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Abstract

Asset failures are hard to foresee and incur significant losses in the manufacturing industry. The
present work explores the application of ML techniques to predict the RUL of assets from monitoring
data, in the context of PAM. A successful PdM strategy can not only reduce breakdowns and downtime
of assets, but also maximize production, improve product quality, and safety of workers. We propose
three benchmark models using the RF, XGBoost, and LSTM, and a BiLSTM model, with sliding time
window, to further optimize through parameter and features selection. The proposed models are applied
to the N-CMAPSS dataset provided by NASA and the results obtained show the effectiveness of the
models. Both the parameters selection and the features selection increased the performance of the
BiLSTM model. Limitations were identified with the chosen dataset and proposed framework, however
the results obtained show promise for further research and in providing critical information to support
decision making for predictive maintenance strategies.

Keywords: Remaining useful life prediction, Predictive maintenance, Machine Learning, Bi-directional

long short-term memory , N-CMAPSS

1. Introduction

In the manufacturing industry, an asset failure can
be described as the asset performing its intended
function defectively, for example, a product is man-
ufactured by the asset with quality standards be-
low those predefined, or the asset completely halt-
ing its operation, known as breakdown. The latter
of the situations has more severe consequences, and
both require maintenance actions to be taken. The
consequences of a failure can be low, however, in
safety-critical systems, such as the aircraft industry,
failures can have extremely high economic impacts
and even loss of life. The only way to avoid failures
is by properly designing, installing, operating, and
maintaining an asset [17].

Maintenance is the management of assets and
control of costs, however asset monitoring and man-
agement are arguably complex tasks. Maintenance
costs represent a significant share of all the costs as-
sociated with manufacturing and production. De-
pending on the industry maintenance costs can ac-
count for 15% up to 70% of the total production
costs[26]. Additionally, maintenance, often times
is an ineffective process, with up to one third of
all investment being wasted in improper or unnec-
essary maintenance actions. The main cause for
this is the lack of knowledge regarding the actual

health condition of assets and the need for mainte-
nance actions[17]. Relying on statistical trend data
from manufacturers to predict failures will lead to
ineffective maintenance and waiting for an asset to
breakdown is also not an option in safety-critical
situations[19].

PdM is a maintenance method that, through the
monitoring of the actual operating condition of an
asset and other important indicators is able to pre-
dict an impending failure and allow enough time
for maintenance actions to be taken, preventing the
failure. The main advantages of this maintenance
method is the increased reliability and availability
of assets, improved environmental and worker safety
and reduced costs in parts inventory and mainte-
nance labor. Successful implementations of PdM
strategies have shown the effects of these advan-
tages, namely[19]: reduction in maintenance costs
of 25% to 30%; elimination of breakdowns of 15%
to 70%; and reduction of downtime of 35% to 45%,

The technological advancements from 14.0 and
ToT, specifically sensor technology, as well as devel-
opments in Al, in specific, ML, with great success
in prediction algorithms, has converged in new pre-
dictive maintenance techniques through the use of
ML algorithms [4, 30, 15, 29, 25, 12, 28, 10, 20, 3].



2. Predictive Maintenance

Historically, in the period before World War II,
maintenance was seen as an added cost to produc-
tion, without the corresponding value to the com-
pany. The most common form of maintenance was
to repair assets after they broke down, consider-
ing this the cheapest solution. This maintenance
strategy is known as RTF and, today, is considered
to be the most costly type of maintenance. Cur-
rently, high-level management understand the ben-
efits of a proper maintenance strategy, which were
overlooked in the past. Maintenance can, not only
prevent asset failures but also[17]:

e maximize production;
e optimize useful life of equipment;
e reduce breakdowns and downtime;

e improve product quality and inventory control.

These advantages are crucial to succeed in the
highly competitive environment that manufactur-
ing companies face these days, as well as meet the
increasing costumer demands in areas such as en-
vironmental and public safety, product quality and
product reliability.

2.1. Predictive Maintenance

The focus of this thesis is RUL estimation for Pre-
dictive Maintenance. There are many definitions of
PdM in the literature [7, 19] with small differences
between them, therefore, for this work, it was con-
sidered that PdM is a type of planned maintenance
where signs of impending failure are monitored and
detected in order to predict when the failure of as-
sets will occur, and carry out the appropriate main-
tenance work to prevent the failure altogether.

PdM uses the most effective technique to deter-
mine the current condition of assets and, based on
this, schedules maintenance actions when they are
needed. Successfully implementing a PAM mainte-
nance strategy optimizes the availability of assets
and greatly reduces costs of maintenance since as-
set failures are prevented altogether and the time
between repairs is maximized. Product quality, re-
liability, productivity, and profitability are all in-
creased as a direct consequence [17].

PdM is also specially helpful when reliability is
most important, situations where breakdowns have
severe consequences, such as nuclear power plants,
emergency systems, and aircraft industry. Another
reason for choosing PdM is the current situation of
Industry 4.0. Developments on technologies of In-
ternet of Things, sensor technology, Cloud Services,
and ML have created space for new and promising
solutions in PdM [4, 24]. It is the combination of all
these technologies that has provided the data and

tools required to achieve better results than tradi-
tional PdM techniques [34].

2.2. Machine Learning for predictive maintenance

Traditional PAM techniques have been used in PdM
management strategies extensively with varying de-
grees of success [17]. One thing that is common
in all traditional techniques is the requirement of
expert knowledge of maintenance and machine dy-
namics in order to operate and interpret the results.
However ML techniques do not require the dedi-
cated expert knowledge of the asset being studied.
This means ML algorithms are not restrained to
a single domain and can be adapted to suit many
different situations.The success of ML algorithms
in developing models for forecasting has been ap-
plied in a wide variety of industries and situations,
including image processing, robotics and speech
recognition. Therefore, the rise of ML techniques in
the PAM management circles can be attributed to
these factors, additionally the results and success of
such implementations has cemented their position.

2.2.1 Random Forest

Random Forest is an ensemble of Decision Trees,
a ML algorithm with great versatility capable of
both classification and regression tasks. The out-
put of the RF model is calculated collectively by
the individual Decision Trees. The premise is that
an aggregated answer from many DT is better than
a single answer from a single DT. Despite the sim-
plicity of the RF algorithm it is one of the most
powerful ML algorithms available [6].

Mathew, V. et al. [16] train and compare several
ML algorithms to predict RUL of turbofan engine,
using the famous CMAPSS dataset from the Prog-
nostics Data Repository of NASA. In this study the
authors conclude that RF shows the best results
among 10 other ML algorithms, including, LR, DT,
SVM, KNN, K-Means and GBoost. The perfor-
mance index used is once again RMSE. The authors
conclude that RF outperforms the other techniques
because it captures the variance of the input vari-
ables at the same time and enables a high number
of observations to take part in the final prediction,
a consequence of its structure.

2.2.2 Extreme Gradient Boosted Trees

XGBoost is a tree boosting system that is similar to
the RF algorithm but uses a majority voting tech-
nique to define the final class and the sequential tree
boosting technique. XGBoost has appeared in the
prognostics field often alongside RF and LR models
and has shown similar results.

Binding, A. et al. [9] use these three ML tech-
niques in forecasting machine downtime of printing



machines based on real-time predictions of future
failures. The authors use not only machine-related
data but also unstructured data in the form of oper-
ator notes, which improved the performance of pre-
diction models. The metrics used to evaluate the
models include the AUC, ROC, PRC and number
of TP, FP, TN, FN at different decision thresholds.
The results show that RF and XGBoost show sim-
ilar results and outperform LR.

2.2.3 Long-Short-Term-Memory

LSTM algorithm is a neural network model com-
posed of LSTM cells. The LSTM cell was proposed
in 1997 by Hochreiter, S. and Schmidhuber, J. [8].
The greatest advantage of the LSTM cell over other
ML techniques is the ability to identify long-term
dependencies in the data which makes this ML tech-
nique specifically suitable to study time-series data,
long text or audio recordings. The architecture of
a LSTM cell is shown in Figure 1.
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Figure 1: Architecture of a basic LSTM cell based
on [6]

The ability to recognize long-term patterns comes
from the network being able to save in the long-term
state information that is relevant, and discard in-
formation that is not useful. The long-term state,
identified in Figure 1 by c;_1) goes first through
a forget gate, where the useless information is dis-
carded, then new information is added with the ad-
dition operation. The new information to be added
is selected in the input gate. The result of the oper-
ation is the variable c(;y which is sent out without
further operations to become the long-term state of
the next step. The long-term state is also copied at
this point and goes through the output gate, which
filters the long-term state to obtain the short-term
state h(;) and the output of this time step t, y().

The input vector z(;y and the short-term state
of the previous step h(,_1) relate to the process
previously described through 4 different fully con-
nected layers and are the source of new information.
These layers control the mentioned gates, forget, in-
put and output gates through activation functions.
The activation function used to control the gates

is the sigmoid function that outputs values in the
range [0, 1] and the tanh function that outputs val-
ues in the range [-1, 1]. With the sigmoid activation
function, the gates are closed if the output value is
0, and open if the output value is 1.

The network analyses the input vector and the
previous short-term state in the main layer using
the tanh activation function, with output vector
9et)- f(r) controls the forget gate, selecting which
part of the long-term state is discarded. i) con-
trols the input gate, selecting which part of g is
added to the long-term state of the previous step,
generating the long-term state of the current step.
Lastly, o(;) controls which part of ¢ is read and
becomes the output of the current step y ).

With this architecture the LSTM cell has the
ability to learn which information or memory to re-
tain in the long-term state (with the input gate),
how long should it hold on to this memory (with
the forget gate) and what memory should be ex-
tracted when needed (with the output gate). This
gives it the desired ability of capturing long-term
patterns in complex time-series data to use for RUL
Prediction [6].

The LSTM network computations are shown in
Equations (1) to (6).

ity =0 (Wiz - 2) + Win - h—1) + bi)

fiy =0 (Wes -2y + Win - haory +b5) - (2)
o) =0 Woz - 2ty + Won - hi—1) + bo)  (3)
9y = tanh (Wos - () + Won - hi—1) +bg)  (4)
ey = foy @ ce—1) + i) @ gy (5)

h(ty = o) ® tanh (c(t)) (6)

Where Wiz, Wiy, Wy, and Wy, are the weights
of each of the four layers connected to the respec-
tive gates with respect to the input vector z(),
Win, Win, Wop and Wy, are the weights of the same
four layer with respect to the short-term state h(;_)
and b;, br, b, and b, are the bias of each layer. The @
symbol represents element-wise multiplication. The
output of the layer at step ¢ is the short-term state
hsy-

LSTM models have been used in RUL predic-
tion given its advantages with time series data.
de Oliveira da Costa, P.R. et al. [5] propose a
LSTM network combined with global Attention
mechanisms in order to learn the relations between
RUL and sensor data, and applied the model to
the CMAPSS dataset, obtaining competitive results
with other state-of-the-art methods. The combina-
tion with attention mechanisms allowed the authors
to visualize temporal relationships between the tar-
get RUL and sensor data, the performance index



metrics used are the RMSE and a scoring function
Score proposed by Saxena, A. et al. [18].

Zhang, Y. et al. [31] developed a LSTM model for
predicting the RUL of lithium-ion batteries. The
proposed model uses the resilient mean squared
back-propagation method for optimization and the
dropout technique to avoid over fitting. The devel-
oped model uses experimental data including tem-
peratures and current rates to train the model and
is then compared with SVM and a simple RNN
models, outperforming both.

In conclusion LSTM networks have been used
both with experimental and simulated data suc-
cessfully in prediction models due to its ability on
analysing large quantities of data, as well as its abil-
ity in capturing temporal patterns over the long
term. As challenges in using LSTM networks we can
identify that a large amount of hyper-parameters
must be tuned either through techniques like grid
search or through manual testing for optimal per-
formance.

2.2.4 Bidirectional LSTM

BiLSTM is a ML technique composed of two inde-
pendent and equal LSTM neural networks that are
propagated in two opposite directions. One of the
LSTM networks has forward propagation while the
other has backwards propagation. Both the back-
ward and forward propagation are simultaneous and
combine to form to the output unit which is repre-
sented in Equation (7).

—
Yoy =Wy by + Wym’% +by

(7)

Where h—(t; and % represent the output of the
forward and backward propagation LSTM network,
at time step ¢, respectively. Wym and Wym repre-
sent the weights with respect to the forward LSTM
layer and the backward LSTM layer, respectively.
b, represent the output layer bias. Finally y is
the output of the BILSTM network at time step ¢.

The main difference from a basic LSTM neural
networks is that the BiLSTM can detect dependen-
cies in the data not only from past information, but
also from future information. This is a desirable fea-
ture that has been applied in text classification to
better capture the preceding and succeeding con-
text that exists in sentences [14]. In the context of
time series data, this capability is also desirable to
improve the accuracy of RUL predictions.

Zhao, C. et al. [32] proposed a double-channel
hybrid deep NN based on CNN and BiLSTM. The
model extracts the relevant features using the CNN
and and captures the temporal dependencies of the
data with the BiLSTM. The model also uses a
sliding time-window for data preprocessing. Test-
ing the model on the CMAPSS dataset the results
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Figure 2: Architecture of a BiLSTM algorithm

show a better performance than other state-of-the-
art models.

The BiLSTM has been used by researchers to pre-
dict RUL successfully and is capable of all the ad-
vantages of a basic LSTM network while also cap-
turing future information dependencies in the data,
improving the accuracy of the models predictions.

3. Framework proposed
3.1. Proposed Machine Learning models
For this work, we propose a RF, a XGBoost, a
LSTM, and a BiLSTM model. The RF, XGBoost
and LSTM models will serve to obtain baseline re-
sults, from which we can then compare with the
results obtained from the BiLSTM model. The RF
and the XGBoost models were chosen due to the
ease of use of these models as well as their good
performance in both RUL prediction and compu-
tation time. Both models will be default models.
The LSTM neural network is used as it often shows
better performance than the RF and the XGBoost
models. The LSTM model parameters are not op-
timized, but are chosen based on previous relevant
literature [33]. The LSTM model proposed has one
input layer and one hidden layer with 64 neurons
each, the output layer is a regression layer with one
neuron. The remaining parameters are a dropout
of 0.5, a learning rate of 0.001, a batch size of 512,
the optimizer functions RMSprop, an early stop-
ping technique with a patience of 20 epochs, and a
training/validation split of 90%/10%, respectively.
Finally, we propose a BiLSTM network, due to
its ability to capture information from past and fu-
ture information in the dataset. We expect results
to be even better than the results of LSTM net-
work after appropriate parameter selection. The
base model parameters, similar to the case with the
LSTM model, are chosen based on [22]. The layer
topology is on input layer and three hidden layers
with 64, 32, 16, and 8 neurons, respectively. The
output layer and remaining model parameters are
the same as with the LSTM model. As a limita-



tion to using the BiLSTM model we estimate that
training and testing will take a considerably longer
time. To counter this limitation the parameter op-
timization process will be a manual process, this
is less time consuming than an automatic method,
but is also less precise and does not guarantee that
an optimal solution is found. Additionally, the use
of cloud services is employed, through the use of the
Kaggle platform® for the training and testing of all
the models. This platform provides a graphics pro-
cessing unit (GPU) for the intensive computations
performed in training and testing complex models,
such as the BiLSTM model.

One of the limitations of ML prediction algo-
rithms is the generalization and transferability to
new, unseen data. To measure this the BiLSTM
model will be trained and tested with a subset of
the full dataset available. Afterwards the remain-
ing subsets of data will be evaluated with the final
BiLSTM model proposed. Lastly, the full dataset
is evaluated on the BiLSTM model proposed, and
the results compared with previous ones.

3.2. Evaluation metrics

The evaluation metrics used are the ones suggested
in [18]. This is the RMSE and NASA’s scoring func-
tion, denominated Score. This metrics have been
used extensively by researchers in the context of
RUL prediction and make it easier for comparison
of results between models. The formula for each
performance metric can be seen in Equation (8) and
Equation (9).

For both equations m is the total number of data
samples, A is the error in the RUL prediction
of sample j, that is, the RUL predicted by the
model minus the real RUL at sample j, « is % if
the RUL prediction is over-estimated and 1—13 if the
RUL prediction is under-estimated. The reason-
ing for this imbalance is that, in maintenance, an
under-estimation of RUL would lead to sub-optimal
maintenance, but an over-estimation would lead to
asset failure, which is a situation much more costly
for companies than the alternative. The RMSE is a
performance metric that has been commonly used
in RUL estimation research and accurately repre-
sents the overall error of estimation and is symmet-
ric, unlike the Score function.

The behaviour of both performance metrics are
represented in Figure 3, which clearly shows the

Lhttps://www.kaggle.com/

symmetric and asymmetric behaviour of each met-
ric.
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Figure 3: Behaviour of the performance metrics
used in evaluation

3.3. Model parameters selection

During the parameter optimization, the parameter
being tested changes while the remaining param-
eters are fixed. At each iteration the loss function
and the RUL prediction graphs are analysed to help
guide the choice of parameters. The loss function
chosen is the MSE function, a common function for
regression problems. While this does not guarantee
an optimal solution, this process is not too time con-
suming and improves the performance of the model.

3.3.1 Layer topology

The layer topology refers to the number of layers
of the network and the number of neurons of each
network. In general, a larger and deeper network
can model more complex data. As a drawback,
these layers take longer to train and test, while
not always presenting better performance. After
a relevant number of combinations is tried and a
good performance is obtained the optimization of
the layer topology is stopped and the next param-
eter is tested.

3.3.2 Dropout

Dropout is a powerful technique that helps a model
avoid over fitting when training a network and in-
creases generalization and robustness. It causes
the network to randomly drop a subset of neurons
and their respective connections from the NN. A
dropout of 0.5 means there is a 50% probability of
dropping each neuron in a specific layer. By remov-
ing neurons from the network, we force the network
to not become overly dependent on any specific neu-
ron [21]. The dropout is applied uniformly to all the
hidden layers and input layer, and the values tested
are [0.1,0.2,0.3,0.4,0.5,0.6,0.7].



3.3.3 Early stopping

The early stopping technique is technique that au-
tomatically stops the training of the model when
the performance starts degrading. This is a very
useful technique used to choose the number of
epochs of training. The early stopping technique
used monitors the loss function values of the vali-
dation data at each epoch and stops the training if
the loss function value does not improve over a pe-
riod of 20 consecutive epochs. Using this technique
not only helps in selecting an optimal number of
epochs to optimize performance, it also reduces the
training time.

3.3.4 Sliding time window size

The sliding time window size refers to the number
of samples that the model uses for each prediction.
This influences how much information is accessed
for each prediction. This is a parameter used when
preparing the data before training the model. In
general, the larger the time window size, the more
information is used, and the better are the model
predictions. The base BiLSTM model uses a slid-
ing time window with size 50 and step size 1. This
means that, during the preprocessing of data, se-
quences of size 50 are generated, if m is the number
of samples in the input data, then m — 50 + 1 se-
quences are generated. Increasing the time window
size can improve performance but also increases the
training time significantly. The time window sizes
tested were 25, 50 and 100.

3.4. Feature selection and analysis
3.4.1 Feature selection

Feature selection is an important step to improve
the quality of the data, therefore, before training
the models the dataset is analysed to find features
that have missing values and features that have only
constant values. The features with these character-
istics are then removed from the dataset.

3.4.2 Feature analysis

Feature analysis was performed after the parame-
ters selection on the optimized BiLSTM model, and
is based on the results of two different techniques.
The Pearson correlation matrix and the Importance
analysis from the RF model. The performance of
the models is evaluated for three different feature
selections. One model has all the features, another
has features selected based on the Pearson corre-
lation coefficients and the last model has features
selected based on the Importance analysis from the
RF base model. The results are then compared to
determine the effects on performance based on the
chosen techniques, regarding the proposed BiLSTM
model and the chosen dataset.

4. Dataset description and analysis

The dataset chosen was obtained from the Prog-
nostics Data Repository?, designed for the devel-
opment of prognostic algorithms and provided by
NASA.

The main advantages in using this dataset is not
only its quality, but its quantity as well. The N-
CMAPSS dataset provides full run-to-failure tra-
jectories of a fleet of turbofan engines. Having the
time-to-failure is crucial for the development of ML
models and it’s not typically available from real life
applications. This is both due to the rarity in fail-
ures occurring from excessive maintenance, as well
as from the inherent sensitive nature of failures that
inhibit companies from publicly sharing their assets’
datall].

4.1. Data description

The N-CMAPSS dataset is divided into 10 sub-
datasets with differences between each other,
mainly in regards to the number of engines and
the failure modes in each sub-dataset. Each data
file is divided into a development dataset and a
test dataset. This is the splitting of data used
when training and testing the ML algorithms. Both
datasets contain 6 types of variables: the operative
conditions, the measured sensors signals, the virtual
sensors, the engine health parameters, the RUL la-
bel, and auxiliary data.

The measured signals are estimates of the mea-
sured physical properties at different points along
the engine. These measurements were obtained
from the simulation model. There are a total of
14 different variables, including physical proper-
ties such as flow, speed, temperature and pressure.
These variables simulate the condition monitoring
measurements that real life applications perform.

Table 1: Sensor measurements - T

Id Description Unit
Wit Fuel flow pPps
Nf Physical fan speed rpm
Nc Physical core speed rpm
T24 Total temperature at LPC outlet ‘R
T30 Total temperature at HPC outlet ‘R
T48  Total temperature at HPT outlet ‘R
T50 Total temperature at LPT outlet ‘R
P15 Total pressure in bypass-product psia
P2 Total pressure at fan inlet psia
P21 Total pressure at fan outlet psia
P24 Total pressure at LPC outlet psia
Ps30 Static pressure at HPC outlet psia
P40 Total pressure at burner outlet psia
P50 Total pressure at LPT outlet psia

The virtual sensors are estimates of the unobserv-
able properties that are not part of the condition

2https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-

data-repository/turbofan-2



monitoring signals, calculated from the measured
signals. There are also a total of 14 variables, in-
cluding properties such as temperature, pressure,
flow, and stall margin.

4.2. Data sampling

The raw data is sampled in seconds. This means
that the model has very a fine degree of informa-
tion for training. However, a common problem, spe-
cially with complex models, is that the bigger the
size of the data file, the longer it takes to train and
test the models. Observing our specific dataset and
the behaviour of the features over time, we can con-
clude that increasing the sampling size of the data is
beneficial to reduce the size of data while still cap-
turing the features of the data. For this purpose a
sampling size of ten minutes was chosen.

4.2.1 Feature scaling

Normalization is a transformation of data from its
original range of values to a specific desired range
of values. The method applied in this step is the
min-max normalization. This method re-scales the
range of the data to the range of values of [0, 1],
the formula is shown in Equation (10) . Min-max
normalization was chosen as it is a simple method
of feature scaling that has been previously used to
great success in the literature [23] [32]. The min-
max normalization was used only for the LSTM
model and the BiLSTM model, as with the RF and
XGBoost model, normalizing the data has no ef-
fects, since the models are independent of the scale
of data.

,  x—min(x)

maz (x) — min (x) (10)

5. Results and Discussion
5.1. Benchmark models results

Table 2 shows the results of the base models for both
evaluation metrics, RMSE and the NASA Score, the
same results are seen in Figure 4(a) and Figure 4(b)
through bar plots for better visualization and com-
parison, while Figure 5 show the RUL predictions
of the base models. The LSTM model shows the
best performance for both evaluation metrics, how-
ever, looking at the RUL predictions of the BILSTM
model we see a desirable behaviour, that is not seen
in the RF and the XGBoost model, but can be seen
also in the LSTM model. The initial RUL predic-
tion of the BiLSTM model is poor, but the model is
capable of quickly adjusting and approximating the
real RUL curve very accurately. It is worth men-
tioning that, even though the BiLSTM model has
worst performance on the RMSE metric, it has a
better performance on the Score metric, compared
with the RF and the XGBoost model. This is a
consequence of the asymmetry of the Score metric.

Table 2: Base models results on test data DSO1:
RF, XGBoost, LSTM, BiLSTM

Base Models Score RMSE
RF 5170  7.657
XGBoost 5004  7.505

LSTM 3368 6.294
Bi-LSTM 4421  9.275

5.2. Model parameters optimization
The parameter optimization was performed with
the dataset DSO1, which makes the final BiLSTM
optimized for this dataset, but not necessarily for
the remaining datasets, given that the datasets are
different, specifically in the failure modes. The op-
timization of a BiLSTM model for each dataset was
not performed as it is too time consuming, and
given the time constraints. This is something that
can be improved upon to obtain an optimized model
for each subset of the data, however, given com-
pletely new data, the model will most likely still
show worse performance than seen in our results.
First, several network architectures were tried
starting with the base model. The results of the
evaluation metrics on the test dataset DS01 for each
network is shown in Table 3. The best performance
is given by the network B(256,256,64) with a RMSE
of 5.015 and a Score of 2307. This network has a
contracting form, this is, the initial layers have a
larger number of neurons and the last layers have
less neurons. This structure seems to work better
for our situation than a constant form or an ex-
panding one, as the results indicate.

Table 3: Layer topology tuning of BiLSTM network

BiLSTM Network Score RMSE
B(64,32,16,8) 4421  9.275
B(64,64,64,64) 2701  5.446
B(256,256,256,256) 8556  10.75
B(64,256,32,32) 9755 11.61
B(128,128,64,64) 2886  5.744
B(256,256,64,64) 2923  5.676
B(256,256,64) 2307 5.015
B(128,128,64) 3750  6.632

The remaining parameter selection showed that
the base BiLSTM model parameters were already
the best performing parameters. The final BiLSTM
model has a Dropout of 0.5, learning rate of 0.001,
batch size of 512, training/split validation of 10%
and sliding time window size of 50.

5.3. Feature analysis results
Three possible models were tested on the DSO01
dataset, one model was trained with all the fea-
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tures, another was trained with the reduced fea-
tures based on the Pearson correlation matrix, the
last model was trained with the reduced features
based on the importance analysis from the RF base
model. The results are presented in table 4. The
best performance was given by the reduced features
based on the importance analysis. Also the network
with reduced features based on the correlation ma-
trix performed worse than using all the features.
This means that the dependencies of the dataset
cannot be well represented through the Person cor-
relation coefficient.

Table 4: Results of the feature selection based on
the feature analysis proposed

Feature Selection Score RMSE
All features 2307  5.015
Correlation matrix 3851  6.91
RF Importance 1852 4.398

5.4. Performance of final BiLSTM model on all sub
datasets

The optimized BiLSTM network was applied to the
remaining datasets and the results are shown in Ta-
ble 5. For these results all features are used to bet-
ter compare the results between models, as the fea-
ture analysis was performed only for DS01. Since
the model was optimized using the DS01 dataset,
it has a poorer performance on the remaining sub
datasets, as was expected.

It is clear that the BiLSTM network is capable
of providing very good RUL predicitions, as seen
from the RUL prediction of DS01, but the model is
not directly transferable to the remaining datasets.
A new hyper parameter optimization would need
to be performed to achieve better results on the
remaining datasets.

Lastly the results of the BiLSTM model applied
to the complete dataset simultaneously. In regards

to the RMSE the result of the full dataset and the
mean of the results of each dataset is not too differ-
ent, with a RMSE of 14.08 and 13.67 respectively.
The Score metric can be compared by summing all
the Score values of each sub dataset obtained in
Table 5, which gives 207676. This is a better Score
value than the one obtained in Table 6 of 284079.
We can conclude that the BiLSTM model applied
to the full dataset predicts more over estimations
than when applying the model on each dataset in-
dividually.

5.5. Comparison with results of other models ap-

plied to the CMAPSS dataset
As far we know there are no other ML models in
the literature applied to the N-CMAPSS dataset
to compare with the current results. There are,
however, results from other models applied to the
CMAPSS dataset, the precursor to the N-CMAPSS
dataset used in this work. Even though the datasets
have significant differences they have the same ori-
gin.

Focusing on the results of the proposed model
for the dataset DSO1, as this was the model used
for the parameter optimization, we can see a sig-
nificant improvement on the RMSE obtained with
the proposed model when compared to other mod-
els. Specifically, an improvement of 63.3% on the
best model applied to the CMAPSS dataset. The
benchmark models also show better results in terms
of RMSE, even with comparatively less complex
ML algorithms than those used on the CMAPSS
dataset. These results show the improvement to the
quality of the N-CMAPSS dataset, when compared
to the CMAPSS dataset. It also shows the bene-
fits of using larger and finer dataset on the asset
being studied, for ML algorithms. The Score per-
formance index obtained is worse, not because the
RUL predictions are less accurate, but because the
number of samples predicted is much higher. Since
the Score function is a sum of the error, without us-
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Table 5: Results of the BiLSTM network on all sub datasets

Dataset DS01 DS02 DS03 DS04 DS05 DS06 DS07 DS08a DS08 Mean
Score 2307 5657 7369 89725 24988 19317 50292 4356 3665 23075
RMSE  5.015 13.63 8.202 23.58 17.77 17.64 21.19 5.999 10 13.67

Table 6: Results of the BiLSTM network on the
complete N-CMAPSS dataset

Dataset Full N-CMAPSS dataset
Score 284079
RMSE 14.08

ing the same amount of samples in all the models,
it is not possible to accurately compare the results.

6. Conclusions
The present work explores RUL estimation using
ML algorithms in the context of Predictive Mainte-
nance. We identify the main reason for industries
to suffer of inefficient maintenance to be the lack
of knowledge regarding the real condition of assets
and their need for maintenance.

The RF, XGBoost and LSTM model are suitable

Table 7: RMSE of other models with the CMAPSS

dataset

ML method FD001 FDO002 FDO003 FDO004
MLP [2] 37.56 80.03 37.39 77.37
SVR [2] 20.93 42.00 21.05 45.32
RVR [2] 23.80  31.30  22.34  34.34
CNN [2] 1845 3029  19.82  29.16
MODBNE [27} 15.04 25.05 12.51 58.66
LSTM [33] 16.14 24.49 16.18 28.17
BiLSTM [22] 13.65 23.18 13.74 24.86
DCNN [13] 12.61 22.36 12.64 23.31
CNN-BILSTM [32] 12.58 19.34 12.18 20.03
DAG [11} 11.96 20.34 12.46 22.43

benchmark models given their ease of use and, con-
cerning the LSTM model, its similarity with the
BiLSTM model. The BiLSTM model is also suit-
able to explore further given its capabilities and
potential for great performance results. It is, how-



Table 8: Proposed models results on the N-
CMAPSS dataset DSO01: base RF, XGBoost and
LSTM_model and final BiLSTM model

ML Method Score RMSE
RF 5.170 x 103 7.657
XGBoost 5.004 x 103 7.505
LSTM 3.368 x 103 6.294
Bi-LSTM 1.852 x 10 4.389

ever, a complex model that requires a lot of time
to train and test, given the extensive computations
required. Without the access to a GPU to perform
these computations, it would not have been possi-
ble to optimize the BiILSTM model, either through
an automatic or manual method, and achieve good
results.

Regarding limitations on the evaluation metrics
chosen, the RMSE was found to be suitable in com-
paring between the models proposed in this work
and also with other models found in the literature.
However, the Score metric is only suitable to com-
pare between the models proposed, as it depends on
the number of samples of the input data. It is not
possible to compare this performance metric with
models outside the present work, unless they use
the same number of input samples.

The feature analysis proposed showed that, for
the dataset DSO01, using the Pearson correlation co-
efficients for feature selection degrades performance
but using the importance analysis from the RF base
model improved the results achieving the best per-
formance of a Score of 1852 and a RMSE of
4.398, an improvement of 80.3% and 87.7%, respec-
tively, when comparing with the BiLSTM model
with no feature selection. Since the importance
analysis was applied only to the DS01 dataset, it
is not possible to see the effects of feature selection
on the remaining datasets.

The results of the BIiILSTM model applied to the
remaining subsets of data show that the perfor-
mance on the new, unseen data is significantly worse
than the performance for the sub dataset DSO1.
From these results we can conclude that, even
though the BiLSTM has the capability of extremely
accurate RUL predictions, it requires proper param-
eter optimization. Additionally, manually optimiz-
ing the parameters requires expert experience, and
does not guarantee optimal solutions. We can iden-
tify the layer topology as the main parameter to
explore, given its influence on the results obtained.
The proposed BiLSTM model was also applied to
the full dataset, but the results of this approach
were not satisfactory.

Lastly the results of the proposed models are
compared with state-of-the-art model applied to
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the CMAPSS dataset the predecessor of the N-
CMAPSS dataset. It is a limitation of this work
that it is not possible to compare the proposed
models with other models applied to our dataset,
however none were found given the recent nature of
the dataset. Compared with models applied to the
CMAPSS dataset, all the proposed models outper-
form, when applied to the DSO1 sub dataset, even
being less complex models. This is a consequence
of the quality of the dataset being higher. The
main contributing factor identified is that the N-
CMAPSS has significantly more data samples, that
increase the models accuracy in RUL prediction.

In conclusion, several limitations and challenges
were identified with the chosen dataset and pro-
posed framework, however the main objectives of
accurately predicting RUL, in the context of PdM,
with ML algorithms, and the comparison of the pro-
posed models with other ML models from the lit-
erature, were achieved. The results obtained show
promise for further research and in providing criti-
cal information to support decision making for pre-
dictive maintenance strategies.

6.1. Future work

Most of the proposals stem from tasks that were
intended to be performed but could not be due to
time constraints. Regarding the feature analysis,
we propose an in-depth study of the correlations
between the features and the RUL for all subsets of
data available. By better understanding this corre-
lation, we can improve on the feature selection pro-
cess and improve the results on RUL prediction for
all subsets of data. Regarding the framework, the
future work proposed focuses on two aspects. First,
applying an automatic parameter selection method
in order to confidently achieve optimal solutions
when selecting the parameters of the models. Sec-
ond, perform the training of models several times in
order to calculate average, median, maximum and
minimum, as well as the frequency distribution of
the performance results in order to reduce the ef-
fect of variability on the results presented. With
this two improvements we could achieve better pre-
dicting models and a good degree of confidence on
the results obtained.
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