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Abstract—Often innovative and disruptive products do not have sufficient data to accurately predict the demand probability
distributions used in traditional inventory planning solutions. This work studies the Newsvendor problem and proves that a Fuzzy
formulation is a valid alternative to the probability methods with the advantage of easily integrating human-expertise knowledge and
machine learning when it is necessary to make up for the insufficient data. The proposed solution improved previous literature by
introducing enhancements in the Fuzzy formulation, a genetic algorithm with new problem-specific mechanisms and parallel computing
in a cloud environment. Additionally, this paper introduces an uncertainty simulation procedure that uses possible demand scenarios to
compare different solutions based on the generated profit instead of objective functions. On the one hand, these results proved the
indispensability of the new problem-specific features with cases where the profit generated increased by 55 %. On the other hand, the
parallel computing in a cloud environment ensured the solution scalability with a running time reduction of 98,3 %.
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1 INTRODUCTION

E VERY day, a newsvendor needs to buy journals based
on uncertain demand. Assuming each journal has a

fixed cost and selling price, if he asks for too many journals
and the demand is not enough, there is a reduction in the
profit. Contrary, if the demand is higher than the number
of journals ordered, potential sales do not happen, resulting
in ”lost profits” [1]. Based on this dilemma, a fundamen-
tal problem on inventory management takes shape: ”The
Newsvendor Problem”.

The literature offers a wide range of solutions to solve
the Newsvendor Problem (see [6]). Focusing on the MINP,
solutions vary from the number of constraints and their type
(costs, service level, etc.), decision-making policies (optimize
expected profit, service level, etc.) to risk-averse techniques.
However, they tend to use probability density functions to
model the uncertain demand.

Probabilistic functions are difficult to derive or under-
stand in real scenarios. This difficulty is specially true in
innovative and disruptive products, where there is insuf-
ficient data to predict the demand probability distribution
accurately. The integration of human expertise knowledge
and machine learning can remove this limitations, being
Fuzzy logic a suitable tool to perform this integration. A
Fuzzy environment can use few data points to describe
uncertainty through meaningful Membership Function(s)
(MF). Furthermore, Fuzzy logic offers an ideal environment
to describe the vagueness of human thinking through math-
ematical operations, precisely defining linguistic terms such
as ”around 2000” without the assumptions or discretization
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a probability approach would have.
To design a framework capable of solving a real Multi-

Item Newsvendor Problem (MINP) this thesis uses a fuzzy
formulation, alongside an enhanced genetic algorithm based
on the work of [2] and computation techniques that ensure
reproducibility in bigger problems.

Contributions
The following topics summarize the added-value proposal:

Enhancements in the Credibility estimation: This thesis
simultaneously improves the performance and running time
of the Credibility estimation framework proposed in [2].
These enhancements are an early solution rejection to dis-
card solutions that violate constraints before the Credibility
assessment, an identification of inexplicable solutions and
an adjustable αcut that tests the proposed solution against
meaningful scenarios instead of doing it purely randomly.

Problem-Specific enhancements: This thesis presents
novel mechanisms in the genetic algorithm to suit the
Newsvendor problem better. These mechanisms include an
Initialization with Null values for low budget problems, a
solution resizing to increase the number of feasible solutions
and a chromosome normalization.

Scalability by implementing parallel computing in a
cloud environment: This work explains why scalability is
essential in optimization problems, how to implement par-
allel computing in a genetic algorithm and how to leverage
the use of a cloud environment. The results for both of these
computational techniques are also included in this thesis.

Uncertainty simulation: This thesis introduces a un-
certainty simulation procedure that uses possible demand
vectors to evaluate a solution based on a possible profit
generated instead of using objective functions to perform
this evaluation.
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2 CLASSICAL MULTI-ITEM NEWSVENDOR PROB-
LEM

2.1 Formulation

The classical formulation suggested in [3] uses a modi-
fied form of the original model proposed in 1964 by [4].
This form minimizes the expected cost function, being this
minimization equivalent to maximize an ”expected profit”
function [3]. Also, the original model used ”the salvage
value of the leftover items instead of the environmental
disposal cost”. These changes have no mathematical impact.
Equation 1 represents the model described.

Min. E =
N∑
i=1

[cixi + hi

∫ xi

0
(xi −Di)fi(Di)dDi

+vi

∫ ∞

xi

(Di − xi)fi(Di)dDi],

(1)

Subject to
N∑
i=1

cixi ≤ BG (2)

Where:

• N: Total number of items
• i: Item index
• vi: Cost of revenue loss per unit of item i
• hi: Cost incurred per item i for leftover at the end of

the specific period
• ci: Cost per unit of item i
• xi: Ordering quantity of item i (decision variable)
• Di: Random demand of item i
• fi(Di): Demand probability density function of item

i
• Fi(Di): Demand cumulative distribution function of

item i
• Ei: Expected cost function of item i
• E: Total expected cost function
• B: Budget function
• BG: Budget available

2.2 Case Studies

The author selected two works to serve as benchmarks for
different case studies. The selected works are [3], [5]. These
works are simple to understand, objective and have good
comparisons to other works ( [2], [6]).

Although considering different scenarios (demand
curves, budget constraints), both studies use the same
solution framework (with minor variations), a GIM. The
remaining of this section contains two subsections dedicated
to describing the case studies and proposed solutions of
these works .

2.2.1 Exponential Demand Distribution

The first scenario is the one proposed in [3]. Here, the
item demand is exponentially distributed. Equations 3 and
4 respectively define the probability density function and
cumulative distribution function of an exponential distribu-
tion with a mean value µ.

f(x;µ) =

{
0, x < 0
1
µe

− x
µ , x ≥ µ

(3)

F (x;µ) =

{
0, x < 0

1− e−
x
µ , x ≥ µ

(4)

The work of [3] studied this demand-type considering a
problem with six items and a budget of 3500 CU. Table 1
presents the material data proposed:

TABLE 1
Exponential Distribution: Relevant Data

Item vi (CU) hi (CU) ci (CU) µi

1 7 1 4 200
2 12 2 8 225
3 30 4 20 112,5
4 30 4 10 100
5 40 2 13 75
6 45 5 15 30

Where:

• vi: Cost of revenue loss per unit of item i
• hi: Cost incurred per item i
• ci: Cost per unit of item i
• µi: Mean value of the probabilistic distribution of

item i

The GIM proposed in [3] obtained a solution for this
problem relaxing the problem constrain, applying the Leib-
niz Rule and finally a Lagrangian optimization with a
Lagrangian multiplier. For further detail consult [3]. Table 2
shows the proposed solution to optimize the expected profit.

TABLE 2
Exponential Distribution: Benchmark Solution

Item 1 2 3 4 5 6

xi 78,41 58,16 30,06 81,74 70,91 25,29

2.2.2 Normal Demand Distribution
The second case study extracted from the literature is [5]. In
this case, normal distributions describe each item demand.
Equations 5 and 6 respectively define the probability density
function and cumulative distribution function of a normal
distribution with mean value µ and standard deviation σ.

f(x;µ) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )2 (5)

F (x;µ) =
1

2
[1 + erf(

x− µ

σ
√
2
)] (6)

Where:

erf(x) =
1√
π

∫ x

−x
e−t2dt (7)

The study of this type of distribution included 17 materi-
als and a budget of 2500 CU. Table 3 contains each material
specific data:
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TABLE 3
Normal Distribution: Relevant Data

Item vi (CU) hi (CU) ci (CU) µi σi

1 7 1 4 102 51
2 12 2 8 73 18,3
3 30 4 19 123 30,8
4 30 4 17 95 23,8
5 40 2 23 62 15,5
6 45 5 15 129 43
7 16 1 10 69 34,5
8 21 2 10 83 41,5
9 42 3 40 120 30
10 34 5 20 89 22,3
11 20 3 10 115 38,3
12 15 5 7 91 30,3
13 10 3 4 52 17,3
14 20 3 12 76 38
15 47 2 33 66 16,5
16 35 4 21 147 36,8
17 22 1 11 104 34,7

Where:

• vi: Cost of revenue loss per unit of item i
• hi: Cost incurred per item i
• ci: Cost per unit of item i
• µi: Mean value of the probabilistic distribution of

item i
• σi: Standard deviation of the probabilistic distribu-

tion of item i

Additionally to the methodology proposed in [3], the so-
lution framework used in [5] introduced a way of ”deleting
products, in ascending order, that have low marginal util-
ity”. The reader can consult the overall solution procedure
in [5]. Table 4 presents the proposed solution for maximizing
the expected profit considering this case study.

TABLE 4
Normal Distribution: Benchmark Solution

Item xi Item xi

1 0 10 0
2 0 11 15,58
3 0 12 42,2
4 0 13 34,56
5 0 14 0
6 106,86 15 0
7 0 16 0
8 14,02 17 15,23
9 0 - -

3 FUZZY MULTI-ITEM NEWSVENDOR PROBLEM

3.1 Credibility Theory

Credibility theory was introduced by [7], [8]. [2] used some
of the concepts proposed to define objective functions that
describe multiple decision-making policies (section 3.3).
This section helps the reader understanding these concepts
by looking at their definition.

The Possibility, Necessity and Credibility of a fuzzy
event. Formally, their definition is:

Pos{ξ ≥ r} = sup µ{u} , u ≥ r (8)

Nec{ξ ≥ r} = 1− sup µ{u} , u ≤ r (9)

Cr{ξ ≥ r} =
1

2
[Pos{ξ ≥ r}+Nec{ξ ≥ r}] (10)

In plain English, the Possibility (equation 8) of a fuzzy
variable being larger than a specified value r is equal to
the largest membership grade found for values larger or
equal than r. The Necessity of a fuzzy variable being larger
than a specified value r (equation 9) is the standard comple-
ment [9] (unit minus the membership grade) of the largest
membership grade found for values smaller or equal than r.
Finally, the Credibility (equation 10) is the arithmetical mean
between the Possibility and the Necessity.

With this in mind, it is also possible to define the ex-
pected value of a fuzzy variable ξ [2]:

E[ξ] =

∫ ∞

0
Cr{ξ ≥ r} dr −

∫ 0

−∞
Cr{ξ ≤ r} dr (11)

From a conceptual perspective, this definition can be
perceived as the difference between the Credibility of ξ as-
suming positive values minus the Credibility of ξ assuming
negatives values.

3.2 Multi-Item Fuzzy Extension
Section 3.1 demonstrated that if the membership function
of a continuous fuzzy variable is well defined, it is pos-
sible to assess its Credibility of being larger or equal to
a value r. However, problems arise when dealing with
multi-product problems because each product demand
has its membership function. That is problematic because
only with all possible grades is it possible to access the
membership functions. Besides, even if that was feasible
(which already requires a tremendous computational effort
for problems with a high number of products), all possible
demand values must be combined to fully represent the
universe of discourse. Finally there, a membership grade
could be associated with each combination, based on an
interception rule (further see section 3.2.1). As a matter of
curiosity, following the reasoning explained, a simple multi-
product problem with ten products, where each product
has 50 possible demand values (and a membership grade
associated with each value) would result in 5010 = 1016

(100 million of billions) combinations.
[2] proposed a solution for this problem by the name

Fuzzy Simulation. This solution generates a high enough
number of random demand combinations (which from now
on will be called demand vectors) as a representation of
the complete problem’s universe of discourse. Subsequently,
Credibility estimation of a solution satisfying a fuzzy event
and its Expected Value can follow procedures similar to
those explained in section 3.1.

The remaining of this section contains four subsections
to describe in detail the multi-item fuzzy extension. The
first subsection explains how to estimate the membership
grade of a single demand vector. The second demonstrates
how to use these membership grades to estimate the Pos-
sibility and Necessity of a multi-item solution satisfying a
fuzzy event. Section 3.2.3 presents the overall framework
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to estimate the Credibility of a multi-item solution and
the enhancements introduced by the author comparing to
previous works. And subsection 3.2.4 explains how to use
different Credibility samples to estimate the expected profit
of a multi-item solution.

3.2.1 Membership Grade Estimation of a Vector
In a MINP, demand vectors contain the proposed quantities
for each item. Since each item has its unique demand
membership function, it is fundamental to find a way of esti-
mating the grade of a demand vector. This is the purpose of
a conjunctive operator. This work studied two conjunctive
operators, being the minimum (introduced in [2]) and the
mean.

Let us assume uk = (u1k, u2k, ..., unk) is a demand
vector of n elements, µ(uk) its estimated membership grade
and µ(unk) the membership grade associated with each
item proposed ordering quantity. The definition of the min-
imum conjunctive operator is:

µ(uk) = µ(u1k) ∩ µ(u2k) ∩ ... ∩ µ(unk) =

min(µ(u1k), µ(u2k), ...µ(unk))
(12)

And the definition of mean conjunctive operator is:

µ(uk) = µ(u1k) ∩ µ(u2k) ∩ ... ∩ µ(unk) =

µ(u1k) + µ(u2k) + ...+ µ(unk)

n

(13)

3.2.2 Possibility and Necessity Estimation
The Possibility and Necessity estimation of multi-item solu-
tions can use a high enough number of random demand
vectors. This estimation requires to find, out of set of de-
mand vectors:

1) The vector with the highest membership grade that
satisfies the fuzzy event.

2) The vector with the highest membership grade
thatdoes mot satisfy the fuzzy event.

For the MINP, the definition of estimated Possibility and
Necessity of a solution generating a profit higher than F0 is:

P̃ os{F (x, uk) ≥ F0} = max
1≤k≤N

{µ(uk)|F (x, uk) ≥ F0}
(14)

Ñec{F (x, uk) ≥ F0} = 1− max
1≤k≤N

{µ(uk)|F (x, uk) ≤ F0}
(15)

Where F (x, uk) is the profit function and N the total
number of random demand vectors. Recalling the definition
proposed in equation 10, the estimated credibility is then:

C̃r{F (x, uk) ≥ F0} =
1

2
[P̃ os{F (x, uk) ≥ F0}+

Ñec{F (x, uk) ≥ F0}]
(16)

3.2.3 Proposed Credibility Estimation Framework
Figure 1 illustrates the proposed procedure to assess the
Credibility of a solution generating a profit higher than a
target.

Framework Enhancements: Besides the properties
mentioned in previous sections, this framework contains
enhancements to improve performance and running time.
These enhancements are:

1) Early solution Rejection: Solutions that do not
respect the constraints (in this case, over budget
solutions) discarded.

2) Identification of inexplicable results: Sometimes,
for low credibility solutions, it is possible to esti-
mate a Necessity value higher than the Possibility.
In those cases, this feature automatically assign a
credibility value of zero

3) Adjustable αcut: In the generation of demand vec-
tors, it is only considered quantities that have
a membership grade higher than the αcut. This
threshold updates under two conditions:

a) Threshold quantiles: If after generating N
random demand vectors the possibility and
necessity did not overpass the next threshold
level, the threshold is updated for the next
threshold level. This N value is the NQM.
Additionally, the levels are defined by 10%
quantiles.

b) Threshold minimum update: The threshold
should always be equal or greater than the
minimum value between the highest mem-
bership grades found for both Possibility and
Necessity.

3.2.4 Expected Value Estimation

This section intends to extend the definition of the expected
value of a Fuzzy variable ξ (equation 11) to multi-item
problems. The rationale is similar to previous section 3.2.3
but instead of the Credibility, the estimation focus on the
expected value.

As equation 11 suggests, the expected value can be
interpreted as the difference between a weighted average of
Credibility values for positive profits minus a weighted av-
erage for negative profits, being the weights the correspond-
ing credibility values. Since it is impossible for the computer
to access an infinity number of credibility values, a finite
number of samples must be calculated. These are the Cred-
ibility samples. Assuming the set of chosen profit values
for the Credibility sampling is given by r = (r1, r2...rNcr

),
where r1 < r2 < ... < rNcr

, equations 17, 18 and 19 describe
the steps to estimate the expected profit:

E1 = −
∑

C̃r{F (x, uk) ≤ ri}, if ri < 0 (17)

E2 = E1 +
∑

C̃r{F (x, uk) ≥ ri}, if ri ≥ 0 (18)

E = E2 ×
(rNcr

− r1)

Ncr
+max(0, r1) +min(0, rNcr

) (19)

Where:

• Ncr : Total number of Credibility samples.
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Fig. 1. Credibility Estimation for Fixed Profit Target

This work considers the number of credibility samples as
a variable that must be studied being a crucial parameter to
the algorithm performance . Contrary, the definition of the
interval where to extract these samples is constant and based
on the solution minimum and maximum possible profits.
Using the same notion as in equation 1, the definition of
minimum and maximum possible profits is:

Pmin = −
N∑
i=1

cixi = −BG (20)

Pmax =
N∑
i=1

(vi − ci)xi (21)

Pint = [Pmin, Pmax] (22)

Regarding the distribution between samples, it must
ensure all samples as equally spaced between each other.

3.3 Fuzzy Decision-Making Policies
Section 3.2 proved that it is possible to estimate the Cred-
ibility and expected value of a Fuzzy event in a MINP.
These properties allow to implement three decision-making
policies:

1) Maximize the expected profit

2) Maximize Credibility with minimum profit target
3) Maximize profit with minimum Credibility target

The remaining of this section contains three sub-sections
to explain how to implement these decision policies. Note
that some notions of a GA such us population, fitness are
slightly mentioned in this section but they will be explain in
detail in chapter 4.

3.3.1 Expected Profit Maximization
This policy aims to find the solution that has the highest
expected profit. These are the proposed steps to solve this
optimization problem:

1) Define the number of credibility samples (and gen-
eral algorithm’s parameters)

2) Generate an initial population
3) Evaluate population fitness by following this proce-

dure with each individual:

a) Define interval of interest by applying equa-
tion 20, 21 and 22

b) Extract the profit values for each credibility
sample, taking into account the total number
of samples and that they must be equally
distributed with the interval of interest.

c) Compute the Credibility for each profit val-
ues

d) Sequentially use equations 17, 18 and 19 to
access the solution’s expected profit. This
value is the fitness value.

4) Apply reproductive methods to create the next gen-
eration, maintaining the best individual

5) Repeat steps 3 and 4 until it reaches the total number
of generations

6) Select solution with the highest fitness

3.3.2 Credibility Maximization with Profit Target
This decision-making policy aims to find the solution that
offers the highest Credibility of generating a profit higher
than a given target. These are the proposed steps to solve
this optimization problem:

1) Define the profit target (and general algorithm’s
parameters)

2) Generate an initial population
3) Evaluate population fitness by estimating the Credi-

bility (section 3.2.3) of each solution generate profits
higher than the target

4) Apply reproductive methods to create the next gen-
eration, maintaining the best individual

5) Repeat steps 3 and 4 until it reaches the total number
of generations

6) Select solution with the highest fitness

3.3.3 Profit Maximization with Credibility Target
This policy aims to find the solution with the highest profit
while ensuring a given credibility level. This policy can be
implemented by:

1) Define the credibility target and profit reduction
step (and general algorithm’s parameters)
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2) Generate an initial population
3) Evaluate population fitness by following this proce-

dure with each individual:

a) Set profit target as maximum possible target
(equation 21)

b) Estimate credibility for current profit target
using the procedure on section 3.2.3

c) If Credibility is equal or higher than the
credibility target, the solution fitness is the
current profit target. If not, repeat step 3b
subtracting the profit reduction step to the
profit target.

4) Apply reproductive methods to create the next gen-
eration, maintaining the best individual

5) Repeat steps 3 and 4 until it reaches the total number
of generations

6) Select solution with the highest fitness

3.4 Membership Function Types
To assess the full potential of the proposed solution, while
comparing it with classical approaches, the MF must rep-
resent the probability distributions accurately. This section
presents the three types of MF studied.

3.4.1 Trapezoidal Membership Functions
A trapezoidal membership function is defined by four pa-
rameters (a, b, c, d) [10]. These four parameters define five
different line segments alongside the complete universe of
discourse. A succinct definition of a trapezoidal MF is:

m(x; a, b, c, d) = max(min(
x− a

b− a
, 1,

d− x

d− c
), 0) (23)

3.4.2 Exponential Membership Functions
Both exponential and normal distributions have a mean
value µ, so exponential MF can have the same parame-
terization for both case studies. The decay ratio d is the
parameterization variable, and it goes as follow:

m(x; d) =

{
ed×

x−µ
µ , x ≤ µ

e−d× x−µ
µ , x > µ

(24)

3.4.3 Probability Mapping
The final way proposed to represent a probabilistic distri-
bution in a Fuzzy environment is by using the mapping
presented by [11] and summarized by [12]. The mapping
consists of the following steps:

1) Compute the probability of each element:
Apply the following operations to a finite number
elements:

p(n) =

{∫ n+0,5
n−0,5 f(x)dx, n ϵ N\{0}∫ n+0,5
n f(x)dx, n = 0

(25)

2) Sort elements in descending order according to
probability:

Ω = {w1, w2, .., wI}, p(w1) ≥ ... ≥ p(wI) (26)

3) Perform the mapping using the following expres-
sions:

m(w1) =
I∑

k=1

p(wk) ≃ 1 (27)

m(wi) = i.p(wi) +
I∑

k=i+1

p(wk), i = 2, ...I − 1

(28)
m(wI) = I.p(wI) (29)

4 OPTIMIZATION ALGORITHM

A genetic algorithm was chosen to solve this optimization
problem. Section 4.1 defines the novel mechanisms intro-
duced to fit the Fuzzy MINP better and section 4.2 presents
the computational techniques used to reduce the running
time.

4.1 Problem-Specific Enhancements

4.1.1 Solution Resizing

The solution resizing feature transforms an unfeasible so-
lution into a feasible solution without altering the relative
proportions between the ordering quantities. This feature
aims to increase the number of feasible solutions generated
by taking into account the available profit. The following
steps describe the solution resizing process:

1) Identify over-budget solutions: Solution that does
not satisfy equation 2)

2) Compute resizing ratio: Apply equation 30
3) Apply resizing: Multiply all ordering quantities by

the resizing ratio

The resizing ratio is given by:

Rratio =
BG∑N

i=1 cixi

(30)

Recalling the notation presented in section 2.1:

• xi: Ordering quantity of item i
• ci: Cost per unit of item i
• BG: Budget available

4.1.2 Initialization with Null Values

The Initialization with Null Values uses, as initial popu-
lation, chromosomes composed by null values, except in
one item. From now on, these chromosomes are called
null chromosomes. This feature aims to give the algorithm
the capability of ”understanding” which items are more
profitable and naturally combine them. Without this feature,
the selection of the initial population ordering quantities is
purely random. Two steps define this feature:

1) Item selection: Select items that do not have a null
chromosome representation

2) Generate the null chromosome with resizing (see
section 4.1.1)
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4.1.3 Chromosome Normalization

The chromosome normalization suggests a solution gen-
eration procedure independent of the items’ expected de-
mand value. Very often the solutions generated present
ordering quantities close to the expected demand values.
In a case where expected demands are very different in
terms of absolute value, the crossover or mutation can be
compromised only generating solutions far away from the
optimal. Therefore, chromosome normalization utilizes each
ordering quantity deviation from the expected value to
account for this problem. The following steps describe this
process:

1) Chromosome Normalization: Apply equation 31
2) Crossover or Mutation
3) Chromosome Restoration: Multiply normalized or-

dering quantity by its respective expected value

The proposed normalization is given by:

xni =
xi

µi
(31)

where:

• xi: Ordering quantity of item i
• µi: Mean value of the probabilistic distribution of

item i
• xni: Normalized ordering quantity of item i

4.2 Computational Performance

The proposed algorithm ran for the case study with expo-
nentially distributed demands (revisit section 2.2.1) consid-
ering the different machines in table 5 and applying parallel
computing. Figure 2 plots the relation between the number
of vCPU and running time.

TABLE 5
Virtual Machines Properties

vCPU Memory [GiB]

Machine 1 2 8
Machine 2 4 16
Machine 3 8 32
Machine 4 16 64
Machine 5 48 192
Machine 6 96 384

Fig. 2. Number of vCPU per machine and Running time

Machine 1 had a running time of 9216 seconds, while
machine 5, the one with the best ratio between power and
performance, needed 340 seconds to complete the job. The
running time reduction between these machines was 96%.

Finally, bear in mind that these results were only possible
because the source code applied parallelism. Table 6 shows
the running time with and without parallelism both using
machine 5.

TABLE 6
Machine 5 Performance with and without Parallelism

Machine Parallelism Running Time [s]

5 Yes 340
5 No 20342

Without parallel computing, the use of powerful ma-
chines becomes irrelevant. Knowing this, table 6 helps
concluding that the integration of parallel computing and
cloud resources reduced the computation time by 98,3%
(cloud be even more with the 96 vCPU of machine 6). This
drastic reduction makes feasible problems that were almost
impossible to solve due to time constraints.

5 RESULTS

This chapter uses examples from the literature to test the
algorithm performance against classical solutions. These
examples are the case studies presented in section 2.2.1 and
2.2.2. This chapter is organized in the following sections:

• Section 5.1: Simulation procedure- Explains how
to simulate reality and extract metrics such as the
average profit generated.

• Section 5.2: Algorithm Tuning- Tunes the algorithm
to obtain the best possible performance.

• Section 5.3: Case Studies Results- Presents and
discusses the most pertinent results for both case
studies.

5.1 Simulation Procedure

One of the main contributions of this work is to provide a
suitable evaluation framework for the proposed solutions.
Until now, studies on the Fuzzy multi-item newsvendor
problem (e.g. [2], [13], [14]) have been focusing on eval-
uating the performance of their solutions solely based on
the maximization of an objective function (most often the
expected value). This approach raises questions, such as: ”Is
the objective function a good representation of reality?” or
”Will the solution generate the expected results in a real
scenario?”.

The proposed evaluation method uses pseudo-random
demand vectors to remove this limitation. The demand
vectors randomness depends on the materials probabilistic
demand curves. The idea is to represent reality by regener-
ating possible demand vectors based on the items demand
curves (values with higher probability tend to be selected
most often). Once done, this generation will result in a
sound panoply of results, where likely results will have
a higher representation, but less common results are also
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present. This methodology makes it possible to evaluate
metrics such as:

• Average profit
• Number of times the profit is higher than a given

target

Figure 3 contains a flow chart to illustrate how to cal-
culate the metrics mentioned above. Notice the proposed
procedure generates a number of X random demand vec-
tors and then uses this set of vectors to access the afore-
mentioned metrics in the block named ”Compute and save
metrics”.

Fig. 3. Simulation Procedure

5.2 Algorithm Tuning

This section represents the necessary parameters tuning to
have a reliable algorithm performance. For each case study
presented in section 2.2, the tuning process followed five
phases:

1) Credibility Estimation: The credibility estimation
relies on the random generation of possible demand
vectors. The estimation accuracy increases with the
number of random vectors generated, but so does
the computational effort. This phase tunes the NQM
(revisit section 3.2.3) aiming to find a good balance
between accuracy and running time.

2) Expected Profit Estimation: As explained in section
3.2.4, the expected profit estimation uses credibility
samples with different profit targets. This phase
tunes the number of credibility samples to find the
best trade-off between expected profit estimation
stability and the computational effort.

3) Solution Fitness Stability: This phase tunes the
population size and the number of generations to
ensure the algorithm works close to its full capaci-
ties without compromising the running time.

4) Membership Function Selection: This section finds
the best membership functions to describe the prob-
abilistic demand curves for each case study.

5) Other Parameters: The tuning of the remaining
solution generation/interpretation and GA-specific
features goes in this section.

From the overall tuning process two features must be
highlighted: the solution resizing and the initialization with
null values. Analyse tables 7, 8, 9 and 10.

TABLE 7
Exponential Distribution: Solution Resizing

Sol. Resizing Fitness Av. Av. Profit Av. Unfeasible Sol.

True 4167,9 2860,3 0
False 3945,1 2293,2 250,4

TABLE 8
Exponential Distribution: Initialization with Null Values

Initialization with Null Values Fitness Average Average Profit

True 4167,9 2860,3
False 4940,9 2853,0

TABLE 9
Normal Distribution: Solution Resizing

Sol. Resizing Fitness Av. Av. Profit Av. Unfeasible Sol.

True 3741,9 3797,3 0
False 2208,8 2305,6 122,2

TABLE 10
Normal Distribution: Initialization with Null Values

Initialization with Null values Fitness Average Average Profit

True 3741,9 3797,3
False 2229,9 2446,6

On the one hand, the solution resizing proved to be a
valuable feature for both case studies. Its inclusion increased
the fitness value by 69% and the average profits by 65%. On
the other hand, the initialization with null values proved
to be relevant for the normal distributions increasing the
fitness value by 68% and the average profits by 55%. This
counters the results presented in table 8.

In the author’s opinion, the reason why the Initialization
is vital in the normally distributed case study is that this case
study uses a low budget when compared with the overall
problem. Therefore, the algorithm naturally selects materials
with the highest profit margins by utilizing vectors with null
values, rejecting lower margins due to budget constraints.

Table 11 summarizes the parameters that result from the
tuning applied in the exponentially distributed case study:
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TABLE 11
Exponential Distribution: Final Parameters

Parameters Value

NQM 50
Credibility Samples 25
Solution Resizing True

Initialization with Null Values False
Chromosome Normalization False

Interception Rule Minimum
Population Size 75

Generations 20
Tournament Coefficient 20
Crossover Probability 0,8
Mutation Probability 0,2

Table 12 summarizes the parameters for the normal
curves case study:

TABLE 12
Normal Distribution: Final Parameters

Parameters Value

NQM 10
Credibility Samples 30
Solution Resizing True

Initialization with Null Values True
Chromosome Normalization False

Interception Rule Minimum
Population Size 50

Generations 15
Tournament Coefficient 10
Crossover Probability 0,8
Mutation Probability 0,2

5.3 Main Results

This section analyses the algorithm performance for the
most expected profit maximization, the policy for which the
benchmark solutions were designed. Here demand curves
are perfectly described. Under these conditions, the only
source of uncertainty comes from the curves’ stochastic
nature.

The remaining of this section includes two sections spe-
cific to each case study , exponential and normal distribu-
tions. All values result from 5 algorithm runs with constant
parameters. The selected run will be the one with the highest
fitness value.

5.3.1 Exponential Demand Distribution

This section illustrates the algorithm results for the expo-
nentially distributed case study.

Table 13 shows the best candidate solution for the ex-
pected profit maximization considering the MF resultant
from the probability mapping (section 3.4.3).

TABLE 13
Exponential Distribution: Solution for Expected Profit Maximization

Item 1 2 3 4 5 6

Quantity 41,67 35,58 16,07 116,84 75,47 36,91

Comparing to the benchmark solution (table 2):

TABLE 14
Exponential Distribution with Expected Profit Maximization Results

Solution Fitness (Map. MF) Av. Profit

Classical Benchmark 1572,0 2875,9
Simple Fuzzy GA from [2] 1567,4 2870,9

Fuzzy GA with Novel Mechanisms 2029,1 2906,5

5.3.2 Normal Demand Distribution
This subsection aims to study the response considering the
normally distributed case study.

The exponential MF were the candidates showing the
highest average profit. Table 15 shows the solution with the
highest fitness value when considering this MF type.

TABLE 15
Normal Distribution: Solution for Expected Profit Maximization

Item xi Item xi

1 0 10 0
2 0 11 0
3 0 12 87,00
4 0 13 44,25
5 0 14 0
6 114,23 15 0
7 0 16 0
8 0 17 0
9 0 - -

Comparing to the benchmark solution (table 4):

TABLE 16
Normal Distribution: Expected profit maximization results

Solution Fitness (Exp. MF) Av. Profit

Classical Benchmark 3763,2 3870,0
Simple Fuzzy GA replicated from [2] 2208,8 2305,6
Fuzzy GA with Novel Mechanisms 3792,1 3827,3

6 CONCLUSION

The algorithm yields excellent results, especially for the
expected profit-maximizing, the most important policy in
a business context. Tables 14 and 16 show there is not
any performance decrease when comparing the proposed
solution to the analytical methods.

The novel mechanisms introduced in the GA helped
improve performance, as tables 7, 9 and 10 prove. Addi-
tionally to these performance results, the author wants to
reinforce the time reduction provided by integrating cloud
and parallel computing techniques. Like table 6 exhibits,
these techniques introduced a time reduction of 98,3%,
which ensures this solution is scalable.

As limitations, there is the inevitable unmatching be-
tween membership functions and probabilistic demand
curves. This unmatching reduced the framework perfor-
mance when compared to the other solutions. Table 8 is
proof of this since a higher fitness value did not yield a
higher average profit. Thus, although membership func-
tions can be directly derived from real data, the algorithm
performance will always dependent on the quality of the
uncertainty assessment.
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In conclusion, both author and company are very opti-
mistic after this work and looking forward to implementing
this idea in a real factory scenario.

Future Work
To implement this idea in a real-world scenario, there are
areas where the framework directly or indirectly improve.
The following points describe these areas:

Integration with Predicting Agent: The algorithm
performance is dependent on the quality of the membership
functions. Accurate MF can only be obtained with a good
predicting agent. This agent can be either a human or a
machine learning model, and its main objective is to provide
insights regarding the likelihood of each item consumption.
For instance, a trust interval and a most likely demand
quantity can define a trapezoidal MF.

Different Objective Metrics: This work focused on
optimizing the decision-making process based on profit, but
other factors, such as service level or customer satisfaction,
are also crucial in inventory planning. For this solution to
be relevant, those use-cases must be taken into account. The
work of [15] and [16] can provide insights regarding this
topic.

Improve Fitness Assessment Mechanisms: Section
3.2.3 introduced enhancements in the Credibility estimation
process. Despite this, there is still room for improvements
in the overall fitness assessment, specially for the expected
profit maximization. These improvements are not related
to Credibility estimation itself but rather with the profit
targets selection. As section 3.2.4 shown, the expected value
is a weighted average of credibility values for different
equally spaced profit targets. In reality, there is no need to
compute the credibility for smaller profit targets if there is
already a higher target with a Credibility equally or very
close to 1. In these cases, expected value estimation cloud
be optimized by assuming the credibility for smaller profit
targets is 1 and focus the computational resources on higher
profits target, which is where there are significant variations
in the Credibility values. This rationale extrapolates to the
profit maximization with a Credibility target by first using a
dispersed backward target search and then focusing on the
profits that yield Credibility values close to the optimization
target.

Different Optimization Algorithms: In the author’s
opinion, selecting a GA as an optimization algorithm proved
to be fruitful. However, the work of [13] shows that there are
other options when it comes to meta-heuristic algorithms.
His work even suggests that algorithms such as the Bee
Colony Optimization would yield better results comparing
to a GA.
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