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Abstract—Unlimited Vector Extension (UVE) is a novelty
scalable vector extension that incorporates streams. To do so,
it implements a decoupled streaming unit that handles all
memory processing instructions related to streams, releasing
some pressure from the main pipeline. This extension emits much
less instructions during loops, increasing the potential time saved.
As a new extension that implements target specific instructions,
it needs support from a compiler to produce target code. This is
achieved by instantiating a new subtarget from RISC-V’s LLVM
backend and creating and encoding the matching instructions. To
give some integration with LLVM Intermediate Representation
(IR), some intrinsics were also created to match with the
instructions through patterns. To solve potential register streams
rewriting and to overcome the SSA form of LLVM IR, pseudo
instructions are used. At the end an evaluation was carried out
to test this implementation with three benchmarks that highlight
the features of the new backend and corresponding intrinsics.

Index Terms—Scalable Vector Processing; Stream Computing;
LLVM IR; Compiler Backend

I. INTRODUCTION

One of the main focus when dealing with computers is the
time it takes to perform a task. To improve its performance on
applications that feature Data-Level Parallelism (DLP), some
extension were developed that implement Single Instruction
Multiple Data (SIMD) instruction sets. SIMD instruction
allow to exploit the DLP and can processes multiple data
while only issuing one single instruction. This approach is
an improvement over the previous methods but still has some
issues: it has a fixed value for the vector width. This constraint
forces applications to only being able to perform optimally on
machines that feature registers of the same size as the one
defined. Two well know extensions that make use of these
methods are Intel’s SSE and AVX extensions [1], [2] and
Arm’s NEON extension [3].

The next improvement over this methods was to remove
the fixed value constraint for vector width and use a Vector-
Length Agnostic (VLA) methodology. Vectors were now
without a fixed size, and adaptable to the configuration of
the application. Extensions that implement such feature are
usually designed by scalable vectorial extensions. The two
major extensions that make use of scalable vectors are Arm’s
Scalable Vector Extension (SVE) [4] and RISC-V ”V” exten-
sions [5]. Arm’s SVE extension includes 32 scalable vector
registers with a vector length comprehended between 128 to
2048 bits, with 128 increments. Supported data-types are byte

(8 bits), half word (16 bits), word (32 bits) and doubleword
(64 bits). SVE also supports predication mechanisms. On the
other end is RISC-V ”V” scalable extension can have registers
with minimum element size of 8 bits, and all the others that
represent a power of 2 from 8. The vector length should be
higher or equal to the element size, and can also be iterated in
powers of 2. This extension also support predication over the
vectors. However these methods can still be improved upon.

II. RELATED WORK

The use of stream abstractions is already present in many
works such as Imagine Stream Processor [17], RSVP [18],
Q100 [19], Stream-dataflow acceleration [20],VEAL [21], and
CoRAM++ [22]. However, these works do not target a general
purpose out-of-order core. Regarding the decoupled execution
of memory instructions from the main core, Outrider [23]
enables the use of multiple simultaneous threads and provides
memory latency tolerance. Another work that implements
such strategy is Decoupled Supply-Compute (DeSC) [24], by
separating the main processing core from a second one or an
accelerator that handles memory instructions.

For general purpose computing, Wang et al. [25] proposed
an ISA extension for decoupled streams that can enable
prefetch stream accesses and remove address computations
instructions from the main core to hide some of the latency
introduced by memory access operations. This work also
implements compiler support using LLVM, that follows the
process of first recognizing stream candidates and it’s selection
and then generating the code for the target. Another work
that handles streams with compiler support has also been
developed by Neves et al. [26], where the frontend of LLVM
is used to identify and modify memory accesses with a
dedicated representation. Compiler implementations that range
from auto-vectorizations, implementation through directives
and accelerator support is presented in works [27]–[31].

III. COMPILERS

To support the use of these new extensions, it is pretty useful
to be able to translate a source code in a particular program-
ming language directly into that extension instructions. That
is the purpose of the compiler.



A. Structure of a Compiler

For the most part compiler can be divided into the the
structure presented in Figure 1 [10]. This structures usually
fall into the category of the frontend or the backend of the
compiler. The frontend is responsible for parsing, manipulation
and verification of the used programming language while the
backend is responsible for taking an IR and generate the
specified target code.
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Intermediate Code
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Intermediate Code
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Fig. 1. Usual structure of a compiler.

The lexical analyser is the component responsible to break
down the characters received as input from a source file into
meaningful sequences called lexemes. Lexemes are then used
to create tokens that are associated with them. Each individual
token represents a logical piece of source material, such as
a variable name or a keyword, and can contain attributes to
transmit necessary information. They are usually implement
with finite automatas.

Syntax analysers are also known as parsers, and they receive
the input from the previous stage and build a tree-like object,
often a parse tree or an Abstract Syntax Tree (AST), to give
grammatical structure to the token streams with the intention
of recovering the structure that was previously represented by
the tokens. Two popular strategies to implement a parser are
the top-down and bottom-up approaches. The first one begins
with the a starting symbol and from there it tries to guess the
productions necessary in order to get to the input program.
Bottom-up does the opposite, it starts with the input program
and tries to reach the starting symbol.

Semantic analyses ensure that a program is consistent with
the definition of the language semantics. To do so, it goes
through the tree-like structure produced in the previous step
and verifies the use of the language symbols, their type and
the interactions between them, usually with the help of symbol

tables. Some of the properties checked during this step are the
use of undeclared variables, scope checking and type checking.

After performing this steps, the structure in transformed
into one or more IRs that are between high-level languages
and assembly, or some kind of data structure. An advantage
of using such representations is to create an independence
from the frontend as well as from the backend. This allows
to perform optimizations that are language and target inde-
pendent. One other advantage of using such representations
it the simplification of the development of new languages or
architectures. To create a new programming language, it is
only necessary to implement the features that transform such
language into an IR and it will be automatically supported on
the backends implement, apart for some specific constraints.

Following the intermediate code generation comes various
stages of optimizations and target code generation. this steps
can often be interchanged between one another, performing
multiple optimizations between the code generation itself.

Some common task that are done during target code gener-
ation include instruction selection, instruction scheduling and
register allocation.

B. LLVM Infrastructure

The LLVM Infrastructure provides multiple tools and li-
braries that can be used in the development of a new compiler
or part of it. One feature that sets LLVM apart from other
compilers is its structure [17]. Instead of adopting a monolithic
approach, it is divided into multiple modules and libraries, that
implement a specific feature.

For the frontend, the LLVM Infrastructure offers Clang as
default. Clang was developed as a replacement for the GCC
frontend for easier integration with integrated development
environments and better performance. It makes use of hash
tables during lexical analysis to save identifiers and builds an
AST during syntax analysis to aid with type checking, that
will later be transformed into the LLVM IR.

LLVM IR is one of the main components of LLVM. It
is an independent language that presents resemblances to the
assembly language and is used to separate the frontend from
the backend. It is a strongly typed Static Single Assignment
(SSA) based representation that uses an infinite set of tempo-
rary registers as is designed to be used as a representation in
memory for the compiler to manipulate in the form of C++
classes, as a binary bitcode representation that is saved on disk
and can be used with just-in-time compilers or as a human
readable form. The human readable files come in the ”.ll”
extension and feature components such as modules, functions,
variables, target data layout and the target triple. A module
is the top structure that holds all other LLVM IR objects,
such as functions and variables. A function is a collection
of basic blocks that performs some task, similar to the C
language equivalent. Basic blocks are groups of instructions
that execute sequentially between their entry point and the
terminator instruction. The target data layout and target triple
are strings that transmit information about the target data
layout and architecture, respectively.



After the generation of the IR, LLVM starts the process of
code generation for the specific target. Optimization passes
are performed between some of this stages. To generate target
code, LLVM starts by creating a Directed Acyclic Graph. In-
structions are mapped into DAG nodes and are linked together
accordingly to the flow of the program and data dependencies.
The next step is to legalize every operation and operator
inside of the DAG. The compiler checks if the operations
and operators are supported or the target backend, and if they
are not they are considered illegal. At this stage the illegal
operator and operands need to be converted or transformed
into legal ones, either by promoting or expand illegal types,
or by performing custom legalization steps. With all the
operator and operations legal, the compiler starts the process
of instruction selection. Here the generic IR instructions are
replaced by specific target supported instructions. To do so,
it performs pattern matching by using defined patterns on the
target backend. The next step is scheduling the instructions
accordingly to the target machine constraints and after that
is complete, the DAG is destroyed and the instructions are
replaced by another representation, Machine Instruction, that
are grouped into a list. Because the target has a limited amount
of resources, the next step is to allocate physical registers to the
virtual register used up until now. When there are no physical
register available, the compiler moves the value of one the the
registers into main memory, in a processed called spilling. The
default register allocator used by LLVM backend is the Greedy
register allocator. It calculates the live ranges for variables
(where, during the execution of the program, that variable is
used) and makes use of global live range splitting to decide
which register to attribute to each variable. The final step is
to takes the resulting instruction and emit machine code in
binary or assembly format.

IV. UNLIMITED VECTOR EXTENSION

UVE takes the concept of scalable vectors and unites it with
the implementation of data streams. A stream is a contiguous
flow of data, and UVE makes use of them by decoupling the
memory accesses to scalable register into a streaming unit,
separate from the main pipeline. By doing so, it relieves the
pressure of data prefetching, loads and stores into the stream-
ing unit, which leaves more room to execute other instruction.
The implementation of this extension also allows to represent
streams by using descriptors, to describe the patterns done
during memory access. Streams are handled implicitly inside
the streaming unit, so the branch instructions are no longer
necessary to iterate over scalable vectorial registers as it is
done by a specific target instruction. Loop instruction that
update the current iteration are also no longer necessary, for
the same reason.

A. Definition of streams

To define streams, the new extension makes use of descrip-
tors to describe patterns on memory accesses. Throughout his
works [6]–[8], Neves et al. proposes that any address sequence
can be described by the affine function in equation 1

(1)y(X) = ybase +

dimy∑
k=0

xk × stridek,

with xk ∈ [αk, βk], X = {x0 · · ·xdimy
}

where each stream access (y(x)) can be described by the
sum of a base address (ybase) with dimx pairs of indexing
variables (xk) and stride multiplication factors (stridek). This
representation is capable of describing any pattern but can
introduce a huge amount of descriptors, so another proposal
by Neves et al. is introduced in Figure 2.

Fig. 2. Descriptor specification proposed by Neves et al. [6].

Using the proposal in Figure 2, the specification is com-
posed of a context header, a base descriptor and a modifier
chain. The base descriptor is composed by the stream identi-
fication (stream), memory base address (base), the number
of dimensions the descriptor has (dimy) and the description
of each dimension by the pairs dimension size (xsize) and
stride (stride). This base description allows to represent any
N-dimension memory description but it would use too many
descriptors to do so.

That is why the modifier chain is used. The modifier chain
allows to describe non-linear memory patterns, as a way to
decrease the number of descriptors necessary to represent such
memory accesses. Each modifier is associated with a dimen-
sion, and is applied after each iteration of said dimension.
They can be divided into two categories: field modifiers and
indirect modifiers.

Field modifiers are described by the target of such modifica-
tion (targetmod), the dimension of the modifier (dimmod) and
by a pair that specifies the modifier size and stride, (msize)
and (mstride), respectively. This allows, as an example, to
target the field xsize0 to increase the size of that dimension
by one unit every time the modifier iterates.

Indirect modifiers are described by specifying the dimension
of the modifier (dimmod) and the pairs target (target) and
stream descriptor (a id). This non-linear modifier represents
data dependencies between descriptors, and can be used to
change a modifier field base on another modifier. As an
example, an indirect descriptor can be setup targeting the field
xsize0 with an outside stream descriptor a1. This way, every
time the stream associated with descriptor a1 produces a new
value, the stream with this modifier will create an indirect
memory access using, the value produces by descriptor a1 as
an offset.



B. UVE Streams

The implementation of streams in UVE is described in the
works of Doomingos et al. [9] and follows closely from the
description used in Figure 2. Streams are defined as a con-
tinuous flow of data and make use of descriptors to describe
memory patterns for its configuration and manipulation.

Linear patterns are described in UVE with three parameters:
the size of the descriptor, its offset, equivalent to the base from
base descriptor, and stride. With such representation, UVE
is able to define streams. To create a stream with multiple
dimension, it is necessary to create more descriptor, using the
same methods, and associate them between each other.

For more complex memory accesses, the extension also
makes use of modifiers. Field modifiers, or direct modifiers,
are configured by specifying the target of such modification
(choice between offset, size and stride), the behaviour it wants
to implement (increment or decrement), the amount it will
perform such modification and the size of the modifier.

Indirect modifiers are also used to describe indirect memory
accesses, originated from another variable. The setup of such
modifier is pretty similar to the one used by direct modifiers,
except in this case, as it is am indirect modifier, it is repre-
senting a data dependency between two variables, so instead
of selecting the amount it will modify the targeted dimension
this value will come from an outside stream. This value can
then be used to add, subtract, increment, decrement or set one
of the fields of the targeted dimension.

A summary of this three descriptor used in UVE can be
seen in Figure 3.

Fig. 3. Descriptors summary containing linear descriptors and dynamic
modifiers by Domingos et al. [9].

C. UVE Instruction Set Architecture

UVE is implemented as an extension to the RISC-V, lever-
aging the fact that it is an open-source architecture.

Its architecture is composed of 32 scalable registers and
16 scalable predicate register. It supports elements widths
equal to byte, half-word, word and doubleword with the
minimum vectorial register size equal to maximum element
size implemented.

Predication mechanisms are also present, allowing to select
which lanes of the vector are going to execute by configuring
the predicate scalable vector. Although it is composed of

16 scalable predicate registers, only 8 are used to perform
memory and arithmetic operations. The predicate register ”p0”
is always configured to 1, enabling all the lanes to execute.

UVE also makes use of Control Status Registers (CSR),
that can be used to discover the vector maximum length and
to configure its working length.

The new extension supports 82 instructions with a total
of around 450 variants. To save space on the encoding of
each vector, the data-type of each element is not specified
there and is instead delegated to the instructions, who must
represent such types. To show how the new instructions work,
a presentation of some of them is done in detail.

The vertical add instruction instruction is an example of an
arithmetic instruction. It takes as input two scalable vectors
and performs the addition element by element, saving the
result in the output scalable vector. As stated before, the
instruction must specify the data-type of the elements inside
the vectors. This instruction supports predication of its ele-
ments, allowing to execute the addition only for the specified
lanes. Another version of this instruction is the horizontal add,
where instead of adding two scalable vectors, it performs the
summation of one single scalable vector and return the result
into a scalar register of the same element size.

Logical instructions can described by the Shift Logical Left
(SLL) and Shift Logical Left Scalar (SLLS) instructions. The
first takes as input also two scalable vectors and uses the
second one to perform individual shifts to the elements of
the first vector by their value of the elements in the second,
with the result saved to a scalable register. The scalar version
SLLS only takes one scalable register as input and replaces
the second one by a scalar register. The value on the scalar
register is then used to perform a shift on the scalable register
elements, that will be the same for all.

UVE also features data transfer instructions, to give support
to some programs that might need them, although the main
intention of the extension is to perform them implicitly through
the use of streams. Load and store instructions take as input
the base memory from where the elements are going to be
read from and the number of elements that are going to be
processed. For the load instructions, it is also required to
specify the data-type of the elements inside the scalable vector.
Both the load and store instructions come with two different
versions, and the reason for that is to maintain the coherent
state of the program if the load or store instruction is not
able to perform the request (ex. not being able to read all
the requested elements). For that the instructions come in the
address variant and the size variant, where after each operation
the base address or the number of elements to be processed
are update accordingly.

To move data to and from scalable register some instructions
are offered. There is an instruction that allows to move data
from a scalable register into a scalar register, only moving the
first element; there is an instruction for the exact opposite,
to move data from a scalar register into a scalable vector an
element width specification is required and the scalar register
moves the element into the scalable vector with possible loss



of data. To replicate this behaviour but for all the elements,
UVE also support the duplicate instruction. It is also possible
to move data from one scalable vector into another, with the
option to transpose all the elements. Still on the same family
of instructions, the extension gives support for with conversion
instruction, with element widening and element narrowing. To
perform such instructions, the elements are copied from the
input register into the output register, but because the elements
width are unmatched, the register that holds the elements with
the smaller width will have to shift them every time elements
are copied to or from that register. If elements are being
transferred from a vector with smaller element width than
the output vector, then the elements are shifted to the left
on the input vector every time a transfer of data occurs. If the
operations is the other way around, then the elements in the
output vector are shifted to the right before a transfer of data
occurs.

All the instructions stated above make use of streams, and
to configure streams UVE takes the approach stated on section
IV-B. There are instructions to configure a simple stream,
with size, offset and stride values as input. To configure
multidimensional streams, it is only necessary to reuse the
same register associated with the stream and append another
dimension to it by following the same procedure, or end the
description of the stream, with the end instruction instead. To
implement direct modifiers, it is necessary to specify if it be
appended to a dimension or if it will end the description of
the stream, the target of such modifier, the behaviour it will
operate with, the size of the modifier and the displacement
value. To configure an indirect modifier, the requirements are
almost the same, with the replacement of the displacement
value by a source stream where the data will come from. This
fields for all these instruction were already all detailed in the
previous sections.

Lastly, there are instructions to support branches based on
the state of a stream, by configuring the instruction to jump if
a stream dimension has or has not yet completed.

V. IMPLEMENTING UVE ON LLVM

To give support for the new vectorial extension, LLVM
Infrastructure was chosen as the target. The reasons that led
to it are the richness and completeness of its assembly-like
intermediate representation and its modular backend style,
making it easier to implement an extension to the RISC-V
architecture without having to deal with any other components.
LLVM is also an open source software that has been gaining
traction and is already being used to give compiler support for
Arm’s SVE and Intel RISC-V ”V” extensions [12]–[14].

A. LLVM Supporting Extension Requirements

UVE presents some particularities that are, in some cases,
different to other extensions. It makes use of scalable registers
that are implemented as an extension to RISC-V scalar regis-
ters, it uses custom instructions to handle loop control, with
loop iterations being done implicitly by the streaming unit, and
it also uses streams associated with the scalable registers, with

its definition for multidimensions and modifiers being done on
the same output register. With that, the following requirements
are established:

1) The supporting implementation must be able to repre-
sent the scalable vectors and corresponding predication
vectors with their own type and associated registers.

2) Remove the standard loop instructions, including the
loop iteration control and the branch instruction itself,
by replacing them with specific UVE loop control in-
structions.

3) Allow writing multiple times into the same register
to exploit UVE streams mechanic, for configuration
of streams and writing to a register associated with a
stream, performing an implicit store on the streaming
unit.

4) Implement the rest of the extension instructions, follow-
ing the template described in section IV-C

5) At the end, the supporting implementation must be able
to fully translate an LLVM IR file written using all the
elements described on the points stated above.

B. Registers Definition

The first step in implementing a new extension to an
already defined architecture is to define the new extension as
a subtarget of that architecture.

Because UVE uses scalable registers, this scalable vector
type needs to be defined on the backend in order to define
the extension registers. This task was already done by the
SVE extension [15], and the defined Machine Value Type is
expressed as

nxv<size><type>

where <size> represents the minimum number of elements
inside the vector and <type> represents the the basic types
of the elements inside the vector.

The register definition itself is done by instantiating the
RISCVReg class and then all the registers are grouped into
a RegisterClass, using the types defined by SVE.

C. Defining new Instructions

To define a new instruction on the backend, it can be used
the RVInst class, that encodes the parameters with the instruc-
tion definitions of RISC-V. The new instructions are subdi-
vided into various categories, such as arithmetic instructions
and logic instructions, so they will follow a different encoding
from one another. RISC-V specifies the instructions encoding
formats in its manual [16], and for UVE the instructions
can follow two different formats, the R-type for the generic
instructions that perform operations between registers and the
B-type, used to encode conditional branch instructions. Inside
this encoding types, UVE still subdivides the instructions by
their functions, so the creation of complementary classes that
specialize on each instruction category eases the definition
of new instructions. After the definition of new instruction
specialized classes, the instructions are defined by instantiating
these classes and referencing as input their encoding, the



number of input and output parameters and the registers
they use, the assembly code that should be generated and
some configuration flags. Listing 1 show the definition of an
intermediary class to later define arithmetic instruction that
have one scalable vector as output and two scalable vectors
and one scalable predicate register as input. On line 3 the flag
that defines the format of the instruction is used, signaling the
instruction as having R-type format.

Listing 1. Definition of UVE ARITH V VVP f derived class
1 class UVE_ARITH_V_VVP_f<bits<4> funct4,

bits<1> funct1, UVE_DataType usftype,
2 RISCVOpcode opcode,

dag outs, dag ins, string opcodestr,
string argstr>

3 : RVInst<outs, ins, opcodestr, argstr,
[], InstFormatR> {

4 bits<3> ps1;
5 bits<5> us2;
6 bits<5> us1;
7 bits<5> ud;
8
9 let Inst{31-28} = funct4;

10 let Inst{27-25} = ps1;
11 let Inst{24-20} = us2;
12 let Inst{19-15} = us1;
13 let Inst{14} = funct1;
14 let Inst{13-12} = usftype.Value;
15 let Inst{11-7} = ud;
16 let Opcode = opcode.Value;
17 }

The same procedure is used to implement the rest of the
instructions with one detail for the branch instruction. As
stated before, they follow a different instruction encoding
format. Because of that, a different flag is used instead of
the InstFormatR flag used in listing 1. The new flag indicates
that the instruction is of the conditional branch type and this
flag is used further on the backline to emit fixups. In LLVM,
fixups are used to represent information in instructions which
is currently unknown (such as a memory location). During
instruction encoding the unknown information is encoded as if
the value was equal to 0 and a fixup is emitted which contains
information on how to rewrite the value when information is
known. If the fixup can not be resolved before the emission
of the Execution and Linkable Format (ELF), it is converted
into a relocation.

D. Defining new Intrinsics

With the instruction already defined, they now need to be
integrated into LLVM IR. There are two possible options to
do so:

• LLVM Intrinsics : LLVM intrinsics are similar to func-
tion calls in C language. They are defined by declaring
its inputs, outputs and optionally any flags and are
transparent to optimization passes.

• LLVM Instructions : LLVM instructions, in the LLVM
IR sense, are more similar to assembly instructions and
are represented in IR with the result value before the
instruction keyword. They are not transparent to opti-
mization passes.

Given the alternatives, the main advantage from using
instructions is being able to use the optimization passes for
any manipulations or optimizations that may seem necessary.

However, when compared to intrinsics, these are much more
intricate. Because UVE uses streams, optimizations become
more complex and may not even be supported for this kind
of representation. Also, LLVM suggests that, if the intended
functionality can be represented as a function call, then it
should probably start as an intrinsic. Therefore, the method
used to implement a representation of UVE instructions in
LLVM IR are the intrinsics.

To define new intrinsics, it is necessary to instantiate from
the class Intrinsic. This class expects as arguments a list of
return types, a list of input types and a list or flags. The
flags are used to transmit additional information about the
intrinsic to the rest of the backend. The process to implement
new intrinsics follows the same structure as implementing
new instructions: derive a more specialized class from the
Intrinsic class and then define the intrinsics by instantiating
those classes.

Same as with the instruction, the branch intrinsics will
have a slight difference. As stated before, LLVM IR defines
blocks by having an entry point and a returning instruction at
the end. Intrinsics are not instruction and cant be used as a
returning instruction. As a result, the intrinsics for UVE branch
instructions will be designed to be used in conjunction with
regular conditional branches; they will take as input a scalable
vector but they will return an integer, that will be used as input
to a conditional branch.

LLVM now supports the new instructions and the use of
the new intrinsics but it still can’t translate from one to
another. To do that, it is necessary to define patterns. They
allow to make an association between backend instructions and
the matching intrinsic. This way, on the instruction selection
step, the compiler will match the intrinsics to the instructions
accordingly to the defined patterns.

E. Overcoming LLVM IR SSA Form

This solutions has some problems. One of them is the fact
that LLVM IR is strongly typed in the SSA form. This implies
that when a variable is defined on the IR, it cant be assigned
again with any value. This is incompatible with the UVE
streaming paradigm, that uses the same register multiple times
to configure and implicitly write to streams.

The first implementation to solve such problem was letting
the instruction take one additional element as input, the
variable associated with the streaming register that is supposed
to be written to. Then, constraints on the instruction were
defined to force that new input register to be the same as
the output. This two registers then become tied together and
trigger one pass on the backend that resolves this constraint.
However the pass that resolves this constraint did not lead
to the expected solution. Instead, it emits a copy instruction
before the targeted instruction and replaces the linked register
with a temporary one, that is used inside the copy instruction
inserted above.

The second and final implementation to solve this is-
sue makes use of pseudo instruction. Pseudo instruction are
machine instructions that don’t correspond to any specific



assembly instruction, and are used as a placeholder to later
be replaced by a pass. One important detail to point out is
that this pass runs after register allocation. The idea behind
this solution is to create pseudo instructions that are similar in
outputs and inputs to the corresponding UVE instruction but
they take one additional argument, the stream variable. This
pseudo instruction will later be replaced by the pass with the
intended UVE instruction, using the extra input register that
was allocated as an output register for that instruction. To sup-
port this feature in LLVM IR, new intrinsics need to be defined
that also take one additional input, and additional patterns to
make a connection between the two. In particular, the intrinsics
that append new dimensions to a stream and modifiers should
always use this implementation, as the previous definition is
only useful if the output register can be any available.

F. Register Coalescing

During register allocation, the standard register allocator
for LLVM (Greedy) will try to reuse registers if they are no
longer used anymore in any future part of the program. This
clashes with the streaming paradigm, in particular, with the
use of indirect modifiers. A stream can be configured to later
be used as an indirect modifier for another stream, and no
where else on the program. The register allocator will notice
this and reuse that register for another variable, in a process
called register coalescing. That register will be written over
with another variable but the register in reality is not available.
It is being used implicitly by the streaming unit to resolve the
indirect modifier that was defined previously.

As the problem is associated with the register allocation
process, one possible solution would be to rewrite a new
one, or tweak some features on the standard implementation
to account for streaming registers. However, both of these
methods are complex and there is one simpler way to solve
this. Because the problem is associated with the register
allocation step, pseudo instruction can be used again, as they
are only resolved after that stage. The idea is to create a new
pseudo instruction and matching intrinsic that are simply used
as placeholders to freeze a variable, and consequently the
register it uses. This new intrinsic takes only has one input
argument, the variable associated with the stream, and should
be placed on the IR where the stream is no longer in use. This
stops the register allocator from reusing that register until the
place in the program where the freeze intrinsic is used. The
corresponding pseudo instruction is then handled in a pass,
and is simply removed.

VI. RESULTS

To evaluate the correct operation of the new implementation,
a group of 3 benchmarks was used, each one of them with
features that make use of different parts of the implementation.

The first benchmark used was the SAXPY kernel as an
introduction, to test the definition of one dimension streams
and arithmetic instructions. The kernel can be represented
using the new intrinsics in LLVM IR by listing 2.

Listing 2. SAXPY kernel described in LLVM IR.
1 ...
2 define dso_local void @kernel_saxpy(i64* %x

, i64* %y, i64 %A, i64 %sizeN) #0 {
3 entry:
4 %streamx = call <vscale x 1 x i64> @llvm.

riscv.uve.stream.dim.sta.ld.d(i64 %sizeN
, i64* %x, i64 1)

5 %streamyL = call <vscale x 1 x i64> @llvm
.riscv.uve.stream.dim.sta.ld.d(i64 %
sizeN, i64* %y, i64 1)

6 %streamyS = call <vscale x 1 x i64> @llvm
.riscv.uve.stream.dim.sta.st.d(i64 %
sizeN, i64* %y, i64 1)

7 %streamA = call <vscale x 1 x i64> @llvm.
riscv.uve.move.duplicate.d(i64 %A, <
vscale x 2 x i1> undef)

8 br label %loop
9 loop:

10 %tempStream = call <vscale x 1 x i64>
@llvm.riscv.uve.mul.s.nxv1i64(<vscale x
1 x i64> %streamx, <vscale x 1 x i64> %
streamA, <vscale x 2 x i1> undef)

11 %dummy1 = call <vscale x 1 x i64> @llvm.
riscv.uve.add.s.save.nxv1i64(<vscale x 1
x i64> %streamyL, <vscale x 1 x i64> %
tempStream, <vscale x 1 x i64> %streamyS
, <vscale x 2 x i1> undef)

12 %loopRes = call i64 @llvm.riscv.uve.
branch.comp.1.nxv1i64(<vscale x 1 x i64>
%streamx)

13 %branch1 = trunc i64 %loopRes to i1
14 br i1 %branch1, label %loop, label %

return_label
15 return_label:
16 ret void
17 }
18 ...

Lines 4 through 7 define four stream, three to load data,
defined using the ”ld” appended string, and one to store
data, defined by the ”st” appended string on line 6. The
arithmetic operation occur inside the loop and then a UVE
branch intrinsic is called. The compiler processes this code
and emits UVE specific assembly, detailed in listing 3.

Listing 3. SAXPY kernel assembly format after compilation.
1 ...
2 kernel_saxpy: #

@kernel_saxpy
3 # %bb.0: # %entry
4 addi sp, sp, -16
5 sd ra, 8(sp)
6 sd s0, 0(sp)
7 addi s0, sp, 16
8 addi a4, zero, 1
9 ss.sta.ld.d u0, a3, a0, a4

10 ss.sta.ld.d u1, a3, a1, a4
11 ss.sta.st.d u2, a3, a1, a4
12 so.v.dp.d u3, a2, p0
13 j .LBB0_1
14 .LBB0_1: # %loop
15 so.a.mul.sg u4, u0, u3, p0
16 so.a.add.sg u2, u1, u4, p0
17 so.b.dc.1 u0, .LBB0_1
18 j .LBB0_2
19 .LBB0_2: # %return_label
20 ld s0, 0(sp)
21 ld ra, 8(sp)
22 addi sp, sp, 16
23 ret
24 .Lfunc_end0:
25 .size kernel_saxpy, .Lfunc_end0-

kernel_saxpy
26 ...

The result presented in listing 3 demonstrates that the
supporting extension is able to correctly translate the intrinsics
into UVE instructions and the method to overcome the SSA
form was successful, as displayed on line 16 where the



instruction is writing to a register already defined before. The
conditional branch in 2 is resolved in conjunction with the
UVE branch intrinsic and are replaced by a single UVE branch
instruction on line 17 in listing 3.

The second benchmark used was the trisolv kernel. This ker-
nel presents multidimensional memory accesses and presents
a memory access pattern that mirrors a triangular matrix. This
can be implemented in UVE with the use of direct modifiers.
The translation of this kernel into LLVM IR is presented in
listing 4. Only the stream configuration part is displayed, as
the arithmetic operations all follow the same template. The
use of direct modifiers and multidimensional definitions can
be observed on lines 10, 11 and 12. On line 11, an intrinsic
is issued to append an additional dimension to the stream
defined on line 10 and on line 12 a direct modifier is defined
to increment the first dimension size 1 unit every time the
second dimension is iterated and to end the configuration of
the stream.

The resulting code generated by the compiler is presented
in listing 5. The displayed code is not the full output file and
only shows the generated code equivalent to the intrinsics in
listing 4

Listing 4. Trisolv kernel described in LLVM IR.
1 ...
2 define dso_local void @kernel_trisolv(i64

**%L, i64 *%b, i64 *%x, i64 %sizeN) #0 {
3 entry:
4 %streamxiStore = call <vscale x 1 x i64>

@llvm.riscv.uve.stream.dim.sss.st.d(i64
%sizeN, i64* %x, i64 1)

5 %streambiLoad = call <vscale x 1 x i64>
@llvm.riscv.uve.stream.dim.sss.ld.d(i64
%sizeN, i64* %b, i64 1)

6 %streamxjLoad = call <vscale x 1 x i64>
@llvm.riscv.uve.stream.dim.sta.ld.d.1p(
i64 0, i64* %x, i64 1)

7 %dummy2 = call <vscale x 1 x i64> @llvm.
riscv.uve.stream.mod.end.siz.inc.nxv1i64
(i64 %sizeN, i64 1, <vscale x 1 x i64> %
streamxjLoad)

8 %streamliiLoad = call <vscale x 1 x i64>
@llvm.riscv.uve.stream.dim.sta.ld.d.2p(
i64 %sizeN, i64** %L, i64 1)

9 %dummy3 = call <vscale x 1 x i64> @llvm.
riscv.uve.stream.dim.end.nxv1i64(i64 %
sizeN, i64* null, i64 %sizeN, <vscale x
1 x i64> %streamliiLoad)

10 %streamlijLoad = call <vscale x 1 x i64>
@llvm.riscv.uve.stream.dim.sta.ld.d.2p(
i64 0, i64** %L, i64 1)

11 %dummy4 = call <vscale x 1 x i64> @llvm.
riscv.uve.stream.dim.app.nxv1i64(i64 %
sizeN, i64* null, i64 %sizeN, <vscale x
1 x i64> %streamlijLoad)

12 %dummy5 = call <vscale x 1 x i64> @llvm.
riscv.uve.stream.mod.end.siz.inc.nxv1i64
(i64 %sizeN, i64 1, <vscale x 1 x i64> %
streamlijLoad)

13 %streamxiLoad = call <vscale x 1 x i64>
@llvm.riscv.uve.stream.dim.sss.ld.d(i64
%sizeN, i64* %x, i64 1)

14 br label %loop1
15 loop1:
16 ...

Listing 5. Trisolv kernel assembly format after compilation.
1 ...
2 kernel_trisolv: #

@kernel_trisolv
3 # %bb.0: # %entry
4 addi sp, sp, -16
5 sd ra, 8(sp)
6 sd s0, 0(sp)
7 addi s0, sp, 16
8 addi a4, zero, 1
9 ss.st.d u0, a3, a2, a4

10 ss.ld.d u1, a3, a1, a4
11 ss.sta.ld.d u2, zero, a2, a4
12 ss.end.mod.siz.inc u2, a3, a4
13 ss.sta.ld.d u3, a3, a0, a4
14 ss.end u3, a3, zero, a3
15 ss.sta.ld.d u4, zero, a0, a4
16 ss.app u4, a3, zero, a3
17 ss.end.mod.siz.inc u4, a3, a4
18 ss.ld.d u5, a3, a2, a4
19 j .LBB0_1
20 .LBB0_1: # %loop1
21 ...

In listing 5 on lines 15, 16 and 17 is possible to observe the
definition of the multidimensional stream and direct modifier.
All three of these instructions use the same register as output
to configure the stream.

The last kernel used for evaluation was the SPMV kernel.
This features dependencies between variables that will be
represented as streams. This implies that it will be necessary
the use of indirect modifiers to represent such memory access
patterns. This kernel presents an opportunity to demonstrate
2 interesting cases and to explain it the corresponding LLVM
IR representation is presented in listing 6



Listing 6. SPMV kernel described in LLVM IR.
1 ...
2 entry:
3 ...
4 %streamnnz_ALoad = call <vscale x 1 x i64

> @llvm.riscv.uve.stream.dim.sss.ld.d(
i64 %sizeN, i64* %nnz_A, i64 1)

5 ...
6 %streamidx_ALoad = call <vscale x 1 x i64

> @llvm.riscv.uve.stream.dim.sta.ld.d.2p
(i64 0, i64** %idx_A, i64 1)

7 %dummy3 = call <vscale x 1 x i64> @llvm.
riscv.uve.stream.dim.app.nxv1i64(i64 %
sizeN, i64* null, i64 %sizeN, <vscale x
1 x i64> %streamidx_ALoad)

8 %dummy4 = call <vscale x 1 x i64> @llvm.
riscv.uve.stream.ind.end.siz.set.1.
nxv1i64(<vscale x 1 x i64> %
streamnnz_ALoad, <vscale x 1 x i64> %
streamidx_ALoad)

9 %streamxLoad = call <vscale x 1 x i64>
@llvm.riscv.uve.stream.dim.sta.ld.d.1p(
i64 0, i64* %x, i64 1)

10 %dummy6 = call <vscale x 1 x i64> @llvm.
riscv.uve.stream.ind.end.off.add.1.
nxv1i64(<vscale x 1 x i64> %
streamidx_ALoad, <vscale x 1 x i64> %
streamxLoad)

11 %streamyLoad = call <vscale x 1 x i64>
@llvm.riscv.uve.stream.dim.sss.ld.d(i64
%sizeN, i64* %y, i64 1)

12 br label %loop1
13 loop1:
14 return_label:
15 call void @llvm.riscv.uve.freeze(<vscale

x 1 x i64> %streamyStore)
16 call void @llvm.riscv.uve.freeze(<vscale

x 1 x i64> %streamnnz_ALoad)
17 call void @llvm.riscv.uve.freeze(<vscale

x 1 x i64> %streamvals_ALoad)
18 call void @llvm.riscv.uve.freeze(<vscale

x 1 x i64> %streamidx_ALoad)
19 call void @llvm.riscv.uve.freeze(<vscale

x 1 x i64> %streamxLoad)
20 call void @llvm.riscv.uve.freeze(<vscale

x 1 x i64> %streamyLoad)
21 ret void
22 }
23 ...

In listing 6, it is possible to see the definition of an
indirect modifier on line 8. This instruction takes as one of
the arguments the variable %streamidx ALoad (stream1), that
will determine the size of the this stream (stream2). One of the
interesting cases of this kernel is presented on lines 9 and 10.
A stream (stream3) is configured with one dimension and an
indirect modifier is appended to its configuration. However,
stream2 used in the indirect modifier is defined also using
an indirect modifier. So what happens is that stream2 has its
size set by stream1 and stream3 will have its size indirectly
set by stream1 too. The second interesting point is the use
of the freeze intrinsics on lines 15 to 20, at the end of the
program. As stated before, this is necessary to avoid register
coalescing and losing the streams used on indirect modifiers.
Two different results from the compiler will be presented next.
On listing 7 the result from compiling listing 6. On listing 8
the result from compiling listing 6 but without the freezing
intrinsics.

On lines 9 and 11 from listing 7 are two definitions of
the indirect streams. The IR code is compiled correctly into
assembly and all streaming registers remain unchanged from
the beginning till the end of the program.

Listing 7. SPMV kernel assembly with freezing intrinsics.
1 ...
2 kernel_smpv: # @kernel_smpv
3 # %bb.0: # %entry
4 ...
5 ss.ld.d u1, a5, a2, a6
6 ...
7 ss.sta.ld.d u3, zero, a1, a6
8 ss.app u3, a5, zero, a5
9 ss.end.ind.siz.set.1 u3, u1

10 ss.sta.ld.d u4, zero, a3, a6
11 ss.end.ind.off.add.1 u4, u3
12 ss.ld.d u5, a5, a4, a6
13 j .LBB0_1
14 .LBB0_1: # %loop1
15 ...
16 .LBB0_4: # %return_label
17 ld s0, 0(sp)
18 ld ra, 8(sp)
19 addi sp, sp, 16
20 ret
21 .Lfunc_end0:
22 ...

Listing 8. SPMV kernel assembly without freezing intrinsics.
1 ...
2 kernel_smpv: # @kernel_smpv
3 # %bb.0: # %entry
4 ...
5 ss.ld.d u2, a5, a2, a6
6 ...
7 ss.sta.ld.d u3, zero, a1, a6
8 ss.app u3, a5, zero, a5
9 ss.end.ind.siz.set.1 u3, u2

10 ss.sta.ld.d u2, zero, a3, a6
11 ss.end.ind.off.add.1 u2, u3
12 ss.ld.d u3, a5, a4, a6
13 j .LBB0_1
14 .LBB0_1: # %loop1
15 ...

Listing 8 shows the compiled code from the same IR but
without the freezing instructions. On lines 10 and 12 the
scalable registers ”u2” and ”u3” are written over, respectively.
This would cause an issue because, although this registers
never appear again throughout the program, they are still
being used implicitly by the streaming unit to gather data for
the streams defined with indirect accesses. That is why the
freezing intrinsics are necessary in listing 6.

VII. CONCLUSION

The new experimental scalable extension UVE to RISC V
architecture presents an exciting alternative that combines the
advantages of scalable vectorial architectures with the stream-
ing paradigm. This results in the emission of less instructions,
that lead to less clock cycles to process all the instructions.
This extension also features memory decoupling from the
main processing unit, leaving all the memory operation related
to streams for a separate streaming unit. By describing the
memory access patterns done by the variables inside loops,
the streaming unit takes care of prefetching the necessary data
to be ready for processing when the instructions are issued.

To support the UVE extension, it is implemented an ex-
tension for the LLVM Infrastructure. As the LLVM backend
presents a modular structure, the implementation can be con-
tained to the architecture it targets, RISC V. The backend is
populated with new instruction encoded with their respective
formats and intrinsics functions are used to represent such



instructions in LLVM IR. Although the SSA format is in-
compatible with format used by UVE instructions, pseudo
instructions are used as placeholders, to be replaced by the
correct instructions and formats after register allocation. To
avoid unwanted register coalescing by the compiler during
register allocation, a freezing intrinsic is used to lock a register
up until that point in the code, later being removed entirely.

The supporting implementation is able to represent the
new instruction in LLVM IR format through intrinsics and
compiles the three tested kernels that are representative of a
big part of the implementation features. They are all able to
be compiled without any errors and produce assembly code
that is according to the UVE standard.
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2020.

[10] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, & Tools, 2nd ed. Addison Wesley, 8 2006.

[11] J. Freire, D. Koop, E. Santos, C. Scheidegger, C. Silva, and V. Huy, The
Architecture of Open Source Applications, 01 2011, pp. 155–171.

[12] G. Hunter and A. Emerson, “Scalable Vectorization in LLVM,” ARM,
Tech. Rep., 11 2016.

[13] B. S. Center and SiFive, “Code generation for RISC-V V-extension,”
10 2020. [Online]. Available: https://lists.llvm.org/pipermail/llvm-
dev/2020-October/145850.html

[14] SiFive and B. S. Center, “RISC-V Vector Extension Intrinsic Document,”
2021.

[15] G.Hunter, “Supporting ARM’s SVE in LLVM,”
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[31] A. E. Şuşu, “A vector-length agnostic compiler for the connex-s acceler-
ator with scratchpadmemory,”ACM Trans. Embed. Comput. Syst., vol.
19, no. 6, Oct. 2020.


