of around 100000 assets in the database has been chosen as the target

for a populated database. We chose this value since we consider that, in the infrastructures this tool

may be used, it is very improbable to achieve such a high number of assets. Even in some requests,

such as request R1 - Get an Asset by its ID, the throughput increased slightly, and the response time

decreased, when the database was populated. Although these differences are well within a margin of

error, this demonstrates that the performance degradation, if existing, is negligible when compared to the

observed values (for example a difference of 9ms in response time in a gross value of around 2200), and

65

we can extrapolate that this trend is expected to keep itself for larger numbers of assets in the database.

This proves that the Hyperledger Fabric database implementation, LevelDB, has a well formulated data

storage algorithm that is performance resilient against large amounts of stored data.

Although the response times for the requests are noticeable, since they are around 2-3 seconds

per request, the capacity of the system to process a large number of requests in parallel allows for

throughput figures that are much higher that would be possible without parallelism. With serial execution

of requests, having in mind an average response time of 2200ms per request, the throughput would be

as low as 0.45 requests per second. Having in mind the purpose of this tool, and that all the requests

that are processed by it are related to IT Infrastructure’s management activities, the throughput of the

tool will then be more important that the response time, since many of the infrastructure management

activities, such as provisioning a resource or implementing changes take considerably longer that the

response times of the tool requests, making them not very noticeable in the context of the activities.

With this in mind, and focusing of the throughput values, we observed that with, with somewhat limited

resources (since all the nodes of the Ledger are running in the same virtual machine, that itself has just

6 CPU cores and 4GB of RAM), the throughput established itself above 35 requests per second for all

request types. Testing with larger resource availability (either increasing the specifications of the Ledger

VM or increasing the number of simultaneous requests) showed increased performance, that is in par

with the general Ledger performance evaluations presented in other studies such as [22, 24]. From a

performance perspective, this makes us confident that this tool can easily cope with large numbers of

infrastructure modifications per seconds, as it can happen in the real world.

5.8 Result Discussion

After the presentation of both qualitative and quantitative evaluations of the developed solution, we

are now able to make a complete evaluation of the tool as a whole, taking into account the different

conclusions achieved in each of the test scenarios and the performance evaluation.

From a qualitative standpoint, the presented scenarios ought to cover most of the common real life

operations, while providing results that show that the DL system has potential for the expansion of re-

quirements, allowing for more complex business logic, embedded in the Smart Contracts. However,

while we could fully implement and satisfy the scenarios for Login and session management, authoriza-

tion and registered dependency processing, it must be noted that the automatic mechanisms for analysis

of changes made by infrastructure management tools present a greater challenge that previously an-

ticipated. While this was not evident in scenario 2 - Normal Workflow, due to the usage of Terraform

and only host-VM dependencies, it was further investigated in the scenarios of Dependency Processing

and Tool Rollback. While the processing of already registered dependencies is totally supported and

66

can be implemented in Smart Contracts to evaluate more complex dependencies, their detection is a

very complex problem, as it is detailedly discussed in Section 5.5.1, and has consequences that impact

the feasibility of tool rollback without the usage of snapshotting or similar technologies, as presented in

Section 5.6.

From a performance standpoint, we analyse both throughput and response times for this solution.

The great parallelization capabilities of both the Ledger and the developed modular system to inter-

face with it made this tool able to be scaled up in performance, allowing for it to satisfy even large

infrastructure requirement. Furthermore, even in our baseline testing, with very limited resources, the

tool presented good throughput performance, processing more than 35 requests per second across all

types of requests, number that we consider above the needs for most small infrastructures, with up to

100 devices, with limited resources. For larger infrastructures the tool can scale up to allow for larger

throughputs. On the response time side, the ledger system introduces a response time for, at least,

2200ms per request. However, this value is constant for all types of requests since it is related with

the processing of requests by the Ledger itself, and not due to the complexity of the code in the smart

contracts, since it presents very little variation between requests with very different processing require-

ments for the execution of the related Smart Contract function. Because of this, we can expect that

the response times are not very dependent on the complexity of the business logic, allowing for more

complex business logic validations with minimal performance penalties. Furthermore, we consider that,

in the context of the managements activities, these response times are not too significant.

67

6
Conclusion

Contents

6.1 Objectives . 69

6.2 Conclusions . 70

6.3 System Limitations and Future Work . 71

68

After the development of the solution and its evaluation, we can now draw conclusions about the

original objectives of this work, its requirements, and how they were achieved, and if, in out particular

case, there is viability for the usage of a DL as a central component in the logging and access control of

IT infrastructures management actions in a secure way, providing both access control and traceability of

past actions.

6.1 Objectives

In this Masters Thesis, we proposed to verify the viability of harnessing the capabilities of a DL to

enable a secure and traceable way of managing IT Infrastructures. For this, we proposed to develop

a proof-of concept solution that would include not only the coding of Smart Contracts in the Ledger to

express the business logic, but also to create an interface both for the users to connect to, but also to

integrate the execution of IT Infrastructure Management tools and the registering of the modifications

in the Ledger. We started our work by researching about the existence of similar solutions, having

found that although there exist many IT Infrastructure Management tools, they do not provide significant

means of creating an inventory of the entire infrastructure, and don’t offer any security related features.

On the other side, there are several DL solutions, although none dedicated to the management of IT

Infrastructures. However, many of the DL solutions are modular and configurable to attend to different

needs and specifications.

We chose to use Hyperledger Fabric for our solution, since it is one of the best performing DL so-

lutions, while offering a very large degree of configurability, and large support and extensive documen-

tation. We also chose two Infrastructure Management tools, Ansible and Terraform, to demonstrate the

possible integration of a solution like ours with already existing tools, improving security and reducing the

space for mistakes. Ansible and Terraform were chosen due to their significance in the industry, being

the most used tools to Configure and Deploy resources, respectively. They support a large number of

devices and endpoints, making them very versatile.

A main goal for this solution was for it to be able to register every modification to the infrastructure

in an immutable way, and to register the authors of every action, thus enabling the creation of both an

inventory of the infrastructure, but also a log of changes that is immutable and that can trace back all

modifications to its author. Hyperledger Fabric presents the solution for this, by not only supporting

the identity creation and management, needed to create identities, and credentials, for all users, but by

automatically having a state database, that can store the inventory of the infrastructure, and stores the

modifications in a blockchain, that is an immutable storage structure by design. Then we could use the

Smart Contract capabilities of Fabric to implement access control based on the attributes that we can

embed in the user’s identity. This way we could develop an Access Control mechanism, not only for

69

writing information to the ledger (and state database), but also for reading it, based on the calling user’s

attributes. As explained in Section 5.4, this function can be expanded to support much more complex

Access Control schemes.

Hyperledger Fabric’s Smart Contract capabilities were explored to implement not only authentication

and Access Control, but also Business Logic. Since there are many rules that may be specified to

filter out the possibility of executing certain management tasks, we chose to demonstrate the ledger

capabilities by implementing the concept of dependencies between assets, making the Ledger, through

the logic in the Smart Contracts, be able to automatically evaluate each and every task that the user

submits, either by manual submission or as part of a IT infrastructure management tool execution, and

approve or deny it based on the creation and modification of assets and their dependencies, in a way

that no dependency is broken by making changes.

A modular tool was then developed to support both the users connections but also to integrate the

tools, Ansible and Terraform, with the Ledger. The system is developed with a microservices architec-

ture, where each module has a specific purpose and is as generalized as possible to enable modifica-

tions in one module without the need for modifying all other modules. This enables for new tools to be

added and removed as needed. The tool integration was developed as a proof-of-concept, only allowing

for the execution of already formulated plans, and basic detection of tool-induced changes, that are then

registered in the Ledger.

6.2 Conclusions

After the development of the solution, evaluation was carried, in a qualitative and quantitative perspec-

tives. The solution was evaluated in a qualitative manner for the compliance with the requisites previ-

ously defined in Section 3.1, by making use of several evaluation scenarios that aimed not only to cover

the requisites but also to represent typical workflows in which the tool is part of. The access control

mechanism was tested for both the denial of access to unauthenticated users, but also for the denial

of access to unauthorized users, and the tool behaved as expected, denying all requests that were

not valid according to the Access Control rules. Scenarios for both manual manipulation of assets and

dependencies were also proposed, with the tool being able to register and delete assets, according to

the business logic rules, and to manipulate dependencies, and deny requests that would have broken

dependencies. Scenarios for the testing of workflows involving tool execution and automatic asset track-

ing and dependency creation were also evaluated, with the tool being able to detect new assets and

dependencies, although with limitations.

From a quantitative perspective, a performance analysis was performed, and we could conclude that,

although the tool introduces a latency penalty in each request and modification made to the infrastruc-

70

ture, by presenting response times of around 2200ms for all requests, it can handle a large number of

concurrent requests, presenting a throughput of more than 35 requests per second with limited Ledger

resources. This value can be vastly increased by increasing the resources available to the solution, as

explained on Section 5.7.

From the obtained results, we could then conclude that the usage of a DL, more specifically Hy-

perledger Fabric, can be a good solution to ensure that all actions that may modify an IT Infrastructure

are both filtered and processed, to ensure the verification of compliance with Infrastructure constraints,

such as dependency checking, the verification of the permissions of a user to do such modifications,

and lastly to ensure that all the modifications are registered in an immutable way, that enables account-

ability and traceability for all actions. Additionally, Fabric deploys a state database, that is closely tied

with the ledger, that can represent the infrastructure, acting as its inventory, without the need for the

implementation of external databases and the consequent development of mechanisms to ensure that

all information that is written to the database is also written in the ledger.

6.3 System Limitations and Future Work

As previously stated, the developed solution is a proof-of-work, and, consequently, may be object of fur-

ther investigation and development. All the logic that is present in the Smart Contract can be expanded

both to enable for the verification of more and more complex constraints and finer grained access control,

although we could already conclude that from a feasibility perspective, such expansions are possible.

The biggest limitations of this solution come from two main components: the Ledger and the Tools. As

stated in Section 5.7, the Ledger introduces some delay in all requests, making the user having to wait

some time for each request to complete. Optimizations in this aspect can be object of further study, by

trying to reduce response times for example for read requests where the full mechanism for transaction

evaluation may not be needed. From the tools perspective, and as explained in detail in Section 5.6, the

detection of dependencies in tool output is very limited in the present version, and is a complex problem

due to the variety of sources for dependencies. Further study in this area could be useful to enable

solutions like the one presented in this Thesis to have a more complete inventory of the infrastructure

without the need for humans to manually register details of the infrastructure, instead having the system

automatically detect more of those details.

71

Bibliography

[1] M. Hilton, “Understanding and Improving Continuous Integration,” in Proceedings of the 2016 24th

ACM SIGSOFT International Symposium on Foundations of Software Engineering, ser. FSE 2016.

New York, NY, USA: Association for Computing Machinery, 2016, pp. 1066–1067.

[2] J. Itkonen, R. Udd, C. Lassenius, and T. Lehtonen, “Perceived Benefits of Adopting Continuous

Delivery Practices,” in Proceedings of the 10th ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement, ser. ESEM ’16. New York, NY, USA: Association for

Computing Machinery, 2016.

[3] M. Oliveira and R. S. Cruz, “Ensuring Traceability on Management of IT Infrastructures : Orchestra-

tor based on a Distributed Ledger,” in 2021 16th Iberian Conference on Information Systems and

Technologies (CISTI), 2021, pp. 1–5.

[4] U. Pawar and M. Bhelotkar, “Virtualization: A Way towards Dynamic IT,” in Proceedings of the

International Conference & Workshop on Emerging Trends in Technology, ser. ICWET ’11. New

York, NY, USA: Association for Computing Machinery, 2011, pp. 262–263.

[5] R. Dua, R. Raja, and D. Kakadia, “Virtualization vs Containerization to Support PaaS,” in 2014 IEEE

International Conference on Cloud Engineering, 2014, pp. 610–614.

[6] J. Watada, A. Roy, R. Kadikar, H. Pham, and B. Xu, “Emerging Trends, Techniques and Open

Issues of Containerization: A Review,” IEEE Access, vol. 7, pp. 152 443–152 472, 2019.

[7] C. Pahl, “Containerization and the PaaS Cloud,” IEEE Cloud Computing, vol. 2, no. 3, pp. 24–31,

2015.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and

J. Turner, “OpenFlow: Enabling Innovation in Campus Networks,” SIGCOMM Comput. Commun.

Rev., vol. 38, no. 2, pp. 69–74, 2008.

[9] P. Selvaraj and V. Nagarajan, “Migration from conventional networking to software defined network-

ing,” in 2017 International Conference on IoT and Application (ICIOT), 2017, pp. 1–7.

72

[10] A. Vahdat, D. Clark, and J. Rexford, “A Purpose-Built Global Network: Google’s Move to SDN:

A Discussion with Amin Vahdat, David Clark, and Jennifer Rexford,” Queue, vol. 13, no. 8, pp.

100–125, 2015.

[11] Google.com. (2020) Google Cloud Computing, Hosting, Services & APIs. Google. Accessed

10-September-2021. [Online]. Available: https://cloud.google.com/gcp

[12] Amazon.com. (2011) Amazon Web Services (AWS) - Cloud Computing Services. Amazon Web

Services, Inc. Accessed 10-September-2021. [Online]. Available: https://aws.amazon.com/

[13] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D. Enyeart, C. Ferris,

G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,

A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yellick, “Hyperledger Fabric: A

Distributed Operating System for Permissioned Blockchains,” in Proceedings of the Thirteenth Eu-

roSys Conference, ser. EuroSys ’18. New York, NY, USA: Association for Computing Machinery,

2018.

[14] Cisco.com. (2020) Software-Defined Networking (SDN) Definition - Cisco. Cisco Systems,

Inc. Accessed 25-September-2021. [Online]. Available: https://www.cisco.com/c/en/us/solutions/

software-defined-networking/overview.html#∼benefits

[15] Juniper.net. (2020) SDN, Network Management, and Operations — Juniper Networks. Juniper

Networks, Inc. Accessed 6-October-2021. [Online]. Available: https://www.juniper.net/us/en/

products-services/management-operations-sdn/

[16] HPE.com. (2020) OneView IT Infrastructure Management Software. Hewlett Packard

Enterprise. Accessed 20-September-2021. [Online]. Available: https://www.hpe.com/us/en/

integrated-systems/software.html

[17] DellTechnologies.com. (2020) Dell EMC Managed Services. Dell Technologies. Ac-

cessed 20-September-2021. [Online]. Available: https://www.delltechnologies.com/en-us/services/

infrastructure-managed-services.htm

[18] NuageNetworks.com. (2020) (SDN) Telco Cloud - Nuage Networks. Nuage Networks. Accessed

5-October-2021. [Online]. Available: https://www.nuagenetworks.net/solutions/telco-cloud/

[19] Ansible.com. (2020) Ansible Tower — Ansible.com. Red Hat / Ansible. Accessed 19-September-

2021. [Online]. Available: https://www.ansible.com/products/tower

[20] M. Schinle, C. Erler, P. Andris, and W. Stork, “Integration, Execution and Monitoring of Business

Processes with Chaincode,” in 2020 2nd Conference on Blockchain Research Applications for In-

novative Networks and Services (BRAINS), 2020, pp. 63–70.

73

https://cloud.google.com/gcp
https://aws.amazon.com/
https://www.cisco.com/c/en/us/solutions/software-defined-networking/overview.html#~benefits
https://www.cisco.com/c/en/us/solutions/software-defined-networking/overview.html#~benefits
https://www.juniper.net/us/en/products-services/management-operations-sdn/
https://www.juniper.net/us/en/products-services/management-operations-sdn/
https://www.hpe.com/us/en/integrated-systems/software.html
https://www.hpe.com/us/en/integrated-systems/software.html
https://www.delltechnologies.com/en-us/services/infrastructure-managed-services.htm
https://www.delltechnologies.com/en-us/services/infrastructure-managed-services.htm
https://www.nuagenetworks.net/solutions/telco-cloud/
https://www.ansible.com/products/tower

[21] F. Dai, Y. Shi, N. Meng, L. Wei, and Z. Ye, “From Bitcoin to cybersecurity: A comparative study of

blockchain application and security issues,” in 2017 4th International Conference on Systems and

Informatics (ICSAI), nov 2017, pp. 975–979.

[22] N. Kannengießer, S. Lins, T. Dehling, and A. Sunyaev, “Trade-Offs between Distributed Ledger

Technology Characteristics,” ACM Comput. Surv., vol. 53, no. 2, 2020.

[23] W. Cai, Z. Wang, J. Ernst, Z. Hong, C. Feng, and V. Leung, “Decentralized Applications: The

Blockchain-Empowered Software System,” IEEE Access, vol. 6, pp. 53 019–53 033, 2018.

[24] R. Nadir, “Comparative study of permissioned blockchain solutions for enterprises,” in 2019 Inter-

national Conference on Innovative Computing (ICIC), nov 2019, pp. 1–6.

[25] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized Business Review, p.

21260, 2008.

[26] D. Eastlake and P. Jones, “Rfc3174: Us secure hash algorithm 1 (sha1),” Network Working Group,

USA, Tech. Rep., 2001.

[27] S. Bhalerao, S. Agarwal, S. Borkar, S. Anekar, N. Kulkarni, and S. Bhagwat, “Supply Chain Man-

agement using Blockchain,” in 2019 International Conference on Intelligent Sustainable Systems

(ICISS), 2019, pp. 456–459.

[28] M. Hulea, O. Rosu, R. Miron, and A. Aştilean, “Pharmaceutical cold chain management: Platform

based on a distributed ledger,” in 2018 IEEE International Conference on Automation, Quality and

Testing, Robotics (AQTR), 2018, pp. 1–6.

[29] S. Rouhani, R. Belchior, R. Cruz, and R. Deters, “Distributed Attribute-Based Access Control Sys-

tem Using a Permissioned Blockchain,” 2020.

[30] G. Nyame, Z. Qin, K. Agyekum, and E. Sifah, “An ECDSA approach to access control in knowledge

management systems using blockchain,” Information (Switzerland), vol. 11, no. 2, p. 111, feb 2020.

[31] K. Rani and C. Sharma, “Tampering Detection of Distributed Databases using Blockchain Tech-

nology,” in 2019 Twelfth International Conference on Contemporary Computing (IC3), 2019, pp.

1–4.

74

A
Sample Smart Contract Code

In this appendix we present sample Smart Contract Functions for Registering, Removing and Getting

Assets, to exemplify how constraints can be coded and specified, more specifically the access control

and dependency checking, in the context of a Smart Contract. Must be noted that some error handling

functions are not depicted for clarity.

Listing A.1: Asset Registration

1 func (s *SmartContract) RegisterAsset(ctx contractapi.TransactionContextInterface

↪→ , asset *AssetRepresentation.Asset) (*AssetRepresentation.Asset, error) {

2 clientID, err := s.GetSubmittingClientIdentity(ctx)

3

4 // validate type

5 trackerJson, err := ctx.GetStub().GetState("TypeTracker")

6 if trackerJson == nil {

7 return nil, fmt.Errorf(" Type Tracker not found")

8 }

75

9

10 tracker := AssetRepresentation.TypeTracker{}

11

12 err = json.Unmarshal(trackerJson, &tracker)

13

14 if !s.Contains(tracker.AssetTypes, asset.Type) {

15 return nil, fmt.Errorf("specified asset type does not exist")

16 }

17

18 // generate random asset id

19 newRandID := s.RandStringBytes(7)

20

21 newID, err := ctx.GetStub().CreateCompositeKey(asset.Type, []string{newRandID

↪→ })

22 newIDReadable, err := s.CompToReadableKey(ctx, newID)

23

24 // populate remaining fields

25 asset.ID = newIDReadable

26 asset.Owner = clientID

27 asset.Implemented = false

28

29 // doesn't make sense to create an asset with dependants

30 asset.Dependants = make([]*AssetRepresentation.DependantRelation, 0)

31

32 // populate if empty

33 if asset.IpAddrs == nil | | len(asset.IpAddrs) == 0 {

34 asset.IpAddrs = make([]string, 0)

35 }

36

37 // we have to check if any dependencies are created and implement them as

38 // dependants too for that, we get all dependency assets, and add this

39 // new asset as dependant

40 if asset.Dependencies == nil | | len(asset.Dependencies) == 0 {

41 asset.Dependencies = make([]*AssetRepresentation.DependencyRelation, 0)

42 } else {

43 for , dependencyObj := range asset.Dependencies {

44 dependencyAsset, depAssCompId, err := GetAssetIntern(s, ctx,

↪→ dependencyObj.Dependency)

76

45

46 newDependant := AssetRepresentation.DependantRelation{

47 Dependant: newIDReadable,

48 OriginID: "Dependant Creation",

49 }

50

51 dependencyAsset.Dependants = append(dependencyAsset.Dependants, &

↪→ newDependant)

52 dependencyAssetJson, err := json.Marshal(dependencyAsset)

53 err = ctx.GetStub().PutState(depAssCompId, dependencyAssetJson)

54 }

55 }

56

57 if asset.AppliedTools == nil | | len(asset.AppliedTools) == 0 {

58 asset.AppliedTools = make([]string, 0)

59 } else if len(asset.AppliedTools) > 1 {

60 return nil, fmt.Errorf("too many applied tools for asset creation: %v",

↪→ err)

61 } else {

62 , , err = GetAssetIntern(s, ctx, asset.AppliedTools[0])

63 if err != nil {

64 return nil, fmt.Errorf("unable to find applied tool asset: %v", err)

65 }

66 }

67

68 assetJSON, err := json.Marshal(asset)

69 err = ctx.GetStub().PutState(newID,assetJSON)

70 return asset, nil

71 }

Listing A.2: Remove Asset

1 func (s *SmartContract) RemoveAsset(ctx contractapi.TransactionContextInterface,

↪→ assetId string) error {

2 isAdmin, err := s.CheckUserAdmin(ctx)

3 if err != nil {

4 return fmt.Errorf("could not verify if user is admin: %v", err)

5 }

77

6

7 clientID, err := s.GetSubmittingClientIdentity(ctx)

8 if err != nil {

9 return fmt.Errorf("could not get client ID: %v", err)

10 }

11

12 asset, compositeId, err := GetAssetIntern(s, ctx, assetId)

13 if err != nil {

14 return fmt.Errorf("could not get asset: %v", err)

15 }

16

17 if !(isAdmin | | clientID == asset.Owner) {

18 return fmt.Errorf("access denied to change asset")

19 }

20

21 err = ctx.GetStub().DelState(compositeId)

22 if err != nil {

23 return fmt.Errorf("could not remove asset in ledger: %v", err)

24 }

25 return nil

26 }

Listing A.3: Get Asset

1 func (s *SmartContract) GetAsset(ctx contractapi.TransactionContextInterface,

↪→ assetId string) (*AssetRepresentation.Asset, error) {

2 isAdmin, err := s.CheckUserAdmin(ctx)

3 if err != nil {

4 return nil, fmt.Errorf("could not verify if user is admin: %v", err)

5 }

6

7 clientID, err := s.GetSubmittingClientIdentity(ctx)

8 if err != nil {

9 return nil, fmt.Errorf("could not get client ID: %v", err)

10 }

11

12 asset, , err := GetAssetIntern(s, ctx, assetId)

13 if err != nil {

78

14 return nil, fmt.Errorf("could not get asset: %v", err)

15 }

16

17 if !(isAdmin | | asset.Owner == clientID) {

18 return nil, fmt.Errorf("asset with id %v not found", assetId)

19 }

20

21 return asset, nil

22 }

79

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Organization of the Document

	2 Background
	2.1 Similar Tools and Solutions
	2.2 Distributed Ledger Technology
	2.2.1 Information Storage
	2.2.2 Blockchain
	2.2.2.A Public and Private Blockchains

	2.2.3 Smart Contracts
	2.2.4 Hyperledger
	2.2.4.A Hyperledger Fabric

	2.2.5 Using Distributed Ledger Technology

	2.3 Infrastructure Management
	2.3.1 Direct Connection
	2.3.2 Infrastructure Management Tools
	2.3.2.A Specialized Tools

	3 Proposed Solution
	3.1 Application Requirements
	3.2 Approach
	3.2.1 General Architecture
	3.2.1.A Broker Module
	3.2.1.B Ledger Module
	3.2.1.C Tool Module

	3.2.2 General Data Flow
	3.2.2.A Login
	3.2.2.B Read/Write to the Ledger
	3.2.2.C Tool execution

	3.3 Design Decisions
	3.3.1 Infrastructure Management Tools
	3.3.1.A Provisioning
	3.3.1.B Configuration Management

	3.3.2 Distributed Ledger
	3.3.3 Programming Language

	4 Implementation
	4.1 Development Methodology
	4.2 Environment
	4.3 Hyperledger Fabric
	4.3.1 Certificate Authorities
	4.3.2 Identity Generation
	4.3.3 Peer Configuration
	4.3.4 Orderer Configuration
	4.3.5 Channel Creation
	4.3.5.A Genesis Block

	4.3.6 Chaincode Development
	4.3.6.A Asset Type Management
	4.3.6.B Asset Management
	4.3.6.C Dependency Management
	4.3.6.D Applied Tool Management

	4.3.7 Chaincode Installation

	4.4 Modules Development
	4.4.1 Module Architecture
	4.4.2 Ledger Module
	4.4.3 Broker Module
	4.4.4 Tools Modules

	5 Evaluation and Result Analysis
	5.1 Test Scenarios
	5.2 Scenario 1 - Authentication
	5.3 Scenario 2 - Normal Workflow
	5.3.1 Asset Management
	5.3.2 Tool Management
	5.3.2.A Execution Request

	5.4 Scenario 3 - Authorization
	5.5 Scenario 4 - Dependency processing
	5.5.1 Automatic Dependency Detection Shortfall

	5.6 Scenario 5 - Rollback of tool applied actions
	5.6.1 Tool Rollback Limitations
	5.6.2 Proven Solution
	5.6.3 Integration with our solution

	5.7 Load and throughput
	5.8 Result Discussion

	6 Conclusion
	6.1 Objectives
	6.2 Conclusions
	6.3 System Limitations and Future Work
	Bibliography

	Bibliography
	Appendix A

	A Sample Smart Contract Code

