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Abstract

Intelligent Tutoring Systems (ITSs) are computer-based instructional systems that specify what to teach

and how to teach it [1]. Given a specific knowledge base, an ITS presents activities related to this base

for the user so they can ”learn by doing” in realistic and meaningful contexts, thus providing a person-

alised learning experience dependent on the user’s experience. Constructing an ITS is a challenge in

itself [2], being a multidisciplinary task involving multiple research fields, from which artificial intelligence

and education stand out. To simplify, the ”intelligent” part of an ITS can be independent of the knowl-

edge base, being instead based on the empirical estimation of learning progress of the user given the

correctness of their answer [3].

This dissertation focuses on the construction of an online ITS, P-res Tutor, with the purpose of teach-

ing Propositional Resolution [4], a rule of inference of Propositional Logic, and its applications in solving

theorems. Since learning this rule requires learning other subjects, the system also teaches the basics

of Propositional Logic and the Conjunctive Normal Form (CNF) with different activities based on Logic

exercises and other rules of inference. For this system, we apply multi-armed bandit methods [3] and

develop a unique error diagnosis process [5] for exercise selection and student modelling.

The prototype of the system was implemented and a user-study was conducted from which we got

results validating our system’s teaching potential.
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Resumo

Os Sistemas Tutoriais Inteligentes (STIs) são sistemas de aprendizagem baseados em computador que

especificam o que ensinar e como ensinar [1]. Dada uma base de conhecimento especı́fica, um STI

apresenta atividades relacionadas a essa base para que o utilizador possa ”aprender ao trabalhar” em

contextos realistas e significantes, proporcionando assim uma experiência de ”aprendizagem personal-

izada” dependente da experiência do utilizador. Construir um STI é um desafio em si [2], sendo uma

tarefa multidisciplinar que envolve múltiplos campos de pesquisa, dos quais se destacam a inteligência

artificial e a educação. Para simplificar, a parte ”inteligente” de um STI pode ser independente da base

de conhecimento, sendo fundamentada na estimativa empı́rica do progresso de aprendizagem do uti-

lizador dado a sua resposta [3].

Esta tese foca-se na construção de um STI online, P-res Tutor, com o objetivo de ensinar a Regra

da Resolução [4], uma regra de inferência da Lógica Proposicional, e as suas aplicações na resolução

de teoremas. Visto que aprender esta regra requer adquirir outros conhecimentos, o sistema também

ensina os fundamentos da Lógica Proposicional e da Forma Normal Conjuntiva (FNC) com diferentes

atividades baseadas em exercı́cios de Lógica e outras regras de inferência. Para este sistema, apli-

camos métodos de Multi-Armed Bandits [3] e desenvolvemos um processo único de diagnóstico de

erros [5] para seleção de exercı́cios e criação de um modelo de estudante. O protótipo do sistema foi

implementado e um estudo de utilizadores foi conduzido, do qual obtivemos resultados que validam o

potencial de ensino do nosso sistema.

Palavras Chave

Sistemas Tutoriais Inteligentes; Lógica Proposicional; Regra da Resolução; Multi-Armed Bandits;
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1.1 Motivation

As a teaching supplement, computer courses have been researched and developed intensively. In-

evitably, Artificial Intelligence (AI) methods were introduced to the area of online teaching, from which

the area of Intelligent Tutoring Systems was born. These systems, in a general manner, are computer

courses which change according to the student’s input [6], providing an individualised and personalised

learning experience. For a student to learn a skill, a sequence of exercises or activities is followed. For

an expert/teacher, the challenge lies on creating a sequence that maximizes learning for every student.

An ITS serves as an artificial expert that determines the optimal sequence of activities for the acquisition

of the skill, while being customized to fit each student’s unique characteristics.

The design and development of ITSs require resources from multiple research fields, including artifi-

cial intelligence, cognitive sciences, education, human-computer interaction, and software engineering,

all of this without taking into account knowledge about the ITS’s main subject of teaching. As such,

building this kind of system presents a thoroughly challenging task, given the massive multidisciplinary

requirements [2].

There are two main motivating factors for researchers to build an ITS [7]:

• Pure Research Needs: Since ITS research lies at the intersection of multiple domains, an ITS can

provide an excellent test-bed for various theories from cognitive psychologists, educational theo-

rists and/or AI scientists. Different teaching scenarios can be simulated by changing parameters

of the system, such as measuring the impact of different activities being presented to the user.

• Practical Needs: Since generally there are more students than teachers, most educational systems

become geared towards group teaching methods, while losing most advantages that are found in

one-on-one tutoring. One of the primary advantages of an ITS is the possibility to provide one-

on-one tutoring without necessarily losing the advantages of the group teaching environment, for

example by providing each student their own copy of the ITS.

The aim of this thesis is, thus, to create a practical system which can serve as a research tool for ITS

researchers and as a teaching tool for anyone who wishes to teach or learn Propositional Resolution.

1.2 Overview

When constructing an ITS, one must consider its functions and its structure, as both can be wildly

different depending on the author [2]. For the proposed system, it provides the functions of an exer-

cise generator with three different types of activities, a simplified method of knowledge estimation and

student model construction utilizing Knowledge Components (KCs) and the Zone of Proximal Devel-

opment (ZPD), and a Multi-Armed Bandits (MAB) based algorithm to choose activities for the user to

2



perform.

The proposed system includes three activities which verify the knowledge needed to learn all propo-

sitional logic rules of inference, Truth or False, Conjunctive Normal Form (CNF) conversion and Applying

the Resolution Principle. Connecting all of these activities is the overarching activity of a Full Resolution

exercise, which combines all of the previous activities into a multi-step exercise that teaches the Reso-

lution rule of inference.

Logic is considered to be an important subject for students of computer science [8], helping them

in developing their skills of logical analysis, problem resolution and formalization. These skills, in turn,

are necessary for other computing related activities such as programming, specification of requisites,

database development, within others. Despite being simple in theory, mastery of the basic concepts of

propositional logic requires practice, which, in essence, the developed ITS provides as it serves as a

training grounds for users to learn and practice concepts of propositional logic.

Propositional Logic is a great field of study for an ITS [9] because of its inherent simplicity, since it al-

lows us to easily split it into simpler skills, KCs, that the user has to learn, and place them in an hierarchy

of complexity so as to know in what order each skill must be learned to achieve better learning. Another

advantage is the ease of exercise generation, given its limited symbols but its freedom in their use when

generating logical sentences, it becomes straightforward to generate random yet relevant exercises.

The exercise selection will be determined by MAB methods already proven effective in other sys-

tems [3,10] integrated with an error diagnosis process original to this system and inspired by the system

IATS [5]. This process was introduced to figure out the relevance of different types of errors in the

student’s learning, by influencing the exercise selection depending on what errors the user makes.

1.3 Objectives

The main goal of the thesis, as explained before, is to construct an ITS with the purpose of teaching

Propositional Resolution. This system must include exercises and activities that test every skill needed

to learn Resolution. Subsequently, the system must also estimate the knowledge of the student given

their answers on the exercises shown and select exercises accordingly using this student model.

This system must also provide feedback to the learner, so they can operate independently, and to the

teacher, so the system can be improved if needed and to study the importance of different adjustable

parameters in the system. These can range from having a limited set of fixed exercises to adjusting the

learning speed.

Finally, our overall goal with this system is to test the selection of exercises given the user’s input, by

integrating the MAB methods with the error diagnosis process.

3



1.4 Following Chapters

The remainder of the document is split in 4 parts. Chapter 2 is comprised of the related work and

state-of-the-art analysis of the domain of the thesis. ITS structure, construction and authoring tools

are discussed, as well as a quick revision on logic rules of inference needed to complete the ITS’s

exercises. Chapter 3 is where the system construction and implementation is described, including the

algorithm used for exercise selection, the used libraries from the book AIMA [4] and the needed changes

to them, and the student modelling, including the defined KCs and the ZPD.

Chapter 4 is where we detail the user study and comment on its results. Finally, Chapter 5 is com-

posed of the conclusion of the paper, where we review what we have accomplished with this dissertation

and future work to be done to improve the system further.
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2.1 ITS Construction

Due to their complexity, ITSs are normally not easy to construct [2]. Since the resources needed come

from very different areas, such as artificial intelligence, education, human-computer interaction and soft-

ware engineering, the process of building an ITS is inherently a challenging task. The construction also

highly depends on the views and priorities of the author. They can choose to focus on exercise selec-

tion [3, 11], ensuring the system’s tutoring decision making is based on sound pedagogical principles,

or in error diagnosis [12, 13], using appropriate knowledge structure and algorithms to interpret users’

decisions correctly and give proper feedback to the user.

2.1.1 ITS Structure and components

The structure of an ITS varies extremely between different systems. Since the work in this area is exper-

imental in nature, there is no clear-cut way to construct an ITS’s structure [7] although many common

elements can be found in the structure of different ITSs. The most common structure is a composition

of different modules comprising different parts needed for the tutoring process. The basic components,

Expert Knowledge module, Student Model module and the Tutoring module, make up the intelligent part

of the system and is where most work in constructing an ITS is had, while a fourth component, the User

Interface module, has also been identified [14] as essential as it serves as the only communication chan-

nel between the user and the system. A simplified model of this structure can be found in the following

figure 2.1.

The Expert Knowledge module, or domain expert, comprises of all the rules and facts of the domain

to be conveyed to the student by the ITS. It serves as the source of knowledge to be presented to the

student, including generating questions, explanations and answers, and as a standard for evaluating the

student’s performance. For this last task, the module must be able to generate solutions to problems in

the same context as the student, including not only surface knowledge, the meaning and descriptions of

the different concepts the student must learn, but also the ability to interpret, understand and solve the

same exercises it presents [14].

The Student Model module is a representation of the student’s knowledge and skills, using knowl-

edge attained by analyzing the input of the user. It includes a clear evaluation of the skills of the student,

to be compared with the Expert Knowledge model and better ascertain their overall mastery of the ITS’s

domain. Ideally, this model should include all aspects of the student’s behaviour and knowledge that

have possible repercussions on his or her performance. However, the task of constructing such a model

is normally impossible, as the only mode for communication with the ITS, normally a keyboard and

mouse, is too restrictive and cannot communicate factors that can influence the student’s performance

and knowledge, such as the student’s state of mind. As such, other approaches with a simpler Student

6



Figure 2.1: Basic structure of an ITS

Model have been researched [3] [10].

The Tutoring module is responsible for the teaching strategy, working with information from the Stu-

dent Model to decide which activities or information to present to the student, such as hints to overcome

impasses in performance, advice, support, explanations, different practice tasks, tests to confirm hy-

potheses in the student’s model, etc. How much influence the tutoring module has is entirely up to the

ITS creators, ranging from systems that give almost full control of the activity to the student, to systems

that monitor the student’s every activity very closely, adapting their actions to the student’s responses.

In summary, this module is the sole source and orchestrator of any pedagogical decision made by the

system [14].

Finally, the User Interface module controls the interactions between the system and the learner. Nor-

mally ITSs tend to use elaborate graphic interfaces, in order to make interaction with the system more

user-friendly. Because the user interface can ”make or break” the ITS, no matter how intelligent the other

components are, it cannot be considered a secondary component to the other modules, as it is the final

form in which the ITS presents itself to the user. Most work done on this module falls under the realm of

interface designing [14].
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2.1.2 Common approaches when constructing an ITS

Regarding ITS construction [2], there are two main approaches that utilize help from pre-existing sys-

tems: the shell-based approach and usage of ITS authoring tools.

The shell-based approach is well-known in artificial intelligence. It uses a shell, a software devel-

opment environment containing basic elements to construct different computer programs, as the basis

for its structure. Shells provide code libraries and conceptual frameworks to build parts of the ITS. The

main advantage of this approach is that it allows the creator to better customize and adapt the new

system to the domain to be taught, although it requires the creator to have programming skills to do so.

Overall, shells tend to focus on the bigger picture, allowing creators to more easily create a functioning

ITS, while approaches that target specific ITS components are more profound and detailed. Some of

the more better-known shells include E-Mycin [15] and, more recently, the Tutor-Expert System [16].

For a creator with no programming skills, the better approach is using ITS authoring tools, which

go beyond the simple shell and provide an additional user-interface for non-programmers to formalize

and visualize their knowledge, thus simplifying the process of authoring an ITS [17]. There are various

different tools for different purposes, they can serve to sequence the teaching of progressively complex

content, provide a learning environment for students to learn skills by practicing them and receive feed-

back or to simply assist ITS authors in designing and constructing their system. Some of the better

known tools include RIDES (for Rapid ITS Development Environment) [18] and REDEEM [19].

Overall, there are some principles to consider when building an ITS: Approaches involving small

building blocks should be preferred to reduce the time to produce a functional ITS; and increased as-

sistance to authors is required, since currently available tools and shells are still too complex for non-

programmers [2].

2.2 Knowledge Estimation

For the purpose of teaching a student, the system must also ascertain what the student already knows,

building the student model, but also of what he/she must know to achieve the taught skill, by having a

clearly defined expert knowledge module.

2.2.1 Knowledge Components

In any Intelligent Tutoring System, we can define its main goal as the learning of a certain skill, in this

case being Propositional Resolution. To facilitate the learning process, this goal can be subdivided into

sub-goals, smaller skills that must be learnt first since they are applied in the main skill. These sub-goals

are called Knowledge Components, KCs. They can be represented as nodes in an acyclic graph to allow

8



the creation of a hierarchy between them to model their increasing difficulty and required precedence

over other KCs.

One thing to note is that there is normally no direct relation between KCs and learning activities,

meaning each activity can provide an opportunity to acquire different KCs instead of having a different

activity for each one. This is considered when defining which activities are to be performed in the ITS,

and when estimating the student’s knowledge and acquisition of KCs.

As defined by Lindsey et al. [20], KCs are provided by experts on the matter which can then be

refined by automated techniques. For this problem, we will propose our own KCs required to learn

Propositional Resolution, which we will discuss further in this dissertation.

2.2.2 Zone of Proximal Development

When learning a skill, it is important to take note of what activities to perform. If they are too easy, no new

knowledge is attained, if they are too hard, the student cannot complete or understand them, meaning

that the exercises recommended can neither be too hard nor too easy. They must be challenging enough

to maintain the student’s interest and easy enough that they can solve them, which requires exercises to

be at a level of required knowledge only slightly higher than the current. These activities belong to what

is called the Zone of Proximal Development [21], or ZPD, for short, which comprises of all the activities

which give the most learning progress.

2.3 Multi-armed bandits for ITS

When making an ITS specialized in choosing sequences of exercises customized for each student, the

most pressing issue is how to define and optimize this sequence. A solution is using MAB methods [22].

In short, in a problem with various activities to perform and each with a different unknown reward, the

problem lies in choosing whether to explore different activities to see the reward of each one, “Explo-

ration”, or exploit the activity that is guaranteed to give a good reward, “Exploitation”. Taking a casino

analogy into account, multi-armed bandits would be described as trying to find the most profitable slot

machine.

Since the agent, or bandit in the casino analogy, must spend money exploring all of them before

choosing the best one, the dilemma lies in simultaneously trying new activities to know their payoff while

also selecting the best ones so actual profit can be made. In the context of an ITS, the slot machines

are the different exercises that the algorithm recommends to the student, the reward is the learning gain

and the choice of “Exploration vs Exploitation” is made by the teaching algorithm choosing a type of ex-

ercise known to provide learning and selecting different activities with an unknown reward, considering

the reward information it gets previously.

9



The usage of these methods allows us to have a weaker dependency on a Student Model, in favor

of optimizing the Tutoring module to adapt to each individual student. This, in turn, also allows us to

use methods of student model construction that make no assumptions about how students learn and

only require information regarding the estimated learning progress of activities, which creates a simple,

yet unique model for each user. As such, by focusing on optimization of the MAB algorithm, the system

becomes more accurate as student models and the tutoring module become more defined.

There are some particularities in an MAB approach to ITSs. Firstly, the reward for each activity, which

is learning progress, does not stay the same, since it depends on the competence level of the student

for the exercise, which will stop giving a reward after a certain competence level is achieved. Secondly,

rewards are not independent and identically distributed, as we are dealing with humans, which brings

various effects into play that can affect the reward, such as distractions, mistakes using the system and

mainly different preferences between students.

Thus, every activity a will have a weight wa which tracks its reward, correlated to the learning progress

given by activity a. Each time this activity is performed, this wa is updated related to the reward and the

previous weight:

wa ← Bwa + ur (2.1)

As shown, the reward given by the activity, r, is added to the current weight of the activity to update

the new weight. The main advantage of this update is its simplicity, allowing it to be used with a single

variable, the reward. By altering parameters B,u, we can change the relevance of the reward or the

previous weight. These weights come into use when the system has to choose the next activity to

recommend, as each activity is assigned a probability, pi, for it to be selected, which uses the normalized

weight of the activity, ẃa, the exploration rate, y, and a uniform distribution, eu, to ensure sufficient

exploration of activities. This probability is calculated in the following way:

pi = ẃa(1− y) + yeu (2.2)

Since it is needed that all activities have an associated weight to determine their probability, it would

be needed to explore all activities to estimate their impact on each knowledge component. This would be

very time-consuming and could produce an under-performing learning sequence, so instead, a canon-

ical learning sequence is used to initialize the algorithm, after which this sequence can be optimized.

This sequence is determined by an expert, and normally has a higher reward on the introductory low

difficulty activities and a lower reward in the more advanced activities.

Two different algorithms using MAB technology can be used, the first one requiring little domain

knowledge called Zone of Proximal Development and Empirical Success (ZPDES). The second ap-

proach assumes there is a simple relation between the activities and skills of the student, estimates the
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learning progress obtained at a given point in time and proposes to the student the activities which

provide higher learning progress, thus the name of the algorithm being Right activity at the Right

time (RiaRit) [3].

2.3.1 ZPDES

This algorithm is inspired by the ZPD and the empirical estimation of learning progress, and, as such, it

requires very little domain/user knowledge. To estimate the reward of each skill, that is, the estimated

learning that the skill provides, the correctness of the answer given by the student is the only parameter

needed.

Instead of comparing the correctness of the answer given at a certain time t with all of the previous

answers d, it instead compares the last half of d/2 answers with the earlier half of d/2 answers given.

This allows the measure of the quality of each activity, since we can measure how much progress a

certain activity has provided in a short time window and we consider activities with a faster progress to

be better than others with a slower progress [23].

Thus, the computation of the learning progress r, where Ck = 1 if the exercise at time k is correct, is

as follows:

r =

t∑
k=t−d/2

Ck

d/2
−

t−d/2∑
k=t−d

Ck

d/2
(2.3)

When an activity has already been acquired or when the student is not progressing in any way, which

are both extreme cases, the reward given will be zero. To reduce the number of activities that are needed

to explore, there is also the added restriction that only activities in the ZPD are selected for the user.

Initially, the ZPD is defined as a graph with every activity ordered by levels of difficulty. Only the

most basic skills are included in the ZPD, with more advanced ones having the prerequisite of attaining

previous easier skills. For activities already in the ZPD, free exploration is allowed since these are con-

sidered to always give some learning progress. After enough progress is attained in a certain activity, it

is considered mastered, is removed from the ZPD and the more advanced skills that had the previous

one as prerequisite being added to the ZPD.

This algorithm also allows the tutor to limit or expand exploration of activities if needed, depending

on whether the set of activities have a clear progression of difficulty between them. If they do, then ex-

ploration is limited to force students to follow a specific path between each skill, if not, meaning different

students can have very different orders when they are obtaining skills, then wider exploration is allowed

in order to accommodate individual differences.
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2.3.2 RiaRit

Another algorithm based on the ZPD but using more knowledge about the domain and the student, is the

RiaRit algorithm. For this approach, the competence level of the student of each KC is defined as a con-

tinuous number between 0 and 1, with 0 meaning not acquired and 1 being fully acquired, with ci being

the competence level for the knowledge component KCi. Then, for each activity a and each knowledge

component KCi, a competence value qi(a) is defined by an expert as the level of competence required

for each KCi to have maximal success in activity a, meaning that, when this level of competence is

achieved, everything activity a can contribute in terms of learning progress towards acquiring KCi has

been learned by the student.

These competence values are used to estimate the impact of each activity in the student’s overall

learning progress. As such, this estimation of competence values is a high priority in this approach and

is done by relying on a simplified version of Knowledge Tracing [24] based on the relation between the

activities and the KCs. Considering a knowledge component i for which the student has a competence

level ci, when the student succeeds in performing action a and ci < qi(a), then the student’s competence

ci is being underestimated and should be increased. In the opposite case, when the student fails the ac-

tion a and ci < qi(a), then the student’s competence ci is being overestimated and should be decreased.

The reward for this method can thus be defined as the difference between qi(a) and ci:

ri = qi(a)− ci (2.4)

With this reward, the competence values are updated after each activity, with the addition of the

parameter f to adjust the confidence we have of the reward:

ci = ci + fri (2.5)

Then, an expert is asked to determine minimum competence levels mi(a) for each activity a, for them

to be unlocked for exploration. If the competence level ci of activity a in the ZPD is higher than mi(a),

then a is allowed free exploration. Progress through the ZPD is mostly the same as the ZPDES approach

but with the added attribute of competence levels and is as follows: When a minimum competence level

of a KCi is achieved, the activities which influence this KCi are unlocked and allowed exploration if the

actions preceding it are already all unlocked. At the same time, when the competence level of all KCi’s

of action a reach mi(a), this activity is no longer explored, since it is considered it no longer has anything

to teach.
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2.4 Error diagnosis

For the purpose of constructing and maintaining a stable student model, analysing the user’s input in

depth can contribute significantly to this effort. An ITS can be said to consist of two different loops,

an outer loop, which chooses activities for the student by matching their learning progress to adequate

activities, and an inner loop, which gives feedback and hints about steps the student must take to solve

the activity [25]. An important responsibility of the inner loop is analyzing these steps the student takes,

in order to find exactly where the user made a mistake, and give proper feedback.

Different approaches for error diagnosis have been studied extensively in ITSs [26] and 8 different

aspects have been identified in multiple ITSs as relevant for diagnosing student steps:

• Correctness: refers to whether or not a student step matches an expected step, with the only

possible outcomes being correct or incorrect ;

• Difference: similar to correctness but measures the edit distance, how different it is, between

the student step and the expected step. This measure is normally a number or percentage, for

example, if the only difference between the student step and the correct step is a single character,

a ’+’ for a ’-’, then the edit distance would be one, since it requires only one edit operation for the

student step to be correct;

• Redundancy: refers to whether the student step is significant in any way, if the difference between

the current student step and the previous one is too small, it can be considered redundant. Possible

outcomes are redundant, not redundant and unknown;

• Type of Error: refers to classifying errors, for example, classifying a+(b as a syntax error. Possible

outcomes depend on the domain of the ITS;

• Common Errors: refers to errors students make based on common misconceptions, for example,

when forgetting to change the sign when moving an expression to another side of an equation

(a+ b = 0→ a = b). Possible outcomes depend on the domain of the ITS;

• Order: refers to the order in which the student takes different steps, with the possible outcomes

being correct order, incorrect order and unknown;

• Preference: refers to existing preferable solutions to problems than the one the student presents,

with the possible outcomes being preferred, not preferred and unknown.

• Time: refers to the time the student took to submit a step or solve a problem, normally measured

in milliseconds.
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Of these 8 aspects, correctness is the most common aspect, as it is used in most if not all ITSs, and

many other aspects rely on it. For example, type of error and common error can only be found in

student steps that are deemed incorrect and preference can only be determined between correct steps.

While many systems measure time, only a few use it for diagnostic purposes. Since most ITSs can be

accessed at home without supervision, it becomes difficult to monitor how much time is actually spent

on a question, for example, a student might take a break while in the middle of an activity. This makes it

impractical for diagnosis purposes.

In regards to diagnostic processes, most ITSs use multiple aspects for diagnosing student responses.

The most basic process consists of a single aspect, correctness, only checking whether the answer is

correct or not. A more complex process involving more aspects is used in the system AITS [5] in the

figure 2.2. By calculating the edit distance between the student and the ideal step, other aspects of

the error can be better analyzed by checking the number and the content of the different nodes to

determine redundancy and the type of error. Using these aspects, an error is classified according to its

completeness and its accuracy, meaning an incorrect student step can be either complete but inaccurate,

incomplete but accurate and incomplete and inaccurate. The diagnosis complete and accurate never

occurs since it means the edit distance is zero, and the student step is equal to the best response.

2.5 Propositional Logic

Propositional Logic [4] is a branch of logic that deals only with propositions, which are facts represented

by symbols. They can be a single affirmation or literal, which is called an atomic proposition (an ex-

ample of this is the proposition “It is raining”), or a set of these affirmations/literals connected by logical

connectives, which is called a compound proposition (an example of this is “It is raining, and it is cloudy”

which is a compound proposition of the literals “It is raining” and “It is cloudy” with the logical connective

“and”).

Propositions are normally represented by uppercase letters (we can represent the propositions “It

is raining” and “It is cloudy” as A and B, respectively, and “It is raining, and it is cloudy” as “A ∧ B”).

Unlike first-order logic, propositional logic does not deal with non-logical objects, such as predicates, or

quantifiers, such as ∀, the universal quantifier, and ∃, the existential quantifier. There are two proposition

symbols with fixed meanings: True is the always-true proposition and False is the always-false proposi-

tion.

Logical connectives are symbols used to connect two literals to create a compound proposition, ex-

cept for the negation symbol, which is the only connective that operates on a single proposition.

The logical connectives used in Propositional Logic are:

• Negation; represented by ¬,∼, or “NOT”, is the only connective that is used in relation to a single
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Figure 2.2: Error diagnosis process of AITS [5]

literal and isn’t used to connect two literals. Represents denial of a literal, for example: ∼ A is only

true when A is false.

• Conjunction; represented by ∧, &, ∩ or “AND”. Represents the intersection between two literals,

for example: A ∧B is only true when both A and B are true.

• Disjunction, represented by ∨, |, ∪ or “OR”. Represents the junction of two literals, for example:

A ∨B is true when A or B or both are true.

• Implication, represented by =⇒ , ==>, or ”IF...THEN”. Represents dependence between two

literals, for example: A =⇒ B, meaning if A happens then B must happen, is true when B is true

or when A is false.
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2.5.1 Resolution

Resolution is a logical rule of inference that leads to a theorem-proving technique in propositional logic

and first-order logic. The resolution rule states that, from two different propositions, a new one can be

created by uniting both and removing the complementary literals. The new proposition is said to be

the resolvent of the previous two. This can be seen in the following expression where P1 and P2 are

propositions and l ∈ P1 and ¬l ∈ P2:

Res(P1, P2) = (P1 − {l}) ∨ (P2 − {¬l}) (2.6)

A set of complementary literals is a set of a literal and its negation, for example A and ¬A. The

resolvent between these two literals is the empty set {}. If there are other literals in the proposition, the

same principle is applied and the complementary literals are removed, for example with the propositions

P = A ∨B ∨ ¬C and Q = B ∨ C ∨ ¬E, if we apply the resolution rule, we get the expression:

Res(P,Q) = ((A ∨B ∨ ¬C)− {¬C}) ∨ ((B ∨ C ∨ ¬E)− {C})

Res(P,Q) = (A ∨B) ∨ (B ∨ ¬E)

Res(P,Q) = A ∨B ∨ ¬E

The only restriction for this rule is propositional resolution can only be applied to propositions in the

CNF or clausal form. A proposition is in the clausal form if it is a conjunction of one or more clauses,

where a clause can either be a single literal, A or ¬B, or a disjunction of literals, A ∨ B or ¬C ∨ D.

The only logical connectives a proposition in the CNF can contain are AND, OR and NOT, and the NOT

operator can only be used in reference to a single literal. The empty set is also a clause, {}, and it is

equivalent to an empty disjunction.

To convert sentences to the clausal form, the following steps must be taken:

1. Convert any implications to its disjunction form, Ex: A =⇒ B is equivalent to ¬A ∨B;

2. Push the negation symbol inwards using De Morgan’s Laws:

(a) For double negation: ¬¬A is equivalent to A;

(b) For negated disjunction: ¬(A ∨B) is equivalent to ¬A ∧ ¬B;

(c) For negated conjunction: ¬(A ∧B) is equivalent to ¬A ∨ ¬B;

3. Apply the distributive property of disjunctions, Ex: (A ∧B) ∨ C is (A ∨ C) ∧ (B ∨ C).

An application of the resolution rule is to prove theorems. With the application of the satisfiability theo-

rem, which dictates that given a set of premises P and a literal C we wish to prove, the premises logically
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entail the literal C if P ∧¬{C} is unsatisfiable and vice-versa, we deny our theorem and attempt to reach

the unsatisfiable state, the empty set {}, with the given premises. With the set of premises and a denied

conclusion in the clausal form, we must reach the empty set by applying the resolution rule to prove the

theorem. For example:

a

b

c

P = {{A}, {¬A,B}, {¬B,D}}

C = {{D}}

P ∧ ¬{C} = Q = {{A}, {¬A,B}, {¬B,D}, {¬D}}

Res(Q1, Q2) = R1 = {B}

Res(R1, Q3) = R2 = {D}

Res(R2, Q4) = {}

Figure 2.3: Resolution rule application to find a contradiction in a CNF proposition

Since we managed to reach the empty clause, P ∧ ¬{C} is unsatisfiable and the literal C is proved

to be the conclusion of the premises P by proof by contradiction.

This entire process of Propositional Resolution, from converting a logical sentence to its clausal form

to achieving the unsatisfiable state with the premises and the denied conclusion, is the main subject we

wish to teach with this ITS, which, by consequent, will also teach the basics and rules of inference of
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Propositional Logic.

2.6 Other Logic ITSs

Various tutoring systems with the purpose of teaching logic have already been explored extensively.

Most of these systems differ from others by presenting different activities or being about specific parts of

the Logic subject matter, with the most popular subjects for systems being proof deduction and theorem

proving.

In the realm of Propositional Logic, most systems deal with teaching natural deduction. Heraclito [27]

is a system that shows students an interface where they can input external exercises, different logic

propositions, and apply rules of inference to solve them. A mediator agent evaluates the student’s

progress by reacting to different inputs, or a lack of input, and presents different strategies to solve the

exercise. It mainly serves as an environment for students to train their reasoning, while a virtual expert

judges their performance.

EvoLogic [13] is an upgrade of the former system, having all the same features and an improvement

in the construction of the solution. Instead of just creating one optimal solution, it utilizes a Genetic

Algorithm as a specialist agent to create multiple ones, allowing the mediator agent to give feedback on

different forms of reasoning.

Another system which influenced the previous ones is P-Logic Tutor [9]. This system’s primary pur-

pose is to teach students fundamental concepts of propositional logic and theorem-proving techniques.

For this purpose, it is divided in three modules, where students can compose formulas, create a truth ta-

ble and check its correctness, attempt to show how a conclusion can be derived from one or two axioms,

attempt to prove theorems by incrementally applying rules of inference, etc. At any time, the student can

open a help window to assist them on traversing the interface or on understanding the subject matter

itself, either by looking up concepts of propositional logic or by requesting a hint in solving the current

exercise.

It is worth noting that most of these systems focus on assisting the student in performing a prese-

lected exercise sequence, but do not include any mechanism that chooses exercises specially tailored to

each student. In this matter, the proposed system will differentiate itself from previously made systems,

as one of its focus areas is in choosing the right exercises to show the student.
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3.1 Overview

P-res tutor is designed to teach students Propositional Logic, with a focus in teaching the rule of Resolu-

tion. It is composed of three different activities the user can choose from or a stream of activities chosen

by the system using the ZPDES algorithm, where the possible activities are one of the three. The three

activities are:

• Truth or False exercises, where a formula and its supposed CNF formula are shown, and the user

must answer whether the CNF formula is correct or not, found in the figure A.1;

• CNF conversion, where a formula is shown and the user must input its clausal form, found in the

figure A.2;

• Connecting Clauses: Application of the resolution rule, where a formula in its CNF form is shown

and the user must figure out if it is possible to achieve the empty clause by applying the resolution

rule and eliminating clauses. This activity consists of selecting clauses to apply the resolution rule,

the activity ends when the user can achieve the empty clause with any combination of the existing

clauses or if the user selects it is not possible to do so , found in the figure A.3;

• Full Resolution exercise, where a set of premises P and a conclusion C are presented and the

user must prove that the conclusion is proven by the premises, by converting P ∧¬C to its clausal

form, and apply the resolution rule to the remaining clauses to achieve the empty clause {}. It is

the only activity to consist of two different steps, one where the user must input the clausal form of

P ∧ ¬C and another one where the user must connect the resulting clauses to achieve the empty

clause, found in the figure A.4.

The prototype of the system is built on a python Flask application in an internet browser form 3.1, with

the user interface being a free HTML5 template available online and the tutoring module, student model

module and expert knowledge module built entirely with Python. For the propositional logic structures,

operations and expressions, a python library logic.py from the book AIMA [4] was used. This library

provides a framework for propositional logic in a python context, from which we use structures for logical

expressions and operations with logical connectives, such as all the steps of conversion to the clausal

form.

3.1.1 Interaction Loop

When choosing a specific activity function, a random exercise of the chosen type will appear. After this,

the user receives feedback for the correctness of the input and can check the solution. When using

the stream of exercises option, an exercise is selected based on the student model and presented.
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Figure 3.1: User interface of P-res Tutor

After the student’s input, the correctness of the exercise is evaluated by the expert knowledge model,

the student model is updated according to the correctness, feedback is shown and a new exercise is

selected and presented based on the new student model. The solution for the previous exercise can

also be consulted. This sequence of modules in the stream of exercises can be seen in the following

figure 3.2.

This stream of new exercises is only stopped if the student wishes to go to the main menu or if the

student model shows that the user has learned everything there is to learn. If a user wishes to start over

and reset the student model, there is an option that resets it to its initial state in the main menu 3.1.
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Figure 3.2: Diagram with the four modules of P-res Tutor and their purpose in the stream of exercises

3.2 Knowledge Estimation

To estimate the knowledge of the student regarding Propositional Resolution, we divide it into different

Knowledge Components and represent them in the Student model module.

3.2.1 Knowledge Components

The proposed KCs for Propositional Logic and Propositional Resolution and its corresponding KC tree

are the following:

• For the following KC examples we use the logical sentences A =”It is raining” andB =”It is cloudy”.

1. Atomic propositions, ”It is raining” is A;

2. Negation of atomic propositions, ”It is not raining” is ¬A;

3. Conjunction of propositions, ”It is raining and it is cloudy” is A ∧B;

4. Disjunction of propositions, ”It is raining or it is cloudy” is A ∨B;

5. Implication of propositions and its decomposition, ”If it is raining then it is cloudy” is A =⇒ B;

6. Removal of double negation, ¬¬A is A;

7. Distributive property of the OR connective, (A ∧B) ∨ C is (A ∨ C) ∧ (B ∨ C);

8. Negation of a conjunction, ¬(A ∨B) is ¬A ∧ ¬B;

9. Negation of a disjunction, ¬(A ∧B) is ¬A ∨ ¬B;

10. Application of the resolution rule, Res((A ∨ C),¬A) = (P1 − {A}) ∨ (P2 − {¬A}) = C;

11. Proving a theorem using the resolution rule with proof by contradiction.

KC2 KC3 and KC4 depend on learning KC1 and so on. Green KCs represent basic knowledge, yellow

are novice skils, orange are intermediate and red is expert. When the user starts using the system, the

ZPD is initialized with KC2, KC3 and KC4. In practice, exercises testing KC1 are impractical, as there
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Figure 3.3: KC tree with skill dependency represented by the directional arrows

is only one possible exercise which is an atomic proposition, A or any other letter, and, as other KCs

depend on knowing KC1, we assume the user already knows it to start the system with the novice KCs

unlocked. Both the division of the knowledge in different KCs and the KC tree were determined in the

course of this work.

With this KC organization, the system goes through four phases of teaching:

1. Teaching novice skills of the basic logic connectives and proposition structure, ZPD includes KC2,

KC3 and KC4;

2. Teaching intermediate skills of the IMPLIES connective and converting a proposition to its clausal

form, ZPD includes KC5, KC6, KC7, KC8 and KC9;

3. Teaching application of the resolution rule to a sentence in the clausal form, by joining different

clauses to achieve the empty clause, ZPD includes KC10;

4. Teaching a full resolution exercise, where a set of premises and a conclusion are given and check-

ing whether the conclusion is proven by the premises, ZPD includes KC11.

3.2.2 Student model Module

For the student model, we define it as a list of 10 values, for every KC except KC1, corresponding to

each KCs learning progress. This value is percentage based, ranging from 0%, where the KC has not

been attempted yet, to 100%, where the KC has been fully taught. The ZPD is also included in the

student model, initialized with KC2, KC3 and KC4, and, as KCs are learned by the user, it is updated

with new KCs according to the KC tree in the figure 3.3.

After every activity, both the KC values and the ZPD are updated. Depending on the correctness c
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of the exercise, which can be -1 for incorrect answers and 1 for correct ones, and on the learning speed

ls, the expression [10] to update every KC value uk,n is the following:

uk,n+1 = uk,n + ls× cn+1 (3.1)

With this approach, more importance is given to more recent inputs, as these are considered to

better represent the student’s knowledge. We can also adjust the learning speed to speed up or slow

down the learning process. To give even more importance to recent inputs, we build on this method by

including a parameter representing the streak σ of exercises the student has gotten correct in a row, to

a maximum of 10 exercises. Thus, the method becomes:

uk,n+1 = uk,n + ls× cn+1 + ασ (3.2)

As with the learning speed, the α parameter can be adjusted to make the streak more relevant or

not. In practical uses, we use a small value for α, for example 0.1 or 0.2, so at a maximum streak of

10 exercises in a row, it would not add more than 1 or 2 to the KC value. This parameter is introduced

in order to show more difficult exercises to students who get many exercises right in a row, to provide a

more challenging experience to more successful students.

3.3 Expert Knowledge Module

This module is built using logic.py library, with a change to the CNF conversion function. After all steps of

CNF conversion, if we are left with an expression with repeated symbols in conjunction or disjunction with

each other, for example A∨A or ¬B∧¬B, these symbols are merged together, to A and ¬B respectively,

as having both would be redundant. This module also includes a database of exercises testing every

KC, developed during the course of this work. Depending on their content, these are classified according

to which KCs they affect prioritizing the higher rated KCs. For example, for a proposition to be classified

with KC2 it must only have a NOT connective, ¬, and for KC6 it must have two in succession, ¬¬. As

such, if an exercise is classified with KC6 we do not classify it with KC2. An example can be found in

the exercise:

(¬1 ∧ ¬¬2) ∧ (¬2 ∨ 1);KC3,KC4,KC6

Instead of letters, we use sequential numbers for each different letter and, if the exercise is shown to

the user, all numbers are replaced with a random letter, for example 1 =⇒ 2 can become A =⇒ B

or Q =⇒ D or any other combination. This is done so the same exercise can be shown multiple times

without looking repetitive. This exercise format is used for all activities except Full Resolution exercises,
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where a distinction between the premises and the theorem we wish to prove is needed. For this exercise

format, we separate both by a #. If there are no premises or conclusion, we still present the exercise with

a # but with nothing on the left side or right side respectively. For example, all the following propositions

are valid exercises for Full Resolution:

A ∨B ∧ C#C

#C =⇒ (B =⇒ C)

(A ∨B) ∧ ¬(¬A =⇒ B)#

The exercises available in the system are mostly randomly generated, created using a script that

randomizes the number of clauses and the number and order of logical connectives, keeping into ac-

count the validity of the generated expression. We chose this approach since there is a limited number

of expressions that can be created using 2 or 3 different symbols with any combination of the four log-

ical connectives. We provide a database with most, if not all, possible formulas with 2 or 3 symbols,

and many exercises with 4 symbols. We also include some pre-selected exercises for KC10 and KC11

because, since it is necessary for most of the activities to be solvable, we include some exercises which

have different steps when applying the resolution rule and are solvable.

3.4 Tutoring Module

This module is responsible for exercise selection and uses the ZPDES algorithm for such. With the KC

values and the ZPD from the student model, we verify the ZPD for which KCs we can choose, then

select a KC with the lowest value or one tied for the lowest value. With the KC chosen, we filter the

exercises for the only exercises that have an impact on that KC and order them by length since, if an

exercise has more clauses or symbols, it is considered harder. With the learning value for the chosen

KC, taken from the student model, as Lkc the number of exercises that impact that KC as Nkc and the

learning value at which we consider that KC to be taught as Lmaxkc, we choose an exercise based on

the following expression:

ExerciseNumber =
Nkc × Lkc

Lmaxkc
(3.3)

With the exercise chosen, the activity must also be chosen, which depend on the KC and its learning

value:

• Truth and False exercises are always picked for every novice and intermediate KC when they are

below 25% taught and have a chance to be chosen between 25% and 75%, after this threshold,

these activities stop being chosen;

• CNF conversion exercises have a chance to be chosen for every novice and intermediate KC when
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they are over 25% taught and are always chosen when they are over 75%;

• Connecting Clauses exercises are only picked for KC10;

• Full Resolution exercises are only picked for KC11.

We use this selection of activities since we intend for the Truth and False exercises to be more prominent

in the earlier stages of learning for students to gain familiarity to the expected output of converting a

sentence to CNF. After this start, these exercises are replaced by CNF conversion, as it tests the same

skills as Truth and False, but gives the student more agency and room for error. For the other two

activities, we only select them for KC10 and KC11 because Connecting Clauses and Full Resolution,

respectively, are pure applications of the knowledge in those KCs.

3.4.1 Error Diagnosis

For error diagnosis, we first check the validity of the answer given, by verifying there are no syntax issues

or illegal characters or if there is an empty answer. After this verification there are two approaches we

use for error diagnosis, one where we only check for correctness and an approach similar to AITS [5]

diagnosis process, where we check for the edit distance and the type of error to give better feedback

and update the KC values.

When measuring correctness, we compare the expression inputted, or shown in the Truth and False

exercises, with the expected expression. If they include the same symbols and connectives in a similar

order as the expected expression, for example A∧B is equal to B ∧A, the response is deemed optimal

and correct. Otherwise, if there is a significant difference between the two formulas, the answer is

deemed incorrect.

In the other approach, we verify the edit distance between the input and the ideal response. If there

is any difference the answer is checked for its error. Here we make a distinction between basic errors,

that students might make in the initial stages, and normal errors, where the student misses some steps

of CNF conversion. Basic errors provide detailed feedback according to the type of error while normal

errors provide feedback but also influence the KCs they reference by decreasing their learning value.

The types of error are as following:

• Basic Errors:

– Not enough clauses;

– Too many clauses;

– Clause not in original expression;

• Normal errors:
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– KC5 error, if =⇒ is not simplified;

– KC6 error, if ¬¬ two negation symbols are not cancelled out;

– KC7 error, if ∨ is not distributed to other conjunctions;

– KC8 error, if negation of a disjunction is not converted;

– KC9 error, if negation of a conjunction is not converted.

Firstly we verify the number of clauses to verify basic errors, then we check for any differing combination

of symbols not present in CNF. For any error that is found, we display feedback on it and what steps the

student missed. The full error diagnosis process can be found in the following figure 3.4.

With these two different error diagnosis processes, we have two distinct approaches when performing

the KC value update and, by definition, the ZPDES algorithm. One approach where we only check for

correctness and we simply use the ZPDES algorithm, and one where we use a more complicated error

diagnostic process integrated with the ZPDES algorithm, where the errors of the user also affect their

learning, since in this approach, we show exercises of the same type of those where the users make

more errors.

3.5 Other Features

Some additional quality of life changes were also added to provide a better environment for students

to perform activities. A help popup was implemented, which gives important information regarding the

notation used for the system and other additional hints, found in the figure A.6. Also, a summary popup

was implemented with information regarding the current streak of correct exercises and the solution to

the last attempted exercise, found in the figure A.5.
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Figure 3.4: Full process of error diagnosis of P-res tutor
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4.1 Study Overview

In order to evaluate P-res tutor for its learning capabilities, more specifically, how much learning progress

can be attained with it and how efficient it is at teaching, a user study was conducted. This study

consisted of letting users interact with the system for a specified time and evaluating whether they had

learned anything after, whether they were engaged during this interaction and whether the system is

clear enough for users to understand without outside help.

Two different versions of the system were tested:

• P-res Tutor only with ZPDES algorithm;

• P-res Tutor with error diagnosis integrated with ZPDES algorithm.

Since it has already been proven that a system using the ZPDES algorithm has great learning potential in

other systems [10,23], we use this approach as our baseline, which we compare with the new approach

using error diagnosis. With this comparison, we are able to analyse the impact of error diagnosis in

the user’s teaching, as we expect students using error diagnosis to achieve better results due to better

feedback when performing the system’s activities.

4.1.1 Description

The study was conducted using fourteen participants, seven for each version, with most being current

or former students of Engineering in Instituto Superior Técnico. Instead of only selecting students of

Computer Engineering, we included students from various different courses, such as Mechanical En-

gineering, Civil Engineering and Electrical Engineering, with most being second year students. In this

way, we also manage to assess whether the system can teach a random college-level student a subject

normally reserved for computer science students.

Before the study, every participant was given a short theoretical introduction to Propositional Logic,

including the meaning of propositions, logical connectives, how to convert a sentence to CNF and how to

apply the resolution rule to two propositions. For non-computer science students, this is the first contact

they have with logic, more specifically, propositional logic (although some participants commented that

they still remembered some logic from learning Philosophy in high school). Thus, we use the system to

consolidate the knowledge we introduce in a short, roughly fifteen minutes, lesson.

After this introduction, we also present the interface and the activities of the system to reduce errors

unrelated to learning logic. We then give unrestricted access to the system during a minimum of thirty

minutes for each user, one at a time, starting with an initial student model and the stream of exercises.

While the student hadn’t learned everything, the stream kept showing new exercises. After the minimum

time had passed, the student had the choice to stop the study or keep going to finish their learning.
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Assistance was also provided for the student for any question regarding use of the system while the test

was being carried out.

At the end of the study, either from request of the student or from finishing the system, general ques-

tions about the interface, the exercise selection and how much propositional logic they have actually

learned were asked and the answers recorded. Pen and paper were also supplied to each user.

4.2 Results

To evaluate each student’s learning progress, our first approach was to register how many KCs had

been learned after the interaction but, since most of the participants wished to finish the system and

achieve all KCs by continuing to use the system after the thirty minutes, we instead chose to measure

the percentage of correctness of each student for both approaches and compare the two populations

of students 4.1. This decision was also made because it was important for students to interact with

all activities and two of them, Connecting Clauses and Full Resolution Exercises, are only found in the

later stages of the system’s learning, making it very difficult for a student to reach that stage with a time

limit of thirty minutes. Students who wished to complete the system finished the course with a time of

interaction of forty-five minutes to one hour. For students who wished to end the study after the minimum

time, which were only students 5 and 11, the last ten minutes of the study were dedicated to KC10 and

KC11 exercises only. We also measured the overall correctness of each KC to evaluate whether proper

feedback and error diagnosis influence certain KCs learning 4.2.

Between both approaches, the better average results were found in the ZPDES plus Error Diagnosis

system, with an average correctness percentage of 92%. In comparison, the pure ZPDES approach

had a smaller average correctness of 83%. The better results in the pure ZPDES approach, students

1, 2 and 4, were all current Computer Engineering students, meaning they could accurately identify

their errors on their own. In contrast, the worse results, with the worst being a correctness rate of 74%,

were students that had just learned logical expressions, CNF conversion and the resolution rule for the

first time in a short introduction and, thus, made several consecutive errors. In the ZPDES plus Error

Diagnosis system, the same difference between students happened, where the best results came from

current or former Computer Engineering students, although the difference between the higher and lower

results was much lower. Results for this approach were generally higher, as even the lowest correctness,

86%, was higher than the average correctness for the pure ZPDES approach.

Regarding KC correctness, the lower KCs for the pure ZPDES approach were KC5 with 79%, KC7

with 63%, KC8 with 82% and KC9 with 71%. As these KCs teach conversion to the clausal form, without

proper feedback it was expected for these KCs to require numerous tries for students to understand

where they went wrong. In comparison, the KC correctness for the ZPDES with Error Diagnosis was
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Figure 4.1: Graph showing the results of the correctness for each student in the user study

much better, as some of the previous lowest KCs were now with higher values in correctness, for example

KC7 with 83% and KC9 with 95% being the best improvements. For KC11, which is the last KC to be

learned, we also saw a great improvement, from 86% to 96%. All of these results show that there is an

influence of the error diagnosis process in the learning of the system and the learning of certain KCs.

4.3 Discussion

By only looking at the statistical results, we can clearly see the ZPDES plus Error Diagnosis system

provided better results and was a more efficient approach since the students using this version achieved

the same learning progress with less exercises. These results were expected as this approach provided

a better environment for students to not repeat their errors, as proper feedback allowed students to

understand where they had made their mistake and correct it in the future. This is also proven by the KC

correctness values, as KCs that were harder to understand without feedback were now easier to attain

and had a better correctness value.

In general, students seemed engaged when using the system, proven by the fact that most wished

to end the training even when told the minimum time had passed. As such, these same students

commented that they considered they had actually learned the basics of propositional logic and how to

perform Propositional Resolution.
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Figure 4.2: Graph showing the average correctness of each KC for each approach

4.3.1 General Comments

Comments were generally positive, although some criticisms of the system were also noted. Students

who used the Error Diagnosis version of the system commented that the feedback and explanation of

the previous exercise’s solution was clear and concise. Users also complimented the clean interface

and some commented that they considered the exercises were tailored for their needs.

Regarding criticisms, one of the most prominent opinions was that the system was not very user

friendly, as activities and the descriptions of what to do were a bit vague, which left them unsure of what

to do. This difficulty was pointed out mostly about the Connecting Clauses activity since it resembled

a multiple choice activity, which required outside assistance for some students to understand how to

complete. An idea by one of the users was to include a video tutorial of each activities execution in a

separate tutorial function, which would, in theory, clarify how to interpret the exercises description.

Another criticism was related to a lack of a sense of progress to the stream of exercises. A common

comment during user testing was if the system would endlessly present exercises or if it had an end,

since the only feedback received was related to the user’s input and no feedback is given related to how

much learning progress the student has achieved. A possible solution, also suggested by a student, is

to include a counter of exercises in the main page of the exercise, including how many are left for each

KC to be completed and, by definition, for the course to be completed.

Overall, this study was conclusive in evaluating our both approaches with college students, although

a more extensive study, with a more diverse population of different backgrounds and ages would provide
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more conclusions about the system, its advantages and its shortcomings.
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5.1 Achievements

Concluding this dissertation, we sum up the achievements made with this work. Our goals included

building a functioning ITS that teaches Propositional Logic and Propositional Resolution by adapting to

each student’s different capabilities, by providing a personalized learning experience without any previ-

ous knowledge or assumptions regarding the student.

For these goals, other sub-objectives were also required. We defined each individual skill, as knowl-

edge components, needed to learn Propositional Resolution and defined the hierarchy between them.

We also defined the student model as a combination of learning values associated with each KC and

the ZPD, which serves as the sub-set of skills the student has more learning potential.

Using the python library logic.py, we built a framework for propositional logic exercises on a Flask

application and generated a near-endless supply of logic exercises to include in the system. For the

selection of these exercises, we used the ZPDES algorithm and we also managed to improve the algo-

rithm’s exercise selection by integrating it with a more complicated error diagnosis process. This process

was also created in the context of the dissertation, by verifying the difference between the student an-

swer and the ideal answer and checking for incorrect combinations of symbols in the student answer.

Finally, we conducted a user study to evaluate the system’s teaching potential with students at

college-level. This study proved that the system is capable of this, as most students who participated

were capable of performing Propositional Resolution after the interaction. The study also showed our

approach using ZPDES with our Error Diagnosis process to be more efficient of the pure ZPDES ap-

proach, as the correctness results from the students using the ZPDES plus Error Diagnosis version were

better, meaning they achieved the same learning progress with less exercises.

In summary, we managed to create P-res Tutor, an ITS that is able to provide a customizable and

adaptive experience for any student to learn Propositional Resolution.

5.2 Future Work

Regarding future work in this area, most of it is regarding improvements in the existing system or ex-

tensions of P-res tutor. Further work can also be done researching other ways of exercise selection, for

example using the RiaRit algorithm.

5.2.1 Improvements

In terms of improvements for P-res Tutor, the priority would be to improve on the existing activities to

make them more user friendly, by changing the activities descriptions or even the activities themselves.

A possible improvement would be to change the form of input in CNF conversion exercises, instead of
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being text-based, all of the possible symbols would be in selection boxes and the input for the exercise

would be created by clicking these boxes. The only symbols that would appear in these boxes would

be the logical connectives and the propositions in the original sentence. This would remove doubts over

what is possible in CNF conversion and what the expected output is at the cost of taking some freedom

from the system.

The error diagnosis process could also be improved, as it now only includes error detection for five

KCs. This process should extend to all KCs and to all activities as we are not currently able to diagnose

the error in the Connecting Clauses exercise. A more detailed process would find an ideal sequence of

connecting clauses to achieve the empty clause and compare this sequence to the user inputted one,

while checking for any redundant steps.

When it comes to the adjustable parameters used in the exercise selection function, we could also

improve on these by finding the ideal values for them. This would require further user studies so we

could test the impact of each parameter, for example the impact of the learning speed, of the streak

of exercises or of the error diagnosis. A simulation using virtual students would also allow us to better

evaluate the system.

Finally, as said before, the exercise selection could be improved by implementing the RiaRit algorithm

with our developed Error Diagnosis process, and compare it with the ZPDES approach, to evaluate

whether it would be more efficient than the existing solution. This algorithm would also require a more

detailed student model, including competence values for each activity.

5.2.2 Extensions

The priority when thinking of extensions for P-res tutor is including new activities in the system. One

possible activity would be a truth table exercise. By presenting a truth table with empty spaces, the

student would have to fill out the rest of the table with the correct values. This would help us better teach

the basic KCs, such as the knowledge of what every logical connective means in a proposition. This

would also allow the system to teach all of Propositional Logic and not only Propositional Resolution.

A major extension would be to implement First-Order Logic and First-Order Resolution in the sys-

tem. This would require some extensions to the logic.py library, as it only includes a framework for

Propositional Logic. It would also require implementation of the existential quantifier ∃ and the universal

quantifier ∀ and their decomposition to CNF. Furthermore, both different KCs and a different KC tree

would have to be created since First-Order Logic includes many concepts, such as predicates, which

Propositional Logic does not consider. For this extension, help could be obtained from analysing ITSs

which test First-Order Logic [12].
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[2] R. Nkambou, J. Bourdeau, and V. Psyché, “Building intelligent tutoring systems: An overview,”

Stud. Comput. Intell., vol. 308, pp. 361–375, 2010.

[3] B. Clement, D. Roy, P.-Y. Oudeyer, and M. Lopes, “Multi-Armed Bandits for Intelligent Tutoring

Systems,” vol. 7, no. 2, pp. 20–48, 2013. [Online]. Available: http://arxiv.org/abs/1310.3174

[4] S. Russell, S. Russell, and P. Norvig, Artificial Intelligence: A Modern Approach,

ser. Pearson series in artificial intelligence. Pearson, 2020. [Online]. Available: https:

//books.google.com.br/books?id=koFptAEACAAJ

[5] F. Grivokostopoulou, I. Perikos, and I. Hatzilygeroudis, “An Educational System for Learning

Search Algorithms and Automatically Assessing Student Performance,” Int. J. Artif. Intell. Educ.,

vol. 27, no. 1, pp. 207–240, 2017. [Online]. Available: http://dx.doi.org/10.1007/s40593-016-0116-x

[6] W. J. Clancey, “Intelligent Tutoring Systems: A Survey,” Explor. Artif. Intell., pp. 1–43, 1986.

[7] H. S. Nwana, “Intelligent tutoring systems: an overview,” Artif. Intell. Rev., vol. 4, no. 4, pp. 251–277,

1990.

[8] D. Abraham, L. Crawford, L. Lesta, A. Merceron, and K. Yacef, “The logic tutor: A multimedia

presentation,” vol. 3, 01 2001.

[9] S. Lukins, A. Levicki, and J. Burg, “A tutorial program for propositional logic with human/computer

interactive learning,” SIGCSE Bull. (Association Comput. Mach. Spec. Interes. Gr. Comput. Sci.

Educ., pp. 381–385, 2002.

[10] M. S. Reis, “RegexTutor : A Fully Online Intelligent Tutoring System,” September, 2020.

[11] F. Grivokostopoulou, I. Perikos, I. Hatzilygeroudis, F. Grivokostopoulou, I. Perikos, I. Hatzilyger-

oudis, A. Tools, F. Grivokostopoulou, I. Perikos, and I. Hatzilygeroudis, “Assistant Tools for Teaching

39

http://arxiv.org/abs/1310.3174
https://books.google.com.br/books?id=koFptAEACAAJ
https://books.google.com.br/books?id=koFptAEACAAJ
http://dx.doi.org/10.1007/s40593-016-0116-x


FOL to CF Conversion To cite this version : HAL Id : hal-01521414 Assistant tools for teaching FOL

to CF Conversion,” 2017.

[12] F. Grivokostopoulou, I. Perikos, and I. Hatzilygeroudis, “An intelligent tutoring system for teaching

FOL equivalence,” CEUR Workshop Proc., vol. 1009, pp. 20–29, 2013.

[13] C. Galafassi, F. Galafassi, E. Reategui, and R. Vicari, “EvoLogic: Sistema Tutor Inteligente para

Ensino de Lógica,” pp. 222–233, 2020.

[14] H. Mandl and A. Lesgold, Learning Issues for Intelligent Tutoring Systems, 1st ed., 1989.

[15] J. Crawford and U. of Sydney., EMYCIN : an expert system shell / James Crawford. Basser Dept.

of Computer Science, University of Sydney [Sydney], 1987.
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System Screenshots
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Figure A.1: Truth and False exercise

Figure A.2: CNF conversion exercise
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Figure A.3: Connecting Clauses exercise

Figure A.4: Full Resolution exercise
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Figure A.5: Summary popup, with streak of exercises and correction of last exercise

Figure A.6: Help popup, with notation used by the system and other useful tips
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