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Resumo

Este trabalho aborda o problema do controlo de formação de um multirotor e um (ou mais) veículos

marinhos que operam à superfície da água, com o objectivo final de circundar a fronteira de um derrame

químico. A dissertação começa por introduzir os modelos matemáticos da classe de robôs marinhos

Medusa e de robôs multirotores, seguidos da concepção de controladores de movimento que permitem

a estes veículos seguir, de forma individual, um caminho definido por equações paramétricas, utilizando

esquemas de ”inner-outer loop” acoplados a técnicas baseadas em Lyapunov. Numa segunda fase, é

introduzido um controlador de coordenação distribuído que utiliza comunicações desencadeadas por

eventos, permitindo aos veículos realizar o seguimento de trajectórias cooperativamente de acordo com

uma formação geométrica pré-definida. Na etapa seguinte, é desenvolvido um algoritmo de planea-

mento de caminhos em tempo real que faz uso de uma câmera a bordo do multirotor, capaz de detectar

nas imagens produzidas quais os pixels que codificam partes de um limite do derrame químico. Estes

dados são utilizados para gerar e atualizar em tempo real um conjunto de percursos suaves modela-

dos por B-splines. O desempenho do sistema é avaliado através do recurso a software de simulação

3-D, tornando possível a simulação visual de um derrame de um agente químico no mar. São também

fornecidos resultados de testes reais para partes do sistema, onde dois veículos Medusa são obriga-

dos a executar uma missão em que têm de seguir um caminho em forma de ”lawn-mowing”, de forma

cooperativa, à superfície da água.

Palavras-Chave: Controlo de Quadrotor, Control de Veiculo Aquático, Controlo Coo-
perativo, Seguimento de Fronteira Ambiental
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Abstract

This work addresses the problem of formation control of a quadrotor and one (or more) marine vehicles

operating at the surface of the water with the end goal of encircling the boundary of a chemical spill.

Firstly, the mathematical models of the Medusa class of marine robots, and quadrotor aircrafts are in-

troduced, followed by the design of single vehicle motion controllers that allow these vehicles to follow

a parameterized path individually. Inner-outer loop schemes coupled with Lyapunov based techniques

are used for control design. At a second stage, a distributed coordination controller using event triggered

communications is introduced, enabling the vehicles to perform cooperative path following missions ac-

cording to a pre-defined geometric formation. In the next step, a real time path planning algorithm is

developed that makes use of a camera sensor, installed on-board the quadrotor. This sensor enables

the detection in the image of which pixels encode parts of a chemical spill boundary and use them to

generate and update in real time a set of smooth B-spline based paths for all the vehicles to follow coop-

eratively. The performance of the complete system is evaluated by resorting to 3-D simulation software,

making it possible to simulate visually a chemical spill. Results from real water trials are also provided

for parts of the system, where two Medusa vehicles are required to perform a static lawn-mowing path

following mission cooperatively at the surface of the water.

Keywords: Quadrotor control, Autonomous Surface Vehicle control, Cooperative Path
Following, Environmental Boundary Following
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Chapter 1

Introduction

1.1 Motivation

The ocean covers around 361M km2 of the Earth’s surface [1] and there is evidence that it was at its

bottom that the first primordial cells have formed, about 3 to 4 billion years ago [2]. According to Live-

Science [3], it is estimated that to this day more than two third of the species that inhabit it are yet to be

identified by humans. The ocean also plays a key role in our modern society, being a source of food and

sustainable energy that powers millions of homes [4]. It is also key when it comes to the world’s economy,

being the path to many intercontinental transportation routes that are still used to this day.

Unfortunately, this vast habitat is also known for environmental disasters, some as a direct conse-

quence of human behaviour, such as oil spills or ocean waste disposal and others as an indirect conse-

quence, such as global warming and the rise of seawater levels. These catastrophes represent a major

threat to wild life, and as a consequence a threat to humans. An example of such human interference

activities are dredging operations, which are usually conducted to shape the shoreline, but can lead to

short-term water pollution (Figure 1.1).

Figure 1.1: Dredging in Foz do Arelho, Portugal (08/2021)

In the case of oil spills or waste disposals, surveillance as well as cleanup missions must be carried

out in order to restore these environments to their previous states. These operations are expensive to

conduct and require the use of huge vessels with specialized staff on board to conduct them. In the case
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of oil spills, these operations usually resort to skimmers used by boats in order to ”skim” the oil from the

sea surface, together with chemical dispersants to break up the oil molecules.

On the other side of the spectrum, to adapt to the climate change, some aquatic species are migrating

and finding new homes far away from their original habitats. This motivates the existence of organizations

all over the globe, such as the Oceanic Society [5] that are dedicated to following, protecting and rescuing

these endangered species. For monitorization missions to be carried out successfully, it is imperative

that they do not disrupt or impact negatively the ecosystem.

Recent years have seen a huge development in computing power and miniaturization of sensors

which have enabled the development of very efficient robots that can sweep through the sea at a relative

small cost when compared to the current alternatives - large ships that are loud and very disruptive.

These robots are usually known as Autonomous Underwater Vehicle (AUV) or/and Autonomous Surface

Vehicle (ASV) when working only at the surface of water. In addition to these, there has been recently

a growing interest on the development of miniaturized aircrafts denominated Unmanned Aerial Vehicles

(UAV) which are usually equipped with camera sensors allowing them to have a top-down view of the

environment. Together, these unmanned vehicles have a huge potential to decrease the cost of the

previously mentioned operations, by having low-cost autonomous vehicles cooperating to achieve the

same tasks of a huge vessel, without causing as much disruption in the ecosystem.

Motivated by all of those factors, the aim of this work is to develop a set of tools that allow an au-

tonomous aerial vehicle (quadrotor) and multiple marine vehicles (ASVs) to perform a surveillance mis-

sion cooperatively, where the main goal is to detect and follow closely a dynamical environmental bound-

ary1, such as an oil spill, at the surface of the water, according to Figure 1.2.

Environmental 
Boundary

ASV 
(1)

Water SurfaceASV (n)

UAV 
(quadrotor)

ASV 
(2)

(…)

Figure 1.2: Cooperative path following on an environmental boundary

1.2 State of the Art

The goal of this section is to make a brief overview of the literature used as a backbone to all the work

developed. As a first step, analysis on single vehicle motion control is made, in which a brief comparison

between the two main techniques, Path Following (PF) and Trajectory Tracking (TT), is conducted. No-

table contributions to solve the PF problem in 2-D are introduced and a high-level comparison between
1The term environmental boundary used in this context denotes any hazardous spread of contaminants, pollutants, etc. that

generate anisotropic changes in the environment, for which a clear perimeter can be defined.
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these algorithms is made. All the control laws reviewed are based on purely geometric concepts, only

taking into consideration the kinematics of the vehicles.

A second step is to address the topic of information exchange in a vehicle network. This is a research

area of growing interest in the recent years with emphasis on distributed approaches. This theme is of

extreme relevance as it is the key that allows to have multiple vehicles performing PF missions in a syn-

chronized manner. Therefore, on the scope of this work, a small overview on the problem of consensus

of multiple agents is made.

Given that the broader scope of this work is to provide a mechanism to allow multiple robots to follow

an environmental boundary in a pre-defined formation, an overview on motion path planning algorithms

with the end goal of tracking and following an environmental boundary is also provided.

1.2.1 Inner-Outer Loop Control Structure

Developing controllers for vehicles such as ASVs and UAVs can be changeling, especially considering

that these vehicles are usually under-actuated, i.e. vehicles with fewer actuators than Degrees of Free-

dom (DOF), and their dynamics are nonlinear. A very popular approach used to simplify the problem of

vehicle motion control is therefore to consider an inner-outer loop control structure.

The goal of an outer-loop is to generate high level references such as desired orientation and speed

based on a higher level goal - for example, following a path. On the other hand, the inner-loop controller

is held responsible for computing the forces and torques that must be applied to the vehicle in order to

follow the references generated by the outer-loop. Some benefits of the inner-outer loop approach are:

• The design of the PF algorithm considers only the outer-loop structure, meaning that its design can

be very simple and not require an in depth knowledge of the vehicle’s inner-dynamics;

• The same PF design methodologies can be applied to heterogeneous vehicles with the main

changes being left for the inner-loop controls.

The main disadvantages is that stability analysis of the closed-loop system becomes non-trivial, but

not impossible. In a more practical note, this may have a negative effect on the achievable performance,

when compared with an approach that considers the inner-outer loop coupling.

An example of this approach applied to marine vehicles is detailed in Maurya et al. [6], where the

author proposed an inner-loop structure to control an ASV heading motion and an outer-loop to generate

the desired heading references to be tracked. This inner-outer loop structure is also commonly applied

to quadrotors UAVs and discussed in detail in Mahony et al. [7].

1.2.2 Trajectory Tracking vs Path Following

The problem of single vehicle motion control has seen a huge amount of research in the recent years.

Two of the main problems in motion control are TT and PF [8].

The TT can be summarized as a set of techniques that allow a vehicle to follow a predefined spa-

cial path that is time parameterized. As mentioned in [9], there are already plenty of nonlinear algorithms
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well described in textbooks applied to fully actuated systems to solve this problem. However, the problem

becomes more challenging when under-actuated systems are considered. Typical examples of under-

actuated systems can be, once again, some classes of ASVs and UAVs - the vehicles being considered

in this project. Some nonlinear control algorithms based on Lyapunov theory have already been pro-

posed for this kind of vehicles [10]. The problem becomes even more challenging when disturbances

are considered in the design phase on these algorithms.

On the other side of the spectrum there is PF in which a vehicle is required to converge to and follow a

desired path without imposing any time constraints. According to [9], the PF approach assumes that the

vehicle’s forward speed will track a speed profile (which can be specified as a function of the path) and that

a controller acts on the vehicle in order to guide it to the reference path. There are multiple advantages

of this method when compared to TT. One merit of this strategy is that typically there is a smoother

convergence of the vehicle to the path using control signals that do not hit the actuator saturation so

often. Another advantage of PF when compared to TT is when, in the presence of external disturbances,

which might make it infeasible for the vehicle to fulfill the time requirements that TT imposes.

Due to the fact that quadrotor UAVs are typically very agile, able to perform a wide-range of manoeu-

vres at very high speeds, TT is often used as the main tool for motion control of these vehicles. On the

other hand, UAVs and ASVs are usually much slower and less agile vehicles, when compared to their

aerial counterparts. Therefore, PF is usually the preferred method of motion control for these vehicles

[11]. Since the main goal of this work is to have a both a quadrotor and one or more ASVs following a

boundary in a synchronised manner, the PF approach will be the one explored.

1.2.3 PF - Line of Sight (LOS)

One very popular approach to the PF problem applied to ASVs is the Line of Sight (LOS) algorithm. Its

application to marine vehicles for both 2-D and 3-D cases is well detailed in Lekkas et al. [12]. This

algorithm is very versatile and its applications can also be extended to the case of quadrotors, as demon-

strated by A.T. Nugraha et al. [13]. The main goal of this control law is to point the vehicle to a given

point in the path that is arbitrarily further ahead of the vehicle’s projection on the path by controlling its

heading angle. In Figure 1.3 a graphical overview of this method is presented.

Look-ahead distance

Desired 
point

Cross-track
error

Velocity
vector

Heading 
angle

Figure 1.3: Line of Sight PF overview
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The fixed look-ahead distance used in this algorithm works as ”tunning knob” that can make the

convergence to the path slower or faster. For this particular control scheme the author provides some

guarantees of convergence of the cross-track error to zero under some very mild conditions.

The main disadvantage of the LOS control scheme is that the look-ahead distance considered in

this algorithm is fixed. Therefore, if the look ahead distance is too small, the vehicle will move more

aggressively towards the path. On the other hand, if the look ahead distance is too big, the vehicle will

take a long time to converge.

Simplified Line of Sight (P. Maurya et al. [6])

An alternative formulation for the LOS guidance law applied to ASVs is given in P. Maurya et al. [6] where

the authors propose the use of an integral in the control law in order to reject disturbances caused by

constant and non-rotational ocean currents, or other constant disturbances. In addition, a look ahead

distance is no longer taken into consideration and only the distance of the vehicle to its projection on to

the path is used, as well as its speed. The main advantage of this control scheme is the ability to reject

constant disturbances caused by ocean currents while at the same time not having to define a fixed look

ahead distance.

1.2.4 PF - Nonlinear Control using Lyapunov Theory

Proposal by C. Samson et al. [14]

A completely different approach to solving the PF problem, applied to differential drive vehicles, such as

ASVs, was taken by A.Micaelli and C.Samson [14]. In this research paper the authors start by projecting

the vehicle on to the path, with the orthogonal projection representing the closest point on the path to the

vehicle. This point is also commonly known as a ”fixed rabbit” that the vehicle must follow. In addition

a Frenet-Frame is associated to this projection point, with its origin coinciding with the projection point.

The cross-track error is the Y-coordinate in the aforementioned Frenet-Frame of the center of mass of

the vehicle, as depicted in Figure 1.4 a).

With this new formulation the authors take the two variables of interest - the cross-track error and

heading error (given by the difference between the vehicle’s heading and the angle formed by the tan-

gent to the curve on the computed projection point and the X-axis of the inertial frame) - and craft two

candidate/Lyapunov functions, one being a function of the cross-track error and another a function of the

heading error. Making use of Lyapunov nonlinear stability theory, the authors derive a control scheme

for the heading rate of the vehicle.

One of the main advantages of this approach is the ability to tune the speed of convergence of cross-

track error and heading error to zero separately. One key example of this feature is enabling the vehicle to

give higher importance to the cross-track error when being further way from the path and high importance

to the heading error when closer to the path, for a faster convergence of the algorithm while maintaining

a smooth approach to the path. Another merit of this proposal is that it allows for the design of controllers

that address not only the kinematics but also the dynamics of the vehicle by resorting to backstepping
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techniques.

The main disadvantages of this new algorithm are:

• It does not provide global asymptotic stability guarantees. Therefore, the convergence to the path

is only guaranteed if the vehicle’s initial conditions are within a ”tube of values”.

• If the vehicle is on the concave side of a circular path, more precisely in the center of the curve, the

closest point to the path is no longer well defined, according to Figure 1.4 b).

Cro
ss-
trac
k

erro
r

Velocity
vector

Fixed rabbit
with Frenet frame attached

Heading
angle

Desired angle

Inertial 
frame

(a) Samson PF scheme

Closest point in the arc
not well defined

(b) Closest point to a circular path

Figure 1.4: Samson PF overview

Proposal by L. Lapierre et al. [9]

After the introduction of a new innovative approach of tackling the PF problem making use of a Serret-

Frenet frame and Lyapunov nonlinear stability analisys by A.Micaelli and C.Samson [14] a constructive

approach was taken by L. Lapierre, D. Soetanto and A. Pascoal (2006) [9]. The key difference between

the proposed algorithms is that in this new approach instead of having a simple projection of the vehicle

on the path representing the closest point on the path to the vehicle, a more versatile approach was taken

- a movable virtual target.

The addition of a dynamic virtual target on the path, enables the control of the rate of progression of

the point in the path, which in turn makes the problem more flexible relaxing the constraints imposed by

Samson’s algorithm in terms of initial conditions.

This new approach brings many advantages, namely:

• the initial conditions of the vehicle are no longer a constraint of the problem as we are able to prove

global asymptotic convergence to the path;

• allows for the user to design a custom control scheme for the desired velocity, while still guarantee-

ing global stability.

The main disadvantage of methods such as the ones proposed by both C. Samson and L. Lapierre is

the fact that they both rely on a Serret-Frenet frame fixed on the virtual target that moves along the path.

This frame can have discontinuities when the concavity of a curve switches. A solution to this problem is

to simply replace the Serret-Frenet frame by a Parallel-Transport frame. Still, in order to generalize the
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above proposed controller methodologies to the 3-D space, a knowledge of both torsion and curvature of

the path to be followed is required. Furthermore, even though robust, the application of these controllers

is typically guided towards AUVs and fixed-wing UAVs as they define a set of control signals for the linear

and angular velocities of the vehicles.

Proposal by P. Aguiar et al. [8]

Other Lyapunov based controller designs were provided in the works of P. Aguiar and, J. Hespanha [8]

and F. Vanni [15] where the authors propose a global diffeomorphic coordinate transformation and define

a position tracking error in the body reference frame of the vehicle itself, bypassing altogether the need

for an additional frame fixed on a virtual target on the path.

One key advantage of this approach is that the backstepping techniques used in order to derive the

path following controllers for underactuated AUVs is general enough to be applicable not only to fully-

actuated AUVs and fixed-wing UAVs but also to quadrotor UAVs which assume a very different physical

configuration when compared to torpedo-shaped vehicles.

A disadvantage of this method (and others previously presented) is that it is not trivial to embed system

inputs and state constraints in the control laws.

1.2.5 PF - Model Predictive Control Approaches

Another completely different method to solve the PF problem is by resorting to optimal control theory.

Model Predictive Control (MPC) in particular has the ability to explicitly handle vehicle’s equality and

inequality input and state constraints. In Alessandretti et. al. [16] the authors propose nonlinear control

laws that can be used for both TT and PF in both 2-D and 3-D scenarios. In work by Hung. et al. [17],

the authors propose the use of MPC to derive a global control scheme for the problem of multiple vehicle

cooperative path following which explicitly handles vehicle input constraints applied to ASVs.

Even-though MPC provides a very intuitive way of taking into consideration the system limitations in

the PF formulation, it overwhelmingly relies on extensive numerical computations, especially in the case

of nonlinear systems and nonlinear constraints, making it much more computationally demanding than

previously described methods. For this reason, this methodology will not be considered in this thesis.

1.2.6 Cooperative Control Contributions

The topic of cooperative motion control has seen increasing interest over the years. In order to design

cooperative strategies to be successful in accomplishing a common goal several issues have to be taken

into account. One of those issues is the convergence to a common value, also known as consensus or

agreement problem as described in the literature.

Most common approaches to the consensus problem rely heavily on algebraic graph theory. Follow-

ing this approach W. Ren and A. Ella [18] describe a distributed coordination scheme with local infor-

mation exchange for multiple vehicle systems. In this research paper a first-order consensus protocol is

summarized. In addition the authors introduce a second-order consensus protocol for double-integrator
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systems along with the necessary and sufficient conditions under which consensus can be reached. In

this work, several examples are provided in which the autonomous agents are required to converge to

a static formation, while driving the formation error of the vehicles to zero. The results presented for

double-integrator systems can be extremely relevant as UAV quadrotors dynamics can be linearized

and expressed as double integrators, while the first-order consensus theory is extremely helpful when

considering the synchronisation of path’s parameters between different vehicles in the case of CPF.

In previous work developed by R. Ghabcheloo et al. [19] the authors propose a CPF control scheme

that assumes a fixed vehicle network topology but considers the existence of communication losses and

delays in the information exchange between the vehicles. On top of the work previously developed, there

were efforts carried by A. Aguiar, A. Pascoal et al. [20], F. Rego et al. [21], [22], and N. Hung et al. [23] with

the goal of achieving a general solution to the problem of consensus/synchronization for general classes

of networked nonlinear Multi-Agent Systems (MAS) using a distributed control strategy with an Event-

Triggered Communications (ETC) mechanism with a minimum number of inter-event communications

between vehicles.

1.2.7 Perimeter Surveillance and Boundary Tracking

The problem of perimeter detection and boundary monitoring/tracking has been a widely researched topic

with a variety of practical applications, ranging from monitoring of wildfire spreading [24], monitoring and

control of the spread of oil spills [25], salinity distribution control and harmful invasive algae blooms [26]

monitoring just to name a few. In this work, we focus our attention in the problem of detecting anomalies

at the surface of the water for which a boundary curve can be defined, namely chemical spills or oil spills.

In water environments, chemical spills go through physical changes due to the interaction with the

ocean environment which is not static. The two main phenomena that contribute to the transportation of

chemicals, such as oil, over water are advection and diffusion. In the first, the oil is transported due to

the flow of water while the second refers to the motion of the fluid caused by the existence of concen-

tration gradients. One way of modelling the flow field of the incompressible fluid is by solving iteratively

the convection-diffusion equations [27]. In Fahad et al. [25] the authors simulate an ASV equipped with

sensors capable of measuring plume concentration and develop an observer for the spill diffusion coeffi-

cients and a gradient-based control law to steer the autonomous agent along the boundary of the plume.

The main disadvantage of these chemical spill models is that they require either an a-priori knowledge

of a set of constants, such as diffusion coefficients or an estimator for them. Furthermore, they require in

depth knowledge of the dynamic behaviour of the anomaly being studied. Moreover, a monitoring con-

trol scheme developed on top of these models will not generalize well to other kinds of anomaly tracking

problems.

Another approach taken by Saldaña et al. [28] is to consider that a general environmental boundary

can be approximated by a closed curve that is slowly-varying over time and can be described by a

parametric equation. Furthermore, the author proposes a model for the curve described spatially by

a truncated Fourier Series that changes it’s shape smoothly with time. The model is then defined in a

matricial form, such that a recursive least squares problem can be formulated. In his work, it is assumed

8



that multiple vehicles are distributed equally around the chemical spill and every vehicle is capable of

taking local measurements of the boundary (although the specific sensor used for that matter is not

described). Those measurements are then used to update the shape of the closed curve using recursive

least squares. Even though the techniques employed are interesting, the choice of a Truncated Fourier

Series to represent a path for underactuated vehicles is a rather poor choice of function as we might

get curves that self-intersect and have a huge amount of oscillations. Moreover, it does not take into

consideration the physical limitations of the vehicles, as shown in the video provided by the author [29].

In order to lift the limitations imposed by this method, one could apply the same methodologies proposed

by the author, but resorting to another type of parametric curves that are more stable, such as Bernstein

polynomials or B-Splines [30].

Yet another attempt at solving this problem was taken in Pedrosa’s master thesis [31], in which the

author proposes a scheme where a quadrotor UAV equipped with a camera sensor flies high enough to

capture an entire picture of the boundary of the spill and converts the pixels of the contour in the image to

coordinates in a 2-D plane expressed in the inertial reference frame. After this step, the points expressed

in the inertial frame are used to define an artificial potential field used by the control system of an ASV

vehicle. This solution may not be suitable in practice since it does not take into consideration that an oil

spill can span across several km2 of area, implying that a quadrotor had to fly very high to get a complete

picture of the boundary, which would affect the accuracy of the conversion between camera frame and

inertial frame, or it had to take several pictures of the environment and construct a mosaic of the spill. If a

mosaic approach is taken, given that the ocean environment is not static, as time progresses, the original

boundary shape used for the path generation might no longer accurately describe the real chemical spill.

1.3 Objectives

The main goal of this work is to develop, simulate and test a set of control tools that allow one or more

Medusa UAVs (operating in ASV mode) and one quadrotor UAV vehicle operating in a 2-D plane above

the water to follow an environmental boundary, according to a pre-defined vehicle formation. In this setup,

the quadrotor (the leader vehicle) is equipped with a camera sensor which is capable of detecting a local

anomaly in the environment and define a local boundary for that anomaly. Given this information, the

quadrotor is required to plan a path that can be followed closely by itself and the set of ASVs.

In order to achieve the goal of multiple non-homogeneous motion control, the work developed is split

into multiple sub-problems:

• Vehicle Modeling - Develop a set of kinematic and dynamic models that describe the motion of an

AUV operating at the surface of the water and the motion of a quadrotor UAV;

• Single Vehicle Control - Design, simulate and test a set of controllers that enable each individual

vehicle to follow a pre-defined path individually;

• Multiple Vehicle Coordination - Derive a set of control laws for the velocity of each individual

vehicle that enables them to maintain a desired formation. In addition develop experiments to
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validate experimentally the theoretical results;

• Online Path Planning - Develop an algorithm to plan a path based on information extracted from

a camera sensor attached to a quadrotor UAV in real time.

1.4 Main Contributions

The main contributions of the work developed are:

• Comprehensive study of PF techniques applied to ASVs, in particular the method proposed by A.

Aguiar and F. Vanni and the extension of the rationale to quadrotor UAVs;

• Development of a new real time path planning mechanism using uniform cubic B-Splines;

• Setup of a realistic 3-D simulation environment for testing the proposed algorithms;

• Implementation and test of the PF and CPF algorithms using real Medusa vehicles.

1.5 Thesis Outline

The present document is divided in 10 chapters:

• Chapter 2 (Background): some preliminary notation and mathematical concepts are introduced.

Furthermore, an overview on nonlinear control theory, graph theory, parametric equations and B-

splines is provided;

• Chapter 3 (Vehicle Models): introduces kinematic and dynamic models of the vehicles that will

be used later for the development of controllers;

• Chapter 4 (Vehicle Motion Control): presents the methodologies used for achieving low level

control of an ASV and a quadrotor UAV;

• Chapter 5 (Path Following): derives a PF control scheme for each vehicle, making use of the

adaptive virtual target concept;

• Chapter 6 (Cooperative Path Following): formulates the cooperative path following problem and

establishes an event-triggered communication scheme used for inter-vehicle synchronisation;

• Chapter 7 (Path Planning): presents a sliding window–like online path planning approach based

on the image feedback of a dynamic environmental boundary;

• Chapter 8 (Implementation Details): describes the implementation and simulation setup used to

for testing the proposed algorithms;

• Chapter 9 (Results): a set of simulated and real results are presented;

• Chapter 10 (Conclusion): a summary of the work developed accompanied by a discussion of

future work.
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Chapter 2

Background

In this chapter the mathematical notation and preliminary theoretical concepts relevant to this dissertation

are introduced. In section 2.1, the mathematical terminology used throughout this thesis is presented. In

sections 2.2 and 2.3 a brief revision of concepts regarding nonlinear control theory and graph theory is

provided. Furthermore a smooth projection operator useful in the development of estimators is introduced.

Finally, in section 2.4 a review on B-splines, a set of parametric functions used to describe smooth curves

is made, followed by a quick revision of convex optimization problems in section 2.5.

2.1 Mathematical Notation

The unit vectors e1, e2 and e3 are defined as e1 = [1, 0, 0]T , e2 = [0, 1, 0]T and e3 = [0, 0, 1]T respectively.

Vectors are represented in lowercase bold. The notation 1 and 0 denote vectors with all elements equal

to one or zero respectively. For a vector x ∈ Rn, the symbol xi denotes the ith element of the vector

and |xi| its absolute value. We shall use ∥x∥ =
√
xTx to denote the Euclidean norm of a vector and

sup ∥x∥ the supremum norm. The notation K ⪰ 0 is used to denote a matrix K ∈ Rn×n that is positive

semi-definite. The symbol I is used to denote the identity matrix. Let σ(x) : R → R define a differentiable

saturation function that verifies the following properties:

1. |σ(x)| ≤ σmax, and 0 < ∂σ(x)
∂x ≤

(
∂σ(x)
∂x

)
max

, ∀x ∈ R;

2. xσ(x) > 0, ∀x ̸= 0;

3. σ(0) = 0;

4. σ(−x) = −σ(x), ∀x ∈ R.

The vectorial equivalent of the saturation function is defined as

σ(x) = σ(∥x∥) x
∥x∥ with ∥x∥ ̸= 0

σ(0) = 0

· (2.1)
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The vectorial saturation function preserves the direction of the original vector x. The inverse notation

for the saturation function is defined as σ−1(x) = [σ−1(x1), ..., σ
−1(xN )]T . The saturation function that is

adopted in this work is σ(x) = tanh(x).

When considering an estimator for an unknown variable x, we use the hat nomenclature x̂ to denote

its estimate and x̃ when referring to the estimation error. The symbol R(.) is used to denote a rotation

matrix with properties: RT = R−1 and det(R) = 1. The map S(·) : Rn → Rn×n, n = 2, 3 yields a

skew-symmetric matrix

S(x)y = x× y, ∀x,y ∈ Rn, (2.2)

which has the useful property

yTS(x)y = 0, ∀x,y ∈ Rn with n = 2, 3. (2.3)

The skew-symmetric matrix of vector a = [a1, a2, a3]
T is given by

S(a) =


0 −a3 a2

a3 0 −a1
−a2 a1 0

 , (2.4)

while the skew-symmetric matrix S(b), b ∈ R is given by

S(b) =

0 −b

b 0

 . (2.5)

The symbols ⌊x⌉, x ∈ R denotes x nearest integer, such that ⌊10.2⌉ = 10 and ⌊10.6⌉ = 11. The symbol

⌊x⌋ denotes the floor of x, such that ⌊10.2⌋ = 10 and ⌊10.6⌋ = 10 and ⌈x⌉ denotes the ceiling of x, such

that ⌈10.2⌉ = 11 and ⌈10.6⌉ = 11. The norm of a matrix A ∈ Rn×m can be computed according to

∥A∥ =
√
λmax(ATA), (2.6)

where λmax denotes the largest singular value of ATA. Consider the function f : Rn → R given by

f = xTAx = xT

(
A+AT

2

)
x. (2.7)

If matrix A is symmetric the following property holds:

λmin(A) ∥x∥2 ≤ xTAx ≤ λmax(A) ∥x∥2 . (2.8)

2.2 Nonlinear Control Theory
In this section a revision on stability of the equilibrium points of nonlinear autonomous and non-autonomous

systems is conducted. The stated theorems and definitions originate from the book Nonlinear Systems

by Khalil H. [32]. For proofs of the stated theorems, the reader is referred to the author’s original work.
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2.2.1 Lyapunov Stability

An equilibrium point of a system is said to be stable if all solution starting at nearby points stay nearby,

otherwise it is unstable. It is asymptotically stable if all solutions starting at nearby points not only stay

nearby, but also tend to the equilibrium point as time approaches infinity. Consider an autonomous

nonlinear system defined by:
ẋ = f(x), x(0) = x0. (2.9)

Theorem 2.1. Let x = 0 be an equilibrium point for (2.9) and D ⊂ Rn be a domain containing x = 0. Let

V : D → R be a continuously differentiable function such that

V (0) = 0 and V (x) > 0 in D − {0}, (2.10)

V̇ (x) ≤ 0 in D, (2.11)

then x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0}, (2.12)

then x = 0 is asymptotically stable.

Theorem 2.2. Let x = 0 be an equilibrium point for (2.9). Let V : Rn → R be a continuously differentiable

function such that

V (0) = 0 and V (x) > 0, ∀x ̸= 0, (2.13)

∥x∥ → ∞ ⇒ V (x) → ∞, (2.14)

V̇ (x) < 0, ∀x ̸= 0, (2.15)
then x = 0 is globally asymptotically stable.

2.2.2 Input-to-State Stability

Definition 2.1. A continuous function f(x) is said to be locally Lipschitz on a domain D ⊂ Rn if each

point of D has a neighborhood D0 and ∃L (Lipschitz constant) such that f(·) satisfies

∥f(x)− f(y)∥ ≤ L ∥x− y∥ , ∀x,y ∈ D0. (2.16)

Definition 2.2. A continuous function α : [0, a) → [0,∞) is said to belong to class K if it is strictly

increasing and α(0) = 0. It is said to belong to class K∞ if a = ∞ and α(r) =→ ∞ and r → ∞.

Definition 2.3. A continuous function β : [0, a)× [0,∞) → [0,∞) is said to belong to class KL if, for each

fixed s, the mapping β(r, s) belongs to class K with respect to r and, for each fixed r, the mapping β(r, s)

is decreasing with respect to s and β(r, s) → 0 as s→ 0.

Definition 2.4. Consider the system

ẋ = f(t,x,u), (2.17)

where u is the system’s input vector and f : [0,∞)× Rn × Rm → Rn a piecewise continuous function in

t and locally Lipschitz in x and u. The system is said to be input-to-state stable if there exists a class KL
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function β and a class K function γ such that for any initial state x(t0) and any bounded input u(t), the

solution x(t) exists for all t ≥ t0 and satisfies:

∥x(t)∥ ≤ β(∥x(t0)∥ , t− t0) + γ

(
sup

t0≤τ≤t
∥u(τ)∥

)
. (2.18)

Theorem 2.3. Let V : [0,∞)× Rn → R be a continuous differentiable function such that

α1(∥x∥) ≤ V (t,x) ≤ α2(∥x∥), (2.19)

∂V

∂t
+
∂V

∂x
f(t,x,u) ≤ −W (x), ∀ ∥x∥ ≥ ρ(∥u∥) > 0, (2.20)

∀(t,x,u) ∈ [0,∞) × Rn × Rm, where α1 and α2 are class K∞ functions, W (x) is continuous positive

definite function and ρ is a class K function. Then the system given by (2.17) is input-to-state stable with

γ = α−1
1 ◦ α2 ◦ ρ (with ◦ denoting the composition operation).

2.2.3 Smooth Projection Operator

When a nonlinear system operates under the presence of external disturbances that cannot be measured

directly, it is commonplace to design a set of estimators used in conjunction with controllers to compen-

sate for them. In the particular case of quadrotors, where the external disturbances can be caused not

only by wind, but also by coriolis effects, rotor flapping, aerodynamic drag, etc. it is commonplace to

use integral-like terms in the controllers as a simple way to reject constant disturbances. Straightforward

estimators like these can lead to windup phenomena and make stability analysis non-trivial when used

in conjunction with nonlinear controllers. To cope with these problems, Z. Cai et al. propose a smooth

projection operator that preserves the properties of the control system while at the same time bounding

the estimation parameter [33]. Consider the general system given by

ẋ = f(x,u,θ), (2.21)

where x ∈ Rn denotes the system state, u ∈ Rm the system input vector and θ ∈ Rl a vector of unknown

constant disturbances. Consider θ to belong to the convex compact set Ω := {θ : ∥θ∥ ≤ θ0}, where θ0 is

a positive known constant. Furthermore, let θ̃ := θ − θ̂ be the estimation error of the unknown constant

disturbance. The proposed operator used as an estimator for θ is given by

˙̂
θ = Proj(µ, θ̂) = µ− η1η2

4(ε2 + 2εθ0)n+1θ20
∇pd(θ̂), (2.22)

where

pd(θ̂) = θ̂
T
θ̂ − θ20, (2.23)

η1 =

p
n+1
d (θ̂), if pd(θ̂) ≥ 0

0, otherwise
, (2.24)

η2 =
1

2
θ̂
T
µ+

√√√√(1

2
θ̂
T
µ

)2

+ δ2, (2.25)
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and µ(t) ∈ Rp is a known, n times continuously differentiable (Cn) variable, ε and δ are arbitrary positive

constants. This projection operator enjoys the following properties:

1.
∥∥∥θ̂∥∥∥ ≤ θ0 + ε, ∀t ≥ 0;

2. θ̃
TProj(µ, θ̂) ≥ θ̃

T
µ;

3.
∥∥∥Proj(µ, θ̂)

∥∥∥ ≤ ∥µ∥ [1 + ((θ0 + ε)/θ0)
2] + ((θ0 + ε)/(2θ20))δ;

4. Proj(µ, θ̂) is Cn.

A practical implementation of this smooth projection operator applied to nonlinear quadrotor control

can be found in Cabecinhas et al. [34].

2.3 Graph Theory

Cooperative path following requires vehicles in a network to exchange information about their state. In a

general case, not every vehicle is able to communicate with each other, nor are all the inter-vehicle com-

munications bi-directional. Therefore, a strong mathematical theory is needed to analyze this information

exchange. Graph theory is the tool par excellence to model communication networks. In this section,

the basic concepts of graph theory are introduced with the main theorems and definitions borrowed from

Bullo et al. [35], W. Ren and R. Beard [36].

A weighted digraph G = G(V, E ,A) consists of a set of N vertices V = [V1, ..., VN ]T , a set of directed

edges E ⊆ V × V and a weighted adjacency matrix A = [aij ] ∈ RN×N such that aij > 0 if the edge that

connects vertex i to j belong to the graph and 0 otherwise. Self connected vertices, are not allowed, i.e.

aii = 0. The set of in-neighbours of a vertex i is given by N in
i = {j ∈ V : (j, i) ∈ E} and the set of

out-neighbours by N out
i = {j ∈ V : (i, j) ∈ E}. The in- and out-degree matrices Din and Dout are a set

of diagonal matrices defined by

Din = diag(dini ), with dini =
∑
j∈N in

i

aij ; (2.26)

Dout = diag(douti ), with douti =
∑

j∈N out
i

aji. (2.27)

Remark: With the graph definition given above, we adopt the convention that an agent i can receive

information from its neighbors in N in
i and send information to its neighbors in N out

i .

The Laplacian matrix of of the graph G is given by

L = (Din −A). (2.28)

The Laplacian matrix L = [Lij ] satisfies the following conditions:

lij ≤ 0 , i ̸= j

n∑
j=1

lij = 0 , i = 1, ..., N.
(2.29)
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A graph G is undirected if communication links are unidirectional. If G is an undirected graph, then G

is also balanced, i.e. Din = Dout := D and its Laplacian matrix L is symmetric and positive semi-definite.

A graph G is connected if there exists a walk between any two vertices and strongly connected if there

exists a directed walk from any node to any other node. G is disconnected if not connected.

Theorem 2.4. If G is an undirected and connected graph, L is symmetric and has a simple eigenvalue

at zero associated with eigen vector 1 with the remaining eigen values positive. Moreover L1 = 0.

Definition 2.5. A tree is an undirected, acyclic graph with the following property: there exists exactly

only one path between two distinct nodes. If G is an undirected connected graph with N vertices and

only N − 1 edges, then G is also a tree.

Definition 2.6. A Minimum Spanning Tree (MST) is a sub-set of edges from an undirected connected

graph that connects all the vertices together, with minimal total edge weight and without forming any

cycle. From this definition and the above theorem, it is possible to infer that every connected graph has

a MST.

2.4 Parametric Curve Representations

There are two very popular methods for representing curves and surfaces in space: implicit equations

and parametric functions. In the case of implicit equations, a curve C lying on xy plane has the form

f(x, y) = 0, which describes directly the relationship between x and y coordinates of the points on the

curve [30]. On the other hand, when using a parametric function, each point on the curve is represented

by an explicit function on an independent parameter, such as:

C(γ) =

x(γ)
y(γ)

 , with γ ∈ [a, b], (2.30)

where a, b ∈ R and γ is a parameterizing variable and C ∈ R2 is continuous. The representation of

curves in parametric form gives some useful properties that will be exploited throughout this work, such

as:

• Possess a natural direction of transversal, i.e., from C(a) to C(b), leading to a very easy way of

generating a sequence of points along the curve.

• It is easy to extend a curve represented using a parametric model to an N -dimensional space by

just adding an extra set of coordinates dependent on the path parameter γ.

• Allow to express bounds in the curve segments through bounds on the path parameter interval.

Polynomial based parametric functions are very popular due to their easy implementation in software.

However, when we consider the problem of interpolating or fitting a set of data using simple polynomials

we quickly reach the conclusion that most of the times we need high degrees to represent the data

accurately. Piecewise polynomial functions, i.e. splines are a convenient solution to those problems.
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2.4.1 B-Spline Curves

Bernstein Polynomials and Bézier curves (usually used interchangeably) are parametric curves found in

a wide variety of applications from Computer Aided Geometry Design (CAGD) to computer vision fields

due to their efficient yet powerful way to describe continuous curves and surfaces through parametric

equations using a finite set of parameters. Multiple Bézier curves can be combined to form Bézier-

splines, usually referred to as B-splines [37]. Rather than having a high degree Bézier curve, we can

have multiple low degree Bézier curves joined together. An unidimensional order k + 1 B-spline is a

piecewise polynomial function, formed by joining several pieces of polynomials of degree k [38]. For

example, a cubic B-spline is of order four, as it requires four coefficients to specify a cubic polynomial

[39].

A general B-spline curve is given by n + 1 control points, consists of n − k + 1 Bézier curves and is

defined by the linear combination:

C(γ) =

n∑
i=0

Bi,k(γ)Pi, (2.31)

where Pi, i = 0, ..., n are a set of control points, Bi,k(γ) the basis functions of fixed degree and C(γ) ∈ R.

It follows from the Cox-De Boor’s recursive algorithm [30], that:

Bi,0(γ) =

1, if γi ≤ γ ≤ γi+1

0, otherwise
, (2.32)

Bi,j(γ) =
γ − γi
γi+j − γi

Bi,j−1(γ) +
γi+j+1 − γ

γi+j+1 − γi+1
Bi+1,j−1(γ), (2.33)

where the values γi belong to knot vector defined as U = [γ0, ..., γm]T such that γ ∈ [γ0, γm], with the

number of knots related to the degree of the curve and the number of control points by

m = k + n+ 1. (2.34)

A B-Spline is said to be uniform if its knots are equidistant, i.e the knots are given by

γi = (i− 1)∆ , i = 1, ..,m (2.35)

where ∆ ∈ R+ is a uniform step between consecutive knots. The B-Spline functions enjoy some useful

properties, namely:
1. Bi,j(γ) is a polynomial of degree j with joining points at γ ∈ [γi, γi+j+1);
2. Non-negativity: Bi,j(γ) is always non-negative;
3. Local Support: The basis Bi,j(γ) is a non-zero polynomial for γ ∈ [γi, γi+j+1). Moreover, on the

span [γi, γi+1) at most j + 1 degree j basis functions are non-zero, i.e. Bu = [Bi−j,j , ..., Bi,j ];
4. Partition of unity: From the recursive relation defined in (2.33), for any valid γ, the non-null B-

spline functions are positive and add up to 1;
5. Convex Hull: The B-spline is contained in the convex hull of its control points;
6. Continuity: At a knot of multiplicity p, the basis functions Bij , i = 1, ..., n is Cj−p continuous. If we

consider uniform B-Splines the knot multiplicity is p = 1, hence the basis functions Bij are Cj−1

continuous.
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For an in-depth overview of the introduced properties, the reader is referred to [40] and to [41] for formal

proofs.

2.4.2 Uniform Cubic B-Spline Curves (a practical overview)

Uniform cubic B-Splines are constructed on the assumption that each segment is given by cubic functions

(k = 3). They constrain the points that joint the segments such that they meet the following continuity

requirements:

• The final point on the Bézier curve i has the same coordinates as the first point on the Bézier curve

i+ 1 (C0 continuity).

• The first derivative at the end of the Bézier curve i is the same as the first derivative at the start of

the Bézier curve i+ 1 - no abrupt change in slope at transition points (C1 continuity).

• The second derivative at the end of the Bézier curve i is the same as the second derivative at the

start of the Bézier curve i+ 1 - no abrupt change in polarity at transition points (C2 continuity).

which can be verified according to property 6. Consider a unidimensional, uniform cubic B-spline (k = 3)

with only 1 segment, hence only 4 control points and a knot vector given by:

U = [0, 1, 2, 3, 4, 5, 6, 7]T . (2.36)

From (2.31) in conjunction with (2.33), and taking into consideration the local support property, we

know that a unidimensional B-Spline curve, C(γ) ∈ R, ∀γ ∈ [0, 1) is given by

C(γ) = B0,3(γ)P0 +B1,3(γ)P1 +B2,3(γ)P2 +B3,3(γ)P3

=
1

6
[(1− γ)3P0 + (3γ3 − 6γ2 + 4)P1 + (−3γ3 + 3γ2 + 3γ + 1)P2 + γ3P3]

=
1

6
[(γ3 + 3γ2 − 3γ + 1)P0 + (3γ3 − 6γ2 + 4)P1 + (−3γ3 + 3γ2 + 3γ + 1)P2 + γ3P3],

(2.37)

which according to [42], [43] and [44], can be expressed in a matrix notation as:

C(γ) :=
1

6

[
γ3 γ2 γ 1

]

−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0


︸ ︷︷ ︸[
B0,3(γ) B1,3(γ) B2,3(γ) B3,3(γ)

]


P0

P1

P2

P3

 · (2.38)

This notation is particularly useful as it can be extended for the general case of n− k + 1 segments,

such that:

Ci(γ) :=
1

6

[
(γ − i)3 (γ − i)2 (γ − i) 1

]

−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0


︸ ︷︷ ︸[

Bi,3(γ) Bi+1,3(γ) Bi+2,3(γ) Bi+3,3(γ)
]


Pi

Pi+1

Pi+2

Pi+3

 , (2.39)
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where γ ∈ [0, n− k + 1) and i := ⌊γ⌋, such that γ − i ∈ [0, 1). For example, if γ = 0.8, then i = 0 and the

corresponding curve segment is defined only by the control points P0, P1, P2 and P3. On the other hand,

if γ = 1.2, then i = 1 and the corresponding segment dictated by control points P1, P2, P3 and P4. This

representation is very useful in practice as it allows us to have some values pre-computed in memory,

making the evaluation of the basis functions very fast.

Let us now define a vector of unidimensional control points P = [P0, ..., Pn] ∈ Rn+1, a vector of distinct

curve parameters γ = [γ0, ..., γq] ∈ Rq+1 that we wish to evaluate our curve at, and C(γ) ∈ Rq+1 the

points on the curve. Consider now (2.31), applied to γ expressed in vectorial form such that

B =


B0,3(γ0) . . . Bn,3(γ0)

... . . . ...

B0,3(γq) . . . Bn,3(γq)

 , (2.40)

C(γ) = B(γ) ·P, (2.41)

where, for each line of matrix B(γ) ∈ R(q+1)×(n+1), only 4 basis are different then zero and computed

according to (2.39). Using this matrix formulation we also improve computation speed performance due

to the possibility of parallelization of operations.

Computing the derivative ∂C/∂γ also becomes trivial. Since the B-Spline results from a linear com-

bination of basis functions, we just need to compute the derivative of each basis function with respect

to γ. Considering the vectorial case just introduced, we know before hand that only 4 basis per line are

different than zero, and their derivative can be computed according to:


∂Bi,3(γ)/∂γ

∂Bi+1,3(γ)/∂γ

∂Bi+2,3(γ)/∂γ

∂Bi+3,3(γ)/∂γ



T

=
1

6

[
3(γ − i)2 2(γ − i) 1 0

]

−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0

 . (2.42)

The same rationale can be applied to obtain the second partial derivative of C(γ) with respect to γ.

Remark: For a brief explanation of how to expand this rationale to the 2-dimensional case, where

C(γ) ∈ R2, refer to appendix C.1.

2.5 Optimization Problems Overview

In this section, a small revision on convex optimization problems is provided with the main concepts

borrowed from Boyd et al. [45]. Given a non empty set X ⊂ Rn and an objective function f : Rn → R, a

constrained optimization problem can be defined by

minimize
x∈X

f(x)

subject to gi(x) ≤ 0, 1 ≤ i ≤ p

hj(x) = 0, 1 ≤ j ≤ q

(2.43)
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where X is the feasible region defined by a set of inequality and equality constraints. Consider also the

following definition and theorems:

Definition 2.7. A function f : Rn → R is said to be convex if

f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y), ∀x,y ∈ Rn and 0 ≤ α ≤ 1. (2.44)

Theorem 2.5. Let f : Rn → R be convex. If x∗ is a local minimum ⇒ x∗ is a global minimum.

A notion that is usually forgotten when looking at theorem 2.5 is that a convex function may not have

a global minimum, for example: f(x) = x. An optimization problem formulated according to (2.43) is said

to be convex if f(x) is convex, each hi is affine (i.e. of the form hj(x) = aTi x+ bi) and gi is convex.

Theorem 2.6. Consider an optimization problem given by (2.43). Assume that f , h and g are C1. If x∗ is

a regular local minimum, there exists a λ∗ ∈ Rn, µ∗ ∈ Rm such that



∇f(x∗) +∇h(x∗)λ∗ +∇g(x∗)µ∗ = 0

h(x∗) = 0, g(x∗) ≤ 0

µ∗ ≥ 0

g(x∗)Tµ∗ = 0

, (2.45)

where ∇h(x∗) = [∇h1(x∗)...∇hp(x∗)] and ∇g(x∗) = [∇g1(x∗)...∇gm(x∗)].

The Karush Kuhn Tucker (KKT) conditions are necessary conditions for an optimal solution. If the

optimization problem is convex, then the KKT conditions are both necessary and sufficient for the optimal

solution to be a global optimum.

2.5.1 Cubic B-Spline Fitting - Unconstrained Problem

Consider the problem of fitting a uniform cubic B-spline C(γ) ∈ R2 to a set of points X := {Xm}Mm=1 ∈ R2.

This problem can be formulated as an optimization problem given by:

minimize
γ1,...γM ,P0,...,Pn

M∑
m=1

∥C(γm,P)−Xm∥2 + Fr

subject to 0 ≤ γm ≤ γmmax , ∀m = 1, ...,M

(2.46)

where γmax is a constant and Fr is a regularization term. Given the formulation of a cubic B-Spline

introduced in (2.41), we can express the cost function in a vectorial form by concatenating the X and

Y-coordinates of each point in a single vector (see appendix C.1), such that the optimization problem can

be expressed in matricial form is given by

minimize
γ,P

∥B(γ)P−X∥2 + Fr

subject to 0 ≤ γ ≤ γmax

(2.47)
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where γmax is a constant vector. In the literature, it is common to find the Fr term to be given by

Fr = λ

∫ ∥∥∥∥∂C(γ,P)

∂γ

∥∥∥∥2 dγ + β

∫ ∥∥∥∥∂2C(γ,P)

∂γ2

∥∥∥∥2 dγ, (2.48)

where λ > 0 and β > 0 are positive constants. The main goal of the first term is to minimize the length

of the curve by minimizing the L2
2 norm of the first derivative, while the second term has the objective

of minimizing bends on the curve. The constraints on the γ vector in (2.47) coupled with the attribution

of a γm associated with each point Xm leads to an iterative approach to solve the minimization problem

given by algorithm 1. In this algorithm, step 3 can be the most expensive to compute, as computing the

Algorithm 1 Iterative minimization approach
1: Define the number of B-spline segments to use;
2: Define a good initialization for P;
3: Assign to each point Xm a parameter γm such that Xm is the closest point to C(γm);
4: Solve the optimization problem(2.47) with respect only to the control points P0, ...,Pn;
5: if optimization error < threshold then
6: Stop the optimization;
7: else
8: Go to step 3.

closest point to the curve is in itself an optimization problem that is solved iteratively. Furthermore, this

technique might not be feasible for all applications as the optimization of parameters γm associated to the

corresponding Xm can get stuck in local minima leading to subpar solutions, especially in the presence

of outliers in the data.

Another approach taken by Liu et al. [46] used to solve a similar optimization problem in real time

for Simultaneous Localization and Mapping (SLAM) applications was to ditch step 2 altogether. In their

works, the authors assume that the set of points is ordered, and from that they can assign γm for each Xm

based on a normalized distance between the points themselves. Consider DX to be the total distance

between the points we wish to fit, given by

DX :=

M∑
m=2

∥Xm −Xm−1∥ . (2.49)

Then the vector of spline parametric values γ = [γ1, ..., γm]T is computed according to

γ1 = 0

γm = γm−1 +
∥Xm−Xm−1∥

DX
γmax,m = 2, ...,M

, (2.50)

where γmax is defined by the number of control points that the target B-spline will have. This approach

might not lead to the optimal solution, as C(γm) might not be the closest point to Xm, but if obtaining very

high accuracy fits is not a concern, then this method provides a good trade-off between time-complexity

and accuracy. Regarding (2.48), the reader might be led to believe that the proposed integrals must be

computed numerically in every iteration of the optimization problem. Fortunately, due to the representa-
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tion introduced in (2.41), Fr can be computed in a very efficient way. Consider:

∫
∥Cm(γ)∥2 dγ =

∫
∥Bm(γ)P∥2 dγ =

∫
PTBm(γ)Bm(γ)TPdγ = PTRP, (2.51)

where m denotes the derivative of order m with respect to γ and R is a matrix that can be computed

numerically a priori and stored in memory, as long as the number of B-spline segments is fixed between

iterations (see appendix C.2).

Taking into consideration all the simplifications introduced, the unconstrained optimization fitting prob-

lem is now given by

minimize
P

∥BP−X∥2 + λPTR1P+ βPTR2P︸ ︷︷ ︸
f(P)

(2.52)

for which the closed form solution for the penalized least squares fit is given by

P̂ = arg min
P

f(P) = [BTB + λR1 + βR2︸ ︷︷ ︸
W

]−1BTX, (2.53)

as long as matrix W is full-rank, hence invertible.

2.5.2 Cubic B-Spline Fitting - Constrained Problem

When considering a more general problem of fitting a set of points using a cubic B-Spline according to

equality and/or inequality constraints we usually resort to an optimization technique named Sequential

Quadratic Programming (SQP). This technique is based on Newton’s method and it makes use of KKT

conditions. For a more detailed overview of the inner-workings of this optimization algorithm, refer to [47].

Consider now that we want to solve a fitting problem given by:

minimize
P

∥B(γ)P−X∥2 + λPTR1P+ βPTR2P︸ ︷︷ ︸
f(P)

subject to AP = Y

(2.54)

with A ∈ Rn×n and Y ∈ Rn a constant vector. This problem is well posed since the equality constraints

are affine functions of the control points. Moreover, f(P) is a convex objective function as it results from

the sum of a norm of an affine function with two quadratics in which R1 ⪰ 0 and R2 ⪰ 0. In order to

solve constrained optimization problems of this type we can resort to the, minimize, function provided in

Scipy’s python package [48] which implements a SQP solver.
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Chapter 3

Vehicle Models

In this section a mathematical model is obtained for an AUV and a quadrotor UAV moving in a 3-D space,

i.e. with 6 DOF. Since it is assumed that the AUV will be operating in ASV mode, i.e. only working on a

2-D plane, further simplifications to its model are introduced, achieving a final model with only 3 DOF.

3.1 Notation and Reference Frames

The terminology regarding coordinates and reference frames adopted for both vehicles is depicted in

Figure 3.1. The Inertial Reference Frame {U} is composed by {xU , yU , zU}, it follows the North-East-

Down reference frame convention (NED) and it can be ”attached” to any fixed place on Earth. The Body

Reference Frame {B} is composed by {xB , yB , zB}, it is attached to each vehicle’s center of mass, and

its axis correspond to the vehicle’s principal axis of inertia.

{B}

xByB zB

F1

F2F3

F4

⍵1

⍵2

⍵3

⍵4

p
(roll)

q
(pitch)

r
(yaw)

Figure 3.1: Adopted reference frames (adapted from Teixeira et al. [49] and Luukkonen T. [50])

To keep a consistent notation between both the AUV and UAV, the nomenclature adopted for both ve-

hicles will follow the Society of Naval Architects and Marine Engineers (SNAME) convention to represent
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the vehicle’s pose, speed, torque and forces according to:
• {B} - Body-fixed frame rigidly attached to the geometric center of mass of the vehicle;
• {U} - Inertial reference frame;
• v1 = [u, v, w]T - Linear velocity of the origin of {B} with respect to {U} expressed in {B};
• v2 = [p, q, r]T - Angular velocity of the origin of {B} with respect to {U} expressed in {B};
• η1 = [x, y, z]T - Position of the origin of {B} measured in {U};
• η2 = [ϕ, θ, ψ]T - Orientation of {B} with respect to {U}, expressed in ZY X Euler angles;
• FRB = [X,Y, Z]T : External forces measured in {B};
• NRB = [K,M,N ]T : External torques measured in {B}.

The table 3.1 summarizes the notation adopted.

Table 3.1: Notation adopted (adapted from Fossen et al. [51])

forces and

moments

linear and angular

velocity

positions and Euler

angles

motions in the X-direction (surge) X u x

motions in the Y-direction (sway) Y v y

motions in the Z-direction (heave) Z w z

rotation about the X-axis (roll) K p ϕ

rotation about the Y-axis (pitch) M q θ

rotation about the Z-axis (yaw) N r ψ

3.2 Kinematics

The kinematics describe motion of the vehicles based on purely geometric concepts, relating linear and

angular velocities with position and orientation. Making use of the reference frames defined in Section

3.1, the kinematic equations can be described byη̇1

η̇2


︸ ︷︷ ︸

η

=

UBR(η2) 03x3

03x3 Q(η2)


︸ ︷︷ ︸

J(η)

v1

v2


︸ ︷︷ ︸

v

, (3.1)

where η = [η1,η2]
T . The rotation matrix U

BR(η2) is obtained by performing a series of rotations such as

U
BR(η2) = Rz(ψ)Ry(θ)Rx(ϕ). (3.2)

The complete rotation matrix can be given by

U
BR(η2) =


cψsθ −sψcϕ+ cψsθsϕ sψsϕ+ cψsθcϕ

sψcθ cψcϕ+ sψsθsϕ −cψsϕ+ sψsθsϕ

−sθ cθsϕ cθcϕ

 , (3.3)
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where c and s denote the trigonometric functions cos(.) and sin(.) respectively. The Q(η2) is an angular

velocity transformation matrix that represents the angular velocity transformation from {B} to {U} and is

expressed as

Q(η2) =


1 sϕtθ cϕtθ

0 cϕ −sϕ

0 sϕ/cθ cϕ/cθ

 , θ ̸= ±90◦, (3.4)

where t denotes the trigonometric function tan(.). It is worth mentioning that matrix Q(η2) presents a

singularity at θ ̸= ±90◦. In order to solve this issue, a quaternion formulation of the problem could be

considered. Due to the nature of the problem being solved, it is assumed that the vehicle at the surface

of the water will be operating far from this singularity (θ ≈ 0◦ and ϕ ≈ 0◦). Furthermore, it is assumed

that the quadrotor vehicle will also be operating around its equilibrium point, thus eliminating the need to

add an extra layer of complexity to the problem.

3.3 AUV Dynamics
The dynamics model will be used to study how forces and torques applied to a vehicle affect its motion. In

order to model the dynamics of both vehicles, a Newton-Euler approach will be used. Let the rigid-body

equation of the AUV be given by

MRBv̇ + CRB(v)v = τRB , (3.5)

where MRB is the rigid body inertia matrix, CRB(v)v the Coriolis, centripetal and gyroscopic terms and

τRB the a generalized vector of external forces and torques expressed as

τRB =
[∑

FTRB
∑

NT
RB

]T
. (3.6)

This vector of external forces and torques can be decomposed into

τRB = τ + τA + τD + τR + τ dist, (3.7)

where each term represents:

• τ - Vector of forces and torques due to thrusters/surfaces, which can be viewed as the generalized

control input;
• τA - Vector of forces and torques due to the hydrodynamic added mass, given by

τA = −MAv̇ − CA(v)v; (3.8)

• τD - Hydrodynamics terms due to lift, drag, skin friction, etc. given by

τD = −D(v)v; (3.9)

• τR - Restoring forces and torques due to gravity and fluid density, given by

τR = −g(η); (3.10)
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• τ dist = Vector that represents external disturbances such as currents, wind, etc.

By replacing the terms in equation (3.7) by (3.8), (3.9) and (3.10) and then applying them to the

dynamic equation in (3.5) yields

MRBv̇ + CRB(v)v︸ ︷︷ ︸
rigid-body terms

+MAv̇ + CA(v)v +D(v)v︸ ︷︷ ︸
hydrodynamic terms

+ g(η)︸︷︷︸
restoring term

= τ + τ dist︸ ︷︷ ︸
applied forces and torques

. (3.11)

3.4 AUV Simplified Equations of Motion

In the context of this work, the AUV is assumed to be underactuated and to only operate at the surface

of the water which can be approximated by a 2-D plane. In this new case, the vehicle only has 3 DOF

given by [x, y, ψ]T given that ϕ = 0, θ = 0 and z = 0, leading to a simplification in the transformation

matrix defined in (3.1). Furthermore, we introduce at the kinematic level the ocean current velocities

vc = [vcx, vcy]
T , assumed to be constant and irrotational, i.e. v̇c = 0. Given this notion, the equations

of motion are re-written and the surge u and sway v speeds are now defined as velocities of the vehicle

with respect to a water-fixed frame {W} moving at vc with respect to {U}. The kinematics of the AUV

operating in ASV mode with 3 DOF are now given byẋ
ẏ


︸︷︷︸

ṗ

=

cos(ψ) −sin(ψ)

sin(ψ) cos(ψ)


︸ ︷︷ ︸

R(ψ)

u
v


︸︷︷︸

v

+

vcx
vcy


︸ ︷︷ ︸

vc

, (3.12)

ψ̇ = r. (3.13)

Also neglecting motion in roll, pitch and heave the simplified dynamic equations for [u, v, r]T are now

given by

muu̇−mvvr + duu = τu;

mv v̇ +muur + dvv = 0;

mr ṙ −muvuv + drr = τr,

(3.14)

where τu is the external force in surge (common mode), τr is the external torque about the Z-axis (differ-

ential mode) and
mu = m−Xu̇, du = −Xu −X|u|u|u|,

mv = m− Yv̇, dv = −Yv − Y|v|v|v|,

mr = Iz −Nṙ, dr = −Nr −N|r|r|r|,

muv = mu −mv,

(3.15)

where mu, mv, mr and muv represent the mass and hydrodynamic added mass and du, dv and dr the

hydrodynamic damping effects. These equations of motion are used to model the MEDUSA class of

underactuated vehicles described in detail in Appendix A.
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3.5 UAV Quadrotor Dynamics

3.5.1 Assumptions taken into consideration

In order to simplify the modelling of the quadrotor UAV several assumptions were made, namely:

• The quadrotor is symmetric along the X-axis and Y-axis;

• Aerodynamic drag forces are negligible;

• Rotors flapping effect is ignored;

• All rotors have exactly the same specifications, hence the same constants.

• Other external disturbances are neglected (assumption lifted later on).

3.5.2 Quadrotor Actuator Dynamics

As shown in Figure 3.1, the angular velocity of each rotor ωi generates a corresponding force Fi in the

direction of the correspondent rotor axis. In addition, the angular velocity and acceleration of the rotor

also creates torque τMi around the rotor axis. It is known that for a quadrotor, the thrust and reaction to

torque is approximately proportional to the square of the angular velocity of the rotor ωi, such that:

Fi = cTω
2
i ,

Qi = cQω
2
i (−1)i+1,

(3.16)

where the parameters cT and cQ are constant values that can be identified experimentally using static

thrust tests with varying payloads. By combining the forces Fi that each rotor generates we obtain a

thrust Z in the direction of the Z-axis of the body reference frame. The applied forces in the {B} frame

are given by

FRB =


0

0

Z

 =


0

0∑4
i=1 Fi

 =


0

0

cT
∑4
i=1 ω

2
i

 . (3.17)

In addition a torque NRB expressed in the body frame {B} is also generated and it is computed as

a function of the forces generated in each rotor by:

NRB =


K

M

N

 =


l(F2 − F4)

l(F1 − F3)

cQ
cT

(F1 − F2 + F3 − F4)

 , (3.18)

where l is the arm-length of the quadrotor, measured from the center of mass to one of the rotors.

3.5.3 Quadrotor Rigid Body Dynamics

Similar to the AUV case, the quadrotor is a rigid body, which means that the Newton-Euler equations can

also be used to deduce its dynamics. Therefore, the equation for the translational movement expressed
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in the body reference frame {B} is given by

mgBUR(η2)e3︸ ︷︷ ︸
gravitational force in {B}

− FRB︸ ︷︷ ︸
thrust

= m (v2 × v1 + v̇1)︸ ︷︷ ︸
acceleration in {B}

⇔ mv̇1 = −mS(v2)v1 − Ze3 +mgBUR(η2)e3,

(3.19)

where m denotes the mass of the vehicle, e3 a unit vector with all components equal to zero except

the third, Z the total thrust and S(η2) a skew-symmetric matrix used as an alternative way of expressing

the cross product, according to (2.2). The equation for the rotational dynamics of the vehicle expressed

in the body reference frame {B} are given by

J v̇2 = −v2 × (Jv2) +NRB︸ ︷︷ ︸
torque

⇔ J v̇2 = −S(v2)Jv2 +NRB ,

(3.20)

where J is the matrix of Inertia.

3.6 UAV Quadrotor Equations of Motion

In the previous section, the equations that modelled the dynamics of the quadrotor in the {B} frame were

presented. By taking into account (3.19) and representing it in the inertial reference frame {U} we get

η̈1 = ge3 −
1

m
U
BR(η2)FRB

⇔


ẍ

ÿ

z̈

 =


0

0

g

− 1

m
U
BR(η2)


0

0

Z

 .
(3.21)

Taking into consideration (3.20) and expanding it, the dynamics for rotational motion are given by

v̇2 = −J−1(v2 × Jv2) + J−1NRB

⇔


ṗ

q̇

ṙ

 = −J−1



p

q

r

× J


p

q

r


+ J−1


K

M

N

 . (3.22)

From the kinematics equations defined in section 3.2 it is trivial to convert from v2 to η2 by taking

η̇2 = Q(η2)v2

⇔


ϕ̇

θ̇

ψ̇

 =


1 sϕtθ cϕtθ

0 cϕ −sϕ

0 sϕ/cθ cϕ/cθ



p

q

r

, θ ̸= ±90◦. (3.23)

The quadrotor vehicle adopted for simulation is described in detail in Appendix B.
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Chapter 4

Vehicle Motion Control

In the previous chapter, a set of mathematical models were used to describe the behaviour of both an ASV

operating at the surface of water, and a quadrotor UAV. As the development of commercial autonomous

vehicles is becoming wide-spread, it is common for those vehicles to already provide a set of low-level

control schemes that take into consideration the dynamics model of the vehicle. This allows the control

designer to spend more time in the development of motion planning algorithms. Taking queues from

this industry practice, the single-vehicle path following problem is solved by adopting an inner-outer loop

control structure for both vehicles. At the inner-loop level, the controller is typically required to act on the

thrusters/rotors of the vehicle in order to generate a set of forces and torques. On the other hand, at the

outer-loop level, the controller is responsible for implementing a guidance law that steers the vehicle to

a desired path by generating control references for the inner-loop system to follow. In this chapter we

focus on the development of the inner-loop control systems.

4.1 ASV Inner-Loop Design

Due to the nature of the ASV vehicles, it is common practice for higher level controls to generate a set of

references for the speed of the vehicle in surge u and the yaw angular rate r about the Z-axis of the rigid

body frame {B}. For the sake of simplicity, two decoupled linear control laws are derived, given that the

vehicle will operate at low speeds.

Problem 4.1. Consider the ASV with dynamics described by (3.14) and let u†
d = [ud, rd]

T ∈ R2 denote

the desired surge speed and yaw-rate respectively. Linearize the vehicle dynamics and design a linear

control law for the force in surge τu and external torque about the Z-axis, τr such that u† = [u, r] converges

to a desired set of surge and yaw-rate references u
†

d.

4.1.1 Surge Speed Control

In this section, the goal is to derive a control law that enables the vehicle to follow a desired surge speed

reference. Taking into consideration the vehicle’s operating conditions, the following assumption is taken:
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Assumption 4.1. The sway-motion of the ASV is negligible, i.e v ≈ 0.

Considering the equations introduced in (3.14) and assumption 4.1, the surge dynamics of the ASV

are described by

u̇ =
1

mu
[τu − duu] . (4.1)

Define a set of error dynamics of this sub-system:

e(t) = u(t)− ud(t)

ė(t) = u̇(t)− u̇d(t)

. (4.2)

Given that the vehicle will be required to operate at an approximately constant nominal speed of 0.5

m/s, then we can consider u̇d(t) ≈ 0. Replacing (4.1) in (4.2) yields:

ė(t) = u̇(t) =
1

mu
[τu − duu] . (4.3)

Proposal Proportional Integral (PI) control law with feed-forward term:

τu = duu+mu

[
−kpe(t)− ki

∫ t

0

e(τ)dτ

]
, with kp, ki > 0. (4.4)

Substituting the proposed control law in equation (4.3) yields

ė(t) = −kpe(t)− ki

∫ t

0

e(τ)dτ. (4.5)

Applying the Laplace transform to the above system and considering the existence of an external

constant disturbance w(t), the described feedback control can be resumed in Figure 4.1. By applying

the separation theorem to the system described by equation (4.5) we get the following result:

U(s) =
kps+ ki

s2 + kps+ ki
Ud(s) +

s

s2 + kps+ ki
W (s). (4.6)

++
+-

Figure 4.1: System analysis in the frequency domain

We can conclude by applying the Final Value Theorem that external constant disturbances repre-

sented by w(t) are rejected by controller (4.4), that is,

lim
t→∞

u(t) = lim
s→0

sU(s) = lim
s→0

ω0s

s2 + kps+ ki
= 0. (4.7)
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4.1.2 Heading Rate Control

Following a similar approach to the one taken in the design of the previous controller, a linear control law

is also derived for the heading rate. Once again, taking into consideration the equations introduced in

(3.14) and the assumption 4.1:

ṙ =
1

mr
[τr − drr] . (4.8)

Defining the error dynamics: e(t) = r(t)− rd(t)

ė(t) = ṙ(t)− ṙd(t)

. (4.9)

Considering that ṙd(t) ≈ 0. Replacing (4.8) in (4.9) yields:

ė(t) = ṙ(t) =
1

mr
[τr − drr] . (4.10)

Proposal PI control law with feed-forward term:

τr = drr +mr

[
−kpe(t)− ki

∫ t

0

e(τ)dτ

]
, with kp, ki > 0. (4.11)

Replacing the proposed control law in (4.11) in (4.10):

ė(t) = −kpe(t)− ki

∫ t

0

e(τ)dτ. (4.12)

which enjoys the same constant disturbance rejection properties as the designed surge speed controller.

Remark: In general, whenever an integrator is used in a control law it is good practice to implement

an anti-windup scheme in order to guarantee that the integral term does not grow unbounded. In this work

we do not go in detail on the inner-workings of this mechanism, but refer to [52] where our implementation

is based upon.

4.1.3 Ocean Currents Observer

In order to develop a robust path following controller for an ASV, it is important to accurately measure

the velocity of ocean currents. However, it is not possible to measure these variables directly with the

sensors provided by the Medusa class of vehicles. Therefore, a viable alternative is to develop a currents

observer.

Problem 4.2. Consider an ASV vehicle with kinematics given by (3.12), equipped with a Doppler Velocity

Logger (DVL) system working in water lock mode, capable of providing the vehicle’s relative velocity to

the water, expressed in {B} and a Differential Global Positioning System (DGPS) unit which provides

measurements of the position of the vehicle pm, expressed in {U}. Furthermore, consider that it is

possible to express the velocities provided by the DVL in {U}, by resorting to the rotation matrix U
BR(ψ),

as vm. Develop an estimator for the ocean-currents vc expressed in {U} which are assumed to be

constant and irrotational, i.e. v̇c = 0.
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In order to solve this problem, we borrow the results from Pascoal et al.[53] and Sanches et al.[54]

where the authors propose a time-varying complementary filter structure, according to Figure 4.2.

System

+ +
+-

DGPSDVL

++
+

Figure 4.2: Currents estimator using a complementary filter structure

Proposition 4.1. Consider the process model Mp given by

Mp :=


ṗ = U

BR(ψ)v + vc

vm = U
BR(ψ)v

pm = p

, (4.13)

and the candidate complementary filter model described by

F :=


˙̂p = k1(pm − p̂) + vm + v̂c

˙̂vc = k2(pm − p̂)

, (4.14)

with k1 and k2 positive constants. The proposed complementary filter is asymptotically stable and solves

problem 4.2.

The reader is referred to the original work by Pascoal et al. [53] for an in-depth proof of proposition

4.1 where a detailed stability analysis is provided for several complementary filters designs.

4.2 AUV Quadrotor Inner-Loop Design

Given the quadrotor thruster configuration, it is typical to have an inner-loop controller whose task is to

follow attitude reference commands. Once again, due to the nature of the missions to be conducted and

the required operating speeds, it suffices to have a linear inner-loop controller.

Problem 4.3. Consider the AUV quadrotor described by (3.22) and let η2d = [ϕd, θd, ψd] ∈ R3 denote

the desired roll, pitch and yaw angles respectively. Linearize the vehicle dynamics and design a linear

control law for the external torque NRB about the X, Y and Z-axis, such that η2 converges to desired set

of angle references η2d.

Assumption 4.2. The quadrotor’s inertia matrix J is diagonal.
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Assumption 4.3. The vehicle is working near its hover state, where ϕ ≈ θ ≈ 0◦.

Consider (3.22) and assumption 4.2. Then the rotational dynamics of the quadrotor are given by


ṗ =

Jyy−Jzz
Jxx

qr + K
Jxx

q̇ = Jzz−Jxx

Jyy
pr + M

Jyy

ṙ =
Jxx−Jyy

Jzz
pq + N

Jzz

. (4.15)

By taking into consideration assumption 4.3, we know that near hover state:

sin(ϕ) ≈ ϕ, sin(θ) ≈ θ and cos(ϕ) ≈ cos(θ) ≈ 1. (4.16)

Replacing (4.16) in (3.23) yields: 
p = ϕ̇− ψ̇θ

q = θ̇ + ψ̇ϕ

r = ψ̇ − θ̇ϕ

. (4.17)

Considering that the higher order terms ψ̇θ ≈ ψ̇ϕ ≈ ϕ̇θ ≈ 0 and that qr ≈ pr ≈ pq ≈ 0 we finally get

that near hover state

η̈2 =


ϕ̈

θ̈

ψ̈

 =


1/Jxx 0 0

0 1/Jyy 0

0 0 1/Jyy



K

M

N

 = J−1NRB , (4.18)

such that NRB = J · u‡
d, where u‡

d represents the control input. Defining a set of error dynamics:


e(t) = η2(t)− η2d(t)

ė(t) = η̇2(t)− η̇2d(t)

ë(t) = η̈2(t)− η̈2d(t)

. (4.19)

Considering that η̈2d = 0, the proposed Proportional Derivative (PD) control law is given by:

u‡
d(t) = −Kpe(t)−Kdė(t) with Kp,Kd ⪰ 0. (4.20)

Replacing the control law in the error dynamics yields:

ë(t) +Kdė(t) +Kpe(t) = 0. (4.21)

With the designed controller, given the desired thrust and attitude is it possible to use equations (3.17)

and (3.18) to compute the angular velocity to apply to each individual rotor.
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4.2.1 Generating Angle References from accelerations

Generally, when designing an auto-pilot for a quadrotor it is easier to consider that the vehicle is modeled

by a double integrator system for which the main goal is to drive the position error to zero. In these

scenarios, the yaw angle ψdes of the vehicle is also left as a free variable controlled by the auto-pilot. A

side note worth mentioning is that the rotational motion of the quadrotor about the Z-axis is typically slow

as the moment the rotors are capable of producing around this axis is very limited.

Consider the double integrator model of the vehicle given by

p̈ := η̈1 = u⋄ = −Z

m
U
BR(η2)e3︸ ︷︷ ︸

r3

+ge3, (4.22)

where u⋄ is the output of the auto-pilot/outer-loop. It is necessary to develop a sub-system capable of

computing the total thrust Z and the attitude associated with the matrix U
BR(η2) from the desired input of

the auto-pilot. Consider expanding the previous equation:

u⋄ = − 1

m
Rz(ψdes)[Ry(θ)Rx(ϕ)Ze3] + ge3. (4.23)

Furthermore, consider u∗ to be given by

u∗ := Ry(θ)Rx(ϕ)Ze3. (4.24)

Replacing (4.24) in (4.23) yields the relation:

u∗ = −mRTz (ψdes)(u⋄ − ge3). (4.25)

From which it is possible to compute u∗, from the desired output of the outer-loop. Consider the total

thrust to be given by Z := ∥u∗∥. Combining with the previous equations, the yields

u∗

∥u∗∥
=


cos(ϕ)sin(θ)

−sin(ϕ)

cos(θ)cos(ϕ)

 . (4.26)

From this relation, it is possible to conclude that:

ϕdes = arcsin

(
− u∗2
Z

)
, (4.27)

θdes = arctan

(
u∗1
u∗3

)
, (4.28)

such that u∗ = [u∗1, u
∗
2, u

∗
3]
T , with u∗3 assumed to be different than zero, which is the typical case.
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Chapter 5

Path Following

In this chapter, the path following problem applied to both ASVs and multirotor UAVs is addressed. In a

path following problem, the vehicle is required to converge to and follow a path according to a desired

speed profile. The key idea is to drive each vehicle to a virtual target that moves along the desired path,

according to Figure 5.1. In order to solve the PF problem, the task is decomposed in two sub-tasks: i)

steer the vehicle to remain inside a tube centered around the desired path; ii) assign a dynamic speed

profile to the path to be followed.

ASV

Desired PathVirtual Target

𝒑!(𝛾)

𝒑

(a) ASV path following

UAV Quadrotor

Virtual Target

𝒑!(𝛾)

𝒑

(b) UAV multirotor path following

Figure 5.1: Path following schematic

The first task should be solved individually for each vehicle, as the ASV only moves in a 2-D plane and

the multirotor is able to move in a 3-D space. Moreover, the references generated by the outer-loop for

each vehicle should also be different, as the ASV inner-loops track surge speed and yaw-rate references

in {B} while the quadrotor’s track a set of desired accelerations in {U}.

For the ASV there are several PF algorithms that could be chosen, such as the one proposed by

Samson et al. [14] or Lapierre et al. [55]. The main disadvantage of these algorithms is that it is not

trivial to extend their rationale to quadrotor vehicles moving in a 3-D space. On the other hand, nonlinear

controller proposals from Aguiar et al. [8] and Vanni et al. [56] provide a much more extensible framework

that can be easily modified for applications to fully-actuated marine vehicles and aerial multirotor vehicles.

For this reason, the PF controller adopted for the ASV vehicles follow the proposals of Aguiar and Vanni,

while for the quadrotors a custom controller, inspired by the ASV controller design, is derived.

Common to both algorithms is the second task. Consider, for both vehicles that the desired speed
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profile for a virtual target that moves along a desired path is given by:

vd(γ, t) := vL(γ) + vcoord(t) , with |vL(γ)| ≤ vmaxL , (5.1)

where vL(γ) is a desired speed profile as a function of the path, vmaxL a pre-defined speed upper-bound

and vcoord(t) a speed coordination term that will be used later for enabling CPF. The PF problem applied

to ASVs is addressed in section 5.1 and for multirotor UAVs in section 5.2.

5.1 ASV Path Following

Problem 5.1. Consider the ASV with kinematics described by (3.12), and let pd(γ) : [0,∞) → R2 denote

the desired path parameterised by a continuous variable γ ∈ R and vd(γ, t) ∈ R be a desired speed

profile for a virtual target moving along the desired path. Furthermore, consider pd(γ) to be C2 and

have its first and second derivatives with respect to γ bounded. Moreover, the vehicle is equipped with

an inner-loop controller that given a desired surge speed and yaw-rate ud = [ud, rd]
T , assumed to be

bounded, computes a set of desired thrust and torques to apply to the vehicle. Design a control law for

surge ud, yaw-rate rd and virtual target γ̈ such that:

• the vehicle’s position converges to a tube around the desired position that can be made arbitrarily

small, i.e. ∥p(t)− pd(γ)∥ converges to a neighbourhood of the origin;

• the speed of the virtual target moving along the path converges to the desired speed profile, i.e.

|γ̇ − vd(γ, t)| → 0 as t→ ∞.

Following the approach proposed by Aguiar et al. [8], [15] and [57], consider the global diffeomorphic

coordinate transformation which expresses the position error defined in the body-frame of the vehicle

{B} as

ep(t) :=
B
UR(ψ)(p(t)− pd(γ)). (5.2)

and let the speed-tracking error be defined as

eγ := γ̇ − vd(γ, t). (5.3)

The body-fixed position error dynamics can be given by:

ėp(t) =
B
U Ṙ(ψ)(p(t)− pd(γ)) +

B
UR(ψ)(ṗ(t)− ṗd(γ)). (5.4)

Taking into account that the derivative of a rotation matrix can be expressed as the product of a

skew-symmetric matrix with the transposed rotation matrix:

B
U Ṙ(ψ) = −S(r)BUR(ψ), (5.5)
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where S(r) is defined according to (2.5). Replacing (5.5) in (5.4) yields the position error dynamics

expressed in the body-fixed frame become:

ėp(t) = −S(r)BUR(ψ)(p(t)− pd(γ))︸ ︷︷ ︸
ep(t)

+v + vc − B
UR(ψ)

∂pd(γ)

∂γ
γ̇, (5.6)

with

vc :=
B
UR(ψ)vc. (5.7)

Since there is no direct control in the sway motion, the goal is to generate surge speed and heading

rate control references. Therefore we must make those references appear explicitly in the error expres-

sion. By introducing an offset δ = [0, δ]T ∈ R2 (with δ < 0) in the standard position error, it is possible to

re-write (5.6) as:

ėp(t) = −S(r)(ep − δ)− S(r)δ +

u
v

+ vc − B
UR(ψ)

∂pd(γ)

∂γ
γ̇

= −S(r)(ep − δ)−

 0

δr

+

u
v

+ vc − B
UR(ψ)

∂pd(γ)

∂γ
γ̇

= −S(r)(ep − δ) +

1 0

0 −δ


︸ ︷︷ ︸

∆

u
r


︸︷︷︸

u

+

0
v

+ vc − B
UR(ψ)

∂pd(γ)

∂γ
γ̇

= −S(r)(ep − δ) + ∆u+

0
v

+ vc − B
UR(ψ)

∂pd(γ)

∂γ
γ̇.

(5.8)

Proposition 5.1. Consider the system described by the kinematics in (3.12) with outer-loop control laws

given by

ud := ∆−1

(
−Kpσ(ep − δ)−

0
v

− vc +
B
UR(ψ)

∂pd(γ)

∂γ
vd(γ, t)

)
; (5.9)

γ̈ := −kγeγ + v̇d(γ, t) + (ep − δ)TBUR(ψ)
∂pd(γ)

∂γ
, (5.10)

where Kp ⪰ 0, kγ > 0 and σ(ep) is a saturation function defined according to the definition in section 2.1.

The proposed control laws solves problem 5.1.

Proof. Consider the candidate Lyapunov Function given by

V1(ep) =
1

2
(ep − δ)T (ep − δ). (5.11)

By taking the first derivative of (5.11) and replacing in (5.6) and (5.3):

V̇1(ep) = (ep − δ)T

(
− S(r)(ep − δ) + ∆u+

0
v

+ vc − B
UR(ψ)

∂pd(γ)

∂γ

(
eγ + vd(γ, t)

))
. (5.12)
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Taking into account the properties of the skew-symmetric matrix introduced in section 2.1, then

(ep − δ)TS(r)(ep − δ) = 0. (5.13)

Replacing the equality and the control law (5.9) in V̇1 (assuming u = ud) yields

V̇1(ep) = (ep − δ)T

(
∆ud +

0
v

+ vc − B
UR(ψ)

∂pd(γ)

∂γ

(
eγ + vd(γ, t)

))

= − (ep − δ)TKpσ(ep − δ)︸ ︷︷ ︸
W1(ep)

−(ep − δ)TBUR(ψ)
∂pd(γ)

∂γ
eγ .

By taking a backstepping approach, consider a second candidate Lyapunov function

V2(ep, eγ) = V1(ep) + e2γ . (5.14)

Taking the first derivative and replacing in the control law (5.10) for the virtual target:

V̇2(ep, eγ) = V̇1(ep) + eγ(γ̈ − v̇d(γ, t))

= −W1(ep)− (ep − δ)TBUR(ψ)
∂pd(γ)

∂γ
eγ + eγ(γ̈ − v̇d(γ, t))

= −W1(ep)− kγe
2
γ < 0, ∀(ep − δ), eγ ̸= 0.

Given that V2 is radially unbounded and V̇2 < 0, the controlled system is globally asymptotically stable

at the equilibrium point (ep, eγ) = (δ, 0).

The proposed control laws in proposition 5.1 work under the assumptions that we have access to mea-

surements of the currents velocity vc and that the requested velocities ud are applied to the system

and are tracked exactly. In order to lift these assumptions, consider the currents estimation error and

inner-loop tracking error given by

ṽc := vc − v̂c,

ũ := u− ud.
(5.15)

Proposition 5.2. Consider the system error dynamics described by equations (5.8) and (5.3), along with

virtual target dynamics proposed in (5.10). Furthermore, consider the modified control law given by

ud := ∆−1

(
−Kpσ(ep − δ)−

0
v

− v̂c +
B
UR(ψ)

∂pd(γ)

∂γ
vd(γ, t)

)
, (5.16)

with Kp ⪰ 0. The closed-loop system is ISS with respect to ∆ũ+ ṽc.

Proof. Consider the first derivative of the candidate Lyapunov function (5.14) and the newly proposed
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control law (5.16), then

V̇2 = (ep − δ)T

(
− S(r)(ep − δ) + ∆u+

0
v

+ vc − B
UR(ψ)

∂pd(γ)

∂γ

(
eγ + vd(γ, t)

))

= (ep − δ)T

(
− S(r)(ep − δ) + ∆(ud + ũ) +

0
v

+ vc − B
UR(ψ)

∂pd(γ)

∂γ

(
eγ + vd(γ, t)

))

= −(ep − δ)TKpσ(ep − δ)− kγeγ + (ep − δ)T (∆ũ+ ṽc)

≤ −(1− θ)(ep − δ)TKpσ(ep − δ)− θ(ep − δ)TKpσ(ep − δ)− kγ |eγ |2 + ∥ep − δ∥ ∥∆ũ+ ṽc∥ ,

(5.17)

where 0 < θ < 1. The term

− θ(ep − δ)TKpσ(ep − δ) + ∥ep − δ∥ ∥∆ũ+ ṽc∥

= −θ(ep − δ)TKp
ep − δ

∥ep − δ∥
σ(∥ep − δ∥) + ∥ep − δ∥ ∥∆ũ+ ṽc∥ ,

(5.18)

will be ≤ 0 if

θλmin(Kp)σ(∥ep − δ∥) ≥ ∥∆ũ+ ṽc∥ , (5.19)

which in turn implies that

∥ep − δ∥ ≥ σ−1

(
1

θλmin(Kp)
∥∆ũ+ ṽc∥

)
, (5.20)

and

V̇2 ≤ −(1− θ)(ep − δ)TKpσ(ep − δ)− kγ |eγ |2, (5.21)

as the right side of inequality (5.20) can be made arbitrarily small through the choice of the gain matrix

Kp. It follows directly from the application of Theorem 2.3 that the controlled system is ISS.

5.2 UAV Quadrotor Path Following

Problem 5.2. Consider a quadrotor UAV with kinematics described by (4.22), and let pd(γ) : [0,∞) → R3

denote the desired path parameterised by a continuous variable γ ∈ R and vd(γ, t) ∈ R be a desired

speed profile for a virtual target moving along the desired path. Furthermore, consider pd(γ) to be C2

and have its first and second derivatives with respect to γ bounded. Moreover, the vehicle is equipped

with a control structure that given a desired acceleration u⋄
d ∈ R3, assumed to be bounded, computes

an attitude and thrust reference to be followed by an inner-loop system. Design a control law for the

quadrotor acceleration and virtual target such that:

• the vehicle’s position converges to a tube around the desired position that can be made arbitrarily

small, i.e. ∥p(t)− pd(γ)∥ converges to a neighborhood of the origin;

• the speed of the virtual target moving along the path converges to the desired speed profile, i.e.

|γ̇ − vd(γ, t)| → 0 as t→ ∞.
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Following a similar approach to the one proposed by F. Vanni and P. Aguiar, consider the position and

velocity errors, but this time defined in the inertial frame {U} as

ep := p(t)− pd(γ), (5.22)

ev := ṗ− ∂pd
∂γ

vd(γ, t), (5.23)

respectively and a virtual target speed tracking error to be defined by (5.3). Consider also new auxiliary

error z defined as

z := ev +K1ep, (5.24)

where K1 ⪰ 0 is a gains matrix. The position and velocity error dynamics can be given by

ėp = ṗ− ∂pd
∂γ

γ̇, (5.25)

ėv = p̈− d

dt

(
∂pd
∂γ

vd(γ, t)

)
. (5.26)

Furthermore, consider the time derivative introduced in (5.26), the desired virtual target speed function

(5.1) and virtual target speed tracking error function (5.3), then we can expand the expression as

d

dt

(
∂pd
∂γ

vd(γ, t)

)
=

d

dt

(
∂pd
∂γ

)
vd(γ, t) +

∂pd
∂γ

d

dt

(
vd(γ, t)

)

=
∂2pd
∂γ2

γ̇vd(γ, t) +
∂pd
∂γ

d

dt

(
vL(γ) + vcoord(t)

)

=
∂2pd
∂γ2

vd(γ, t)(eγ + vd(γ, t)) +
∂pd
∂γ

(
∂vL(γ)

∂γ
γ̇ + v̇coord(t)

)

=
∂2pd
∂γ2

vd(γ, t)(eγ + vd(γ, t)) +
∂pd
∂γ

∂vL(γ)

∂γ

(
eγ + vd(γ, t)

)
+
∂pd
∂γ

v̇coord(t)

=

[
∂2pd
∂γ2

vd(γ, t) +
∂pd
∂γ

∂vL(γ)

∂γ︸ ︷︷ ︸
h(γ)

]
(eγ + vd(γ, t)) +

∂pd
∂γ

v̇coord(t)

= h(γ)(eγ + vd(γ, t)) +
∂pd
∂γ

v̇coord(t).

(5.27)

Replacing (4.22) and (5.27) in (5.26) yields

ėv = u⋄ − h(γ)(eγ + vd(γ, t))−
∂pd
∂γ

v̇coord(t). (5.28)

Proposition 5.3. Consider the double integrator system described by (4.22) with outer-loop control laws

given by

u⋄
d := h(γ)vd(γ, t) +

∂pd
∂γ

v̇coord(t)−K1ev − ep −K2z; (5.29)
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γ̈ := −kγeγ + v̇d(γ, t) + eTp
∂pd
∂γ

+ zT

(
h(γ) +K1

∂pd
∂γ

)
, (5.30)

where K1,K2 ⪰ 0 and kγ a positive gain. The proposed control laws solve the problem 5.2.

Proof. Consider the candidate Lyapunov function given by

V1(ep) :=
1

2
eTp ep. (5.31)

By taking the first derivative of (5.31) and replacing in (5.23) and (5.25), yields

V̇1(ep) = eTp

(
ṗ− ∂pd

∂γ
γ̇

)

= eTp

(
ṗ− ∂pd

∂γ
vd(γ)︸ ︷︷ ︸

ev

−∂pd
∂γ

eγ

)

= −eTpK1ep + eTp

(
K1ep + ev −

∂pd
∂γ

eγ

)
.

(5.32)

Replacing the auxiliary error (5.24) in V̇1 yields

V̇1 = − eTpK1ep︸ ︷︷ ︸
W1(ep)

+eTp

(
z− ∂pd

∂γ
eγ

)
. (5.33)

By resorting to a backstepping technique, consider a second candidate Lyapunov function

V2(ep, ev) := V1(ep) +
1

2
zT z. (5.34)

Replacing (4.22), (5.25) and (5.28) in V̇2 yields:

V̇2 = −W1(ep) + eTp z− eTp
∂pd
∂γ

eγ

+ zT

[
u⋄ − h(γ)(eγ + vd(γ, t))−

∂pd
∂γ

v̇coord(t) +K1

(
ṗ− ∂pd

∂γ
vd(γ, t)︸ ︷︷ ︸

:=ev

)
−K1

∂pd
∂γ

eγ

]
. (5.35)

Replacing the control input (5.29) in the previous equation (assuming u⋄ = u⋄
d):

V̇2 = −W1(ep)− zTK2z− eTp
∂pd
∂γ

eγ − zT

(
h(γ) +K1

∂pd
∂γ

)
eγ

= −W2(ep, z)− eTp
∂pd
∂γ

eγ − zT

(
h(γ) +K1

∂pd
∂γ

)
eγ .

(5.36)

Consider a third candidate Lyapunov obtained by backstepping:

V3 := V2 +
1

2
e2γ . (5.37)
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Take it’s derivative with respect to time:

V̇3 = −W2(ep, ev)− eTp
∂pd
∂γ

eγ − zT

(
h(γ) +K1

∂pd
∂γ

)
eγ + eγ(γ̈ − v̇d(γ, t)). (5.38)

Replacing the virtual target control law (5.30) in V̇3 yields:

V̇3 = −W2(ep, z)− kγe
2
γ < 0, ∀ep, z, eγ ̸= 0. (5.39)

Given that V3 is radially unbounded and V̇3 < 0, the controlled system is globally asymptotically stable

at the equilibrium point (ep, z, eγ) = 0.

Up to this point, the presence of any external disturbances such as wind and drag forces acting on

the multirotor frame have been disregarded. In order to take those into consideration, consider the new

vehicle motion model given by

p̈ := u⋄ + d, (5.40)

where d ∈ R3 represents unmeasured external constant disturbances acting on the vehicle, such that

∥d∥ ≤ dmax, (5.41)

where dmax is a known, positive constant. Let the disturbance estimation error be given by

d̃ := d− d̂. (5.42)

Given the new vehicle motion model given in (5.40), the dynamics of ėv obtained previously in (5.28)

are now given by

ėv = u⋄ + d− h(γ)(eγ + vd(γ, t))−
∂pd
∂γ

v̇coord(t). (5.43)

Unlike with the ASVs, where current estimates were given by a simple, yet quite effective comple-

mentary filter, in the case of a quadrotor a different direction is taken. The main reason lies on the fact

that in this model the disturbances are included in the accelerations (and do not comprise only wind). In

Cabecinhas et al. [34] the authors propose the use of a simple observer based on a smooth projection

operator for disturbance rejection on a quadrotor. Consider the following disturbance observer:

˙̂d := KdProj(z, d̂) with Kd ⪰ 0, (5.44)

where Proj(·) denotes a smooth projection operator introduced in section 2.2.3 andKd denotes a diagonal

gains matrix. The estimation error dynamics are given by

˙̃
d = − ˙̂

d. (5.45)
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Moreover, consider the inner-loop tracking error given by:

ũ⋄ := u⋄ − u⋄
d, (5.46)

which is assumed to be bounded.

Proposition 5.4. Consider the system described by (5.40), the disturbance estimator dynamics given by

(5.44) and the inner-loop tracking error given by (5.46). Furthermore, consider the modified control law

given by

u⋄
d := −d̂+ h(γ)vd(γ, t) +

∂pd
∂γ

v̇coord(t)−K1ev − ep −K2z. (5.47)

For sufficiently small initial position and velocity errors (ep, ev), and a sufficiently large separation

between the time-scales of the inner and outer loop systems, it can be guaranteed that the system error

converges to a neighbourhood of zero.

Proof. Consider the candidate Lyapunov function

V4 = V3 +
1

2
d̃TK−1

d d̃. (5.48)

It’s time derivative is now given by

V̇4 = −eTpK1ep − zTK2z− kγe
2
γ + d̃T (z− Proj(z, d̂))︸ ︷︷ ︸

≤0

+zT ũ⋄. (5.49)

Making use of property 2 of the smooth projection operator (see section 2.2.3), it is possible to derive

a bound for the derivative

V̇4 ≤ −W (ep, ev, eγ) + zT ũ⋄. (5.50)

By applying (4.22) to (5.46), yields

ũ⋄ = u⋄ − u⋄
d

=

(
− Z

m
r3 + ge3

)
−
(
− Z

m
r3d + ge3

)
=
Z

m
(r3d − r3)︸ ︷︷ ︸

r̃3

.
(5.51)

From the definition of Z introduced in section 4.2.1 and (5.47), the total thrust can be bounded by

Z = ∥u∗∥ =
∥∥−mRTz (ψ)(u⋄ − ge3)

∥∥
=

∥∥∥∥−mRTz (ψ)(−d̂+ h(γ)vd(γ, t) +
∂pd
∂γ

v̇coord(t)−K1ev − ep −K2z− ge3)

∥∥∥∥
≤ m

(∥∥∥d̂∥∥∥+ ∥h(γ)vd(γ, t)∥+
∥∥∥∥∂pd∂γ

v̇coord(t)

∥∥∥∥+ ∥K1∥ ∥ev∥+ ∥ep∥+ ∥K2∥ ∥z∥+ g

)
.

(5.52)

Therefore, it becomes trivial that the inner-loop tracking error is bounded by

∥ũ⋄∥ ≤ ∥r̃3∥

(∥∥∥d̂∥∥∥+ ∥h(γ)vd(γ, t)∥+
∥∥∥∥∂pd∂γ

v̇coord(t)

∥∥∥∥+ ∥K1∥ ∥ev∥+ ∥ep∥+ ∥K2∥ ∥z∥+ g

)
. (5.53)
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Replacing the inequality (5.53) in (5.50) makes the quadratic term ∥z∥2 appear. Therefore, it is only

possible to conclude that as long as the position and velocity errors are small, and the inner-loop of the

system is much faster than the outer-loop (guaranteeing that ∥r̃3∥ is small and as consequence also ũ),

then the system is able to converge to a neighborhood of the desired position and velocity references.

In order to make the designed control law u⋄
d more clear, consider the following algebraic manipulation:

u⋄
d = −d̂+ h(γ)vd(γ, t) +

∂pd
∂γ

v̇coord(t)−K1ev − ep −K2z

= −d̂+ h(γ)vd(γ, t) +
∂pd
∂γ

v̇coord(t)−K1ev − ep −K2ev +K1K2ep

= −d̂+ h(γ)vd(γ, t) +
∂pd
∂γ

v̇coord(t)− ev (K1 +K2)︸ ︷︷ ︸
Kv

−ep (I +K1K2)︸ ︷︷ ︸
Kp

= −d̂+ h(γ)vd(γ, t) +
∂pd
∂γ

v̇coord(t)︸ ︷︷ ︸
acceleration term

− evKv︸ ︷︷ ︸
derivative term

− epKp︸ ︷︷ ︸
proportional term

.

(5.54)

From here, it is possible to conclude that the control law is essentially a Proportional Integral Derivative

(PID) controller with a feed-forward term for acceleration. The integral effect results from the disturbance

estimation term being interpreted as a bounded integral term.
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Chapter 6

Cooperative Path Following

In the previous chapter, a set of control algorithms that allow ASV and quadrotor UAV vehicles to perform

PF missions individually were introduced. As discussed previously, one key advantage of the PF control

laws introduced is that they allow for the design of a virtual target speed synchronization law that is

independent of the PF controller itself.

In order to perform the synchronization between virtual targets of multiple vehicles, both centralized or

distributed approaches could be taken. A centralized controller would require that all vehicles were able

to communicate directly with a central entity (which might not always be feasible) and would imply that

this central entity could never lose its connection to the network. A better and more robust approach is to

consider a distributed control problem for the synchronization of the multiple autonomous vehicles/agents,

which is the one considered in this work. Particularly, in this chapter we address the problem of CPF. The

end goal is to have an algorithm that allows one quadrotor and multiple ASV vehicles to perform a path

following mission cooperatively, in a leader-follower network like structure. The vehicles are required to

execute their mission according to a fixed geometric configuration. To this effect, it is considered that

there exists inter-vehicle communication and that motion related information is accessible between the

vehicles in a communication network. In the first section we start by formulating the CPF problem as a

consensus/synchronization problem and then propose a solution to it in a two step fashion: i) design of

a coordination control scheme that assumes a continuous exchange of information between vehicles; ii)

design an ETC mechanism that copes with limitations imposed by real environments where inter-vehicle

communications are discrete.

6.1 Synchronization Problem with Continuous Communications

Consider a group of N ∈ R+ \ {1} autonomous vehicles/agents in a network that can be described

mathematically by a digraph G(V, E ,A), consisting on N vertices, a set of directed edges E ⊆ V × V ,

where the edge εij represents the flow of information from agent i to agent j, and a weighted adjacency

matrix A = [aij ] ∈ RN×N . Furthermore, each vehicle i is able to receive information from its neighbours

in N in
i and send information to its neighbours in N out

i . Let the state vector of the system be composed
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by the path parameter of each individual vehicle γ = [γ1, ..., γN ]T . The CPF problem is formulated in

problem 6.1.

Problem 6.1. For each agent i, with i = 1, ..., N derive a consensus protocol for the speed correction

term vcoord = [vcoord1 , ..., vcoordN ]T such that limt→∞ |γi− γj | = 0, ∀j ∈ N in
i , and the formation of vehicles

achieves the desired speed assignment vL(γ) = [vL1, ..., vLN ]T as t→ ∞.

In order to solve problem 6.1 the following simplifying assumptions are taken:

Assumption 6.1. The communications are continuous between vehicles.

Assumption 6.2. The communication topology of the vehicles is fixed, i.e. the Laplacian matrix L asso-

ciated to the graph G is constant. G is also undirected, i.e. N in
i = Nout

i , and connected.

Let the synchronization error vector be defined as ε = [ε1, ..., εN ]T , such that

εi :=
∑
j∈N in

i

aij(γi − γj), (6.1)

which can also be expressed in it’s vectorial form as

ε := Lγ, (6.2)

where L is the Laplacian matrix of graph G and εi denotes the coordination error between vehicle i and

its neighbours. Consider as well, the coordination error dynamics of the multi vehicle system to be given

by

ε̇ := Lγ̇. (6.3)

Note that, according to the previously developed PF controllers, for each vehicle i, |γ̇i − vd(γ, t)| = 0

is only guaranteed as t→ ∞. Having this fact in mind, an extra naive assumption is made:

Assumption 6.3. The speed progression of a virtual targets along the desired path is always assumed

to be modelled by a single integrator system, which can be expressed in vectorial form according to

γ̇ = vd(γ, t) = vL(γ) + vcoord. (6.4)

According to Ren. W and Attkins E. [18], a first-order consensus protocol that could stabilize the

system would be given by

vd(γ, t) := −ε = −Lγ, (6.5)

where the final consensus value was given by ε∗ =
∑N
i=1 αiεi(0), with α = [α1, ..., αN ]T a non-negative

(left) eigenvector of−L associated with the eigenvalue 0. Unfortunately, this control law cannot be applied

directly as we do not control vd but rather vcoord. However, both vectors are related by (6.4).

Proposition 6.1. Consider the distributed control protocol applied to each vehicle i

vcoordi := −kε
∑
j∈N in

i

aij(γi − γj), (6.6)
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also expressed in vectorial form as

vcoord := −kεLγ, with kε > 0. (6.7)

The system described by (6.3), (6.4) with distributed control law given by (6.7) is globally asymptotically

stable, and ε → 0 and γ → vL(γ) with t → ∞ as long as vL(γ) = vL1, i.e. all the virtual targets have

the same desired speed profile.

Proof. Consider the following equality:

L
[
v1 v2 . . . vN

]
︸ ︷︷ ︸

V

=
[
v1 v2 . . . vN

]
︸ ︷︷ ︸

V


λ1 . . . 0
... . . . ...

0 . . . λN


︸ ︷︷ ︸

Λ

, (6.8)

where vi, i = 1, ..., N denotes the eigen vectors of L while λi, i = 1, ..., N denotes the associated eigen

values. By applying theorem 2.4 to (6.8), the Laplacian matrix expressed in Jordan form, according to

L = V ΛV −1 ⇔ L =
[
1N V2

]0 0

0 Λ2


1N

T

V T2

 . (6.9)

By replacing in (6.4) and (6.7) in (6.3) yields

ε̇ = L(vL(γ)− kεLγ)

= vL��*0
L1− kεLε = −kεLε.

(6.10)

Consider the change of variables

ε̄ = V −1ε. (6.11)

Replacing (6.9) and (6.11) in (6.10) yields:

V −1ε̇ = −kεV −1(V ΛV −1)ε ⇒ ˙̄ε = −kεΛε̄. (6.12)

With this new error dynamics, it becomes trivial that:

ε̄(t) =

1 0

0 e−kεΛ2t

ε̄(0) ⇒ ε(t) = V

1 0

0 e−kεΛ2t

V −1ε(0) (6.13)

From this equality, it is possible to conclude that

lim
t→∞

ε = 1���*
0

1TLγ(0) = 0, (6.14)

and as a consequence γ̇ → vL(γ) as t→ ∞.
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6.2 Synchronization Problem with Discrete Communications

In the previous section a distributed control law that relied on the continuous flow of information among

neighbour agents was proposed. However, in a physical world, there are bandwidth limitations that each

vehicle must cope with. In this section a distributed control scheme with ETC is presented, based on

previous work developed by A. Aguiar and A. Pascoal [58] and N. Hung and F. Rego [59]. In their work,

the authors propose a scheme where each agent i has a set of estimators γ̂j , j ∈ N in
i for the true state

of each in-neighbour virtual target γj . In addition, each agent i has an estimator for its own state γ̂i

which is reset whenever vehicle i broadcasts its true state γi. The other estimators are reset whenever

agent i receives the true state from its in-neighbours j ∈ N in
i . In their research paper, Hung et al. [59]

propose two different broadcast/triggering conditions: i) a time-dependent triggering condition; ii) a state

dependent triggering condition. In this work we will focus on the first proposal.

Proposition 6.2. Consider the re-written distributed control law in (6.6) now given by

vcoordi := −kε
∑
j∈N in

i

aij(γi − γ̂j), (6.15)

where kε is still a sufficiently large positive constant and γ̂j is vehicle’s i estimate of vehicle’s j real

state/path parameter. Consider also that the bank of estimators that each vehicle i is running follows the

dynamics equation
˙̂γi := vL(γ̂i). (6.16)

Based on the broadcast/triggering condition defined previously, at any time instant t, under negligible

transmission delays, the vehicle’s j self-state estimate γ̂j is equal to vehicle’s i estimate of γ̂j , which

allows us to express the new distributed control law and estimator dynamics using vectorial notation as

˙̂γ := vL(γ̂), (6.17)

where, γ̂ = [γ̂1, ..., γ̂N ]T is the self-estimate of the state of each vehicle. Let γ̃ = [γ̃1, ..., γ̃N ]T denote the

local estimation errors of each vehicle, such that γ̃ = γ − γ̂. Then vcoord is given by

vcoord := −kε[Dγ −Aγ̂]

= −kε[Dγ −A(γ − γ̃)]

= −kε(ε+Aγ̃).

(6.18)

where D is a diagonal matrix and A the graph adjacency matrix, introduced in section 2.3. Consider as

well, a triggering function used to define when to broadcast the state of each vehicle, defined as

δi(t) := |γ̃i(t)| − gi(t)

γ̃i(t) = γ̂i(t)− γi(t)

, (6.19)

where γ̃i(t) is the local estimation error of agent i and gi(t) is a threshold function that is time dependent,

such that if the estimation error exceeds this threshold, i.e. δi(t) ≥ 0, vehicle i broadcasts its state to the

out-neighbours N out
i and resets its local estimator. Furthermore, consider gi(t) to belong to a class of
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non-negative functions, given by

gi(t) = ci + bie
−αit, (6.20)

with ci, bi and αi positive constants and g(t) = [g1, ..., gN ]T the collection of functions for each individual

vehicle. Consider also that now vL(γ) = vL1+ ṽL, where ṽL is a bounded and arbitrarily small term that

accounts for a transient period in which the vehicles are on different sections of the path, with slightly

different desired speed profiles. Then, the system is ISS with respect to the error vector ε and the inputs

γ̃ and ṽL, under the assumptions 6.2 and 6.3.

Proof. Replacing (6.18) in (6.3) yields

ε̇ = L(vL(γ)− kε(ε+Aγ̃))

= vL��*0
L1+ LṽL − kεL(ε+Aγ̃)

= −kεL(ε+ d) with d =
ṽL

kε
+Aγ̃,

(6.21)

where d is a disturbance that results from combining the terms dependent on ṽL and γ̃. Considering

the change of variables introduced in (6.11) and applying it to (6.21) yields

˙̄ε = −kεΛ(ε̄+ d̄), with d̄ = V −1d. (6.22)

It is possible to decompose the above equality according to the following notation ˙̄ε1

˙̄ε2

 =

 0

−kεΛ2(ε̄2 + d̄2)

 , (6.23)

where the first half of the vector denotes the term that depends on the null eigen value of the Lapla-

cian while the second term is a vector that depends only on the positive eigen values of the Laplacian.

Consider now the candidate Lyapunov function

Vε̄2 =
1

2
ε̄T2 ε̄2, (6.24)

and it’s time derivative given by

V̇ε̄2 = −kεε̄T2 Λ2(ε̄2 + d̄2)

= −(1− θ)kεε̄
T
2 Λ2ε̄2 − θkεε̄

T
2 Λ2ε̄2 − kεε̄

T
2 Λ2d̄2

(6.25)

where 0 < θ < 1. The term

− θkεε̄
T
2 Λ2ε̄2 − kεε̄

T
2 Λ2d̄2 (6.26)

will be ≤ 0 if

∥ε̄2∥ ≥ 1

θ

∥∥d̄2

∥∥ , (6.27)

and

V̇ε̄2 ≤ −(1− θ)kεε̄
T
2 Λ2ε̄2. (6.28)
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The term ∥γ̃∥ can be made arbitrarily small by controlling the gains that dictate the broadcasting

scheme. Moreover, the term ṽL can be dominated by a proper choice kε. Hence ∥d∥ can be made

arbitrarily small and so does
∥∥d̄2

∥∥. It follows from the application of theorem 2.3 that the controlled

system is ISS with respect to the error vector ε and the inputs γ̃ and ṽL.

The proposed consensus protocol used for achieving CPF using ETC is summarized in algorithm 2.

Algorithm 2 Event Triggered Communication for vehicle i
1: At every time instant t, each vehicle i follows the procedure:
2: procedure COORDINATION AND COMMUNICATION
3: if δi(t) ≥ 0 where δi is computed using (6.19) and (6.20) then
4: Broadcast γi(t);
5: Reset the estimator γ̂i;
6: if Receive a new message from agent j then
7: Reset γ̂j(t);
8: Run the estimators according to (6.16);
9: Update the first order control protocol ui using (6.15);

6.3 Final Architecture

Taking into consideration the control structures introduced in chapters 4, 5 and 6 for both ASVs and a

quadrotor UAV, it is possible to summarize the entire control system in Figure 6.1.
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and
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Figure 6.1: Complete system architecture - UAV quadrotor and multiple ASVs
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Chapter 7

Path Planning

The previous chapter focused on the development of a consensus protocol that allowed a network of

vehicles to perform CPF missions using a distributed ETC scheme. In this chapter the attention is shifted

towards the problem of generating a set of smooth and planar reference paths for each individual vehicle

to follow. In order to generate such paths, problem 7.1 is formulated.

Problem 7.1. Consider an UAV (quadrotor) flying over a body of water at a pre-defined fixed altitude,

equipped with a camera sensor pointing downwards with a fixed pitch angle relative to the vehicle’s body

reference frame {B}. Consider also that the vehicle is capable of detecting environmental boundaries in

the 2-D image provided by the camera sensor. Furthermore, consider that at the surface of the water, one

or more ASV vehicles are required to follow the quadrotor according to a pre-defined vehicle formation.

As the quadrotor detects an environmental boundary in the 2-D image, generate a set of smooth

and planar reference paths for each individual vehicle (quadrotor and ASVs), such that they encircle the

boundary according to the pre-defined formation.

In order to solve this problem a few assumptions are made:

Assumption 7.1. The environmental boundary is located at the ocean’s surface assumed to be a 2-D

plane at Z = 0 in the inertial frame of reference {U}.

Assumption 7.2. The quadrotor has a navigation system that can track the vehicle’s pose with a ”good

enough” accuracy.

Assumption 7.3. The quadrotor has a limited vision of the environment, i.e, the camera sensor might

not be able to capture the entire boundary, but rather sections of it, according to Figure 7.1 a).

Assumption 7.4. The detection of the pixels that encode the boundary in the image frame is a sub-

system that we assume to be already developed and readily available.

Furthermore, it is important to develop a rigorous mathematical definition for what type of environ-

mental boundary we are considering in this work. As discussed previously in section 1.2.7, there are

several possibilities for modelling such boundaries, which can be more or less useful considering the

set of sensors the vehicles have onboard. In this work, the definition/model of a dynamic boundary is
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borrowed from the work of Saldaña et al. [28], which in contrast to convection-diffusion based models,

does not require in-depth knowledge of the dynamics of the fluid. Consider the following definitions and

assumptions:

Definition 7.1. A dynamic boundary is a set of planar points Ωt such that ∀z ∈ Ωt, and for any ξ > 0, the

open disk centered at point z with radius ξ contains points of Ωt and its complement set ΩCt .

Definition 7.2. A dynamic boundary can be approximated by a parametric closed curve (Jordan Curve)

C(γ, t) : [0,∞)× [0,∞) → R2, mapped by a parameter γ ∈ R+
0 and time t ∈ R+

0 . The curve is continuous

with no self-intersecting points.

Assumption 7.5. A dynamic boundary, modelled by the parametric curve C(γ, t) is assumed to change

smoothly with respect to both time t and parameter γ, such that first and second derivatives exist and

are continuous.

Assumption 7.6. The speed of any point p ∈ Ωt is upper-bounded by a maximum speed value, as shown

in Figure 7.1 b), such that: ∥∥∥∥∂C(γ, t)

∂t

∥∥∥∥ ≤ vmax. (7.1)

Environmental 
Boundary

Water Surface

UAV (quadrotor)

(a) Quadrotor vision

𝜉

𝑧

Environmental 
Boundary

𝑝 ∈ 𝜕Ω!

(b) Environmental boundary definition

Figure 7.1: Environmental Boundary schematic

Given the previous definitions and assumptions 7.1 and 7.2, one can consider acceptable the con-

version of the pixels that represent the boundary in the image frame to a 2-D point cloud expressed in

the inertial frame of reference {U}. Moreover, we can expect that points representing regions of the

boundary that are closer to the quadrotor will have a higher accuracy than points that represent sections

that are further away.

Taking into consideration assumption 7.3 it is trivial to conclude that using a static planning algorithm

for a vehicle to follow closely the chemical spill will not suffice as it would require the quadrotor to either: i)

have a complete overview of the boundary; ii) construct a mosaic of the environment from the 2-D image

stream. The first is infeasible if the anomaly at the surface spans across several kilometres, which would

require the quadrotor to fly very high to get a complete picture of the scene and, as a consequence, small
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errors in the vehicle’s pose would generate huge errors in the conversion to a 2-D point cloud, rendering

assumption 7.2 irrealistic. The second is also infeasible, as the environment is assumed to be dynamic,

therefore even if the UAV was capable of taking several shots of the boundary, stitch them together and

plan a path in a small amount of time, according to assumptions 7.5 and 7.6, the real boundary would

keep morphing and the planned path would not be adequate after a small period of time.

A possible solution to problem 7.1 is to develop an online path planning mechanism which is actively

re-planning the path at a given frequency f , as the vehicles move along it and more up-to-date data is

acquired by the vision system. In this chapter we propose an online path planning algorithm that given a

stream of pixels corresponding to a boundary to be followed:
1. uses the data provided by the quadrotor navigation system to convert the pixels to a 2-D point cloud

expressed in the inertial frame;
2. removes outliers and does some pre-processing on the 2-D point cloud;
3. fits the data with open B-splines by formulating an online optimization problem;
4. generates a path for each vehicle to follow based on the generated B-spline;
5. repeats the process once new data is available.

In section 7.1 we introduce the camera model adopted and the conversion of pixels in the image frame

to coordinates in a 2-D plane. In section 7.2 we describe in detail the multi-stage optimization algorithm

developed to fit the set of points with a curve that can be used by the PF systems. In the last section we

provide a way to generate individual desired paths for each vehicle, according to a pre-defined vehicle

formation by introducing a new frame transformation.

7.1 Camera Model

In order to convert pixels in an image frame to a 2-D point cloud, we must first introduce the camera model

adopted. For this purpose, we consider a camera to be characterized by: i) a set of extrinsic parameters,

which model the conversion between coordinates expressed in the world/inertial reference frame {U}

and the camera reference frame {C}; ii) intrinsic parameters which describe how a set of points in {C}

are represented in the image frame, according to Figure 7.2.

Figure 7.2: Camera model and reference frames

The intrinsic parameters consist of the focal distance fd, the scale factors (sx, sy) in the X and Y -

axis respectively, and (cx, cy) which correspond to the offset of the focal point in the image plane. These
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parameters are fixed and can be obtained a priori by resorting to a camera calibration process, described

in detail in [60]. The extrinsic parameters can be organized in a matrix that encodes both rotation and

translation between reference frames. Combining together the matrices of intrinsic parameters K, also

known as the full-rank calibration matrix, and the matrix of external parameters C
U [R|T ] and expressing

the inertial frame coordinates as homogeneous coordinates, we get the linear system described by

λ


x

y

1

 =


fdsx 0 cx

0 fdsy cy

0 0 1



1 0 0 0

0 1 0 0

0 0 1 0


︸ ︷︷ ︸

K

 C
UR

C
UT

01×3 1


︸ ︷︷ ︸

C
U [R|T ]


XU

YU

ZU

1

 , (7.2)

where x and y denote the coordinates in the image frame and λ is a scale factor. It is important to mention

that CU [R|T ] results from a series of successive rigid-body transformations (rotations and translations ),

given by
C
U [R|T ] = C

B [R|T ]BU [R|T ], (7.3)

where B
U [R|T ] denotes the conversion of coordinates expressed in the inertial frame {U} to the quadrotor’s

body frame {B}, provided by the navigation system of the quadrotor and C
B [R|T ] is a matrix known a priori,

assuming the camera attached to the vehicle is fixed. Furthermore, we can aggregate the intrinsic and

extrinsic parameters in a matrix Ω according to

Ω = K · CU [R|T ]. (7.4)

In order to convert a given set of pixels (x, y) in the image frame to a point cloud expressed in the

inertial frame we need depth information about the scene. In the scenario considered, we are very limited

on the sensors available today. It is not possible to use a Light Detection And Ranging (LIDAR) camera

to extract depth data in water environments nor is it possible to extract useful data from stereo depth

cameras at more than 5 − 10m from objects. Another alternative would be to consider the existence of

landmarks that could be identified in the image and whose inertial position would be known a priori. The

later is a very limiting assumption in sea environments, for which fixed natural landmarks are scarce.

Taking into consideration assumption 7.1 we can assume that all the points in the inertial frame will lie on

the plane described by ZU = 0, which solves the depth requirement. From here it is possible to define

the system 
x

y

1

 =
1

λ


Ω1 Ω2 Ω3 Ω4

Ω5 Ω6 Ω7 Ω8

Ω9 Ω10 Ω11 Ω12


︸ ︷︷ ︸

Ω


XU

YU

0

1

 . (7.5)

Making use of assumption 7.2 we can assume that the linear system of equations is well defined

and can be inverted such that for each pixel representing the environmental boundary, XU and YU are
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extracted from

1

λ


XU

YU

1

 =


Ω1 Ω2 Ω4

Ω5 Ω6 Ω8

Ω9 Ω10 Ω12


−1 

x

y

1

 . (7.6)

It is important to stress that this methodology is far from perfect and small estimation errors in roll, pitch

and yaw angles as well as altitude of the vehicle can lead to errors of several meters in the converted point

cloud. Synchronizing the orientation data provided by the positioning system and the camera images can

also prove challenging especially when the quadrotor is under high angular velocities (and the orientation

of the vehicle is changing very fast). In order to avoid these data synchronization problems, a naive step

is added to the process, such that if ∥v2∥ ≥ ωmax, the image data is discarded in that iteration.

7.2 Path Planning

In the previous section a model for converting pixels in an image to a 2-D point cloud expressed in {U}

was introduced. In this section, the problem of developing an online path planning algorithm that given

a set of points generates a desired path for the quadrotor (the leader vehicle) to follow is addressed. In

section 7.2.1 a set of pre-processing stages are developed, followed by sections 7.2.2 and 7.2.3 where

a B-Spline fitting problem is formulated and an overview of the entire multi-step algorithm is presented.

7.2.1 Pre-processing point cloud data

Start by considering the example in Figure 7.3 where the vision system of the quadrotor produces a point

cloud, representing the boundary to be followed, at an arbitrary time-step tk. In the point cloud, some

points represent the environmental boundary in a region close to the vehicle (with outliers) - the region

of interest. Other points represent regions of the boundary that were partially occluded and, therefore,

Outliers

Partial view of 
the boundary

XU

YU{U}

tk tk+1

Points of interest
Quadrotor

Outliers
Points from partial 

view of the boundary
Old points no longer needed 
Desired path at tk
Re-planned path at tk+1

ps

ps Point where re-planning started

Figure 7.3: Pre-processing stage

seem disconnected from the main cluster of points. The goal is for the vehicle to follow a path (depicted

in red) which fits only points in the region close to itself. This requires that at the pre-processing stage

the cluster of points that are further way from the vehicle, as well as outliers, are ignored.

Another concern worth taking into consideration is that the re-planning of the path should never start

exactly at the vehicle’s current position on the path at instant tk, but rather a little further ahead at an
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arbitrary point ps. This helps avoiding jittery behavior that can result from the re-planning algorithm not

being instantaneous and working independently from the PF controller. Moreover, if the camera sensor

attached to the quadrotor is fixed, then the quadrotor’s desired orientation should be given by the tangent

to the path, allowing it to never lose sight of the boundary being followed.

Consider that at time-step tk+1 the vision system produces a new point cloud in which some of the

points overlap a region where the quadrotor has already flown by. Since this section of the path should

not be re-planned, those points should be discarded as well as other points that are ”behind” ps (depicted

in green).

Motivated by this simple example, the following pre-processing steps are introduced:

• Remove unused points;

• Order a set of points and remove outliers;

1) Remove unused points

Consider ps ∈ R2 to be the point at which the path re-planning starts (to be defined later on), arbitrarily

further ahead of the vehicle’s position on the current path. In order to remove the points that are ”behind”

ps, consider that ψs is the tangent angle to the current path at ps. A coordinate transformation can be

applied to the new points X := {Xm}Mm=1 ∈ R2, such that in a new reference frame, points that are

behind ps (points that should be ignored) have a negative X-coordinate. This coordinate transformation

is given by

X◦
m = R(ψs) · (Xm − ps), ∀m = 1, ...,M (7.7)

where X◦
m = [X◦x

m ,X
◦y
m ]T . Each point Xm is discarded if X◦x

m < 0. The points that belong to set X

and are not discarded, should be saved in a new set X⋆ := {Xj}Jj=1 ∈ R2 with J ≤M . This process is

summarized in algorithm 3.

Algorithm 3 Remove points ”behind” the vehicle
1: At time step tk+1 obtain a new 2-D point cloud X := {Xm}Mm=1 ∈ R2;
2: Define ps(γ) as the desired initial point for the re-planning to start;
3: Define ψs as the tangent angle to the path at tk at ps;
4: Follow the procedure:
5: procedure REMOVE UNUSED POINTS(X, ps, ψs)
6: for m = 1, ...,M do
7: Compute X◦

m according to (7.7);
8: if X◦x

m < 0 then
9: Discard Xm;

10: return the new (most likely smaller) set X⋆ := {Xj}Jj=1 ∈ R2 with J ≤M .

One side effect of this method is that some points that are not outliers and belong to the region of

interest can also end up being removed. Take for instance the example in Figure 7.4 where points in

red are removed from the point cloud. At a first glance, removing points from this region might seem

problematic, but it is not the case, as long as the re-planning frequency is fast enough. The point ps is

also changing as the vehicle moves along the path.
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Figure 7.4: Side effect of the point removal algorithm

2) Order a set of points and remove outliers

In order to fit a set of points with a parametric curve, it is necessary to infer some natural ordering from

the data. Unlike most path planning problems, we lack the knowledge of which points represent an end

position goal, as well as in which order should the vehicle pass near each point. The only known variable

is starting position, ps. Consider the simple scenario where one is required to fit 10 points of data (plus

ps) with a parametric curve. In Figure 7.5 we can observe two distinct possible fitting results for which we

associate ps with γ = 0 and p10 with γ = γmax, but assuming a different order at which each intermediate

point gets associated with a corresponding curve parametric value γ.

Ps P1 P2 P3

P4 P5 P6 P7 P8 P9

P10

(a) Unwanted ordering of points

P9

P10

Ps

P1 P2 P3

P4 P5 P6

P7 P8

2-D Point

Target curve
Outlier

(b) Wanted ordering of points
Figure 7.5: Points ordering (A simple example)

In order to arrange the points in a consistent manner, the authors in [61] propose the construction of

an Euclidean Minimum Spanning Tree (EMST) from the point cloud data. Before computing an EMST

associated to the data we must first construct a graph from the set of points X⋆ such that each vertex V of

the graph represents a point, and each edge E , with its associated weight Aij , represents the Euclidean

distance between each pair of points i and j. For computing a MST from a graph, there are two main

algorithms described in the literature: Prim’s and Kruskal’s. Both are greedy algorithms and Kruskal’s

has a computational complexity of O(|E|log|V|) and Prim’s O((|E| + |V|)log(|V|)), albeit Prim’s requires

an adjacency list graph representation in order to achieve that performance [62]. Kruskal’s algorithm can

generate forests for disconnected graphs, and achieves the best performance on sparse graphs.

If we consider that each vertex is connected to each other, the construction of the graph itself will

have a computational complexity of approximately O(|V|2) due to the necessity of having to compute the

euclidean norm between each pair of points. This is not suitable for real time applications nor to use with

Kruskal’s algorithm as the resulting graph will be dense. In order to simplify this problem we can consider

that each point is only related to its nearest neighbour points.

To find the nearest neighbours for each point, we can resort to a very popular unsupervised learning
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data structure proposed by Jon Bentley, the KDTree [63]. By defining a threshold distance NJ for the

neighbors of each point, the computational cost of this nearest neighbor search for each individual point

is on average O(2|V|log(|V|)) [64]. Repeating this operation for all J points, we construct a sparse graph

where each point has a limited set of neighbours. From there we can use Kruskal’s algorithm to generate

the EMST. In Figure 7.6 we can see the result of this algorithm applied to the simple example introduced

previously.

2-D Point

MST
Outlier

Figure 7.6: Minimum Spanning Tree (A simple example)

To get rid of outliers and define a coarse path to follow, Breadth First Search (BFS) can be applied to

the points that form the MST, starting from ps. The resulting ordered list of points that forms the path with

the highest number of points should be saved in a new ordered set X† := {Xk}Kk=1 ∈ R2 with K ≤ J .

The algorithm for ordering the point cloud data is summarized in algorithm 4.

Algorithm 4 Order a set of 2-D points
1: Add the desired initial point for the path ps to X⋆ (with J points);
2: Define a threshold distance for the neighbours NJ ;
3: Follow the procedure:
4: procedure ORDER POINTS(X⋆, NJ )
5: Construct a KDTree from X⋆ and use NJ as a distance threshold;
6: Create a graph G with J + 1 vertices and no edges;
7: for Xj , j = 1, ..., J + 1 do
8: Query the KDTree for the nearest neighbours of Xj and their corresponding distances;
9: Add the corresponding edges to the graph G;

10: Compute the MST of the graph G starting from vertex corresponding to ps;
11: Find the path on the MST with the highest number of points, starting at ps using BFS;
12: return the new set of points X† := {Xk}Kk=1 ∈ R2 with K ≤ J which are part of the MST;

By applying algorithm 4 to the example introduced in Figure 7.4, the plot in Figure 7.7 a) is obtained.

In this example the MST produced has a high density of points, noticeable by the wiggly red line produced.

An (optional) step is to delete points that are within a pre-defined radius r, for each point in the ordered

list of points X†, according to Figure 7.7 b) - useful to improve the performance of the next step.
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(a) Computing MST after point removal
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(b) Pruning points from MST

Figure 7.7: Ordering the set of points to fit
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7.2.2 Path Generation - Fitting data with a parametric curve

In order to have a suitable representation of a path that PF controllers can track, we are required to

have parametric curves that are both smooth and at least C2. For this work, we resort to uniform cubic

B-Splines which boast a set of useful properties introduced in section 2.4.

1) Define the number of segments

Consider now the ordered sequence of K points obtained via the application of algorithms 3 and 4 to the

original point cloud data. In order to fit the ordered sequence of points with a parametric curve we are

required to attribute to each point Xk ∈ R2 a corresponding γk in the target curve (see section 2.5.1).

This problem could be formulated as a nonlinear optimization problem (computationally demanding to

solve for real-time applications). A good approximation proposed by [46] is to consider DX to be the total

distance between the points, given by

DX :=

K∑
k=2

∥Xk −Xk−1∥ , (7.8)

and the corresponding vector of parametric values γ = [γ1, ..., γk]
T to be given by

γ1 = 0

γk = γk−1 +
∥Xk−Xk−1∥

DX
γmax, k = 2, ...,K

, (7.9)

where γmax is the maximum parameter value of the parametric curve. For cubic B-splines, this number

depends directly on the number of control points that the target curve will have. The number of control

points also dictates how many spline segments are actually used for the fitting problem. The optimal

number of control points can also be obtained by solving yet another nonlinear optimization problem, but

due to the real time nature of the problem this option is disregarded in this work. A uniform cubic B-spline

must have at least 4 control points to define one segment. Given that a low number of sections can

under-fit a long set of points and a high number lead to over-fitting issues, this number should not be a

static constant. A non-optimal, yet dynamic way of defining the number of control points NC is by taking:

NC := max

{⌊
DX

ρ

⌉
, 4

}
, (7.10)

with (1/ρ) > 0 a control points density (tunning parameter). A smaller ρ leads to a higher NC .

2) Fit the points with a B-spline

For fitting the ordered set of points X† an optimization problem must be formulated. Consider the objec-

tive function given by

f(P0, ..., PNC−1) :=

K∑
k=1

∥C(γk,P)−Xk∥2︸ ︷︷ ︸
goal

+λ

∫ γmax

0

∥∥∥∥∂C(γ,P)

∂γ

∥∥∥∥2 dγ + β

∫ γmax

0

∥∥∥∥∂2C(γ,P)

∂γ2

∥∥∥∥2 dγ︸ ︷︷ ︸
regularization term

(7.11)
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with α, β ≥ 0. The first term minimizes the distance between the target B-Spline curve and the set of

points whilst the second is a regularization term. The integral of the L2
2 norm of the first derivative penal-

izes the total length of the curve and while the integral of the L2
2 norm of the second derivative penalizes

bends in the path. This objective function can also be expressed using vector notation, according to

f(P) = ∥B(γ)P−X∥2︸ ︷︷ ︸
goal

+λPTR1P+ βPTR2P︸ ︷︷ ︸
regularization term

, (7.12)

where P = [P x0 , ..., P
x
NC−1

, P y0 , ..., P
y
NC−1

]T denotes the vector of control points where the X- and Y-

coordinates are concatenated such that each control point Pi is defined by the tuple Pi = (P xi , P
y
i ) (see

appendix C.1). The vector X = [Xx
1 , ..., X

x
K , X

y
1 , ..., X

y
K ] denotes points to fit, and R1, R2 are constant

matrices that can be computed numerically (see section 2.5.1 and appendix C.2).

In order to guarantee C2 continuity between the current curve and the newly planned one, linear

equality constraints could be imposed on the values of C(0), C′(0) and C′′(0). Another robust approach

is to take advantage of the local support property of B-splines, introduced in section 2.4.2. It is known

that for the particular case of uniform cubic B-splines, each segment depends only on 4 control points

that ”slide” from one section to the next one. Take the example in Figure 7.8 where an initial curve

C(γ) is made of two distinct spline segments such that γ ∈ [0, 2). The first segment is only affected by

control points P0, P1, P2 and P3 whilst the second is dictated by the control points P1, P2, P3 and P4.

This powerful property can be exploited both to simplify the equality constraints that guarantee that the

transition between the initial and newly planned curves is C2, but also to have a natural definition for the

point ps, left undefined until now.
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Figure 7.8: B-spline example of the local support property

A trivial method to define ps is to consider the quadrotor’s current virtual target γtk , at time instant tk,

and define the starting point for the re-planning according to

ps := C(⌈γtk⌉). (7.13)

This point corresponds to the transition between the spline the virtual target is ”sitting on” and the

next curve segment. For the particular example in Figure 7.8, γtk ∈ [0, 1) and ps = C(1), shown as a

green circle.
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Given a ps dictated by (7.13), the curve segments that are described by parametric values such as

γ ≥ ⌈γtk⌉ should be discarded and replaced by a newer curve. Since each curve segment is defined

by only 4 control points, then discarding those segments is equivalent to removing control points with

indexes i ≥ ⌈γtk⌉ + 3 from the current control points vector. This operation results in a vector given by

Pold = [P x0 , P
x
1 , ..., P

x
⌈γtk⌉

, P x⌈γtk⌉+1, P
x
⌈γtk⌉+2, P

y
0 , P

y
1 , ..., P

y
⌈γtk⌉

, P y⌈γtk⌉+1, P
y
⌈γtk⌉+2]

T . For the example in

Figure 7.8, spline 1 should be discarded as it is defined for parametric values of γ ≥ 1, which in practice

means removing control points with indexes i ≥ 1 + 3 from the control points vector, i.e. P4 = (P x4 , P
y
4 ).

The resulting control points vector becomes Pold = [P x0 , P
x
1 , P

x
2 P

x
3 , P

y
0 , P

y
1 , P

y
2 P

y
3 ]
T .

Making use of the local support property once more, it is known that C2 continuity between the two

consecutive spline segments is guaranteed, as long as the last 3 control points of the first segment

coincide with the first 3 control points of the second segment. A trivial manner of generating a new

B-Spline with guarantees of C2 continuity in the transition with the old curve, without explicitly defining

equality constrains on the derivatives of the function, is to solve the following optimization problem:

Pnew = argmin
Pnew

∥B(γ)Pnew −X∥2 + λPnewT

R1P
new + βPnewT

R2P
new

subject to



P x new0

P x new1

P x new2

P y new0

P y new1

P y new2


=



P x⌈γtk⌉

P x⌈γtk⌉+1

P x⌈γtk⌉+2

P y⌈γtk⌉

P y⌈γtk⌉+1

P y⌈γtk⌉+2


,

(7.14)

where Pnew = [P x new0 , ..., P x newNC−1, P
y new
0 , ..., P y newNC−1]

T . In order to keep track of old and new curves,

it is possible to just concatenate the new control points vector Pnew with the old control points vector Pold,

ignoring the first three control points, i.e. Pnew0 , Pnew1 and Pnew2 , which are repeated as a result of the

equality constraints imposed by (7.14). These series of procedures are summarized in algorithm 5.

Algorithm 5 Fitting the points - growing uniform cubic B-spline
1: Compute DX , γ and NC according to equations (7.8), (7.9) and (7.10) respectively
2: Consider γtk as the value of the virtual target at the re-planning instant and the original control points

vector:
P =

[
P0, P1, ..., P⌈γtk⌉, P⌈γtk⌉+1, P⌈γtk⌉+2, P⌈γtk⌉+3, P⌈γtk⌉+4..., Pn

]T
; (7.15)

3: Remove control points (corresponding to splines to be re-planned) from the original control points
vector, such that:

Pold =
[
P0, P1, ..., P⌈γtk⌉, P⌈γtk⌉+1, P⌈γtk⌉+2

]T
; (7.16)

4: Solve the optimization problem in (7.14) and obtain a new vector with NC control points:

Pnew =
[
Pnew0 , Pnew1 , Pnew2 , ..., PnewNC−1

]T
,

with Pnew0 = P⌈γtk⌉, P
new
1 = P⌈γtk⌉+1, P

new
2 = P⌈γtk⌉+2;

(7.17)

5: Concatenate the new vector with the old vector (ignoring the first 3 control points which are repeated):

Pnew =
[
P0, P1, ..., P⌈γtk⌉, P⌈γtk⌉+1, P⌈γtk⌉+2, P

new
3 , ..., PnewNC−1

]T
. (7.18)
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Remark 1: For the sake of simplicity, the separation between X and Y-coordinates of the control

points was omitted in both algorithm 5 and Figure 7.9.

Applying algorithm 5 to the example introduced previously, the result in Figure 7.9 is obtained. From

here it is observable that at time instant tk the vehicle was on top of spline 1, meaning that ⌈γtk⌉ = 1.

According to (7.16) control point P4 (used only to define spline 2) is no longer needed, hence removed

from the vector. After this step, the optimization problem (7.14) is solved, fitting an ordered set of points

to a new curve with NC = 5. In the end, only the last 2 new control points are concatenated into the

previous control points vector, as the first 3 are repeated.
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At time tk:

Re-planning
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Figure 7.9: B-spline update with new control points

Remark 2: For the first iteration the same algorithms are used with 3 key differences:

• The position ps and angle ψs are given by the vehicle’s position and orientation;

• Steps 2, 3 and 5 in algorithm 5 are ignored;

• The linear constraint in (7.14) is now given by B(0)Pnew = ps, such that the initial path starts at

the vehicle’s position;

Remark 3: In practice, to solve the optimization problem, we resort to Scipy’s python SQP solver. The

control points vector is initialized by distributing NC points uniformly across a straight line that connects

X1 and XK .

Remark 4: The algorithms proposed are made publicly available as a Python library [65] and a brief

performance analysis provided in appendix D.

7.2.3 Algorithm Overview

Considering the algorithm introduced in this chapter, it is possible to summarize the multiple steps of

the proposed path planning algorithm in Figure 7.10. This constant re-planning of the path occurs at a

pre-defined frequency f .
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Figure 7.10: Resume of the path-planning algorithm

On a more practical side-note, this algorithm was devised to be executed in real time by an UAV or

it’s companion computer. This means that the path must be transmitted over the network to the fleet of

vehicle’s every time it gets updated. This can be done quite efficiently by only sharing the index at which

the new control points vector starts along with the new points (only).

7.3 Multi Path Coordination

In the previous section, an algorithm for generating a desired path for the quadrotor (the leader vehicle)

was developed. In order to perform CPF missions with a fleet of vehicles, it is necessary to define a

path for each individual vehicle to follow. When considering a leader-follower topology, a naive approach

would be to consider a path for each vehicle that results from a fixed offset of the original path. This

approach is only viable for straight line paths, because for any other path with a curvature different than

zero the curves produced by this method can intersect with each other, according to Figure 7.11 making

the vehicles lose their required formation.

Path Follower 1
Path Leader
Path Follower 2

tk

tk+1

(a) Naive Path

Path Follower 1
Path Leader
Path Follower 2

tk

tk+1

(b) Trailor-like Path

Figure 7.11: Multi-Path Generation

A more robust approach, proposed by W. Xie [66], is to consider an auxiliar frame of reference at-

tached to the virtual target on the path. The x-axis of this new reference frame {T} is chosen to be

aligned with the tangent vector to the path in γi. The unit vector r1 that describes the orientation of the

x-axis is given by:

r1(γi) =
∂pd/∂γ

∥∂pd/∂γ∥
, with ∥∂pd/∂γ∥ ̸= 0. (7.19)

Consider rd to be a unit vector that is not parallel to r1(γi), then it is possible to define

U
TR(γi) = [r1(γi), r3(γi)× r1(γi), r3(γi)], (7.20)
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where

r3(γi) =
rd − (rd · r1(γi))r1(γi)
∥rd − (rd · r1(γi))r1(γi)∥

. (7.21)

Defining a formation vector denominated di ∈ R3 for each vehicle, with each distance defined in the

tangential reference frame {T} it is possible to define

pFi(γi) = pd(γi) +
U
TR(γi)di, (7.22)

where pFi is the desired path for the vehicle i, according to Figure 7.12. The introduction of the

rotation matrix proposed, gives origin to a rigid formation between agents where each vehicle follows a

virtual leader in a trailer-like approach. With this method, the virtual target progression stays the same,

and just the desired position get’s shifted.

xTyT
{T}

d

pd(𝛾)

pF(𝛾)

Figure 7.12: Formation vector overview

It is important to take into consideration that the ASVs can only operate at the surface of the water,

hence a naive approach for dealing with this detail is to simply discard the Z-axis coordinate of di and

pFi. Moreover, since all the vehicle’s will only be required to operate in a 2-D plane a trivial definition for

one of the axis of the tangential frame {T} is rd = [0, 0, 1]T .

7.4 Desired Speed Assignment

Consider that the leader vehicle is required to move at a constant speed V ≤ Vmax. Consider also that

in the PF strategies introduced previously, the desired velocity of the vehicle is not controlled directly,

but rather the progression speed of the parametric variable γ̇ by defining a desired speed profile vL(γ).

Furthermore, the path might not be not parameterized by arc length and, for B-Splines in particular, each

path segment i is such that γi ∈ [0, 1). A trivial way to define the speed profile for the vehicle is to consider

vL(γ) =
V

∥p′
d(γ)∥

. (7.23)

In Romulo et al. [67], the authors propose a more robust approach where each vehicle is required to

slow down on sharper turns and approximate to the desired constant speed in straight lines, according

to

vL(γ) =
V

∥p′
d(γ)∥ (1 +Kc ∥p′′

d(γ)∥)
, (7.24)

where Kc > 0 is a constant gain that regulates the slow down of the vehicle on curves.
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Chapter 8

Implementation Architecture

In this chapter, a detailed description of the code modules developed in the scope of this thesis is pre-

sented. In Section 8.1 an introduction to the simulation environment adopted for both the UAV quadrotor

and Medusa AUV is conducted. The path manager, PF and CPF controllers implementation is addressed

in section 8.2. Finally, in section 8.3 the setup adopted for performing real trials with two medusa vehicles

is described.

8.1 Simulation Architecture

To evaluate the performance of the proposed systems and in order to have a realistic simulation environ-

ment we resorted to the UUVSimulator Plugin [68] and PX4 SITL Gazebo Plugin [69] which are extensions

of the Gazebo 9 simulator [70], widely used in the robotics community. The operating system used dur-

ing development was Ubuntu 18.04LTS along with Robots Operating System (ROS) Melodic [71], which

corresponds to the software version running on the real Medusa vehicles at the time of writing.

The UUVSimulator Plugin provides a structured environment for adding new AUV dynamics, thruster

dynamics and vehicle Computer Aided Design (CAD) models to the Gazebo simulator. Furthermore, it

provides a suite of sensors such as DVL, Attitude and Heading Reference System (AHRS) and DGPS

that can be equipped in the virtual vehicle. Moreover it allows for the simulation of ocean currents, both

physically and visually. With this plugin, it was possible to generate a virtual vehicle that closely follows

the specifications in appendix A.

On the other hand, the PX4 SITL Gazebo Plugin already offers a set of quadrotor models that are very

similar to the ones already available at Dynamical Systems and Ocean Robotics Laboratory (DSOR) lab.

Therefore, only minor tweaks were made to the already provided Iris quadrotor in order to have it follow

the spec-sheet in appendix B. A visual overview of the simulated vehicles is available in Figure 8.1.

Additionally, there was the necessity to have a realistic simulation environment that closely resembled

Doca dos Olivais, Lisbon Portugal, which is the main sight where real water trials of DSOR AUV vehicles

are conducted. For that matter, a 3-D real life-size CAD model of this area was imported into the simulator,

according to Figure 8.2.
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(a) Simulated Medusa vehicle (b) Simulated Iris quadrotor vehicle

Figure 8.1: Simulated vehicles

Given the main goal of having a fleet of vehicles following an environmental boundary, is was nec-

essary to modify the ocean mesh provided by the UUVSimulator in order to accommodate a simulated

chemical spill. This required that the new surface mesh was exported twice: i) the first mesh correspond-

ing to the chemical spill isolated; ii ) the second mesh corresponding to the ocean itself. A limitation of

this method it that the red mesh used to simulate the chemical spill inside gazebo is static and does not

deform according to advection and diffusion processes.

Figure 8.2: Simulated model of Doca dos Olivais

Since the development of an image processing algorithm responsible for the detection of the boundary

region between the spill and the ocean surface was out of the scope of this project, the spill mesh was

tinted with a bright red color. Resorting to the very popular computer vision library OpenCV [72] we

use a mask to threshold red colours in the quadrotor camera feed, leaving us with a red spill in a black

background (when its detected). After this step we apply Canny edge detection to the binary image in

order to retrieve the pixels corresponding to the edge of the boundary. For every frame where boundary

pixels are detected, we use the algorithm proposed in section 7.1 to generate a 2-D point cloud.

In Figure 8.3 a global overview of the entire simulated system composed of one quadrotor and one

Medusa vehicle is provided, where each major sub-system is represented as an individual block. In order

to allow the data provided by the simulator to be used by the already existing Medusa code framework,

a new translation layer was developed, which converts actuator input and sensor data to a compatible
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ROS format. The Medusa code framework already provides a Kalman Filter (KF) used for estimating the

state of the vehicle and a set of inner-loops similar to the ones introduced in section 4.1.
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Figure 8.3: Simulation Architecture

On the other hand, the simulated quadrotor interfaces directly with the PX4 autopilot through the

MAVLink protocol [73] and already provides an Extended Kalman Filter (EKF) and a set of inner-loops

to control the vehicle. In order for the autopilot to interface with ROS 1 we resort to the translation layer

MAVROS [74].

For executing CPF missions, four distinct ROS nodes run in each vehicle: a Path Manager, a PF

controller, a CPF controller and a network manager. The Path Manager is responsible for saving the

desired path for the vehicle to follow, and given a path parameterizing variable send the most up to

date path data to the PF controller. The PF controller implements the actual control laws that allow the

vehicle to follow the desired path and the CPF controller implements the speed coordination law. Each

vehicle runs a Network Manager node responsible for receiving and broadcasting to the local network

the virtual target state provided by the CPF controller according to the ETC scheme via User Datagram

Protocol (UDP). The code running for the Network Manager, Path manager and CPF controller is vehicle

agnostic and its the same for the quadrotor and the Medusa robots.

67



8.2 Path Following Code Structure

When developing the control algorithms to be employed in the real DSOR vehicles it was key to have

a modular system that would enable fast switching between controllers and desired paths in real time,

without having to restart the entire navigation system. With this requirement in mind, every ROS node

developed follows a structure similar to the one presented in Figure 8.4 a), where the ROS middleware

code (in green) is isolated from the logic code (in yellow). For the logic side of every node, we resort to

Object Oriented Programming (OOP) principles. As a result, switching between controllers is as easy as

instantiating a new object in memory.

8.2.1 Path Manager

In order to represent the paths for each individual vehicle to follow, two path manager libraries were

developed:
• A static path manager, written in C++, used to represent paths that do not change over time;

• A dynamic path manager, written in Python, used to represent B-spline paths for which the shape

changes dynamically over time.

Representing Static Paths
When designing the path manager it was defined that each type of path should be a class that inherits

an abstract PathSection class, according to Figure 8.4 b). This allows for the design of static paths to be

flexible and at the same time follow a consistent code pattern.

Path Following 
Controller Instance

PF ROS Node

Section
1

Section
2

Section
n...

Path Section List

Path Manager ROS Node

(a) ROS node abstraction

PathSection 
(Abstract Class)

Arc2D Line Circle2D Bernoulli

Path Parameterization

Composable Composable Not
Composable

Not
Composable

(b) Paths library

Figure 8.4: Path following and static paths package

In the PathSection class code (see Appendix E.1), some functions that are common to all parametric

curves already provide a default implementation. This is the case for computing the tangent angle to

the path, the curvature, the norm of the derivative, etc. To add a new type of path to this code library, a

control designer only needs to implement the parametric equations for computing the position, first and

second derivatives of the path evaluated at a given parametric value.

Some of the path sections designed can be composed together to form more complex shapes, i.e.

lines and arcs can be used to form lawn mowing paths (see Figure 8.4). Paths that are closed shapes,
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such as Bernoulli Lemniscate, cannot be composed with other paths by default. The static path manager

is only responsible for storing a list of path sections in memory, receiving from the PF controller the current

parametric value γ and sending to the controller the necessary path data, such as position, derivatives,

etc. (see Appendix E.1 - Listing C.2).

Representing Dynamic Paths
The dynamic path manager is solely dedicated to storing and updating B-splines. Each vehicle switches

from the static path manager to the dynamic path manager when an environmental boundary is detected

by the path planner. Upon a boundary detection, the path planner (that receives data from the vision

system) starts planning in real time a new path, according to the algorithms described in chapter 7. The

dynamic path manager is actively receiving new B-spline control points from the path planner. These

points are used to replace the ones obtained in the previous time step. The dynamic path manager

running on the quadrotor has direct access to the control points produced by the path planer. On the other

hand, the path manager running on the ASVs receive them via Transmission Control Protocol (TCP).

8.2.2 ASV Path Following Controller

Following suit, the PF controller used for the ASVs has an abstract class PathFollowing, that every con-

troller inherits from. Even though not necessary for this thesis, but also in the scope of the projects that

partially funded this work (EUMarineRobotics and RAMONES), multiple PF algorithm were implemented

in this module, according to Figure 8.5. A theoretical overview of these algorithms can be found in a

survey paper by Hung et al. [11].
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Figure 8.5: ASV path following library/package

Each controller class only has to implement 6 functions: start, stop, reset, setPFGains, callPFCon-

troller and publishPrivate (see Appendix E.2). The first 3 only serve the purpose of initializing the con-

troller, stop it or reset its gains to default values. The callPFController function is where the actual logic

of the controllers is implemented and publishPrivate where the control values are made available to the

inner-loops of the vehicle.
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8.2.3 Quadrotor Path Following Controller

For the quadrotor, the PF controller implementation also follows an OOP philosophy. In this case, in

order to make development faster, a modified version of the UAV C++ library developed by Oliveira et al.

[75] was used, making it easier to access the state of the vehicle and to send command to the inner-loop

controllers. The original trajectory tracking controller using a PID provided in the library was kept while

an additional one using the nonlinear control law proposed in section 5.2 was created.

For the sake of simplicity, the inner-loops used in the simulated quadrotor were the ones already

provided by PX4 which use as inputs a set of desired angles references and total thrust. The values

of thrust received by the controller are normalized between [0, 1], according to the thrust equation in

appendix B.

8.3 Architecture for Real Water Trials with Medusa Vehicles

In the scope of this thesis and the projects that partially funded this work, it was also possible to access the

performance of the proposed PF and CPF (using ETC communications) algorithms with two real Medusa

ASVs. For that matter, the system architecture initially proposed in Figure 8.3 was slightly modified,

according to Figure 8.6.
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Figure 8.6: Real water trials architecture

The main absence in this architecture is the quadrotor and the real time path planning algorithm

introduced in chapter 7.
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Chapter 9

Results
In the previous chapter, a high-level description of the implementation architecture for the multi-vehicle

system was provided. In this chapter, results emphasizing the different algorithms proposed are pre-

sented. First a set of simulations are conducted to access the performance of the ASV inner-loops, along

with PF and CPF for both vehicles. Then, two experiments are carried where a quadrotor is required to

follow a simulated environmental boundary in coordination with an ASV. Moreover real results for two

real Medusa ASVs performing PF and CPF missions are provided. The controller gains and parameters

adopted can be found in Appendix F.

9.1 Simulations Results

9.1.1 Medusa Inner-Loops

We start by presenting two simulations where PI inner-loops developed for ASVs were tested. It was

required that the surge speed converged to a desired reference value. Then, the yaw-rate was required

to converge to its reference values. From close examination of Figure 9.1, it is possible to conclude

that both controllers exhibit good performance converging to their desired constant references in an

acceptable amount of time.
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Figure 9.1: Medusa inner-loops performance (simulation)
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9.1.2 Medusa Path Following

For the next simulation, a Medusa vehicle was required to execute a lawn-mowing path under the effect

of oceans currents with speeds of vc = [0.1, 0.1]Tm/s. According to Figure 9.2 a) the vehicle started its

mission approximately 10m away from the desired path, and the virtual target waited for the vehicle to

converge to the path before it started progressing at its desired speed. From the results in Figure 9.2 b), it

is observable that the cross-track and along-track errors converge to zero for straight lines and increase

slightly in arc sections due to sway motion that was neglected in the control design phase. The currents

observer also exhibited good performance converging to 0.1m/s in both X and Y-axis.
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(b) Tracking error and currents estimates

Figure 9.2: Medusa path following performance (simulation)

9.1.3 Quadrotor Path Following

The next step was to test the performance of the quadrotor PF algorithm under the presence of winds

with speeds of 1.0m/s in both X and Y-axis. In Figure 9.3 a) a top view of path executed by the drone is

shown. For this mission, the UAV was required to perform a lawn-mowing manoeuvre at 30m of altitude

(a) XY view (b) Drone tracking error

Figure 9.3: Quadrotor path following performance (simulation)
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with a fixed yaw angle of 0◦. From the plots in Figure 9.3 b), it is observable that the error between the

desired position of the quadrotor and the real one converged to approximately zero, while the disturbance

observer converged to values near zero when the drone stabilized its altitude.

9.1.4 CPF with ETC between Quadrotor and 2 Medusa Vehicles

In the next experiment a CPF mission was performed where the quadrotor was required to follow a lawn-

mowing trajectory with two Medusa ASVs, at a desired speed of 0.5m/s, according to a triangle formation.

The aircraft was required to fly at an altitude of 30m and the formation vectors for the marine vehicles are

given by d1 = [−5, 5, 0]Tm and d2 = [−5,−5, 0]Tm. In Figure 9.4 a 3-D view of the executed mission is

provided whilst in Figure 9.5 a 2-D view is provided along with relevant performance metrics.

Figure 9.4: 3-D view of CPF betweeen quadrotor and 2 medusas (simulation)
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Figure 9.5: CPF between quadrotor and 2 medusas (simulation)
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In this experiment there was bi-directional communication between the pairs of vehicles: (quadrotor,

Medusa 1) and (quadrotor, Medusa 2). From the results obtained, it is observable that the vehicles

converged to their desired formation after approximately 20s. After that period of time, the position error

dropped to nearly zero for all vehicles, and the virtual target speeds converged to their desired constant

value (along the line section). As a consequence, the number of communication events between the

vehicles dropped as the bank of observers running in each vehicle could more accurately track the state

of the virtual target of their peers.

9.1.5 Boundary Tracking with Quadrotor

Proven experimentally that the entire system was able to perform a CPF mission for a static pre-defined

path, the next logical step was to test the path planning algorithm developed in chapter 7. In this scenario,

the quadrotor was required to start the previous lawn-mowing PF mission, and as soon as it detected the

environmental boundary, start re-planning in real time the desired path to follow, at a pre-defined height

of 30m with a desired constant speed of 0.5m/s (Figure 9.6). The quadrotor was equipped with a camera

locked at −45◦ in pitch angle, relative to it’s body frame of reference. In Figure 9.7 a top view of the

executed mission is provided along with the plots of the real distance of the vehicle to the boundary and

the PF error.

Figure 9.6: 3-D view of boundary tracking mission (simulation)
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Figure 9.7: Environmental boundary following (simulation)
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In this simulation, the vehicle observed the boundary for the first time when at the position p =

[−49.6, 0.1,−30]Tm, where it started re-planing the path at a frequency f = 1Hz. As the desired path

grew with the time, the drone was required to follow it, aligning its heading angle with the tangent to the

path, guaranteeing that it never lost sight of the boundary being followed. From Figure 9.7 b) it is evident

that the horizontal distance between the real vehicle position and the boundary is bounded by 7m. This

result is to be expected due not only to the positioning filter of the aircraft not being perfect but also the

simulated water not being located exactly at a constant plane ZU = 0 as previously assumed (purposely

done to add realism to the simulation). These errors were then propagated during the conversion of

pixels in the image frame to a 2-D point cloud expressed in the inertial frame, leading to a point cloud that

was offset by a few meters compared to the location of the real boundary. Moreover, small oscillations

can be observed in the plot of the distance from the vehicle to the boundary. These originate from the

simulated chemical spill not being smooth and having small creases resulting from the joining of small

straight lines that compose the red mesh.

In Figure 9.8 a snapshot of the quadrotor’s camera feed (used by the planning algorithm) is shown,

when the vehicle was at position p = [−66,−4.3,−29.9]Tm. On the other hand, in Figure 9.9 a plot of

the point cloud generated by the algorithm is shown in two different time instants (red and blue dots), as

well as the corresponding planned B-spline paths (black and green lines). Note that some of the red dots

further away from the vehicle were discarded by the planning algorithm for being too far away from the

main cluster of points.

Figure 9.8: Camera image feed
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Figure 9.9: Real time path planning

9.1.6 Boundary Tracking with Quadrotor and a Medusa Vehicle

For the next experiment, it was required that the quadrotor performed the exact same mission while

performing in parallel a CPF mission with a Medusa vehicle (Figure 9.10). From the previous results, it

was observed that the path generated by the vehicle had an offset from the real boundary, such that the

quadrotor was always moving ”inside the chemical spill”. In real life applications it might not be suitable

for the marine vehicle to go inside the chemical spill, but rather around it. Moreover, it is desirable for

the marine vehicle to always follow the aerial vehicle from behind and never in front of it, to guarantee
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that the path further ahead can be generated. For that matter, a formation of vector d = [−5, 5, 0]Tm was

once again picked in order to manually compensate for the boundary estimation error. Communication

was bi-directional between both simulated vehicles.

Figure 9.10: 3-D view of boundary following mission with Medusa vehicle (simulation)

In Figure 9.11 a) a top-down view of the executed mission is shown. In Figure 9.11 b) plots of the PF

errors are provided along with the norm of the horizontal distance of each vehicle to the real boundary

being followed. It is observable that the tracking error only increased in zones where the chemical spill

had a crease. This is justified by the fact that the Medusa vehicle, when it has to perform tight turns, is

not able to cope with its virtual target speed and slows down, leading to sudden spikes in along track

error. These tracking errors were instantly compensated by the adaptive virtual target dynamics which

attempted to minimize the distance between itself and the vehicle. It is also observable that the norm

of the distance between the marine vehicle and the chemical spill is much lower, when compared to its

aerial counterpart, with the Medusa always following the boundary from its outskirts.
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Figure 9.11: Environmental boundary following with Medusa vehicle (simulation)

Remark: A demonstration video of the conducted simulation is available online [76].

9.2 Real Trials

As described at the end of chapter 8, it was also possible to access the performance of the PF and CPF

algorithms introduced in this work using two real Medusa vehicles. The following trials were conducted
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at Doca dos Olivais (Lisbon, Portugal).

9.2.1 Medusa Path Following
In the first trial, it was requested for one vehicle to perform a Bernoulli’s Lemniscate (Figure 9.12). From

the results it is trivial to conclude that the vehicle exhibits a good performance, converging to the desired

path. The cross-track and along-track errors converged to zero smoothly.

(a) Medusa path following XY view
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(b) Tracking error

Figure 9.12: Medusa path following (real trial)

9.2.2 CPF with ETC between 2 Medusa Vehicles
For the second trial, it was requested that the two vehicles performed a lawn-mowing mission coopera-

tively (Figure 9.13). The black vehicle, Medusa 1, was required to follow a formation dictated by

(a) Medusa CPF XY view

0 50 100 150 200 250 300 350
Time [s]

0

0.5

1

1.5

2

Vi
rtu

al
 T

ar
ge

t

Medusa 1
Medusa 2

0 20 40 60 80 100
Time [s]

0

0.2

0.4

0.6

0.8

C
om

m
. T

rig
ge

r

Medusa 1
Medusa 2
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Figure 9.13: Medusa cooperative path following (real trial)

d = [−5,−5, 0]Tm, with respect to the leader’s path. There was bi-directional communication between

both vehicles.

From the results obtained it can be seen that each virtual target rapidly increased to a value of approx-

imately γ ≈ 0.4 such that they got as close as possible to the original position of their respective vehicles.
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Given that each curve segment was parameterized between γ ∈ [0, 1], this corresponded roughly to the

middle of the first line segment. Some oscillations were also observed in the beginning on the trial which

resulted from the virtual targets finding an agreement between inter-vehicle alignment and intra-vehicle

position error minimization. After approximately 50s, the vehicles aligned themselves into the required

formation and started following the path at a constant speed of 0.3m/s. As a result, the rate of information

exchange between the vehicle decreased after this period of time.

From the plots in Figure 9.14 a) it is possible to conclude that at t = 100s the cross-track and along-

track errors of each vehicle converge to a neighbourhood of zero. During the day at which the trials were

conducted there was negligible water current, which matches the observed results in Figure 9.14 b).
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Figure 9.14: Tracking errors and currents observers (real trial)
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Chapter 10

Conclusion

To sum up, this dissertation addressed the problem of tracking and following an environmental boundary

caused by a chemical spill using a team of robots composed of one quadrotor and marine vehicles. A

general overview of the state of the art regarding single vehicle path following and cooperative motion

control was conducted. This literature overview was used to lay the foundations for the steps that followed:

vehicle modelling, vehicle motion control, path following, cooperative path following and path planning.

In the vehicle modelling section, the notation and reference frames adopted for both the ASV and

UAV were introduced. In the next section, the problem of vehicle inner-loop control was formulated and a

set of linear control schemes were derived for both vehicles. Next, the PF problem was introduced, and

a nonlinear control law derived for the ASV, according to the proposal by P. Aguiar and F. Vanni. Inspired

by this control law, a new one was derived for a quadrotor following the same methodology with some

key differences due to the nature of the aircraft.

For the section that followed, the CPF problem was formulated and a proposal to solve the problem

was presented - a synchronization controller that is distributed and the same for all vehicles (aerial and

marine). Borrowing from the works of A. Pascoal, N. Hung and F. Rego this last controller was gen-

eralized such that information exchange between vehicles would only be carried using even-triggered

communications.

For the following chapter, a new real-time path planning algorithm was developed. This algorithm

made use of a fixed camera sensor onboard of the quadrotor. This sensor was used to have a local

view of an environmental boundary and generate a point cloud expressed in the inertial frame. This

data was then used to solve an optimization problem which generated a B-spline based path that grows

dynamically as the vehicle moves along the boundary and acquires more data. This path was then shared

among all the ASV vehicles in the network.

Finally, the proposed algorithms were implemented in four main toolboxes by resorting to ROS, C++

and Python: a static path manager, a PF library, a CPF library and a dynamic path manager. These

toolboxes were incorporated into the Medusa code base. Moreover, a 3-D virtual scenario that resembles

Doca dos Olivais was also generated, allowing for realistic simulations of the proposed algorithms. In

the end it was also possible to test experimentally the CPF algorithm using two real Medusa vehicles.
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10.1 Future Work

In this work some problems were left unsolved. Some notable work that could be addressed includes:

• Considering event-triggered communication for CPF under network changing topologies and com-

munication delays;

• Making the height at which the quadrotor operates dynamic;

• Developing a closed form solution for the B-spline fitting problem with linear constraints;

• Introducing curvature limits as inequality constraints of the fitting problems to cope with vehicle’s

limitations;

• Developing a model for controlling the orientation of the vehicle and camera that does not depend

only on the tangent to the curve being followed;

• Introducing obstacle avoidance into the path planning problem;

• Testing the chemical spill tracking with a hybrid simulation where both the quadrotor and Medusa

vehicle’s are real, but the camera sensor is simulated in real time using 3-D simulation software.

• Developing a distributed path planning algorithm by taking advantage of sensors available in all

vehicles.
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Appendix A

MEDUSA-class vehicles

In this appendix, the Medusa vehicles are introduced. The main goal was to adapt the previously intro-

duced motion models to this class of vehicles used for performing simulated and real water trials.

The Medusa autonomous marine vehicles are property of the Laboratory of Robotics and Systems

in Engineering and Science (LARSyS)/Institute for Systems and Robotics (ISR) located at the Instituto

Superior Técnico of Lisbon, Portugal. The physical dimensions of this class of robots are available in

Figure A.1.

Figure A.1: MEDUSA-class of vehicles with dimensions in mm (from Ribeiro et al. (2011) [77])

As described in detail in Ribeiro et al. [77], each Medusa vehicle is composed of 2 acrylic tubes

of sizes 0.15m by 1.035m (diameter x length) with aluminium end caps. These two tubes are attached

to a central aluminium frame. The lower structure houses two packs of 7-cell lithium polymer batteries,

thruster electronics, an acoustic modem and several sensors. The top unit contains the computer unit,

along with a DGPS unit for absolute localization, an AHRS unit which provides precise angular velocity

measurements as well as a DVL to acquire linear velocity measurements with respect to the water. It is

also worth mentioning that these vehicles are highly modular and can accommodate different sensors,

depending on the type of mission being executed.

Inter-vehicle communications are carried using Wi-Fi between different air or surface vehicles and via

an acoustic modem network underwater.
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For the surface version of the vehicles there are two thrusters, one on starboard and another on port

side, which control directly the surge and yaw motions of the vehicle.

The identification of the model parameters for these vehicles was determined a priori by the research

team at DSOR and can be consulted in table A.1.

Table A.1: MEDUSA-class of vehicles parameters (adapted from [49])

Xu̇ −20 kg Yv̇ −30 kg Nṙ −0.5 kg m2

Xu −0.2 kg/s Yv −55.1 kg/s Nr −4.14 kg m/s

X|u|u −25 kg/s Y|v|v 0.01 kg/m N|r|r −6.23 kg m

The vehicle weights approximately m = 30kg and the moment of inertia about the z-axis is approxi-

mately Iz = 1Kgm2.

The two thrusters can be used in a combination of common mode and differential mode to control the

surge and yaw motion respectively. In particular the external force in surge τu and external torque about

the Z-axis τr can be mapped by

τu = Fs + Fp;

τr = l(Fs − Fp),
(A.1)

where Fs is the starboard relative force, Fp is the port side relative force and l = 0.15m is the length of

the arm that connect the thrusters to the vehicle. Each thruster is also characterized by a thrust curve

which follows the equation

F (Fin) = a|Fin|Fin, (A.2)

with a = 0.0036, and the input Fin ∈ [−100, 100] being normalized input used by the Medusa motor

allocation driver. Moreover, each motor is characterized as a first order system (pole + delay), described

by

G(s) =
K0

s+K0
e−sτ , (A.3)

with K0 = 7.21 a constant gain and τ = 0.346s a delay, according to Figure A.2.
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Figure A.2: Thruster Model
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Appendix B

3DR Iris Quadrotor

In this appendix, the Iris quadrotor used in simulation is introduced. The 3DR Iris quadrotor in Figure

B.1 is a commercial vehicle developed and manufactured by 3D robotics (3DR). Its CAD model is open

source and a gazebo simulation model is available through PX4 SITL Plugin [69].

Figure B.1: Iris quadrotor (adapted from Arducopter [78])

The vehicle has an X-shaped frame with 4 rotors. Its housing contains several sensors such as:

barometer, magnetometer, Inertial Measurement Unit (IMU) and DGPS. It weights approximately m =

1.5kg and its moments of inertia are Ix = 0.029kgm2, Iy = 0.029kgm2 and Iz = 0.055kgm2, about the

X, Y and Z-axis respectively. The simulated vehicle is also characterized by a total thrust curve which

follows a quadratic of the form T (Tin) = aT 2
in+ bTin , with a = 34, b = 7.2, with the input Tin ∈ [0, 1] being

a normalized input used by the quadrotors motor mixer.

In simulation, the vehicle was also equipped with a fixed First Person View (FPV) camera mounted

21mm below the vehicle’s center of mass with a pitch angle of −45◦, pointing downwards. This camera

produces an image with a resolution of 640× 480px. The camera intrinsic parameters (see Section 7.1)

are given by

K =


381.4 0 320.5

0 381.4 240.5

0 0 1

 . (B.1)
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Appendix C

Uniform Cubic B-Splines

C.1 Expanding to the 2-Dimensional Case

Consider the unidimensional uniform cubic B-Spline model (with n−k+1 segments) introduced in section

2.4.2 given by

Ci(γ) :=
1

6

[
(γ − i)3 (γ − i)2 (γ − i) 1

]

−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0


︸ ︷︷ ︸[

Bi,3(γ) Bi+1,3(γ) Bi+2,3(γ) Bi+3,3(γ)
]


Pi

Pi+1

Pi+2

Pi+3



⇔ Ci(γ) =
[
Bi,3(γ) Bi+1,3(γ) Bi+2,3(γ) Bi+3,3(γ)

]

Pi

Pi+1

Pi+2

Pi+3



(C.1)

where γ ∈ [0, n − k + 1) and i := ⌊γ⌋, such that γ − i ∈ [0, 1). An analogous representation for a
2-Dimensional curve, i.e. C(γ) ∈ R2 is given by

C(γ) :=

Bi,3(γ) Bi+1,3(γ) Bi+2,3(γ) Bi+3,3(γ) 0 0 0 0

0 0 0 0 Bi,3(γ) Bi+1,3(γ) Bi+2,3(γ) Bi+3,3(γ)


︸ ︷︷ ︸

B(γ)



P x
i

P x
i+1

P x
i+2

P x
i+3

P y
i

P y
i+1

P y
i+2

P y
i+3


︸ ︷︷ ︸

P

(C.2)
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where the basis matrix B(γ) is diagonal by blocks and the vector of control points P is structured

such that the first half is given by the X-coordinates of each point and second half by the corresponding

Y-coordinates. Let us now define a vector of control points P = [P x0 , ..., P
x
n , P

y
0 , ..., P

y
n ]
T ∈ R2(n+1), a

vector of distinct curve parameters γ = [γ0, ..., γq]
T ∈ Rq+1 that we wish to evaluate our curve at, and

C(γ) = [Cx0 , ..., C
x
q , C

y
0 , ..., C

y
q ]
T ∈ R2(q+1) the points on the curve. Then the basis matrix becomes

B(γ) =



B0,3(γ0) . . . Bn,3(γ0) 0 . . . 0
... . . . ...

... . . . ...

B0,3(γq) . . . Bn,3(γq) 0 . . . 0

0 . . . 0 B0,3(γ0) . . . Bn,3(γ0)
... . . . ...

... . . . ...

0 . . . 0 B0,3(γq) . . . Bn,3(γq)


, (C.3)

a matrix diagonal by blocks. This representation is particularly useful due not only to its efficiency

when implemented in practice, but also to the flexibility it provides for adding extra dimensions to the

problem.

C.2 Integral Calculation

In this appendix section, an efficient method for computing the integral terms proposed in the regulariza-

tion function (2.48) is shown. For the sake of simplicity, start by considering the simplest unidimensional

uniform cubic B-spline curve C(γ) ∈ R with only one segment, such that γ ∈ [0, 1) and described by:

C(γ) =
1

6

[
γ3 γ2 γ 1

]

−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0


︸ ︷︷ ︸

B(γ)


P0

P1

P2

P3


︸ ︷︷ ︸

P

, (C.4)

and with first derivative C ′(γ) given by:

C ′(γ) =
[
γ2 γ 1 0

]
︸ ︷︷ ︸

T(γ)

1

6


3 0 0 0

0 2 0 0

0 0 1 0

0 0 0 0




−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0


︸ ︷︷ ︸

M︸ ︷︷ ︸
B′(γ)


P0

P1

P2

P3


︸ ︷︷ ︸

P

. (C.5)
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Therefore, the term
∫
γ
∥C ′(γ)∥2dγ is computed according to:

∫
γ

∥C ′(γ)∥2 dγ =

∫
γ

(B′(γ)P)T (B′(γ)P)dγ

=

∫ 1

0

PTB′(γ)TB′(γ)Pdγ

= PT

[∫ 1

0

B′(γ)TB′(γ)dγ

]
P

= PT

[∫ 1

0

MTT(γ)TT(γ)Mdγ

]
P

= PTMT

[∫ 1

0

T(γ)TT(γ)dγ

]
MP.

(C.6)

Further note that:

T(γ)TT(γ) =


t4 t3 t2 0

t3 t2 t 0

t2 t 1 0

0 0 0 0

 (C.7)

and as a consequence:

∫ 1

0

T(γ)TT(γ)dγ = Q =


1/5 1/4 1/3 0

1/4 1/3 1/2 0

1/3 1/2 1 0

0 0 0 0

 . (C.8)

Hence, for the simplest case of a single B-spline segment it is known that

∫
γ

∥C ′(γ)∥2 dγ = PT MTQM︸ ︷︷ ︸
R1

P. (C.9)

The easiest way to extend this technique to a B-spline with n segments, it to consider the modified

vector T(γ) = [(γ − i)2, (γ − i), 1, 0]T , where i = ⌊γ⌋, according to the notation introduced in section

2.4.2. Then, since (γ − i) ∈ [0, 1), one can compute individually for each segment intermediate matrices

Ri1, calculated according to (C.9). Due to the locality property of B-splines, one can just ”stack” these

intermediate matrices to form the final matrix R1, where the values that ”overlap” are summed (Figure

C.1).
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Spline 0
Spline 1

Spline 2

Spline n-1

…R1 = 

Figure C.1: Computing matrix R1 for B-spline with n segments

An analogous rationale can be applied to compute the integral of the norm of the second derivative.

Remark: For a more general (but less efficient) formula that can be applied to B-Splines of any

degree, the reader is referred to [79], pp.15.

93



Appendix D

Path Planning Performance
In order to access the performance of the path planning algorithm developed in chapter 7, the artificial

test in Figure D.1 was developed. In this example, the time taken for the re-planning of the curve (with the

end goal of fitting the points in red) is evaluated. By varying the number of points in red, the performance

plot in Figure D.2 was generated. It is evident from the results obtained that the pre-processing stage

consumes most of the planning time.

Figure D.1: Path used for statistics

Figure D.2: Path planning algorithm performance

The results presented in this performance analysis were obtained using a MacBook Pro (early 2015

model) with a 2,7GHz Intel Core i5. The parameters used for the analysis are available in table D.1. For

comparison, the typical point cloud produced by the quadrotor vision system had an average of 1500

points.
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Table D.1: Parameters adopted for performance analysis

Path Planning

Max. neighbour distance Nm 0.2 m

Number of control points 26

Regularization term λ 0.8

Regularization term β 1.2
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Appendix E

Code API

E.1 Paths Package

1 class PathSection {
2 public:
3 /* Methods to get the position , first and second derivatives given the

parameter gamma - Must be implemented by every path section individually */
4 virtual Eigen:: Vector3d eq_pd(double t) = 0;
5 virtual Eigen:: Vector3d eq_d_pd(double t) = 0;
6 virtual Eigen:: Vector3d eq_dd_pd(double t) = 0;
7

8 /* Methods to get the tangent angle , curvature and derivative norm to the path
at gamma */

9 virtual double tangent(double t);
10 virtual double curvature(double t);
11 virtual double derivative_norm(double t);
12

13 /* Method to get the closest point on the path given the vehicle 's coordinates
*/

14 virtual double getClosestPointGamma(Eigen:: Vector3d &coordinate);
15 bool can_be_composed ();
16

17 /* Auxiliar methods to retrieve path limits */
18 double limitGamma(double t);
19 double getMaxGammaValue ();
20 double getMinGammaValue ();
21

22 virtual ~PathSection ();
23

24 protected:
25 /* Class constructor */
26 PathSection(bool can_be_composed);
27

28 /* Methods to define the path section limits */
29 bool setMaxGammaValue(double gamma_max);
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30 bool setMinGammaValue(double gamma_min);
31

32 private:
33

34 /* Min and Max values for gamma */
35 double max_value_gamma_{std:: numeric_limits <double >::max() / 2};
36 double min_value_gamma_{std:: numeric_limits <double >:: lowest () / 2};
37

38 /* section can be used in a composition of sections */
39 bool can_be_composed_{true};
40 };

Listing E.1: PathSection abstract class

1 Header header # Message time , ID and other metadata
2 float64 [3] pd # Path Position
3 float64 [3] d_pd # First Derivative
4 float64 [3] dd_pd # Second Derivative
5 float64 curvature # Curvature of the Path
6 float64 tangent_angle # Angle of Tangent to the Path
7 float64 derivative_norm # Norm of the derivative
8 float64 vd # Desired speed for virtual target
9 float64 d_vd # Desired acceleration for virtual target

10 float64 vehicle_speed # Desired vehicle speed
11 float64 gamma_min # Min Path parameter
12 float64 gamma_max # Max Path parameter

Listing E.2: Path data messages exchanged with Path Following Controller

E.2 Path Following Package

1 class PathFollowing {
2 public:
3

4 /* Class destructor for the abstract pathfollowing class */
5 virtual ~PathFollowing ();
6

7 /* Method to update the path following control law */
8 virtual void callPFController(double dt) = 0;
9

10 /* Method to publish the control values given by the algorithm */
11 void publish ();
12 virtual void publishPrivate () = 0;
13

14 /* Method used to setup the algorithm in the first iteration */
15 virtual void start() = 0;
16

17 /* Method used to check whether we have reached the end of the path */
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18 virtual bool stop() = 0;
19

20 /* Method used to reset the algorithm control parameters */
21 virtual bool reset() = 0;
22

23 /* Method to tune the gains while running in real time */
24 virtual bool setPFGains(std::vector <double > gains) = 0;
25

26 /* Method to update the current vehicle state */
27 void UpdateVehicleState(const VehicleState &vehicle_state);
28

29 /* Method to update the path data */
30 void UpdatePathState(const PathState &path_state);
31

32 /* Method used for publishing performance metrics */
33 void setPFollowingDebugPublisher(const ros:: Publisher &pfollowing_debug_pub);
34

35 protected:
36

37 /* Variable to store the state of the vehicle */
38 VehicleState vehicle_state_;
39

40 /* Variable to store the state of the path */
41 PathState path_state_;
42

43 /* Variable to store the performance metrics */
44 PFollowingDebug pfollowing_debug_;
45 ros:: Publisher pfollowing_debug_pub_;
46 };

Listing E.3: PathFollowing abstract class
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Appendix F

Controller Gains and Parameters

The controller gains used to obtain the results in chapter 9 are presented in tables F.1, F.2, F.3 and F.4.

Table F.1: ASV controller gains

ASV
Inner-loops

Surge kp 0.6
ki 0.099

Yaw-rate kp 0.32
ki 0.088

Currents Observer
k1 2.0
k2 0.2
Path Following

Kp

[
0.5 0
0 0.5

]
kγ 0.5
δ -1.0

Table F.2: UAV quadrotor controller gains

Quadrotor
Path Following

Kp

5.5 0 0
0 5.5 0
0 0 5.5


Kv

4.5 0 0
0 4.5 0
0 0 4.0


kγ 0.5
Projection Operator

Kd

0.5 0 0
0 0.5 0
0 0 0.2


ε 10.0
δ 10.0

dmax 8.0

Table F.3: CPF gains

Cooperative Path Following
kε 1.0
c 0.001
b 5.0
α 1.0

Table F.4: Path planning parameters

Path Planning
Max. Angular velocity ωmax 0.1s−1

Max. neighbour distance Nm 0.6 m
Control points density 1/ρ 4.0
Radius (optional step) r 0.3 m
Regularization term λ 0.05
Regularization term β 0.01

Desired altitude -30 m
Re-planning frequency f 1Hz
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