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Abstract

Harmful Algal Blooms (HABs) have been a rising issue not only due to environmental concerns,
but also public health due to possible shellfish contamination. In Portugal, frequent analysis are ran
by Instituto Português do Mar e Atmosfera (IPMA) to assess the quality of the water and its fauna,
such as the shellfish and subsequently allow (or stop) its gathering and commercialization. These
analyses, however, could be complemented and the swiftness of the fishing activity interdiction could
be improved. For this, machine learning methods can be used to analyse temporal data (in the form
of time series) in order to forecast the contamination of shellfish. This temporal data is gathered and
compiled from the historical data present on IPMA’s website which is released periodically at equal
intervals, allowing a consistent time slices of the built time series. Several methods are presented and
reviewed in this paper, which will be applied to collected data (that extend from the above mentioned
time series to other environmental variables) in order to complement existing analysis work, which will
also be extended through the usage of MAESTRO - an online tool for multivariate time series analysis.
With this report and subsequent work - data collection, processing and forecasting, we will develop
methods to support the prediction of shellfish contamination in Portugal’s shoreline. No paragraph
breaks.
Keywords: Harmful Algae, Marine Biotoxins, Time Series, Machine Learning; Forecasting

1. Introduction

Harmful Algal Blooms (HAB) are a worldwide con-
cern becoming more frequent (and discovered, as
some are still unknown and being found) and oc-
curring in larger areas. Multiple poisoning syn-
dromes exist and are derived from the consumption
of shellfish contaminated with HABs - paralytic, di-
arrhetic, neurotoxic, amnesic and azaspiracid[23].
Most marine toxins are produced by dinoflagel-
lates. An exception is the domic acid, the am-
nesic poisoning toxin, which is produced by di-
atoms of the Pseudo-nitzschia genus. [26]. Por-
tugal’s national monitoring of HAB’s is done by
the Portuguese Institute of the Sea and Atmosphere
(IPMA - Instituto Português do Mar e Atmosfera)
. The monitoring is done through various methods
of biotoxin level surveys which lead to the different
result bulletins published all over the world (com-
plexity can even be different); these reports rely on
a large amount observed data, from satellite im-
agery of ocean colour and historical trends to fore-
casts of bloom progression and even public health
reports[26]. The portuguese HAB report is a weekly
bulletin released in order to (in a concise and simple

manner) inform on the harvestability of shellfish in
the multiple zones of Portugal’s coastline, which is
divided in 9 main areas (L1-L9) as shown in Figure
1 some of which are subdivided into smaller areas.

Figure 1: The 9 main areas of Portugal’s coastline
(with some respective subdivisions - totaling 40).

HAB rates have been increasing[9] and changing
at alarming enough rates[11] to warrant more care
and the development of more accurate studies in or-
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der to avoid the harvest of potentially contaminated
shellfish and subsequently commercialize it, causing
a public health issue that could have been avoided.
There are a lot of sectors affected by this issue that
are not obvious at first glance. Not only is this
a complex concern that tackles many sectors and
needs to be further researched by the scientific com-
munity over time, but a simple error in the analysis
that deems a contaminated shellfish sample as mar-
ketable and consumable is a serious public health
hazard that should be avoided at all costs[18][17].
These incorrect assessments do not end at a public
health level but also on a production and market
level - economic sectors, especially related to shell-
fish and marine food in general can have serious
repercussions[22] and profit reductions.
Timing is essential and as such, early warning

of HABs presence and its statistics - time, loca-
tion (within the coastline areas) and magnitude is
crucial information in order to control the coastal
zones and the respective aquacultures and fishing
practises in them; this allows to enhance business
plan practises and ensures the best possible bene-
fit for public welfare health wise[6]. Despite being
a big concern, other factors must be collected and
studied in order to accomplish the task of forecast-
ing seafood contamination[15]. With this work, the
collection of the necessary factors/variables and re-
spective studying in the form of time series should
provide the desired results in order to assist the var-
ious affected sectors (ranging from economical to
public health) in the resolution of the issues men-
tioned above. The data was obtained from two
key sources: IPMA’s website itself which presents
on a weekly basis a bulletin of the toxin levels
in the shellfish in each area of the coast, the re-
spective shellfish species and where the samples
were taken. Copernicus is European Union’s Earth
observation programme; it studies the planet and
its environment and offers information drawn from
satellite observations and in-situ (non-space) data
[1]. Copernicus will thus, be a valuable source of
information to extract further data such as Chloro-
phyll and Sea Surface Temperature (SST).

2. Background
2.1. Time Series
Time Series (TS) are a series/collection of data
points recorded through time in constant intervals,
which are then modelled in order to determine pat-
terns and the evolution of the series through time
so as to forecast and predict future values[5]. A
common notation to represent TS is the following:

X = {Xt : t ∈ T}, (1)

where T is the index set.
Time series to be worked within this thesis will

be both univariate and multivariate, with a focus on
the former. Multivariate Time Series (MTS) consist
of a time series where multiple variables change over
time[14]. This differs from a Univariate Time Series
where only one variable changes through time, as
the name suggests.

2.2. Stationarity
A time series is stationary if its statistical proper-
ties (mean and variance) do not change in regular
time intervals - there is no variable distribution over
time. This is a property very useful for analyzing
and modelling, so much that even most models as-
sume this property in order to give a more complete
analysis result.

2.3. Seasonality
Seasonality concerns certain patterns that occur
frequently over time (called seasonal variation)[7].
Seasonality is important for the analysis of time-
series because it can be removed or studied, the lat-
ter of which is preferable in this case, as it can give
new (and more) information to improve the applied
model’s performance. In the case of this project,
there are certain variables that can be grouped into
certain seasonal clusters: temperature and moon
phases (and consequently the tides of the sea), for
example. Stationarity is correlated with seasonality
in the sense that a seasonal time series is not sta-
tionary due to the seasonal aspect’s presence caus-
ing the time series to change values at different
times and thus, stripping it of its stationary prop-
erty.

2.4. Autocorrelation Function (ACF)
Represents variability in the attributed by measur-
ing and comparing observations with a lagged ver-
sion of themselves and thus, determining pattern
changes with the progression of time. It will be an
important metric in this thesis to measure how ac-
curacy measures should be applied to evaluate the
quality of the models that will be reviewed further
in this section. Autocorrelation is usually repre-
sented through a graphic to better help visualize
how the time series works[13]. Eq.2 showcases how
ACF is calculated, essentially being the result of
the division between the covariance and variance
for any lag of value k time steps preceeding time
step i ∈ T .

rk =

∑T
i=k+1(yi − y

′
)(yi−k − y

′
)∑T

i=1(yi − y′)2
(2)

2.5. Partial Autocorrelation Function (PACF)
Is similar to the ACF above, but partial autocorre-
lation only compares observations among time se-
ries variables and their lagged values without the
correlation between all lags in between, so for ex-
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ample, the partial autocorrelation of a certain lag
k is the equivalent of the autocorrelation between
a variable yi and the lagged value yi − k that does
not have values for lags 1 through k− 1 - those lin-
ear dependencies are not accounted for[13]. Eq.3
showcases this mathematically.

rk =

∑T
i=k+1(yi − y

′
)(yi−k − y

′
)∑T

i=k+1(yi − y′)2
∑T

i=k+1(yt−k − y′)2
(3)

2.6. Akaike Information Criterion (AIC)

The Akaike Information Criterion (AIC) is one of
the most commonly used information criteria - it
is an estimator of model selection based on out-of-
sample prediction error[30]. It focuses on selecting
a model (out of the given set - a cadidate set) that
minimises the relative amount of lost information;
this criterion is defined by the following formula:

AIC = −2 ln(L) + 2p, (4)

where L represents the likelihood under the evalu-
ated model and p is the model’s number of param-
eters.

2.7. Bayesian Information Criterion (BIC)

Another commonly used information criteria is the
Bayesian Information Criterion - similar to AIC, it
differs in the second component of its representa-
tion:

BIC = −2ln(L) + pln(n), (5)

where L and p are, respectively, the same as the
ones in AIC - the likelihood under the evalu-
ated model and the number of parameters of the
model[28]. BIC adds a new variable into account
- n, which represents the sample size (number of
instances of the train set the model is fitted for).

2.8. Mean Squared Error

The Mean Squared Error (MSE) is a loss function
that measures the average of the squared difference
between the forecast observations and the actual
ones (the error). It is measured through the follow-
ing formula:

MSE =
1

n

n∑
i=1

(xi − x′
i)

2, (6)

where xi is the observed value, x′
i is the predicted

value and n represents the length of the time-series.
Due to it being a mean ( 1n

∑n
i=1) of the square of the

error (((xi − x′
i)

2)), its aim is to select models that
have the lower difference for each datapoint, thus a
smaller MSE represents smaller average errors and
thus, a better performing model.

2.9. Root Mean Squared Error
The Root Mean Squared Error (RMSE) is another
metric that measures differences between sample
values and their predicted versions by the trained
model. It is written as:

RMSE = [
1

n

n∑
i=1

(xi − x′
i)

2]
1
2 =

√√√√ 1

n

n∑
i=1

(xi − x′
i)

2.

(7)

2.10. Mean Absolute Percentage Error
The MAPE - Mean Absolute Percentage Error ex-
presses the prediction accuracy of a model through
the following ratio:

MAPE =
1

n

n∑
i=1

(|yi − y′i
yi

|). (8)

2.11. Autorregressive Model (AR)
An Autorregressive model (AR) is a regressive
model that has its observations (values) depend on
previous (lagged) observations - the variable is mod-
eled through a linear combination of lagged values
of that variable.

As such, an AR(p) model can be defined as:

xt = c+ φ1xt−1 + φ2xt−2 + ...+ φpxt−p + at (9)

Where φ1, φ2, ..., φp stand for coefficient parame-
ters, p stands for the number of lagged values used
and at is the random term of the data (or white
noise) which follows a white noise process (WN):
at ∼ WN(0, σ2). c represents a constant.

2.12. Moving Average Model (MA)
The MAmodel (or Moving Average Process) defines
the output variable using a regression model on the
past value errors - the lagged white noise values.
An MA(q) model can be written as:

xt = c+ θ1at−1 + θ2at−2 + ...+ θpat−p + εt (10)

Where q is the number of lagged values used
(much like p for the AR model), θ1, θ2, ...θq are co-
efficient parameters, at, at−1, ..., at−q are the white
noise error terms[29]. Like the AR model, it can be
re-written as:

xt = c+

q∑
j=1

(θjat−j) + at (11)

2.13. Autorregressive Moving Average Model
(ARMA)

The Autorregressive Moving Average (ARMA)
model mixes both an AR(p) model and an MA(q)
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model and is thus usually written as ARMA(p,q).
As it logically implies, it is a composition between
the two previously mentioned and described models
and can be expressed as:

xt = δ +

p∑
i=1

(ϕixt−i) +

q∑
j=1

(θjεt−j) + εt (12)

Where δ is the constant term of the model, ϕi

represents the autorregressive coefficient, θj is the
moving average coefficient, εt illustrates the error
term at time t and Xt is the observed value at time
t [19].
Since ARMA is made of an AR(p) and MA(q)

model combination, it is possible to generate its two
counterparts due to the formula compositions:

• ARMA(p,0) is written as follows:

xt = δ +

p∑
i=1

(ϕixt−i) +

0∑
j=1

(θjεt−j) + εt (13)

= δ +

p∑
i=1

(ϕixt−i) = AR(p) (14)

• ARMA(0, q) leads to the following equation:

xt = δ +

0∑
i=1

(ϕixt−i) +

q∑
j=1

(θjεt−j) + εt (15)

= δ +

q∑
i=j

(θjεt−j) + εt = MA(q) (16)

2.14. Autor regressive Integrated Moving Average -
ARIMA

ARIMA - Autorregressive (AR) Integrated (I) Mov-
ing Average (MA) model takes the core Autorre-
gressive Moving Average model and combines both
autorregressive and moving average processes build-
ing a model that also differences a time series in
order to achieve its stationarity[19]. An ARIMA
model is typically described as ARIMA(p,d,q) and
is written as such:

(1−
p∑

i=1

αiL
i)xt = (1 +

q∑
i=1

θiL
i)ϵt (17)

2.15. Random Forests
Random Forests (RF) are an ensemble learning
algorithm[12] that build a set of decision trees that
are then trained and are then used for classification
or regression. By training each tree with a random
set of data samples, the learnt results are the multi-
ple uncorrelated trees built during training[2]. The
trees will use a fixed value of features, randomly
picked, to split the nodes and help with classifica-
tion and/or prediction. By using a subset of the

total features, combined with the usage of multiple
trees, this minimizes the chances of overfitting (like
a single tree would be more subject too) and thus,
prediction errors associated with it[16]. The learnt
smaller models (the trees) are then combined into
a single prediction result. These methods can go
from a majority voting for categorical attributes or
an average for numerical attributes. In this work,
Random Forests were used as regressors - each node
splits into two other nodes until it reaches the leaves
(the final node, determined by the RF’s depth value
- determined by the user), which have the aver-
age of the observations in them. The motivation
to use RF’s in this work was helped by existing
research in this theme - Cheng et al.[4] used an
Interative Random Forest (iRF) to determine the
impact of nutrient conditions on algal abundance
and also explore the interactions between microbial
abundances and phytoplankton in order to better
understand how bacteria and HABs interact with
one another. The conclusions drawn proved inland
nutrient fluxes were more relevant as the oceanic
fluxes proved more volatile due to climate oscila-
tions (and adding the variability of precipitation
and upwelling). Other RF studies also proved fruit-
ful: Valbi et al. [25] used an RF model to forecast
paralytic toxin concentrations (Alexandrium minu-
tum) in the Adratic Sea. By forecasting one week
ahead of time and including upwards of 18 variables,
the results were satisfying: the model correctly clas-
sified more than 85% cases of presence (or absence)
of the (Alexandrium minutum) dinoflagellate. Fur-
thermore, a second test was used where it lead to
the conclusion that nutrient concentrations are not
needed to ensure an a high-performing model so
the second model was preferred during the study
for practical issues.

2.16. Bayesian Networks (BN)

BN’s are statistical models that represent attributes
and their conditional dependencies in a directed
acyclical graph (DAG)[27]. Bayesian Networks are
very effective in the prediction of the likelihood of
specific attributes triggering a certain outcome in
an event as they use Bayesian inference to model
conditional dependence through edges that connect
the related variables through nodes thus creating a
DAG that models causation between the variables
of a dataset.

Taking the example with node C, which splits
into child nodes D and E, we can see an edge con-
necting C and D so, P (D|C) is a probability to be
taken into account in joint probability distributions
- this way, probabilities associated with B and A
(C’s parent nodes) must be known to calculate any
inferences related to these attributes.

To give a simple example, we can write the Bayes
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rule of posterior probability, P (D|C), given P(D)
and the likelihood P (C|D):

P (D|C) =
P (C|D)P (D)

P (C)
(18)

Which can be simplified into one of the funda-
mental rules of probability:

P (D|C) =
P (D,C)

P (C)
(19)

In the case of conditional independence, such as
D and E, then we can simplify certain probabilities
that involve these conditionally independent vari-
ables:

P (D|C,E) = P (D|C). (20)

This way, we can define the whole structure of a
BN by specifying the probability distributions of all
nodes with parents and the probabilities of the root
node (or nodes, should there be more than one).

2.17. Dynamic Bayesian Networks
Dynamic Bayesian Networks (DBNs) are a gener-
alization of Hidden Markov Models which can be
represented as the simplest form of a DBN [21].
Due to the time properties of the data of this work,
Bayesian Networks do not work very well in rep-
resenting these temporal dependencies that are so
characteristic of time series; they are, however, a
good base for Dynamic Bayesian Networks which
can actually model and work with data that is time
dependent (that evolves over time and can be called
dynamic as a result of that, thus the name).
DBNs extend the regular BN notion to allow

modelling of time influences, ergo, modelling dy-
namic systems/data such as the time series in this
work. Similar to a BN, comprised on nodes and
edges, the DBN formally introduces time slices into
the network’s architecture, as now there’s a tempo-
ral connection between variables and thus, condi-
tional probabilities exist between variables at dif-
ferent time slice points. it is worth noting DBNs
follow the first order Markov property of only the
immediate past affects the state of a system at any
time slice t. So, for any node x in the network’s
node set, a transition from time slice t-1 to t has
the probability

P (xt|xt−1) (21)

for any node x in the network’s node set. It is, in-
tuitively, well suited to represent markov processes.
So we can represent the join distribution through a
chain of time slices for a certain variable X:

P (X1:T ) = P (XT |X1:T−1) (22)

Where X1:T is a sequence X1, ..., Xt, ..., XT

Overall, a DBN is a factorisation of a probability
distribution where time slices are present, through
composite states at each time slice t. Variables
in different time slices can have relations between
them, thus originating more edges in the network.
A DBN factorisation can be written as:

P (X1:T ) =
∏
t

∏
i

P (Xt,i|pa(Xt,i)) (23)

Where i groups variables in a same time slice and
pa(X) represents the parents of X in the network.
In the field of medical data analysis, it is frequent
to adopt the simpler first order Markov property in
order to simplify the model, making the future de-
pendent only on the present. Intuitively, it makes
sense as the present health status gives the better
information about the future status, and not the
past ones. A similar approach should be used for
the context of the data analysis required in this the-
sis.

2.18. Artificial Neural Networks
ANN implementations were originally aimed at
solving problems in a similar manner to the human
brain but over time they have proven excellent in
certain fields, such as biology and speech recogni-
tion. Neurons are represented by nodes and are
connected between edges. Neurons and edges usu-
ally have weights assigned to them that are adjusted
the further the NN is trained. Neurons are aggre-
gated into layers and thus, ANN’s typically have
three main layers: the input layer, the hidden layer
and the output layer.

The input received in the first layer is processed
in the hidden layer which is made of several neurons,
possibly spread between several sub-layers; each
value is affected by an activation function present in
the hidden layer’s neurons, which can be a sigmoid
for example, among many others; different layers
can have different input transformations and are
then sent through the connected edge to the next
set of neurons to repeat the process.

There have been researches done in this field,
namely in Recknagel et al. (1997) where ANNs were
trained to forecast and try to prevent or detect in
time an algal bloom[20] in lakes. One of the lakes,
Lake Kasumigaura, obtained great results, having
its ANN predict the timing, magnitude and succes-
sion of algal blooms, even using independent data
not used in the training process.

2.19. Gradient Boosting (and XGBoost)
Gradient Boosting is a technique that works for
both classification and regression alike - it essen-
tially ensembles weak prediction models (such as de-
cisions trees, which will be used here) into stronger
ones by optimizing the model performance[8]. The
ensemble part is similar to the one seen in a

5



Random Forest Regressor already approached - it
builds a final model from the combination of learnt
smaller/individual models.
The gradient component derives from the typical

Gradient Descent seen in Neural Networks - mul-
tiple model predictions are combined in order to
iterate improvements on following assembled trees.
Chen, et al.(2016)[3] studied Friedman’s Gradi-

ent Boosting documentation [8] and developed XG-
Boost, achieving a state-of-the-art machine learning
method that has proven vastly effective in both re-
gression and classification supervised problems.
Describing their algorithm, it uses K additive

functions are used to predict an output through a
tree ensemble model:

y′i =

K∑
k=1

fk(xi), fk ∈ F, (24)

where F is the space of regression trees (CART).
XGBoost proceeds to learn the functions used by
minimizing a regularized function:

L =
∑
i

l(y′i, yi) +
∑
k

Ω(fk), (25)

where l is a differentiable convex loss function
that measures the difference between the prediction
and the actual value (y′i and yi respectively) - this is
the case because it’s easier to use a convex loss func-
tion to find global optimums (since we’re speaking
of loss functions, these optimums are generally rep-
resented as minimums). A property of these func-
tions is that local minimums are global minimums
thus optimization algorithms like the gradients used
here, can be used to find optimal results globally.
Ω is the model complexity that serves to regularize
trees. It is defined as:

Ω(f) = γT +
λw2

2
, (26)

Here, γ represents a gain threshold - should the
calculated gain surpass γ’s value, then that branch
can be generated (partition of a leaf node) as it has
sufficient gain. λ portrays a regularization parame-
ter (L2) and helps to avoid over-fitting.
XGBoost has shown excellent performance

in both forecasting, such as with crude oil
prices(Gumus et al. [10]) and classification, such as
Torlay et al.[24] which managed to classify patients
with epilepsy with an AUC (Area-Under-Curve)
mean score of 91%.

3. Implementation
The process of data collection proved to be a big-
ger challenge than expected as, for instance, the
time series changed over time for numerous reasons
(this following list will refer to values seen in the

Lipophilic Toxin values of the biotoxins as they were
the ones mainly studied in this work):

Zones changed names over the years and some
were even introduced throughout the years while
toxin value thresholds also changed over time - ear-
lier in 2015/2016 being 850 (any value above it was
simply referenced as 850 µg per kilogram of okadaic
acid and equivalent toxins. In 2017 that value was
lowered to 625 and since 2018 it has stayed at an
even lower value of 550 (with no changes regarding
units and measures). These value changes do not
affect the study of the series in a major manner but
it is worth noting that valuesof previous thresholds,
such as 625 or even 800 would be accounted for orig-
inally while now, those values will be regarded as
the much lower value of 550, which can affect some
model performance due to the reduced range of val-
ues, leading to possible missing value fluctuations
that we could observe in 2015’s threshold value of
850.

Regarding the phytoplankton data, other chal-
lenges needed to be taken into account, such as:

Other species of Phytoplankton have started be-
ing accounted for and quantified in the monthly
IPMA report. Inititally (in 2014) the reports ap-
proached quantifications of specific species which
were replaced since late 2014 by a generalization
- DSP producing phytoplankton were all bundled
into a single variable (no information on which
species were studied are present) and the same ap-
plied to ASP and PSP producing species. In early
2017, 2 new categories were added: Yessotoxin and
Azaspiracid producing species. Starting 2018, the
Azaspiracid category was removed and later in May
2018 was added back, alongside 5 new variables.
The existing variables were altered and split as the
monthly data changed into 10 total variables that
now mention the class of phytoplankton and the re-
spective toxins they produce.

Also starting in May 2018, data values also
changed. Before, values were frequently marked as
zero in the tabular data, signifying that an area has
no toxin-producing algae of that category. After
May 2018, however, data became frequently marked
as < LD which means Below Threshold , replacing
the zeroes seen in the data until that point.

Biotoxin data also has values that are categorical
instead of numerical and had to be replaced in the
data; these values are:

• ND represents a value that is deemed Not-
Detected as the analysis devices couldn’t detect
the little to no amount present in the collected
shellfish sample.

• NQ dictates the analysis sample has a toxin
rate that was detected but was too low
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to be quantified (thus, NQ stands for Not-
Quantifiable).

• NR is the final categorical value that means
Not-Done, meaning the sample wasn’t anal-
ysed and as such, this logically represents a
missing value in our data.

For the PDF data available online, an automatic
extraction tool was developed to allow the user,
through a simple command line, to extract any data
file directly from the IPMA website and save it lo-
cally - an added feature of conversion from PDF to
CSV format is also present to not only download the
data, but download it in a format easier to process.
All the above information was related to the data

collection and treatment process of IPMA’s data
files but more work was dedicated to acquiring fur-
ther data related to missing (but possibly meaning-
ful and correlated) features and as such, through-
out development Copernicus data was also gath-
ered. The features extracted were the chlorophyll
and Sea Surface Temperature (SST) values which
were then appended to the various time series used
in this study.
For pre-processing, the first thing required was

filling the missing values as mentioned above and
the following graphics and analysis will have its
missing values replaced by the mean of the remain-
ing values in the dataset.
One of the first things was to see how the toxin

rates evolved over time. Additionally, more atten-
tion was given to the Lipophilic toxins as they are
the most predominant in Portugal and suffered the
most changes over time - Amnesic and Paralytic
had very few noticeable variations over the course
of the 4 year dataset that was studied, proving to
be much less fruitful datasets to work with.
The Wedge-Clam L8 dataset was chosen to be

studied and forecast. It suffered a train/test split on
the start of November 2019 - November and Decem-
ber consisted of seven total data points the models
would be evaluated on - the remaining time period
before that is the training set and is comprised of
the remaining 159 data points - forecasting results
will be shown in the Results section.
For a multivariate time series analysis process,

an online Time Series Analysis through Dynamic
Bayesian Networks was used: MAESTRO. The
same pre-processing procedures seen in Chapter 3
were applied to the RIAV dataset for the cockle
shellfish - specifically, RIAV1, RIAV2 and RIAV3.
These were also complemented using SST, Chloro-
phyll and their respective phytoplankton data,
making the dataset use a total of eight variables
to observe how MAESTRO’s modeled trees linked
these variables among each other (and obtain pos-
sible causal relations between them).

Figure 2: Below Threshold (ND and NQ) value
counts in the RIAV1, RIAV2 and RIAV3 time se-
ries, with respective rate percentage.

4. Results
4.1. Forecasting for the L8 zone

For the forecasting of the L8 Wedge-Clam time se-
ries, several models were applied. Figure 3 shows
the model’s forecasting of the test set.

Figure 3: XGBoost forecasting performance on the
time series

Besides XGBoost, a Random Forest Regressor
was used, as well as an ARIMA model.

Figure 4: MAE metric results for each model
trained with the Wedge Clam dataset on the L8
area.
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Figure 5: MSE metric results for each model trained
with the Wedge Clam dataset on the L8 area.

Figure 6: RMSE metric results for each model
trained with the Wedge Clam dataset on the L8
area.

Figure 4 shows that the Mean Absolute Error
(MAE) was relatively low in 2 particular models,
who achieved a score of under 100, those being the
XGBoost and AutoARIMA model. As for the MSE,
Figure 5 shows that AutoARIMA and XGBoost
models obtained a respectable value that comple-
ments their good performance on the MAE evalua-
tion and the RMSE evaluation, seen in Figure 6.

4.2. Multivariate time series analysis using MAE-
STRO

For this analysis the RIAV dataset was used, specif-
ically, RIAV1, RIAV2 and RIAV3, using the cockle
shellfish as the species to study due to its high
amount of samples. The reason RIAV 4 was not
taken into account was because of its considerably
lower number of samples compared to the previ-
ous three, which have very similar amounts of data
points (206, 202 and 199, in order). RIAV4’s inclu-
sion in this analysis would prove very complicated
due to the sample size disparity and would likely
cause more error-prone results.
The resulting DBN models and condition prob-

ability tables of the three RIAV time series show
that because of the above mentioned high lack of

recorded values outside of the detection (or quan-
tification) threshold, there’s a very big similarity
among the phytoplankton concentrations and the
resulting model approaches those relations as they
are naturally far stronger than other attributes
(such as temperature, chlorophyll or even lipophilic
toxin concentrations in cockles) that have a higher
rate of recorded values outside any lower (or higher)
thresholds. However, some interesting inferences
were detected in the models - in the RIAV2 time se-
ries, the temperature (SST) seemingly the tempera-
ture seemingly has an influence on the PSP produc-
ing phytoplankton’s concentrations when both are
in a higher bin and sea surface temperatures starts
decreasing. The RIAV3 time series showed that the
sea surface temperature seemed another factor that
influenced the resulting amnesic toxin concentra-
tions when paired with the chlorophyll rates. The
lower the SST (for the same chlorophyll values), am-
nesic toxin probabilities point to lower concentra-
tion values - this is especially noticeable when the
lagged data point of the temperature is 0, meaning
the recorded temperature at the time of the col-
lected sample (toxin or phytoplankton).

After this study of the 3 different RIAV zones,
the logical next step was to evaluate any possible
correlations between the data present in two zones,
so the datasets needed to be combined. For this
purpose, RIAV2 and RIAV3 time series were com-
bined using a familiar process done before: because
MAESTRO requires multiple time series to be to-
gether, the dates needed to be processed in order
to allow the joining process of the zone time series
and thus, time series datapoints were joined on the
closest date that did not exceed a set threshold of
a week. Since RIAV2 and RIAV3 data were usually
collected in the same week, likely due to their ge-
ographical proximity, this method made the most
sense.

While a big portion of the results obtained from
the DBN model generated (see Figure 7) and the
respective conditional probability tables yields in-
conclusive relations, there is a considerable correla-
tion between RIAV2 and RIAV3’s chlorophyll rates.
Higher values verified in RIAV3’s chlorophyll quan-
tities seem to yield higher values in RIAV2’s chloro-
phyll values - the exact same applies for lower val-
ues. Given this information, paired with the other
analysis performed on the single RIAV time series
(in particular RIAV2 and RIAV3), we can observe
a probable correlation between chlorophyll, sea sur-
face temperature and biotoxin or phytoplankton
concentrations, as seen in RIAV2 with the PSP pro-
ducing phytoplankton and sea surface temperature
and in RIAV3 with the pairing of chlorophyll and
SST regarding amnesic toxin concentrations found
in the cockle samples.
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Figure 7: MAESTRO’s resulting DBN model for
the joined time series of RIAV 2 and RIAV3

5. Conclusion and Future Work
5.1. Conclusion

IPMA’s analysis serves as the frontline to prevent
the harvesting and subsequent commercialization
(and consumption) of contaminated shellfish. This
is done through the analysis of shellfish samples (for
biotoxin concentrations in them) and HAB presence
in collected water samples - should these analysis re-
sults go over the legal limit, the affected zones (of
which there are fourty across the entire portuguese
coast) are shut down temporarily until another sam-
pling proves the contamination is no more. With
this work, the aim was to enhance the swiftness of
the zone blocking through methods of forecasting
in order to determine zones that could have con-
taminated shellfish ahead of time. A brief revision
of some methods applied in this thesis were stud-
ied - including some related work where they were
used and proved to be effective. Furthermore, a
brief examination of concepts related to time se-
ries were presented in order to better understand
the thought process in the developed set of models
and data processing. Through the development of
forecasting models and with the assistance of MAE-

STRO, a better understanding of the shellfish con-
tamination and its causes were achieved - namely
a correlation that indicates sea surface temperature
and chlorophyll had an influence in the amnesic tox-
ins found in cockles in the RIAV3 zone and in the
PSP producing phytoplankton in the RIAV2 zone;
when joining two time series from different zones
(RIAV2 and RIAV3 specifically), chlorophyll values
from RIAV3 seemed to directly correlate with the
values seen in RIAV2. With the above described
analysis and the pre-processing and collection of the
data provided by IPMA, it is hoped that the acces-
sibility for further work in this field can be done
in order to enhance the analysis already done here
and further reach the optimal goal of consistently
(and accurately) predicting biotoxin contamination
in shellfish, no matter the species or the region the
sampling was done.

5.2. Future Work

With the data collected and processed, there are
time series with very few data points which make
accurate predictions far harder. For this, the devel-
opment of models optimized for these smaller time
series would extend this forecasting work for more
regions and species and thus, cover more potential
contamination events. Still pertaining the model
suggestions, more models could be developed to test
their performance in these datasets, such as Long-
Short-Term-Memory Neural Networks or Gaussian
Process Regression (or Kriging). Likewise, show-
casing these time series, paired with the respec-
tive forecast models in a possible web application
would prove fruitful for both the easiness of study-
ing these time series, but also for accessibility to the
workers of possible affected sectors (such as fishing
and commerce), and even the civilian population.
More attributes could also have been added - salin-
ity, currents and rainfall are examples of possible
factors that could affect the forecasting results. An
extended collection of attributes to add to the exist-
ing time series could add valuable correlations be-
tween biotoxin contaminations, HABs and the var-
ious factors that affect the coastal areas and their
dynamic.
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