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Abstract

This work proves the Fuzzy Multi-Item Newsvendor problem formulation is an alternative to the prob-

ability methods with the advantage of easily integrating human-expertise knowledge and machine learn-

ing when data is insufficient to accurately predict demand. The formulation consists of three fuzzy

decision-making policies optimized through a genetic algorithm. The proposed solution improved pre-

vious literature by introducing enhancements in the Fuzzy formulation, a genetic algorithm with new

problem-specific mechanisms and parallel computing in a cloud environment. Additionally, the thesis in-

troduces an uncertainty simulation procedure that compares different solutions based on the generated

profit instead of objective functions. On the one hand, these results proved the indispensability of the

new problem-specific features with cases where the profit generated increased by 55 %. On the other

hand, the parallel computing in a cloud environment ensured the solution scalability with a running time

reduction of 98,3 %.

Keywords
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Resumo

É comum em produtos inovadores e disruptivos não haver informação suficiente para se prever de

uma forma precisa as curvas de procura probabilı́sticas necessárias para as soluções tradicionais de

planeamento de inventario. Este trabalho estuda o problema do vendedor de jornais e prova que uma

formulação ”Fuzzy” é uma alternativa válida aos métodos probabiliticos tendo a vantagem de facilmente

integrar conhecimento humano ou ”machine learning” quando é necessário compensar a escassez de

dados. A solução proposta melhorou anteriores trabalhos introduzindo melhoramentos na formulação

”Fuzzy”, um algoritmo genético com novos métodos especı́ficos para este problema e computação em

paralelo num ambiente em nuvem. Adicionalmente, a tese introduz um procedimento de simulação de

incerteza que usa possı́veis cenários de procura para avaliar as diferentes soluções baseado no lucro

gerado e não em funções objetivo. Por um lado, estes resultados provaram a imprescindibilidade dos

novos métodos introduzidos, havendo casos em que o lucro gerado aumentou em 55 %. Por outro

lado, o uso de computação em paralelo através da ”cloud” assegurou a escalabilidade da solução com

reduções de tempo de computação na ordem dos 98,3%.

Palavras Chave

Problema do vendedor de jornais; Lógica Fuzzy; Algoritmo genético; Ambiente Cloud
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Nomenclature

Classical Formulation

N: Total number of items

i : Item index

vi: Cost of revenue loss per unit of item i

hi: Cost incurred per item i for leftover at the end of the specific period

ci: Cost per unit of item i

xi: Ordering quantity of item i (decision variable)

Di: Random demand of item i

fi(Di): Demand probability density function of item i

Fi(Di): Demand cumulative distribution function of item i

Ei: Expected cost function of item i

E: Total expected cost function

B: Budget function

BG: Budget available

µi: Mean value of the probabilistic distribution of item i

σi: Standard deviation of the probabilistic distribution of item i

vii



Fuzzy Formulation

ξ: Fuzzy variable

Pos{ξ ≥ r}: Possibility of the fuzzy variable ξ assuming values higher or equal than r

Nec{ξ ≥ r}: Necessity of the fuzzy variable ξ assuming values higher or equal than r

Cr{ξ ≥ r}: Credibility of the fuzzy variable ξ assuming values higher or equal than r

E[ξ]: Expected value of fuzzy variable ξ

uk: Demand Vector

m(u): Membership grade of element u

P̃os{F (x, uk) ≥ F0}: Estimated Possibility of solution x generating a profit higher than F0

Ñec{F (x, uk) ≥ F0}: Estimated Necessity of solution x generating a profit higher than F0

C̃r{F (x, uk) ≥ F0}: Estimated Credibility of solution x generating a profit higher than F0

Ncr: Total number of Credibility samples.

Pmin: Minimum profit target for Credibility sampling

Pmax: Maximum profit target for Credibility sampling

Pint: Profit targets interval for Credibility sampling

p(n): Probability of element n for probability mapping

Genetic Algorithm

Tsize: Tournament size

Tcoef : Tournament coefficient

Popsize: Population size

Rratio: Resizing ratio

xni: Normalized ordering quantity of item i

viii



Acronyms

ACO Ant Colony Optimization

CC Core Coefficient

CU Currency Unit

EOQ Economic Order Quantity

EPQ Economic Production Quality

GIM Generic Iterative Method

GA Genetic Algorithm

IA Immune Algorithms

PSO Particle Swarm Optimization

MF Membership Function(s)

MINP Multi-Item Newsvendor Problem

NQM Number of Random Demand Vectors per Grade Quantile and per Material

SA Simulated Annealing

SC Support Coefficient

TS Tabu Search

vCPU Virtual Central Processing Units
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1.1 Motivation

Every day, a newsvendor needs to buy journals based on uncertain demand. Assuming each journal

has a fixed cost and selling price, if he asks for too many journals and the demand is not enough, there is

a reduction in the profit. Contrary, if the demand is higher than the number of journals ordered, potential

sales do not happen, resulting in ”lost profits” [5]. Based on this dilemma, a fundamental problem on

inventory management takes shape: ”The Newsvendor Problem” [6].

Figure 1.1: Newsvendor Problem Illustration (source [1])

This problem dates back to the nineteenth century when F. Y. Edgeworth first introduced it with his

work: ”The Mathematical Theory of Banking” [7]. From that moment, the number of academic papers

published on this topic has been increasing year by year [8], being inventory management also ad-

dressed by the set of solutions framed in the Industry 4.0 concept [9]. To keep up with the increasing

relevance of this topic, Siemens proposed the challenge of reviewing the as-is works and build a frame-

work capable of solving a real Multi-Item Newsvendor Problem (MINP).

The literature offers a wide range of solutions to solve the Newsvendor Problem (see [5]). Focusing

on the MINP, solutions vary from the number of constraints and their type (costs, service level, etc.),

decision-making policies (optimize expected profit, service level, etc.) or risk-averse techniques. How-

ever, the majority of these methods uses probability density functions to model the uncertain demand,

what can be a limitation.

Probabilistic functions are difficult to derive or understand in real scenarios. This difficulty is specially

true in innovative and disruptive products, where there is insufficient data to predict the demand prob-

ability distribution accurately. The integration of human expertise knowledge and machine learning can
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remove these limitations. Fuzzy logic is a suitable tool to perform this integration having literature works

that prove its effectiveness in Newsvendor problems [4, 10, 11]. A Fuzzy environment can use few data

points to describe uncertainty through meaningful Membership Function(s) (MF) (further see section

3.2). Furthermore, Fuzzy logic offers an ideal environment to describe the vagueness of human thinking

through mathematical operations, precisely defining linguistic terms such as ” around 2000” without the

assumptions or discretization a probability approach would have. As an example, properties such as

trust intervals, which are a common practice in the industry, can define the parameters of an trapezoidal

MF (further see section 3.5.1).

The first Fuzzy solution for an inventory management problem dates back to 1995 [2]. A year later,

Petrovic [10] applied this methodology to the Newsvendor Problem, which is a specific inventory man-

agement problem, forming the first Fuzzy Newsvendor problem. Since there, the interest in using this

technique to solve inventory management problems has been increasing. Figure 1.2 shows this growth

over the years. The figure is composed by the work of [2] that goes until 2015 and a rough estimation

when searching for ”Fuzzy inventory” on the Google Scholar platform.

Figure 1.2: Fuzzy inventory management related papers per year estimated until 2020 (source [2] until 2015)

Given the growing academic relevance and capacity of solving this type of problems (section 3.1),

Fuzzy logic was used to formulate this problem. The Fuzzy formulation proposed defines three fuzzy

decision-making policies that must be optimized using optimization algorithm. The work implemented a

Genetic Algorithm (GA) for this purposed, enhancing the work of [4] with new problem-specific mecha-

nisms and computation techniques that ensure reproducibility in bigger problems. In the end, the inten-

tion is to develop an end-to-end scalable solution capable of deriving results as good as the academic

ones but at the same time capable of being easily integrated into a real-world scenario.
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1.2 Contributions

The following topics summarize the academic added-value proposal:

Enhancements in the Credibility estimation (Chapter 3)

This thesis simultaneously improves the performance and running time of the Credibility estimation

framework proposed in [4]. Section 3.3.3 contains these enhancements being them an early solution

rejection to discard solutions that violate constraints before the Credibility assessment, an identifica-

tion of inexplicable solutions and an adjustable αcut that tests the proposed solution against mean-

ingful scenarios instead of doing it purely randomly.

Problem-Specific enhancements (Chapter 4)

Section 4.3 presents novel mechanisms in the genetic algorithm to suit the Newsvendor problem

better. These mechanisms include an Initialization with Null values for low budget problems, a solution

resizing to increase the number of feasible solutions and a chromosome normalization.

Scalability by implementing parallel computing in a cloud environment (Chapter 5)

This work explains why scalability is essential in the MINP, how to implement parallel computing in

the designed genetic algorithm and how to leverage the use of a cloud environment. The results for both

of these computational techniques are also included in this thesis.

Uncertainty simulation (Chapter 6)

Section 6.1 introduces a uncertainty simulation procedure that uses possible demand vectors to

evaluate a solution based on a possible profit generated instead of using objective functions to perform

this evaluation. This simulation offers an unbiased way of evaluating solutions.

The non-technical or industrial contributions are:

Easy-to-understand solution for real Multi-Item Newsvendor Problems

During the development this thesis, there was a constant concern regarding the performance, but

also the framework explainability to non-expertise people. Given the feedback received by the close

contact with the industry, the author believes the decision-making agents easily understand this solution

increasing its value.
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1.3 Outline

This thesis is organized as follows:

Chapter 2 - Classical Multi-Item Newsvendor Problem

This chapter starts by presenting the state of the art of classical approaches to the MINP. Next,

section 2.2 introduces the classical formulation. Section 2.3 presents two case studies with different

types of demand probability density functions.

Chapter 3 - Fuzzy Multi-Item Newsvendor Problem

From this chapter, the reader can familiarized itself with the state of the art of Fuzzy approaches to

the Newsvendor problem (section 3.1) and the main concepts of the Fuzzy theory (section 3.2). Section

3.3 explains how to extend the Fuzzy logic to multi-item problems, and section 3.4 the different decision-

making policies that derive from it. Finally, section 3.5 presents the different membership function types

explored.

Chapter 4- Optimization Algorithm

Chapter 4 starts by justifying the use of a genetic algorithm. After it, section 4.2 presents the main

mechanisms of a GA. Section 4.3 introduces the novel mechanisms introduced by the author to suit

better the MINP.

Chapter 5- Computational Performance

This chapter starts by justifying the need for computational efficiency, especially for large optimization

problems. Subsequently, section 5.2 explains how and in which steps to implement parallel computing

in a GA. Section 5.3 explains how to run a solution in the cloud and shows the results obtained from it.

Chapter 6- Results

The purpose of this chapter is to compare the case studies (and respective solutions) presented

in the chapter 2 against the framework proposed in this thesis. Section 6.1 explains the procedure to

simulate the different demand scenarios. Section 6.2 describes the overall tuning process in detail.

Section 6.3 presents the most relevant results for the different combinations between case studies and

decision-making policies. Section 6.3.3 discusses the results obtained.

Chapter 7- Conclusions

This chapter contains the author conclusions as well as suggestions for future improvement.
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2.1 State of the Art

Following the categorization proposed in [2], five categories define the inventory management prob-

lems: Economic Order Quantity (EOQ), Economic Production Quality (EPQ), Joint/Supply chain, In-

ventory Control and Newsvendor Problem. The Newsvendor problem can also be named the traveling

salesman problem, the newsboy problem, or the Christmas tree problem [11]. By definition, it is an in-

ventory management problem where the commercialized items have a short cycle life and have a highly

uncertain demand. Generally, the decision intends to maximize/minimize the expected profits/costs or

its possibility of happening. Several analytical approaches tackle this problem in the literature, based on

different constraints or decision policies [5]. These studies tend to use past pieces of evidence to derive

probability density functions.

F. Y. Edgeworth first tackled this issue in the nineteenth century [7]. His publication in the Journal

of the Royal Statistical Society used the central limit theorem to determine the optimal cash reserves to

satisfy random withdrawals from depositors [12]. However, like many others, this work only considered

a single-item problem, thus a single decision variable.

It was in 1964 that Hadley and Whitin [13] first extended the Single-item Newsvendor Problem.

Their innovative work used Lagrangian operators, Leibniz rules and dynamic programming to consider

a Newsvendor problem with multiple items, the so called: Multi-Item Newsvendor Problem.

In 2019 Mengting Mu, Junlin Chen, Yu Yang and Jian Guo [8] reviewed the MINP state-of-art. Their

work identifies three variations for this problem: single constraint problems, multiple constraints prob-

lems, and problems with substitutes and complementary products. For this thesis, the author placed its

focus on the single constraint problems. The remaining of this section describes the most relevant work

done in this area.

Nahmias and Schmidt introduced heuristic methods in 1984 [14]. These methods made it possible

to: reduce the computation effort inherited by the Lagrangian multipliers; and derive algebraic equations

assuming the demand is a random variable with a known probability density function.

In 1995 and 1996, Lau and Lua [15, 16] extended the work of Handley and Whitin [13]. In 1995,

they studied general demand distribution, and in 1996, they considered problems with a large number

of materials.

At the beginning of the second millennium, two studies appeared in this field. Vairaktarakis [17] is

the author of one of these works. He considered that the demand is entirely unknown and captured only

in continuous (segmentation) or discrete windows. In the same year, Moon and Silver [18] presented

both a dynamic programming and a heuristic solution for two cases: complete demand distributions

knowledge; and incomplete demand distributions knowledge, where only the first two demand moments

are known.
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In 2004 Abdel-Malek et al. [19] presented an exact solution for uniform demand probability curves

alongside a Generic Iterative Method (GIM) to handle generic distributions. First, this work was applied

to a small set of 6 materials assuming exponential and beta distributions, but in 2005 Layek Abdel-

Maleka and Roberto Montanari [20] decided to extend their work to a more extensive set of 17 materials,

assuming normal distributions. Finally, in 2009, Zhang et al. [21] used this work to develop a binary

solution method for generic demand distributions. The solutions proposed by Zhang [21] to minimize the

expected cost function were very close to the ones offered by Abdel-Malek et al. [20]. That fact increases

the credibility of these results, making them excellent candidates to serve as benchmark solutions.

Mentions should also be made to the valuable contributions of [5,8,22], reviewing the work done on

the Newsvendor Problem (alongside other inventory management problems) until 2019.

2.2 Classical Formulation

The classical formulation suggested in [19] uses a modified form of the original model proposed

in 1964 by [13]. This form minimizes the expected cost function, being this minimization equivalent

to maximize an ”expected profit” function [19]. Also, the original model used ”the salvage value of the

leftover items instead of the environmental disposal cost”. These changes have no mathematical impact.

Equation 2.1 represents the model described.

Min. E =
N∑
i=1

[cixi + hi

∫ xi

0

(xi −Di)fi(Di)dDi + vi

∫ ∞
xi

(Di − xi)fi(Di)dDi], (2.1)

Subject to
N∑
i=1

cixi ≤ BG (2.2)

Where:

• N: Total number of items

• i : Item index

• vi: Cost of revenue loss per unit of item i

• hi: Cost incurred per item i for leftover at the end of the specific period

• ci: Cost per unit of item i
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• xi: Ordering quantity of item i (decision variable)

• Di: Random demand of item i

• fi(Di): Demand probability density function of item i

• Ei: Expected cost function of item i

• E: Total expected cost function

• BG: Budget available

2.3 Case Studies

The author selected two works out of the ones presented in section 2.1, to serve as benchmarks for

different case studies. The selected works are [19,20]. In the author opinion, these works are simple to

understand, objective and have good comparisons to other works ( [4,21]).

Although considering different scenarios (demand curves, budget constraints), both studies use the

same solution framework (with minor variations), a GIM. The remaining of this section contains two

subsections dedicated to describing the case studies and proposed solutions of these works .

2.3.1 Exponential Demand Distribution

The first scenario is the one proposed in [19]. Here, the item demand is exponentially distributed.

Equations 2.3 and 2.4 respectively define the probability density function and cumulative distribution

function of an exponential distribution with a mean value µ.

f(x;µ) =

0, x < 0

1
µ
e−

x
µ , x ≥ µ

(2.3)

F (x;µ) =

0, x < 0

1− e−
x
µ , x ≥ µ

(2.4)

In figure 2.1, it is possible to see the exponential cumulative distribution function with a mean value

of 50.
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Figure 2.1: Exponential cumulative distribution function (µ = 50)

The authors of [19] studied this demand-type considering a problem with six items and a budget of

3500 Currency Unit (CU). Table 2.1 presents the material data proposed:

Table 2.1: Exponential Distribution: Relevant Data

Item vi (CU/item) hi (CU/item) ci (CU/item) µi (item)

1 7 1 4 200
2 12 2 8 225
3 30 4 20 112,5
4 30 4 10 100
5 40 2 13 75
6 45 5 15 30

Where:

• vi: Cost of revenue loss per unit of item i

• hi: Cost incurred per item i

• ci: Cost per unit of item i

• µi: Mean value of the probabilistic distribution of item i

The GIM proposed in [19] obtained a solution for this problem relaxing the problem constrain, apply-

ing the Leibniz Rule and finally a Lagrangian optimization with a Lagrangian multiplier. For further detail

consult [19]. Table 2.2 shows the proposed solution to optimize the expected profit.

11



Table 2.2: Exponential Distribution: Benchmark Solution

Item 1 2 3 4 5 6

xi 78,41 58,16 30,06 81,74 70,91 25,29

2.3.2 Normal Demand Distribution

The second case study extracted from the literature is [20]. In this case, normal distributions

describe each item demand. Equations 2.5 and 2.6 respectively define the probability density function

and cumulative distribution function of a normal distribution with mean value µ and standard deviation σ.

f(x;µ;σ) =
1

σ
√
2π
e−

1
2
(x−µ
σ

)2 (2.5)

F (x;µ;σ) =
1

2
[1 + erf(

x− µ
σ
√
2
)] (2.6)

Where:

erf(x) =
1√
π

∫ x

−x
e−t

2

dt (2.7)

Figure 2.2 shows a normal cumulative distribution function with a mean value of 120 and a standard

deviation of 30.

Figure 2.2: Normal cumulative distribution function ( µ = 120 and σ = 30)
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The study of this type of distribution included 17 materials and a budget of 2500 CU. Table 2.3

contains each material specific data:

Table 2.3: Normal Distribution: Relevant Data

Item vi (CU/item) hi (CU/item) ci (CU/item) µi (item) σi (item)

1 7 1 4 102 51
2 12 2 8 73 18,3
3 30 4 19 123 30,8
4 30 4 17 95 23,8
5 40 2 23 62 15,5
6 45 5 15 129 43
7 16 1 10 69 34,5
8 21 2 10 83 41,5
9 42 3 40 120 30
10 34 5 20 89 22,3
11 20 3 10 115 38,3
12 15 5 7 91 30,3
13 10 3 4 52 17,3
14 20 3 12 76 38
15 47 2 33 66 16,5
16 35 4 21 147 36,8
17 22 1 11 104 34,7

Where:

• vi: Cost of revenue loss per unit of item i

• hi: Cost incurred per item i

• ci: Cost per unit of item i

• µi: Mean value of the probabilistic distribution of item i

• σi: Standard deviation of the probabilistic distribution of item i

Additionally to the methodology proposed in [19], the solution framework used in [20] introduced a

way of ”deleting products, in ascending order, that have low marginal utility”. The reader can consult the

overall solution procedure in [20]. Table 2.4 presents the proposed solution for maximizing the expected

profit considering this case study.

Table 2.4: Normal Distribution: Benchmark Solution

Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

xi 0 0 0 0 0 106,86 0 14,02 0 0 15,58 42,2 34,56 0 0 0 15,23
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3.1 State of the Art

Fuzzy sets theory, introduced by Zadeh in 1965 [23], is an appropriate framework to deal with uncer-

tainties. The literature offers several approaches that use Fuzzy logic to solve Newsvendor Problems.

These approaches started from being purely analytical, but studies further introduced heuristics meth-

ods.

Analytical analyses in a Fuzzy environment [10, 24–27] are very useful to specific cases where it is

possible to study a limited number of items in a well isolated economic environment. Problems arise

when the number of items and their co-relations increase leading to highly non-linear problems, making

analytical approach inconvenient or hard to implement. In this cases, heuristics methods can be a

suitable alternative.

Inspired by real-world phenomenons, the heuristic methods are algorithms that use computational

power to find solutions when the classical methods cannot, due to time, complexity, or even possible

nonexistence. Heuristics do not guarantee ( and very often is not the case) the solution found is optimal.

However, they can provide good results for highly complex optimization problems, so they are used in

real-case scenarios [28].

In the literature, it is possible to identify (to the best of the author’s knowledge) the paper that serves

as foundation for the implementations of heuristics in a Newsvendor Problem with a Fuzzy environment,

being it [4]. However, the idea of using objective functions appeared in 1996 with [10], the adoption

of credibility theory concepts [29, 30] is only proposed by [4] in 2006. This work used the concepts

of Possibility, Necessity and Credibility of a Fuzzy event, alongside the Excepted Value of a Fuzzy

variable [31] to derive objective functions for different decision-making policies.

Finally, the work of [11] used a variety of meta-heuristic algorithms to solve a Fuzzy single-period

newsvendor problem. In chapter 4 explains why choosing the genetic algorithm of [4] to the detriment of

these other meta-heuristic methods.

3.2 Theoretical Concepts

3.2.1 Fuzzy Set Theory

In classic set theory, an object/element either belongs or not to a specific set. In contrast, a Fuzzy

set associates membership grades to its elements. The universe of discourse consists of the universe

formed by all elements of the Fuzzy set (being them continuous or discrete). By grouping the member-

ship grades of the set’s elements, it is possible to define a membership function. In other words, mem-

bership functions can assume different shapes depending on the problem context, but in its essence,
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they are a scale that represents ”how much element y belongs to the set X”. For example, observe figure

3.1 with the membership function of the profit of item ”i”:

Figure 3.1: Membership Function: Profit of item ”i”

This membership function represents the several Possibility values of an item ”i” generating a given

profit y. For instance, one says that ”the possibility of item ”i” generating a profit of five is equal to

0.5”. Looking at the function is possible to see that profits below -10 has a null possibility. Hence, the

membership grade is zero. From -10 to 20 the Possibility starts to increase until 1, where it remains

constant until 30. Finally, this membership grade decreases until it reaches zero at 50, which is the

maximum profit that item ”i” can generate. Notice there are multi elements in the universe of discourse

with a possibility or membership grade equal to 1, meaning the sum of all grades it is not necessarily 1

as in a probability framework.

The works [23, 32, 33] include further definitions on Fuzzy sets such as the union, interceptions and

algebraic operation. However, this work does not aim to dissect these concepts, therefore, the remain-

ing of this section will only present the most relevant definitionsto understand the proposed algorithm

functionality.

3.2.2 Credibility Theory

Credibility theory was introduced by [29, 30]. [4] used some of the concepts proposed to define

objective functions that describe multiple decision-making policies (section 3.4). This section helps the

reader understanding these concepts by looking at their definition and a concrete example.

The Credibility theory starts by defining the terms: Possibility, Necessity and Credibility of a Fuzzy

event. Formally, their definition is:

Pos{ξ ≥ r} = sup m(u) , u ≥ r (3.1)
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Nec{ξ ≥ r} = 1− sup m(u) , u ≤ r (3.2)

Cr{ξ ≥ r} =
1

2
[Pos{ξ ≥ r}+Nec{ξ ≥ r}] (3.3)

In plain English, the Possibility (equation 3.1) of a Fuzzy variable ξ being larger than a specified value

r is equal to the largest membership grade m found for values larger or equal than r. The Necessity of

a Fuzzy variable ξ being larger than a specified value r (equation 3.2) is the standard complement [23]

(unit minus the membership grade) of the largest membership grade m found for values smaller or equal

than r. Finally, the Credibility (equation 3.3) is the arithmetical mean between the Possibility and the

Necessity.

With this in mind, it is also possible to define the expected value of a Fuzzy variable ξ [4]:

E[ξ] =

∫ ∞
0

Cr{ξ ≥ r} dr −
∫ 0

−∞
Cr{ξ ≤ r} dr (3.4)

Example :

Consider the Fuzzy event {ξ ≥ 10} (”item ”i” generates a profit higher than 10”), in the example

presented in figure 3.1.

Figure 3.2: Credibility Assessment: Item ”i” generating a profit bigger than 10

Using figure 3.2, it is possible to conclude that:

1. The highest membership grade found for profit values bigger than 10 (alongside green arrow) is 1,

hence the Possibility of ”item ”i” generating a profit bigger than 10” is 1.

2. The biggest membership grade found for profit values smaller or equal than 10 (alongside orange
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arrow) is 10−(−10)
20−(−10) = 2

3 , therefore the necessity of ”item ”i” generating a profit bigger than 10”

is 1 − 2
3
= 1

3
.

3. The average between the possibility and necessity of ”item X generating a profit bigger than 10” is
1+ 1

3

2 = 2
3 , so the credibility of ”item ”i” generating a profit bigger than 10” is 2

3
.

For generic trapezoidal MF defined by (a,b,c,d) and the Fuzzy event {ξ ≥ x}, the definitions are:

Pos{ξ ≥ x}


1, x ≤ c
d−x
d−c , c < x ≤ d
0, x > d

(3.5)

Nec{ξ ≥ x}


0, x ≥ b
b−x
b−a , a ≤ x < b

1, otherwise
(3.6)

Cr{ξ ≥ x} =


1, x < a
2b−a−x
2(b−a) , a ≤ x < b
1
2 , b ≤ x < c

0, otherwise

(3.7)

Additionally, by calculating, alongside the complete universe of discourse, the Credibility of ”i” gener-

ating a profit higher than ξ for positive values of ξ and the Credibility of item ”i” generating a profit

smaller than ξ for negative values of ξ, it is possible to access the expected profit of item ”i”. Figure

3.3 illustrates this analysis.

Figure 3.3: Expected Profit for item ”X”

From figure 3.3, the expected value can be perceived as a weighted average between the credibility

of ξ assuming positive values minus the credibility of ξ assuming negatives values.
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3.3 Multi-Item Fuzzy Extension

The examples of section 3.2.2 demonstrated that if the membership function of a continuous Fuzzy

variable is well defined, it is possible to assess its Credibility of being larger or equal to a value r.

However, problems arise when dealing with multi-item problems because each item demand has its

membership function. That is problematic because only with all possible grades is it possible to access

the membership functions. Besides, even if that was feasible (which already requires a tremendous

computational effort for problems with a high number of items), all possible demand values must be

combined to fully represent the universe of discourse. Finally there, a membership grade could be

associated with each combination, based on an interception rule (further see section 3.3.1). As a matter

of curiosity, following the reasoning explained, a simple multi-item problem with ten items, where each

item has 50 possible demand values (and a membership grade associated with each value) would result

in 5010 = 1016 (100 million of billions) combinations.

[4] proposed a solution for this problem by the name Fuzzy Simulation. This solution generates

a high enough number of random demand combinations (which from now on will be called demand

vectors) as a representation of the complete problem’s universe of discourse. Subsequently, Credibility

estimation of a solution satisfying a Fuzzy event and its Expected Value can follow procedures similar

to those explained in section 3.2.2.

The remaining of this section contains four subsections to describe in detail the multi-item Fuzzy

extension. The first subsection explains how to estimate the membership grade of a single demand

vector. The second demonstrates how to use these membership grades to estimate the Possibility and

Necessity of a multi-item solution satisfying a Fuzzy event. Section 3.3.3 presents the overall frame-

work to estimate the Credibility of a multi-item solution and the enhancements introduced by the author

comparing to previous works. And subsection 3.3.4 explains how to use different Credibility samples to

estimate the expected profit of a multi-item solution.

3.3.1 Membership Grade Estimation of a Vector

In a MINP, demand vectors contain the proposed quantities for each item. Since each item has its

unique demand membership function, it is fundamental to find a way of estimating the grade of a demand

vector. This is the purpose of a conjunctive operator. This work studied two conjunctive operators,

being the minimum (introduced in [4]) and the mean.

Let us assume uk = (u1k, u2k, ..., unk) is a demand vector of n elements, m(uk) its estimated mem-

bership grade and m(unk) the membership grade associated with each item proposed ordering quantity.
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The definition of the minimum conjunctive operator is:

m(uk) = m(u1k) ∩m(u2k) ∩ ... ∩m(unk) = min(m(u1k),m(u2k), ...m(unk)) (3.8)

And the definition of mean conjunctive operator is:

m(uk) = m(u1k) ∩m(u2k) ∩ ... ∩m(unk) =
m(u1k) +m(u2k) + ...+m(unk)

n
(3.9)

3.3.2 Possibility and Necessity Estimation

The Possibility corresponds to the highest membership grade found in elements that satisfy a Fuzzy

event. Looking at figure 3.2, the Possibility of ”item ”i” generating a profit higher than 10” is 1 because

there are elements that satisfy the Fuzzy event (in this case, generating a profit higher than 10) with a

membership grade of 1.

On the other hand, the Necessity requires to find the element with the highest membership grade

that do not belong to the Fuzzy event. This allows to access the complement, or in other words, the

difference between the unit and the grade itself. Looking at figure 3.2, the Necessity is 2
3 , since the

highest membership grade found for elements that do not satisfy the Fuzzy event (generating a profit

higher than 10) is 1
3 , then complement is 2

3 = 1− 1
3 .

Following this reasoning, the Possibility and Necessity estimation of multi-item solutions can use

a high enough number of random demand vectors. This estimation requires to find, out of set of

demand vectors:

1. The vector with the highest membership grade that satisfies the Fuzzy event.

2. The vector with the highest membership grade that does not satisfy the Fuzzy event.

For the MINP, the definition of estimated Possibility and Necessity of a solution generating a profit

higher than F0 is:

P̃ os{F (x, uk) ≥ F0} = max
1≤k≤N

{m(uk)|F (x, uk) ≥ F0} (3.10)

Ñec{F (x, uk) ≥ F0} = 1− max
1≤k≤N

{m(uk)|F (x, uk) ≤ F0} (3.11)

Where F (x, uk) is the profit function and N the total number of random demand vectors. Recalling

the definition proposed in equation 3.3, the estimated credibility is then:

C̃r{F (x, uk) ≥ F0} =
1

2
[P̃ os{F (x, uk) ≥ F0}+ Ñec{F (x, uk) ≥ F0}] (3.12)
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3.3.3 Proposed Credibility Estimation Framework

Figure 3.4 illustrates the proposed procedure to assess the Credibility of a solution generating a profit

higher than a target.

Framework Enhancements:

Besides the properties mentioned in previous sections, this framework contains enhancements to

improve performance and running time. These enhancements are:

1. Early solution Rejection: Solutions that do not respect the constraints (in this case, over budget

solutions) discarded.

2. Identification of inexplicable results: Sometimes, for low credibility solutions, it is possible to

estimate a Necessity value higher than the Possibility. In those cases, this feature automatically

assign a credibility value of zero

3. Adjustable αcut: In the generation of demand vectors, it is only considered quantities that have a

membership grade higher than the αcut. This threshold updates under two conditions:

(a) Threshold quantiles: If after generating N random demand vectors the possibility and ne-

cessity did not overpass the next threshold level, the threshold is updated for the next thresh-

old level. This N value is the Number of Random Demand Vectors per Grade Quantile and

per Material (NQM). Additionally, the levels are defined by 10% quantiles, being:

αcut levels = [1e− 5, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] (3.13)

(b) Threshold minimum update: The threshold should always be equal or greater than the min-

imum value between the highest membership grades found for both Possibility and Necessity.
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Figure 3.4: Credibility Estimation for Fixed Profit Target23



3.3.4 Expected Value Estimation

This section intends to extend the definition of the expected value of a Fuzzy variable ξ (equation

3.4) to multi-item problems. The rationale is similar to previous section 3.3.3 but instead of the Credibility,

the estimation focus on the expected value.

As equation 3.4 suggests, the expected value can be interpreted as the difference between a weighted

average of Credibility values for positive profits minus a weighted average for negative profits, being

the weights the corresponding credibility values. Since it is impossible for the computer to access an

infinity number of credibility values, a finite number of samples must be calculated. These are the

Credibility samples. Assuming the set of chosen profit values for the Credibility sampling is given by

r = (r1, r2...rNcr
), where r1 < r2 < ... < rNcr

, equations 3.14, 3.15 and 3.16 describe the steps to

estimate the expected profit:

E1 = −
∑

C̃r{F (x, uk) ≤ ri}, if ri < 0 (3.14)

E2 = E1 +
∑

C̃r{F (x, uk) ≥ ri}, if ri ≥ 0 (3.15)

E = E2 ×
(rNcr − r1)

Ncr
+max(0, r1) +min(0, rNcr

) (3.16)

Where:

• Ncr: Total number of Credibility samples.

This work considers the number of credibility samples as a variable that must be studied being a

crucial parameter to the algorithm performance (further see section 6.2.2). Contrary, the definition of the

interval where to extract these samples is constant and based on the solution minimum and maximum

possible profits. Using the same notion as in equation 2.1, the definition of minimum and maximum

possible profits is:

Pmin = −
N∑
i=1

cixi = −BG (3.17)

Pmax =

N∑
i=1

(vi − ci)xi (3.18)

Pint = [Pmin, Pmax] (3.19)
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Regarding the distribution between samples, it must ensure all samples as equally spaced between

each other. As example, considering 3 credibility samples, with ci = (c1, c2, c3) = (1, 2, 1) and hi =

(h1, h2.h3) = (5, 3, 2) (revisit the problem notation if needed in section 2.2), the expected profit calculation

for the solution xi = (20, 30, 15) will consider the following interval:

Pint = [−(1× 20 + 2× 30 + 1× 15); ((5− 1)× 20 + (3− 2)× 30 + (2− 1)× 15)] = [−95; 140]

Then, the 3 equally distributed profit values used for the credibility sampling will be {−95; 22, 5; 140}.

Finally, the estimated expected profit will be given by:

E = (−C̃r{F (x, uk) ≤ −95}+ C̃r{F (x, uk) ≥ 22.5}+ C̃r{F (x, uk) ≥ 140})× (140− (−95))

3
+ 0 + 0

3.4 Fuzzy Decision-Making Policies

Section 3.3 shows that it is possible to estimate the Credibility and expected value of a Fuzzy event in a

MINP. These properties allow to implement three decision-making policies:

1. Maximize the expected profit

2. Maximize Credibility with minimum profit target

3. Maximize profit with minimum Credibility target

The remaining of this section contains three sub-sections to explain how to implement these decision

policies. Note that some notions of a GA such us population, fitness are slightly mentioned in this section

but they will be explain in detail in chapter 4.

3.4.1 Expected Profit Maximization

This policy aims to find the solution that has the highest expected profit. These are the proposed steps

to solve this optimization problem:

1. Define the number of credibility samples (and general algorithm’s parameters)

2. Generate an initial population

3. Evaluate population fitness by following this procedure with each individual:

(a) Define interval of interest by applying equation 3.17, 3.18 and 3.19
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(b) Extract the profit values for each credibility sample, taking into account the total number of

samples and that they must be equally distributed with the interval of interest.

(c) Compute the Credibility for each profit values

(d) Sequentially use equations 3.14, 3.15 and 3.16 to access the solution’s expected profit. This

value is the fitness value.

4. Apply reproductive methods to create the next generation, maintaining the best individual

5. Repeat steps 3 and 4 until it reaches the total number of generations

6. Select solution with the highest fitness

3.4.2 Credibility Maximization with Profit Target

This decision-making policy aims to find the solution that offers the highest Credibility of generating a

profit higher than a given target. These are the proposed steps to solve this optimization problem:

1. Define the profit target (and general algorithm’s parameters)

2. Generate an initial population

3. Evaluate population fitness by estimating the Credibility (section 3.3.3) of each solution generate

profits higher than the target

4. Apply reproductive methods to create the next generation, maintaining the best individual

5. Repeat steps 3 and 4 until it reaches the total number of generations

6. Select solution with the highest fitness

3.4.3 Profit Maximization with Credibility Target

This policy aims to find the solution with the highest profit while ensuring a given credibility level. This

policy can be implemented by:

1. Define the credibility target and profit reduction step (and general algorithm’s parameters)

2. Generate an initial population

3. Evaluate population fitness by following this procedure with each individual:

(a) Set profit target as maximum possible target (equation 3.18)

(b) Estimate credibility for current profit target using the procedure on section 3.3.3
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(c) If Credibility is equal or higher than the credibility target, the solution fitness is the current

profit target. If not, repeat step 3b subtracting the profit reduction step to the profit target.

4. Apply reproductive methods to create the next generation, maintaining the best individual

5. Repeat steps 3 and 4 until it reaches the total number of generations

6. Select solution with the highest fitness

3.5 Membership Function Types

To assess the full potential of the proposed solution, while comparing it with classical approaches,

the MF must represent the probability distributions accurately. This section presents the three types of

MF studied and suggests parameterizations to help the MF tuning.

3.5.1 Trapezoidal Membership Functions

A trapezoidal membership function is defined by four parameters (a, b, c, d) [34]. These four pa-

rameters define five different line segments alongside the complete universe of discourse. A succinct

definition of a trapezoidal MF is:

m(x; a, b, c, d) = max(min(
x− a
b− a

, 1,
d− x
d− c

), 0) (3.20)

Figure 3.5 presents a trapezoidal membership function with parameters (20, 30, 60, 80):

Figure 3.5: Trapezoidal MF with parameters (20,30,60,80).
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Trapezoidal Membership Function Parametrization

Before analyzing the parameterization variables, it is beneficial to go over the following definitions

presented in [34]:

Definition 3.1 (Support). The support of a Fuzzy set A is the set of all points x in X that satisfies

mA(x) > 0:

support(A) = {x|mA(x) > 0} (3.21)

Definition 3.2 (Core). The core of a Fuzzy set A is the set of all points x in X such that mA(x) = 1:

core(A) = {x|mA(x) = 1} (3.22)

These two definitions originated the following parameterization variables:

• Support Coefficient (SC)

• Core Coefficient (CC)

Exponential Distribution: Trapezoidal Membership Function Parametrization

When representing exponential distributions (case study in section 2.3.1), the parameterization uses

initial (ai, bi, ci, di) points. These points are the ones suggested in [4] when studying the same case

study.

a = max(0, ai − ai × SC) (3.23)

b =
bi + ci

2
− (

bi + ci
2
− bi)× CC (3.24)

c =
bi + ci

2
− (

bi + ci
2
− ci)× CC (3.25)

d = di + di × SC (3.26)

In section 6.2.4, figure 6.9, there is an example of how this parameterization changes a trapezoidal

MF during the tuning process.

Normal Distribution: Trapezoidal Membership Function Parametrization

When representing normal distributions (case study in section 2.3.2) the parameterization uses the

mean value µ and a standard deviation σ:

a = µ− σ × (CC + SC) (3.27)
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b = µ− σ × CC (3.28)

c = µ+ σ × CC (3.29)

d = µ+ σ × (CC + SC) (3.30)

3.5.2 Exponential Membership Functions

Both exponential and normal distributions have a mean value µ, so exponential MF can have the

same parameterization for both case studies. The decay ratio d is the parameterization variable, and it

goes as follow:

m(x; d) =

e
d×x−µ

µ , x ≤ µ

e−d×
x−µ
µ , x > µ

(3.31)

Figure 6.10 in section 6.2.4 contains the exponential MF with a six decay ratio used to represent the

demand of material 1 in the normally distributed case study (section 2.3.2).

3.5.3 Probability Mapping

The final way proposed to represent a probabilistic distribution in a Fuzzy environment is by using

the mapping presented by [35] and summarized by [10]. The mapping consists of the following steps:

1. Compute the probability of each element:

Apply the following operations to a finite number elements:

p(n) =


∫ n+0,5

n−0,5 f(x)dx, n ε N\{0}∫ n+0,5

n
f(x)dx, n = 0

(3.32)

2. Sort elements in descending order according to probability:

Ω = {w1, w2, .., wI}, where p(w1) ≥ p(w2) ≥ ... ≥ p(wI) (3.33)

3. Perform the mapping using the following expressions:
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m(w1) =

I∑
k=1

p(wk) ' 1 (3.34)

m(wi) = i.p(wi) +

I∑
k=i+1

p(wk), i = 2, ...I − 1 (3.35)

m(wI) = I.p(wI) (3.36)
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4.1 Introduction

It is widespread to resort to meta-heuristics methods when analytical tools are incapable or too

complex to solve highly non-linear problems. Meta-heuristics are nature-inspired optimization algorithms

that further extend the capability of heuristic frameworks by guiding the generation and interpretability of

solutions [36]. Most of the time, these modifications tend to yield better results since they provide a good

trade-off between local and random searches. There are many examples of meta-heuristic methods

applied to the Fuzzy newsvendor problem [11]. In the author’s opinion, a meta-heuristic framework

per se is not the only factor that influences the overall algorithm performance. The creativity in search

procedure and the additional features added to better suit a given use case are also crucial to obtain the

good results.

Figure 4.1 from [3] helps analysing the number of documents related to meta-heuristic methods

published from 2011 until 2016. As figure 4.1 suggests, in the time of the study, the use of genetic al-

gorithm overpassed any other meta-heuristic method including the Particle Swarm Optimization (PSO),

Simulated Annealing (SA), Ant Colony Optimization (ACO), Immune Algorithms (IA), Tabu Search (TS).

Additionally to this high popularity among the academia, the literature already presents studies that

prove the effectiveness of GA in solving Fuzzy MINP ( [4] [11]). Based on these reasons, a GA was the

chosen algorithm to solve this optimization problem.

Figure 4.1: Number of Meta-heuristic algorithms from 2011 to 2016 (source [3])

The first genetic algorithm dates back to 1962 [37]. Despite its appearance in the early 1960s, this

problem-solving technique (among other evolutionary algorithms) would not become popular until the

’90s [38]. The main reason for that was the lack of computational power that made difficult to prove the
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theory in experimental testing. The reader has the work of [38] to broaden his knowledge in the history

of evolutionary computation, particularly genetic algorithms.

The reaming of this chapter divides itself into two sections. The first section includes descriptions of

the main GA mechanisms and the second section the novel features proposed to suit the MINP better.

4.2 Genetic Algorithm Core Concepts

4.2.1 Chromosome

A chromosome is a set of genes, and it represents a solution. Subsequently, a gene is the proposed

ordering quantity for each item. Thus, an n-item newsvendor problem will have n-genes chromosomes.

Figure 4.2 illustrates a chromosome of a MINP with three items.

Figure 4.2: Chromosome Representation

In the author’s opinion, this straightforward representation is a advantage of considering a GA for this

problem. Two factors support this belief:

1. Other meta-heuristic frameworks [11] are not easy to adapt to the newsvendor problem

2. It is the foundation for clean and efficient solution generation processes. (see 4.2.2 and 4.2.3)

4.2.2 Crossover

The crossover mechanism generates new solutions, the children, from older individuals, the parents.

The following sequential steps define the crossover process:

1. Randomly define the crossover length: The total number of ordering quantities to interchanged.

2. Randomly select the interchanged ordering quantities.

3. Interchange the selected ordering quantities.

Considering the example presented in figure 4.2, the crossover length can vary between 1 and 3

(inclusive). Figure 4.3 illustrates how the crossover mechanism looks like in this case.
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Figure 4.3: Crossover Process

The primary purpose of this reproductive method is to change previous solutions without entirely

altering their configuration. This process can be considered a local search where the best solutions

originate new solutions within the same neighbourhood.

4.2.3 Mutation

Mutation is another mechanism to generate new solutions. Contrary to the crossover, its purpose

is to find new solution significantly different comparing to its ancestors. The Mutation aims to perform a

random search exploring different solution spaces. The mutation process has the following steps:

1. Randomly define the total number of ordering quantities to mutate
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2. Randomly select the ordering quantities to mutate according the total number previously defined

3. Mutate the ordering quantities

Figure 4.4 shows how to conduct this process:

Figure 4.4: Mutation Process

4.2.4 Selection

The selection is responsible for picking the individuals that are the basis for the next generation.

The selection starts by defining the tournament size through equation 4.1. Thus, the tournament size

is a parameter indirectly determined by the population size and tournament coefficient. The selection

process also guarantees a place in the next generation for the fittest solution (elitism).

Tsize =
Popsize
TCoef

(4.1)
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The following sequential steps define the selection process:

1. Define Tsize

2. Elitism

3. Random extraction

4. Tournament

Figure 4.5 illustrates the selection process:

Figure 4.5: Selection Process
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4.3 Problem-Specific Enhancements

4.3.1 Solution Resizing

The solution resizing feature transforms an unfeasible solution into a feasible solution without altering

the relative proportions between the ordering quantities. This feature aims to increase the number of

feasible solutions generated by taking into account the available profit. The following steps describe the

solution resizing process:

1. Identify over-budget solutions: Solution that does not satisfy equation 2.2)

2. Compute resizing ratio: Apply equation 4.2

3. Apply resizing: Multiply all ordering quantities by the resizing ratio

The resizing ratio is given by:

Rratio =
BG∑N
i=1 cixi

(4.2)

Recalling the notation presented in section 2.2:

• xi: Ordering quantity of item i

• ci: Cost per unit of item i

• BG: Budget available

As an example, let us assume with having a 3-item problem and a solution with the following param-

eters:

Table 4.1: Example: Solution Resizing

Variables: Item 1 Item 2 Item 3
Ordering Quantity (xi) 2 3 2

Cost (ci) [CU/unit] 5 10 20
Available Budget (BG) 50

Computing the solution budget:

N∑
i=1

cixi = 2× 5 + 3× 10 + 2× 20 = 80 CU

This solution is over the available budget, thus, it is a candidate for resizing. The resizing ratio is:

Rratio =
BG∑N
i=1 cixi

=
50

80
= 0, 625

37



By multiplying all ordering quantities xi by the resizing ratio:

• xr1 = 0, 625× 2 = 1, 25

• xr2 = 0, 625× 3 = 1, 875

• xr3 = 0, 625× 2 = 1, 25

Considering the resized solution, the budget is:

N∑
i=1

cixri = 1, 25× 5 + 1, 875× 10 + 1, 25× 20 = 50 CU

Note that:
2

2 + 3 + 2
=

1, 25

1, 25 + 1, 875 + 1, 25
;

3

7
=

1, 875

4, 375
;

2

7
=

1, 25

4, 375

To sum up, the solution resizing turns unfeasible solutions into a feasible ones without changing the

the relative proportions between the ordering quantities.

4.3.2 Initialization with Null Values

The Initialization with Null Values uses, as initial population, chromosomes composed by null values,

except in one item. From now on, these chromosomes are called null chromosomes. This feature aims

to give the algorithm the capability of ”understanding” which items are more profitable and naturally

combine them. Without this feature, the selection of the initial population ordering quantities is purely

random. Two steps define this feature:

1. Item selection: Select items that do not have a null chromosome representation

2. Generate the null chromosome with resizing (see section 4.3.1)

For instance, considering the example presented in the table 4.1, the null chromosome of item 2 is:

(x1; x2; x3) = (0; 5; 0)

The ordering quantity is 5 because the available profit is 50 CU and the cost per unit 10 CU.

Note that if the population size is larger than the number of items, there will be a null chromosome

for each item. Otherwise, the item selection for initialization is purely random.
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4.3.3 Chromosome Normalization

The chromosome normalization suggests a solution generation procedure independent of the items’

expected demand value. Very often the solutions generated present ordering quantities close to the

expected demand values. In a case where expected demands are very different in terms of absolute

value, the crossover or mutation suggested in section 4.2.2 and 4.2.3 can be compromised only gener-

ating solutions far away from the optimal. Therefore, chromosome normalization utilizes each ordering

quantity deviation from the expected value to account for this problem. The following steps describe this

process:

1. Chromosome Normalization: Apply equation 4.3

2. Crossover or Mutation: Follow sections 4.2.2 or 4.2.3

3. Chromosome Restoration: Multiply normalized ordering quantity by its respective expected value

The proposed normalization is given by:

xni =
xi
µi

(4.3)

where:

• xi: Ordering quantity of item i

• µi: Mean value of the probabilistic distribution of item i

• xni: Normalized ordering quantity of item i

Let us consider the following example to understand better the normalization proposed:

Table 4.2: Example: Chromosome Normalization

Variables: Item 1 Item 2 Item 3
Ordering Quantity (xi) 2 1200 15

Expected Demand Value (µi) 5 1000 20

Normalizing the ordering quantities:

• xn1 = 2
5 = 0, 4

• xn2 = 1200
1000 = 1, 2

• xn3 = 15
20 = 0, 75
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Mutating the first and the second items normalized quantities:

(xn1; xn2; xn3) = (1, 2; 0, 4; 0, 75)

Multiplying each normalized quantities by its most expected demand values:

(x1; x2; x3) = (1, 2× 5; 0, 4× 1000; 0, 75× 20) = (6; 400; 15)

In summary, with this chromosome normalization avoids high variations in the order quantities of

each solution by taking into account their most expected demand value.
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5.1 Introduction

Scalability is crucial when designing industrial solutions. For example, it is very common for real

inventory management problems to increase the number of items, thus, the number of decision variables.

A problem can become impossible to solve in real-time if the computational power does not keep up with

this increase in dimension. That is why computational efficiency is a critical aspect when implementing

iterative optimization algorithms, such as a genetic algorithm (see [39–41]).

In an ideal scenario, computational time would be independent of the problem dimension. To achieve

this, it is necessary to fully use the available computation power and scale it when needed. This flexibility

is precisely what parallel computing and cloud computing can respectively offer.

Two sections compose the remaining of this chapter. The first section introduces parallel computing

by explaining how this technique can reduce the computational time by half using a local machine with

two Virtual Central Processing Units (vCPU). The second section studies the different types of machines

offered via a cloud-based service.

5.2 Parallel Computing

Today, most desktops, laptops or data centres ship with dual-core processors, quad-core or even

higher. The reason behind this popularity is energy efficiency. It is much easier to scale computing power

by increasing the total processor number rather than increasing microprocessor clock frequencies [42].

An increase in computational power can only reduce running time if the implemented code can use its

additional capacity. Parallel computing allows performing different tasks using multiple cores, improving

computational efficiency. This technique contrasts with serial computing, where a single task allocates

all available processing power.

Genetic Algorithms are excellent candidates to apply parallel computing. They exhibit several phases

where they perform multiple independent tasks. On the one hand, these phases can be the fitness eval-

uation or creation of a population. On the other hand, each task correspond to the needed calculations

per chromosome.

For the proposed solution, the author decided to apply parallelism in the fitness evaluation

procedure, since this was the phase with the highest computational running time. For instance, using

parameters that ensure a proper fitness evaluation for the second case study (further see section 6.2.5,

table 6.17), the evaluation and generation of a population of 4 individuals took, in a local laptop, 65 and

0.5 seconds, respectively. Figure 5.1 shows this discrepancy between values.
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Figure 5.1: Running Time: Fitness Evaluation vs. Population Generation

Note that these values only consider four individuals per population. This is a small population size,

meaning that a reasonably sized problem would have an even higher discrepancy.

Figure 5.2 uses the example previously mentioned to illustrate how parallelism reduced the run-

ning time by nearly half when using dual-core local machine.

Figure 5.2: Parallel Computing Framework

In the case presented, the running time experienced a reduction by half since the machine had

two cores. More cores would result in even more significant time reductions, being that the topic of

discussion in section 5.3. Finally, notice the time fluctuations experienced (65s ≈ 68s). The reason
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behind this is the unstable environment offered by a local machine due to background tasks. A cloud

environment solves this problem and also allows to have higher flexibility in terms of computational

power.

5.3 Cloud Environment

Nowadays, ”cloud computing” is still a buzzword in the academic and industrial worlds [43]. This

term refers to the on-demand delivery of computational resources over the internet [44]. Compared to

traditional processing data centres, the advantages of these services are the higher flexibility in terms

of computational power and the possibility of using an isolated environment without maintaining it. Fur-

thermore, with cloud services, it is possible to access computing power, storage and databases on an

as-needed basis. Given these advantages, the proposed framework implementation used cloud

resources. This section intends to explain, at a high level, how this implementation was possible and

the results of this choice.

Every program running in the cloud has an environment previously defined by the user. This en-

vironment is called a container. The container has in it all the necessary packages as well as the

source code to be executed. Additionally, the container receives all required variables (in the MINP,

the crossover probability, population size, etc.) as environment variables. This results in an isolated

and constant environment that allows running a given program for different input variables. With the

container defined, it is possible to pass its image to a machine of choice. The device will then execute

the tasks described in the source code. Moreover, given the well-defined environment, there is not any

operating incompatibilities during execution. Figure 5.3 illustrates the overall containerization life cycle.

The ability to perform the same tasks in different machines without altering the source code or con-

ditions is an advantage of containerization. Next, table 5.1 presents the characteristics of a set of virtual

machines available in the cloud. This thesis studied these machines to find the one exhibiting the best

ratio between computational power and performance.

Table 5.1: Virtual Machines Properties

vCPU Memory [GiB]

Machine 1 2 8
Machine 2 4 16
Machine 3 8 32
Machine 4 16 64
Machine 5 48 192
Machine 6 96 384
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Figure 5.3: Containerization Life Cycle

The proposed algorithm ran for the case study with exponentially distributed demands (revisit section

2.3.1) considering the different machines in table 5.1 and applying parallel computing. Since the algo-

rithm parameters change the total running time, it is important to mention that for this study the algorithm

used the parameters present in table 6.14 (parameters justification in chapter 6). Figure 5.4 plots the

relation between the number of vCPU and running time.
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Figure 5.4: Number of vCPU per machine and Running time

Machine 1 had a running time of 9216 seconds, while machine 5, the one with the best ratio between

power and performance, needed 340 seconds to complete the job. The running time reduction between

these machines was 96%.

Finally, bear in mind that these results were only possible because the source code applied paral-

lelism. Table 5.2 shows the running time with and without parallelism both using machine 5.

Table 5.2: Machine 5 Performance with and without Parallelism

Machine Parallelism Running Time [s]

5 Yes 340
5 No 20342

Without parallel computing, the use of powerful machines becomes irrelevant. Knowing this, table

5.2 helps concluding that the integration of parallel computing and cloud resources reduced the com-

putation time by 98,3% (cloud be even more with the 96 vCPU of machine 6). This drastic reduction

makes feasible problems that were almost impossible to solve due to time constraints. Moreover, note

that for the normally distributed case study (revist setion 2.3.2) with 20 materials, unstructured studies

shown stable results in less than 8 minutes.

46



6
Results

Contents

6.1 Simulation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Algorithm Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3 Case Studies Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

47



This chapter uses examples from the literature to test the algorithm performance against classical

solutions. These examples are the case studies presented in section 2.3.1 and 2.3.2. The reader

should notice this work intention is not to compare itself against other approaches but rather to prove its

suitability while delivering advantages for a wider variety of cases (further discussed in chapter 7). This

chapter is organized into the following sections:

• Section 6.1: Simulation procedure- Explains how to simulate reality and extract metrics such

as the average profit generated.

• Section 6.2: Algorithm Tuning- Tunes the algorithm to obtain the best possible performance.

• Section 6.3: Case Studies Results- Presents and discusses the most pertinent results for both

case studies.

6.1 Simulation Procedure

One of the main contributions of this work is to provide a suitable evaluation framework for the

proposed solutions. Until now, studies on the Fuzzy multi-item newsvendor problem (e.g. [4, 11, 45])

have been focusing on evaluating the performance of their solutions solely based on the maximization of

an objective function (most often the expected value). This approach raises questions, such as: ”Is the

objective function a good representation of reality?” or ”Will the solution generate the expected results

in a real scenario?”.

The proposed evaluation method uses pseudo-random demand vectors to answer the questions

mentioned. The demand vectors randomness depends on the materials probabilistic demand curves.

The idea is to represent reality by regenerating possible demand vectors based on the items demand

curves (values with higher probability tend to be selected most often). Once done, this generation will

result in a sound panoply of results, where likely results will have a higher representation, but less

common results are also present. This methodology makes it possible to evaluate metrics such as:

• Average profit

• Number of times the profit is higher than a given target

Figure 6.1 contains a flow chart to illustrate how to calculate the metrics mentioned above. Notice

the proposed procedure generates a number of X random demand vectors and then uses this set of

vectors to access the aforementioned metrics in the block named ”Compute and save metrics”.
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Figure 6.1: Simulation Procedure

Number of Demand Vectors

Only a high enough number of random demand vectors ensures a trustful simulation. Figures 6.2

and 6.3 illustrate, using each of the case studies benchmark solutions (tables 2.2 and 2.4, respectively),

how the average profit standard deviation and computational time change with the number of random

demand vectors. The number of random demand vectors was set to 100000 = 105 for all simulations

performed.
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Figure 6.2: Exponential Distribution: Number of Random Demand Vectors, Profit Standard Deviation and Average
Computational Time

Figure 6.3: Normal Distribution: Number of Random Demand Vectors, Profit Standard Deviation and Average Com-
putational Time
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6.2 Algorithm Tuning

This section is dedicated to tune the necessary parameters to have a reliable algorithm performance.

For each case study presented in section 2.3, the tuning process followed five phases:

1. Credibility Estimation: The credibility estimation relies on the random generation of possible

demand vectors. The estimation accuracy increases with the number of random vectors generated,

but so does the computational effort. This phase tunes the NQM (revisit section 3.3.3) aiming to

find a good balance between accuracy and running time.

2. Expected Profit Estimation: As explained in section 3.3.4, the expected profit estimation uses

credibility samples with different profit targets. This phase tunes the number of credibility samples

to find the best trade-off between expected profit estimation stability and the computational effort.

3. Solution Fitness Stability: This phase tunes the population size and the number of generations

to ensure the algorithm works close to its full capacities without compromising the running time.

4. Membership Function Selection: This section finds the best membership functions to describe

the probabilistic demand curves for each case study.

5. Other Parameters: The tuning of the remaining solution generation/interpretation and GA-

specific features goes in this section.

6.2.1 Credibility Estimation

When estimating the Credibility of a Fuzzy event, it is crucial to balance performance and compu-

tational effort. The credibility estimation relies on a random generation of possible demand vectors to

have a good representation of the universe of discourse. If this random selection is not sufficiently large,

the credibility estimation is compromised, leading to significantly different estimations for the same solu-

tion. The Credibility estimation stability can be tested by iteratively estimating the Credibility of a given

solution and computing the standard deviation between estimations.

Additionally, bear in mind the larger the number of demand vectors generated, the longer the algo-

rithm will take to estimate a credibility value. Since the proposed framework depends on the capability

to estimate multiple credibility values, it is critical to have the fastest possible performance without com-

promising the accuracy, otherwise, the relevance of this solution in a industrial context is compromised.

In summary, the goal is to find the NQM (revisit section 3.3.3) value that gives the best trade-off

between credibility estimation stability and computational time. There are two variables playing a role in

the credibility estimation, begin them:
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1. Selected profit target

2. NQM value.

Given the different number of items, each use case received its unique Credibility estimation tuning

analysis. The tuning process used the benchmark solutions presented in tables 2.2 and 2.4. The

following steps describe the course of action in credibility estimation tuning:

1. Study different profit targets with a constant NQM value. Select the profit target with the highest

standard deviation.

2. Study the different NQM values for the most variant profit target.

Exponential Distribution: Credibility stability

Shao [4] selected trapezoidal MF to represent the exponential distributions. This is also the MF used

in the tuning process. Table 6.1 shows its parameters:

Table 6.1: Exponential Distribution: Considered membership functions (based on [4])

Material MF Parameters

1 [180, 190, 210, 220]
2 [210, 220, 230, 240]
3 [100, 110, 115, 125]
4 [80, 90, 110, 120]
5 [60, 70, 80, 90]
6 [20, 25, 35, 40]

To find the profit target with the highest standard deviation in the credibility estimation process, a

large set of profits targets between 0 CU and 9000 CU (with 1000 CU steps) was initially used. A study

conducted 20 Credibility estimations for each of these targets. The estimations used a NQM value of 10

to access the standard deviation of the estimations. The appendix figure A.1 presents the results from of

this study, being the 5000 CU profit target the only target showing a not null standard deviation. Figure

6.4 shows a closer analysis between 4500 CU and 5500 CU with steps of 100 CU units steps:
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Figure 6.4: Exponential Distribution: Credibility Standard Deviation vs. Profit Targets from 4500 to 5500 CU

From figure 6.4, it is possible to see that the 4600 CU is the profit target showing a higher deviation

value. Thus, 4600 CU is the target considered for the NQM tuning. Figure 6.5 illustrates how the

different NQM values change the credibility standard deviation and computational time for 20 runs when

considering a 4600 CU profit target:

Figure 6.5: Exponential Distribution: NQM value, Credibility Standard Deviation and Average Computational Time

Based on the information carried by figure 6.5, the decision was to set the NQM value as 50. This

choice ensures a credibility deviation of 0,054 and a credibility assessment time of 0,22 seconds. The-
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oretically, with these parameters, a credibility optimization for a fixed profit target with 1000 individuals

per population and five generations would take around 20 min (results without considering parallelism

and cloud computing).

Normal Distribution: Credibility stability

This analysis used the curves resultant from the mapping introduced in the section 3.5.3. Like in the

previous section 6.2.1, the goal here is to find the profit target with the highest standard deviation, using

a constant NQM value of 10. After finding this profit target, a study compares the standard deviation for

different NQM values.

This is exactly the same procedure as in section 6.2.1. As a result, its results are in the appendix

section A.2. The chosen NQM value was 10.

6.2.2 Expected Profit Estimation

As explained in section 3.3.4, the expected profit estimation relies on computing the weighted av-

erage for different profit targets, where each weight corresponds to the credibility of the Fuzzy event.

Estimating values for all possible elements is a highly demanding task, thus a universe of discourse

sampling is required. In other words, to ensure an equilibrium between performance and computational

effort, it is necessary to find the best number of Credibility samples to estimate the expected profit of a

given solution. This section shows how to tune the expected profit estimation by changing the number

of Credibility samples.

Exponential Distribution: Credibility Samples

Figure 6.6 illustrates how the total number of credibility samples influence the solution expected profit

stability and computational time (when considering the benchmark solution and MF) for the exponentially

distributed case study:
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Figure 6.6: Exponential Distribution: Number of Credibility Samples, Expected Profit and Computational Time

Given the results presented, 25 was the choice for the total number of credibility samples. This

value ensures an expected profit assessment time of around 10 seconds, which means a problem with

1000 genes and 5 generations how to take 13 hours and 54 minutes to be completed, just considering

fitness calculation time without parallel or cloud computing. Finally, notice that the 25 value can introduce

(in rare situations) some instability in the expected profit computation in rare cases, but 10 seconds per

solution is already a high computational effort to account for.

Normal Distribution: Credibility Samples

The same study as in section 6.2.2 was applied to the case study considering a normally distributed

demand. Results are in the appendix section A.3. The chosen Credibility samples number was 30.

For 5 runs, this value had a mean fitness value of 4312, a standard fitness deviation of 38,1 and an

average computational time of 10,9 seconds (without parallel or cloud computing).

6.2.3 Fitness Stability

After defining the NQM value (revisit section 3.3.3) and the number of credibility samples, it is

possible to study the population size and the total number of generations. Combining these two variables
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is crucial to ensure the algorithm evolves to a point close to its full capabilities without compromising the

computational effort. The goal of this section is to tune this combination for each case study.

This analysis used population sizes of 5, 10, 25, 50, 75 and 100, keeping other parameters constant.

Among these constant parameters, there was a total number of 20 generations. Apart from the variables

previously studied( NQM and Credibility Samples), all other variables result from an empirical. Naturally,

these variables need to be further validated (section6.2.5) , but in the author’s opinion, they constitute

a good starting point to ensure results according to the algorithm capabilities. Table 6.2 shows these

parameters:

Table 6.2: Empirical Parameters from Unstructured Testing

Parameters Value

NQM 50 (Exponential) // 10 (Normal)
Credibility Samples 25 (Exponential) // 30 (Normal)

Resizing True
Initialization with Null Values True
Chromosome Normalization False

Interception Rule Minimum
Generations 20

Tournament Coefficient 10
Crossover Probability 0,8
Mutation Probability 0,2

Exponential Distribution: Population Size and Generations

Figure 6.7 presents the relation between population size, average fitness value and average compu-

tational time. The values shown are the results of 5 algorithm runs per population size.
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Figure 6.7: Exponential Distribution: Population Size, Fitness and Computational Time

The selected value for the population size was 75. Figure 6.8 uses this value and does a similar

study but now comparing the number of generations.

Figure 6.8: Exponential Distribution: Number of Generations, Fitness and Computational Time

Based on this information, chosen number of generations was 20.

Normal Distribution: Population Size and Generations
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Following the same rationale applied for the exponentially distributed case study, a study tuned the

population size and generations number, now for the normally distributed case study. Appendix section

A.4 contains the two figures that illustrate this. The study concluded that a population size of 50 and

generations number of 15 were the best values to use.

6.2.4 Membership Function Selection

The parameters previously defined ensured a proper balance between the solution stability and

computational time. To have the best algorithm response it is necessary to select the most suitable

membership function type and hyper-parameters to represent each probabilistic curve. To do this, a

study included the three MF types proposed in section 3.5. The goal is to find the best Membership

Functions (MFs) type based on an objective metric: the average profit. The membership function selec-

tion bases upon two steps:

1. MF individual tuning: Tune each of the membership functions presented in section 3.5.

2. MF Selection: Select the MF type and corresponding parameters with the highest average profit.

The MF selection is first done on the exponentially distributed case study, followed by the normally

distributed case study. All results were obtained with averages of 5 algorithm runs.

Exponential Distribution: Membership Function Selection

Starting with the trapezoidal MF, the values proposed by [4] and presented in table 6.1 served as

baseline. Then, different SC and CC values were tested using the expressions in section 3.5.1. In table

6.3 it is possible to observe the different values tested and their results:

Table 6.3: Exponential Distribution: Support and Core Coefficients for Trapezoidal MF

Support C. Core C. Average Profit Average Fitness Fitness Standard Deviation

0 1 2829,3 4030,9 25,5
0,5 1 2837,8 4525,1 32,7
1 1 2814,5 4921,1 120,3
0 0 2845,8 4160,9 26,4
0 0,5 2860,3 4167,6 71,4

The selected combination between the SC and CC was 0 and 0,5, respectively.

In the case of the exponential MF, there is only one parameter to be studied: the decay ratio. Table

6.4 shows how this parameter influences the average profit:
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Table 6.4: Exponential Distribution: Decay Ratio for Exponential MF

Decay Ratio Average Profit Average Fitness Fitness Standard Deviation

0,01 2485,2 3890,7 92,2
0,5 2836,7 3271,5 26,0
1 2846,1 3666,9 79,2

1,5 2791,4 3876,4 103,2
2 2769,8 4162,9 84,6
3 2789,1 4476,5 94,1

The chosen value for the decay ratio was 1 with an average profit of 2846,1.

Finally the MF from the mapping in section 3.5.3 are independent of any parameter, generating a

unique MF from each probability curve. Table 6.5 shows the results observed:

Table 6.5: Exponential Distribution: Probability Mapping

Av. Profit Generated Average Fitness Fitness Standard Deviation

2836,1 1902,2 99,1

Observing the results from tables 6.3, 6.4 and 6.5, it is possible to see that the trapezoidal MF had

the highest average profit generation for SC and CC values of 0 and 0,5, respectively. Thus, this is the

choice to represent the probabilistic exponential curves in a Fuzzy environment. The final parameters

for the MF are:

Table 6.6: Exponential Distribution: Selected Membership Functions Parameters

Material MF Parameters

1 [180, 195, 205, 220]
2 [210, 222.5, 227.5, 240]
3 [100, 111.25, 115, 125]
4 [80, 95, 105, 120]
5 [60, 72.5, 77.5, 90]
6 [20, 27.5, 32.5, 40]

Recalling the initial parameters presented in table 6.1, figure 6.9 shows the selected MF for material

1 alongside its original MF from [4].
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Figure 6.9: Original (from [4]) vs. Tuned Membership Function for Material 1

Normal Distribution: Membership Function Selection

This section aims to find the MF that best describes the probability curves of the normally distributed

demand. This is the same procedure as in the section 6.2.4, but for the normally distributed case study.

Due to this, Appendix section A.5 contains its results.

Among the three MF types tested, the exponential MF with a decay ratio of 6 yielded the highest

average profit, being the MF selected for the features tuning. As an example, figure 6.10 displays the

MF of material 1, assuming these parameters:

Figure 6.10: Normal Distribution: Selected Membership Function for Material 1
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6.2.5 Other Parameters

Having selected the best MF to describe each case study probabilistic demand, it is possible to

study the algorithm features that were empirically determined (table 6.2). Moreover, based on how

these features influence the algorithm response/behaviour, there are two categories for these features:

the solution modification/interpretation features and GA-specific features.

The solution generation/interpretation features include:

• Solution Resizing

• Initialization with Null Values

• Chromosome Normalization

• Interception Rule

The GA-specific features are:

• Tournament Coefficient (revist equation 4.1)

• Crossover Probability

• Mutation Probability

• Population Size & Number of Generations (studied in section 6.2.3)

The best parameters are the ones that yield the highest fitness values, except in case these

parameters alter the way the fitness value is perceived (see interception rule in tables 6.10 and A.5). All

results were obtained with averages of 5 algorithm runs.

Exponential Distribution: Other Parameters Tuning

Considering the exponentially distributed case study, the first feature analyzed was the solution re-

sizing. These are the values with and without this feature:

Table 6.7: Exponential Distribution: Solution Resizing

Solution Resizing Fitness Average Average Profit Average Unfeasible Solutions

True 4167,9 2860,3 0
False 3945,1 2293,2 250,4

The solution resizing proved to be a relevant feature to increase the solution fitness.
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The next algorithm parameter studied was the Initialization with Null Values. Table 6.8 shows how

this parameter influences the solution fitness:

Table 6.8: Exponential Distribution: Initialization with Null Values

Initialization with Null Values Fitness Average Average Profit

True 4167,9 2860,3
False 4940,9 2853,0

The average fitness value decreased with the Initialization with Null Values. Thus, it was a disad-

vantage for the exponential curves case study. Despite this, the smaller fitness value yields a slightly

higher average profit. This proves the MF does not perfectly represent the stochastic demand, what was

expected behaviour. Section 7.1 discusses this in detail. However, the goal is still to find the algorithm

parameters that maximize the fitness value. Due to this reason, the Initialization with Null values was

discarded for the exponentially distributed case study.

Table 6.9 illustrates the impact the chromosome normalization has on the fitness value maximization.

Table 6.9: Exponential Distribution: Chromosome Normalization

Chromosome Normalization Fitness Average Average Profit

True 4889,5 2827,4
False 4940,9 2853,0

The chromosome normalization did not have a significant impact in the fitness value maximiza-

tion, being discard as a feature in this case study.

Section 3.3.1 presented two types of interception rules: the minimum and the mean interception rule.

Table 6.10 reveals how these interception rules influence the fitness and profit average values.

Table 6.10: Exponential Distribution: Interception Rules

Interception Rule Fitness Average Average Profit

Minimum 4940,9 2853,0
Mean 4985,1 2820,2

Contrary to the previously studied features that modified the generation of the solutions, the inter-

ception rule changes how the algorithm ”interprets” each solution. Consequently, the same solution has

different fitness values depending on the interception rule considered. Due to this reason, the decision-

making factor, in this case, was the average profit and not the fitness value. As a result, the minimum

interception rule is the selected rule for the exponentially distributed case study.

Looking at the GA-specific features, the analysis started with the tournament coefficient. This param-

eter controls the number of individuals randomly selected to a tournament (revisit section 4.2.4, equation
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4.1 ). Table 6.11 shows how different coefficient values influence the fitness.

Table 6.11: Exponential Distribution: Tournament Coefficient

Tournament Coefficient Average Fitness Fitness Standard Deviation

2 5006,5 84,7
5 4904,1 69,2

10 4940,9 123,1
15 5017,9 118,1
20 5106,6 57,1
30 4974,8 97,1
50 4753,3 33,3

The value of 20 was selected as the tournament coefficient value, due to the higher average

fitness yielded.

Another GA-specific feature is the crossover probability. This feature controls how often two tourna-

ment winners combine their solutions. For further detail, revisit section 4.2.2. Table 6.12 shows how this

probability changes the average fitness and its standard deviation:

Table 6.12: Exponential Distribution: Crossover Probability

Crossover Probability Average Fitness Fitness Standard Deviation

0,1 4892,9 159,6
0,3 4882,8 69,1
0,5 4950,3 126,3
0,7 4987,9 103,1
0,8 5106,6 57,1
0,9 5067,2 60,8

Given the higher fitness average, the value of 0,8 was kept as crossover probability.

Finally, table 6.13 displays how changing the mutation probability influences the fitness value.

Table 6.13: Exponential Distribution: Mutation Probability

Mutation Probability Average Fitness Fitness Standard Deviation

0,05 4987,1 98,1
0,1 4923,5 104,9
0,2 5106,6 57,1
0,3 4892,9 64,1
0,4 5001,7 100,8
0,5 5100,1 22,2
0,7 4967,2 135,4
0,9 5015,8 69,2

The 0,2 mutation probability yield the higher average fitness, thus it is the selected value.
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Table 6.14 summarizes the parameters that result from the tuning applied in the exponentially dis-

tributed case study:

Table 6.14: Exponential Distribution: Final Parameters

Parameters Value

NQM 50
Credibility Samples 25
Solution Resizing True

Initialization with Null Values False
Chromosome Normalization False

Interception Rule Minimum
Population Size 75

Generations 20
Tournament Coefficient 20
Crossover Probability 0,8
Mutation Probability 0,2

Normal Distribution: Other Parameters Tuning

Here it goes the tuning of the remaining parameters for the normally distributed case study. Since

this tuning process was already presented, its results are in the appendix section A.6, except for two

variables. These variables are the Solution Resizing and Initialization with Null Values. Tables 6.15

and 6.16 respectively show the impact of this features.

Table 6.15: Normal Distribution: Solution Resizing

Solution Resizing Fitness Average Average Profit Average Unfeasible Solutions

True 3741,9 3797,3 0
False 2208,8 2305,6 122,2

Table 6.16: Normal Distribution: Initialization with Null Values

Initialization with Null values Fitness Average Average Profit

True 3741,9 3797,3
False 2229,9 2446,6

On the one hand, the solution resizing proved to be a valuable feature but now for the normal dis-

tributions. Its inclusion increased the fitness value by 69% and the average profits by 65%. On the

other hand, the initialization with null values proved to be relevant for the normal distributions

increasing the fitness value by 68% and the average profits by 55%. This counters the results presented

in table 6.8.
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In the author’s opinion, the reason why the Initialization is vital in the normally distributed case study

is that this case study uses a low budget when compared with the overall problem. Therefore, the

algorithm naturally selects materials with the highest profit margins by utilizing vectors with null values,

rejecting lower margins due to budget constraints.

Table 6.17 summarizes the parameters for the normal curves case study:

Table 6.17: Normal Distribution: Final Parameters

Parameters Value

NQM 10
Credibility Samples 30
Solution Resizing True

Initialization with Null Values True
Chromosome Normalization False

Interception Rule Minimum
Population Size 50

Generations 15
Tournament Coefficient 10
Crossover Probability 0,8
Mutation Probability 0,2
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6.3 Case Studies Results

This section analyses the algorithm performance for the three decision-making policies proposed in

section 3.4. Here demand curves are perfectly described. Under these conditions, the only source of

uncertainty comes from the curves’ stochastic nature.

Moreover, the analysis uses the algorithm parameters shown in table 6.14 and 6.17, but all MF types

best candidates. The use of candidates from all MF types is justified because the MF selection has

based on the average profit (correlated with the expected profit). The best candidate can be different for

other policy criteria, thus, the study considers all MF best candidates. To ease the reader interpretation,

the data used for the membership function selection is presented in appendix chapter B.

The remaining of this section includes two sections specific to each case study (exponential and

normal distributions). Each of these sections contain three subsections accounting for each of the three

decision-making policies presented in section 3.4, being them:

• Expected Profit Maximization

• Credibility Maximization with Profit Target

• Profit Maximization with Credibility Target

All values result from 5 algorithm runs with constant parameters. The selected run will be the one

with the highest fitness value.

6.3.1 Exponential Demand Distribution

This section illustrates the algorithm results for the exponentially distributed case study. The best MF

candidate selection for each decision-making policy (appendix B) uses the parameters derived in the

tuning procedure (table 6.14).

Exponential Distribution: Expected Profit maximization

Table 6.18 shows the best candidate solution for the expected profit maximization considering the

MF resultant from the probability mapping (section 3.5.3).

Table 6.18: Exponential Distribution: Solution for Expected Profit Maximization

Item 1 2 3 4 5 6

Quantity 41,67 35,58 16,07 116,84 75,47 36,91
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Comparing to the benchmark solution (table 2.2):

Table 6.19: Exponential Distribution: Expected Profit Maximization Results

Solution Fitness (Mapping MF) Average Profit

Classical Benchmark 1572,0 2875,9
Simple Fuzzy GA from [4] 1567,4 2870,9

Fuzzy GA with Novel Mechanisms 2029,1 2906,5

Exponential Distribution: Credibility maximization for profit target

Table 6.20 shows the best candidate solution for Credibility maximization with a 2000 CU profit

target.

Table 6.20: Exponential Distribution: Solution for Credibility Maximization with 2000 CU Profit Target

Item 1 2 3 4 5 6

Quantity 101,80 101,76 39,09 54,17 40,19 22,41

Comparing to the benchmark solution (table 2.2):

Table 6.21: Exponential Distribution: Credibility maximization results for 2000 CU profit target

Solution Fitness (Exponential MF) Profit >2000 CU

Classical Benchmark 0,71 75 %
Simple Fuzzy GA from [4] 0,71 75 %

Fuzzy GA with Novel Mechanisms 0,78 74 %

Appendix section C.1 contains the MF candidates results for the 2500CU and 3000CU profit targets.

Exponential Distribution: Profit Maximization with Credibility Target

Table 6.22 shows the solution with the highest fitness among the exponential membership functions,

when considering the profit maximization with a 0,5 Credibility target.

Table 6.22: Exponential Distribution: Solution for Profit Maximization with 0,5 credibility target

Item 1 2 3 4 5 6

Quantity 130,42 92,35 34,69 56,86 32,70 26,58

Comparing to the benchmark solution (table 2.2):
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Table 6.23: Exponential Distribution: Results for Profit maximization with 0,5 Credibility Target

Solution Fitness (Mapping MF) Average Profit Profit >2000 CU

Classical Benchmark 4876,5 2875,9 75 %
Simple Fuzzy GA from [4] 4854,3 2870,9 75 %

Fuzzy GA with Novel Mechanisms 5405,1 2854,5 70 %

Appendix section C.2 contains the MF candidate results for the 0,75 and 0,9 credibility targets.

6.3.2 Normal Demand Distribution

This subsection aims to study the response considering the normally distributed case study. Similar

to subsection 6.3.1, the best candidates from each MF (see subsection 6.2.4) are tested for each deci-

sion policy and attached in appendix section B.2. Afterwards, the outperforming candidate is compared

against the benchmark solution.

Normal Distribution: Expected Profit Maximization

The exponential MF were the candidates showing the highest average profit. Table 6.24 shows the

solution with the highest fitness value when considering this MF type.

Table 6.24: Normal Distribution: Solution for Expected Profit Maximization

Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Quantity 0 0 0 0 0 114,23 0 0 0 0 0 87,00 44,25 0 0 0 0

Comparing to the benchmark solution (table 2.4):

Table 6.25: Normal Distribution: Expected profit maximization results

Solution Fitness (Exponential MF) Average Profit

Classical Benchmark 3763,2 3870,0
Simple Fuzzy GA replicated from [4] 2208,8 2305,6
Fuzzy GA with Novel Mechanisms 3792,1 3827,3

Normal Distribution: Credibility Maximization with Profit Target

Table 6.26 shows the best solution, among the exponential membership functions, for the Credibility

maximization considering a profit target of 2000CU:
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Table 6.26: Normal Distribution: Solution for Credibility Maximization with 2000 CU Profit Target

Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Quantity 3,66 2,10 16,8 6,68 5,27 32,27 11,98 5,33 0 5,35 11,28 5,33 12,86 3,92 0 35,16 11,49

Comparing to the benchmark solution (table 2.4):

Table 6.27: Normal Distribution: Credibility maximization results for 2000 CU profit target

Solution Fitness (Exponential MF) Profit >2000 CU

Classical Benchmark 0,95 96 %
Simple Fuzzy GA replicated from [4] 0,96 97 %
Fuzzy GA with Novel Mechanisms 0,97 99 %

Appendix section C.3 contains the candidates results for the profit targets 2500CU, 3000CU, 3500CU

and 4000CU.

Normal Distribution: Profit maximization with credibility target

Table 6.28 shows the solution with the highest fitness, among the probability mapping MF, for the

profit maximization with a 0,75 Credibility target,.

Table 6.28: Normal Distribution: Solution for Profit Maximization with 0,75 Credibility Target

Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Quantity 0 0 0 0 0 63,51 0 22,66 0 0 24,38 50,37 33,12 19,44 0 9,58 12,89

Comparing to the benchmark solution (table 2.4):

Table 6.29: Normal Distribution: Profit Maximization Results for 0,75 Credibility Target

Solution Fitness (Mapping MF) Average Profit Profit >2500 CU

Classical Benchmark 2228,3 3870,0 93 %
Simple Fuzzy GA replicated from [4] 2343,1 2515,8 93 %
Fuzzy GA with Novel Mechanisms 3231,7 3061,5 98 %

Appendix section C.4 contains the MF candidates results for the 0,5 and 0,9 credibility targets.

6.3.3 Discussion

The proposed framework performed at the same level as the benchmark solutions for both case

studies and decision-making policies proving its effectiveness. Despite this, comparison are only suit-

able for the expected profit maximization since the benchmark solution accounts only for this policy.
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Table 6.19 shows the proposed framework slightly outperformed the benchmark solution by 1 % when

considering an exponentially distributed demand. In contrast, table 6.25 shows the benchmark solution

outperforming the proposed framework by 1 % in the normally distributed case study.

From the mechanisms introduced, the author highlights the solution resizing and the initialization

with null values. On the one hand, tables 6.7 and 6.15 prove the solution resizing usefulness by

increasing the average profit by 25 % in the exponentially distributed case study and 65 % in the normally

distributed case study. On the other hand, the Initialization with Null Values proved to be very useful

in low budget scenarios as is the case of the normally distributed case study. Table 6.16 confirms this

by presenting an average profit increase of 55 % when introducing this mechanism.
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7.1 Main Conclusions

This thesis developed a scalable multi-objective optimization algorithm to solve Newsvendor prob-

lems. For this purpose, the designed framework implemented a Fuzzy formulation instead of a classical

formulation to solve cases where there is insufficient data to predict the demand distributions and it is

necessary the integration of human-expertise knowledge and machine learning. The problem was then

solve using a genetic algorithm enhanced by parallel computing in a cloud environment that drastically

reduced the running time and made the solution applicable in a real-life scenario.

The algorithm yields excellent results, especially for the expected profit-maximizing, the most impor-

tant policy in a business context. Tables 6.19 and 6.25 show there is not any performance decrease

when comparing the proposed solution to the analytical methods.

From the results derived, it is possible to say the challenge proposed by Siemens was accomplished.

Moreover, the framework can integrate real human expertise and machine learning inputs to design the

uncertainty around item demand and optimize the decision-making.

Examining the added-value proposal in section 1.2, it is possible to confirm that this thesis accom-

plished all points. The novel mechanisms introduced in the GA helped improve performance, as tables

6.7, 6.15 and 6.16 prove. Additionally to these performance results, the author wants to reinforce the

time reduction provided by integrating cloud and parallel computing techniques. Like table 5.2 exhibits,

these techniques introduced a time reduction of 98,3%, which ensures this solution is scalable.

As limitations, there is the inevitable unmatching between membership functions and probabilistic

demand curves. This unmatching reduced the framework performance when compared to the other

solutions. Table 6.8 is proof of this since a higher fitness value did not yield a higher average profit.

Thus, although membership functions can be directly derived from real data, the algorithm performance

will always dependent on the quality of the uncertainty assessment.

In conclusion, both author and company are very optimistic after this work and looking forward to

implementing this idea in a real factory scenario.

7.2 Future Work

To implement this idea in a real-world scenario, there are areas where the framework directly or

indirectly improve. The following points describe these areas:

Integration with Predicting Agent

The algorithm performance is dependent on the quality of the membership functions. Accurate MF
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can only be obtained with a good predicting agent. This agent can be either a human or a machine

learning model, and its main objective is to provide insights regarding the likelihood of each item con-

sumption. For instance, a trust interval and a most likely demand quantity can define a trapezoidal

MF.

Different Objective Metrics

This work focused on optimizing the decision-making process based on profit, but other factors,

such as service level or customer satisfaction, are also crucial in inventory planning. For this solution to

be relevant, those use-cases must be taken into account. The work of [46] and [47] can provide insights

regarding this topic.

Improve Fitness Assessment Mechanisms

Section 3.3.3 introduced enhancements in the Credibility estimation process. Despite this, there is

still room for improvements in the overall fitness assessment, specially for the expected profit maximiza-

tion. These improvements are not related to Credibility estimation itself but rather with the profit targets

selection.

As section 3.3.4 shown, the expected value is a weighted average of credibility values for different

equally spaced profit targets. In reality, there is no need to compute the credibility for smaller profit

targets if there is already a higher target with a Credibility equally or very close to 1. In these cases,

expected value estimation cloud be optimized by assuming the credibility for smaller profit targets is

1 and focus the computational resources on higher profits target, which is where there are significant

variations in the Credibility values. This rationale extrapolates to the profit maximization with a Credibility

target by first using a dispersed backward target search and then focusing on the profits that yield

Credibility values close to the optimization target.

Different Optimization Algorithms

In the author’s opinion, selecting a GA as an optimization algorithm proved to be fruitful. However,

the work of [11] shows that there are other options when it comes to meta-heuristic algorithms. His work

even suggests that algorithms such as the Bee Colony Optimization would yield better results comparing

to a GA.
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A
Extra tuning metrics

A.1 Normal Distribution: Credibility Stability

Figure A.1 presents the values of the variances for the credibility assessment of profits between 0 CU

and 9000 CU, with an NQM value of 50:
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Figure A.1: Exponential Distribution: Credibility Standard Deviation vs. Profit Targets from 0 to 9000 CU

A.2 Normal Distribution: Credibility Stability

Figure A.2 presents the values of the variances for the credibility assessment of profits between 0 and

4500, with an NQM value of 50:

Figure A.2: Normal Distribution: Credibility Standard Deviation vs. Profit Targets from 0 to 4500 CU

The values between 1000 and 2500 shown higher variance values. Due to this, figure A.3 plots all

variance between these values with a step of 100 units:
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Figure A.3: Normal Distribution: Credibility Standard Deviation vs. Profit Targets from 1000 to 2500 CU

The profit of 1800 CU was the one showing the highest variance, thus this is the value for the

NQM tuning study. Figure A.4 shows the relation between the NQM values and the credibility standard

deviation. Once again, the standard deviations are calculated based on 5 computations per NQM value.

Figure A.4: Normal Distribution: NQM value, Credibility Standard Deviation and Computational Time

With the given information, the NQM value of 10 was chosen. This choice ensures a credibility

assessment time similar to the one observed for the case of the exponential curves (when considering

an NQM value of 50).
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A.3 Normal Distribution: Credibility Samples

Figure A.5 shows how the credibility sampling influences the stability of the expected profit estimation in

the case of the normal curves:

Figure A.5: Normal Distribution: Number of Credibility Samples, Expected Profit and Computational Time

Based on figure A.5, the chosen value for the credibility samples was 30.

A.4 Normal Distribution: Population Size and Generations

Figure A.6 contains the population size study fr the normal distributions case-study.
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Figure A.6: Normal Distribution: Population Size, Fitness and Computational Time

The selected population size was 50, maintaining a close performance time when comparing to

the exponential curves example.

Figure A.7 illustrates how the total number of generations affect the fitness value, considering a

population size of 50.

Figure A.7: Normal Distribution: Number of Generations, Fitness and Computational Time

Figure A.7 suggests the total number of generations does not have a significant influence until the 5

generations. Despite this, a total number of 15 generations was selected to ensure fitness stability
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and computational times similar to the case of the exponential curves.

A.5 Normal Distribution: Membership Function Selection

This section contains the tuning results for the normal distributed case-study.

Table A.1 shows how different combinations of SC and CC can influence the average profit generated

by the solutions found with the algorithm parameters already defined.

Table A.1: Normal Distribution: Support and Core Coefficients for Trapezoidal Membership Functions

Support C. Core C. Average Profit Average Fitness Fitness S.D.

0 1 3679,5 3545,9 66
0,5 1 3582 3385,4 92,3
1 1 3541,4 3163,1 72,5
2 1 3504,7 2756,5 50,1
4 1 3557,7 2280,2 47
0 0,5 3705,4 3971,2 85,8
0 0 3683,5 4166,1 39,3

With an average profit of 3705,4, the chosen values for the SC and CC are 0 and 0,5, respectively.

Remember the way the SC and CC modifies the trapezoidal MF is different, depending on each type of

probabilistic curve being represented. For further detail see sub-section 3.5.1.

For the exponential MF, it only required to analyse the decay ratio. Table A.2 shows the results, when

considering different values for this parameter:

Table A.2: Normal Distribution: Decay Ration for Exponential Membership Functions

Decay Ratio Average Profit Average Fitness Fitness S.D.

0,01 3246,2 1997,4 101,2
0,5 3604,8 2192,2 37,5
1 3660,3 2619,4 64,1
2 3655,9 3085,5 58,3
4 3739,2 3570,2 37,2
6 3797,2 3741,9 44
8 3686,3 3751,6 40,6

10 3725,8 3864,8 31,6

The highest average profit (3797,2) was observed when the for decay ratio equals to 6. Due to this,

the considered decay ratio is 6.

Finally, table A.3 presents the average profit obtained when applying the mapping presented in sec-

tion 3.5.3:
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Table A.3: Normal Distribution: Probability Mapping

Average Profit Average Fitness Fitness S.D.

3702,2 3003,9 57,6

A.6 Normal Distribution: Parameters Tuning

Table A.4 shows how the chromosome normalization effect the variables in study.

Table A.4: Normal Distribution: Chromosome Normalization

Chromosome Normalization Fitness Average Average Profit

False 3741,9 3797,3
True 3713,7 3755,7

The chromosome normalization did not significantly impact the fitness value. This feature is

once again discard from the final algorithm parameters.

Table A.5 introduces the results using either the minimum interception rule or the mean interception

rule.

Table A.5: Normal Distribution: Interception Rules

Interception Rule Fitness Average Average Profit

Minimum 3741,9 3797,3
Mean 3614,1 3722,8

The selected interception rule was the minimum one, since it shown a higher average profit.

Looking at the GA-specific features, table A.6 presents the results for different tournament coefficient

values.

Table A.6: Normal Distribution: Tournament Coefficient

Tournament Coefficient Average Fitness Fitness Standard Deviation

2 3684,9 78,2
5 3703,8 33,6

10 3741,9 44
15 3713,4 40,7
20 3646 116,2
30 3629,8 21,7

The average fitness had its highest when the tournament coefficient equals to 10, being this the

selected value.

Table A.7 reports the results for several crossover probability values.
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Table A.7: Normal Distribution: Crossover Probability

Crossover Probability Average Fitness Fitness Standard Deviation

0,1 3465,2 157,8
0,3 3644,8 89
0,5 3650,1 20,8
0,7 3657 16,3
0,8 3741,9 44
0,9 3724,5 41,2

The 0,8 crossover probability was the value with the highest average fitness, thus it is the

chosen one.

Lastly, table A.8 presents the results for the mutation probability.

Table A.8: Normal Distribution: Mutation Probability

Mutation Probability Average Fitness Fitness Standard Deviation

0,02 3653,6 43,5
0,05 3692,9 28,3
0,1 3698 34,1
0,2 3741,9 44
0,3 3715,6 41,4
0,5 3728,4 27,9
0,7 3701,2 67,5
0,9 3701 45,3

The 0,2 probability mutation probability yielded the highest fitness on average. With the choice

of this value it is possible to see that all the empirical parameters proved to be the most efficient for the

normal curves example.
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B
Membership Function Selection Data

for All Decision Policies

B.1 Exponential Distribution: Membership Function Selection

Exponential Distribution: Expected Profit Maximization

Table B.1 contains the results of each MF type candidate for the expected profit maximization con-

sidering the exponentially distributed case-study.

Table B.1: Exponential Distribution: Expected profit maximization

MF Type: Average Fitness Average Profit Best Fitness Best Fitness Profit

Trapezoidal 5044,9 2820,4 5120,4 2834,4
Exponential 3658,6 2873,9 3725 2859,3

Mapping 1949,1 2886,1 2029,1 2906,5
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Exponential Distribution: Credibility Maximization for Profit Target

Table B.2 summaries the candidates results when considering a profit target of 2000CU:

Table B.2: Exponential Distribution: Credibility Maximization with a 2000 CU profit target

MF Type: Best Solution Fitness Best Solution >2000 CU Average Fitness

Trapezoidal 1 70 % 1
Exponential 0,78 74 % 0,78

Mapping 0,49 53 % 0,48

Exponential Distribution: Profit Maximization with Credibility Target

Table B.3 summaries the MF candidate results when considering a 0,5 credibility target:

Table B.3: Exponential Distribution: Profit maximization for 0,5 credibility target

MF Type: Average Fitness Best Solution Fitness Av. Profit Best Sol. >2000 CU
Trapezoidal 5524,3 5634,8 2820,7 68 %

Exponential 5405,1 5474,4 2854,5 70 %
Mapping 248 314,6 1125,6 0 %

B.2 Normal Distribution: Membership Function Selection

Normal Distribution: Expected Profit Maximization

Table B.4 contains the results of each MF type candidate for the normally distributed case study,

when maximizing the expected profit.

Table B.4: Normal Distribution: Expected profit maximization

MF Type: Average Fitness Average Profit Best Fitness Best Fitness Profit

Trapezoidal 3948,3 3697,5 4005,7 3741,9
Exponential 3751,2 3785,9 3792,1 3827,3

Mapping 2954,8 3627,2 3027,30 3709,8

Normal Distribution: Credibility Maximization with Profit Target

Table B.5 summaries the MF candidates results when considering a profit target of 2000CU:
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Table B.5: Normal Distribution: Credibility optimization with 2000 profit target

MF Type: Best Solution Fitness Best Solution >2000 CU Average Fitness

Trapezoidal 1 81 % 1
Exponential 0,97 99 % 0,97

Mapping 0,98 99 % 0,97

Normal Distribution: Profit Maximization with Credibility Target

Table B.6 summaries the MF candidates results when considering a 0,75 credibility target:

Table B.6: Normal Distribution: Profit maximization for 0,75 credibility target

MF Type: Average Fitness Best Solution Fitness Av. Profit Best Sol. >2500 CU

Trapezoidal 3832 3930,1 3655,4 92 %
Exponential 3781,7 4036,8 3583,9 91 %

Mapping 2926,9 3231,7 3061,5 98 %
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C
Extra Results

C.1 Exponential Distribution: Credibility Maximization with Profit

Target

Table C.1 summaries the results when considering a profit target of 2500CU:

Table C.1: Exponential Distribution: Credibility Maximization with 2500 Profit Target

MF Type: Best Solution Fitness Best Solution >2500 CU Average Fitness

Trapezoidal 1 39 % 1
Exponential 0,76 50 % 0,76

Mapping 0,48 41 % 0,48

The benchmark solution had profits above the 2500CU 62% of the times across all simulations.

Table C.2 summaries the results when considering a profit target of 3000CU:
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Table C.2: Exponential Distribution: Credibility optimization with 3000 profit target

MF Type: Best Solution Fitness Best Solution >3000 CU Average Fitness

Trapezoidal 1 18 % 1
Exponential 0,74 30 % 0,74

Mapping 0,47 27 % 0,47

The benchmark solution had profits above the 3000CU 48% of the times across all simulations.

C.2 Exponential Distribution: Profit Maximization with Credibility

Target

Table C.3 summaries the results when considering a 0,75 credibility target:

Table C.3: Exponential Distribution: Profit maximization for 0,75 credibility target

MF Type: Average Fitness Best Solution Fitness Av. Profit Best Sol. >2000 CU

Trapezoidal 4948 5026,5 2818,1 73 %
Exponential 2612,4 2690,4 2433,9 72 %

Mapping 176,1 241,5 1006 0 %

Table C.4 summaries the results when considering a 0,9 credibility target:

Table C.4: Exponential Distribution: Profit maximization for 0,9 credibility target

MF Type: Average Fitness Best Solution Fitness Av. Profit Best Sol. >2000 CU
Trapezoidal 4800,5 4841,1 2797,9 73 %
Exponential 984,4 1025,3 2306,1 72 %

Mapping 136,7 163,3 1058,4 0 %

C.3 Normal Distribution: Credibility Maximization with Profit Tar-

get

Table C.5 summaries the results when considering a profit target of 2500CU:

Table C.5: Normal Distribution: Credibility optimization with 2500 profit target

MF Type: Best Solution Fitness Best Solution >2500 CU Average Fitness

Trapezoidal 1 72 % 1
Exponential 0,97 85 % 0,96

Mapping 0,93 97 % 0,92
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Table C.6 summaries the results when considering a profit target of 3000CU:

Table C.6: Normal Distribution: Credibility optimization with 3000 profit target

MF Type: Best Solution Fitness Best Solution >3000CU Average Fitness

Trapezoidal 1 64 % 1
Exponential 0,96 92 % 0,95

Mapping 0,79 89 % 0,75

Table C.7 summaries the results when considering a profit target of 3500CU:

Table C.7: Normal Distribution: Credibility optimization with 3500 profit target

MF Type: Best Solution Fitness Best Solution >3500CU Average Fitness

Trapezoidal 1 64 % 1
Exponential 0,96 92 % 0,95

Mapping 0,79 89 % 0,75

Table C.8 summaries the results when considering a profit target of 4000CU:

Table C.8: Normal Distribution: Credibility optimization with 4000 profit target

MF Type: Best Solution Fitness Best Solution >4000CU Average Fitness

Trapezoidal 0,5 38 % 0,5
Exponential 0,85 62 % 0,76

Mapping 0,51 62 % 0,5

C.4 Normal Distribution: Profit Maximization with Credibility Tar-

get

Table C.9 summaries the results when considering a 0,5 credibility target:

Table C.9: Exponential Distribution: Profit maximization for 0,5 credibility target

MF Type: Average Fitness Best Solution Fitness Av. Profit Best Sol. >2500 CU [%]

Trapezoidal 4556,9 4584 3570,7 79 %
Exponential 4238 4299,2 3695,5 86 %

Mapping 4501,1 4541,2 3597,5 81 %

Table C.10 summaries the results when considering a 0,9 credibility target:
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Table C.10: Exponential Distribution: Profit maximization for 0,9 credibility target

MF Type: Average Fitness Best Solution Fitness Av. Profit Best Sol. >2500 CU

Trapezoidal 2386 2489,6 2570,3 97 %
Exponential 3212,6 3557,3 3275,3 96 %

Mapping 3832 3985 3655,4 91 %
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