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Abstract—We present REXSTEPPER, a reference debugger for
troubleshooting JavaScript regular expressions in the browser.
REXSTEPPER is implemented on top of REXREF, a trusted
reference implementation of JavaScript (ECMAScript 5) regular
expressions, which works by transpiling the given regular expres-
sion to a JavaScript function that recognises its expansions. We
demonstrate the effectiveness of REXSTEPPER by successfully
using it to troubleshoot a benchmark of 18 faulty regular ex-
pressions obtained from the Stack Overflow and Stack Exchange
websites. REXREF is shown to be trustworthy, passing all the
applicable tests of TEST262, the official JavaScript test suite.

Index Terms—JavaScript, regular expressions, continuation-
passing style, debuggers

I. INTRODUCTION

JavaScript (JS) is the most widespread dynamic language.1

It is the de facto language for client-side web applications; it
is used for server-side scripting with NODEJS and it even runs
on small embedded devices [16]. JS regular expressions are an
essential part of the language. They are often used for parsing
user input and messages coming from the network and they
play a key role in securing Web applications as JS developers
commonly rely on regular expressions to write complex string
sanitisers to prevent a variety of injection attacks [31], [41].

Despite their widespread use, writing regular expressions
is a difficult, error-prone task, often leading developers to
resort to inefficient trial-and-error approaches. Furthermore,
the debugging facilities provided by all browsers and IDEs
for JS programming are lacking when it comes to regular
expressions. For instance, browsers do not allow programmers
to code-step the process of matching a string against a regular
expression (onward: regular expression match). Instead, this
process is presented to the programmer as a single atomic
operation, shedding no light as to why an expected match did
not occur, or, alternatively, an unexpected match did occur.

While there has been some research work on the problem
of synthesising regular expressions from examples [10], [17],
[23], [25], much less attention has been given to the devel-
opment of effective debugging tools for regular expressions.
While we are not aware of any such research tool with
support for code-stepping regular expression matches, various
tools have been proposed with the goal of helping developers
visualise their regular expressions [4], [5], [19]. These tools
construct a visual representation of the given regular expres-
sion to help the developer distinguish its key elements and
more easily identify bugs. However, visualisation tools offer
no insight into the runtime values that are handled during the
matching process (e.g. the value of capture groups). For that,
one needs to code-step regular expression matches.

1See https://w3techs.com/technologies/details/cp-javascript.

Surprisingly, even outside academia, to the best of our
knowledge, not many tools support code-stepping of regular
expression matches. We have carefully analysed 29 regular ex-
pression debugging tools2 and discovered that only three come
with code-stepping capabilities: REGEX 101 [29], REGEX
BUDDY [36], and REGEX COACH [42]. When it comes to
the debugging of JS regular expressions, all three tools have
one major drawback: they work on stand-alone regular expres-
sions, ignoring their potential interactions with the enclosing
programs. Hence, in order to debug a given regular expression,
developers must first use a standard JS debugger, e.g. the
browser console, to obtain both the buggy regular expression
and the bug-triggering input string, and only then can they use
the chosen regular expression debugging tool.

In this paper, we present REXSTEPPER, the first regular
expression debugging tool that allows for code-stepping JS
regular expressions without taking them out of their enclosing
JS programs. In order to do this, REXSTEPPER must be able
to track both the implicit and explicit interactions between
regular expression matches and the states of the enclosing JS
programs. This is a difficult task as the semantics of JS regular
expressions is heavily intertwined with the other aspects of the
JS semantics. For instance, several built-in functions of the
standard make use of the main regular expression matching
function, RegExp.prototype.exec, as a subroutine.

REXSTEPPER was designed for debugging regular expres-
sions that occur inside client-side JS programs that run in the
browser. In particular, the original program is instrumented so
that it records the matching process, generating a matching
trace, which can then be inspected using REXSTEPPER when
the execution terminates. At debugging time, the developer is
allowed to traverse the matching trace to pinpoint the source of
a given bug. To streamline this process, REXSTEPPER supports
the use of regular expression breakpoints, which allow the
developer to navigate the control directly to the point (sic!)
where they think the bug might have originated. To the best
of our knowledge, REXSTEPPER is the only regular expression
debugging tool that offers this facility.

In order to evaluate REXSTEPPER, we composed a bench-
mark consisting of 18 buggy regular expressions obtained from
the Stack Overflow and Stack Exchange forums. We identify
five common classes of bugs and show how these bugs can be
easily clarified through the use of REXSTEPPER. In particular,
for each buggy expression, we show how to insert a break point
that would lead directly to the bug and how to identify the bug
from the inspection of the matching state at the break point.

2A complete list of the screened tools can be found in [2].



At the core of REXSTEPPER is REXREF, our new ref-
erence implementation of JS regular expressions. REXREF
implements ECMAScript 5 [12] regular expressions faithfully,
including a complete implementation of the RegExp built-
in object (Section 15.10 of the standard) as well as imple-
mentations of all the methods of the String built-in object
(Section 15.5) that interact with regular expressions (match,
replace, search, and split). REXREF was thoroughly
tested against TEST262 [13], the official JS test suite, passing
718 out of a total of 729 tests. Although there are many
academic reference implementations of various versions of
the ECMAScript standard [6], [9], [26]–[28], [32], none of
them supports regular expressions, making REXREF the first
reference implementation of JS regular expressions.

REXREF was implemented directly in JS. Hence, it can be
straightforwardly included in any JS program, allowing us to
override the native JS built-in regular expression library. While
in this project we use REXREF to enable our code stepper, we
believe that it can also be used to enable other types of analysis
of JS regular expressions and the programs that use them.
For instance, existing symbolic execution tools for JS [24],
[33]–[35] can use REXREF to offer symbolic reasoning over
JS regular expressions without having to implement them
natively. Instead, they can simply symbolically execute the
code of REXREF when matching a given concrete regular
expression against a possibly symbolic string. This type of
symbolic reasoning could, in turn, be applied to validate string
santisers that make use of regular expressions.

Contributions. In summary, our contributions are:

• the first regular expression code stepper that allows for
the integrated debugging of JS regular expressions;

• a reference implementation of JS regular expressions that
is thoroughly tested against the official JS test suite,
passing 98.49% of ES5 regular expression tests.

Replication package. The source code of both REXREF and
REXSTEPPER is available at [2]. The replication package
additionally includes a Web interface [1] for interacting with
REXSTEPPER, which comes with the 18 analysed buggy
regular expressions.

II. REXREF: REFERENCE IMPLEMENTATION OF JS
REGULAR EXPRESSIONS

We describe REXREF, our reference interpreter of JS regular
expressions on top of which we developed REXSTEPPER.
REXREF is a reference interpreter in that it follows the text
of the JS standard [12] faithfully and passes all the applicable
tests of TEST262, the official JS test suite.

At the core of REXREF is a regular expression inter-
preter that evaluates regular expressions to regular expression
matchers. A matcher is simply a JS function that recognises
expansions of its corresponding regular expression. Besides
the regular expression interpreter, REXREF includes: (1) a
JS transpiler that replaces all occurrences of literal regular
expressions in a program with JS expressions that build

their corresponding matchers and (2) REXREF implemen-
tations of all the JS built-in functions that interact with
regular expressions (e.g. RegExp.prototype.exec and
String.prototype.split).

Before describing the components of REXREF, we give a
quick recap of the syntax of JS regular expressions. Regular
expressions r ∈ RE , defined in the table below, include:
character expressions, c; boundary assertion, ba; sequences
of regular expressions, r1 r2; disjunctions, r1 | r2; group ex-
pressions, (r)i and (? : r); backreferences, \i; positive and
negative look-ahead expressions, (?= r) and (?! r); greedily
and non-greedily quantified expressions, r qt and r qt ? ; and
positive and negative range expressions, [ rg ] and [ ˆrg ]. We
explain each of these classes of expressions in detail shortly,
together with their corresponding matchers. The exposition
assumes a basic understanding of regular expressions and their
standard meaning; the unfamiliar reader is referred to [14] for
a thorough introduction to the topic.

Syntax of JS Regular Expressions
r ∈ RE ::= c | ba | r1 r2 | r1 | r2 | (r)i | (? : r) | \i | (?= r)

| (?! r) | r qt | r qt ? | [ rg ] | [ ˆrg ]

qt ∈ QT ::= ? | ∗ | + | { i } | { i, } | { i1, i2 }
rg ∈ CR ::= c | c1− c2 | rg1rg2

A. Regular Expression Interpreter

Following the JS standard [12], REXREF evaluates regular
expressions to regular expression matchers. Hence, a regular
expression interpreter can be seen as a mathematical function
interp :: 2FL → RE → M that given a set of flags fl ⊆
FL and a regular expression r ∈ RE , produces a matcher
m ∈ M. The set FL of regular expression flags comprises:
(1) g for global, indicating that the matching process should
output all possible matches instead of just the first one, (2) i
for ignore case, indicating that character case is to be ignored
when computing matches, and (3) m for multiline, indicating
that new lines should be treated as the beginning of the input
string for the purpose of matching boundary assertions.

Interpretation Domains. Regular expression matchers follow
the continuation-passing discipline [15], [30] in that each
matcher receives as input not only the current matching state
but also a continuation representing the matching process to
be carried out once the current matcher finishes executing.
Formally, a matcher can be thought of as a mathematical
function that maps a matching state σ ∈ Σ and a continuation
κ ∈ K to a matching outcome o ∈ O, where: (1) a continuation
κ ∈ K is a function that takes a matching state σ ∈ Σ and
produces an outcome o ∈ O and (2) an outcome can either be
a successful final matching state, denoted by S〈σ〉, or a failing
final matching state, denoted by F〈σ〉. Besides matchers, the
regular expression interpreter makes use of the concept of
tester functions. A tester function t ∈ T is simply a function
that takes a matching state σ ∈ Σ and returns a boolean value
indicating whether or not a that state satisfies a given regular



RE /(a+)(b*)(c*)/
Str aabbbbccc

INDEX CAPTURES
0 [⊥, ⊥, ⊥ ]
2 [ aa, ⊥, ⊥ ]
6 [ aa, bbbb, ⊥ ]
FINAL [ aa, bbbb, ccc ]

RE /(a(b*))+(c*)/
Str ababbbaccc

INDEX CAPTURES
0 [⊥, ⊥, ⊥ ]
2 [ ab, b, ⊥ ]
6 [ abbb, bbb, ⊥ ]
FINAL [ a, ε, ccc ]

Fig. 1. Matching states and capture groups

expression assertion; for instance, if the character at the current
index in a non-word character. The table below summarises
our regular expression interpretation domains.
Interpretation Domains

MATCHERS m ∈M :: Σ→ K⇀ O
TESTERS t ∈ T :: Σ→ Bool
CONTINUATIONS κ ∈ K :: Σ −→ O
OUTCOMES o ∈ O ::= S〈σ〉 | F〈σ〉
STATES σ ∈ Σ , Str × [Str⊥]× Int
STRINGS s ∈ Str⊥ , Str ] {undefined}
FLAGS fl ⊆ FL , {g, i,m}

Matching States. Matching states, σ ∈ Σ, bookkeep the
matching information during the matching process. More
precisely, a matching state σ can be viewed as a triple (i, ~s, s),
consisting of: (1) the input string on which the outermost
matcher was called, s, (2) an internal array ~s, called captures
array, mapping capture group indexes to their corresponding
captures, and (3) the index of the input string to be processed
next, i. To better understand how the captures array works, let
us consider the two examples given in Figure 1.

In the left-hand-side example, we match the regular expres-
sion /(a+)(b*)(c*)/ against the string aabbbbccc (ig-
nore underlined characters for now). This expression has three
capture groups, each corresponding to a different parenthesised
subexpression. During the matching, the matched expansions
of the capture groups are stored in the captures array at the
corresponding index: i,e,, the expansion of the first capture
group is stored at the first index, etc. The figure shows the
content of the captures array before processing the indexes 0,
2, and 6 of the input string, which correspond to its underlined
characters, as well as at the final matching state. Initially, all
captures are undefined as no expansions of their corresponding
capture groups were yet found. In contrast, at index 2, the
captures array maps index 0 to the string aa as the first capture
was already found. The same reasoning applies to index 6 and
to the final matching state.

In the right-hand-side example we match the regu-
lar expression /(a(b*))+(c*)/ against the input string
ababbbaccc. This example is a bit more involved than
the previous one in that this regular expression contains a
nested capture group. Capture groups are ordered according to
the position of their left-parenthesis in the regular expression
source text. Hence, the first capture group corresponds to the
expression (a(b*)), the second one to (b*), and the third
onde to (c*). Importantly, given that the first and second cap-
ture groups occur inside a quantified expression, (a(b*))+,
the values of their corresponding captures are updated every

time the enclosing regular expression is matched. For instance,
at index 2, the enclosing expression was matched one time, so
we have that the first and second capture groups are mapped to
ab and b, respectively. At index 6, the enclosing expression was
matched two times, so now, the first and second capture groups
are mapped to abbb and bbb, respectively. Note, however,
that before the matching process completes, the enclosing
expression is matched yet a third time. Hence, the values of
the first and second capture groups at the final matching state
are respectively a and the empty string ε, corresponding to the
third expansion of the quantified expression.

State Interface. In the implementation, we model matching
states as JS objects storing the original input string, the current
index, and the captures array. However, to make the interpreter
independent of the chosen representation of matching states,
we do not interact with the components of matching states
directly. Instead, our matching states expose the following
methods for accessing/updating their components:

• σ.getS() obtains the input string on which the outermost
matcher was called;

• σ.getIdx() and σ.setIdx(i) obtain and update the current
matching index, respectively;

• σ.getCap(i) and σ.setCap(i, s) obtain and update the i-th
capture of σ, respectively;

• σ.getCaps() and σ.setCaps(caps) obtain a deep copy of
the captures array and update its value; and

• σ.copy() returns a copy of the given state.

Matching Combinators. We structure the code of REXREF
as a collection of matching combinators, each corresponding
to a specific class of regular expressions. In the following, we
describe the most relevant combinators. All our combinators
are available as part of the REXSTEPPER implementation. To
keep the exposition as clear as possible, we present streamlined
versions of the presented combinators, focusing on their core
functionality and eliding non-instructive technicalities.

CHARMATCHER: A character regular expression c matches
the characters denoted by c. Accordingly, the charMatcher
combinator receives as input a single character c1 and returns
a matcher which checks if the character at the current matching
index belongs to the denotation of c1. If so, the matcher
advances the current matching index by one and calls the given
continuation on the current state; otherwise, it returns failure.
Importantly, a regular expression character may denote a set
of string characters. To account for this, we convert the regular
expression character to a set of character codes and check if
the code of the current character belongs to the computed set.

Character ranges are interpreted similarly, except that one
has to compute the set of character codes denoted by the
range, which corresponds to the union of the individual ranges
included in the character range; for instance:

codes(a− zA− Z) = codes(a− z) ∪ codes(A− Z)



function charMatcher (c1) {
return function(st, cont) {
var idx = st.getIdx(), c2 = st.getS(idx);
if (contains(codes(c1), code(c2)) {

st.setIdx(idx+1);
return cont(st)

} else { return MakeFail(st) }
}

}

SEQUENCE: A sequence regular expression r1 r2 matches
expansions of r1 followed by expansions of r2. Accordingly,
the seq combinator receives as input two matchers m1 and m2,
respectively corresponding to the first and the second regular
expressions, and returns a new matcher that first applies m1
and then, if it succeeds, m2. Given that matchers follow
the continuation-passing discipline [15], [30], the generated
matcher first creates a new wrapping continuation cont_d
that captures the computation of m2 followed by that of
cont and only then calls m1 with the argument state and
the wrapping continuation cont_d.

function seq (m1, m2) {
return function(st, cont) {
var cont_d = function (st_d) {

return m2(st_d, cont)
}
return m1(st, cont_d)

}
}

The seq combinator trivially lifts to arrays of matchers by
applying it recursively and using the identity matcher for
the base case. The identity matcher simply applies the given
continuation to the given state.

function mapSeq (ms) {
if (ms.length == 0)

return function (st, k) { return k(st) }
else {

var m1 = ms.shift(), m2 = mapSeq(ms);
return seq (m1, m2)

}
}

DISJUNCTION: A disjunction of regular expressions r1 | r2
matches expansions of either r1 or r2. Accordingly, the or
combinator receives as input two matchers m1 and m2 and
returns a new matcher that first applies m1 and then, if it fails,
applies m2. Note that the return matcher succeeds if either m1
succeeds or m2 succeeds, only applying m2 if m1 fails. Hence,
both matchers are called with the given continuation cont.

function or (m1, m2) {
return function(st, cont) {
var r = m1(st, cont);
if (!isSuccess(r)) {

return m2(st, cont);
} else { return r }

}
}

GROUP: A group regular expression (r)i matches expansions
of r and stores the matching result in the captures array;
note that we annotate group expressions with the index of
the corresponding capture group. Accordingly, the group
combinator receives as input a matcher m and a capture group
index i and returns a new matcher that applies m and then
saves the substring matched by m at i-th position of the
captures array. Intuitively, the returned matcher first executes
the matcher given as input, then updates the i-th capture
group of the resulting matching state, st_d, with the substring
matched by m, and, finally, calls the continuation cont.

function group (m, i) {
return function(st, cont) {

var j1 = st.getIdx();
var cont_d = function (st_d) {
var j2 = st_d.getIdx(),

str = st_d.getS(),
cap = str.sub(j1, j2);

st_d.setCap(i, cap);
return cont(st_d)

}
return m(st, cont_d)

}
}

BACKREFERENCE: A backreference regular expression \i
matches the most recent match of the i-th capture group.
Analogously, the backref combinator receives an integer i
and returns a matcher that checks if the string corresponding
to the i-th capture group coincides with the next characters to
match of the input string. If it does, the matcher moves the
current index forward and calls the given continuation cont
on the input state st.

function backref (i) {
return function(st, cont) {

var s = st.getCap(i), len = s.length,
j1 = st.getIdx(), j2 = j1 + len,
s_aux = st.getS().sub(j1, j2);

if (s === s_aux) {
st.setIdx(j2);
return cont(st)

} else { return MakeFail(st) }
}

}

ASSERTION: Boundary Assertions, ba ∈ BA, are used to refer
to specific points of the given input string, not necessarily
related to the characters that occur at those points; for instance,
the boundary assertions ˆ and $ respectively denote the
beginning and the end of the input string. Boundary assertions
are evaluated to testers functions, which simply take an input
state and check if their respective boundary assertions hold at
that state. The assert combinator is used for lifting a tester



function to a matcher function. The returned matcher applies
the supplied tester t to its state parameter, st, to determine
whether or not the corresponding assertion holds. If it does, the
generated matcher calls the continuation cont on the given
state and returns its result; otherwise, it returns failure.

function assert (t) {
return function(st, cont) {
if (t(st)) {

return cont(st)
} else { return MakeFail(st) }

}
}

LOOK-AHEAD: A positive lookahead regular expression
(?= r) matches expansions of r without moving the matching
index forward or updating the captures array. Accordingly, the
lookAhead combinator receives a matcher m and returns a
new matcher that first applies the matcher m and then, if m
succeeds, resets the matching index and captures array to their
original values.

function lookAhead (m) {
return function(st, cont) {
var caps = st.getCaps(), i = st.getIdx(),

r = m(st, cont_id);
if (isSuccess(r)) {

var st_new = r.getState();
st_new.setIdx(i);
st_new.setCaps(caps);
return cont(st_new)

} else { return r }
}

}

A negative look-ahead expression, (?! r), matches strings that
do not correspond to expansions of r while not updating
the matching index and the captures array. Their associated
combinator is similar to the one above, so we omit it from
the presentation.

REPEAT: A greedily quantified expression r qt recognises
expansions of r the maximum possible number of times within
the bounds of the quantifier qt that will lead to a successful
match. A quantifier qt ∈ QT is evaluated to a pair of integers
(i1, i2), respectively denoting the upper and lower bounds of
the quantifier. For instance, the quantifier + evaluates to the
pair (1,∞), while the quantifier ? evaluates to the pair (0, 1).

Greedily quantified expressions are interpreted using the
gRepeat combinator, which receives as input a matcher m
together with the minimum and maximum number of times it
should be matched, respectively min and max, and generates a
new matcher m_new that executes successfully if the matcher
m can be executed successfully at least min times. The new
matcher is greedy in that, once the minimum number of
matches is reached, it will continue to apply the supplied
matcher m either until max is reached or until it gets a
matching failure, in which case it will call cont on the
matching state corresponding to the last successful match.

var __matcher1 = mapSeq([
group(gRepeat(

charMatcher("a"), 0, Infinity)),
group(gRepeat(

charMatcher("b"), 1, Infinity)),
backref(1)

]);
var s = new RegExp(__matcher1).exec("aabaa")

Fig. 2. Transpiled JS Program

function gRepeat (m, min, max) {
return m_new(st, cont) {

if (max == 0) { return cont(st) }
var cont_d = function (st_d) {
var max = max - 1, min = min - 1;
return m_new(st_d, cont)

}
if (min > 0) { return m(st, cont_d) }
var old_st = st.copy()
var ret = m(st, cont_d);
if (isSuccess(ret)) {
return ret

} else { cont (old_st) }
}

}

We associate non-greedily-quantified expressions with their
own combinator ngRepeat, whose behaviour is analogous
to the one described above except that it tries to apply the
matcher m the minimum possible number of times within the
bounds of the quantifier that will lead to a successful match.
We omit this combinator for space reasons.

B. Compiling Regular Expressions

REXREF comes with a JS transpiler that replaces all the
occurrences of literal regular expressions in a program with
the JS expressions that build their corresponding matchers.
For instance, the JS program:

var s = /(a*)(b+)\1/.exec("aabaa")

is transpiled to the one given in Figure 2. We give a
stylised version of the compilation for clarity. Observe that
the transpiled program creates the matcher corresponding to
the original regular expression using the matching combinators
discussed above. Naturally, in order for the transpiled program
to run properly, we have to override the native implementation
of the RegExp constructor with our own implementation,
which receives the generated matcher as input.

C. REXREF Built-in Libraries

REXREF comes with a runtime library that contains JS
implementations of all regular expression functions described
in the ECMAScript 5 standard (Section 15.5), as well as all
string functions that interact with regular expressions (Section
15.0). These JS implementations make use of the matchers
generated by our regular expression compiler, and follow their



// 15.10.6.2 RegExp.prototype.exec(string)
function exec (string) {
...
// 9. Repeat, while matchSucceeded is false
while (matchSucceeded === false) {

// a. If i < 0 or i > length, then
if (i < 0 || i > length) {

// i. Call the [[Put]] internal method of R
with arguments "lastIndex", 0, and
true.

↪→

↪→

R.lastIndex = 0;
// ii. Return null.
return null

}
// b. Call the [[Match]] internal method of R

with arguments S and i.↪→

var ret = R.match(S, i);
// c. If [[Match]] returned failure, then
if (isFailure(ret)) {

// Let i = i+1.
i = i+1

// d. else
} else {
// i. Let r be the State result of the call

to [[Match]].↪→

var r = ret.__State__;
// ii. Set matchSucceeded to true.
matchSucceeded = true

}
}

...
}

Fig. 3. RegExp.prototype.exec(string)

corresponding descriptions in the standard line-by-line. This
line-by-line correspondence between the text of a standard and
its reference implementations is a well-accepted methodology
for establishing trust in reference implementations [6].

We illustrate our approach using the exec function (Section
15.10.6.2 of the ES5 standard), whose code is given in Fig-
ure 3, annotated with the corresponding text of the standard.

Before we go into the details of exec, we briefly review
how regular expressions are represented in the JS heap. In a
nutshell, the evaluation of a regular expression yields a regular
expression object. Regular expression objects store the match-
ers of their corresponding regular expressions in an internal
property [[Match]]. Furthermore, all regular expression ob-
jects share the same prototype, RegExp.prototype, which
stores all regular expression methods. Our implementation
mimics the native one by evaluating regular expressions to
regular expression objects and storing the regular expres-
sion methods in their shared prototype; the main difference
being that we store the matchers in a standard property
__matcher__, given that ES5 does not allow for direct
access to internal object properties.

RegExp.prototype.exec. The exec method is supposed to be
called on a regular expression object and takes as input the
string to be matched against the receiver regular expression.
This method recognises the first expansion of the supplied
regular expression in the input string and returns an array,
storing the matched string at index 0, followed by the bindings
of the capture groups at the end of the matching process.

function match (str, index) {
var cont_c = function (st) { return st }
var st_0 = new State(str, index, this.__caps__);
return this.__match__(st_0, cont_c);

}

Fig. 4. __match__ wrapper

Furthermore, the returned array has the additional properties
index, which stores the index at which the match occurred,
and input, which stores the input string. Finally, if no
match is found, exec returns null. Consider, for instance, the
execution of exec on the regular expression /(a*)b/g with
input string cdaadaabcd; in this case, the returned array
object is:

{ 0: "aab", 1: "aa", length: 2, index: 5, input:
"cdaadaabcd" }↪→

The core of the exec function corresponds to the WHILE
loop given in Figure 3, which calls the function match of
the given regular expression at each index of the input string
until it either finds a successful match or reaches the end of
the input. The function match, given in Figure 4, is just a
wrapper around internal matchers. More concretely, it simply
constructs the initial matching state and calls the matcher of
the given regular expression with the newly created matching
state and the identity continuation.

As a regular expression matcher might be executed multiple
times on a given input string (each time starting at a different
input index), it is useful, for debugging purposes, to be able to
inspect the input index at which the matching process started.
In the following, we refer to this index as global index.

III. REXSTEPPER: CODE-STEPPING REGULAR
EXPRESSIONS

REXSTEPPER is, first and foremost, a tool for code-stepping
regular expression matches. Hence, it offers a variety of
debugging commands for navigating the matching process. Im-
portantly, REXSTEPPER supports the use of regular expression
breakpoints, which allow the developer to quickly move the
control to the point where they think a bug might originate.
Debugging commands include: (1) single backward step, to
move the control to the previous matching state; (2) single
forward step, to move the control to the next matching state;
(3) multi backward step, to move the control to the matching
state at the previous breakpoint; and (4) multi forward step, to
move the control to the matching state at the next breakpoint.

When it comes to the implementation of a code-stepper
such as REXSTEPPER, there are two complementary strategies.
Either one executes the debugger at runtime, effectively inter-
leaving the execution of the program/regular expression being
debugged with the execution of the debugger itself, or one
runs the debugger only after the execution terminates using
information gathered at execution time. As REXSTEPPER is
intended to execute in the browser, to follow the first approach,
we would have to be able to pause the execution of the



running program in order to display a debugging console to
the developer and then decide what to do next depending on
the developer input. In the browser, however, user interaction
happens mostly asynchronously, with the exception of only a
few browser commands (e.g. alert and confirm) that are
not fine-grained enough to allow for the implementation of a
debugging console. Hence, we opted for the second approach,
meaning that, with REXSTEPPER, debugging takes place after
the program finishes executing. To this end, we instrument
REXREF so that it additionally computes a matching trace
containing all the matching states generated during the match-
ing process. REXSTEPPER then parses the generated matching
trace and represents it visually, allowing developers to navigate
it as they please. In the following, we describe the inner
workings of REXSTEPPER, focusing on three main aspects:
implementation of breakpoints, runtime instrumentation, and
debugging facilities.

A. Breakpoints

In order to cater for the use of breakpoints, we extend
the syntax of of regular expressions with a distinguished
breakpoint instruction, •; formally:

r• ∈ RE• ::= r ∈ RE | • (1)

In the online tool, we use the sequence of characters [!]
instead of the symbol • to denote a breakpoint. Breakpoints
allow developers to quickly navigate the matching process.
For instance, when matching against the regular expression
/(a*) • (b+) • \1/, the user will first be presented with
the matching state after the expansion of (a*) is recognised;
then, they must decide what to do next. If, for one, they choose
to proceed to the next breakpoint, they will be shown the
matching state after the expansion of (b+) is recognised.

B. Runtime Instrumentation

Debugging state interface. To be able to execute debugging
commands, we must bookkeep the information generated dur-
ing the matching process. To this end, we extend the matching
state interface with the methods σ.save() and σ.saveBP()
to save the current state for later use at debugging time.
The main difference between these two methods is that the
σ.saveBP() is used specifically to save intermediate matching
states associated with breakpoints. Extended states expose
various other methods that will be introduced by need.

Bookkeeping matching combinators. We extend the match-
ing combinators introduced in §II-A with the following two
combinators, whose goal is to bookkeep intermediate matching
states during execution.

function saveState (m) {
return function (st, cont) {
var cont_d = function(st_d) {

st_d.save(); return cont(st_d);
}
return m(st, cont_d)

} }

var __matcher1 = mapSeq([
group(gRepeat(
saveState(charMatcher("a"), 0, Infinity)),

saveStateBP(),
group(gRepeat(
saveState(charMatcher("b"), 1, Infinity))),

saveStateBP(),
saveState(backref(1))

]);

Fig. 5. Transpiled Regular Expression with Breakpoint

function saveStateBP() {
return function(st, cont) {

st.saveBP(cont); return cont(st)
} }

These combinators are simply wrappers around the corre-
sponding extended state methods described above. The first
one, saveState, returns a new matcher that starts by cre-
ating a wrapper continuation that saves the state produced by
matcher m before calling the supplied continuation, and then
calls the given matcher with the wrapper continuation. The
second one, saveStateBP, is used to bookkeep matching
states associated with breakpoints. Hence, instead of calling
the method save on the state st, it calls the method saveBP.
Instrumentation. The REXREF transpiler discussed in §II-B
was instrumented to produce the matching trace necessary
for REXSTEPPER to work. More concretely, REXREF was
modified so as to save the required intermediate matching
states. To this end, the generated matchers make use of
the combinators saveState and saveStateBP introduced
above. Importantly, we do not have to bookkeep all the states
that are generated during the matching process but only those
for which the current matching index changes. Hence, instead
of wrapping all intermediate matchers inside a saveState
combinator, we only wrap the matchers corresponding to:
characters, character ranges, and backreferences. For instance,
Figure 5 shows the stylised compilation of the regular expres-
sion /(a*) • (b+) • \1/. This instrumentation differs from
the one given in Figure 2 in that: (1) the character matcher
combinators are wrapped inside calls to saveState and (2)
it makes use of the combinator saveStateBP to save the
matching states associated with the two breakpoints.

C. Runtime Debugging

REXSTEPPER receives as input the sequence of matching
states produced by our instrumented version of REXREF and
presents them visually to the developer. REXREF has two
main trace visualisation modes: code-stepping mode and tree
visualisation mode.
Code-stepping mode. In code-stepping mode the developer
is shown a matching state at a time. Figure 6 depicts the
REXSTEPPER state inspection interface, which showcases:
(1) the current matching index, (2) the captures array, (3)
two boolean values respectively indicating if the current state



Fig. 6. REXSTEPPER Matching State Interface

corresponds to a breakpoint or to a matching failure, and (4)
the unique identifier of the depicted state. Furthermore, the
global index, i.e. the index at which the current matching
process started, is shown as the number of the current iteration.
For instance, the matching state shown in Figure 6 corresponds
to the second iteration of its respective regular expression
match, for which the matching process started at index 1.
Importantly, REXSTEPPER highlights both the part of the input
string that has been consumed so far as well as the part of the
regular expression against which it was matched. Accordingly,
the first a of the input string is not highlighted.

Tree visualisation mode. It is often helpful to combine code
stepping with a global view of entire the matching process.
To achieve this, REXSTEPPER constructs a matching tree for
each iteration of a regular expression match. Figure 7 shows
the matching tree generated for the second iteration of the
match of /(a∗)\1b/ against the string aaab. This tree clearly
shows that the matching process backtracks two times before
finding a successful match:

• first backtrack (state 22): the matcher tries to consume a
third a and finds a b;

• second backtrack (state 25): the matcher consumes two
as, updates the first capture group to aa, and then tries
to consume two a’s again to match the backreference \1.

REXSTEPPER also generates the matching tree from the
matching trace computed by REXREF. To this end, we include
in the trace administrative states that signal the points of
the matching process where branching occurs and where the
matching process is forced to backtrack due to a failure.

IV. EVALUATION

We evaluate REXREF and REXSTEPPER separately.
REXREF was tested against TEST262, while REXSTEPPER
was used to debug 18 faulty regular expressions obtained from
the Stack Overflow and Stack Exchange websites.

A. REXREF: Correctness

We show that REXREF is trustworthy by passing all applica-
ble tests from Test262 [13], the official ECMAScript test suite.
Test262 contains more than 35K tests, out of which 1893 target
regular-expression-related functionality. From these tests, 729
tests target ES5; they are easily identifiable as they are labeled
with the tag es5id. Out of these 729 tests, REXREF passes
718. The failing tests are not currently applicable to REXREF
for reasons detailed below. The fact that we pass all the
applicable tests, which constitute 98.49% of all ES5 regular-
expression-related tests gives us a strong guarantee that our
reference implementation is consistent with the behaviour
described in the ECMAScript Standard.

A breakdown of the testing results is presented in Table I.
For clarity, we divide the tests into three main categories:

• RegExp: behaviour and internal representation of regu-
lar expressions, with emphasis on the built-in functions
exec and test.

• String: behaviour of built-in String functions that
interact with regular expressions: match, replace,
search, and split.

• Matchers: other categories and sub-categories related
to regular expression matchers.

We further subdivided these categories, providing for each sub-
category the number of: (1) available tests in the test suite, (2)
compiled tests, and (3) passing tests.

Category Sub-category Total Compiled Passed

RegExp exec 61 61 60

RegExp test 38 38 37

RegExp others 28 28 28

String match 37 37 35

String replace 42 42 40

String search 29 29 28

String split 103 103 101

Matchers _ 391 389 389

Total 729 727 718 (98,49%)

TABLE I
TEST262 TEST SUITE RESULTS.

We classified 11 tests as not applicable: two fail to compile
successfully, while others fail at execution time. We consider
these tests not applicable, as they make use of features
currently unsupported by REXREF. In particular:

• REGEXPTREE [37], the regular expression parser used
by REXREF, does not support forward references, which
should match the empty string;

• REXREF only supports strict mode code as it uses ES6
modules, which automatically enforce strict mode even
if the test is intended to be run in non-strict mode: for
instance, strict mode causes the keyword this to be
undefined in contexts in which it would otherwise be
bound to the global object in non-strict mode;



Fig. 7. Tree generated for the second iteration of the match of /(a∗)\1b/ against the string aaab

• REXREF does not throw an exception when built-
in methods are invoked as constructors (e.g. new
String.split("abc", "b")).

We could extend REXREF to support the third category
of non-applicable tests. However, this would require further
instrumentation of the compilation, passing an extra argument
to each method/constructor call to indicate whether or not the
function is being called as a constructor. For the moment, we
judge that the added complexity would outweigh the benefits.

B. REXSTEPPER: Applicability

To evaluate REXSTEPPER, we composed a benchmark
consisting of 18 faulty regular expressions obtained from
the Stack Overflow and Stack Exchange forums. We divided
the obtained regular expressions into five categories, each
corresponding to a type of bug/misunderstanding. Table II
summarizes our results, listing, for each category, the corre-
sponding Question IDs. Stack Overflow IDs are prefixed with
SO and Stack Exchange IDs with SE.

Category Amount Stack Overflow / Stack Exchange IDs

Assertion 5 SO 16472301, SO 18861, SO 49292762,
SO 30441151, SO 32863970

Character
Range 3 SO 47207164, SO 2211788,

SO 53987537

Greediness 7
SE 54612, SO 40316670, SO 60142675,
SO 37954914, SO 1413587,
SO 37621986, SO 49671575

Groups 1 SO 12224711

Flags 2 SO 2851308, SO 1520800

TABLE II
CATEGORIES OF FAULTY REGULAR EXPRESSIONS.

Below we give a high-level description of the proposed
categories, illustrating the most relevant ones with a faulty
expression from Table II. The IDs of the explained faulty
expressions are underlined in the table, while a complete
account of all faulty expressions can be found in the online
repository [2]. For each analysed expression, we explain how
to insert a break point that would lead directly to the error and
how to identify the error from the inspection of the matching
state at the break point.

Assertion. The bugs in this category are mainly caused
by developers misunderstanding the semantics of the exec
method. Many developers ignore that exec tries to match the
given regular expression starting at every index of the given
input string. This leads them to omit the assertions ^ and $
when they want the supplied regular expression to match the
entire input string instead of just a part of it. For instance, the
regular expression /\d+/ was used instead of /^\d + $/ to
match integer numbers. With REXSTEPPER, developers can
place a breakpoint at the beginning of the regular expression,
immediately understanding that the matching process would
restart for each index of the given string.
Character Range. The bugs in this category are mainly
caused by developers ignoring the precise denotation of char-
acter ranges. For instance, the expression /^[A− z0− 9] + $/
was wrongly used instead of /^[A− Za− z0− 9] + $/ to
match strings composed exclusively of alphanumeric charac-
ters. The problem is that the range [A− z] does not coincide
with [A− Za− z], additionally including various special char-
acters whose ASCII codes lie between the code of Z and that
of a. REXSTEPPER visually highlights the sub-range that is
used to match each character of the sub-string, allowing the
developer to easily identify this type of bug.
Greediness. The bugs in this category are mainly caused by
developers misunderstanding the semantics of greedy quanti-
fiers when combined with the meta character ·. For instance,
the expression /Good .+ \./ was wrongly used to match
sentences starting with the word “Good” and ending with
a period. This expression does not have the desired effect,
since it matches any sequence of sentences such that the
first word of the first sentence is “Good”. For instance,
instead of producing two separate matches for the string
“Good morning. Good afternoon.”, it produces a single
match including both sentences. The fix is to forbid the
matching of the period character before the end of the sen-
tence: /Good [^\.] + \./. With REXSTEPPER, the developer
can place a breakpoint before the +-quantifier to understand
which characters are being matched before the final period.
Groups. This category deals with faulty expressions in which
the developer does not make a consistent use of capture
groups. Capture groups are used not only to further constrain



the matching process via backreferences, but also in the
context of the replace method. If a regular expression
contains multiple capture groups at different nesting levels,
it may be difficult to understand which ones correspond to the
desired captures. In REXSTEPPER, developers can trivially see
all captures of the match as part of the current matching state.
Flags. Faulty expressions in this category are related to the
incorrect usage of flags. Most frequent mistakes have to do
with the global flag, which developers misunderstand, thinking
that it causes the expression to be matched multiple times
within the same call to the exec method. Instead, it simply
instructs the exec method to save the index corresponding to
the end of the last computed match and to use that index as
the starting index in the following call to exec.

C. Threats to Validity

A potential threat to internal validity is that, due to the
complexity of the proposed tool, implementation bugs may
remain somewhere in the codebase. We extensively tested the
tool to mitigate this risk. Furthermore, the tool and the raw
data are publicly available for other researchers and potential
users to check the validity of the results.

A potential threat to external validity is the fact that the
set of regular expressions collected from Stack Overflow and
Stack Exchange websites may not be an accurate represen-
tation of those that occur during development. We try to
reduce the selection bias by understanding the context in which
the regular expression is being used. We aim at reducing
threats to external validity and ensure the reproducibility of
our evaluation by providing the source of the tool, the scripts
used to run the evaluation, and all data gathered.

V. RELATED WORK

There is vast body of research on regular expressions,
covering topics as varied as: symbolic execution for regular
expressions [24], [34], regular expression synthesis [10], [17],
[23], [25], visualisation mechanisms [4], [5], [19], and user
studies [3], [7], [8], [11], [18], [40]. In the following, we focus
our analysis of the related work on: visualisation mechanisms,
user studies, and parsing combinators. The reader is referred
to [43] for a recent broad-spectrum survey on techniques for
ensuring the correctness of regular expressions.
User Studies. There is a vast number of empirical studies
aimed at characterising how regular expressions are (mis)used
in practice [3], [7], [8], [11], [18], [40]. These studies tackle a
wide variety of questions regarding the pragmatics of regular
expressions, such as: (1) How often are regular expressions
used by typical programmers? [7] (2) What regular expression
patterns hinder understandability? [8] (3) What type of debug-
ging infrastructure is more effective when it comes to finding
errors/understanding regular expressions? [18] (4) What type
of tools and techniques developers employ when having to
write regular expressions? [3] and (5) How well are regular
expressions tested in practice? [40]. Although none of these
studies target the use of regular expressions in the context
of JavaScript applications, we believe their findings to be

indicative. For instance: the authors of [7] find that 50% of
Python programmers make use of regular expressions at least
once a week; the authors of [40] show that the vast majority of
the regular expressions used in Java projects on GitHub is not
properly tested; and the authors of [18] observe that developers
tend to prefer visual debugging mechanisms rather than textual
ones. These findings reinforce our view that developers need
better debugging tools for writing their regular expressions.

Visualisation Mechanisms. Several research projects have
tackled the problem of providing visual representations for
regular expressions [4], [5], [19]. These visual representations
are meant to help developers distinguish the key elements of
their regular expressions and more easily identify bugs/errors.
Visual representation mechanisms can be broadly divided into
two main groups: those that completely replace the given
regular expression with a new diagram [5], [19] and those that
augment the syntax of the given regular expressions with extra
visual annotations [4]. REXSTEPPER works both ways. In
code-stepping mode, REXSTEPPER highlights the part of the
regular expression that has already been matched, effectively
functioning as a visual augmentation tool. In contrast, in tree
mode, REXSTEPPER provides an entirely new diagram (the
matching tree) that explains the matching process.

Parsing Combinators. The use of combinators for parsing
has a long tradition in the Functional Programming commu-
nity [20], [21], [38]. The matching combinators presented
in this paper can be seen as a refactoring of the regular
expression specification that comes as part of the JavaScript
standard [12]. However, we believe that they are easier to
understand than the JS specification, and, therefore, accessible
to a wider audience. Both the JS standard and our matching
combinators have at their core the matcher type. This type can
be seen as a combination of the traditional parser monad [22]
and the continuation monad [39]. The establishment of a
formal correspondence between these types is, however, left
for future work.

VI. CONCLUSIONS AND FURTHER WORK

We have presented REXSTEPPER, the first regular expres-
sion code stepper that allows for the debugging of ES5
regular expressions without taking them out of their enclosing
JavaScript programs. We have built REXSTEPPER on top of
REXREF, our novel reference implementation of ES5 regular
expressions. REXREF was tested against TEST262, passing all
the applicable tests, and REXSTEPPER was used to debug 18
real-world buggy regular expressions.

In future, we plan to extend REXSTEPPER with further
debugging facilities, such as conditional breakpoints, as well
as syntactic visualisation mechanisms inspired by those intro-
duced in RegViz [4].
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[6] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner,
Sergio Maffeis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith.
A Trusted Mechanised JavaScript Specification.

[7] Carl Chapman and Kathryn T. Stolee. Exploring regular expression
usage and context in python. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, New York,
NY, USA, 2016. Association for Computing Machinery.

[8] Carl Chapman, Peipei Wang, and Kathryn T. Stolee. Exploring regular
expression comprehension. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ASE
2017. IEEE Press, 2017.
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