
Refining High-Level Specifications of Decentralized Finance
Protocols to EVM bytecode using the K framework

Tiago Luı́s Sardinha Bernardo Cabral Barbosa

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. João Fernando Peixoto Ferreira
Prof. Alexandra Sofia Ferreira Mendes

Examination Committee

Chairperson: Prof. Luı́s Manuel Antunes Veiga
Supervisor: Prof. João Fernando Peixoto Ferreira

Member of the Committee: Prof. Pedro Miguel dos Santos Alves Madeira Adão

November 2021

Acknowledgments

I want to show appreciation to those who accompanied me during this journey to become the person

I am today. The fiercest battles are not fought alone. Special thanks to my mom, dad, brother and sister.

With regards to this thesis special thanks to Professor João Ferreira and Connoisseur of the fine arts of

Formal Verification Everett Hildenbrandt. 3 σ gmi

Abstract

Blockchains enable a democratic, open, and scalable digital economy based on decentralized distributed

consensus without a third-party trusted authority. They can be developed with a distributed execution

environment, called virtual machines, which enables executing arbitrary programs, called Smart Con-

tracts. On Ethereum, the Ethereum Virtual Machine is the global virtual machine whose state is stored

and agreed upon by all network participants. In recent years, the amount of Smart Contracts deployed

on Ethereum has rapidly increased. The composability that the Ethereum Virtual Machine offers has led

to an emerging ecosystem of financial applications and protocols, termed Decentralized Finance (DeFi).

Because these protocols secure vast amounts of capital, bugs or unintended behavior frequently leads

to catastrophic financial losses for users. Consequently, formal verification methods for these protocols

have been a recent focus of research. Among those methods, the K Framework is one of the most

sophisticated and capable frameworks for defining and verifying programs. It allows defining arbitrary

executable specifications of protocols as well as directly executing their bytecode with the KEVM imple-

mentation. In this dissertation, we aim to improve the security of these protocols. To achieve this we

focus on MakerDAO, a pioneer protocol in DeFi, as well as its high-level K specification. We introduce

new documentation for this protocol and we extend the high-level specification with a new liquidations

module and a non-trivial system invariant. Finally, we develop and demonstrate refinement methods

that enable refinement proofs which connect an high-level protocol’s specification with the protocol’s

bytecode implementation.

Keywords

Blockchain, Ethereum, Smart Contracts, Formal Verification, Decentralized Finance

iii

Resumo

Blockchains possibilitam uma economia democrática, aberta, e escalável baseada em mecanismos de

consenso distribuı́dos descentralizados sem a necessidade de confiar em terceiros. Estas podem ser

desenvolvidas com máquinas virtuais que permitem a execução de programas arbitrários, chamados de

Smart Contracts. Em Ethereum, a Ethereum Virtual Machine é a máquina virtual global cujo estado é

guardado e concordado por todos os participantes da rede. Recentemente, a quantidade de Smart Con-

tracts implementados em Ethereum e a sua complexidade aumentou rapidamente. A interoperabilidade

entre eles que a EVM oferece levou ao emergir de um ecossistema de aplicações e protocolos finan-

ceiros, chamado de Finanças Descentralizadas. Considerando que estes protocolos asseguram vastas

quantidades de capital, erros ou comportamento não intencional frequentemente leva a perdas finan-

ceiras catastróficas para os seus utilizadores. Consequentemente, métodos de verificação formal para

estes protocolos têm sido alvo de estudo recentemente. A K Framework é uma das mais sofisticadas e

capazes frameworks para definir e verificar linguagens. Esta permite definir especificações executáveis

arbitrarias de protocolos tal como executar diretamente o seu bytecode com a implementação da EVM

em K. Nesta dissertação o objetivo é melhorar a segurança destes protocolos. Para o atingir intro-

duzimos nova documentação para a MakerDAO, um protocolo pioneiro em DeFi, tal como para a sua

especificação abstrata em K. Adicionalmente, estendemos a especificação abstrata com um novo mod-

ulo e uma invariante do sistema não trivial. Finalmente, desenvolvemos e demonstramos métodos de

refinação que permitem provas de refinamento que conectam especificações abstratas de protocolos

com a sua implementação em bytecode.

Palavras Chave

Blockchain, Ethereum, Smart Contracts, Verificação Formal, Finanças Descentralizadas

v

Contents

1 Introduction 2

1.1 Motivation . 3

1.2 Objectives . 3

1.3 Contributions . 4

1.4 Thesis Outline . 4

2 Background 6

2.1 Blockchain . 7

2.2 Smart Contracts . 7

2.3 Ethereum . 7

2.4 Decentralized Finance . 8

2.5 Formal Verification . 8

2.5.1 Formal Verification and Smart Contracts . 9

3 K Framework 11

3.1 Introduction . 12

3.2 Reachability Logic . 12

3.2.1 Proving with Reachability logic . 13

3.3 KEVM . 14

4 MakerDAO 16

4.1 Intent . 17

4.1.1 Motivation . 17

4.1.2 Goal . 17

4.2 Mechanisms . 17

4.2.1 Characterization of actors . 18

4.2.2 Collateralized Debt Position . 18

4.2.3 Liquidations . 20

4.2.4 DAI Savings Rate - DSR . 21

4.2.5 System Stabilizer and Rates . 21

vii

4.2.6 Oracles . 22

4.2.7 Governance . 23

4.2.8 Emergency Shutdown . 23

4.3 Implementation . 24

5 MakerDAO K specifications 27

5.1 High-level model . 28

5.1.1 Types and Basic Operations . 31

5.1.2 The Maker Configuration . 36

5.1.3 State Transition Functions . 39

5.1.3.A Transactions . 41

5.1.3.B Authorization . 42

5.1.3.C Function Calls . 42

5.1.3.D Modifiers . 43

5.1.3.E Exception Handling . 44

5.1.3.F Events . 45

5.1.3.G Time steps . 45

5.1.3.H Contract Semantics . 46

5.1.4 Model verification . 49

5.2 Low-level model . 53

5.2.1 Model Verification . 53

6 High-level Specification Extension 56

6.1 Liquidations 2.0 . 57

6.1.1 System Upgrades . 57

6.1.2 Liquidations 2.0 High-level K Specifications . 57

6.2 Fundamental Equation of DAI . 59

7 Refinement Proofs 61

7.1 Motivation . 62

7.2 Related Work . 63

7.3 Refinement Methods . 63

7.3.1 Execution Refinement . 65

7.3.1.A Model Configuration . 65

7.3.1.B Data Structures . 66

7.3.1.C Specification Transition Functions . 66

7.3.2 State Refinement . 69

7.3.2.A Abstract Storage . 70

viii

7.3.2.B Storage Reads . 72

7.3.2.C Storage Writes . 74

7.3.2.D Storage Equivalence . 75

8 Analysis 77

8.1 Liquidations 2.0 . 78

8.2 Fundamental DAI Equation . 78

8.3 Abstract Storage . 78

9 Conclusions 82

9.1 Contributions . 83

9.2 Future Work . 83

A Most prominent DeFi hacks of 2020 91

B Overview of Pickle Finance exploit 93

C KEVM configuration 95

D MakerDAO Actors and their Goals, Obligations, Punishments, Incentives, Required Knowl-
edge, Risk and Interaction with the MakerDAO Protocol 101

E MakerDAO Smart Contracts Implementation Diagram 105

F Related Work Taxonomy 107

ix

x

List of Figures

3.1 K Framework Fundamentals. [1] . 13

3.2 Sound and relatively complete proof system of Reachability Logic [2]. 14

A.1 Most prominent DeFi hacks of 2020. 92

B.1 Overview of Pickle Finance exploit, 19.7 million dollars where stolen. [3] 94

E.1 Smart contracts implementation diagram. [4] . 106

F.1 Taxonomy of Frameworks and Tools on Formal Verification of Smart Contracts. 108

xi

xii

List of Tables

D.1 Subsets of Actors and their required knowledge. 102

D.2 Actors and their goals, obligations and punishments. 103

D.3 Actors and their benefits and incentives, their risks and risk assessment, and interactions

with the MakerDAO protocol. 104

xiii

xiv

Listings

5.1 Address syntactic definition . 31

5.2 Fixed Point Integers syntactic definition . 31

5.3 Syntax and Semantic definitions to translate Fixed Point Integers back to Integers 31

5.4 Syntactic and Semantic definitions of different Integer precision types 32

5.5 Conversion between different precision types . 33

5.6 Solidity Vat Data Structure . 33

5.7 Example syntax of a record definition . 34

5.8 Example access of record attributes . 35

5.9 Semantics of accessing record attributes . 35

5.10 Record manipulation example . 35

5.11 Syntactic definition of Contracts . 35

5.12 Syntactic definition of the Vat Contract . 36

5.13 Vat Contract K configuration . 36

5.14 MCD system configuration . 37

5.15 Execution framework configuration . 38

5.16 High-level properties configuration . 38

5.17 Test randomizer configuration . 39

5.18 Syntactic definition that allows the interoperability of both models 40

5.19 System step definition . 40

5.20 Syntactic definition of special permission steps . 40

5.21 MCD transaction definition . 41

5.22 Authorization step definition . 42

5.23 Execution framework function call definition . 42

5.24 Function modifiers definition . 43

5.25 Execution exceptions and state rollback definition . 44

5.26 Event recording definition . 45

5.27 Time representation definition . 45

xv

5.28 Syntactic definition of Vat function calls . 46

5.29 Vat Constructor function in K . 46

5.30 Modifier definition in Solidity . 47

5.31 Modifier usage in K . 48

5.32 Example Hevm test . 50

5.33 Property verifier definition in K . 51

5.34 Property violation checker definition . 52

5.35 Example defition of the debtConstantAfterThaw property 52

5.36 EVM bytecode insertion in K syntax . 53

5.37 Example ACT property specification . 53

6.1 Circuit breaker modifier definition . 58

6.2 Additional data conversion definition . 59

6.3 Extended measured system events . 60

6.4 Fundamental DAI equation definition . 60

7.1 Execution framework extension . 65

7.2 Address translation between models definition . 66

7.3 Transaction decomposition syntactic definition . 67

7.4 Example of function decomposition . 67

7.5 EVM argument types conversion definition . 67

7.6 Translate full transaction between models definition . 68

7.7 Translate function call by user between models definition 68

7.8 Transaction initation and translation definition . 69

7.9 Storage abstraction definition in EVM . 71

7.10 Example Vat abstract storage . 71

7.11 Abstract storage load definition override in EVM . 72

7.12 Lookup on abstract storage definition . 72

7.13 Example Vat contract storage lookup definition . 72

7.14 Abstract storage write definition override in EVM . 74

7.15 Write on abstract storage definition . 74

7.16 Example Vat contract storage write definition . 74

7.17 Example Vat reachability claim rewrite . 75

8.1 Abstract flip configuration . 78

8.2 Concrete flip reads on abstract storage . 79

8.3 Example of using abstract storage in EVM and proving a reachability claim 80

xvi

Acronyms

DeFi Decentralized Finance

DAO Decentralized Autonomous Organization

CDP Collateralized Debt Position

EVM Ethereum Virtual Machine

FSM Finite State Machine

KEVM Ethereum Virtual Machine specification on the K framework

MCD Multi-collateral DAI

SAI Single-collateral DAI

1

1
Introduction

Contents

1.1 Motivation . 3

1.2 Objectives . 3

1.3 Contributions . 4

1.4 Thesis Outline . 4

2

1.1 Motivation

Blockchain technology possesses a wide range of attributes that make it a very appealing and efficient

solution to a vast variety of issues and obstacles. Arbitrary programs that exist within a blockchain

network, called Smart Contracts, inherit some of the Blockchain characteristics such as immutability,

unforgeability and irrepudiability which are desired in many applications. Despite the demand for these

attributes, they may also be considered weaknesses in some scenarios. An existing flaw in an arbitrary

program that exists within a blockchain network, a Smart Contract, may be found and consequently

exploited, or unexpected non-reversible errors in user-defined logic may occur.

As interest rises in Blockchain technology and the possibilities it entails grow [5] activity in decen-

tralized ledgers increases its pace [6]. The web of Smart Contracts and their interactions present in

Ethereum keeps increasing in complexity as programmers create protocols, groups of bundled Smart

Contracts that serve a certain purpose [7, 8]. These protocols serve many different purposes, whether

it be lending and borrowing of capital, decentralized exchanges, or insurance, etc. Due to the nature of

composability of these Smart Contracts and their critical purposes, hard to spot errors in these contracts

lead to catastrophic scenarios, which previously and currently results in immense capital lost. These

exploits happen on a regular basis and the figure in appendix A discloses the list of major Decentralized

Finance (DeFi) 2020 hacks. Previous errors and exploits such as the famous Decentralized Autonomous

Organization (DAO) reentrancy attack [9] are decreasing, and current hacks are now non-intuitive, deeply

semantic related, and require high-level of expertise as demonstrated in appendix B.

Despite the fact that some improvements on these protocols can be made after deployment, by re-

deploying certain Smart Contracts and configuring the remainder to use the most recent ones, there

might still be persistent errors, and whilst these errors are not fixed the likelihood of an exploit by an

ill intentioned actor increases over time. To develop trust in Smart Contracts even before they are

deployed, traditional verification methods such as symbolic analysis approaches, including fuzzing [10],

static analysis, and regular code testing coverage are regularly studied and implemented. However

these do not offer complete reliability on semantic properties and are bound by computation power and

execution time, frequently generating false negatives.

By virtue of this escalation in sophistication in Smart Contract protocol architecture and academic

advances in mechanism design [11] it has become necessary to verify that constructed abstract high-

level models of these systems adhere to their concrete implementation and vice-versa.

1.2 Objectives

Taking into account the issues presented and the insufficiency of investigation on Formal Verification

applied to this domain, we focus our research on high-level modeling of Smart Contract systems, as

3

well as refining these with their concrete bytecode implementation. In particular we aim to introduce

detailed approaches on how to properly break down Smart Contract protocols, modeling these systems

with regards to different layers of abstraction, and refinement techniques between abstraction layers for

use in the K framework.

Our work was conducted in collaboration with the MakerDAO Protocol [12] and Runtime Verifica-

tion [1]. The MakerDAO protocol was the first DeFi protocol to exist, regularly on the forefront of inno-

vation in the Decentralized Finance field. Runtime Verification is a leader company in formal verification

of Smart Contracts known for plentiful large collaborations using K, a semantic framework for design,

implementation and formal reasoning.

1.3 Contributions

Our main contributions are summarized as follows:

• We improved MakerDAO’s documentation, focusing on refinement proofs, in Chapter 4.

• We introduced documentation for MakerDAO’s high-level K framework specification, in Chapter 5.

• We expanded MakerDAO’s high-level K specification to include the new Liquidations 2.0 module 1,

in chapter 6.

• We formalized a non trivial high-level property over the high-level MakerDAO specification 2, in

Chapter 6.

• We developed the software necessary for refinement proofs between the high-level MakerDAO

specification, modeled in K, and the EVM bytecode implementation, 3 4 5, im Chapter 7.

• We created a blueprint for refinement proofs between high-level specifications of system’s models

and their implementation that can be generalized for different semantics, in Chapter 7.

1.4 Thesis Outline

The current chapter clarifies this thesis’ motivation, its goals, and summarizes the rest of the document.

Chapter 2 acquaints the reader with the concept of Blockchain, Smart Contracts, Ethereum and Decen-

tralized Finance. It also introduces Formal Verification and presents a review of the literature on Formal

1https://github.com/makerdao/mkr-mcd-spec/pull/250
2https://github.com/makerdao/mkr-mcd-spec/pull/250
3https://github.com/makerdao/mkr-mcd-spec/tree/mcd-to-kevm-transactions
4https://github.com/makerdao/mkr-mcd-spec/tree/simple-refinement
5https://github.com/makerdao/mkr-mcd-spec/tree/step-subsorts

4

Verification of Smart Contracts. Chapter 3 explains the K framework, its underlying rewriting logic, and

the Ethereum Virtual Machine implementation in K. Chapter 4 presents MakerDAO and introduces a

structured documentation of the protocol. Chapter 5 explains the high-level MakerDAO specification

in K, creating documentation, and detailing implementation. Chapter 6 describes the extension of the

high-level MakerDAO K framework specification with the Liquidations 2.0 module and a non-trivial sys-

tem property. Chapter 7 introduces refinement techniques that show the connection between a high and

low level model of a system’s specifications on the K framework, using MakerDAO’s protocol specifica-

tions as example. Chapter 8 provides analysis on the extensions of the high-level model, and exemplifies

the refinement techniques between the two different implemented K models of the MakerDAO protocol.

Chapter 9 summarizes the work presented and contemplates future work.

5

2
Background

Contents

2.1 Blockchain . 7

2.2 Smart Contracts . 7

2.3 Ethereum . 7

2.4 Decentralized Finance . 8

2.5 Formal Verification . 8

6

2.1 Blockchain

In the area of distributed systems byzantine fault tolerant protocols for decentralized consensus have

always been a topic of high interest. Consequently, the first distributed decentralized consensus mecha-

nism achieved, known as blockchain, was introduced by Satoshi Nakamoto in his Bitcoin whitepaper [13]

that has subsequently become remarkably influential. Due to its versatility, blockchain related papers

are increasing [14] and new employments of this technology emerge regularly.

Blockchain’s qualities as an immutable, decentralized, and efficient settlement layer allow for the

consensual and deterministic execution of arbitrary programs, referred as Smart Contracts, on which

all of the network participants agree, without the need for a centralized source of trust, on the network

states before, during and after their execution.

2.2 Smart Contracts

The concept of Smart Contracts was invented by Nick Szabo, in 1996, [15] long before blockchain

existed, and it was described as “a set of promises, specified in digital form, including protocols within

which the parties perform on these promises”.

As a mean to fully extract benefit from blockchain’s characteristics, they are conceptualized and

deployed with a program execution layer. This abstract program execution layer abides by consensus

rules. Therefore, programs meant for execution are written and interact following the blockchain rules,

on which different programming languages, depending on the goal, may be implemented.

Furthermore, Bitcoin’s non-turing complete Bitcoin Script [13] was the first Smart Contract language

to exist. It has limited expressiveness and computational power, which is considered a choice in its

implementation. Subsequent work from Vitalik Buterin and Gavin Wood proposed the use of a general-

purpose Turing complete Smart Contract language [16], which materialized as Solidity, Ethereum’s [17]

Smart Contract language in 2015.

2.3 Ethereum

As we deepen our knowledge, a common and intuitive question arises due to Turing’s halting problem:

if the Smart Contract language is turing complete how can it be guaranteed its execution termination in

the blockchain?

Many blockchains such as Ethereum use gas as a way of providing metaphorical fuel to the execution

of Smart Contracts, thus computation is always bounded by the gas limit associated with its execution.

Moreover, another crucial question in this subject is: how can it be guaranteed that the execution of

7

Smart Contracts and its results affecting the blockchain state are what was intended and designed by

Smart Contract programmers?

This question leads to the area of study known as Formal Verification.

2.4 Decentralized Finance

Ethereum’s Smart Contract execution layer, termed Ethereum Virtual Machine or Ethereum Virtual Ma-

chine (EVM), not only maintains the state and code of all the Smart Contracts deployed on Ethereum,

but also supports interoperability between them. This composability between Smart Contracts results in

extremely sophisticated protocols with complex non-trivial behaviors. A vast majority of these protocols

are financial applications, and so the combination of them is called Decentralized Finance. Currently,

new financial primitives made possible by the composability of blockchain’s virtual machines are heavily

researched, and although these represent a breakthrough in financial tooling they become increasingly

troublesome to verify and prove correct.

2.5 Formal Verification

Before comprehending formal verification it is necessary to first understand that a programming lan-

guage is divided into its syntactic and semantic properties. While syntactic properties relate to how the

program is written, the semantic ones are associated with the program’s behavior, in essence what the

program means and what is does. One theorem that is significant in this subject is Rice’s theorem [18]

given that it proved that for all non-trivial semantic properties of a turing-complete program there is no

automated algorithm that can decide if such a program has the specified semantic properties. In other

words, it is impossible to be fully certain about what a program will do without executing it. As a way of

circumventing this theoretical restriction on semantics, programmers realized that if a program is struc-

tured as a formal mathematical model then the semantic properties of the program can be reasoned

with, using suitable mathematical structures and logic. This process, known as formal verification, is

the only method to inspect, understand and guarantee the correct and intended behavior of a program.

This means that one can structure the property that wants proven as a mathematical specification in

the desired logic system and soundingly prove that a program has or has not such property. Moreover,

mathematical models and property specifications can be designed using different types of abstractions,

logics, axioms and formalisms which are regularly the focus of study of programmers interested in formal

verification.

As mentioned previously, the immutability nature of blockchain makes Smart Contract properties and

execution correctness crucial for further development and application of this technology.

8

2.5.1 Formal Verification and Smart Contracts

There are many previous and on-going studies on smart contract verification, branching in method-

ology, mathematical structures, logic and implementation efforts. This sub-section describes different

approaches in the literature, accentuating trends and challenges, characterizing their association with

the proposed framework presented in this paper.

For clarity purposes this sub-section will answer the following research questions (RQ’s):

RQ1: What are the formal methodologies that are utilized in the verification of semantic properties in

smart contracts?

RQ2: How are specifications or program properties formalized?

RQ3: What types of specifications do these formal methodologies aim to verify?

RQ4: What is the quality of the solutions?

In pursuance of full exploration of papers published related to smart contract formal specification and

verification, we queried multiple publication databases using combinations of keywords such as ”smart

contracts, formal verification, semantic properties, modeling”. This databases were Google Scholar,

Web of Knowledge and DBLP. In addition Github repositories such as Smart Contract Languages and

Ethereum Formal Verification also contain organized lists of material, some of which is redundant but

nevertheless there is a lot of information that hasn’t yet been formalized on publications and is relevant

as well. We also resorted to other research and survey papers [19–22] for an expeditious overview on

the literature.

RQ1: What are the formal methodologies that are utilized in the verification of semantic prop-

erties in smart contracts? The answer can be found in the figure that represents a taxonomy of such

tooling in F.

RQ2: How are specifications or program properties formalized? Distinct formalization of sys-

tems and properties based on the level of abstraction fit into one of two categories [19]: contract-level

formalization that verifies high-level behaviour of the contract, typically modeled using a variant of Tem-

poral Logic, and program-level formalization, which is more detailed and dependent on source-code and

blockchain platform.

RQ3: What types of specifications do these formal methodologies aim to verify? There is a

clear separation between frameworks who allow the user to specify their own smart contract properties

[23–30], and the ones who only verify pre-established properties [31]. These predefined properties

commonly are if the contract is greedy, the amount of currency out is less than the amount in, reentrancy,

integer under/overflows and contract suicide, if the contract can self-destruct.

RQ4: How well do they solve these issues? The quality of the frameworks can be evaluated by

their correctness, broadness and real world applicability. Correctness may be measured by the amount

of false negatives or positives that a tool produces when verifying smart contracts. Obviously since

9

https://github.com/s-tikhomirov/smart-contract-languages
https://github.com/leonardoalt/ethereum_formal_verification_overview

theorem proving cannot produce neither, tools that use this method [26–28, 32] are at an advantage.

Some model checking and symbolic execution techniques [25] prune the search space using specific

blockchain constraints, which allows them to validate properties with higher precision than others. The

correctness of the tool is also limited by the quality of the property specification and so tools that use

straightforward property formalization [24, 25, 27, 30, 33] have an edge. As mentioned in RQ3 some

frameworks are less broad than others on the formalization of properties, but some of these tools are

blockchain agnostic [24,26,29] while others are blockchain specific [23,25,27,28,30,31,33,34] limiting

their use. As far as real world applicability goes, it is fair to say that most of these tools have not seen

adoption by the community of smart contract programmers since there still aren’t plenty formally verified

smart contracts with the exception of Ethereum’s 2.0 Deposit Contract [35].

10

3
K Framework

Contents

3.1 Introduction . 12

3.2 Reachability Logic . 12

3.3 KEVM . 14

11

3.1 Introduction

Framework languages, used to define and reason about programming languages, must be: user-friendly,

so language designers can use these frameworks to create and experiment; mathematically rigorous,

so that the language definitions can be used to support formal reasoning about programs; modular, such

that they can be extended with new features without needing to revisit existing features; expressive, in

order to easily define programming languages with any number of complex features. The K framework

[36] was created with this design in mind and reflects these characteristics.

K’s goal is to distinguish specification of analysis tools from specification for particular programming

languages or other models, which makes specifying both analysis tools and programming languages

easier [36]. Furthermore, in order to trust the results, the generic tools instantiated for any given lan-

guage must be correct-by-construction, and should also be efficient, so that there is no need to imple-

ment language-specific tools, which in turn reduces human effort and time-consumption.

As shown in Figure 3.1 [36] the K framework is a semantics first approach, meaning it emphasizes

the development and maintenance of a clear and complete formal semantics for the target language and

platform, rather than the implementation of tool-level details. Moreover, K has many features that help

language definition become simpler, including configuration abstraction and local rewriting, which are

techniques that allow each rule to only include the necessary execution state parts for that transition/rule.

Besides the benefits already stated, the K framework defines its tools parametrically over the input

language, reducing development and maintenance cost [29]. As a result, parsers, interpreters, de-

buggers, and verifiers are generated directly from the formal definition, syntax and semantics of the

language, which is independent from the implementation details of these tools and auditable by the

interested developer community [2].

Once a language is defined, K can read and execute programs in that language both on concrete and

symbolic inputs, producing an interpreter and a symbolic execution engine, respectively. These can be

regarded as formally derived reference implementations of the language generated automatically from

a rigorous semantics and usable for testing this semantics [29].

3.2 Reachability Logic

K’s foundation, Reachability Logic, is a logic for symbolically reasoning about possibly infinite transition

systems [37]. This logic is equipped with a sound and nearly complete inference system which allows

efficient implementations.

12

Figure 3.1: K Framework Fundamentals. [1]

3.2.1 Proving with Reachability logic

Reachability logic is extremely advantageous as it can be used to prove statements, known as reach-

ability claims, syntactically structured as φ ⇒ ψ, where φ and ψ are formulae in static logic. The static

logic applied is a subset of Matching Logic [38].

Matching logic formulae are called patterns and may be viewed as state configurations, using sym-

bolic variables for unknown values. Restrictions to these patterns might also be applied implying that it

is not characterized by the set of possible configurations that match it, but by the subset of configura-

tions in this set that also respect said restrictions. Code may also be represented as algebraic data in

Matching Logic which causes the patterns φ and ψ to regularly incorporate it. Figure 3.2 presents the

formal axioms that comprise the reachability logic system [2].

In the figure 3.2A is the initial trusted execution semantics of the programming language, the axioms.

The C on `C indicates that the circularities C are reachability claims conjectured but not yet proved. The

Circularity proof rule allows us to conjecture any to-be-proven reachability claim as a circularity, while

Transitivity allows us to use the circularities as axioms (only after we have made progress on proving

them) [2,37].

13

Figure 3.2: Sound and relatively complete proof system of Reachability Logic [2].

Semantically, reachability claims of the form φ ⇒ ψ imply that every configuration in the set of con-

figurations described by pattern φ will, eventually, when taking steps described by an arbitrary language

semantics, either reach a configuration in the set of configurations described by pattern ψ or not termi-

nate.

Additionally, to better understand this topic, one can easily compare it to the well-known Hoare Logic

triples {Pre}Code{Post} by rewriting the triple as a reachability claim of the form Code∧Pre⇒ ε∧Post,

where ε is a configuration that represents the empty program. Code, Pre, and Post are minimal state

patterns that respectively contain Code, Pre, and Post, but specific program variables are substituted

with their logical variable counterparts given that Hoare Logic does not differentiate program and logical

variables. Moreover, since reachability claims do not trade-off expressiveness they can be used to prove

intricate properties, such as Hoare style functional correctness claims.

In fact, another benefit in K is that it is trivial to verify computation complexity in the same way as

verifying functional correctness by simply adding a K cell as part of the configuration, which serves as a

data structure that increments every time a state transition rule it is tracking is applied.

3.3 KEVM

As explained previously, by virtue of the K Framework’s structure, one can provide a formal definition

that can be mechanically transformed to a reference interpreter for the EVM and benefit from a range of

analysis tools.

In 2017, [2] a formally rigorous executable instance of the EVM semantics in the K framework was

14

implemented, covering all of the EVM instructions. Known as Ethereum Virtual Machine specification

on the K framework (KEVM), this implementation is open-source and can be found on the respective

repository 1.

This instance of the EVM semantics within K models transaction execution and network state using

the configuration. Additionally, it details changes in transaction execution and network evolution using

transition rules. To accomplish this, the state of EVM is divided into two main elements: the state of a

currently executing transaction, Smart Contract execution; and the current state of the blockchain, detail-

ing account information. To implement this on K, KEVM’s configuration consists of the aforementioned

two parts, we subsequently outline:

• Execution state Each execution of EVM has an associated account, a program counter, the cur-

rent program, a word-stack, volatile local memory and gas counter. For each opcode in EVM

execution the KEVM provides a pipeline of commands over the current opcode with each updating

an appropriate piece of the state configuration.

• Network state The blockchain, which is a log of state updates, consisting of groupings of transac-

tions called blocks, corresponds to a set of account states.

It is important to note that the K implementation is complete to hold full state information which can

be found on appendix C and the remainder of the implementation in the public repository.

The implementation briefly described above is used to create a program verifier capable of demon-

strating the complete verification of any example EVM program against a specification. Both the func-

tional correctness of the EVM program as well as the gas complexity are among the properties present

in the specification. Consequently, the KEVM is demonstrated as an EVM software analysis tools rigor-

ously derived from and backed by a formal, complete, and human-readable EVM semantics.

A more detailed look into how the K formalization EVM is achieved can be found on the official

paper [2].

1https://github.com/kframework/evm-semantics

15

4
MakerDAO

Contents

4.1 Intent . 17

4.2 Mechanisms . 17

4.3 Implementation . 24

16

MakerDAO is a Decentralized Finance protocol. The project started in 2015 [39] when Rune Chris-

tiansen developed the MakerDAO Protocol on the Ethereum blockchain after first describing the system

on a reddit post [40]. Christiansen’s vision was for a decentralized financial system to be managed by

its users. This would allow borrowers greater control over their assets, even in difficult economic con-

ditions such as periods with high inflation. Firstly, the protocol started as a DAO created by Rune and

a few other developers. Then, later, it was developed under the auspices of the Maker Foundation, and

recently has come full circle by returning to a self-governed and self-operating DAO. The MakerDAO is

made up of every type of entities, whether they be single individuals or groups. These entities are from

all parts of the globe and own MakerDAO’s governance token MKR, which gives them the right to vote

for all kind of changes in the network.

In fact, three acknowledged versions of the protocol have been deployed on the Ethereum blockchain.

Firstly, there was ProtoSai, then Single-collateral DAI (SAI), which was a single-collateral DAI. Both these

versions have been deprecated. The last and current version is known as Multi-collateral DAI (MCD).

As mentioned previously, this thesis aims to refine high-level systems models with their Smart Con-

tract bytecode implementation counterparts, as a result we decomposed the MakerDAO protocol into its

goal, the mechanisms that can achieve it, as well as Smart Contract implementation.

4.1 Intent

4.1.1 Motivation

MakerDAO is a decentralized organization that aims to bring stability to the extremely volatile cryptocur-

rency market.

4.1.2 Goal

The MakerDAO Protocol is a complex system which at a very high-level serves a specific primary pur-

pose: create an asset, known as DAI, that has a particular economic value in terms of some reference

asset, the United States Dollar. This is the definition of a pegged currency. DAI is also a stablecoin,

since it is pegged to a fiat currency considered stable.

4.2 Mechanisms

DAI’s stability is achieved through a dynamic system of collateralized debt positions, autonomous feed-

back mechanisms and incentives for external actors.

The MakerDAO Protocol employs a two-token system, DAI and MKR.

17

• DAI a collateral-backed stablecoin that offers price stability.

• MKR the governance token that is used by stakeholders to maintain, upgrade or stop the system

as well as manage DAI. MKR token holders are the decision-makers of the MakerDAO Protocol,

supported by the larger public community and various other external parties.

4.2.1 Characterization of actors

An extended table which elaborates on the characteristics, risks, benefits and interactions of each kind of

actor that interacts with the system which should be consulted while reading the following mechanisms

descriptions is represented in appendix D.

Any actor with the required knowledge can freely participate in any role, and they can occupy multiple

roles at once.

4.2.2 Collateralized Debt Position

DAI is created by locking assets with economic value inside the protocol. Then, the system issues DAI as

debt against such assets creating what is designated as a collateralized debt position, a Collateralized

Debt Position (CDP). The owner cannot retrieve these assets without paying back the DAI they owe.

Each asset has its own associated system parameters. In fact, multiple representations of the same

asset, each representing different parameters, can be found within the system, which is what defines

Ilks. Ilks are the combination of asset and parameter types that determine collateral types. Each ilk is

assigned a unique label.

Actor relationship to CDPs The system recognizes separation between accounts to which bal-

ances and positions are assigned. As a result an external actor such as a person or institution is

able to control multiple accounts simultaneously.

Actor ownership of CDPs Given that the key terminology and basic concepts for this topic were

presented previously, we now have the ability to explain the basic balances, and their position

structures. Balances are made of collateral and DAI. Each user has a balance in each ilk. Every

user also has a DAI balance. A position, formally termed vault or urn, requires an ilk and an

account and refers to the amount of ink, the quantity of collateral locked, and the issued DAI,

which is represented as debt. To complete our elementary descriptions, we add vice. Vice is debt,

DAI, issued by the system that is not backed up by a CDP.

Fundamental invariant of the system Given that we’ve explained some dynamic properties now

we can define the first non-trivial system invariant, and the most relevant one. It states that the

sum of all issued DAI for every account must equal vice plus the sum of every debt for every type of

18

ilk and account. This is known as “The Fundamental Equation of DAI”, represented in equation

4.1.

∑
u∈U

daiu = vice+
∑

i∈I,u∈U

dbtiu (4.1)

Action dynamics of CDPs In this topic, it’s important to begin by introducing the protocol’s dy-

namics starting with the rules for balances and positions. The ilk balances can be changed by

transferring assets in and out of the protocol, transfers between accounts within the protocol, or

by adding or removing collateral from a position. DAI, on the other hand, cannot meaningfully flow

into or out of the system since it is defined by it. For every ilk the system must have knowledge of

some market price for that asset in terms of DAI. In fact, there’s a per-ilk time-varying parameter

that expresses the minimum ratio of collateral market value to debt known as the collateralization

ratio. Moreover, a position is said to be safe if, at a certain time point, the debt of an ilk, for a given

account, times the collateralization ratio is equal or less than the ink amount times the market price

of the collateral.

Action Permissions These actions are restricted to certain external actors in the system in the

following way: the change of DAI balances over time must respect the conservation relationship

defined earlier in “The Fundamental Equation of DAI”.

Furthermore, the debt of positions can be manipulated only according to certain rules that are

described as follows. The ilk balances gemiu, the sum of all vault’s ink of a certain ilk i and

account u, can be changed by transferring assets in and out of the protocol, transfers between

accounts within the protocol, or by adding or removing collateral from a position. This can be

represented with a temporal change identity that holds for any ilk i between any time t2 and t1:

∑
i,u

(gemiu(t2)− gemiu(t1)) = inflowi(t2, t1)− outflowi(t2, t1) +
∑
u

(inkiu(t2)− inkiu(t1)) (4.2)

In the equation 4.2, inflowi(t2, t1) indicates the total amount ilk i put into the system via inbound

asset transfers in the time interval [t1, t2], and outflowi(t2, t1) represents the total amount of ilk i

removed from the system via outbound asset transfers in the time interval [t1, t2].

Additionally, the balance of a collateralized debt position may only decrease if the action is per-

formed by the owning account or by an account authorized by such, which we’ll denominate as

proprietors of said position. Increasing a position’s debt is allowed by the proprietors and accounts

with administrative privilege, which, generally, are other components of the system or governance

19

entities. Decreasing the debt of a position is allowed by its proprietors and must respect the “Fun-

damental equation of DAI”. Removing collateral from a position requires that the position remains

safe and can be done by its proprietors or privileged accounts. Adding collateral needs to re-

spect 4.2 and be done by its proprietors. More general actions that simultaneously modify both

the collateral and debt of a position are permitted, as long as the resulting position is safe, and all

permissioning rules regarding decreasing collateral and increasing debt are obeyed.

Time dynamics of CDP’s In this subject, the concept of a stability fee is crucial. This describes

the time evolution of a position’s debt. As stability fees accumulate, the additional debt is balanced

by assigning an equivalent amount of DAI to one or more accounts in a special set of accounts,

which belong to the system, in order to respect the “Fundamental Equation of DAI”.

Stability fee Incentives Stability fees can serve at least three different economic functions within

the system: motivate the creation or destruction of DAI as needed to close the gap between

the market price and target price, offsetting the danger posed by risky or volatile assets held as

collateral, and providing financial capital necessary for the operation of the system (as well as profit

to its stakeholders if income exceeds costs).

Assumption that legitimizes incentives The core assumption justifying this is that entities that

draw DAI against collateral derive economic benefit from doing so, and are thus willing to pay the

system for the service of being able to borrow in a price-stable asset. The debt of a position can

of course change discontinuously whenever new DAI is generated from it or repayed; in between

these discontinuous jumps, it evolves according to a differential equation for the fees.

Governance dynamics over CDP’s Governance can authorize new modules against the system.

This allows governance the possibility of stealing collateral or minting unbacked DAI. Should the

crypto economic protections that make these types of governance attacks prohibitively expensive

fail, the system may be vulnerable and open for bad actors to drain collateral. Governance is also

responsible for fine-tuning the risk parameters associated with each type of collateral that is to be

included in the system.

Oracle dynamics over CDPs An oracle module is deployed for each collateral type, feeding it

the price data for a corresponding collateral type to the system. Should these price feeds fail or

provide byzantine values, it would become possible for unbacked DAI to be minted.

4.2.3 Liquidations

Regarding the MakerDAO protocol, a liquidation is the automatic transfer of collateral from an insuffi-

ciently collateralized CDP, along with responsibility for the CDP’s debt, to the protocol.

20

Auction type Liquidations 2.0 uses Dutch auctions which feature instant settlement when a bid is

made.

Auction mechanism An auction is started promptly to sell the transferred collateral for DAI in

an attempt to cancel out the debt now assigned to the protocol. It does so according to a price

calculated from the initial price and the time elapsed since the auction began. It is important

for bidders to take into account that while the price almost always decreases with time, there

are infrequent occasions on which the price of an active auction may increase, and this could

potentially result in collateral being purchased at a higher price than intended. Auctions can reach

a defunct state that requires resetting for a reason: too much time has elapsed since the auction

started and therefore the ratio of the current price to the initial price has fallen below a certain level.

Auction incentives Currently, liquidations use Dutch auctions, which benefit from the lack of a

lock-up period. As a result, not only much of the price volatility risk for auction participants is

mitigated, but also enables faster capital recycling.

Governance dynamics over Liquidations Governance is responsible for fine-tuning the auction

parameters associated with each type of collateral that is part of the system.

Oracle dynamics over Liquidations The system relies upon a set of trusted oracles to provide

price data. Should these price feeds fail or provide byzantine values, coordination problems could

arise, including tragedy of the commons or miner collusion. This issue could also lead to nega-

tive outcomes such as inappropriate liquidations or the prevention of liquidations that should be

possible.

4.2.4 DAI Savings Rate - DSR

The DAI savings rate allows users to deposit DAI and earn savings on it.

Goal The purpose of the DSR is to offer another incentive for holding DAI.

Dynamics of DSR DSR dynamics are quite simple, allowing users to deposit their DAI, earn a

certain rate on their principal, and then withdraw the total DAI.

Governance dynamics over DAI Savings Rate The DSR rate is set by MakerDAO Governance,

and will typically be less than the base stability fee to remain sustainable.

4.2.5 System Stabilizer and Rates

When the MakerDAO Protocol receives either system debt (from the DAI Savings Rate) or system sur-

plus (from the CDP stability fee accumulation) it will deviate from system equilibrium. In order to deter-

21

mine whether the system has a net surplus, both the income and debt in the system must be reconciled.

Goal The job of the system stabilizer is to bring it back to system equilibrium. As mentioned

previously, there are two types of system unbalance, excess debt or surplus of cash-flow.

Incentives The system stabilizer module creates incentives for Auction Keepers (external actors)

to step in and drive the system back to a safe state (system balance) by participating in both debt

and surplus auctions and, in return, earn profits.

Debt Auction

Goal A debt auction attempts to raise an amount of DAI equivalent to the amount of debt as

fast as possible while minimizing the amount of MKR inflation.

Mechanism Debt Auctions are triggered when the system has DAI debt that has passed a

specific debt limit. It is a reverse auction, where keepers bid on how little MKR they are willing

to accept for the fixed DAI amount they have to pay at auction settlement.

Governance dynamics over Debt Governance voters determine the system debt limit and

various auction parameters.

Surplus Auction

Goal A surplus auction attempts to sell a fixed amount of the surplus DAI in the system

for as much MKR as possible. This surplus DAI will come from the Stability Fees that are

accumulated from Vaults.

Mechanism Surplus auctions are triggered when the system has a surplus of DAI above

the amount decided during the vote. In this auction type, bidders compete with increasing

amounts of MKR. Once the auction has ended, the DAI auctioned off is sent to the winning

bidder.

Autonomous Feedback Mechanism The system burns the MKR received from the winning

bid, which, theoretically should increase perceived market value of MKR.

Governance dynamics over Surplus Governance voters will specify the amount of surplus

allowed in the system and various auction parameters.

4.2.6 Oracles

Goal Broadcast on-chain price updates off-chain.

Mechanism A group of authorized whitelisted price feed contracts periodically deliver a new list

of prices which is received by the system. Then, it proceeds to compute a median and uses the

result to update the perceived value of a collateral.

22

Governance Dynamics over Oracles Enables the addition and removal of whitelisted price feed

addresses and also fine-tunes median calculation parameters.

4.2.7 Governance

Goal Governance facilitates voting by MKR holders, proposal execution, and voting security of the

Maker Protocol.

Mechanism Changes to the system are discussed in forums and community chats which are then

formalized into proposals. They are precise and leave no space for ambiguity since alterations to

a smart contract system are done programmatically and made public to everyone, including non

MKR holders. Voters will then proceed to lock their voting tokens, MKR, signaling their decision,

giving their votes some weight in the system. If the proposal passes, then there will be a period until

the system can be modified, after which the changes to the system can be made permissionessly.

Incentives Modifications of the MakerDAO protocol should lead to improvements which over time

will benefit MKR holders.

4.2.8 Emergency Shutdown

Shutdown is a process that can be used as a last resort to directly enforce the Target Price to holders of

DAI and CDPs, and protect the Maker Protocol against attacks on its infrastructure.

Goal Allows DAI holders to directly redeem DAI for collateral after an Emergency Shutdown pro-

cessing period.

Mechanisms Initiating an Emergency Shutdown is decentralized and controlled by MKR holders,

who can trigger it instantly by depositing a threshold amount of MKR into the Emergency Shutdown

Module, or via a governance vote. CDP owners can retrieve excess collateral from their vaults

immediately after initialization of Emergency Shutdown. DAI holders can, after a waiting period,

swap their DAI for a relative share of all types of collateral in the system. DAI holders always

receive the same relative amount of collateral from the system, whether they are among the first

or last people to process their claims.

Incentives This mechanism exists to be activated in the case of serious emergencies, such as

long-term market irrationality, hacks, or security breaches.

Governance Dynamics over Emergency Shutdown Governance can determine the period for

which DAI holders must wait until they can swap their DAI for collaterals.

23

An extended formalization, parametrization, and research that pursues the fine-tuning of such parame-

ters that comprise the protocol can be found on MakerDAO’s github [41], documentation [4], and gover-

nance forum [42].

4.3 Implementation

The concrete implementation of these mechanisms is divided into different modules of Smart Contract

collections that together comprise the MakerDAO protocol. In the implementation, actors are considered

to be EOA’s or contracts exterior to the system’s contracts. Each of the modules and contracts is ordered

in a way, and contains a brief description, that ties them to the mechanisms section, described above.

DAI Module The origin of DAI was designed to represent any token that the core system considers

equal in value to its internal debt unit.

• DAI Contract The DAI token contract.

MKR Module The MakerDAO governance token module.

• MKR Contract The MKR token contract.

Core Module The Core Module is crucial to the system as it contains the entire state of the Maker

Protocol and controls the central mechanisms of the system while it is in the expected normal state

of operation.

• Vat Contract The Vat is the core vault engine of the system. It stores CDPs and tracks all

the associated DAI and collateral balances. It also defines the rules by which Vaults and bal-

ances can be manipulated. The rules defined in the Vat are immutable (unless the system is

redeployed), so in some sense, the rules in the Vat can be viewed as the constitution of the

system.

• Spot Contract The Spot liaison between the oracles and the core contracts. It functions as an

interface contract and stores the price source and collateralization ratio for each ilk.

Collateral Module The collateral module is deployed for every new ilk (collateral type) added to Vat.

It contains all the adapters and auction contracts for one specific collateral type.

• Join Module Each join contract is created specifically to allow the given token type to be join’ed

to the vat. Hence, various versions of the Join contract have slightly different logic to account

for the differences between token implementations.

– GemJoin Contract Allows standard ERC20 tokens to be deposited for use with the system.

– ETHJoin Contract Allows native Ether to be used with the system. It is unused as wrapped

Ether (WETH) which is preferred for security reasons.

24

– DaiJoin Contract Allows users to withdraw their DAI from the system into a standard

ERC20 token.

• Liquidation Module In the context of the MakerDAO protocol, a liquidation is the automatic

transfer of collateral from an insufficiently collateralized Vault, along with the transfer of that

Vault’s debt to the protocol.

– Clip Contract Handles the Dutch auctions for the liquidated collateral. A different contract

is deployed for each collateral type.

– Dog Contract In the dog contract, an auction is started promptly to sell the transferred

collateral for DAI in an attempt to cancel out the debt now assigned to the protocol. Unlike

other collateral module contracts, there is a single, global Dog.

– Abacus Contract Calculates the prices for the bids of a collateral in a Dutch Auction.

Rates Module A fundamental feature of the MakerDAO system is to accumulate stability fees on

Vault debt balances, as well as interest on DSR deposits.

• Pot Contract The Pot is the core of the DAI Savings Rate. It allows users to deposit DAI and

earn interest.

• Jug Contract The primary function of the Jug smart contract is to accumulate stability fees for

a particular collateral type whenever its drip() method is called.

System Stabilizer Module It’s purpose is to correct the system when the value of the collateral

backing DAI drops below the liquidation level (determined by governance) when the stability of the

system is at risk.

• Vow Contract The Vow represents the overall Maker Protocol’s balance (both system surplus

and system debt). The purpose of the vow is to cover deficits via debt auctions and discharge

surpluses via surplus auctions.

• Flopper Contract The Flopper (Debt Auction) is used to get rid of the Vow’s debt by auctioning

off MKR for a fixed amount of internal system Dai. Firstly, when flop auctions are kicked off,

bidders compete with decreasing bids of MKR. After the auction settlement, the Flopper sends

received internal Dai to the Vow in order to cancel out its debt. Lastly, the Flopper mints the

MKR for the winning bidder.

• Flapper Contract The Flapper (Surplus Auction) is used to get rid of the Vow’s surplus by

auctioning off a fixed amount of internal Dai for MKR. When Flap auctions are kicked off, bid-

ders compete with increasing amounts of MKR. After auction settlement, the Flapper burns the

winning MKR bid and sends internal DAI to the winning bidder.

Oracle Module An oracle module is deployed for each collateral type, feeding it the price data for a

25

corresponding asset to the Vat. The Spotter will then proceed to read from the OSM and will act as

the liaison between the oracles and the Vat.

• Oracle Security Contract Ensures that new price values propagated from the Oracles are not

taken up by the system until a specified delay has passed.

• Median Contract The median provides MakerDAO’s trusted reference price. In other words,

it works by maintaining a whitelist of price feed contracts which are authorized to post price

updates. Every time a new list of prices is received, the median of these is computed and used

to update the stored value.

Governance Module The Governance Module contains the contracts that facilitate MKR voting,

proposal execution, and voting security of the MakerDAO Protocol.

• Spell Contract A Spell is a contract that performs one or more atomic actions one time only.

• Pause Contract The Pause is a delegatecall-based proxy with an enforced delay. This allows

authorized users to schedule function calls that can only be executed once a predetermined

waiting period has elapsed.

• Chief Contract The Chief provides a method to elect a governing address (the “hat”) via an

approval voting system. Typically the hat is a spell, but it could in principle be any Ethereum

address.

Emergency Shutdown Module Emergency Shutdown stops and gracefully settles the MakerDAO

Protocol while ensuring that all users, both Dai holders and Vault users, receive the net value of

assets they are entitled to.

• End Contract The End’s purpose is to coordinate Shutdown. In short, Shutdown closes down

the system and reimburses DAI holders.

• ESM Contract The Emergency Shutdown Module is a contract with the ability to call End.cage()

to trigger the Shutdown of the MakerDAO Protocol.

Proxy Module The system also features a proxy module that enables easier interactions with the

Maker protocol. However, given it only contains contract interfaces, proxies, and aliases to functions

necessary for both DSR and Vault management and Maker governance it is unimportant in the

description of the system. In particular, this code is outside the control of MakerDAO governance

and alternate versions can be used permissionlessly.

A graph representing the MakerDAO Protocol Smart Contract Modules System, which was described

beforehand, can be found in the appendix E.

26

5
MakerDAO K specifications

Contents

5.1 High-level model . 28

5.2 Low-level model . 53

27

The developed and refined models of the MakerDAO system that we document and improve on this

document are formalized in the K framework, which, as explained previously, not only provides a formal

semantics engine for analyzing and proving properties of programs but also allows developers to define

models that are mathematically formal, machine-executable, and human-readable at different levels of

abstraction.

The system specifications are formal, defining contracts as configuration patterns, and specifying

system behaviors as transitions over patterns, modeled as K’s rewrite rules. Specifications are exe-

cutable in the K framework following the defined rules, which due to the benefits provided by the K

framework’s design immediately produce an execution engine for the protocol. When modeling systems,

executable specifications enable running simulations on different levels of abstractions, which help pro-

totyping and debugging different designs during the development process and after their deployment as

well.

5.1 High-level model

This model abstracts the protocol’s implementation on the Ethereum Virtual Machine and details the

high-level mechanisms that comprise the MakerDAO system.

This high-level model may be used as a canonical specification for model-based test generation

and for validating other implementations. Additionally, this method seamlessly facilitates the gradual

improvement of the protocol’s formal design without needing to alter the concrete Smart Contract imple-

mentation.

Finally, the executable high-level specification of the MakerDAO system in K can be immediately

subjected to K’s suite of reachability, model checking and theorem proving tools, promoting and aiding

the verification of different formal analysis.

In order to further comprehend this topic, below, we give additional information regarding the abstrac-

tion level of this model. Alternatively to previous sections, where we explained how the system works,

we now characterize where this high-level formalization of the MakerDAO system stands concerning ab-

straction with regards to the reference Smart Contract implementation, clearly delineating the similarities

and differences between them.

Similarities:

• Notion of accounts, external actors, Externally Owned Accounts in the EVM

• Non-concurrency of state manipulation

• Model is composed by files that use the same naming conventions as in the Smart Contract im-

plementation with similar, but abstract, state manipulation

28

• Naming of data structures

Differences:

• No bytecode manipulation

• Typing of variables is independent of implementation

• The configuration of the model only references the MakerDAO system and not the complete EVM

state

• Notion of time not provided by the EVM

Summary:

This high-level model of the system could describe the MakerDAO system on another blockchain

that presents similar characteristics to the Ethereum Virtual Machine such as non-concurrency and an

account-based computational model. However, without the finer-grained characteristics of Ethereum or

the EVM, such as typing and consensus mechanisms, which is faithful to the high-level design of the

system that is already built on top of these assumptions. In conclusion, it is a high-level representation

of the Solidity contracts that comprise the MakerDAO protocol.

We must emphasize that the chosen level of this system specification in the spectrum of abstraction

not only allows for testing the model with regards to high-level properties, such as Finite State Machines,

but also enables using some of the concrete tests that are part of the implementation, further validating

the design decision.

Given that the reader now comprehends various crucial aspects of this high-level model, we can

proceed to summarize the components of the K MakerDAO model specification which is open-source

and can be found at https://github.com/makerdao/mkr-mcd-spec.

The system’s semantics is divided into sub-modules, each with it’s own goal that tie together the

mechanism design and implementation of the system at the Solidity contracts level. All files that make

up the model, with an exception for the tests, are Markdown files, which allow for inline explanations

of the K code within them. In fact, we omit the .md at the end of filenames to avoid cluttering. It is

also important to note that this high-level model does not specify and take into account the governance

mechanisms nor their implementation. The files are explained below:

• Utility Files These files are different from the others since they manage what is external to the

system’s design itself and model accounts, variable types, time, and the general execution seman-

tics.

– kmcd-driver common functionality in all modules.

– kmcd union of all sub-modules.

29

– kmcd-props statement of properties that we would like to hold for the model.

– kmcd-prelude random testing harness.

– fixed-int fixed point integers in K.

• Accounting System Collateralized Debt Positions, Rates, DAI Savings Rate

– vat tracks deposited collateral, open CDPs, and borrowed DAI.

– pot interest accumulation for saved DAI.

– jug stability fee collection.

• Collateral DAI, Join

– dai DAI ERC20 token standard.

– spot price feed for collateral.

– gem abstract implementation of collateral.

– join plug collateral into MCD system.

• Liquidations

– dog Start liquidations.

– clip Liquidation auction houses.

– abacus Dutch auction price calculator.

– cat deprecated liquidations.

– flip deprecated liquidations.

• Auction Houses System Stabilizer

– vow manage and trigger liquidations.

– flap surplus auctions (Vat DAI for sale, bid increasing Gem MKR).

– flop deficit auctions (Gem MKR for sale, lot decreasing Vat DAI).

• Global Settlement - Emergency Shutdown

– end close out all CDPs and auctions, attempt to re-distribute gems fairly according to internal

accounting.

30

5.1.1 Types and Basic Operations

The high-level model of the system, as described in the documentation, employes several different data

types that need to be formalized into the system’s K specification. In K, the Backus-Naur form [43] is

used to model types and data structures definitions, specifically by adding non-terminals and suitable

production rules. The majority of these type syntax declarations employ a combination of the already

built-in K types, booleans as Bool, strings as String, integers as Int, maps as Map, and lists as List.

As an illustration we show the basic data type Address defined in the kmcd-driver.md file as:

� �
1 syntax Address ::= Int | String� �

Listing 5.1: Address syntactic definition

There are plenty more other intricate data types that are defined by new type declarations and defini-

tions that do not just include the built-in K data types. Whenever one of these new types is implemented

it is introduced in the specification a new non-terminal syntax type. Such an example is fixed point inte-

gers. Representing fixed point numbers as a tuple of their integer value and their one-point allows the

definition of more advanced data types on top, their arithmetic, and projections back into integers which

are further defined in the document fixed-int.md as:

� �
1 syntax FInt ::= "(" FInt ")" [bracket]

2 | FInt (value: Int , one: Int) [klabel(FInt), symbol]� �
Listing 5.2: Fixed Point Integers syntactic definition

� �
1 syntax Int ::= baseFInt (FInt) [function]

2 | decimalFInt (FInt) [function]

3 // --

4 rule baseFInt(FI) => value(FI) /Int one(FI)

5 rule decimalFInt(FI) => value(FI) %Int one(FI)� �
Listing 5.3: Syntax and Semantic definitions to translate Fixed Point Integers back to Integers

The MakerDAO protocol defines different precision types for numeric values within the system. Con-

cretely, these types are named: Wad, numbers with precision to the 18th digit, used for basic quantities;

Ray, defined as numbers with precison to the 27th digit, used for precise quantities; Rad, numbers with

precison to the 45th digit, which are the result of multiplying Wad with Ray ; Bln, numbers with precision

31

to the 9th digit, used for conversions between Wad and Ray. These types are defined as abstractions

over the fixed point integers, described above in the kmcd-data.md file:

� �
1 syntax Value ::= Wad | Ray | Rad | Int

2 // --------------------------------------

3

4 syntax Int ::= "BLN" | "WAD" | "RAY" | "RAD"

5 // --

6 rule BLN => 1000000000 [macro]

7 rule WAD => 1000000000000000000 [macro]

8 rule RAY => 1000000000000000000000000000 [macro]

9 rule RAD => 1000 [macro]

10

11 syntax Bln = FInt

12 syntax Bln ::= Bln (Int)

13 // --------------------------

14 rule Bln(I) => FInt(I *Int BLN, BLN) [macro]

15

16 syntax Wad = FInt

17 syntax Wad ::= wad (Int)

18 // --------------------------

19 rule wad(0) => 0FInt(WAD) [macro]

20 rule wad(1) => 1FInt(WAD) [macro]

21 rule wad(I) => FInt(I *Int WAD, WAD) [macro, owise]

22

23 syntax Ray = FInt

24 syntax Ray ::= ray (Int)

25 // --------------------------

26 rule ray(0) => 0FInt(RAY) [macro]

27 rule ray(1) => 1FInt(RAY) [macro]

28 rule ray(I) => FInt(I *Int RAY, RAY) [macro, owise]

29

30 syntax Rad = FInt

31 syntax Rad ::= rad (Int)

32 // --------------------------

33 rule rad(0) => 0FInt(RAD) [macro]

34 rule rad(1) => 1FInt(RAD) [macro]

35 rule rad(I) => FInt(I *Int RAD, RAD) [macro, owise]

32

� �
Listing 5.4: Syntactic and Semantic definitions of different Integer precision types

There are also rules that define diverse basic operations on data types that are useful when executing

or reasoning about the specification. Two concrete examples are type conversion rules between different

value precision types and arithmetic, defined in the kmcd-data.md file below:

� �
1 syntax Wad ::= Rad2Wad (Rad) [function]

2 // ---

3 rule Rad2Wad(FInt(R, RAD)) => FInt(R /Int RAY, WAD)

4

5 syntax Ray ::= Wad2Ray (Wad) [function]

6 // ---

7 rule Wad2Ray(FInt(W, WAD)) => FInt(W *Int BLN, RAY)

8

9 syntax Rad ::= Wad2Rad (Wad) [function]

10 | Ray2Rad (Ray) [function]

11 // ---

12 rule Wad2Rad(FInt(W, WAD)) => FInt(W *Int RAY, RAD)

13 rule Ray2Rad(FInt(R, RAY)) => FInt(R *Int WAD, RAD)� �
Listing 5.5: Conversion between different precision types

� �
1 syntax Rad ::= Wad "*Rate" Ray [function]

2 // ---

3 rule FInt(W, WAD) *Rate FInt(R, RAY) => FInt(W *Int R, RAD)

4

5 syntax Wad ::= Rad "/Rate" Ray [function]

6 // ---

7 rule FInt(,) /Rate ray(0) => wad(0)

8 rule FInt(R1, RAD) /Rate FInt(R2, RAY) => FInt(R1 /Int R2, WAD) [owise]� �
Besides the aforementioned types, the MakerDAO system also defines intricate data structures that

maintain the registers of the system current state. In Solidity, the keyword struct followed by the desired

variables implements these data structures, available on the file vat.sol as such:

� �
33

1 pragma solidity >=0.5.12;

2

3 contract Vat {

4

5 /*

6 ...

7 */

8

9 //

10 // --- Data ---

11 struct Ilk {

12 uint256 Art; // Total Normalised Debt [wad]

13 uint256 rate; // Accumulated Rates [ray]

14 uint256 spot; // Price with Safety Margin [ray]

15 uint256 line; // Debt Ceiling [rad]

16 uint256 dust; // Urn Debt Floor [rad]

17 }

18 struct Urn {

19 uint256 ink; // Locked Collateral [wad]

20 uint256 art; // Normalised Debt [wad]

21 }

22

23 /*

24 ...

25 */

26 }� �
Listing 5.6: Solidity Vat Data Structure

The high-level specification counterpart, designated in the K specification as records, consists of a

syntax production that embody the same registers, implemented on the file vat.md as such::

� �
1 syntax VatIlk ::= Ilk (Art: Wad , rate: Ray , spot: Ray , line: Rad , dust:

Rad) [klabel(#VatIlk), symbol]

2

3 syntax VatUrn ::= Urn (ink: Wad , art: Wad) [klabel(#VatUrn), symbol]� �
Listing 5.7: Example syntax of a record definition

34

In order to access any of the attributes inside these records, the K framework has built-in operations

that automatically give semantic meaning to the also automatically created syntactic definitions:

� �
1 syntax Wad ::= ink (VatUrn)

2 | art (VatUrn)

3 // -----------------------------� �
Listing 5.8: Example access of record attributes

Without going into detail on how the K backend works, one can abstractly consider the semantic

rules to be implemented as:

� �
1 rule ink (Urn (ink: INK, art: ART)) => INK

2 rule art (Urn (ink: INK, art: ART)) => ART� �
Listing 5.9: Semantics of accessing record attributes

Finally, after these declarations the specification also defines syntactic and semantic rules to calcu-

late values that are to be used by the system based on the former records. Some examples are the urn

balances, urn debts, and urn collaterals, which are calculated on the vat.md file by these definitions:

� �
1 syntax Rad ::= urnBalance (VatIlk , VatUrn) [function, functional]

2 | urnDebt (VatIlk , VatUrn) [function, functional]

3 | urnCollateral (VatIlk , VatUrn) [function, functional]

4 // --

5 rule urnBalance (ILK, URN) => urnCollateral(ILK, URN) -Rad urnDebt(ILK, URN)

6 rule urnDebt (ILK, URN) => art(URN) *Rate rate(ILK)

7 rule urnCollateral(ILK, URN) => ink(URN) *Rate spot(ILK)� �
Listing 5.10: Record manipulation example

Furthermore, each MCDContract, the high-level specification of each solidity contract, is an Address

as well under the assumption that there is a unique live instance of each one at a time, so we complement

the Address definition with:

� �
1 syntax Address ::= MCDContract� �

Listing 5.11: Syntactic definition of Contracts

35

An example of a MCDContract can be found in the file vat.md which defines the vat:

� �
1 syntax MCDContract ::= VatContract

2 syntax VatContract ::= "Vat"� �
Listing 5.12: Syntactic definition of the Vat Contract

5.1.2 The Maker Configuration

The MakerDAO system state implementation on the Ethereum blockchain is scattered across the many

Solidity contracts that together constitute the MakerDAO protocol. In this K specification, each file that

models a Solidity contract also contains its own state through its configuration. In each of the file’s

configuration, each piece of state is modeled by the proper K cell, as demonstrated using vat.md as an

example:

� �
1 configuration

2 <vat>

3 <vat-wards> .Set </vat-wards>

4 // mapping (address (address => uint)) Address |-> Set

5 <vat-can> .Map </vat-can>

6 // mapping (bytes32 => Ilk) String |-> VatIlk

7 <vat-ilks> .Map </vat-ilks>

8 // mapping (bytes32 => (address => Urn)) CDPID |-> VatUrn

9 <vat-urns> .Map </vat-urns>

10 // mapping (bytes32 => (address => uint256)) CDPID |-> Wad

11 <vat-gem> .Map </vat-gem>

12 // mapping (address => uint256) Address |-> Rad

13 <vat-dai> .Map </vat-dai>

14 // mapping (address => uint256) Address |-> Rad

15 <vat-sin> .Map </vat-sin>

16 // Total Dai Issued

17 <vat-debt> rad(0) </vat-debt>

18 // Total Unbacked Dai

19 <vat-vice> rad(0) </vat-vice>

20 // Total Debt Ceiling

21 <vat-Line> rad(0) </vat-Line>

22 // Access Flag

36

23 <vat-live> true </vat-live>

24 </vat>� �
Listing 5.13: Vat Contract K configuration

When representing types in K it is common to designate the empty type using the dot construct,

which is represented in the previous configuration as .Map or .Set. For built-in types, like Map and Set,

this production is also built-in however for user-defined types it is also required that the user manually

defines this syntax.

In the K specification of the system, these initially independent configurations are conjoined in the

kmcd.md file in order to allow each of the contracts to access the state of the other contracts, as shown

below.

� �
1 configuration

2 <kmcd>

3 <kmcd-driver/>

4 <kmcd-state>

5 <abaci/>

6 <cat/>

7 <clip-state/>

8 <dai/>

9 <dog-state/>

10 <end-state/>

11 <flap-state/>

12 <flips/>

13 <flop-state/>

14 <gems/>

15 <join-state/>

16 <jug/>

17 <pot/>

18 <spot/>

19 <vat/>

20 <vow/>

21 </kmcd-state>

22 </kmcd>� �
Listing 5.14: MCD system configuration

37

This method also allows the state to be explicitly altered by the state transition functions, explained

in the next section, which would not be possible otherwise.

The following configuration, encompassed in the configuration above by inclusion of the cell 〈kmcd−

driver/〉 from the file kmcd-driver.md, defines the execution frame state when executing a transaction

on the system, making it possible to revert to the initial state before trying to apply the transaction, in

case the transaction reverts. This configuration also stores the necessary information to provide to the

system who initiated the attempt to change the system’s state. Finally, the state transitions are logged

making it easier to debug and reason about the system.

� �
1 configuration

2 <kmcd-driver>

3 <return-value> .K </return-value>

4 <msg-sender> 0:Address </msg-sender>

5 <this> 0:Address </this>

6 <current-time> 0:Int </current-time>

7 <mcd-call-stack> .List </mcd-call-stack>

8 <pre-state> .K </pre-state>

9 <events> .List </events>

10 <tx-log> .Transaction </tx-log>

11 <frame-events> .List </frame-events>

12 <kevm/>

13 </kmcd-driver>� �
Listing 5.15: Execution framework configuration

It is crucial to notice that the special cell 〈k〉, that is responsible for the operations that are meant to

be executed, is included in the KEVM configuration with the 〈kevm/〉 cell. The KEVM has already been

introduced in this document and further details about its configuration may be found in the open-source

repository https://github.com/kframework/evm-semantics.

The preceding configurations are further grouped in the kmcd-props.md file which adds the state

needed for property checking and testing, described in the Model Validation section.

� �
1 configuration

2 <kmcd-properties>

3 <kmcd/>

4 <processed-events> .List </processed-events>

5 <properties> #violationFSMs </properties>

38

6 </kmcd-properties>� �
Listing 5.16: High-level properties configuration

Finally, the last configuration declaration that congregates all the previously mentioned configurations

and encompasses all of the state fragments of the model is found in the kmcd-prelude.md file. This

configuration adds the possibility of creating snapshots of the system to aid debugging and the state

necessary to randomize concrete testing of the system.

� �
1 configuration

2 <kmcd-random>

3 <kmcd-properties/>

4 <kmcd-snapshots> .List </kmcd-snapshots>

5 <kmcd-gen>

6 <random> String2Bytes($RANDOMSEED:String) </random>

7 <used-random> .Bytes </used-random>

8 <generator-next> 0 </generator-next>

9 <generator-current> 0 </generator-current>

10 <generator-remainder> .GenStep </generator-remainder>

11 <generators>

12 <generator multiplicity="*" type="Map">

13 <generator-id> 0 </generator-id>

14 <generator-steps> .GenStep </generator-steps>

15 </generator>

16 </generators>

17 </kmcd-gen>

18 </kmcd-random>� �
Listing 5.17: Test randomizer configuration

5.1.3 State Transition Functions

The MakerDAO system specification defines progress in the system’s state with state transition func-

tions. In Solidity, these are implemented as functions that can be called by an Externally Owned Ac-

count to trigger changes within the system. In this section, we describe how the high-level model of the

system handles state changes, which are modeled as an abstraction over the execution framework of

the Ethereum Virtual Machine and Solidity’s semantics.

39

In the high-level model of the system, these state changes are implemented as K rules that change

certain parts of the K system configuration, known as transactions, which are also initiated by a user.

As discussed earlier, one of the advantages of the K framework is the possibility of abstracting parts of

the configuration that are left unchanged when writing a rule. In complex models, such as this one, if

for every rule every K cell had to be mentioned, it would become unfeasible to read and understand the

code. Consequently, whenever parts of the configuration are omitted in a rule, it should be clear that they

remain unmodified. It is essential to note that transitions within the MakerDAO system are deterministic,

implying that a resulting state of the system is only determined by the initial state and applied transitions.

An EthereumSimulation, also extended in the EVM semantics formalization in K, has its definition ex-

tended here as an MCDSteps, which is the type that defines every state transition rule to the MakerDAO

system. It is fundamental to note that the EthereumSimulation is introduced here in conjuntion with the

KEVM to allow the refinement proofs that are presented in chapter 7.

� �
1 syntax EthereumSimulation ::= MCDSteps

2 // --------------------------------------� �
Listing 5.18: Syntactic definition that allows the interoperability of both models

Additionally, since an execution of the MakerDAO system consists of an arbitrary number of transac-

tions, MCDSteps is either the empty step or the set of one or more steps. If we reach the empty step,

“.MCDSteps”, then the exit-code is updated to 0, indicating a successful execution. When there are one

or more steps the execution is unfolded using the ∼〉 operator, indicating a sequence of commands in K,

specified in K as stacking a computation on top of a continuation.

� �
1 syntax MCDSteps ::= ".MCDSteps" | MCDStep MCDSteps

2 // --

3 rule <k> .MCDSteps => </k> <exit-code> => 0 </exit-code>

4 rule <k> MCD:MCDStep MCDS:MCDSteps => MCD ~> MCDS ... </k>� �
Listing 5.19: System step definition

An AdminStep defines state transactions of the complete K high-level model of the system, including

initiating transactions, snapshotting of the system, and testing. It is not to be confused with any kind of

system administrator of the MakerDAO system.

� �
1 syntax MCDStep ::= AdminStep

40

� �
Listing 5.20: Syntactic definition of special permission steps

5.1.3.A Transactions

A change to the MakerDAO system’s state is initiated by a top-level call by a given user, defined by the

terminal symbol transact, followed by the user’s identifier in the system and the function call desired by

the user. The current state is then saved, with the push, drop, pop state commands used for state roll-

back, and are given semantics once the entire configuration is present. Then, finally, then the transaction

executed. If the execution succeeds then the state is successfully updated. However, if it reverts, the

state is rolled back to the previous configuration, and in both cases the transaction is logged.

� �
1 syntax AdminStep ::= "transact" Address MCDStep | "#end-transact"

2 // --

3 rule <k> transact ADDR:Address MCD:MCDStep => pushState ~> call MCD ~> #end-

transact ~> assert ~> dropState ... </k>

4 <this> => ADDR </this>

5 <msg-sender> => ADDR </msg-sender>

6 <mcd-call-stack> => .List </mcd-call-stack>

7 <pre-state> => .K </pre-state>

8 <tx-log> => Transaction(... acct: ADDR, call: MCD, events: .List,

txException: false) </tx-log>

9 <frame-events> => .List </frame-events>

10 <return-value> => .K </return-value>

11

12 rule <k> #end-transact => </k>

13 <events> ... (.List => ListItem(TXLOG)) </events>

14 <tx-log> TXLOG => .Transaction </tx-log>

15

16 rule <k> exception MCDSTEP ~> #end-transact => #end-transact ~> exception

MCDSTEP ... </k>

17 <tx-log> Transaction(... txException: => true) </tx-log>� �
Listing 5.21: MCD transaction definition

41

5.1.3.B Authorization

Authorization happens at the call boundaries, containing both transactions and calls between MCD

contracts. Each contract must have defined the authorized function, which returns the set of accounts

that are authorized to change the state in regards to a specific account details in the system. By default it

is assumed that the special ADMIN account is authorized on all other contracts (for running simulations).

The special account ANYONE is not authorized to do anything, so it represents any user in the system.

� �
1 syntax Set ::= wards (MCDContract) [function, functional]

2 // ---

3 rule wards() => .Set [owise]

4

5 syntax Address ::= "ADMIN" | "ANYONE"

6 // -------------------------------------

7

8 syntax Bool ::= isAuthorized (Address , MCDContract) [function]

9 // ---

10 rule isAuthorized(ADDR , MCDCONTRACT) => ADDR ==K ADMIN orBool ADDR in

wards(MCDCONTRACT)� �
Listing 5.22: Authorization step definition

5.1.3.C Function Calls

Internal function calls implement the call stack to create call-frames and return values to their caller. On

exception, the entire current call is discarded to trigger state roll-back (we assume no error handling on

internal exception).

� �
1 syntax CallFrame ::= frame(prevSender: Address, prevEvents: List,

continuation: K)

2 // --

3

4 syntax AdminStep ::= "call" MCDStep

5 | "makecall" MCDStep

6 // ---------------------------------

7 rule <k> call MCD:MCDStep => checkauth MCD ~> checklock MCD ~> makecall MCD ~

> checkunlock MCD ... </k>

42

8

9 rule <k> makecall MCD:MCDStep ~> CONT => MCD </k>

10 <msg-sender> MSGSENDER => THIS </msg-sender>

11 <this> THIS => contract(MCD) </this>

12 <mcd-call-stack> .List => ListItem(frame(MSGSENDER, EVENTS, CONT)) ... <

/mcd-call-stack>

13 <frame-events> EVENTS => ListItem(LogNote(MSGSENDER, MCD)) </frame-

events>

14

15 rule <k> . => CONT </k>

16 <msg-sender> MSGSENDER => PREVSENDER </msg-sender>

17 <this> THIS => MSGSENDER </this>

18 <mcd-call-stack> ListItem(frame(PREVSENDER, PREVEVENTS, CONT)) => .List

... </mcd-call-stack>

19 <tx-log> Transaction(... events: L => L EVENTS) </tx-log>

20 <frame-events> EVENTS => PREVEVENTS </frame-events>� �
Listing 5.23: Execution framework function call definition

5.1.3.D Modifiers

Modifiers in Solidity are used to modify the behavior of a function. At the moment, these are typically

used in the codebase to check prerequisite conditions when acessing functions in order to prevent

unauthorized access and re-entrant calls. In the high-level model of the system, AuthStep is used as the

modifier to check if a caller belongs to the contract’s wards while LockStep is used as a non re-entrant

check.

� �
1 syntax AuthStep

2 syntax AdminStep ::= ModifierStep

3 syntax MCDStep ::= LockStep | AuthStep

4 // --------------------------------------

5

6 syntax WardStep ::= "rely" Address

7 | "deny" Address

8 // ----------------------------------

9

10 syntax ModifierStep ::= "checkauth" MCDStep

11 | "checklock" MCDStep

43

12 | "checkunlock" MCDStep

13 | "lock" MCDStep

14 | "unlock" MCDStep

15 // ---

16

17 syntax LockAuthStep

18 syntax LockStep ::= LockAuthStep

19 syntax AuthStep ::= LockAuthStep

20 // --------------------------------� �
Listing 5.24: Function modifiers definition

5.1.3.E Exception Handling

Whenever an exception occurs, the state must be rolled back. During the regular execution of a step,

this implies popping the mcd-call-stack and rolling back frame-events.

� �
1 syntax Event ::= Exception (Address , MCDStep) [klabel(LogException)]

2 // --

3

4 syntax AdminStep ::= "exception" MCDStep

5 // --

6 rule <k> MCDSTEP:MCDStep => exception MCDSTEP ... </k>

7 requires notBool isAdminStep(MCDSTEP) [owise]

8

9 rule <k> exception E ~> => exception E ~> CONT </k>

10 <msg-sender> MSGSENDER => PREVSENDER </msg-sender>

11 <this> THIS => MSGSENDER </this>

12 <mcd-call-stack> ListItem(frame(PREVSENDER, PREVEVENTS, CONT)) => .List

... </mcd-call-stack>

13 <tx-log> Transaction(... events: L => L EVENTS) </tx-log>

14 <frame-events> EVENTS => PREVEVENTS </frame-events>

15

16 rule <k> exception MCDSTEP ~> dropState => popState ... </k>

17 <mcd-call-stack> .List </mcd-call-stack>

18

19 rule <k> exception ~> (assert => .) ... </k>

20 rule <k> exception ~> (:ModifierStep => .) ... </k>

44

21 rule <k> exception ~> (makecall => .) ... </k>� �
Listing 5.25: Execution exceptions and state rollback definition

5.1.3.F Events

Most operations add entries to the log, which stores the address that made the call and the step that is

being logged.

� �
1 syntax Event ::= LogNote(Address, MCDStep) [klabel(LogNote), symbol]

2 // --

3 syntax CustomEvent

4 syntax Event ::= CustomEvent

5 // ----------------------------� �
Listing 5.26: Event recording definition

5.1.3.G Time steps

Some methods rely on a timestamp. The time representation within this high-level model of the system

is defined below.

� �
1 syntax Event ::= TimeStep (Int , Int) [klabel(LogTimeStep), symbol]

2 // --

3

4 syntax MCDStep ::= "TimeStep"

5 | "TimeStep" Int

6 // ---------------------------------

7 rule <k> TimeStep => TimeStep 1 ... </k>

8

9 rule <k> TimeStep N => assert ... </k>

10 <current-time> TIME => TIME +Int N </current-time>

11 <events> ... (.List => ListItem(TimeStep(N, TIME +Int N))) </events>

12 requires N >Int 0� �
Listing 5.27: Time representation definition

45

5.1.3.H Contract Semantics

In the last sections, we explained how the model’s execution works, clearly defining how the EVM’s

execution is abstracted. Alternatively, we will now explain how the Solidity semantics of the Smart

Contract implementations of the system are abstracted, using vat.md as an example of what is used

throughout the system’s model.

A function call is modeled as an MCDStep and identified by the contract name, VatContract and the

function, name and arguments, VatStep, to be called.

� �
1 syntax MCDStep ::= VatContract "." VatStep [klabel(vatStep)]

2 // --� �
Listing 5.28: Syntactic definition of Vat function calls

In the following example, we compare how we model the constructor of the vat contract in the K

specification against the Solidity implementation of the same function:

� �
1 pragma solidity >=0.5.12;

2

3 contract Vat {

4

5 /*

6 ...

7 */

8

9 // --- Init ---

10 constructor() public {

11 wards[msg.sender] = 1;

12 live = 1;

13 }

14

15 /*

16 ...

17 */

18 }� �
� �

46

1 syntax VatStep ::= "constructor"

2 // --------------------------------

3 rule <k> Vat . constructor => </k>

4 <msg-sender> MSGSENDER </msg-sender>

5 (<vat> </vat>

6 => <vat>

7 <vat-wards> SetItem(MSGSENDER) </vat-wards>

8 <vat-live> true </vat-live>

9 ...

10 </vat>

11)� �
Listing 5.29: Vat Constructor function in K

As we can observe, both implementation use the same function name and number of arguments. The

differences are the data types and the execution framework, where Solidity uses maps and integers, the

K model uses sets and booleans. Additionally, in Solidity, the Smart Contract implementation executes

over bytecode however the high-level model executes in the K semantics execution model described

before.

Another example of differences in implementation is the usage of modifiers in the high-level model

contrasting to the use of modifiers in Solidity.

� �
1 pragma solidity >=0.5.12;

2

3 contract Vat {

4 // --- Auth ---

5 mapping (address => uint) public wards;

6 function rely(address usr) external auth { require(live == 1, "Vat/not-live")

; wards[usr] = 1; }

7 function deny(address usr) external auth { require(live == 1, "Vat/not-live")

; wards[usr] = 0; }

8 modifier auth {

9 require(wards[msg.sender] == 1, "Vat/not-authorized");

10 ;

11 }

12

13 /*

14 ...

47

15 */

16 }� �
Listing 5.30: Modifier definition in Solidity

� �
1 syntax VatStep ::= VatAuthStep

2 syntax AuthStep ::= VatContract "." VatAuthStep [klabel(vatStep)]

3 // ---

4 rule [[wards(Vat) => WARDS]] <vat-wards> WARDS </vat-wards>

5

6 syntax VatAuthStep ::= WardStep

7 // -------------------------------

8 rule <k> Vat . rely ADDR => </k>

9 <vat-wards> ... (.Set => SetItem(ADDR)) </vat-wards>

10 <vat-live> true </vat-live>

11

12 rule <k> Vat . deny ADDR => </k>

13 <vat-wards> WARDS => WARDS -Set SetItem(ADDR) </vat-wards>

14 <vat-live> true </vat-live>� �
Listing 5.31: Modifier usage in K

Again, both implementations use the same function name and arguments, and both use different

data types and execution frameworks. In the K implementation, the rely and deny methods are modeled

as an AuthStep, which as shown earlier is the auth modifier equivalent for the high-level model.

In the Solidity implementation, there are also requires clauses in the function calls that revert the

transaction, rolling back the state of the system. An example is shown below from the jug.sol contract.

� �
1 pragma solidity >=0.5.12;

2

3 contract Jug {

4

5 /*

6 ...

7 */

8

9 function drip(bytes32 ilk) external returns (uint rate) {

48

10 require(now >= ilks[ilk].rho, "Jug/invalid-now");

11 (, uint prev) = vat.ilks(ilk);

12 rate = rmul(rpow(add(base, ilks[ilk].duty), now - ilks[ilk].rho, ONE),

prev);

13 vat.fold(ilk, vow, diff(rate, prev));

14 ilks[ilk].rho = now;

15 }

16 }� �
Concerning the high-level K specification, these are implemented with requires at the end of the

definition of each state transition rules. In the K framework, the boolean conditions that follow the

requires keyword restrict the possible states that could match and, therefore, apply the specified rule,

making it impossible to apply state changes with the restricted rule, much like a rollback with the require

keyword in Solidity. The counterexample to the one shown above is presented below:

� �
1 syntax JugStep ::= "drip" String

2 // --------------------------------

3 rule <k> Jug . drip ILK ID => call JUG VAT . fold ILK ID ADDRESS (((BASE +

Ray ILKDUTY) ˆRay (TIME -Int ILKRHO)) *Ray ILKRATE) -Ray ILKRATE ... </k>

4 <current-time> TIME </current-time>

5 <jug-vat> JUG VAT </jug-vat>

6 <vat-ilks> ... ILK ID |-> Ilk (... rate: ILKRATE) ... </vat-ilks>

7 <jug-ilks> ... ILK ID |-> Ilk (... duty: ILKDUTY, rho: ILKRHO => TIME)

... </jug-ilks>

8 <jug-vow> ADDRESS </jug-vow>

9 <jug-base> BASE </jug-base>

10 requires TIME >=Int ILKRHO� �
Finally, the semantics of the rest of the contracts are modeled in similar fashion, using the appropriate

data types and execution semantics of the high-level model aforementioned.

5.1.4 Model verification

In the previous section we made clear how the formalization of the high-level specification of the Maker

system is modeled in the K framework. We will now elaborate how this specification is tested and

verified.

The MakerDAO implementation in Solidity is complemented with unit tests that validate it. They are

49

implemented in solidity syntax with some extra non-traditional annotations that are not part of the regular

solidity semantics. These extra semantics are defined by the HEVM [44] “an implementation of the EVM

made specifically for symbolic execution, unit testing and debugging of Smart Contracts.”. They allow

extra operations that manually manipulate the EVM state for the purpose of testing, such as storing

debug variables or changing EVM’s time. One can easily use these functionalities simply by adding

an interface to their Solidity tests and then calling the methods, both using regular Solidity syntax. An

example of these tests from the file vat.t.sol is shown below:

� �
1 pragma solidity >=0.5.12;

2

3 interface Hevm {

4 function warp(uint256) external;

5 function store(address,bytes32,bytes32) external;

6 }

7

8 /*

9 ...

10 */

11

12 function setUp() public {

13 hevm = Hevm(0x7109709ECfa91a80626fF3989D68f67F5b1DD12D);

14 hevm.warp(604411200);

15

16 gov = new DSToken('GOV');

17 gov.mint(100 ether);

18 /*

19 ...

20 */

21 }� �
Listing 5.32: Example Hevm test

The MakerDAO high-level specification is verified using randomly generated concrete testing that

leverages the use of Finite State Machines at each step of execution to assure that certain properties

hold within the system. The code example illustrated above makes use of HEVM’s extended semantics,

which is used to automatically model all of the high-level concrete tests in Solidity, as shown in example

by the file MkrMcdSpecSolTests.sol, found on the repository.

As mentioned beforehand the high-level specification of the MakerDAO system updates the state

50

when a user initiates a transaction. The K code that formalizes a transaction and its explanation can be

found in the 5.1.3.A section. Verification of the specification’s defined properties happens every time a

transaction is executed. These properties are modeled as Finite State Machines and they are checked

to track whether certain properties of the system are violated or not, using the Adminstep assert. These

were modeled to assure that some known vulnerabilities of the MakerDAO protocol, and disclosed attack

vectors by the developer known as lucash [45], were in fact patched in updates. If a violation is detected,

it is recorded in the state and execution is immediately terminated.

� �
1 syntax AdminStep ::= "#assert" | "#assert-failure"

2 // --

3 rule <k> assert => deriveAll(keys list(VFSMS), #extractAssertEvents(EVENTS

ListItem(Measure()))) ~> #assert ... </k>

4 <events> EVENTS => .List </events>

5 <properties> VFSMS </properties>

6

7 rule <k> #assert => </k>

8 <properties> VFSMS </properties>

9 requires notBool anyViolation(values(VFSMS))

10

11 rule <k> #assert => #assert-failure ... </k> [owise]

12

13 syntax List ::= #extractAssertEvents (List) [function]� �
Listing 5.33: Property verifier definition in K

A violation occurs if any of the properties below holds.

� �
1 syntax Map ::= "#violationFSMs" [function]

2 // --

3 rule #violationFSMs => ("Zero-Time Pot Interest Accumulation" |->

zeroTimePotInterest)

4 ("Pot Interest Accumulation After End" |->

potEndInterest)

5 ("Unauthorized Flip Kick" |->

unAuthFlipKick)

6 ("Unauthorized Flap Kick" |->

unAuthFlapKick)

51

7 ("Total Bound on Debt" |->

totalDebtBounded(... dsr: ray(1)))

8 ("PotChi PotPie VatPot" |->

potChiPieDai(... offset: rad(0)))

9 ("Fundamental Dai Equation" |->

fundamentalDaiEquation)

10 ("Total Backed Debt Consistency" |->

totalBackedDebtConsistency)

11 ("Debt Constant After Thaw" |->

debtConstantAfterThaw)

12 ("Flap Dai Consistency" |->

flapDaiConsistency)

13 ("Flap MKR Consistency" |->

flapMkrConsistency)

14 ("Flop Block Check" |->

flopBlockCheck(... embers: rad(0), dented: 0))� �
For each Finite State Machine (FSM), the user must define the derive function, which dictates how

that FSM behaves. A default owise rule is added which leaves the FSM state unchanged.

� �
1 syntax ViolationFSM ::= derive (ViolationFSM , Event) [function]

2 // --

3 rule derive(VFSM,) => VFSM [owise]� �
Listing 5.34: Property violation checker definition

We present below the example of the Finite State Machine named “Debt Constant After Thaw” which

constantly tracks the Vat.debt in order to guarantee that it didn’t change after End.thaw is called, as this

implies the creation or destruction of DAI which would ruin End’s accounting.

� �
1 syntax ViolationFSM ::= "debtConstantAfterThaw"

2 // ---

3 rule derive(debtConstantAfterThaw, Measure(... debt: DEBT, endDebt: END DEBT)

) => Violated(debtConstantAfterThaw) requires (END DEBT =/=Rad rad(0))

andBool (DEBT =/=Rad END DEBT)� �
Listing 5.35: Example defition of the debtConstantAfterThaw property

52

5.2 Low-level model

This model of the system faithfully reproduces the system’s implementation on Ethereum as it uses the

compiled Solidity bytecode that is available on-chain and executes it on the reference EVM implementa-

tion in K, the KEVM, already detailed in the respective section 3.3. Moreover, using directly the compiled

bytecode eliminates the need to trust the Solidity compiler, maximizing the functional guarantees pro-

vided by its verification.

The bytecode is made available for use in the KEVM by inserting it in K syntax, using the vat and

vow as examples, in the following manner:

� �
1 requires "data.md"

2

3 module DSS-BIN-RUNTIME

4 imports EVM-DATA

5

6 syntax ByteArray ::= "Vat_bin_runtime"

7 // -------------------------------------

8 rule Vat bin => #parseByteStack("0x60806040523 (...) 300050c0032") [macro]

9

10 syntax ByteArray ::= "Vow_bin_runtime"

11 // --------------------------------------

12 rule Vow bin runtime => #parseByteStack("0x60806040 (...) 0050c0032") [macro]� �
Listing 5.36: EVM bytecode insertion in K syntax

5.2.1 Model Verification

This model of the MakerDAO protocol is verified with the KEVM that symbolically executes the bytecode

against reachability claims. These reachability claims could be manually defined but doing so would

require an in-depth knowledge of K by the developer and a time consuming effort. In order to reduce

these overheads, the property specification format known as ACT was created to aid Smart Contract

developers looking to verify their bytecode with different backends.

ACT specifications are functional descriptions of the behavior of a smart contract. Taking as an

example the specification of the behaviour of the heal function of the contract Vat :

� �
1 behaviour heal of Vat

53

2 interface heal(bytes32 u, bytes32 v, int256 rad)

3

4 types

5

6 Can : uint256

7 Dai v : uint256

8 Sin u : uint256

9 Debt : uint256

10 Vice : uint256

11

12 storage

13

14 #Vat.wards(CALLER ID) |-> Can

15 #Vat.dai(v) |-> Dai v => Dai v - rad

16 #Vat.sin(u) |-> Sin u => Sin u - rad

17 #Vat.debt |-> Debt => Debt - rad

18 #Vat.vice |-> Vice => Vice - rad

19

20 iff

21

22 Can == 1

23

24 iff in range uint256

25

26 Dai v - rad

27 Sin u - rad

28 Debt - rad

29 Vice - rad� �
Listing 5.37: Example ACT property specification

Behavior specifications in ACT then generate a series of reachability claims, defining both positive

and negative behaviors of the contract, as succeeding and reverting claims, respectively. In the example

above, the specification will generate two reachability claims, a positive behavior Vat heal succ pass rough.k

and a negative behavior Vat heal fail rough.k. Both of these claims will refer to the bytecode of the con-

tract Vat and use the function signature of heal (bytes32,bytes32,int256) as the first 4 bytes of calldata,

keeping the rest of the calldata abstract. In the success specification, the conditions under the iff head-

ers are postulated, while in the fail specification it is their negation.

The rest of the intended contract behaviors are specified in the same way as we’ve shown and the

54

generated KEVM test suite can be found in this repository.

55

6
High-level Specification Extension

Contents

6.1 Liquidations 2.0 . 57

6.2 Fundamental Equation of DAI . 59

56

In this chapter we present our contributions to the high-level model of the MakerDAO protocol.

6.1 Liquidations 2.0

6.1.1 System Upgrades

As mentioned in section 4.2.3, the MakerDAO protocol uses liquidations of uncollateralized vaults as a

mechanism for maintaining DAI’s peg to the dollar [4]. During the initial phase of the development of

this thesis, the liquidations system of the Maker protocol was upgraded replacing the old liquidations

with new more efficient ones. This improvement to the system, known as “Liquidations 2.0”, redesigned

liquidations by replacing the previous English auction with a new Dutch auction system. This upgrade

to the protocol was led by the motivations to reduce: the reliance on DAI liquidity, the likelihood of

auctions settling far from the market price, and the barriers to entry. An in-depth view of the research

and analysis that resulted in this change can be found on the MakerDAO governance website 1 and the

complete Improvement Proposal, detailing implementation, can be also found online 2.

We used this opportunity to familiarize with the inner workings of the K framework and the KEVM,

understand how the MakerDAO protocol works, from its mechanism design to implementation, and

gain thorough insight of the publicly available codebases that model the MakerDAO protocol in the

K framework, both at the high-level and low-level specifications, all while contributing directly to the

continuous development of all the aforementioned technologies.

6.1.2 Liquidations 2.0 High-level K Specifications

Liquidations 2.0 introduces three new contracts to the MakerDAO protocol Ethereum implementation,

each responsible for a certain key component of the liquidations system. These three contracts replace

the two previous contracts in charge of liquidations, cat.sol and flip.sol. Each of the new contracts,

dog.sol, clip.sol and abaci.sol, provide different functionality to the system, described below:

The dog.sol contract is responsible for liquidating vaults and initiating a Dutch auction to sell the

vault’s collateral for DAI. The liquidation is triggered by an external user who signals that a particular

vault is uncollateralized. After verifying if the vault is indeed uncollateralized, it then also decides whether

the vault should be entirely liquidated or whether it should only be performed a partial liquidation.

The clip.sol contract is responsible for the Dutch auctions that receive a certain amount of DAI for

the confiscated collateral of the liquidated vault. After a Dutch auction has been initiated, external users

can bid with DAI to buy the respective collateral. Since the auction style is Dutch there might be no bids

1https://forum.makerdao.com/t/a-liquidation-system-redesign-a-pre-mip-discussion/2790
2https://forum.makerdao.com/t/mip45-liquidations-2-0-liq-2-0-liquidation-system-redesign/6352

57

for the collateral and when a price threshold is met, then an external user is encouraged to instruct the

contract to reset the auction.

Lastly, the abaci.sol contract is responsible for calculating the price of the collateral to be sold, at

each time step on the Dutch auction. It is the responsibility of the clip contract to query the abacus

whenever it needs a new price for the currently auctioned collateral.

Each of these contracts was specified and added to the high-level K model of the Maker protocol, ex-

tending the codebase with these new files. Respectively, the dog.sol was formalized into dog.md, clip.sol

into clip.md, and abaci.sol into abaci.md, all of which can be found here https://github.com/makerdao/mkr-

mcd-spec/pull/250. All of the high-level behavior described above was captured in the K high-level spec-

ification of these contracts, representing a suitable abstraction on par with the rest of the codebase and

following the conventions defined in the section High-level model.

In order to integrate these files into the system, some changes to the execution framework and data

types of the system had to be made to accommodate new behavior and data manipulation.

Liquidations 2.0 introduced two new modifiers to the system, a reentrancy call prevention mechanism

called lock, and a four stage liquidation circuit breaker mechanism called stop.

The locking mechanism was formalized in the general execution framework of the high-level spec-

ification by introducing the modifier at the call boundaries, faithfully capturing the intended high-level

behavior of the mechanism, correctly locking and unlocking the intended rules, making reentrant calls

impossible. The code necessary to do so has already been shown and explained when detailing the

high-level model in the sections 5.1.3.C and 5.1.3.D.

The circuit breaker mechanism only applies to the clip contract and, therefore, it was formalized

using a new sort, consisting of terminal strings, and then defining the rules necessary for comparisons

between members of the sort, which yield a Boolean value. This formalization captures the intended

behavior of the modifier, while only requiring the intended comparison to be made at the requires part

of a rule. The syntax and semantics of the modifier, included in the clip.md file, are presented below:

� �
1 syntax ClipStop ::= "noBreaker"

2 | "noNewKick"

3 | "noNewKickOrRedo"

4 | "noNewKickOrRedoOrTake"

5 syntax Bool ::= ClipStop "<ClipStop" ClipStop [function]

6 // ---

7 rule noBreaker <ClipStop noBreaker => false

8 rule noBreaker <ClipStop => true [owise]

9 rule noNewKick <ClipStop noBreaker => false

10 rule noNewKick <ClipStop noNewKick => false

58

11 rule noNewKick <ClipStop => true [owise]

12 rule noNewKickOrRedo <ClipStop noNewKickOrRedoOrTake => true

13 rule noNewKickOrRedo <ClipStop => false [owise]

14 rule <ClipStop => false [owise]� �
Listing 6.1: Circuit breaker modifier definition

It was also necessary to add some data conversion rules between arithmetic types but without pre-

cision loss, which would make the system’s behavior to be wrongly captured by the specification. To

satisfy this requirement the file kmcd-data.md was extended with:

� �
1 syntax Rad ::= Rad "*RadWad2Rad" Wad [function]

2 | Wad "*WadRay2Rad" Ray [function]

3 // ---

4 rule FInt(R, RAD) *RadWad2Rad FInt(W, WAD) => FInt(R *Int W /Int WAD, RAD)

5 rule FInt(W, WAD) *WadRay2Rad FInt(R, RAY) => FInt(W *Int R, RAD)

6

7 syntax Wad ::= Rad "/RadRay2Wad" Ray [function]

8 // ---

9 rule FInt(R1, RAD) /RadRay2Wad FInt(R2, RAY) => FInt(R1 /Int R2, WAD)� �
Listing 6.2: Additional data conversion definition

Besides the new additions to the codebase, this update to the high-level specification also refactored

how temporary variables are defined in the K framework. In the imperative programming language that

is Solidity, it is regular to use temporary variables that are only available in memory and never saved in

storage. However, since K is a declarative language these temporary variables need to be formalized.

Previously, the codebase used the #fun construct to model these variables but the syntax declarations

to use multiple temporary variables required nesting of the construct, resulting in almost illegible code

when the use of these variables exceeded an acceptable threshold. During the modeling of the clip.md

file it became clear that these would need to be replaced by a new, easier to read and more efficient #let

variable binding that besides making the code cleaner also reduced the compile time of the project by

an hour.

6.2 Fundamental Equation of DAI

We extended the high-level MakerDAO K specification with a non trivial property of the protocol modeled

as a Finite State Machine. This property is the Fundamental Equation of DAI which, as mentioned

59

earlier, is an invariant of the dynamic system that states the following: The Sum of DAI of all users must

be equal to vice plus the sum of debts of all ilks of all users, represented in equation 4.1.

In order to express this property it was necessary to extend the specification’s measured events to

encompass the sum of the total DAI issued over the vat.

� �
1 syntax Rad ::= calcSumOfDais(Map) [function]

2 | calcSumOfDaisAux(List, Rad) [function]

3 // ---

4 rule calcSumOfDais(VAT DAIS) => calcSumOfDaisAux(values(VAT DAIS), rad(0))

5 rule calcSumOfDaisAux(.List, TOTAL) => TOTAL

6 rule calcSumOfDaisAux(ListItem(AMOUNT) REST, SUM) => calcSumOfDaisAux(REST,

SUM +Rad AMOUNT)� �
Listing 6.3: Extended measured system events

Finally, the Fundamental Equation of DAI is defined as a Finite State Machine in the following man-

ner:

� �
1 syntax ViolationFSM ::= "fundamentalDaiEquation"

2 // --

3 rule derive(fundamentalDaiEquation, Measure(... debt: DEBT, vice: VICE,

sumOfDais: SUM))

4 => Violated(fundamentalDaiEquation) requires SUM =/=Rad (DEBT +Rad VICE)� �
Listing 6.4: Fundamental DAI equation definition

As it is shown, even though this is a non trivial property of the system, it is formalized over the

high-level specification in a succinct and clear way. This difference in the expressiveness of properties

between various abstraction levels of a system’s specification reinforces the motivation behind refine-

ment proofs, which are discussed on the next chapter.

60

7
Refinement Proofs

Contents

7.1 Motivation . 62

7.2 Related Work . 63

7.3 Refinement Methods . 63

61

Refinement is the process of moving from an abstract specification, termed the model, to a concrete

specification, termed implementation. Refinement proofs demonstrate that the abstract model accu-

rately captures behaviors of the concrete implementation. Note that this allows the implementation to

exhibit behaviors not captured by the model. To disallow this, one can do a refinement proof in the

other direction: show that the implementation accurately captures the behavior of the abstract model.

An equivalence proof can be constructed by showing refinement proofs in both directions.

Throughout this thesis we characterized and documented the many components that enable refine-

ments in the scope of Decentralized Finance. As mentioned, refinement proofs are useful to verify that a

system model accurately captures the behavior of the implementation. By definition, in order to properly

define a refinement, we must have a system, a model, and a system implementation. In the context of

this document the system is MakerDAO, which we decomposed into intent, mechanism design, imple-

mentation, and the connection between them. In addition, this new documentation which can be found

in the chapters Chapter 4, Chapter 5, and Chapter 6, aims to facilitate reasoning about refinements over

the protocol. We introduced our documentation of the existing, and further extended, high-level model

of the MakerDAO protocol, and also described the KEVM and bytecode implementation of the protocol

on the EVM.

After defining these components we are now ready to reason about refinement proofs over the Mak-

erDAO system.

7.1 Motivation

When formalizing system’s designs at higher-levels of abstraction it is always desirable to guarantee that

its behavior is captured by the implementation. The MakerDAO high-level specification of the system is

no exception. When it was first formalized, its creators, the MakerDAO and Runtime Verification teams

at the time, sought to ensure that certain behaviors of this model were present in the implementation.

This was achieved by: firstly, executing the high-level model, checking for the violations of properties

and state updates. During execution, the high-level model collects the sequence of contract interactions

and state changes. Afterwards, it constructs a Solidity unit test with the equivalent sequence of calls

and assertions about the state changes. Finally, the generated Solidity test is ran against the Solidity

implementation to validate conformance between the model and the implementation on that execution

trace.

However, this implementation of the refinement does not directly refine the high-level specification

with the bytecode implementation. It requires trusting the external python library and also the Solidity

compiler for the tests. Moreover, this procedure could be described as refinement testing, as it only

ensures that the set of behaviors exhibited when fuzzing the high-level model are in fact captured by

62

the implementation. A sound proof of refinement between the high-level specification and bytecode

implementation in the K framework removes the necessity of using external tooling, trust in the Solidity

compiler, and also ensures that the implementation captures all of the high-level specification behaviors.

The method described here is an attempt to prove refinement of the high-level model to the imple-

mentation and is pioneer work in the area of DeFi [46], an up to date model, and until now on the forefront

of verification in Decentralized Finance.

Additionally, as discussed in the previous chapter, when documenting the MakerDAO protocol and

finding interesting properties to model over the high-level specification, it became clear that sound re-

finement proofs were necessary.

Having this in sight, in the following sections we present methods and examples that not only make

this sound refinement in the K framework possible but also intuitive and approachable.

7.2 Related Work

The concept of refinement and refinement proofs methods and techniques are a widely studied field in

Computer Science for guaranteeing system equivalence [47,48] and correctness [49,50].

In the area of Smart Contracts and Decentralized Finance some known refinement methods have

been applied and studied.

Particularly tools such as Helmholtz [51] and Solid [52] use refinement type systems as intermediary

representations for proving smart contract properties correct.

HEVM [44] has also recently released a feature that attempts to prove equivalence of smart contracts

by symbolically executing both and comparing the execution results.

Other tools and projects also aim to ensure smart contract properties correct and can be found in

section 2.5.1.

7.3 Refinement Methods

The refinement technique presented in this thesis uses the MakerDAO protocol as an example, but it

can be modified with low overhead to refine other protocol’s high-level models to EVM bytecode.

In order to formalize the refinement proofs we must first define how will the refinement method be-

tween the two specifications work.

Our refinement method is based on cut-bisimulation, introduced by Daejun et al. [53]. Cut-bisimulation

allows two programs to semantically synchronize at relevant “cut” points, but to evolve independently oth-

erwise. We now outline the cut-bisimulation mechanism and correctness guarantees for our refinement

model.

63

A bisimulation over the cut states, where the cut denotes a collection of relevant states at which

two programs may be synchronized, is known as cut-bisimulation. An example of these cut states

in the context of Decentralized Finance protocols is the states at the beginning and end of an EVM

transaction. This allows for a simple method of demonstrating equivalence, in which one may examine

whether the two programs synchronize at the cut states, which we refer to as synchronization points.

The cut may also be tweaked to determine the precision of synchronization points, which are used to

indicate the verifiable behaviors of two programs that should be taken into account while determining

their equivalence. This helps dealing with intermediate states that aren’t crucial to determining program

equivalence.

Assume two cut transition systems, one of which replicates the other but not the other. If implemented

appropriately, an abstract model cut-simulates its concrete implementation, but the opposite may not be

true since the model may omit certain behaviors, leaving them implementation dependent, allowing the

implementation to pick any behavior. In this scenario, determining if a model property is also maintained

in the implementation is not straightforward. Intuitively, the model’s set of all possible cut-states is a

superset of the implementation’s set. As a result, if a cut-state isn’t accessible in the model, it won’t be

reachable in the implementation either. This means that the model’s safety properties are maintained

in the implementation, since a safety property may be expressed as “nothing wrong occurs”. Inductive

invariants are maintained in the refined system in general.

For a thorough formal explanation of the logic behind it the reader can consult the origin cut-bisimulation

paper [53].

Inspired by the cut-bisimulation method explained above we model our refinement proofs using a

slightly different technique. Instead of specifying pairs of cuts on which the simulations states should

be equivalent throughout execution, we start with a symbolic state in the high-level model, construct

a refined state in the implementation directly, execute the low-level state symbolically to completion,

then map the final state back to the high-level model where we check it for correctness. By providing a

constructive translation between the model states, we can refrain from having to execute both models to

prove refinement.

Summarizing, our refinement proofs follow the ensuing procedure:

1. Start with a transition in the high-level model, which consists of an initial symbolic state and a final

symbolic state.

2. Initiate a transaction on the high-level specification.

3. Symbolically execute the implementation state to completion.

4. Map the final symbolic implementation state back to a model state, proving that it is identical to the

final state described by the high-level transition.

64

5. Restart high-level execution on item 2 until the entire behavior specification is proven.

In the refinement process, by symbolically updating the storage of the KEVM we can then demon-

strate that these updates are equal to the symbolic updates defined on the high-level specification. This

ensures that a subset of possible behaviors of the implementation is captured by the high-level model.

Repeating this process for every possible high-level behavior proves that every behavior in the high-level

specification is captured by the implementation, meaning that the high-level behavior is a strict subset of

the bytecode implementation. We note that this refinement model does not state any conclusion about

additional behavior in the implementation not contemplated in the high-level specification.

Implementing this refinement can be divided into two major issues. Firstly, how the transactions

should be refined to the bytecode, execution refinement. Secondly, how the symbolic storage updates

should be verified equivalent, state refinement.

As we can observe the refinement between specifications is non-trivial. Therefore, throughout the

rest of this chapter we break apart the issues presented and demonstrate our solutions for the concrete

implementation details of the proposed refinement model.

7.3.1 Execution Refinement

The execution refinement between the high-level specification execution framework and the KEVM can

be re-used with minor adaptations for other low-level models.

7.3.1.A Model Configuration

At the bottom of the presented high-level specification configuration we include the KEVM configuration,

〈kevm〉. This allows accessing KEVM state and concurrent state manipulation between both specifica-

tions. Additionally, we also add a helper configuration which translates between users in the high-level

model and accounts in EVM, 〈mcd− accounts〉. This represents the initial configuration on step 1.

� �
1 configuration

2 <kmcd-driver>

3 <return-value> .K </return-value>

4 <msg-sender> 0:Address </msg-sender>

5 <this> 0:Address </this>

6 <current-time> 0:Int </current-time>

7 <mcd-call-stack> .List </mcd-call-stack>

8 <pre-state> .K </pre-state>

9 <events> .List </events>

10 <tx-log> .Transaction </tx-log>

65

11 <frame-events> .List </frame-events>

12 <kevm/>

13 <mcd-accounts/>

14 </kmcd-driver>� �
Listing 7.1: Execution framework extension

7.3.1.B Data Structures

As discussed previously, it is necessary to introduce a configuration that enables translating between

users in the high-level specification and accounts in EVM. This configuration is a pair consisting of a

single user and account. It ties both of these together and each unique pair is identified by its high-level

specification user id.

� �
1 configuration

2 <mcd-accounts>

3 <mcd-account multiplicity="*" type="Map">

4 <mcd-id> 0:Address </mcd-id>

5 <address> 0 </address>

6 </mcd-account>

7 </mcd-accounts>� �
Listing 7.2: Address translation between models definition

7.3.1.C Specification Transition Functions

As mentioned in step 3 of the refinement proofs methodology it is necessary to refine transactions from

the high-level specification into equivalent bytecode transactions accepted by the EVM. In order to

achieve this we could manually specify a translation for every high-level transaction, but it would not be

modular to use as refinement for other specifications other than the MakerDAO one. With modularity

in mind we adjust the high-level specification to be amenable to transaction translation in the following

manners.

Firstly, we begin by decomposing individual transactions on the high-level specification into appro-

priate function name and arguments, which will allow us to properly encode the function signature in

EVM as well as pack its arguments into the call. Each individual contract function call, CallStep, is

characterized by its function name, Op, and its arguments, Args.

66

� �
1 syntax Op ::= String

2 syntax Arg ::= Bln | Wad | Ray | Rad | Int | String | Address

3 syntax Args ::= List{Arg, ""}

4 syntax CallStep ::= Op | Op Args� �
Listing 7.3: Transaction decomposition syntactic definition

An example of this function subsorting in the Vat cage function.

� �
1 syntax CallStep ::= VatStep

2 syntax Op ::= VatOp

3 syntax Args ::= VatArgs

4 // ---------------------------

5

6 syntax VatCageOp ::= "cage"

7 syntax VatOp ::= VatCageOp

8 syntax VatAuthStep ::= VatCageOp [klabel(#VatCage), symbol]� �
Listing 7.4: Example of function decomposition

Subsequently, it is necessary to encode every high-level argument into the proper EVM bytecode

data type. Below we find the translation table for some of the types, omitting the full implementation due

to size constraints:

� �
1 syntax TypedArg ::= #encodeEVM(String, FInt) [function]

2 | #encodeEVM(String, String) [function]

3 | #encodeEVM(String, Address) [function]

4 // ---

5 rule #encodeEVM ("uint160", FINT:FInt) => #uint160 (value(FINT))

6 rule #encodeEVM ("uint256", FINT:FInt) => #uint256 (value(FINT))

7

8 rule #encodeEVM ("bytes32", FINT:FInt) => #bytes32 (value(FINT))

9 rule #encodeEVM ("bool" , FINT:FInt) => #bool (value(FINT))

10 rule #encodeEVM ("string" , STR:String) => #string (STR)� �
Listing 7.5: EVM argument types conversion definition

Now that we have decomposed the functions to be refined into the suitable structures the following

syntax and semantics are used to encode whole function calls to the proper bytecode translation.

67

� �
1 syntax ByteArray ::= #abiEncode(CallStep, List) [function]

2 | #abiEncode(CallStep) [function]

3 // --

4 rule #abiEncode ((OP ARGS):CallStep, TYPES) => #abiCallData(OP, #MCDtoEVM(

ARGS, TYPES))

5 rule #abiEncode ((OP):CallStep) => #abiCallData(OP, .TypedArgs)

6 syntax TypedArgs ::= #MCDtoEVM (Args, List) [function]

7 | #MCDtoEVMAux (Args, List, TypedArgs) [function]

8 // ---

9 rule #MCDtoEVM(ARGS, TYPES) => #MCDtoEVMAux(ARGS, TYPES, .TypedArgs)� �
Listing 7.6: Translate full transaction between models definition

Finally, the full transactions, defined by the initiating user, function name, and arguments, are serial-

ized and inserted into the correct state configuration cells and ready to be executed by theKEVM in the

following step:

� �
1 syntax KItem ::= #serializeTransaction (Address, MCDStep)

2 // ---

3 rule <k> #serializeTransaction (ADDR, (CONTRACT:MCDContract . CALL:CallStep)

:MCDStep) => #execute ... </k>

4 <account>

5 <acctID> CONTRACT ID </acctID>

6 <code> CONTRACT BIN RUNTIME </code>

7 ...

8 </account>

9 (<callState> </callState> =>

10 <callState>

11 <program> CONTRACT BIN RUNTIME </program>

12 <jumpDests> #computeValidJumpDests(CONTRACT BIN RUNTIME) </jumpDests>

13 <id> CONTRACT ID </id>

14 <caller> CALLER ID </caller>

15 <callData> #abiEncode(CALL) </callData>

16 ...

17 </callState>)

18 <mcd-account>

19 <mcd-id> ADDR </mcd-id>

20 <address> CALLER ID </address>

68

21 </mcd-account>

22 <mcd-account>

23 <mcd-id> CONTRACT </mcd-id>

24 <address> CONTRACT ID </address>

25 </mcd-account>� �
Listing 7.7: Translate function call by user between models definition

In the refinement method, the steps 1 and 2, initiating the transaction from the high-level specification

and executing the equivalent transaction over the bytecode are declared below:

� �
1 syntax AdminStep ::= "transact" Address MCDStep | "#end-transact"

2 // ---

3 rule <k> transact ADDR:Address MCD:MCDStep => #runKEVM(ADDR, MCD) ... </k>

4

5 syntax KItem ::= #runKEVM (Address, MCDStep)

6 | "#executeKEVM"

7 // --

8 rule <k> #runKEVM (ADDR:Address, MCD:MCDStep) =>

9 #serializeTransaction (ADDR, MCD) ~>

10 #executeKEVM

11 ... </k>

12

13 rule <k> #executeKEVM => #execute ... </k>

14 <evm>

15 <callData> CALL DATA </callData>

16 ...

17 </evm>

18 requires CALL DATA =/=K .K� �
Listing 7.8: Transaction initation and translation definition

Now that the execution semantics have been refined between specifications we elaborate on how

storage is refined and how it is proven equally symbolically updated.

7.3.2 State Refinement

In the refinement technique declared above we must be able to verify that the symbolic updates to

storage made by the low-level specification match the storage update claims of the high-level model.

69

There are two ways this storage refinement can be achieved:

The initial approach would be to manually define the full mapping between the high-level configuration

and the low-level EVM bytecode storage. This method is viable and works without having to redefine

how the low-level implementation handles bytecode execution and storage manipulation. However, it is

unpractical for large protocols that are composed by many contracts, requiring manually mapping and

translating values between bytecode and K high-level specification cell configurations.

The second option of refinement, the one we implement, uses a new technique introduced in this dis-

sertation. This technique allows manipulating abstract storage when executing bytecode on the low-level

implementation. It abstracts the EVM storage mapping, making it possible to define arbitrary storage

configurations in K. It trades off being able to execute the KEVM over typical bytecode storage for the

possibility of directly verifying that symbolic storage updates of the low-level specification match the

expected high-level model claims, proving the refinement correct. In our refinement example, we substi-

tute the KEVM representation of storage with the same structured representation of the Smart Contract

storage from the high-level model and adapt the KEVM storage reads and writes to work over this repre-

sentation. This allows to trivially check that symbolic storage updates match claims, while minimizing the

changes to KEVM necessary in order for it to properly read and write from storage. This new technique

results in a much more practical method for refining large codebases such as the MakerDAO protocol.

The validity of the storage updates performed over an abstract storage assumes the correctness

of the storage layout regarding its equivalence to the actual bytecode storage. In Solidity, variables

present in the storage are declared at the beginning of a contract along with their identifier and data

type, making it trivial to confirm that they are properly expressed in the high-level configuration’s cells.

The Solidity compiler uses hashed locations to ensure that there are no data collisions [54]. At the

moment, every Solidity contract and Solidity developer assume that this statement is true, and although

bugs in other EVM bytecode compilers like the Vyper compiler have been found in previous work with

the K framework [55–57] it is still an accepted assumption in the Ethereum community. This trust model

implies that the abstract storage we are using does not use additional trust assumptions to ensure

correctness.

Below we analyze how this refinement is implemented.

7.3.2.A Abstract Storage

This refinement technique works by abstracting the storage for an account on the KEVM implementation.

By ’abstracting’ we imply subsorting the regular KEVM storage cell, which by default uses a map, to a

new sort called ContractStorage, which allows using a different data structure for the storage cell. The

concept of using an abstract storage for accounts on the KEVM can be easily reused by other high-level

K specifications and further research on EVM’s storage.

70

� �
1 configuration

2 <kevm>

3 <k> $PGM:EthereumSimulation </k>

4 <exit-code exit=""> 1 </exit-code>

5 <mode> $MODE:Mode </mode>

6 <schedule> $SCHEDULE:Schedule </schedule>

7 ...

8 <accounts>

9 <account multiplicity="*" type="Map">

10 <acctID> 0 </acctID>

11 <balance> 0 </balance>

12 <code> .ByteArray:AccountCode </code>

13 <storage> .Map:ContractStorage </storage>

14 <origStorage> .Map:ContractStorage </origStorage>

15 <nonce> 0 </nonce>

16 </account>

17 </accounts>

18 ...� �
Listing 7.9: Storage abstraction definition in EVM

This new storage abstraction allows using any of the high-level specification contract K cell configu-

rations directly into the KEVM specification, demonstrated below with the vat configuration:

� �
1 syntax ContractStorage ::= MCDStorage

2 // -------------------------------------

3

4 syntax MCDStorage ::= #storageVat(VatCell)� �
Listing 7.10: Example Vat abstract storage

The syntax VatCell is a direct reference to the Vat configuration declaration, which includes all of the

K cells that constitute it. The same mechanisms that K offers for normal cell configuration manipulation

are available due to K allowing cell nesting.

This application of the high-level specification configuration as storage in EVM, enabled by K’s flexibil-

ity when adapting implementations, requires only to define the behavior of reads and writes performed

by the KEVM for this type of abstract storage. In the following subsections we exemplify the syntax

definitions and semantic behavior required for this particular implementation.

71

7.3.2.B Storage Reads

The EVM has two opcodes that manipulate the storage: one for reading and loading a word from storage

into the stack and another for writing a word to storage.

Below we find the semantic rule that implements the behavior of the load opcode, SLOAD in EVM.

This rule uses the #lookup operator to retrieve a value from storage. The implementation below is

unchanged from the original KEVM specification.

� �
1 syntax UnStackOp ::= "SLOAD"

2 // ----------------------------

3 rule <k> SLOAD INDEX => #lookup(STORAGE, INDEX) ~> #push ... </k>

4 <id> ACCT </id>

5 <account>

6 <acctID> ACCT </acctID>

7 <storage> STORAGE </storage>

8 ...

9 </account>� �
Listing 7.11: Abstract storage load definition override in EVM

In order to lookup values in the new abstract storage we need to introduce a new syntax declaration

that allows lookups on arbitrary abstract storage.

� �
1 syntax Int ::= #lookup (ContractStorage , Int) [function, functional,

smtlib(lookupContractStorage)]

2 //

� �
Listing 7.12: Lookup on abstract storage definition

Subsequently it is necessary to provide semantic meaning to the definition of the lookup in the

abstract storage. These rules vary depending on the contract configuration declaration. Different types

of configurations and particular records on the high-level specification require different rules. As an

example, below we can find the rules that allow accessing the different data in an urn in the vat for a

particular combination of ilk and user.

� �
1 module VAT-LEMMAS

72

2 imports VAT

3

4 syntax Map ::= #lookupMap (Map, Int) [function, functional]

5 // ---

6 rule #lookupMap((KEY |-> MAP:Map) M, KEY) => MAP

7 rule #lookupMap(M, KEY) => .Map requires notBool KEY

in keys(M)

8 rule #lookupMap((KEY |-> VAL) M, KEY) => .Map requires notBool

isMap(VAL)

9

10 syntax VatUrn ::= #lookupUrns (Map, Int) [function, functional]

11 syntax VatUrn ::= "EmptyUrn"

12 // --

13 rule #lookupUrns((KEY |-> URN:VatUrn) M, KEY) => URN

14 rule #lookupUrns(M, KEY) => EmptyUrn

15 requires notBool KEY in keys(M)

16 rule #lookupUrns((KEY |-> VAL) M, KEY) => EmptyUrn

17 requires notBool isVatUrn(VAL)

18

19 syntax Int ::= #lookupUrn (VatUrn, Int) [function, functional]

20 // ---

21 rule #lookupUrn(Urn(... ink: INK), 0) => value(INK)

22 rule #lookupUrn(Urn(... art: ART), 1) => value(ART)

23 rule #lookupUrn(EmptyUrn,) => 0

24 rule #lookup(#storageVat(<vat> ... <vat-urns> VAT URNS </vat-urns> ... </vat>

), #Vat.urns[ILK][USR].ink) => #lookupUrn(#lookupUrns(#lookupMap(VAT URNS,

ILK), USR), 0) [simplification]

25 rule #lookup(#storageVat(<vat> ... <vat-urns> VAT URNS </vat-urns> ... </vat>

), #Vat.urns[ILK][USR].art) => #lookupUrn(#lookupUrns(#lookupMap(VAT URNS,

ILK), USR), 1) [simplification]

26

27 endmodule� �
Listing 7.13: Example Vat contract storage lookup definition

This process is repeated throughout the high-level specification contracts until the rules fully imple-

ment the desired storage lookup behavior.

73

7.3.2.C Storage Writes

The EVM opcode that writes a word to storage is SSTORE. Below we find the modified KEVM rule that

allows the definition of particular write operations over an abstract storage, using the new #write operator

on the storage cell.

� �
1 syntax BinStackOp ::= "SSTORE"

2 // ------------------------------

3 rule <k> SSTORE INDEX NEW => </k>

4 <id> ACCT </id>

5 <account>

6 <acctID> ACCT </acctID>

7 <storage> STORAGE => #write(STORAGE, INDEX, NEW) </storage>

8 ...

9 </account>� �
Listing 7.14: Abstract storage write definition override in EVM

Similarly to the read operator we need to define the syntax for this #write operator so it can then be

implemented for each particular contract configuration.

� �
1 syntax ContractStorage ::= #write (ContractStorage , Int, Int) [function,

functional]

2 //

� �
Listing 7.15: Write on abstract storage definition

Afterwards we define the semantics for this #write operator. The example below shows the write

rules for an user in the Vat wards cell configuration.

� �
1 module VAT-LEMMAS

2 imports VAT

3

4 rule #write(#storageVat(<vat> ... <vat-wards> VAT WARDS </vat-wards> ... </

vat>), #Vat.wards[A] , 1) => #storageVat(<vat> ... <vat-wards> VAT WARDS |

Set SetItem(A) </vat-wards> ... </vat>) [simplification]

74

5 rule #write(#storageVat(<vat> ... <vat-wards> VAT WARDS </vat-wards> ... </

vat>), #Vat.wards[A] , 0) => #storageVat(<vat> ... <vat-wards> VAT WARDS -

Set SetItem(A) </vat-wards> ... </vat>) [simplification]

6

7 ...

8 endmodule� �
Listing 7.16: Example Vat contract storage write definition

7.3.2.D Storage Equivalence

Finally, with this method of storage abstraction it becomes trivial to verify that storage updates per-

formed by the bytecode execution match the intended high-level behavior claims, step 4 of the refine-

ment method. Since the high-level specification configuration for each contract is the same configuration

bytecode uses to read and write from, all that is required to verify equivalence of storage is to change

all of the high-level specification semantic rules to reachability claims and let the haskell backend of the

K framework verify that the symbolic manipulation of storage is equal.

Using Vat Wards as an example, the keyword rule is simply replaced with claim producing the reach-

ability claims used for proving the refinement:

� �
1 claim <k> Vat . rely ADDR => </k>

2 <vat-wards> ... (.Set => SetItem(ADDR)) </vat-wards>

3 <vat-live> true </vat-live>

4

5 claim <k> Vat . deny ADDR => </k>

6 <vat-wards> WARDS => WARDS -Set SetItem(ADDR) </vat-wards>

7 <vat-live> true </vat-live>� �
Listing 7.17: Example Vat reachability claim rewrite

In the subsequent analysis section we also present an example of the usage of this abstract storage

refinement method.

This concludes the entire implementation of the refinement proofs. It is noted once more that this

refinement method can be easily adapted to other protocols on Ethereum, requiring only to re-define

each of the contracts’ storage lookup tables, which could be automatized in future work.

With these refinement proofs it is possible to determine exactly what behavior of the implementation

of a protocol is captured by the high-level specification. Furthermore, with symbolic execution of byte-

code on the KEVM it is possible to know the full behavior set of a protocol on EVM. Theoretically the set

75

of total possible behaviors of the bytecode minus behaviors captured by the high-level specification is

where most of the undefined and possibly faulty behavior of a protocol resides. Behaviors in this space

should lead to reverting the transaction execution and therefore not update storage.

76

8
Analysis

Contents

8.1 Liquidations 2.0 . 78

8.2 Fundamental DAI Equation . 78

8.3 Abstract Storage . 78

77

We now analyze the extension of the high-level MakerDAO model and the new abstract storage

technique.

8.1 Liquidations 2.0

The Liquidations 2.0 module was properly specified in the high-level model 1, maintaining the same

abstraction from the Solidity implementation as the rest of the codebase. The codebase was not ex-

tended with randomized concrete tests for this module as refinement proofs and formalization of system

properties were prioritized.

8.2 Fundamental DAI Equation

Following the definition of the Fundamental DAI Equation invariant as a Finite State Machine on the

high-level model in Chapter 6 we executed the already defined randomized concrete tests present in

the specification 2, explained in Chapter 5. Running this test suite ensured that for the set of behaviors

tested the non-trivial invariant of the system remained true.

8.3 Abstract Storage

In this section we present an example of a proven claim that uses the abstract storage technique used

for refinement presented in the Chapter 7.

We start by formalizing a high-level specification of the flip contract, using a simplified version of

the abstract model used in the high-level MakerDAO K specification. This specification configuration

declares two variables that are part of the flip storage. It is then declared the abstract storage of this

specification to be used by the KEVM.

� �
1 module ABSTRACT-FLIP

2 imports INT

3

4 // Flip Configuration

5

6 configuration

7 <flip>

1https://github.com/makerdao/mkr-mcd-spec/pull/250
2https://github.com/makerdao/mkr-mcd-spec/tree/master/tests

78

8 <flip-ttl> 10800:Int </flip-ttl>

9 <flip-tau> 172800:Int </flip-tau>

10 </flip>

11

12 // Abstract Contract Storage

13

14 syntax ContractStorage ::= #storageFlip(FlipCell)

15 // --

16

17 endmodule� �
Listing 8.1: Abstract flip configuration

EVM’s storage and stack use 256 bit words. Due to this implementation detail some Smart Contracts

have their storage layout designed in a way where for example two uint48, unsigned integers represented

with 48 bits, are packed together into a single 256 bit EVM word. In the flip contract the tau and ttl

variables are packed together into a single word. This Smart Contract design decision saves on gas

costs, since these values are frequently manipulated simultaneously, using only one SLOAD opcode

instead of two.

As explained beforehand with this storage abstraction technique it is necessary to define the syntax

and semantic rules that allow the KEVM to operate over it. In this special case of word packing in the

EVM the rules that allow the ttl and tau values to be looked up individually are:

� �
1 module WORD-PACK-HASKELL [kore]

2 imports WORD-PACK-COMMON

3

4 rule maxUInt48 &Int #lookup(#storageFlip(<flip> ... <flip-ttl> TTL </flip-ttl

> ... </flip>), #Flipper.ttl tau) => TTL

5 [simplification]

6

7 rule maxUInt48 &Int (#lookup(#storageFlip(<flip> ... <flip-tau> TAU </flip-

tau> ... </flip>), #Flipper.ttl tau) /Int pow48) => TAU

8 [simplification]� �
Listing 8.2: Concrete flip reads on abstract storage

Finally, we prove that the KEVM can effortlessly lookup the desired storage values over the abstract

storage model. This is achieved using an already proven claim in the KEVM codebase, but with only

79

one minor change, the account storage for flip uses the abstract storage refinement. The claim is shown

below, with the abstract storage in the appropriate storage cell.

� �
1 requires "verification.k"

2

3 module ABSTRACT-FLIPPER-TAU-PASS-SPEC

4 imports VERIFICATION

5

6 // ABSTRACT Flipper tau

7 claim [ABSTRACT.Flipper.tau.pass]:

8 <k> #execute ~> CONTINUATION => #halt ~> CONTINUATION </k>

9 <exit-code> 1 </exit-code>

10 <mode> NORMAL </mode>

11 <schedule> ISTANBUL </schedule>

12 <ethereum>

13 <evm>

14 <output> => #buf(32, Tau) </output>

15 <statusCode> => EVMC SUCCESS </statusCode>

16 <endPC> => ? </endPC>

17 <callStack> VCallStack </callStack>

18 <interimStates> </interimStates>

19 <touchedAccounts> => ? </touchedAccounts>

20 <callState>

21 <program> Flipper bin runtime </program>

22 <jumpDests> #computeValidJumpDests(Flipper bin runtime) </jumpDests>

23 <id> ACCT ID </id>

24 <caller> CALLER ID </caller>

25 <callData> #abiCallData("tau", .TypedArgs) ++ CD => ? </callData>

26 ...

27 <accounts>

28 <account>

29 <acctID> ACCT ID </acctID>

30 <balance> ACCT ID balance </balance>

31 <code> Flipper bin runtime </code>

32 <storage> #storageFlip(<flip> FLIP </flip>) </storage>

33 <origStorage> ACCT ID ORIG STORAGE </origStorage>

34 <nonce> Nonce Flipper => ? </nonce>

35 </account>

80

36 ...

37 </accounts>� �
Listing 8.3: Example of using abstract storage in EVM and proving a reachability claim

This example exhibits how straightforward it is to use the abstract storage when proving claims.

81

9
Conclusions

Contents

9.1 Contributions . 83

9.2 Future Work . 83

82

This chapter summarizes this dissertation’s major contributions and addresses future research and

development.

9.1 Contributions

This thesis provides several contributions on the directions described in Section 1.2.

Concretely, our research used MakerDAO as the Smart Contract system to model and the K frame-

work to formally specify this system, both at high and low levels of abstraction. Firstly, we extended

MakerDAO’s documentation, detailing it’s goal, mechanisms that are designed to achieve it, and imple-

mentation of such mechanisms. Afterwards, we created documentation for the high-level K specification

of MakerDAO. Subsequently, we extended MakerDAO’s current high-level K specification with the Liq-

uidations 2.0 module in order to correctly represent the currently deployed system’s architecture and a

non-trivial property of the system. Later, we refined this high-level model to match the Smart Contract

EVM representation of the system in the same semantic framework K, leveraging the existing implemen-

tation of EVM in K, introducing novel K modelling techniques to achieve this result. Consequently, this

refinement leads to being certain that proofs over the high level model of the system are also correct

over the bytecode implementation of the system.

9.2 Future Work

As blockchain and Smart Contract development are rapidly growing industries it is necessary to con-

stantly keep improving research. Direct directions for future work are:

• Finish refining the codebases The refinement techniques presented in this thesis and working

examples of their utilization show the benefit and practical use of it in this codebase. However, the

full refinement proof of all the behaviors of the high-level specification has not yet been completed

and will continuously be implemented in the upcoming months.

• Continue modeling protocol properties In this document we provided documentation of Maker-

DAO that clearly separates design and implementation. Continuing to reason about the mecha-

nism design of the protocol will lead to the formalization of more system invariants and properties

which can be specified on the high-level model and refined to the implementation.

• Automate the high-level k model directly from contract source The execution abstraction of

the presented MakerDAO high-level K specification can be re-used by other protocols with minimal

effort. A tool that attempts to automate as much as possible the creation of a high-level model of a

protocol directly from Solidity source may also be developed.

83

• Automate the refinement proofs Most of the refinement technique we presented can be re-used

with a similar high-level K specification. If a tool that automatizes the specification of a high-

level model from Solidity is created then defining the appropriate rules for each particular contract

storage lookup and writes should be trivial to implement as well.

• Ensure reverting behavior in implementation Further research should look to ensure that im-

plementation behaviors not captured by the high-level model should lead to reverting states, not

affecting storage.

Summing up, if research continues in this direction, the Ethereum ecosystem will benefit from being

able to automatically specify and refine high-level models of Solidity Smart Contracts with their produced

bytecode and vice versa. Advances in this area leads to immensely improving quality standards of

Decentralized Finance protocols, reducing economic risk for users and enabling the secure design of

new financial primitives.

84

Bibliography

[1] R. Verification, https://runtimeverification.com/, 2021.

[2] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth, B. Moore, D. Park, Y. Zhang,

A. Stefanescu, and G. Roşu, “Kevm: A complete formal semantics of the ethereum virtual machine,”

07 2018, pp. 204–217.

[3] Vaibhav, https://github.com/vasa-develop/defi-diagrams/, 2020.

[4] MakerDAO, https://docs.makerdao.com/, 2021.

[5] W. Chen, Z. Xu, S. Shi, Y. Zhao, and J. Zhao, “A survey of blockchain applications in different

domains,” Proceedings of the 2018 International Conference on Blockchain Technology and

Application - ICBTA 2018, 2018. [Online]. Available: http://dx.doi.org/10.1145/3301403.3301407

[6] A. Anoaica and H. Levard, “Quantitative description of internal activity on the ethereum public

blockchain,” in 2018 9th IFIP International Conference on New Technologies, Mobility and Secu-

rity (NTMS), 2018, pp. 1–5.

[7] F. Schär, “Decentralized finance: On blockchain- and smart contract-based financial markets,” 03

2020.

[8] D. Zetzsche, D. Arner, and R. Buckley, “Decentralized finance (defi),” SSRN Electronic Journal, 01

2020.

[9] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum smart contracts (sok),” 03

2017, pp. 164–186.

[10] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: fuzzing smart contracts for vulnerability

detection,” Proceedings of the 33rd ACM/IEEE International Conference on Automated Software

Engineering, Sep 2018. [Online]. Available: http://dx.doi.org/10.1145/3238147.3238177

[11] A. Mamageishvili and J. C. Schlegel, “Mechanism design and blockchains,” CoRR, vol.

abs/2005.02390, 2020. [Online]. Available: https://arxiv.org/abs/2005.02390

85

https://runtimeverification.com/
https://github.com/vasa-develop/defi-diagrams/
https://docs.makerdao.com/
http://dx.doi.org/10.1145/3301403.3301407
http://dx.doi.org/10.1145/3238147.3238177
https://arxiv.org/abs/2005.02390

[12] MakerDAO, https://makerdao.com/en/, 2021.

[13] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009. [Online]. Available:

http://www.bitcoin.org/bitcoin.pdf

[14] L. Zhou, L. Zhang, Y. Zhao, R. Zheng, and K. Song, “A scientometric review of blockchain research,”

Information Systems and e-Business Management, 02 2020.

[15] N. Szabo, “Smart contracts : Building blocks for digital markets,” 2018.

[16] V. Buterin, “A next-generation smart contract and decentralized application platform,” 2015.

[17] G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum

project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.

[18] H. Rice, “Classes of recursively enumerable sets and their decision problems,” Transactions of the

American Mathematical Society, vol. 74, pp. 358–366, 1953.

[19] P. Tolmach, Y. Li, S.-W. Lin, Y. Liu, and Z. Li, “A survey of smart contract formal specification and

verification,” 2020.

[20] A. Singh, R. Parizi, Q. Zhang, K.-K. R. Choo, and A. Dehghantanha, “Blockchain smart contracts

formalization: Approaches and challenges to address vulnerabilities,” Computers Security, vol. 88,

p. 101654, 10 2019.

[21] M. Almakhour, L. Sliman, A. E. Samhat, and A. Mellouk, “Verification of smart contracts:

A survey,” Pervasive and Mobile Computing, vol. 67, p. 101227, 2020. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1574119220300821

[22] N. Sánchez-Gómez, J. Torres-Valderrama, J. A. Garcı́a-Garcı́a, J. J. Gutiérrez, and M. J. Escalona,

“Model-based software design and testing in blockchain smart contracts: A systematic literature

review,” IEEE Access, vol. 8, pp. 164 556–164 569, 2020.

[23] Z. Nehaı̈, P. Piriou, and F. Daumas, “Model-checking of smart contracts,” in 2018 IEEE Interna-

tional Conference on Internet of Things (iThings) and IEEE Green Computing and Communica-

tions (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart

Data (SmartData), 2018, pp. 980–987.

[24] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety of smart contracts,” 01

2018.

[25] K. Nelaturu, A. Mavridoul, A. Veneris, and A. Laszka, “Verified development and deployment

of multiple interacting smart contracts with verisolid,” in 2020 IEEE International Conference on

Blockchain and Cryptocurrency (ICBC), 2020, pp. 1–9.

86

https://makerdao.com/en/
http://www.bitcoin.org/bitcoin.pdf
http://www.sciencedirect.com/science/article/pii/S1574119220300821

[26] D. Annenkov, J. B. Nielsen, and B. Spitters, “Concert: a smart contract certification framework in

coq,” Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and

Proofs, Jan 2020. [Online]. Available: http://dx.doi.org/10.1145/3372885.3373829

[27] W. Ahrendt and R. Bubel, “Functional verification of smart contracts via strong data integrity,” in

Leveraging Applications of Formal Methods, Verification and Validation: Applications, T. Margaria

and B. Steffen, Eds. Cham: Springer International Publishing, 2020, pp. 9–24.

[28] Z. Yang, H. Lei, and W. Qian, “A hybrid formal verification system in coq for ensuring the reliability

and security of ethereum-based service smart contracts,” IEEE Access, vol. PP, pp. 1–1, 01 2020.

[29] A. Stefănescu, D. Park, S. Yuwen, Y. Li, and G. Roşu, “Semantics-based program verifiers

for all languages,” SIGPLAN Not., vol. 51, no. 10, p. 74–91, Oct. 2016. [Online]. Available:

https://doi.org/10.1145/3022671.2984027

[30] M. Mandrykin, J. O’Shannessy, J. Payne, and I. Shchepetkov, “Formal specification of a security

framework for smart contracts,” 2020.

[31] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the greedy, prodigal, and suicidal

contracts at scale,” in Proceedings of the 34th Annual Computer Security Applications Conference,

ser. ACSAC ’18. New York, NY, USA: Association for Computing Machinery, 2018, p. 653–663.

[Online]. Available: https://doi.org/10.1145/3274694.3274743

[32] D. Annenkov, M. Milo, J. B. Nielsen, and B. Spitters, “Verifying, testing and running smart contracts

in concert.”

[33] A. Li, J. A. Choi, and F. Long, “Securing smart contract with runtime validation,” Proceedings of

the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, Jun

2020. [Online]. Available: http://dx.doi.org/10.1145/3385412.3385982

[34] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and M. Vechev, “Verx: Safety verification

of smart contracts,” 05 2020, pp. 1661–1677.

[35] D. Park, Y. Zhang, and G. Rosu, “End-to-end formal verification of ethereum 2.0 deposit smart con-

tract,” in Computer Aided Verification, S. K. Lahiri and C. Wang, Eds. Cham: Springer International

Publishing, 2020, pp. 151–164.

[36] G. Rosu, “K framework - an overview,” https://runtimeverification.com/blog/

k-framework-an-overview/, 2018.

[37] A. Stefanescu, Ş. Ciobâcă, R. Mereuta, B. M. Moore, T. Serbanuta, and G. Rosu,

“All-path reachability logic,” CoRR, vol. abs/1810.10826, 2018. [Online]. Available: http:

//arxiv.org/abs/1810.10826

87

http://dx.doi.org/10.1145/3372885.3373829
https://doi.org/10.1145/3022671.2984027
https://doi.org/10.1145/3274694.3274743
http://dx.doi.org/10.1145/3385412.3385982
https://runtimeverification.com/blog/k-framework-an-overview/
https://runtimeverification.com/blog/k-framework-an-overview/
http://arxiv.org/abs/1810.10826
http://arxiv.org/abs/1810.10826

[38] G. Rosu, “Matching logic - extended abstract,” in 26th International Conference on Rewriting Tech-

niques and Applications, RTA 2015, ser. Leibniz International Proceedings in Informatics, LIPIcs,

M. Fernandez, Ed. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing,

Jun. 2015, pp. 5–21, 26th International Conference on Rewriting Techniques and Applications, RTA

2015 ; Conference date: 29-06-2015 Through 01-07-2015.

[39] R. Christensen, “Makerdao has come full circle,” https://blog.makerdao.com/

makerdao-has-come-full-circle//, 2021.

[40] ——, “Introducing edollar, the ultimate stablecoin built on ethereum,” https://www.reddit.com/r/

ethereum/comments/30f98i/introducing edollar the ultimate stablecoin built/, 2014.

[41] MakerDAO, https://github.com/makerdao, 2021.

[42] ——, https://vote.makerdao.com/, 2021.

[43] D. D. McCracken and E. D. Reilly, “Backus-naur form (bnf),” 2003.

[44] DappHub, https://github.com/dapphub/dapptools/tree/master/src/hevm, 2021.

[45] Lucash, https://hackerone.com/lucash-dev, 2019.

[46] R. Burton, “Formal verification, virtual hardware, and engineering for blockchains,” https://medium.

com/balance-io/formal-verification-virtual-hardware-and-engineering-for-blockchains-51d07abdc934,

2019.

[47] V. Cheval, H. Comon-Lundh, and S. Delaune, “Automating security analysis: Symbolic

equivalence of constraint systems,” in Proceedings of the 5th International Conference

on Automated Reasoning, ser. IJCAR’10, 2010, p. 412–426. [Online]. Available: https:

//doi.org/10.1007/978-3-642-14203-1 35

[48] T. Matsumoto, H. Saito, and M. Fujita, “Equivalence checking of c programs by locally performing

symbolic simulation on dependence graphs,” 04 2006, pp. 6 pp.–.

[49] J. von Wright, “Program refinement by theorem prover,” 1994.

[50] M. Mumme and G. Ciardo, “A fully symbolic bisimulation algorithm,” vol. 6945, 09 2011, pp. 218–

230.

[51] Y. Nishida, H. Saito, R. Chen, A. Kawata, J. Furuse, K. Suenaga, and A. Igarashi, Helmholtz: A

Verifier for Tezos Smart Contracts Based on Refinement Types, 03 2021, pp. 262–280.

[52] B. Tan, B. Mariano, S. Lahiri, I. Dillig, and Y. Feng, “Soltype: Refinement types for solidity,” 2021.

88

https://blog.makerdao.com/makerdao-has-come-full-circle//
https://blog.makerdao.com/makerdao-has-come-full-circle//
https://www.reddit.com/r/ethereum/comments/30f98i/introducing_edollar_the_ultimate_stablecoin_built/
https://www.reddit.com/r/ethereum/comments/30f98i/introducing_edollar_the_ultimate_stablecoin_built/
https://github.com/makerdao
https://vote.makerdao.com/
https://github.com/dapphub/dapptools/tree/master/src/hevm
https://hackerone.com/lucash-dev
https://medium.com/balance-io/formal-verification-virtual-hardware-and-engineering-for-blockchains-51d07abdc934
https://medium.com/balance-io/formal-verification-virtual-hardware-and-engineering-for-blockchains-51d07abdc934
https://doi.org/10.1007/978-3-642-14203-1_35
https://doi.org/10.1007/978-3-642-14203-1_35

[53] D. Park, T. Kasampalis, V. S. Adve, and G. Rosu, “Cut-bisimulation and program equivalence,” 2020.

[54] E. Foundation, https://docs.soliditylang.org/en/v0.8.9/internals/layout in storage.html, 2021.

[55] D. Park, https://github.com/ethereum/deposit contract/issues/27, 2019.

[56] ——, https://github.com/ethereum/deposit contract/issues/28, 2019.

[57] ——, https://github.com/ethereum/deposit contract/issues/38, 2019.

89

https://docs.soliditylang.org/en/v0.8.9/internals/layout_in_storage.html
https://github.com/ethereum/deposit_contract/issues/27
https://github.com/ethereum/deposit_contract/issues/28
https://github.com/ethereum/deposit_contract/issues/38

90

A
Most prominent DeFi hacks of 2020

91

Figure A.1: Most prominent DeFi hacks of 2020.

92

B
Overview of Pickle Finance exploit

93

Figure B.1: Overview of Pickle Finance exploit, 19.7 million dollars where stolen. [3]

94

C
KEVM configuration

� �
1 configuration

2 <kevm>

3 <k> $PGM:EthereumSimulation </k>

4 <exit-code exit=""> 1 </exit-code>

5 <mode> $MODE:Mode </mode>

6 <schedule> $SCHEDULE:Schedule </schedule>

7

8 <ethereum>

9

10 // EVM Specific

11 // ============

12

13 <evm>

14

15 // Mutable during a single transaction

95

16 // -----------------------------------

17

18 <output> .ByteArray </output> // H RETURN

19 <statusCode> .StatusCode </statusCode>

20 <endPC> 0 </endPC>

21 <callStack> .List </callStack>

22 <interimStates> .List </interimStates>

23 <touchedAccounts> .Set </touchedAccounts>

24

25 <callState>

26 <program> .ByteArray </program>

27 <jumpDests> .Set </jumpDests>

28

29 // I *

30 <id> .Account </id> // I a

31 <caller> .Account </caller> // I s

32 <callData> .ByteArray </callData> // I d

33 <callValue> 0 </callValue> // I v

34

35 // \mu *

36 <wordStack> .WordStack </wordStack> // \mu s

37 <localMem> .Memory </localMem> // \mu m

38 <pc> 0 </pc> // \mu pc

39 <gas> 0 </gas> // \mu g

40 <memoryUsed> 0 </memoryUsed> // \mu i

41 <callGas> 0 </callGas>

42

43 <static> false </static>

44 <callDepth> 0 </callDepth>

45 </callState>

46

47 // A * (execution substate)

48 <substate>

49 <selfDestruct> .Set </selfDestruct> // A s

50 <log> .List </log> // A l

51 <refund> 0 </refund> // A r

52 <accessedAccounts> .Set </accessedAccounts>

53 <accessedStorage> .Map </accessedStorage>

96

54 </substate>

55

56 // Immutable during a single transaction

57 // -------------------------------------

58

59 <gasPrice> 0 </gasPrice> // I p

60 <origin> .Account </origin> // I o

61

62 // I H* (block information)

63 <blockhashes> .List </blockhashes>

64 <block>

65 <previousHash> 0 </previousHash> // I Hp

66 <ommersHash> 0 </ommersHash> // I Ho

67 <coinbase> 0 </coinbase> // I Hc

68 <stateRoot> 0 </stateRoot> // I Hr

69 <transactionsRoot> 0 </transactionsRoot> // I Ht

70 <receiptsRoot> 0 </receiptsRoot> // I He

71 <logsBloom> .ByteArray </logsBloom> // I Hb

72 <difficulty> 0 </difficulty> // I Hd

73 <number> 0 </number> // I Hi

74 <gasLimit> 0 </gasLimit> // I Hl

75 <gasUsed> 0 </gasUsed> // I Hg

76 <timestamp> 0 </timestamp> // I Hs

77 <extraData> .ByteArray </extraData> // I Hx

78 <mixHash> 0 </mixHash> // I Hm

79 <blockNonce> 0 </blockNonce> // I Hn

80

81 <ommerBlockHeaders> [.JSONs] </ommerBlockHeaders>

82 </block>

83

84 </evm>

85

86 // Ethereum Network

87 // ================

88

89 <network>

90

91 // Chain identifier

97

92 // ----------------

93 <chainID> $CHAINID:Int </chainID>

94

95 // Accounts Record

96 // ---------------

97

98 <activeAccounts> .Set </activeAccounts>

99 <accounts>

100 <account multiplicity="*" type="Map">

101 <acctID> 0 </acctID>

102 <balance> 0 </balance>

103 <code> .ByteArray:AccountCode </code>

104 <storage> .Map </storage>

105 <origStorage> .Map </origStorage>

106 <nonce> 0 </nonce>

107 </account>

108 </accounts>

109

110 // Transactions Record

111 // -------------------

112

113 <txOrder> .List </txOrder>

114 <txPending> .List </txPending>

115

116 <messages>

117 <message multiplicity="*" type="Map">

118 <msgID> 0 </msgID>

119 <txNonce> 0 </txNonce> // T n

120 <txGasPrice> 0 </txGasPrice> // T p

121 <txGasLimit> 0 </txGasLimit> // T g

122 <to> .Account </to> // T t

123 <value> 0 </value> // T v

124 <sigV> 0 </sigV> // T w

125 <sigR> .ByteArray </sigR> // T r

126 <sigS> .ByteArray </sigS> // T s

127 <data> .ByteArray </data> // T i/T e

128 <txType> 0 </txType>

129 <txAccess> [.JSONs] </txAccess>

98

130 <txChainID> 0 </txChainID>

131 </message>

132 </messages>

133

134 </network>

135

136 </ethereum>

137 </kevm>

138

139 syntax EthereumSimulation

140 syntax AccountCode ::= ByteArray

141 // --------------------------------� �

99

100

D
MakerDAO Actors and their Goals,

Obligations, Punishments, Incentives,

Required Knowledge, Risk and

Interaction with the MakerDAO

Protocol

101

Ta
bl

e
D

.1
:

S
ub

se
ts

of
A

ct
or

s
an

d
th

ei
rr

eq
ui

re
d

kn
ow

le
dg

e.

ID
A

ct
or

s
R

eq
ui

re
d

K
no

w
le

dg
e

A
D

ai
H

ol
de

rs
B

as
ic

,s
ho

ul
d

kn
ow

D
A

Ii
s

st
ab

le
B

S
ys

te
m

U
se

rs
Va

ul
tO

w
ne

rs
In

te
rm

ed
ia

te
,m

us
tk

no
w

va
ul

td
yn

am
ic

s

C
E

xa
m

pl
es

of
M

K
R

H
ol

de
rs

re
sp

on
si

bi
lit

ie
s

&
ca

te
go

ri
es

A
dv

an
ce

d,
sh

ou
ld

kn
ow

al
ls

ys
te

m
dy

na
m

ic
s

D
R

is
k

A
dv

an
ce

d,
m

us
tk

no
w

al
ls

ys
te

m
dy

na
m

ic
s

E
O

ra
cl

es

O
ra

cl
e

U
pd

at
es

:
M

ed
iu

m
,m

us
tk

no
w

ho
w

to
up

da
te

co
lla

te
ra

lp
ri

ce
Te

am
:

A
dv

an
ce

d,
m

us
tk

no
w

al
ls

ys
te

m
dy

na
m

ic
s

F
R

ea
lW

or
ld

Fi
na

nc
e

A
dv

an
ce

d,
m

us
tk

no
w

al
ls

ys
te

m
dy

na
m

ic
s

G
G

ro
w

th
A

dv
an

ce
d,

m
us

tk
no

w
al

ls
ys

te
m

dy
na

m
ic

s
H

P
ro

to
co

lE
ng

in
ee

rin
g

A
dv

an
ce

d,
m

us
tk

no
w

al
ls

ys
te

m
dy

na
m

ic
s

I
G

ov
A

lp
ha

A
dv

an
ce

d,
m

us
tk

no
w

al
ls

ys
te

m
dy

na
m

ic
s

J
C

on
te

nt
P

ro
du

ct
io

n
M

ed
iu

m
,m

us
tk

no
w

m
os

ts
ys

te
m

dy
na

m
ic

s
L

S
us

ta
in

ab
le

E
co

sy
st

em
S

ca
lin

g
M

ed
iu

m
,m

us
tk

no
w

m
os

ts
ys

te
m

dy
na

m
ic

s
M

G
ov

er
na

nc
e

C
om

m
un

ic
at

io
ns

M
ed

iu
m

,m
us

tk
no

w
m

os
ts

ys
te

m
dy

na
m

ic
s

N

M
K

R
H

ol
de

rs
C

or
e

U
ni

tT
ea

m
s

D
ai

Fo
un

da
tio

n
M

ed
iu

m
,m

us
tk

no
w

m
os

ts
ys

te
m

dy
na

m
ic

s

O
K

ee
pe

rs

E
nt

iti
es

th
at

pe
rm

is
si

on
le

ss
ly

ex
ec

ut
e

on
-c

ha
in

ac
tio

ns
ne

ce
ss

ar
y

fo
rt

he
pr

ot
oc

ol
to

fu
nc

tio
n.

In
th

e
ev

en
to

fK
ee

pe
r

in
ce

nt
iv

e
fa

ilu
re

,M
K

R
ho

ld
er

s
m

us
tb

e
re

ad
y

to
st

ep
up

an
d

di
ve

rt
sy

st
em

fu
nd

s
to

en
su

re
th

at
ne

ce
ss

ar
y

ac
tio

ns
ar

e
ta

ke
n.

A
dv

an
ce

d,
m

us
tk

no
w

m
os

ts
ys

te
m

dy
na

m
ic

s

102

https://mips.makerdao.com/mips/details/MIP39c2SP2
https://mips.makerdao.com/mips/details/MIP39c2SP13
https://mips.makerdao.com/mips/details/MIP39c2SP1
https://mips.makerdao.com/mips/details/MIP39c2SP4
https://mips.makerdao.com/mips/details/MIP39c2SP7
https://mips.makerdao.com/mips/details/MIP39c2SP3
https://mips.makerdao.com/mips/details/MIP39c2SP5
https://mips.makerdao.com/mips/details/MIP39c2SP10
https://mips.makerdao.com/mips/details/MIP39c2SP8
https://forum.makerdao.com/c/core-units/31
https://mips.makerdao.com/mips/details/MIP39c2SP17

Ta
bl

e
D

.2
:

A
ct

or
s

an
d

th
ei

rg
oa

ls
,o

bl
ig

at
io

ns
an

d
pu

ni
sh

m
en

ts
.

ID
G

oa
ls

O
bl

ig
at

io
ns

P
un

is
hm

en
t

A
O

w
n

de
ce

nt
ra

liz
ed

st
ab

le
co

in
/

/
B

S
pe

cu
la

te
R

ep
ay

D
eb

t
In

ca
pa

bl
e

of
re

tr
ie

vi
ng

co
lla

te
ra

l

C
M

on
ito

ra
nd

ch
an

ge
sy

st
em

-V
ot

e
on

S
pe

lls
-T

rig
ge

rE
S

M
/

D
E

ns
ur

e
M

ak
er

P
ro

to
co

l’s
ris

k
pr

ofi
le

is
m

iti
ga

te
d

at
al

lt
im

es
-C

al
cu

la
tio

ns
an

d
pr

op
os

ed
ad

ju
st

m
en

ts
of

pa
ra

m
et

er
s

-R
is

k
m

et
ric

s
of

cy
pt

o
co

lla
te

ra
ld

eb
te

xp
os

ur
e

R
em

ov
ed

fro
m

te
am

E
M

in
im

iz
e

ex
te

rn
al

de
pe

nd
en

ci
es

to
re

du
ce

th
e

at
ta

ck
su

rfa
ce

an
d

m
ax

im
iz

e
re

si
lie

nc
y

of
th

e
sy

st
em

B
rin

g
of

f-c
ha

in
in

fo
rm

at
io

n
to

on
-c

ha
in

sy
st

em
R

em
ov

ed
fro

m
te

am

F
P

ur
su

e
R

ea
l-W

or
ld

A
ss

et
w

or
k

an
d

m
or

e
ge

ne
ra

lly
he

lp
s

M
ak

er
D

A
O

to
ta

ke
ov

er
th

e
tra

di
tio

na
lfi

na
nc

e
w

or
ld

.

-I
nv

es
tin

g
in

R
ea

l-W
or

ld
A

ss
et

s
-Y

ie
ld

cu
rv

e
im

pl
ic

at
io

ns
in

D
eF

i
-A

cc
ou

nt
in

g,
so

lv
en

cy
,p

ot
en

tia
lr

eg
ul

at
or

y
re

po
rt

in
g

R
em

ov
ed

fro
m

te
am

G
G

ro
w

th
e

av
ai

la
bl

e
di

st
rib

ut
io

n
ch

an
ne

ls
fo

rt
he

M
ak

er
pr

ot
oc

ol

-G
iv

e
su

pp
or

ta
nd

ed
uc

at
io

n
to

dr
iv

e
D

ai
ad

op
tio

n
an

d
in

te
gr

at
io

ns
.

-G
en

er
at

e
ex

pa
ns

io
n

an
d

ad
op

tio
n

of
D

ai
.

-D
ev

el
op

an
in

te
gr

at
io

n
st

ra
te

gy
an

d
gi

ve
co

nt
in

uo
us

ad
vi

ce
to

th
e

ne
w

es
td

is
tr

ib
ut

io
n

ch
an

ne
ls

.

R
em

ov
ed

fro
m

te
am

H
E

ng
in

ee
rin

g,
se

cu
rit

y,
re

se
ar

ch
an

d
sm

ar
tc

on
-

tra
ct

de
ve

lo
pm

en
te

xp
er

ie
nc

e
to

en
su

re
th

at
th

e
M

ak
er

pr
ot

oc
ol

ca
n

sa
fe

ly
co

nt
in

ue
to

gr
ow

-E
xt

en
di

ng
th

e
fu

nc
tio

na
lit

y
of

th
e

pr
ot

oc
ol

-A
ss

is
tin

g
in

th
e

m
ai

nt
en

an
ce

an
d

op
er

at
io

n
of

ex
is

tin
g

sm
ar

tc
on

tra
ct

s
-E

ns
ur

in
g

th
e

sa
fe

ty
an

d
co

rr
ec

tn
es

s
of

th
e

pr
ot

oc
ol

R
em

ov
ed

fro
m

te
am

I
C

on
si

st
en

ta
nd

w
el

l-r
un

go
ve

rn
an

ce
pr

oc
es

s

-R
em

ai
n

ne
ut

ra
la

nd
ob

je
ct

iv
e

on
is

su
es

ou
ts

id
e

of
th

e
go

ve
rn

an
ce

do
m

ai
n

an
d

fo
cu

s
on

th
e

fa
ci

lit
at

io
n

of
go

ve
rn

an
ce

pr
oc

es
se

s
-V

oi
ce

op
in

io
ns

on
is

su
es

re
la

te
d

to
th

e
st

ru
ct

ur
e

an
d

pr
oc

es
se

s
of

go
ve

rn
an

ce
w

ith
in

M
ak

er
D

A
O

R
em

ov
ed

fro
m

te
am

J
E

nh
an

ce
M

ak
er

D
A

O
’s

po
si

tio
n

as
a

re
pu

ta
bl

e
au

th
or

ity
on

to
pi

cs
lik

e
de

ce
nt

ra
liz

ed
go

ve
rn

an
ce

,t
ok

en
en

gi
ne

er
in

g,
an

d
D

eF
i

-P
ro

du
ce

en
te

rt
ai

ni
ng

an
d

ed
uc

at
io

na
lc

on
te

nt
th

at
pr

om
ot

es
en

ga
ge

m
en

tw
ith

D
ai

an
d

th
e

M
ak

er
P

ro
to

co
l.

-P
ro

du
ce

pr
om

ot
io

na
lc

on
te

nt
fo

ro
th

er
C

or
e

U
ni

ts
an

d
pr

ov
id

e
re

so
ur

ce
s

to
ed

uc
at

e
th

e
ec

os
ys

te
m

on
be

st
pr

ac
tic

es
in

co
nt

en
t

pr
od

uc
tio

n
an

d
di

st
rib

ut
io

n.

R
em

ov
ed

fro
m

te
am

L
G

ro
w

th
e

M
ak

er
P

ro
to

co
l’s

m
oa

ts
by

re
m

ov
in

g
ba

rr
ie

rs
be

tw
ee

n
de

ce
nt

ra
liz

ed
w

or
kf

or
ce

,c
ap

ita
l,

an
d

w
or

k.

-I
de

nt
ify

sc
al

in
g

bo
ttl

en
ec

ks
-R

&
D

on
re

m
ov

in
g

th
es

e
bo

ttl
en

ec
ks

-F
un

d
po

ss
ib

le
so

lu
tio

ns
R

em
ov

ed
fro

m
te

am

M
Fo

cu
s

on
im

pr
ov

in
g

M
ak

er
D

A
O

as
a

pu
bl

ic
or

ga
ni

za
tio

n,
no

tj
us

ta
s

a
te

ch
no

lo
gy

-A
gg

re
ga

te
an

d
si

m
pl

ify
in

fo
rm

at
io

n
av

ai
la

bl
e

on
re

so
ur

ce
s

an
d

se
rv

ic
es

to
st

ak
eh

ol
de

rs
R

em
ov

ed
fro

m
te

am

N
P

ro
te

ct
M

ak
er

’s
in

ta
ng

ib
le

as
se

ts
an

d
pr

ep
ar

e
to

m
iti

ga
te

pr
ob

le
m

s
in

w
or

st
ca

se
sc

en
ar

io
s

-S
af

eg
ua

rd
in

g
of

ne
w

in
te

lle
ct

ua
lp

ro
pe

rt
y

th
at

is
ad

de
d

to
th

e
P

ro
to

co
l

-C
re

at
e

tra
ns

pa
re

nc
y

ar
ou

nd
ho

w
th

e
us

ag
e

rig
ht

s
of

th
e

M
ak

er
A

ss
et

s
ar

e
al

lo
ca

te
d

R
em

ov
ed

fro
m

te
am

P
er

m
is

si
on

le
ss

po
ss

ib
le

ac
tio

ns

O
-E

xe
cu

te
pr

op
os

al
s

-P
ro

vi
de

ba
la

nc
e

to
sy

st
em

di
sc

re
pa

nc
ie

s
-P

ro
vi

de
liq

ui
di

ty
to

co
lla

te
ra

la
uc

tio
ns

-A
uc

tio
ns

-I
lk

R
at

es
U

pd
at

es
-A

rb
itr

ag
e

-E
xe

cu
te

sp
el

ls

/

103

Ta
bl

e
D

.3
:

A
ct

or
s

an
d

th
ei

rb
en

efi
ts

an
d

in
ce

nt
iv

es
,t

he
ir

ris
ks

an
d

ris
k

as
se

ss
m

en
t,

an
d

in
te

ra
ct

io
ns

w
ith

th
e

M
ak

er
D

A
O

pr
ot

oc
ol

.

ID
B

en
efi

ts
/In

ce
nt

iv
es

R
is

k
R

is
k

A
ss

es
sm

en
t

In
te

ra
ct

s
W

ith
A

S
ta

bi
lit

y
D

A
If

al
lin

g
of

fp
eg

LO
W

M
on

ey
M

ar
ke

ts

B
B

or
ro

w
-C

ol
la

te
ra

lP
ric

e
du

m
p

liq
ui

da
te

s
co

lla
te

ra
l

-D
A

Ir
is

in
g

ov
er

th
e

pe
g

an
d

be
co

m
in

g
ex

tra
ex

pe
ns

iv
e

to
re

pa
y

de
bt

M
E

D
IU

M
Va

ul
ts

C
-B

et
te

rf
un

ct
io

ni
ng

of
th

e
sy

st
em

w
ill

ev
en

tu
al

ly
ac

cr
ue

va
lu

e
to

M
K

R
ho

ld
er

s

-D
ec

is
io

ns
m

ig
ht

al
so

ha
ve

ne
ga

tiv
e

in
flu

en
ce

on
th

e
sy

st
em

w
hi

ch
w

ill
de

va
lu

e
th

e
M

K
R

to
ke

n,
sy

st
em

ca
sh

-fl
ow

s
or

le
ad

to
in

so
lv

en
cy

of
D

A
I

M
E

D
IU

M
G

ov
er

na
nc

e
M

od
ul

e

D
P

ai
d

by
th

e
sy

st
em

on
sc

he
du

le
N

ot
m

ee
tin

g
de

ad
lin

es
/p

ro
po

se
d

go
al

s
G

ov
er

na
nc

e
M

od
ul

e

E

Te
am

:
P

ai
d

by
th

e
sy

st
em

on
sc

he
du

le
O

ra
cl

e
U

pd
at

es
:

P
ai

d
by

th
e

sy
st

em
pe

r
or

ac
le

up
da

te

N
ot

m
ee

tin
g

de
ad

lin
es

/p
ro

po
se

d
go

al
s

-O
ra

cl
e

M
od

ul
e

-G
ov

er
na

nc
e

M
od

ul
e

F
P

ai
d

by
th

e
sy

st
em

on
sc

he
du

le
N

ot
m

ee
tin

g
de

ad
lin

es
/p

ro
po

se
d

go
al

s
G

ov
er

na
nc

e
M

od
ul

e
G

P
ai

d
by

th
e

sy
st

em
on

sc
he

du
le

N
ot

m
ee

tin
g

de
ad

lin
es

/p
ro

po
se

d
go

al
s

G
ov

er
na

nc
e

M
od

ul
e

H
P

ai
d

by
th

e
sy

st
em

on
sc

he
du

le
N

ot
m

ee
tin

g
de

ad
lin

es
/p

ro
po

se
d

go
al

s
W

ho
le

S
ys

te
m

(m
ai

nl
y

Va
ta

nd
G

ov
)

I
P

ai
d

by
th

e
sy

st
em

on
sc

he
du

le
N

ot
m

ee
tin

g
de

ad
lin

es
/p

ro
po

se
d

go
al

s
-G

ov
er

na
nc

e
M

od
ul

e
-C

om
m

un
ity

J
P

ai
d

by
th

e
sy

st
em

on
sc

he
du

le
N

ot
m

ee
tin

g
de

ad
lin

es
/p

ro
po

se
d

go
al

s
-C

om
m

un
ity

-M
ed

ia

L
P

ai
d

by
th

e
sy

st
em

on
sc

he
du

le
N

ot
m

ee
tin

g
de

ad
lin

es
/p

ro
po

se
d

go
al

s
-G

ov
er

na
nc

e
M

od
ul

e
-C

om
m

un
ity

M
P

ai
d

by
th

e
sy

st
em

on
sc

he
du

le
N

ot
m

ee
tin

g
de

ad
lin

es
/p

ro
po

se
d

go
al

s
-C

om
m

un
ity

N
P

ai
d

by
th

e
sy

st
em

on
sc

he
du

le
N

ot
m

ee
tin

g
de

ad
lin

es
/p

ro
po

se
d

go
al

s
-G

ov
er

na
nc

e
M

od
ul

e
-C

om
m

un
ity

O

-B
ou

nt
ie

s
-D

is
co

un
te

d
D

A
I

-D
is

co
un

te
d

C
ol

la
te

ra
l

-D
is

co
un

te
d

M
K

R

/
V

E
R

Y
LO

W
-G

ov
er

na
nc

e
M

od
ul

e
-S

ys
te

m
S

ta
bi

liz
er

M
od

ul
e

-R
at

es
M

od
ul

e

104

E
MakerDAO Smart Contracts

Implementation Diagram

105

Fi
gu

re
E

.1
:

S
m

ar
tc

on
tra

ct
s

im
pl

em
en

ta
tio

n
di

ag
ra

m
.[

4]

106

F
Related Work Taxonomy

107

Fi
gu

re
F.

1:
Ta

xo
no

m
y

of
Fr

am
ew

or
ks

an
d

To
ol

s
on

Fo
rm

al
Ve

rifi
ca

tio
n

of
S

m
ar

tC
on

tra
ct

s.

108

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Thesis Outline

	2 Background
	2.1 Blockchain
	2.2 Smart Contracts
	2.3 Ethereum
	2.4 Decentralized Finance
	2.5 Formal Verification
	2.5.1 Formal Verification and Smart Contracts

	3 K Framework
	3.1 Introduction
	3.2 Reachability Logic
	3.2.1 Proving with Reachability logic

	3.3 KEVM

	4 MakerDAO
	4.1 Intent
	4.1.1 Motivation
	4.1.2 Goal

	4.2 Mechanisms
	4.2.1 Characterization of actors
	4.2.2 Collateralized Debt Position
	4.2.3 Liquidations
	4.2.4 DAI Savings Rate - DSR
	4.2.5 System Stabilizer and Rates
	4.2.6 Oracles
	4.2.7 Governance
	4.2.8 Emergency Shutdown

	4.3 Implementation

	5 MakerDAO K specifications
	5.1 High-level model
	5.1.1 Types and Basic Operations
	5.1.2 The Maker Configuration
	5.1.3 State Transition Functions
	5.1.3.A Transactions
	5.1.3.B Authorization
	5.1.3.C Function Calls
	5.1.3.D Modifiers
	5.1.3.E Exception Handling
	5.1.3.F Events
	5.1.3.G Time steps
	5.1.3.H Contract Semantics

	5.1.4 Model verification

	5.2 Low-level model
	5.2.1 Model Verification

	6 High-level Specification Extension
	6.1 Liquidations 2.0
	6.1.1 System Upgrades
	6.1.2 Liquidations 2.0 High-level K Specifications

	6.2 Fundamental Equation of DAI

	7 Refinement Proofs
	7.1 Motivation
	7.2 Related Work
	7.3 Refinement Methods
	7.3.1 Execution Refinement
	7.3.1.A Model Configuration
	7.3.1.B Data Structures
	7.3.1.C Specification Transition Functions

	7.3.2 State Refinement
	7.3.2.A Abstract Storage
	7.3.2.B Storage Reads
	7.3.2.C Storage Writes
	7.3.2.D Storage Equivalence

	8 Analysis
	8.1 Liquidations 2.0
	8.2 Fundamental DAI Equation
	8.3 Abstract Storage

	9 Conclusions
	9.1 Contributions
	9.2 Future Work

	Bibliography
	Appendix A

	A Most prominent DeFi hacks of 2020
	Appendix B

	B Overview of Pickle Finance exploit
	Appendix C

	C KEVM configuration
	Appendix D

	D MakerDAO Actors and their Goals, Obligations, Punishments, Incentives, Required Knowledge, Risk and Interaction with the MakerDAO Protocol
	Appendix E

	E MakerDAO Smart Contracts Implementation Diagram
	Appendix F

	F Related Work Taxonomy

