
Automated planning in hybrid domains for in-space
robot assembly tasks

Mariana Dias Cunha
mariana.d.cunha@tecnico.ulisboa.pt

Instituto Superior Técnico
December 2021

Abstract—Recent developments in the area of automation of
in-space additive manufacture and assembly of structures has
resulted in the development of in-space mobile robots that per-
form assembly and logistics operations inside the International
Space Station (ISS). Consequently, studies and improvements
in the area of robot Task-Motion Planning (TMP) need to be
made in order to improve robot navigation. Inspired by this, we
have created a hybrid domain using PDDL that describes mobile
robots navigating through a 2D approximation sampled roadmap
that are responsible for moving, loading and assembling modules.

We have chosen a state of the art TMP approach called MPTP,
however this approach does not take into account that some map
areas cannot be included in the motion plan once the robot places
modules in it. We have implemented an approach that allows the
motion planner to be informed of the map availability according
to the actions expanded by the task planner.

We defined a scenario to test and compare the use of task
and motion planners separately versus a mixed TMP approach
and we were able to get results that showed that using a mixed
approach in domains such as the space assembly domain can be
highly beneficial since it is aware of physical motion constraints
while task planning.

Keywords: Hybrid domain; PDDL; Mobile robot naviga-
tion; Task planning; Motion planning

I. INTRODUCTION

There has been a collaboration between ISR-Lisboa and
MIT Space Systems Laboratory in the context of autonomous
robotic assembly of space structures using on-orbit additive
manufacturing. By enabling the autonomous robotic assembly
of space structures, near-Earth science can be improved which
is the main goal of this international partnership. Since 2014
there is an on board 3D printer operating in the International
Space Station (ISS) which enables the production of 3D parts
and tools that can be used for repairing or improving existing
hardware. This technology has the potential of being extended
to fabricate bigger parts of space structures that can then be
autonomously assembled in space, making way for the ISS
to be able to repair and re-provision and thus being able to
maintain and upgrade its own structure. By means of path
planning and assembly of parts this would make way for
exploration and scientific operations of space structures.

One of the ISR-Lisboa and MIT Space Systems Lab col-
laboration renovation proposal report for 2020 proposed goals
is to understand how additive manufacturing of components
for on-orbit assembly can be translated into assembly via
high-level path and task planning. This work is related to

this objective which concerns the autonomous assembly of
parts via high-level path and task planning. The work in [1]
shows a thorough study of different architectures involving in
space printing and assembly of parts, one of them involves
a mobile robot that is operating in an environment where a
3D printer printed three parts. In this example the robot uses
proximity operations to assemble the 3D printed modules next
to the printer in reverse order. We use a similar architecture
where there is a mobile robot and printed modules that need
to be assembled into a desired goal configuration and thus
need a task and motion plan. This type of planning is hybrid
planning since it involves discrete and continuous aspects and
it is integrated in the field of task-motion planning. This is an
area that has been evolving and different approaches have been
emerging: some where task and motion planning are done in
a separate way and others where this is done in a combined
way, where task planning has a form of integrating motion
planning. We want to contribute to the study of these different
task-motion planning approaches in the context of the space
assembly of 3D printed parts in order to know what would
be more appropriate and produce better results in terms of
solution task-motion plans. We focus on studying which type
of task-motion planning approach is better suited for a sce-
nario of a robotic autonomous assembly of modules through
experimental results in a simulated environment. In this paper
we show a definition of a space assembly domain into PDDL
where mobile assembler robots can move and assemble parts
inside an environment like the ISS and we choose a state of the
art task-motion planning approach (MPTP) to run tests using
the space assembly domain. We also develop an algorithm
that incorporates updated information on the roadmap points’
availability into MPTP. By comparing task-motion planning
separate and mixed approaches we are able to provide an
answer for which type of approach is better suited for domains
where the tasks to carry out include assembly of structures and
logistics operations inside a space station.

II. BACKGROUND

A. Classical Planning and PDDL

Classical planning is the act of finding a sequence of actions
that leads from an initial to a desired goal state called a
plan which is called optimal if it is the one with the lowest
cost. There is a popular language used to define classical
planning problem domains called Planning Domain Definition



Language (PDDL) [2] which is capable of representing the
four main aspects of a classical planning domain: the initial
state, the actions that can be executed in each state, the effects
of each of those actions and the goal state test.

In PDDL, a state is represented by conjunctions of fluents,
for instance, At(robot1, area1) ∧ At(robot2, area2) for de-
scribing a state in which multiple robots are in different areas,
where At(robot1, area1) is a predicate, which is a relation
between one or more objects, and robot1 and area1 are instan-
tiated objects of the object types robot and area, respectively.
An action is represented by an action schema, which specifies
its name and defines the necessary preconditions for the
action to be able to be executed, as well as the effects that it
produces. If the preconditions of an action a are satisfied by
the state s, then a is applicable in s. An action schema may
contain variables that can be assigned values. An action can
have multiple models that make it applicable in a state s. In
order to define a planning problem using PDDL we need to
provide a domain description where we define all necessary
action schemas and predicates with their respective variables,
and a problem description which has to specify the objects
that will instantiate the predicates and the action schemas by
replacing all the free variables, and it also has to specify an
initial state and a goal condition.

Several versions of PDDL have emerged through the years,
one of them being PDDL2.1 [3] which can handle temporal
considerations (scheduling) and numeric considerations (re-
sources) and introduced, for that purpose, numeric fluents
for continuous change, plan-metrics and durative/continuous
actions. A durative action, besides having preconditions and
effects, also has a duration and a way to assign time to each
precondition and effect by specifying that each one occurs at
start, at end or over all the action. A numeric fluent is a
variable that has a value throughout the plan and applies to
zero or more objects from the PDDL domain. Both actions and
durative actions’ effects can change the value of a numeric
fluent. It is declared with a name, an object name and ob-
ject type, as follows: (battery-level ?r - rover),
where the numeric fluent allows every rover object from the
domain to have a variable that represents its battery level. An
extension of PDDL2.1 is PDDL+ which was created to enable
the modelling of mixed discrete-continuous domains. It also
provides a more flexible model of continuous change through
the use of processes and events and supports modelling of
exogenous events.

B. Hybrid Systems

A hybrid system is one that contains both continuous and
discrete variables. Discrete variables are the ones associated
with discontinuous transitions between different states and
continuous variables represent continuous evolution within a
state. In the context of this thesis, since we are dealing with
mobile robots, there is the need for a hybrid plan since we
need both a task and a motion plan for the robot.

There are a lot of different hybrid system based planning
approaches that emerged over the years. One of them is

UPMurphi [4] (2009) and it performs universal planning using
a model checking based algorithm for hybrid and nonlinear
systems. It is also able to read problem specifications from
PDDL+ files and plan for problems with time and resources
constraints. Another hybrid planning approach is DReach [5]
(2015) which also uses PDDL+. This approach is able to
accommodate nonlinear change by encoding problems as non-
linear hybrid systems and then applying Satisfiability Modulo
Theories (SMT) (we refer the reader to the work in [6] about
SMT). This planner finds plan tubes instead of concrete plans
because it solves a δ relaxation of the problem. It also presents
heuristics for improving SMT variable selection and pruning
and can prove plan non-existence. A different approach that
also uses an SMT encoding of PDDL+ domains is SMTPlan+
[7] (2016) which is also able to deal with nonlinear arithmetic
and it can use any SMT solver. This planner is also efficient
in proving plan non-existence up to a certain bound and has
proven to outperform UPMurphi and DReach in terms of time
and number of instances it is able to solve using different
types of domains. A more recent hybrid system based planning
approach is Optimization Modulo Theories (OMT) [8] (2018)
which consists of SMT solving with optimization capabilities.
It is a task planner capable of finding optimal solutions and
working in a multi-robot environment with concurrent actions.

Another hybrid planner is POPF-TIF which is a task planner
relevant for this work. POPF [9] is a forward-chaining state-
based search planner designed to solve temporal-numeric
problems supporting the concept of partial order planning. It
handles continuous linear numeric change and is based on
grounded forward search combined with linear programming
(LP). It does not sequentially build a plan, instead it builds
partially ordered collections of actions. The partial ordering
is achieved by delaying the commitment to ordering the
decisions, timestamps and values of the numeric parameters
by managing sets of constraints as actions start and end,
meaning that the precise embedding of actions in time is
delayed until constraints emerge. This approach benefits from
the informative search control of forward planning and at
the same time it has some level of flexibility due to its late
commitment strategy. The partial ordering is done in a way
that ensures plan consistency. Since it is a temporal planner,
POPF uses PDDL2.1 which supports durative-actions.

An important aspect of POPF is that it imposes total order-
ing in steps that change the value of a variable v, imposing the
order in which the steps are added to the plan. The planner also
forces conditions that depend on active process effects to stay
within those processes. In general, this approach represents
a middle ground between least and total commitment. It
implements a cost-optimisation approach meaning that it seeks
a plan that minimizes the total plan cost.

The extension POPF-TIF was introduced in [10] and was
also explored in [11] where the authors extended the concept
of using an external advisor. This planner’s goal is to handle
problems with numeric Timed Initial Fluents (TIF). POPF-
TIF implements a better heuristic evaluation and the addition
of alternative search methods using a combination between



Enforced Hill Climbing (EHC) and Best First Search (BFS).
It is also able to include exogenous events that assign values
to fluents but not exogenous events that add or delete some
effect. This is possible with the TIFs and the way it is done
is by separating each domain fluent into two parts: one that is
changed by the action and another that is changed by TIFs. An
example of a fluent x would be represented in the domain as
(at end (increase (x) (external))) where the
value of x is increased by the value of the (external)
variable that is a TIF and is calculated externally.

POPF-TIF is equipped with the ability to be connected to
an external solver/advisor which allows the planner to perform
sophisticated mathematical operations, which is something
that PDDL alone is not prepared to handle. The connection
between the planner and the external advisor is done through
semantic attachments. This external advisor can be used to
compute numeric information and more effective heuristic
values. This feature makes POPF-TIF a powerful framework
especially for solving problems with numeric goals.

C. Task-Motion Planning

Task planning refers to the process of finding a discrete
sequence of actions that lead from a starting state to a desired
goal state. Motion planning, also referred to as path planning,
is the process of finding a sequence of collision-free poses,
with the respective position and orientation values, that form
a path to get from a starting point to a desired goal pose. When
planning in robotics there is the need to have both a task plan
of the discrete actions and a motion plan describing the robot’s
motion, but combining both is a complex problem. Task-
Motion Planning (TMP) involves an interaction between the
decision-making process on both the discrete and continuous
domains. Different approaches have been suggested for TMP
and this is an area of research that keeps getting attention.
Initial TMP approaches would work by doing task planning
first and then using the resulting sequence of actions to instruct
the motion planner. This is done under the assumption that the
robot will be able to carry out each motion with no restrictions,
which is sometimes not the case, since there may be some
geometric constraints. Other approaches try to mix task and
motion planning, presenting a task-motion interface.

Some state of the art task-motion planning approach ex-
amples include Iteratively Deepened Task and Motion Plan-
ning (IDTMP) [12] (2016) which is a constraint based task-
planning approach that uses SMT as a way of making the
task planner aware of geometric constraints and have some
level of motion feasibility awareness at the task planning
level. It is probabilistically complete and is able to handle
domains with diverse actions as well as model kinematic
coupling. Another TMP approach is PDDLStream [13] (2020)
that extends PDDL to incorporate sampling procedures. It also
presents two new algorithms: Binding and Adaptive. These
algorithms reduce PDDLStream planning to solving a series
of finite PDDL problems. The Adaptive algorithm balances the
time spent searching and sampling and aggressively explores
many possible bindings, outperforming existing algorithms,

particularly in tight-constrained and cost-sensitive problems,
by greedily optimizing discovered plans. PDDLStream can be
used to plan for real-world robots operating using a diverse
set of actions. A more recent TMP approach is Motion-
Planning-aware Task Planning approach (MPTP) [14] (2021)
which uses a task planner combined with an external solver
which has a motion planner incorporated. It uses POPF-TIF
as the task planner, but a different one could be used. It uses
PDDL2.1 to define the task level actions and it works by
defining numeric fluents in the domain and taking advantage of
semantic attachments to have an external solver calculate some
numeric fluent variables including the motion cost and the
respective path plan returning the values to the task planner.

Even though all three approaches are capable of doing
task-motion planning they have limitations. PDDLStream is
undecidable and its algorithms are semi-complete, meaning
that it is complete only under feasible instances. IDTMP and
MPTP are both probabilistically-complete. The task-motion
interaction in IDTMP is done by the use of abstraction and
refinement functions while MPTP uses semantic attachments
as its task-motion interface. Another difference is the fact that,
while PDDLStream and IDTMP approaches both involve TMP
for manipulation, MPTP is focused on TMP for navigation.
MPTP involves a motion planning aware task planner, taking
motion costs and motion plan feasibility into account.

D. MPTP

MPTP is the planning approach that will serve as baseline
for this work. This planning approach is meant for navigating
in large knowledge-intensive domains, it is probabilistically
complete and returns a solution plan that is optimal at the
task level. The MPTP framework is also prepared to deal
with belief space planning, i.e. motion planning under motion
and sensing uncertainty in partially-observable state-spaces,
although this is not explored within the scope of this master’s
thesis. MPTP presents a task-motion interface layer that allows
the motion planner to inform the task planner of the motion
feasibility as well as the associated costs.

In this approach, there is a set of discrete actions that can be
expanded by the task planner. Every time the task planner ex-
pands an action that requires robot motion, an external solver
is called/triggered. When this happens, the discrete symbolic
parameters are converted to the corresponding continuous
geometric instantiations. These geometric instantiations are
pre-sampled upon knowing the map of the environment (a
roadmap-based sampling is used, specifically PRM). For each
call of the external solver different motion plans are obtained
for these instantiations and the best one is chosen according to
a specific metric. Finally, the cost associated with the chosen
motion plan is returned to the task planner and it corresponds
to the cost of the associated action. Because the motion cost
is returned as every action is expanded, the resulting plan will
be optimal at the task level. The cost used in this approach is
the sum of the trajectory length and the cost associated with
motion and sensing uncertainty. However, MPTP is capable
of supporting any cost function and since uncertainty is not



within the scope of this thesis, the respective motion and
sensing uncertainty cost will not be considered.

Since this approach will be used to accomplish this thesis’
goal, we provide a more practical and in depth explanation of
how it works. MPTP uses POPF-TIF [10] as the task planner
because it is a temporal task planner that can handle numeric
time initial fluents. The work in [10] and [11] introduces
the concept of semantic attachments, allowing the POPF-
TIF planner to have an external solver call and MPTP takes
advantage of this concept to incorporate the motion planner.

According to [11], a semantic attachment evaluates nu-
meric fluents using externally specified functions. For this
interface to work, all the domain’s numeric variables are
categorised either as indirect variables (V ind), direct variables
(V dir) or free variables (V free). The planner, in this case
POPF-TIF, determines the value of the V dir variables and
when these values change they affect the V ind variables. The
V ind variables are calculated by the external function/advisor
based on the information provided by the planner. The V free

variables are the remaining variables evaluated by the planner
but they do not trigger any external computation. Figure 1
shows an overall view of the described structure.

Fig. 1. Overview of the MPTP structure (V dir - direct variables; V ind -
indirect variables; and V free - free variables that stay within the task planner)

In other words, every time POPF-TIF expands an action
it passes the V dir variables to the external function and in
turn the advisor returns the V ind variables to the planner,
so a semantic attachment can be seen as a function that
is dependent on the V dir variables and computes the V ind

variables. More precisely, when POPF-TIF first updates a state,
the V dir and V free variables are computed. If any of the V dir

values changed, then the external function is called to compute
the V ind variables and it receives all the V dir values as input.

III. METHODOLOGY

A. The Space Assembly Domain

We consider a mobile robot navigating through a corridor
inside the International Space Station (ISS) that holds, moves
and assembles modules and we refer to it as the space
assembly domain. To simplify the problem, we consider a 2D
approximation of the ISS Columbus laboratory (which is the
European lab inside the ISS) as a corridor of 3 × 6 meters.
This means that the environment’s map is known a priori. As
can be seen in figure 2 we design the corridor as a grid of

1× 1 meter squares so that each of these squares can be used
as a location to the task planner when defining the domain.

Fig. 2. Representation of a 3 × 6 meter 2D ISS corridor approximation in
an xy coordinate axis (wp stands for waypoint and represents an example of
a sampled roadmap point and its respective coordinates)

We use a roadmap-based sampling method where a map
of the environment is defined by waypoints (which are the
sampled points that constitute the map). In order to guarantee
that each location contains at least one waypoint, the center of
all grid squares is manually added to the roadmap and labeled
as shown in figure 3 where it is also shown how the locations
are referred to in the problem file: each row with a letter in
alphabetical order and each column with a number i ∈ R0.

Fig. 3. The 2D ISS corridor approximation with a waypoint for each location
and the used nomenclature (the rows are identified by letters and the columns
by numbers, so the location containing wp0, for example, is location a0)

In this domain we define 3 types of objects: (1) location,
an area of the ISS corridor corresponding to a square from
the grid approximation; (2) module, these are assumed to
be equally sized cubes (squares in our 2D approximation)
corresponding to the parts that the robot has to assemble; we
also assume that a module occupies all the area covered by
the location where it is placed; (3) robot, the mobile robot
that can grab modules and navigate through the ISS.

The goal is to have the robot assemble the modules into a
desired configuration. A robot may not be carrying anything,
which is encoded by the predicate (empty ?r), where r is
the robot, or it may be holding a module, which is encoded
by the predicate (loaded ?r ?m), where m is the module
that is being carried by the robot r. In either case, the robot
can move from one location to another using the high-level
action move_robot. To describe the current location of a
robot we use the predicate (at ?r ?l), where l is the



location where the robot r is. If a location has a module
placed on it, it is encoded by the predicate (on ?m ?l),
where m is the module placed on location l. If a location
does not have a module on it, then this corresponds to
the predicate (clear ?l), which encodes that the loca-
tion l is clear. Another predicate defined in this domain is
(adjacent ?l0 ?l1), where l0 and l1 are two distinct
locations that are adjacent to each other. This predicate has a
crucial role in this domain, since we consider that a robot
cannot leave a module floating inside the ISS, one of the
preconditions for a robot to unload a module is that it has to be
assembled to another module, which can be translated as: only
unload the module if there is another module on an adjacent
location. The action that encodes a robot unloading/assembling
a module is assemble. For simplicity purposes we assume
that all modules can be assembled to each other with no
restrictions. For a robot to pick up a module it has to be within
its reach, which means that the robot has to be at a location
adjacent to a different location with a module in it. The robot
also has to be empty for it to be able to pick up a module
since a robot can only grab one at a time. The action load is
the one responsible for encoding a robot grabbing a module.

In this domain there are also the following numeric fluents:

• (act-cost): direct variable that models the cost asso-
ciated with the actions; it will be used as the metric to
minimize by the task planner;

• (extern): the motion cost, an indirect variable that
is returned by the external solver. In the action that
involves robot movement, after being computed by the
external solver, this variable’s value will be added to the
act-cost value as an effect of this action;

• (triggered ?from ?to): direct variable used for
the action that involves robot motion (move_robot)
whose value is 1 at the beginning when the action is
expanded and 0 once the action duration is complete.
Every time this variable changes it triggers the motion
planner in the external solver and gives two locations as
arguments - the from and to positions where the robot is
and to where it wants to move, respectively;

• (occupied ?loc): direct variable used for the
assemble action that takes as argument the location
where a module is being placed in order to let the external
solver know that this location is now occupied. This is
the core of our approach, we program the external solver
to remove the waypoints that are within this occupied
location for the motion planner to know that they are no
longer available.

• (unoccupied ?loc): direct variable used for the
load action. This is the opposite of the occupied
variable, since its goal is to inform the external solver
that a module was removed from a location which means
that this location is now unoccupied and the external
solver can register that the respective waypoints became
available for the motion planner to use.

B. Expansion of the MPTP Approach

We choose the MPTP approach as the most appropriate to
use in the context of this dissertation because, while other
TMP approaches are more focused on TMP for manipulation,
MPTP is focused on solving TMP for navigation which is what
the space assembly domain requires since it revolves around
a mobile robot carrying and assembling modules.

The communication between the task planner (POPF-
TIF) and the external solver is done through the use
of V dir and V ind variables. In our approach there are
four V dir: act-cost, triggered, occupied and
unoccupied; and one V ind: extern which is calcu-
lated by the external solver. The external solver defined by
the MPTP approach mainly consists of a motion planner
and it works by using (triggered ?from ?to) and
(increase (act-cost) (extern)). The numeric flu-
ent triggered is what allows the motion planner to re-
ceive information about the start and goal locations of the
robot motion that the action involves and the indirect vari-
able extern is the motion cost computed and returned to
the task planner by the external solver/motion planner. The
act-cost is the direct variable that the task planner uses
to accumulate the cost of the expanded actions. Consequently,
(increase (act-cost) (extern)) is used as an ef-
fect in the move_robot action, since it involves robot
motion, to increase the act-cost variable by the motion
cost value returned by the motion planner, while the remaining
actions that do not involve robot motion use something like
(increase (act-cost) n) where n is a value defined
by the task planner which corresponds to the action’s cost.

In order to accomplish this works’ goal, we change the
external solver to incorporate our approach as well as the
motion planner defined by MPTP. Our goal is to see if the
task plan changes when the high-level actions result in motion
constraints in cases like the space assembly domain. In this
domain a robot can move modules from one location to an-
other. By doing so, the sampled robot poses that are contained
within the new module’s location are now unavailable and this
may imply that the robot has to find a different path to go
around the module, which may result in a larger path with a
higher motion cost. A case like this would mean that the task
plan would have to change according to the motion planner
information in order to find the optimal plan.

We extend the external solver to keep track of a list of
currently available waypoints. This includes all the map points
that belong to locations that do not have a module placed
in it. Every time an assemble action is expanded by the
task planner, the (occupied ?l) numeric fluent informs
the external solver of the location l that is now occupied
and the list of available waypoints is updated by removing all
the points contained within the given location. A similar thing
happens whenever the task planner expands a load action: the
(unoccupied ?l) fluent informs the external solver of the
location that has just been unoccupied and the list is updated
by adding the waypoints within the respective location.



The way that the motion planner works in MPTP is by
expanding the waypoints one by one between the initial
and goal locations. By doing this, it calculates and stores
the cost of each different available path between the two
locations returning the smallest cost at the end. The cost we
use is the sum of the distance between all the waypoints
that constitute the path. Our implementation gives the motion
planner access to an updated list of available waypoints at
all times so whenever the motion planner is expanding the
possible paths between two locations it checks if the next
waypoint is available and in case it is not available, the motion
planner skips it and does not take into account for the path.

The external solver can only return numeric variable values
to POPF-TIF. This means that in case there are modules
blocking all possible paths between two locations it is not
possible for the external solver to inform the task solver that
there is no feasible motion plan for that particular action. To
get around this situation we make the external solver return
a very high cost whenever there is no path available in order
for the task planner not to include that action in the final plan.
Since the goal is to find a plan that minimizes the act-cost
variable which corresponds to the sum of all action costs from
the task planner output plan, the motion cost has an impact
on the chosen plan actions.

IV. IMPLEMENTATION

POPF-TIF (implemented in C++) works with the following
inputs: the PDDL domain file, the problem file and a user
defined external solver/advisor (which is a dynamically loaded
shared library). When an external solver is provided, POPF-
TIF calls it using a function which has the state as argument
as well as a boolean variable that states if it wants to use
a heuristic or not. The MPTP approach defines the motion
planner in a function called callExternalSolver that receives
the two given arguments, one of them being the current state.
This includes not the predicates defined on the problem.pddl
file, but a map from the names of the numeric fluents defined
on the domain.pddl file to their respective current values.

In addition to the domain.pddl and problem.pddl files,
MPTP also needs three more files in order to work and to
know the environment’s map: (1) edge.txt - contains a list
of all the edges in the form of pairs of connected waypoints;
if we use the map on figure 3 an example of an edge would
be (wp0, wp1) which are two adjacent locations and therefore
they are connected; (2) waypoint.txt - contains a list of all
the map’s points, each with a respective set of coordinates
x, y and θ for the orientation; once again, if we use the
map on figure 3, an example of a waypoint contained in this
file would be wp0[0.5, 2.5, 0]; (3) region poses - lists the
correspondence between each location and the respective set
of waypoints that is contained within it; using the map on
figure 3, what would appear in this file for location a0, for
example, would be: a0 wp0, since wp0 is the only waypoint
inside location a0. The problem file can change according to
whatever example we want to test out. Since there can be
an infinite number of problem files and consequently edge,

waypoint and region poses files (because these three change
according to the map of the problem) we automated the
process of creating these four files by developing a python
script to quickly be able to define new problems.

Besides defining the space assembly domain and problem,
our approach consists in improving MPTP in order for it to
know and update which waypoints are available while the
task planner is expanding the actions to find a solution plan.
We start by initializing a variable called available wp list
which is a list of all the available waypoints. This list is
initialized with all the waypoints in the provided map and
then we read from the problem.pddl file in order to know
which are the initial module locations that we initially re-
move from the available wp list. Then we take advantage
of the fact that the external solver can receive information
from the task planner with the use of numeric fluents and
define for that purpose the variables (occupied ?l) and
(unoccupied ?l) where l is the occupied or unoccupied
location, respectively. Every time the task planner expands an
assemble or load action, one of the at start effects of
each of these actions is to change the value of the variables
occupied and unoccupied, respectively, to 1.

Inside the external solver function there is a loop that goes
through all the numeric fluents received as the state to check
which ones have a value bigger than zero (every numeric fluent
is initialized as zero so the ones which are zero did not suffer
any changes). Since an action was expanded, at least one direct
variable changed, in this case either (occupied ?l) or
(unoccupied ?l) changed to 1. In the MPTP approach
there is a variable called region mapping which is a map
from all the locations to their respective list of waypoints.
In case there was an assemble action expanded, this trig-
gers the code to loop through the list of waypoints from
region mapping associated with location l to remove all of
them from the available wp list. On the other hand, if the
task planner expanded a load action, this invokes the code
to loop through the waypoints stored in the region mapping
variable associated to location l and add all of them back to
the available waypoints list.

Whenever the (triggered ?from ?to) numeric flu-
ent changes to 1 after a move_robot action has been
expanded, the external solver will execute the motion planner
code which expands the waypoints in order to find all possible
paths between the from and to location variables sent by the
task planner and returning an external cost (which corresponds
to the extern variable) of the path with the smallest cost.
There is a loop inside the motion planner that starts with the
from location, gets all of its child nodes, i.e. all the roadmap’s
poses that are directly connected to it according to the list of
edges from the edge.txt file, and iterates through all of them,
expanding all the possible waypoints until reaching the goal
location. In order to incorporate our approach into the motion
planner we add a step that verifies if a child node is present in
the list of available waypoints and only expand it in case it is.
If it is not on the list it means that that waypoint has a module
placed on it and the robot cannot use that point as a part of its



path. Since the list is constantly updated while the planner is
running, the motion plan can be done with updated information
on the available paths. Algorithm 1 shows a pseudocode of
the motion planner behaviour with our approach incorporated,
using the euclidean distance as the motion cost.

Data: Roadmap (sampled poses and edges), start:
starting location, goal: goal location

Result: extern
cost← 0
wp list ← list of currently available roadmap poses
to expand← start
expanded← empty
while to expand is not empty do

current node ← first element of to expand
/* All waypoints that form edges

with current node */
child nodes ← Find children of current node
expanded← add current node
foreach child not in expanded do

if child exists in wp list then
to expand← child
/* Calculate euclidean

distance between current_node
and child */

d←√
(xcurr − xchild)2 + (ycurr − ychild)2

cost curr node ← cost curr node + d
if child is goal then

Store this path’s cost
Break out of for loop

end
end

end
to expand← remove current node

end
extern← Choose smallest path cost
Print motion path into output file
Algorithm 1: Motion planner with waypoint removal

There are situations that may require some additional steps
due to the way the planner and the external solver work.
One situation is when there is no available path between
the start and the goal locations, in other words when the
path is blocked by modules. In this case we would want to
inform the task planner that there is no available path between
those two locations. However, POPF-TIF is only prepared
for the external solver to return the indirect variables (V ind)
with numerical values in order to update the V dir variables
internally. For this reason, in our approach, whenever the
motion planner is unable to find a path because it is blocked
and there are no available roadmap points between the two
locations, it returns a very high motion cost, for example of
10000, so that the task planner will not choose that specific
move_robot action to be included in the output plan.

Another situation to take into account is that whenever the
goal waypoint is not available, instead of returning a high cost

we just temporarily add it and expand it. This is because the
task planner has the ability to know that the action cannot
be done since it is able to use the predicate (clear ?l)
to know that the goal location is actually not clear and has
a module on it. Because the task planner will exclude this
action, the external solver does not need to.

V. RESULTS AND DISCUSSION

A. Motion Plan: Using Task Planner vs Using Motion Planner

To test the difference between using only the task planner
(and getting a motion path by changing the way the domain
is defined) and using the task planner along with a motion
planner with the domain definition described in section III-A
we made a simple change in the domain file: we added the
precondition (at start (adjacent ?from ?to)) to
the move_robot action, which forces the robot to only
move between adjacent locations. This way the solution plan
outputted by the task planner will have a description of the
locations where the robot has to walk through in order to get
from one location to another. When the external solver is being
used, the move_robot action’s cost is the cost returned by
the motion planner. Since we are only using the task planner
in this test we changed this cost to a fixed value of 1.

The problem that was defined for this test is shown in figure
4 where the blue squares represent the initial positions of the
three modules (locations c0, c1 and b7, respectively) and the
red circle represents the mobile robot (with initial position
a0). The goal is to move m2 to its goal position which is
location b6. This problem requires the robot to move close to
module 2 and then move once again to take the module to its
goal position. For this test we ran the task planner with two
different domains: the one described in section III-A and the
same one but with both changes mentioned above.

Fig. 4. Visual representation of the initial state of a problem in a 4× 8 map
with three modules and one mobile robot where the blue squares represent
the module positions and the red circle represents the initial robot position

The output plan for the original domain in figure 5(a) is
composed by four actions and the total plan cost is 4. There
is a move action for the robot to go from region a0 to b1,
when in b1 the robot can execute a load action and load
module m2 which is within the robot’s reach. Then another
move_robot action is executed from b1 to a6 where the
robot can then unload module m2 at its goal location b6
assembling it to module m3 which is in the adjacent location
b7. By running the task planner alone with this domain we
cannot have an idea of the path that the robot has to take



in each move_robot action. However, by running the task
planner using the modified domain, as figure 5(b) shows, the
output plan discriminates all the locations that the robot goes
through and thus having a motion plan. As the plan indicates,
to get from a0 to c2 the robot goes through locations a1, a2
and b2 and in the second move_robot action the robot starts
at its current position c2 and it goes through locations c3, c4,
b4 to finally reach c5. The total plan cost is 10.

(a)

(b)

Fig. 5. POPF-TIF output after running the problem defined in figure 4 with:
(a) - the domain from section III-A; and (b) - the modified domain that forces
robot movement between adjacent locations

Comparing both results we can see that using the domain
definition to force this kind of motion plan implies a higher
cost. In problems that require a larger amount of move actions
the cost would increase exponentially, proving that making the
task planner do a motion plan is not an efficient approach
compared to using a domain that implies less actions and
combining it with an external motion planner.

B. Motion Plan With Waypoint Removal

In order to see the difference between the motion plan pro-
duced by the original MPTP approach and the one produced
by MPTP with waypoints update we define the problem in
figure 6 where a robot needs to go around some modules in
order to get to its goal location. Figure 6(a) shows the initial
configuration of the five modules and the initial robot position
which is a2. The goal configuration is shown in figure 6(b)
where the only module that changed position was m1 which
started in location a3 and whose goal location is d3.

After running POPF-TIF with both approaches, both output
plans were the same following sequence of actions:

1) (load r1 m1 a2 a3)
2) (move_robot r1 a2 d2)
3) (assemble r1 m1 m5 d2 d3 c3)

Both plans include one load action where the robot loads
module m1, followed by one move_robot action where the
robot goes from a2 to d2 and then an assemble action

(a) Initial state (b) Goal state

Fig. 6. Visual representation of a problem in a 4× 4 map with five modules
and one mobile robot where the blue squares represent the module positions
and the red circle represents the initial robot position

where the robot assembles module m1 to m5. The difference
between the two plans is in the motion path and consequently
in the total plan cost. We consider a cost of 1 for both the
load and assemble actions. The motion planner cost is
the calculated euclidean distance between all the waypoints
included in the robot’s path from one location to another. In
this case we are using a map that has one waypoint for every
location which corresponds to its center coordinates. For this
reason, the motion cost between every two adjacent locations
is going to be 1. The labels of the roadmap points follow the
same ordering logic of figure 3.

The motion paths outputted by the output motion.txt file
for both approaches is shown in figure 7. For the first approach
the cost was 5. This corresponds to a cost of 1 from the load
action plus 1 from the assemble action and a remaining cost
of 3 for the move_robot action. The output motion path that
could be seen by the output motion.txt file was the follow-
ing sequence of waypoints: wp2 → wp6 → wp10 → wp14.
This motion path is highlighted in figure 7(a). For the second
approach with waypoints removal the total plan cost was 9.
This corresponds to the sum of a cost of 1 from the load
action with another cost of 1 from the assemble action
with a remaining cost of 7 for the move_robot action. This
move action has a higher cost than the previous approach since
the waypoints from all the locations that contain a module
were removed. This includes waypoints wp6, wp7, wp9 and
wp11 which the robot is not able to use for its path. For this
reason, the outputted motion plan was a sequence of roadmap
points that go around the modules as follows: wp2→ wp1→
wp0 → wp4 → wp8 → wp12 → wp13 → wp14. A visual
representation of this motion path can be seen in figure 7(b).

Comparing both results we conclude that using the roadmap
points update approach is beneficial in situations like the one
described in this section where there are obstacles that are
unknown to the task planner due to the way the domain is
defined (which is a domain that implies less actions and whose
advantages were explained in section V-A). Even though
results from figure 7(b) imply a higher cost than the results
from figure 7(a), the motion plan is better and more accurate
since the one in figure 7(a) would fail at the robot’s execution
phase due to physical motion constraints that were not taken



(a) Original MPTP (b) With waypoint removal

Fig. 7. Motion plan, represented by the red arrows, outputted by MPTP and
by MPTP with the waypoint removal approach for the problem in figure 6

into account during the planning phase.

C. Columbus Lab Scenario

This scenario was created to show the difference between
two outputted task plans when doing task-motion planning
separately compared to a mixed approach as is the case with
MPTP but with our roadmap points update improvement and it
consists of the domain described in section III-A with a map
that is similar to a 2D approximation of the ISS Columbus
lab. The map used in this test can be seen in figure 2 and uses
the location’s names and the exact roadmap points pictured in
figure 3, which means that each location contains a roadmap
point that corresponds to its center coordinates. The problem
that was defined for this test is depicted in figure 8 where there
is a mobile robot and five modules that are to be all moved
to a different configuration.

(a) Initial state

(b) Goal state

Fig. 8. Visual representation of the Columbus lab corridor problem in a 3×6
map with five modules and one mobile robot where the blue squares represent
the module positions and the red circle represents the initial robot position

After running this problem using only the task planner
POPF-TIF we get the output solution plan detailed in table I.
This is a valid plan and all move_robot actions have at least
one possible path with no modules blocking it, which means
that if we were to do motion planning after this task plan it

would be possible to find a valid motion plan with no modules
blocking the way. We proceeded to manually build the motion
plan with the smallest cost possible by following the given task
plan and taking into account all the module positions upon
the execution of each load and assemble action. We then
calculated the euclidean distances of all the paths that make up
the motion plan in order to know the total plan cost of solving
this problem using task and motion planning separately. The
cost of each action is shown in table I in front of the respective
actions as well as the total plan cost at the bottom of the table
which was 55 for this approach.

TABLE I
TASK PLAN FOR PROBLEM IN FIGURE 8 USING THE TASK PLANNER

(POPF-TIF) AND THE COST ASSOCIATED WITH EACH ACTION

Actions Cost
0.000: (load r1 m2 c0 b0) [5.000] 1
0.001: (move_robot r1 c0 a4) [20.000] 6
20.002: (move_robot r1 a4 a2) [20.000] 2
40.003: (assemble r1 m2 m5 a2 a3 b3) [10.000] 1
50.004: (load r1 m4 a2 b2) [5.000] 1
50.005: (move_robot r1 a2 b4) [20.000] 5
70.006: (assemble r1 m4 m2 b4 a4 a3) [10.000] 1
70.007: (move_robot r1 b4 b5) [20.000] 1
90.008: (move_robot r1 b5 a1) [20.000] 7
110.009: (load r1 m1 a1 a0) [5.000] 1
110.010: (move_robot r1 a1 b2) [20.000] 2
130.011: (assemble r1 m1 m2 b2 a2 a3) [10.000] 1
140.012: (load r1 m3 b2 b1) [5.000] 1
140.013: (move_robot r1 b2 b5) [20.000] 5
160.014: (assemble r1 m3 m4 b5 b4 a4) [10.000] 1
160.015: (move_robot r1 b5 b2) [20.000] 5
180.016: (load r1 m5 b2 b3) [5.000] 1
180.017: (move_robot r1 b2 b5) [20.000] 5
200.018: (assemble r1 m5 m4 b5 a5 a4) [10.000] 1
200.019: (move_robot r1 b5 b2) [20.000] 5
220.020: (load r1 m1 b2 a2) [5.000] 1
225.021: (assemble r1 m1 m2 b2 b3 a3) [10.000] 1

TOTAL: 55

Then we ran this problem using MPTP along with the
waypoint removal approach and we obtained the solution task
plan detailed in table II which also shows the cost associated
with each action, being the move_robot action cost the one
calculated by the external solver. This test’s motion plan was
outputted in the output motion.txt and the total solution plan
cost for this approach was 41.

Comparing both results we can observe that the actions
as well as the sequence of actions differs from the first
approach to the other. This is because the second approach
is aware of the motion constraints as the robot loads and
assembles modules into different positions of the map and
with the incorporation of the motion planner along with that
information, the task planner is able to choose the actions in
a more informed way, so it will switch the order in which
the robot moves modules in order to avoid producing motion
constraints that will imply a higher cost when doing the motion
plan, which is what happened in the case of the first approach.
From this comparison we can conclude that an informed mixed
task-motion planning approach allows the motion planner to be
aware of the physical constraints imposed by the task planner’s
expanded actions while planning, which will help produce



TABLE II
TASK PLAN OBTAINED BY RUNNING THE PROBLEM FROM FIGURE 8 USING
A MIXED TASK-MOTION PLANNING APPROACH (MPTP) WITH WAYPOINT

REMOVAL AND THE COST ASSOCIATED WITH EACH ACTION

Actions Cost
0.000: (load r1 m2 c0 b0) [5.000] 1
0.001: (move_robot r1 c0 a4) [20.000] 6
20.002: (move_robot r1 a4 a2) [20.000] 2
40.003: (assemble r1 m2 m5 a2 a3 b3) [10.000] 1
50.004: (load r1 m4 a2 b2) [5.000] 1
50.005: (move_robot r1 a2 b4) [20.000] 5
70.006: (assemble r1 m4 m2 b4 a4 a3) [10.000] 1
70.007: (move_robot r1 b4 b5) [20.000] 1
90.008: (move_robot r1 b5 b2) [20.000] 5
110.009: (load r1 m5 b2 b3) [5.000] 1
110.010: (move_robot r1 b2 b5) [20.000] 3
130.011: (assemble r1 m5 m4 b5 a5 a4) [10.000] 1
130.012: (move_robot r1 b5 b2) [20.000] 3
150.013: (load r1 m3 b2 b1) [5.000] 1
150.014: (move_robot r1 b2 b3) [20.000] 1
170.015: (assemble r1 m3 m4 b3 b4 a4) [10.000] 1
170.016: (move_robot r1 b3 b2) [20.000] 1
190.017: (move_robot r1 b2 a1) [20.000] 2
210.018: (load r1 m1 a1 a0) [5.000] 1
210.019: (move_robot r1 a1 b2) [20.000] 2
230.020: (assemble r1 m1 m2 b2 b3 a3) [10.000] 1

TOTAL: 41

a solution plan with a smaller cost and consequently with
higher quality. We can also observe that the task plan, i.e. the
discrete actions that are executed as well as their order, may
change when using this mixed informed approach in order to
accommodate a feasible and smaller cost motion plan.

VI. CONCLUSIONS

Planning in domains like the space assembly one where
a mobile robot navigates through the environment to move
and assemble parts can be challenging since it involves task-
motion planning. We have seen that it is possible to define
the domain in a way that we can obtain some sort of motion
plan by only using the task planner if we force the robot to
only move between adjacent locations. We can even divide
the map into smaller areas that we would define as locations
in order to have a more accurate motion plan. However, by
performing the tests described in section V-A we can conclude
that this is not a very efficient way of performing task and
motion planning combined since this implies a very high cost
which only gets higher for problems that involve more robot
movement actions. It is also a very time consuming approach
which might make it difficult to find a solution plan within a
reasonable amount of time.

We introduced an improvement into the MPTP approach
that enabled the external solver to inform the motion planner
of the availability of each roadmap point updating this infor-
mation according to the actions expanded by the task planner
while it is working to find a solution. After running some tests
we were able to show that using this informed task-motion
planning approach was highly beneficial in the space assembly
domain in comparison to running the task planner and then
the motion planner separately. This is due to the fact that the
mixed TMP approach is able to produce a more realistic task

plan since it takes some motion constraints into account. By
doing task and motion planning separately the task planner
can in some situations produce a plan that may be unfeasible
due to motion constraints or it can also be a task plan that
implies a higher motion cost than other possible plans.

We defined a problem as the Columbus Lab scenario where
we made a 2D approximation of the ISS European lab and
defined a problem with a mobile robot and some modules to
assemble into a goal configuration. With this example we were
able to test both TMP approaches and conclude that the mixed
informed TMP approach produced better results as some
physical constraints imposed by the task planner’s expanded
actions were taken into account during planning, which led to
a sequence of high-level task actions that produced a lower
cost motion plan and an overall lower total cost for the task-
motion plan. This shows that using a mixed TMP approach
in scenarios that involve robot navigation is very beneficial in
terms of task-motion plan quality.

REFERENCES

[1] C. Jewison, D. Sternberg, B. McCarthy, D. W. Miller, and A. Saenz-
Otero, “Definition and testing of an architectural tradespace for on-orbit
assemblers and servicers,” 2014.

[2] C. Aeronautiques, A. Howe, C. Knoblock, I. D. McDermott, A. Ram,
M. Veloso, D. Weld, D. W. SRI, A. Barrett, D. Christianson et al.,
“Pddl— the planning domain definition language,” Technical Report,
Tech. Rep., 1998.

[3] M. Fox and D. Long, “Pddl2. 1: An extension to pddl for expressing
temporal planning domains,” Journal of artificial intelligence research,
vol. 20, pp. 61–124, 2003.

[4] G. Della Penna, D. Magazzeni, F. Mercorio, and B. Intrigila, “Upmurphi:
A tool for universal planning on pddl+ problems,” in Proceedings of
the International Conference on Automated Planning and Scheduling,
vol. 19, no. 1, 2009.

[5] D. Bryce, S. Gao, D. Musliner, and R. Goldman, “Smt-based nonlinear
pddl+ planning,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 29, no. 1, 2015.

[6] E. Ábrahám and G. Kremer, “Smt solving for arithmetic theories: Theory
and tool support,” in 2017 19th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC). IEEE,
2017, pp. 1–8.

[7] M. Cashmore, M. Fox, D. Long, and D. Magazzeni, “A compilation of
the full pddl+ language into smt,” in Proceedings of the International
Conference on Automated Planning and Scheduling, vol. 26, no. 1, 2016.

[8] F. Leofante, E. Ábrahám, T. Niemueller, G. Lakemeyer, and A. Tac-
chella, “Integrated synthesis and execution of optimal plans for multi-
robot systems in logistics,” Information Systems Frontiers, vol. 21, no. 1,
pp. 87–107, 2019.

[9] A. Coles, A. Coles, M. Fox, and D. Long, “Forward-chaining partial-
order planning,” in Proceedings of the International Conference on
Automated Planning and Scheduling, vol. 20, no. 1, 2010.

[10] C. Piacentini, M. Fox, and D. Long, “Planning with numeric timed
initial fluents,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 29, no. 1, 2015.

[11] S. Bernardini, M. Fox, D. Long, and C. Piacentini, “Boosting search
guidance in problems with semantic attachments,” in Twenty-Seventh
International Conference on Automated Planning and Scheduling, 2017.

[12] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki,
“Incremental task and motion planning: A constraint-based approach.”
in Robotics: Science and systems, vol. 12. Ann Arbor, MI, USA, 2016,
p. 00052.

[13] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Pddlstream:
Integrating symbolic planners and blackbox samplers via optimistic
adaptive planning,” in Proceedings of the International Conference on
Automated Planning and Scheduling, vol. 30, 2020, pp. 440–448.

[14] A. Thomas, F. Mastrogiovanni, and M. Baglietto, “Mptp: Motion-
planning-aware task planning for navigation in belief space,” Robotics
and Autonomous Systems, vol. 141, p. 103786, 2021.


	Introduction
	Background
	Classical Planning and PDDL
	Hybrid Systems
	Task-Motion Planning
	MPTP

	Methodology
	The Space Assembly Domain
	Expansion of the MPTP Approach

	Implementation
	Results and Discussion
	Motion Plan: Using Task Planner vs Using Motion Planner
	Motion Plan With Waypoint Removal
	Columbus Lab Scenario

	Conclusions
	References

