
Redundant autopilot system based on COTs open source solution

Pedro Nuno Ferreira Afonso
pedro.nuno.afonso@ist.utl.pt

Instituto Superior Técnico, Lisboa, Portugal

October 2021

Abstract

Recently the unmanned air vehicle (UAV) development has been increasing due to the large number
of applications these already play at the society. Naturally, the autopilots software and hardware caught
up the UAV development. The mitigation or elimination of these system failures, which can imply
unexpected behaviours with losses to the users and to others, has become a concern. Developing a fault
detection and tolerant system to the autopilot is the main objective of this thesis. From the reliability
and redundancy concepts study, it was concluded that three autopilot units are enough to integrate
the system. After analysing some commercial-of-the-shelf open source autopilots, the PX4 firmware
was chosen. The estimation control library is the most complex module from the firmware. By default
it uses seven independent extended Kalman filter instances at the same time, offering redundancy to
the estimator level and capability for soft and hard fault detection. Each estimator health is evaluated
through its innovations and innovations variance. The decision algorithm was computed on the external
ring based on the final results from all these redundant mechanisms existing at PX4 firmware. The
selection is computed in such a decentralized way, inside each autopilot permanently on communication
with the other two. The triple redundancy system was validated running the software-in-the-loop with
the gazebo simulator.
Keywords:Unmanned air vehicle, PX4 firmware, Extended Kalman filter, Fault detection, Fault
tolerant system

1. Introduction
Automation in aviation, as in other domains, has
increased demands on the pilot to monitor systems
for possible failures. As research on vigilance has
shown, this is a role for which humans are poorly
suited.” [1]. To support this transcription, two
examples from accidents related with automation
overreliance by humans are given below. The crew
from China Airways Flight 006 preoccupied with an
engine problem, did not notice the autopilot grad-
ually loosing control of the plane and it plummeted
31 000 feet in 1985.

NASA Aviation Safety Reporting System
(ASRS) database was examined by Mosier et al.
(1994). The conclusions are: 77% of the incidents
in which overreliance on automation was suspected,
involved a probable vigilance failure as well as the
vast majority of them occurred during cruise, when
the pilot primary role was to monitor and super-
vise the automation. Under certain conditions, pi-
lot overreliance on automation can make detecting
failures problematic since pilots may ignore other
sources of information.

Unmanned aerial systems (UAS), include an
Unmanned Aerial Vehicle (UAV), a ground-based

controller and a system of communications between
the two. UAV came from the airplanes following
an historical perspective and so they belong to the
aeronautics field as well. So the framework about
automation and fault reporting systems used on air-
planes plays an important role because the knowl-
edge was adapted to develop the most recent fault
detection systems used by UAV. Some examples
from UAV applications already used: fire detection
[2], rescue operations [3], farming [4], transporta-
tion [5], law enforcement [6].

Instead of doing a new controller without guar-
anties it would be better than many others already
on the market, the following objectives were pro-
posed for this project:

1. Decrease the autopilot failure probability or in-
crease its reliability;

2. Design a fault tolerant system with redundant
autopilots integration;

3. Use commercial-off-the-shelf(COTS) open
source autopilots;

4. Demonstration of proof of concept of the pro-
posed solution. Validate the system running

1



on the software-in-the-loop with an UAV quad-
copter model.

This project was made in collaboration with
Ceiia, Centre of Engineering and Product Devel-
opment. Ceiia has been working in partnership
with the Portuguese Air Force doing various mis-
sions with the UAS-30, figure 1.3, using different
payloads. It is intended to apply the designed sys-
tem to the UAS-30 in the future.

Figure 1: UAS30 from Ceiia [7]

2. Background
Unmanned aerial systems are divided in two subsys-
tems, the Ground Station and the Airborne, figure
2. The communications are present in the two sub-
system.

Figure 2: UAS integration

Ground control station (GCS) is where the mis-
sion is planned and the operation control center. It
is the machine’s interface with the human regardless
the flight mode operation with more or less auton-
omy.

The airborne refers to the flying equipment:
wings, motors, flight controllers,... The avionics
components will be focused here, mainly the flight
controller and sensors. The flight state estimator
plays a big role on the autopilot since the states
are directly used by the control unit to calculate
the outputs that will be sent to the actuators. The
PX4 autopilot firmware, by default, uses the Ex-
tended Kalman filter (EKF) for states estimation.

2.1. Fault Detection
”Fault is a deviation (of a feature) from the accept-
able, standard operational condition. Error rep-
resents an incorrect status resulting from a fault,
information inaccuracy. A fault tolerant system is
capable to perform its function properly in the pres-
ence of one or several faults. Failure is a permanent
interruption of a system ability to perform a re-
quired function.” [8]

2.2. Reliability
Defines the system capability to keep running prop-
erly while being affected by faults. It is the fault
tolerance measure from a system. The Reliability,
R(t), equation states:

R(t) = e−
∫ t
0
λ(t)dt (1)

where λ means the probability of failure which can
be considered constant to simplify (λ(t) = λ).

Depending on the system configuration, the Sys-
tem Reliability is calculated from different ways
through its components Reliability. System Reli-
ability in a serial connection (figure 3):

R(t) =

n∏
i=1

Ri(t) =

n∏
i=1

e−
∫ t
0
λi(t)dt (2)

where R(t) is the system reliability, Ri(t) is the reli-
ability from each unit, λi(t) is the failure probability
from each unit (which can be considered constant
λi(t) = λi) and n is the total number of units.

System Reliability on a parallel connection (fig-
ure 4):

R(t) = 1−
n∏

i=1

(1−Ri(t)) (3)

Figure 3: Failure in serial connection[8]

Figure 4: Failure in parallel connection [8]

Therefore to increase the system reliability,
identical components should be added in parallel
whenever possible creating redundancy.

2.3. Redundancy
”It is the process of adding identical critical com-
ponents to increase the system reliability.”[8]

A cross communication data link will be used for
data exchange between the flight controllers. For

2



the actuators selection there must be a voting sys-
tem. The system design should have a distributed
architecture ideally to achieve a greater reliability
- each subsystem do the calculations and commu-
nicates with others, so the dependence on a single
hardware is reduced because there is not a central-
ized control unit. It is demonstrated in figure 5,
there is no dependency from on flight control sys-
tem. To be a distributed architecture the software
will be decentralized too.

Figure 5: Quadruplex redundant flight control sys-
tem. A possible distributed architecture with the
voting mechanism system[8]

Adding monitoring points increases the fault de-
tection capability and speed. Therefore one moni-
toring point must be at the sensors level due to their
multiplicity and major failure probability. There
should be redundancy at the sensors. The figure
6 shows an hard sensor failure. It could be de-
tected and isolated using the middle value read from
the three outputs when compared with a threshold
value imposed by the system designer. From this
point, the advantages of using four units instead of
three are not enough to cover the increasing weight,
size and cost, since the failure probability from the
two autopilots at the same time is very low.

Figure 6: Triplex Slow-over failure[8]

3. Autopilots Overview And Autopilots Se-
lection

The Analytical Hierarchical Process [8], AHP, was
applied to choose the most suitable open source au-
topilot available on the market. The same method
was used again to find the hardware which fits bet-
ter the firmware as well as the communication pro-
tocols.

3.1. Firmware
Good application programming interface (API),
boards compatibility to run the Firmware and the
community/support were the criteria to take the
PX4 as the best option, between the Paparazzi [9],
LibrePilot[10] and Ardupilot[11].

3.2. Hardware
For the hardware identification, it was taken in
consideration the affordability, the processor clock
speed, RAM memory capacity, the available sensors
and Support. The result from the AHP method fell
on the Pixawk Cube [12]. The other considered op-
tions were the Holybro Pixhawk 4 4[13], the Beagle-
Bone Blue [14] and the Qualcomm Flight Pro[15].

3.3. Communication Protocol
The decision about the communication protocol was
based on the data rate, possible simultaneous trans-
mission directions (duplex, half duplex), data pro-
tection (error checking) and complexity (number of
wires and ports). Universal asynchronous recep-
tion and transmission (UART) was chosen while
the inter-integrated-circuit(I2C), serial peripheral
interface (SPI) were passed over.

3.4. Message Code Protocol
The data is codified for security and to be under-
stood by external systems. The PX4 uses two dif-
ferent message protocols for external communica-
tion: Micro Air Vehicle Message Marshalling Li-
brary (MAVLink) [16]) and data distribution ser-
vice real time publish subscribe (DDS RTPS [17]).

MAVLink is still the most used protocol between
UAS by far. So there is a greater support and com-
munity which brings more safety to the developer
overtakes possible problems. MAVLink is the codi-
fying protocol on the data shared between the PX4
and the external systems.

4. Redundant System Design
The PX4 autopilot was divided in two subsystems:
sensors module and flight control module. They
will be added to the new subsystem responsible for
fault tolerance: fault detection/autopilot selection
module.

The point is to raise the fault detec-
tion/autopilot selection module reliability, Ri(t),
adding a monitoring point after each sensor used by
the PX4 and to compare the values with the same
sensor type from the other two autopilots. So the
fault detection capability and speed increase and
so the fault detection module reliability increases
too. The system total reliability, see definition 2.2,
states the entire system R(t) increases if its belong-
ing subsystems Ri(t) increases.

4.1. Sensors Module
Although PX4 has already fault tolerant mecha-
nisms to isolate and mitigate sensor failures. Af-
ter the sensors data being treated, by low pass fil-

3



ters to eliminate the noise or other normal peaks,
the process uses already redundancy at the sensors
level. Throughout data comparison between sen-
sors from the same typology, it classifies each sen-
sor priority and selects the best source to use as
observation. Meanwhile the data published from
the selected sensor (the best ranked sensor from its
typology) follows to the Extended Kalman filter for
state estimation usually as observation, exception
for the inertial measurement unit (IMU).

4.2. Extended Kalman Filter
The EKF is implemented throughout the introduc-
tion of the system dynamics and the observations
linearized model relative to the current estimated
state, refining the estimation with the sensor mea-
surements. Those states are used by the control
unit [18]. The EKF computes two steps for each
iteration k, since it works in discrete time:

• Prediction - the predicted state estimate x̂−
k+1

is computed using the state estimate x̂+
k from

the previous iteration and the input u(k) (the
input is missing in this flowchart 7),

• Filtering - the x̂+
k is updated using the pre-

dicted state estimate and the current observa-
tions.

Figure 7: Flowchart of the EKF algorithm [18]

4.2.1. Dynamics Model
[19]

The EKF has 24 states, equation (4), where
the first states (q0, q1, q2, q3) correspond to the
quaternions that define the angular position (ro-
tation) from the XY Z body frame relative

to the (North, East, Down) navigation iner-
tial frame of reference and the 6 next states
VN , VE , VD, PN , PE , PD refers to the velocity and
position in the navigation inertial frame of ref-
erence. The first 10 states capture the posi-
tion information through a dynamic process model.
The states ∆ang bias x,∆ang bias y,∆ang bias z and
∆vel bias x,∆vel bias y,∆vel bias z refer to the gyro
delta angle bias and accelerometer delta velocity
bias respectively (both gyro and accelerometer be-
long to the IMU. Following the matrix columns or-
der, 4, MN ,ME ,MD and MX ,MY ,MZ represent
the magnetic field on the navigation inertial frame
and on the body frame respectively. Finally the
states VwindN

, VwindE
refers to the wind velocity on

the navigation inertial frame of reference.

X =



qn(4)
V(NED)

P(NED)

∆ang bias (xyz)

∆vel bias (xyz)

M(NED)

M(XY Z)

VwindN

VwindE


(4)

From the IMU (gyro + accelerometer),
∆ang meas and ∆vel meas are defined by:

∆ang meas =

∆ang meas x

∆ang meas y

∆ang meas z

 =

∫ tk+1

tk

w⃗dt (5)

∆vel meas =

∆vel meas x

∆vel meas y

∆vel meas z

 =

∫ tk+1

tk

a⃗dt (6)

The truth delta angles ∆ang truth are calculated
from the IMU and delta angle bias states ∆ang bias:

∆ang bias (x,y,z) =

∆ang bias x

∆ang bias y

∆ang bias z

 (7)

∆vel bias (x,y,z)) =

∆vel bias x

∆vel bias y

∆vel bias z

 (8)

∆ang truth = ∆ang meas −∆ang bias (x,y,z) (9)

∆vel truth = ∆vel meas −∆vel bias (x,y,z) (10)

The quaternion ∆quat defines the rotation from
frame k to k+1. The truth delta angle, ∆ang truth,

4



is used to calculate ∆quat using a small angle ap-
proximation:

∆quat =


∆q0
∆q1
∆q2
∆q3

 =


1

∆ang truth x

2
∆ang truth y

2
∆ang truth z

2

 (11)

To rotate the quaternion state forward from
frame k to k+1 the ∆quat is used in the quaternion
product rule:


q0
q1
q2
q3


k+1

=


q0∆q0 − q1∆q1 − q2∆q2 − q3∆q3
q0∆q1q0 + q1∆q0 + q2∆q3 − q3∆q2
q0∆q2 + q2∆q0 − q1∆q3 − q3∆q1
q0∆q3 + q3∆q0 + q1∆q2 − q2∆q1


(12)

The velocity states from frame k to k + 1
are calculated by the truth delta velocity vector,
∆vel truth, rotated from the body frame to the Iner-
tial Navigation frame, [T ]NB , and subtracting grav-
ity:

VN

VE

VD


k+1

=

VN

VE

VD


k

+ [T ]NB .∆vel truth +

00
g

 .∆t

(13)
The position estimates are updated:PN

PE

PD


k+1

=

PN

PE

PD


k

+

VN

VE

VD


k

.∆t (14)

The remaining states (IMU sensor bias, mag-
netic field and wind) use a static process model.
They do not change from k to k + 1 frame. The
accelerometer and gyroscope raw data are used as
input (u(k)) to the EKF and not as observation like
the remaining sensors.

4.2.2. Observations Model
[19]

The EKF solves this problem by linearizing the
observations model. Starting with the observations
equation [18]

zk = h [x(tk)] + vk (15)

where zk is the sensor measurement vector, vk the
observations noise and h [x(tk)] is the relation be-
tween states and the observations. Some examples
are given below.

The GPS position, barometer height and GPS
velocity are direct observations from states, so the
observation mode is trivial.

It is assumed the magnetometer to be aligned
with the body frame and experiences a magnetic
field vector which is the sum from the navigation

inertial frame rotted into body frame ([T ]NB ) and a
body frame bias:

MX

MY

MZ


meas

= [T ]NB .

MN

ME

MD

+

MX

MY

MZ


bias

(16)

In order to linearize the observations equations,
the Jacobian matrix of h(x) is obtained. This ma-
trix is called the observation matrix, H, and is given
by

Hk =

[
∂h(x)

∂x

]
x=x+

k−1

, (17)

The last observation model parameter is the ob-
servation noise covariance matrix, Rk, which is a
n× n diagonal matrix given by

Rk =


σ2
1 0

σ2
2

. . .

0 σ2
n

 (18)

Having obtained all the parameters necessary to
the computation of the EKF, the 24 states can be
estimated.
4.3. Sensor Fusion
PX4 can change the source of observations while
running the EKF. For a better understanding, a
flowchart was designed (see figure 8) relative to the
height source. The barometer is the primary source
for height determination but the GPS can be used
as height observation instead.

Figure 8: Sensor fusion example with the height
source.

5



In case of a sensor failure, it is replaced or cor-
rected by another sensor source. This process is
called sensor fusion and it is not related with the
sensors modules which replaces sensor values with
other from the same typology. Also the fault de-
tection criteria is different from the sensors mod-
ule. The observation measurements are evaluated
by their innovations or residuals, the difference be-
tween the sensor measurement (observation) and
the predicted sensor value computed through the
predicted states, z(k)− ẑk = z(k)− h(x̂−(k)).

4.4. Multi-EKF
The most recent fault detection method from PX4
uses 7 (by default) EKF running on parallel. Each
EKF is attached to one accelerometer, one gyro-
scope and one magnetometer and it cannot change
any of these sensors but the same sensor can be
attached to more than one EKF, figure 9.

The multi-EKF allows soft failures detection be-
yond the hard faults which were detected until now
by the sensors modules. The EKF selector mod-
ule judges the EKF health through the innovations
evaluation and the Bitmask flags correspondent to
the filter internal faults (numerical errors).

Figure 9: PX4 Multi-EKF mode flowchart.

The commander module from PX4 relates
the chosen/best EKF published estimator sta-
tus topic data with time periods to conclude
if the autopilot has detected an hard failure
and if it has to trigger the failsafe mode. For
the case of the condition global position valid,
condition local position valid or condi-
tion local velocity valid the interested data

from the topics refers to the innovations ex-
ceeded limits, standard deviation errors from
horizontal (eph) / vertical (epv) positions and
velocities (epv) exceeded limits, dead reckoning
time exceeded or publishing timeouts. If the
navigation keeps failing for more than 2 seconds,
the commander module changes the state to
”navigation failure”. That decision will change
three flags in the ”vehicle status” topic published
by this module: condition local position valid,
condition local velocity valid and condi-
tion global position valid. A fault tree using
the example from the global and local position flag
is represented in the figure 10.

Figure 10: Global or local position validation fault
tree used by the commander module.

More three boolean flags are deter-
mined by the commander module: condi-
tion angular velocity valid, condition attitude valid
and condition local altitude valid. The angular
velocity, the attitude and the local altitude are ver-
ified due to their importance to the navigation. The
commander module checks if those variables are up-
dated (less than 1 second from the last publish) as
well as if their values are finite. So the 6 error flags
were considered relevant for fault detection about
one PX4 unit: condition local position valid,
condition local velocity valid, con-
dition global position valid, condi-
tion angular velocity valid, condition attitude valid
and condition local altitude valid. The Com-

6



mander module publishes other flags suit-
able to evaluate crucial subsystems for the
autopilot operations: battery healthy, con-
dition system sensors initialized, failsafe and
data link lost.

The triple redundant system provides the possi-
bility to detect and mitigate faults by comparing the
system or subsystem states. When two of the three
systems agree about its state, the third one which
disagrees is probably failing. Because the chances of
two systems taking the wrong decision at the same
time are much lower. This logic will guide the sys-
tem fault detection. Therefore the mentioned six
flags relative to the estimator/sensor health plus
the other 4 flags, relative to other autopilot subsys-
tems, were chosen to be monitored and compared
with the respective flags from the others redundant
autopilots.

4.5. Algorithm Implementation
To exemplify the fault detection method imple-
mented with one flag, the figure 11 is shown. It
refers to the failsafe variable comparison between
autopilots. At this time a ’FALSE’ Boolean flag
state means there is no error. The failsafe is trig-
gered when an hard failure is detected by the PX4
itself. Like any error flags, when the fault is de-
tected, the respective error counter from the au-
topilot is increased.

Figure 11: Comparison diagram of the redundant
Boolean failsafe flag and failure counter for each
PX4 instance.

The comparisons are done inside each PX4,
since it is a decentralized and distributed system.
An extra module was added to the firmware code,
the redundancy manager.cpp, written in C++ pro-
gramming language. Also the voting process is de-
centralized, each PX4 has autonomy and computes
its own vote on the best autopilot based on the data
shared between them. All the autopilots vote on
the respective autopilot with the lowest error/faults
counter computed by themselves based on the infor-
mation they received about the 10 error flags states
from the other 2 PX4. The error counters values

are reflected on the autopilot priority (another cre-
ated variable) unless the communications between
the PX4 stand as the error origin. The autopilot
which does not communicate for more than 3 sec-
onds, has its priority immediately changed and be-
comes the last choice regardless the other two PX4
error counters values.

The autopilot priorities values are reflected on
the voted autopilot by each instance. When the
autopilots computed priorities are the same (equal
error counters values), each autopilot votes on the
autopilot numbered with the smallest value.

The first autopilot (PX4 instance 0) computa-
tion algorithm and the external selection using the
other two autopilots decisions can be visualized on
diagram 12.

Figure 12: Decentralized voting algorithm for the
first PX4 instance.

5. Experimental Results
In this chapter, the experimental methods and re-
sults are summarily described.

5.1. Experimental Setup
Sensor faults were artificially injected in the autopi-
lot for time periods through the system failure in-
jection module, on the PX4 console. Those faults
consequences are observed through logged internal
topics as well as the system reaction and fault mit-
igation in order to validate the system.

The implemented algorithm was run on
Software-in-the-loop, SITL. A quadcopter model,
”iris” was tested. Three different programs were
implemented to allow the autopilot selection. Be-
yond the fault detection module added to the PX4
firmware, two interface software were designed to
manage the communications between the autopi-

7



lot, simulator (Gazebo) and ground control sta-
tion (QGroundControl). Both interface software
forward data just from the selected PX4 instance,
accordingly to the voting system, to prevent com-
munications conflicts on the simulator and GCS
ports. So the redundancy manager programs were
designed to be the the only one communication con-
tact point from both GCS software and simulator
and to make the three PX4 instances to be invisible
to them both. Also it is desired the user experi-
ence to be transparent (one vehicle - one autopilot)
although the developer knows that three autopilot
instances are running.

The communications were done polling Trans-
mission control protocol (TCP) sockets in multi-
ple threads written in C programming language.
The simulator redundancy manager architecture is
shown in figure 13. A similar redundancy manager
was implemented for the QGC.

Figure 13: Communication protocol between PX4,
Simulator Redundancy Manager and Simulator.

The mission takes place in the PX4 default loca-
tion (Zurich, Switzerland). It was chosen a typical
survey mission where the UAV, after the takeoff, fol-
lows the Waypoints number order to up and down
throughout vertical lines on the map, see figure 14.

Figure 14: Mission plan view from QgroundControl.

For the flight log analysis were chosen the
”Flight Review” [20] software for the general
topics and its graphs visualization and the
”Plotjuggler”[21] software for specific topics inspec-
tion like the added messages from the redundancy
algorithm or other messages containing flags con-
sidered important for this project.

5.2. GPS Failure
A GPS failure was injected on the first autopilot
37 seconds after the simulation start. The dead
reckoning was triggered around the 38 seconds while
the standard deviation errors had increased in the
PX4 instance 0, see figure 15.

Figure 15: PX4 instance 0 - Dead reckoning, hori-
zontal and vertical standard deviation errors.

The instance 1 actuator controls, figure 5.2 be-
gin with instability while the instance 0, figure 17, is
the only autopilot controlling the UAV, so the other
instances are receiving the feedback from the other
autopilot control. When the instance 0 initiates the
landing phase, the other two instances show oppo-
site values to the actuators since they are not aware
of the triggered failsafe and they will do an effort
to keep the UAV on the previous route to reach
the next waypoint. Fifty seconds after the simula-
tion start, the actuator controls from the instance
1 stabilize since it has taken over the UAV and it
receives now the correct feed backs from the vehicle
answers as well as it turns back to the right position
to accomplish the mission.

Figure 16: PX4 instance 0 actuator controls (roll,
pitch, yaw and thrust).

5.3. Magnetometer Failure
Two stuck magnetometers connected to the first au-
topilot were simulated, two minutes and 27 seconds
since the simulation start, throughout the failure in-
jection command leaving the PX4 instance 0 with-
out any working magnetometer available, see figure

8



Figure 17: PX4 instance 1 actuator controls (roll,
pitch, yaw and thrust).

18. At 2 minutes and 27 seconds after the simula-
tion start, raw magnetic field strength values had
become stuck.

Figure 18: Magnetic field strength measured by the
PX4 instance 0 magnetometers.

The GPS and Magnetometer innovations test
ratios from instance 0, figure 19, are greater than
1 for a time period of 20 seconds approximately
and 30 seconds after the magnetometer fault in-
jection. The GPS (not just the magnetometer)
bad estimations, reflected on its respective in-
novations, were provoked by the magnetometer
failure too. So the fault detection is triggered
by the global position valid and local position valid
flag like it was demonstrated in the fault tree, figure
10. While the PX4 instance 1 keeps good estima-
tions with peaks around 0.005, figure 20.

The difference between the pitch, yaw and
thrust actuator control values from instance 0 (fig-
ure 21) to the instance 1 (figure 22) until the third
minute are explained by a different first waypoint
on the uploaded mission by the QGC, nothing re-
lated with faults.

The landing maneuver caused by the failsafe
mechanism is visible on the first autopilot, figure 21,
at 3 minutes and 10 seconds decreasing the thrust.
The landing phase also confuses the second autopi-
lot, figure 22, which tries to contradict the maneu-
ver not commanded by itself. After taking over the
vehicle control, the thrust returns to same initial
value from the instance 0 as well as the roll, pitch
and yaw which turns 0. Now it is the instance 0 turn
to try contradicting the maneuver commanded from
the instance 1.

6. Conclusions
The main objective for this project was to design
a redundant autopilot system to increase its relia-

Figure 19: PX4 instance 0 innovations test ratios.

Figure 20: PX4 instance 1 innovations test ratios.

bility when compared with a single autopilot. The
reliability and redundancy concepts were applied to
choose the system architecture and the number of
units in order to get the best results considering the
trade-off with complexity and weight. In the end,
a triple redundancy system with distributed archi-
tecture was chosen as the best approach.

The PX4 was considered the best autopilot to fit
on this triple redundancy system. MAVLink pro-
tocol was chosen for the autopilots external com-
munications. The system design was implemented
reaching a solution which benefits from the fault de-
tection systems existing at PX4 such as the sensor
fusion and the multi-EKF.

The simulation results obtained from the de-
signed system of this project when GPS, magne-
tometer and PX4 communication failures occurred
are summarized on the table 1. It was filled with
the time periods for fault detection followed by the
autopilot substitution. The magnetometer failure
took more 37 seconds to be detected than the GPS
failure meaning the PX4 relies more on GPS than
on Magnetometer. The PX4 was able to control the
vehicle properly for a longer period without mag-
netometers. The PX4 communication failure is the
fastest to be detected. However 7 seconds is still a
lot of time in flight for the actuators to be locked

9



Figure 21: PX4 instance 0 actuator controls (roll,
pitch, yaw and thrust).

Figure 22: PX4 instance 1 actuator controls (roll,
pitch, yaw and thrust).

by an autopilot without heartbeat. In the case of
GPS and magnetometer failures, the PX4 failsafe
mechanisms were triggered before the autopilot ac-
tuators control changed. Because two seconds are
needed, at least, to update the error counters and
the correspondent vote. To avoid the trajectory de-
viation, the fault detection speed of the system has
to increase and so the time between the iterations
(to check the error flags and to communicate with
other autopilots) is decreased. Although the heavy
computational communications from the interface
programs limits the available computer resources.
Just running the software on a powerful processor
allows to reduce the time between iterations in real
time without loosing program threads.

This project, while achieving the objectives set,
has a lot of potential for further advancements.
System validation for accelerometer and gyroscope
faults or for the QGC communication fault with the
correspondent error flag data link lost already im-
plemented on the algorithm. Hardware-in-the-loop
validation and in the UAS-30 real flight are the last
steps.

Table 1: Fault tolerance time performance of the
system.

Failure Typ. GPS Mag. Comm.

FD Time Period (s) 6 43 4

PX4 Substitution (s) 10 46 7

Acknowledgements
The author would like to thank his supervisors,
Prof. Alexandra Moutinho and Eng. Renato
Machado , for all their support during the project;
Centre of Engineering and Product Development

(Ceiia) for providing all the available resources to
design and test the software.

References
[1] Robert Molloy and Raja Parasuraman. Monitoring an auto-

mated system for a single failure: Vigilance and task com-
plexity effects. Human Factors, June 1996.

[2] C. Sathiya Kumar S. Sudhakar, V. Vijayakumar. Un-
manned aerial vehicle (uav) based forest fire detection and
monitoring for reducing false alarms in forest-fires. Pre-
proof, 2019.

[3] Lukasz Kuziora Marzena Pólkaa, Szymon Ptaka. The use
of uav’s for search and rescue operations. In TRANSCOM
2017: International scientific conference on sustainable,
modern and safe transport. Elsevier Ltd, 2017.

[4] Panagiotis Sarigiannidis Panagiotis Radoglou-
Grammatikis. A compilation of uav applications for
precision agriculture. Pre-proof, 2020.

[5] John C. Golias Emmanouil N. Barmpounakis, Eleni I. Vla-
hogianni. Unmanned aerial systems for transportation engi-
neering: 4 current practice and future challenges. Interna-
tional Journal of Transportation Science and Technology,
2017.

[6] DRONEFlY. Police drone infographic. https://www.
dronefly.com/police-drone-infographic. Accessed on: 28-
11-2019.

[7] Ceiia. Uas-30. https://www.ceiia.com/
single-post/2017/09/15/SEGUNDA-GERA%5C%C3%5C%
87%5C%C3%5C%83O-DO-UAS30-DO-CEIIA-J%5C%C3%5C%
81-TEM-ASAS-PARA-VOAR. Accessed on: 28-11-2019.

[8] Bertinho D’Andrade da Costa and Agostinho da Fon-
seca. Support text slides from Integrated Avionic Systems
course. Instituto Superior Técnico, Universidade de Lisboa,
2017/2018.

[9] Paparazzi Autopilot Developer Guide. https://wiki.
paparazziuav.org/wiki/Developer_Guide.

[10] LibrePilot Developer Guide. https://librepilot.
atlassian.net/wiki/spaces/LPDOC/pages/2818105/Welcome.

[11] ArduPilot Developer Guide. https://ardupilot.org/dev/
index.html.

[12] Cube autopilot technical report. Technical re-
port, Pixhawk, https://ardupilot.org/copter/docs/
common-thecube-overview.html.

[13] Holybro pixhawk autopilot technical report. Technical re-
port, Pixhawk, https://github.com/ArduPilot/ardupilot/
blob/master/libraries/AP_HAL_ChibiOS/hwdef/Pixhawk4/
README.md.

[14] Beagle bone blue technical report. Technical report, Beagle
Boards, https://beagleboard.org/blue.

[15] Qualcom technical report. Technical re-
port, Lantronix, https://www.intrinsyc.com/
qualcomm-flight-pro-development-kit/.

[16] Micro Air Vehicle Message Marshalling Library Aviation,
Volume I - Radio Navigation Aids. https://mavlink.io/
en/guide/define_xml_element.html.

[17] Real Time Publishers and Subscribers - ROS2 Interface.
http://dev.px4.io/v1.9.0/en/middleware/micrortps.html.

[18] Fernando Duarte Nunes. Sistemas de Controlo de Tráfego
- Apontamentos das Aulas. Instituto Superior Técnico,
Universidade de Lisboa, 2017.

[19] Estimation Control Library Dynamics Model Github
page. https://github.com/PX4/PX4-ECL/blob/master/EKF/
documentation/Process%20and%20Observation%20Models.pdf.

[20] PX4. Flight review. https://review.px4.io/.

[21] Marxlp. Px4 flight log visual analysis tool. https://
plotjuggler.io/#one.

10

https://www.dronefly.com/police-drone-infographic
https://www.dronefly.com/police-drone-infographic
https://www.ceiia.com/single-post/2017/09/15/SEGUNDA-GERA%5C%C3%5C%87%5C%C3%5C%83O-DO-UAS30-DO-CEIIA-J%5C%C3%5C%81-TEM-ASAS-PARA-VOAR
https://www.ceiia.com/single-post/2017/09/15/SEGUNDA-GERA%5C%C3%5C%87%5C%C3%5C%83O-DO-UAS30-DO-CEIIA-J%5C%C3%5C%81-TEM-ASAS-PARA-VOAR
https://www.ceiia.com/single-post/2017/09/15/SEGUNDA-GERA%5C%C3%5C%87%5C%C3%5C%83O-DO-UAS30-DO-CEIIA-J%5C%C3%5C%81-TEM-ASAS-PARA-VOAR
https://www.ceiia.com/single-post/2017/09/15/SEGUNDA-GERA%5C%C3%5C%87%5C%C3%5C%83O-DO-UAS30-DO-CEIIA-J%5C%C3%5C%81-TEM-ASAS-PARA-VOAR
https://wiki.paparazziuav.org/wiki/Developer_Guide
https://wiki.paparazziuav.org/wiki/Developer_Guide
https://librepilot.atlassian.net/wiki/spaces/LPDOC/pages/2818105/Welcome
https://librepilot.atlassian.net/wiki/spaces/LPDOC/pages/2818105/Welcome
https://ardupilot.org/dev/index.html
https://ardupilot.org/dev/index.html
https://ardupilot.org/copter/docs/common-thecube-overview.html
https://ardupilot.org/copter/docs/common-thecube-overview.html
https://github.com/ArduPilot/ardupilot/blob/master/libraries/AP_HAL_ChibiOS/hwdef/Pixhawk4/README.md
https://github.com/ArduPilot/ardupilot/blob/master/libraries/AP_HAL_ChibiOS/hwdef/Pixhawk4/README.md
https://github.com/ArduPilot/ardupilot/blob/master/libraries/AP_HAL_ChibiOS/hwdef/Pixhawk4/README.md
https://beagleboard.org/blue
https://www.intrinsyc.com/qualcomm-flight-pro-development-kit/
https://www.intrinsyc.com/qualcomm-flight-pro-development-kit/
https://mavlink.io/en/guide/define_xml_element.html
https://mavlink.io/en/guide/define_xml_element.html
http://dev.px4.io/v1.9.0/en/middleware/micrortps.html
https://github.com/PX4/PX4-ECL/blob/master/EKF/documentation/Process%20and%20Observation%20Models.pdf
https://github.com/PX4/PX4-ECL/blob/master/EKF/documentation/Process%20and%20Observation%20Models.pdf
https://review.px4.io/
https://plotjuggler.io/#one
https://plotjuggler.io/#one

	Introduction
	Background
	Fault Detection
	Reliability
	Redundancy

	Autopilots Overview And Autopilots Selection
	Firmware
	Hardware
	Communication Protocol
	Message Code Protocol

	Redundant System Design
	Sensors Module
	Extended Kalman Filter
	Dynamics Model
	Observations Model

	Sensor Fusion
	Multi-EKF
	Algorithm Implementation

	Experimental Results
	Experimental Setup
	GPS Failure
	Magnetometer Failure

	Conclusions

