
Code-Stepping Regular Expressions in the Browser

Luís Alberto Carvalho de Almeida

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. José Faustino Fragoso Femenin dos Santos

Examination Committee

Chairperson: Prof. Manuel Fernando Cabido Peres Lopes
Supervisor: Prof. José Faustino Fragoso Femenin dos Santos

Member of the Committee: Prof. António Paulo Teles de Menezes Correia Leitão

November 2021

ii

Acknowledgments

I want to thank professor José for accepting me in this thesis and for supporting me along the journey;

my friends who provided me with support in the last few months; my girlfriend who was my cornerstone

during this whole process; and lastly my family, who always pushed me to become a better version of

myself.

iii

iv

Resumo

Apresentamos o REXSTEPPER, um debugger de referência de expressões regulares JavaScript no

browser. O REXSTEPPER foi implementado sobre o REXREF, uma implementação de referência de ex-

pressões regulares JavaScript (ECMAScript 5), que transpila uma expressão regular para uma função

de JavaScript que reconhece expansões da expressão regular em causa. O REXSTEPPER permite dois

modos de visualização: o modo code-step e o modo de visualização em árvore. No modo code-step,

são exibidos individualmente os estados do processo de matching e para cada um deles são apre-

sentados atributos que os caracterizam, enquanto no modo de visualização em árvore, os utilizadores

conseguem ter uma visão mais global do processo de matching, a partir de uma perspetiva em ár-

vore onde cada nó representa um estado do processo. Demonstramos a eficácia do REXSTEPPER

utilizando-o para depurar com sucesso um benchmark composto por 18 expressões regulares com

erros, provenientes dos websites Stack Overflow e Stack Exchange. O REXREF provou ser uma imple-

mentação de referência confiável ao passar com sucesso a todos os testes aplicáveis da suite de testes

oficial do JavaScript, Test262.

Palavras-chave: Expressões Regulares, Debuggers, JavaScript

v

vi

Abstract

We present REXSTEPPER, a reference debugger for troubleshooting JavaScript regular expressions in

the browser. REXSTEPPER is implemented on top of REXREF, a trusted reference implementation of

JavaScript (ECMAScript 5) regular expressions, which works by transpiling the given regular expression

to a JavaScript function that recognises its expansions. REXSTEPPER offers two main visualizations

modes: code-stepping mode and tree visualisation mode. In code-stepping mode, users are shown a

matching state at a time, showcasing the runtime values that are handled during the matching process,

while in tree visualisation mode, users are presented with a global view of the entire matching process as

a matching tree, where each node corresponds to a matching state. We demonstrate the effectiveness

of REXSTEPPER by successfully using it to troubleshoot a benchmark of 18 faulty regular expressions

obtained from the Stack Overflow and Stack Exchange websites. REXREF is shown to be trustworthy,

passing all the applicable tests of TEST262, the official JavaScript test suite.

Keywords: Regular expressions, Debuggers, JavaScript

vii

viii

Contents

Acknowledgments . iii

Resumo . v

Abstract . vii

List of Tables . xi

List of Figures . xiii

1 Introduction 1

1.1 Contributions . 3

1.2 Replication Package . 3

2 Related Work 5

2.1 User Studies . 5

2.2 Visualisation Mechanisms . 8

2.3 Static Analysers for Regular Expressions . 10

2.4 Regular Expression Synthesis . 10

3 Regular Expression Debugging Tools 13

3.1 Regex 101 . 16

3.2 Regex Buddy . 16

3.3 The Regex Coach . 17

3.4 Code-Stepping Limitations . 18

4 RexRef: Reference Implementation of JS Regular Expressions 19

4.1 Regular Expression Interpreter . 22

4.2 Compiling Regular Expressions . 29

4.3 RexRef Built-in Libraries . 30

5 RexStepper: Code-Stepping Regular Expressions 33

5.1 Break Points . 34

5.2 Runtime Instrumentation . 34

5.3 Runtime Debugging . 39

ix

6 Evaluation 43

6.1 REXREF Evaluation . 43

6.2 REXSTEPPER Evaluation . 45

6.3 Comparison with REGVIZ . 52

7 Conclusions 55

7.1 Conclusions . 55

7.2 Future Work . 56

Bibliography 57

x

List of Tables

3.1 Existing Regular Expression Debugging Tools. 14

3.2 Existing Regular Expression Debugging Tools With Code-Stepping - Part 1 15

3.3 Existing Regular Expression Debugging Tools With Code-Stepping - Part 2 15

6.1 Test262 test suite results. 43

6.2 Not applicable tests . 44

6.3 Categories of faulty regular expressions. 45

6.4 Assertion Bug A1 . 46

6.5 Assertion Bug A2 . 46

6.6 Assertion Bug A3 . 46

6.7 Assertion Bug A4 . 46

6.8 Assertion Bug A5 . 47

6.9 Character Range Bug CR1 . 47

6.10 Character Range Bug CR2 . 47

6.11 Character Range Bug CR3 . 48

6.12 Greediness Bug GR1 . 48

6.13 Greediness Bug GR2 . 49

6.14 Greediness Bug GR3 . 49

6.15 Greediness Bug GR4 . 49

6.16 Greediness Bug GR5 . 50

6.17 Greediness Bug GR6 . 50

6.18 Greediness Bug GR7 . 50

6.19 Group Bug G1 . 51

6.20 Flag Bug F1 . 51

6.21 Flag Bug F2 . 52

xi

xii

List of Figures

2.1 Visually augmented regular expression in REGVIZ . 9

2.2 Example of SWYN’s graph reduction algorithm identyfing common elements between two

examples . 9

3.1 Code-stepping in REGEX 101, when matching expression (a+)\1b against the string aaab 16

3.2 Code-stepping capability in REGEX BUDDY . 17

3.3 Code-stepping in REGEX BUDDY, when matching expression (a+)\1b against string aaab 18

4.1 Matching states and capture groups . 23

4.2 Transpiled JS Program . 30

4.3 RegExp.prototype.exec(string) - Part 1 . 31

4.4 RegExp.prototype.exec(string) - Part 2 . 32

4.5 __match__ wrapper . 32

5.1 Transpiled Regular Expression with Break Point . 35

5.2 Trace generated when matching a|b against string b . 37

5.3 Trace generated when matching a+b against string aab . 38

5.4 Trace generated when matching (a*)\1b against string aaab 39

5.5 REXSTEPPER Matching State Interface . 40

5.6 Tree generated for the match of a|b against the string b 40

5.7 Tree generated when matching the regular expression a+b against the string aab 41

5.8 Tree generated for the second iteration of the match of (a*)\1b against the string aaab . . 41

6.1 REGVIZ example - regular expression that matches the generalization of e-mail addresses. 53

xiii

xiv

Chapter 1

Introduction

JavaScript (JS) is the most widespread dynamic language.1 It is the de facto language for client-side

web applications; it is used for server-side scripting with NODEJS and it even runs on small embedded

devices [1]. JS regular expressions are an essential part of the language. They are often used for

parsing user input and messages coming from the network and they play a key role in securing Web

applications as JS developers commonly rely on regular expressions to write complex string sanitisers

to prevent a variety of injection attacks [2, 3].

Despite their widespread use, writing regular expressions is a difficult, error-prone task, often leading

developers to resort to inefficient trial-and-error approaches. Furthermore, the debugging facilities pro-

vided by all browsers and IDEs for JS programming are lacking when it comes to regular expressions.

For instance, browsers do not allow programmers to code-step the process of matching a string against

a regular expression (onward: regular expression match). Instead, this process is presented to the pro-

grammer as a single atomic operation, shedding no light as to why an expected match did not occur, or,

alternatively, an unexpected match did occur.

While there has been some research work on the problem of synthesising regular expressions from

examples [4–8], much less attention has been given to the development of effective debugging tools for

regular expressions. While we are not aware of any such research tool with support for code-stepping

regular expression matches, various tools have been proposed with the goal of helping developers

visualise their regular expressions [9–11]. These tools construct a visual representation of the given

regular expression to help the developer distinguish its key elements and more easily identify bugs.

However, these visualisation tools offer no insight into the runtime values that are handled during the

matching process (e.g. the value of capture groups). For that, one needs to code-step regular expression

matches.

Surprisingly, even outside academia, to the best of our knowledge, not many tools support code-

stepping of regular expression matches. We have carefully analysed 26 regular expression debugging

tools and discovered that only three come with code-stepping capabilities: REGEX 101 [12], REGEX

BUDDY [13], and REGEX COACH [14]. When it comes to the debugging of JS regular expressions,

1See https://w3techs.com/technologies/details/cp-javascript.

1

https://w3techs.com/technologies/details/cp-javascript

all three tools have one major drawback: they work on stand-alone regular expressions, ignoring their

potential interactions with the enclosing programs. Hence, in order to debug a given regular expression,

developers must first use a standard JS debugger, e.g. the browser console, to obtain both the buggy

regular expression and the bug-triggering input string, and only then can they use the chosen regular

expression debugging tool.

In this thesis, we present REXSTEPPER, the first regular expression debugging tool that allows for

code-stepping JS regular expressions without taking them out of their enclosing JS programs. In order

to do this, REXSTEPPER must be able to track both the implicit and explicit interactions between regular

expression matches and the states of the enclosing JS programs. This is a difficult task as the semantics

of JS regular expressions is heavily intertwined with the other aspects of the JS semantics. For instance,

several built-in functions of the standard make use of the main regular expression matching function,

RegExp.prototype.exec, as a subroutine.

REXSTEPPER was designed for debugging regular expressions that occur inside client-side JS pro-

grams that run in the browser. In particular, the original program is instrumented so that it records the

matching process, generating a matching trace, which can then be inspected using REXSTEPPER when

the execution terminates. At debugging time, the developer is allowed to traverse the matching trace

to pinpoint the source of a given bug. To streamline this process, REXSTEPPER supports the use of

regular expression break points, which allow the developer to navigate the control directly to the point

where they think the bug might have originated. To the best of our knowledge, REXSTEPPER is the only

regular expression debugging tool that offers this capability.

Besides allowing the developer to code-step regular expression matches, REXSTEPPER also pro-

vides a mechanism for visualising the entire matching process. More concretely, for each regular ex-

pression match, REXSTEPPER constructs a matching tree that illustrates the complete matching pro-

cess, including the points where that process is forced to backtrack due to a matching failure. We

believe that the combination of the code-stepping mechanism with the global view of the entire matching

process, provided by the matching tree, greatly improves the overall debugging experience.

In order to evaluate REXSTEPPER, we composed a benchmark consisting of 18 buggy regular ex-

pressions obtained from the Stack Overflow and Stack Exchange forums. We identify five common

classes of bugs and show how these bugs can be easily clarified through the use of REXSTEPPER. In

particular, for each buggy expression, we show how to insert a break point that would lead directly to the

bug and how to identify the bug from the inspection of the matching state at the break point.

At the core of REXSTEPPER is REXREF, our new reference implementation of JS regular expres-

sions. REXREF implements ECMAScript 5 [15] regular expressions faithfully, including a complete im-

plementation of the RegExp built-in object (Section 15.10 of the standard) as well as implementations of

all the methods of the String built-in object (Section 15.5) that interact with regular expressions (match,

replace, search, and split). REXREF was thoroughly tested against TEST262 [16], the official JS

test suite, passing 718 out of a total of 729 tests. Although there are many academic reference im-

plementations of various versions of the ECMAScript standard [17–22], none of them supports regular

expressions, making REXREF the first reference implementation of JS regular expressions.

2

REXREF was implemented directly in JS. Hence, it can be straightforwardly included in any JS pro-

gram, allowing us to override the native JS built-in regular expression library. While in this project we

use REXREF to enable our code-stepper, we believe that it can also be used to enable other types of

analysis of JS regular expressions and the programs that use them. For instance, existing symbolic

execution tools for JS [23–26] can use REXREF to offer symbolic reasoning over JS regular expressions

without having to implement them natively. Instead, they can simply symbolically execute the code of

REXREF when matching a given concrete regular expression against a possibly symbolic string. This

type of symbolic reasoning could, in turn, be applied to validate string santisers that make use of regular

expressions.

1.1 Contributions

In summary, our contributions are: the first regular expression code-stepper that allows for the integrated

debugging of JS regular expressions; and a reference implementation of JS regular expressions that

is thoroughly tested against the official JS test suite, passing 98.49% of the applicable ES5 regular

expression tests.

1.2 Replication Package

The source code of REXREF and REXSTEPPER is available at [28] and [27], respectively, in the form of

replication packages. REXSTEPPER’s replication package additionally includes a Web interface [29] for

interacting with the tool, which comes with the 18 analysed buggy regular expressions.

3

4

Chapter 2

Related Work

There is a vast body of research on regular expressions, covering topics as varied as: symbolic execution

for regular expressions [24, 25], regular expression synthesis [4–8, 15], visualisation mechanisms [9–

11], and user studies [30–39]. In the following, we focus our analysis of the related work on: user

studies (Section 2.1), visualisation mechanisms (Section 2.2), static analysers for regular expressions

(Section 2.3), and regular expression synthesis (Section 2.4). The reader is referred to [37] for a recent

broad-spectrum survey on techniques for ensuring the correctness of regular expressions.

2.1 User Studies

There is a vast number of empirical studies focused on characterising how regular expressions are

(mis)used in practice [30–39]. These studies tackle a wide variety of topics regarding the pragmatics of

regular expressions, such as: (1) How often are regular expressions used by typical programmers? [31]

(2) What regular expression patterns hinder understandability? [30] (3) What type of debugging infras-

tructure is more effective when it comes to finding errors/understanding regular expressions? [34] (4)

What type of tools and techniques students employ when having to write regular expressions? [35]

and (5) How well are regular expressions tested in practice? [32] (6) Do regular expression extraction

methodologies yield similar results? Are regular expression characteristics similar across programming

languages? [33] (7) Are readability, maintainability and usability increased when using a regular expres-

sion language that is identical to the surrounding programming language? [38] (8) What are the most

frequently used features of regular expressions and what are they used for? [39]

Although none of these studies target the use of regular expressions in the context of JavaScript

applications, we believe their findings to be indicative, reinforcing our view that developers need better

debugging tools for writing regular expressions. In the following, we examine the most relevant papers.

How often are regular expressions used by typical programmers? Paper [31] explores the context in

which regular expressions are used, its most common features and the similarity between them. To this

end, the authors inquired 18 developers and analysed 4000 open source Python projects from github,

having extracted nearly 14000 unique regular expression patterns. The authors concluded that 50%

5

of developers use regular expressions at least once a week and that the most common use cases for

regular expressions are locating content within a file or capturing parts of strings.

What regular expression patterns hinder understandability? The authors of [30] aim at identifying

coding patterns that hinder the understandability of regular expressions, which the authors refer to as

code smells. They argue that once code smells are removed, the code becomes cleaner, more un-

derstandable and easier to manage. However, in the case of regular expressions, code smells are not

clearly defined, as it is hard to tell what makes a given expression difficult to understand. In order to

better characterise regular expression smells, the authors conduct an empirical study on 42 pairs of

behaviourally equivalent but syntactically different regular expressions, with 180 participants and evalu-

ate how well they understand various regular expression features. This study concluded that the DFA

(Deterministic Finite Automaton) size of a regular expression significantly affects its comprehension; and

identified smelly and non-smelly regular expression representations. For instance, the regular expres-

sion aa* is considered to be a code smell, as it can be replaced by the simpler expression a+, with the

same meaning. Another example is the regular expression \d, which can be replaced with [0-9]. The

definition of code smell is always subjective to each developer’s experience regarding regular expres-

sions.

How well are regular expressions tested in practice? Paper [32] focuses on understanding how

thoroughly tested regular expressions in the wild are by examining 1225 open source Java projects on

GitHub that include test suites covering their regular expressions. In total, these projects make use of

over 15000 regular expressions. The study shows that only 17% of the used regular expressions were

tested and, among these, 42% were tested using only a single input. The authors further assess whether

or not the usage of an automatic regular expression input generator could lead to more comprehensive

testing. To this end, they use the REX [40] symbolic analyser to automatically generate inputs for the

collected regular expressions, concluding that both generated test inputs and the programmer-supplied

inputs achieve similar coverage levels.

Do regular expression extraction methodologies yield similar results? Are regular expression

characteristics similar across programming languages? Paper [33] examines the methodologies

used to extract regular expression datasets from online code repositories and tries to characterize the

use of regular expression features across different programming languages. The authors focus on the

three most popular languages on Github, Python, Java and JavaScript, and draw two main conclusions:

various regular expression extraction methodologies yield similar results and regular expression charac-

teristics have significant differences across programming languages.

What type of debugging infrastructure is more effective when it comes to finding errors/under-

standing regular expressions? In [34], the authors compare textual and graphical notations for regular

expressions by conducting a randomized controlled trial with 22 participants. The authors conclude that

the length of a regular expression and its notation have a strong impact on its readability, while the

participant’s background had no measurable effect. Furthermore, the study suggests that graphical

6

representations are more effective than the standard textual ones.

7

What type of tools and techniques students employ when having to write regular expressions?

The authors of [35] conduct an empirical study with 29 students to evaluate which tools and strategies

are used when writing regular expressions. The participating students were asked to compose regular

expressions that pass certain unit tests created for a specific purpose. They had one hour to complete

20 regular expression tasks, using any tool and with access to the Web. The participant’s interactions

with Web browsers and the ECLIPSE IDE were recorded by a screen capture software. The authors

concluded that: visualization of expressions helps participants pass more tests; those who consulted

documentation and tutorials were more likely to pass more tests than those who consulted Q&A web-

sites such as Stack Overflow; and participants who tried to compose the expressions first, instead of

searching the web for the solutions, are more likely to pass all tests. Results indicate that current IDEs

require better support for the development of regular expressions and that there is a clear need for an

automatic mechanism for converting regular expressions between different programming languages.

Are readability, maintainability and usability increased when using a regular expression lan-

guage that is identical to the surrounding programming language? The authors of [38] investigate

if a regular expression language which is more similar to the surrounding programming language would

improve its overall usability, making regular expressions easier to read and maintain. The authors in-

vestigate this using two approaches, namely exploratory interviews and experiments. In the interviews,

it was concluded that traditional regular expression syntax is confusing even for experienced develop-

ers. As for the experiments, it is shown that having the regular expression language more similar to the

surrounding programming language improves the overall usage and development speed.

What are the most frequently used features of regular expressions and what are they used for?

Paper [39] studies a dataset consisting of 13K regular expressions extracted from Github Python projects

with the goal of finding the most frequently used features of regular expressions in this type of project.

For each regular expression in the dataset, the authors produce a feature vector, summarising the

features of that regular expression. The authors consider a total of 34 features, including the usage

of capture groups and the usage of the Kleene operator, *. The authors conclude that the most used

features are: (1) the + quantifier; (2) capture groups; (3) the * quantifier; (4) custom character classes,

such as character ranges; and (5) the . meta-character.

2.2 Visualisation Mechanisms

Several research projects have tackled the problem of providing visual representations for regular ex-

pressions [9–11]. These visual representations are meant to help developers distinguish the key ele-

ments of their regular expressions and more easily identify bugs/errors. Visual representation mech-

anisms can be broadly divided into two main groups: those that completely replace the given regular

expression with a new diagram [10, 11] and those that augment the syntax of the given regular ex-

pressions with extra visual annotations [9]. REXSTEPPER works both ways. In code-stepping mode,

REXSTEPPER highlights the part of the regular expression that has already been matched, effectively

8

functioning as a visual augmentation tool. In contrast, in tree visualisation mode, REXSTEPPER provides

an entirely new diagram (the matching tree) that explains the matching process.

RegViz REGVIZ [9] is a visual augmentation tool for regular expressions. It is a web-based JavaScript

tool whose goal is to improve the readability of expressions by presenting the textual and visual rep-

resentations as one. This is mainly achieved by highlighting and colourizing special tokens, such as

quantifiers; structural components, such as logical operators; and other elements, such as assertions

and lookaheads, as exemplified in Figure 2.1. The key idea of REGVIZ is to leverage visual cues to

reduce the effort required for developers to understand the various components of a regular expression.

Figure 2.1: Visually augmented regular expression in REGVIZ

SWYN Paper [10] presents SWYN (See What You Need), a tool that helps users constructing regular

expressions from examples. This paper was motivated by the lack of visual representation and manip-

ulation capabilities on the inference process of PBE (programming-by-example) systems. In order to

tackle this problem, SWYN includes an interface that allows users to observe the effects of the sup-

plied examples on the regular expression being constructed in order to allow the developer to guide

the regular expression generation process. SWYN’s inference algorithm currently uses an heuristic to

incrementally modify the regular expression in response to each new example selected by the user. This

process leverages a graph reduction algorithm to identify common elements of the selected examples,

as depicted in Figure 2.2. First, it creates a regular expression graph for the first selected example; and

then, every new example is added to the graph as a new branch. If there are common elements between

the existing graph and that branch, the algorithm merges them. The authors conducted an experiment

in which 39 students, who were not familiar with regular expressions, had to perform several regular ex-

pression tasks in order to evaluate alternate representations, concluding that graphical notations clearly

provide a vast improvement in the usability of regular expressions when users are not familiar with them.

Figure 2.2: Example of SWYN’s graph reduction algorithm identyfing common elements between two
examples

9

Visualization and Interaction in automata theory The authors of [11] describe how they incorporated

the tools JFLAP [41] and PÂTÉ [42] in their automata theory course to improve the learning experience

of their students. The authors claim that students benefit from the interactive visual representations

offered by these tools when learning automata, regular expressions and formal grammars.

2.3 Static Analysers for Regular Expressions

To the best or our knowledge, the only academic static analyser for detecting bugs in regular expres-

sions is the tool ACRE (Automatic Checking of Regular Expressions) [43]. ACRE works by performing

11 simple syntactic checks that capture common regular expression bug patterns; for instance: (1) mis-

matched parenthesis, braces and quotes; (2) the mis-use of the disjunction character |, which has a

different meaning depending on whether or not it is used inside a character set; and (3) the mis-use

of the regular assertions ˆ and $, which can only be used meaningfully at the beginning and the end

of the given regular expression, respectively. The authors evaluate ACRE on a dataset consisting of

826 expressions obtained from the REGEXLIB library [44] and six different Python programs. From the

selected regular expressions, 283 were found to be buggy (34%), confirming the need for better tool

support for debugging regular expressions in practice.

2.4 Regular Expression Synthesis

In the following, we review several research projects on the topic of (semi-)automatic synthesis of regular

expressions. Synthesis algorithms/tools can be broadly divided into two main groups: (1) those that

create new regular expressions from scratch; and (2) those that fix existing regular expressions so that

they exhibit the expected behaviour in a given set of inputs. The tools and algorithms in the first group

can be further divided into three subgroups, depending on the type of input that they receive; in particular,

such tools may receive as input:

• positive and negative examples;

• a natural language description/specification of the behaviour of the regular expression to be syn-

thesised;

• a combination of the first two.

Automate String Processing from Input and Output Examples The authors of [4] performed a thor-

ough study on spreadsheet help forums and concluded that string processing is one of biggest causes of

problems for common users in programming. Usually users resort to help forums and ask experts about

these problems in the form of input and output examples and it can take several iterations of communi-

cation to get the solution. So, the goal of this paper is to introduce a program that replaces these experts

and synthesizes user’s desired programs only from their examples. In order to tackle this problem, the

10

authors first created a string programming language capable of supporting conditionals, loops and re-

stricted forms of regular expressions; and then created a program synthesis system that can synthesize

string processing programs in spreadsheets from input and output examples, written in their language.

The synthesizing process is interactive and requires examples to be added at each round in order to

improve the generated string processing program, taking an average of one to four rounds of iteration to

get to a solution. Regarding performance, the authors claim the algorithm is very efficient, taking only a

fraction of a second synthesizing various benchmarks.

How to Fix Regular Expressions in case of Failure? Paper [15] introduces a symbolic approach to

fix regular expressions in case of matching failure based on Antimirov partial derivatives [45]. Regular

expression partial derivatives represent sets of states of its corresponding NFA and also the sub-terms

of the original expression. In case of a failure, partial derivatives allow to trace the failure back to the

faulty sub-term in the original expression. As faulty sub-terms are symbols that clash with and input,

in order to fix the faulty sub-term, the authors need only to provide an alternative symbol. This novel

method is both easy to implement and generally leads to small fixes.

Synthesizing Regular Expressions from examples Paper [5] introduces a method for synthesizing

regular expressions from positive and negative examples with the goal of assisting students who are

learning regular expressions for the first time. In order to do that, the authors create a fast and interac-

tive synthesizing technique that assures a precise solution, consistent with the given examples. To that

end, they created a technique that prunes out the search space effectively while assuring it finds a solu-

tion. The key to this algorithm is to over and under-approximate regular expressions to predict whether

the current search state can be the final solution or not. This method was implemented in a tool, AL-

PHAREGEX[46], and was tested against a 25 problem benchmark. The results show that ALPHAREGEX

was able to synthesize the desired expressions within an average of 6.7 seconds, which makes it ac-

ceptable to be interactively used by students to improve their knowledge of regular expressions.

RFIXER - Repairing incorrect regular expressions from examples Paper [7] introduces RFIXER, a

tool for repairing regular expressions from examples. From an incorrect regular expression and sets

of positive and negative examples, RFIXER synthesizes the syntactically smallest repair of the original

expression that is accepted by the given examples. The main challenge for RFIXER is to find minimal

repairs which are scalable to practical regular expressions. The proposed algorithm tackles the scal-

ability problem by leveraging structural properties of regular expressions in order to determine what

sub-expressions should be fixed and uses a satisfiability modulo theory solver [47] to efficiently explore

the set of possible character classes and numerical quantifiers. The authors evaluated RFIXER by mea-

suring its success rate when trying to produce minimal repairs to regular expressions from three different

sources and also by measuring the quality of the given repairs. Regarding effectiveness, they concluded

that RFIXER could not solve expressions that require very large fixes or that involve complex nested

quantifiers. As for quality, RFIXER produces higher quality repairs than those produced by existing tools

and also manages high quality repairs for regular expressions with small alphabets.

11

Regular Expression Generation from Natural Language and Examples Paper [8] presents a frame-

work for automatically synthesising regular expressions from natural language specifications. The pro-

posed framework works by first using a semantic parser to parse the natural language specification into

a sketch, which is basically an incomplete regular expression containing missing components, denoted

as holes. Then, this sketch and the positive and negative examples are fed into a program synthesizer,

which will instantiate the holes with constructs from their regular expression domain specific language

until a consistent regular expression is found. In order to evaluate this framework the authors followed

two approaches: (1) test it against several English datasets, where the model was able to exploit them,

outperforming existing sequence-to-sequence methods, i.e., models trained to convert sequences from

a domain into another; (2) test it against a dataset of 62 real-world regular expression synthesis prob-

lems from Stack Overflow, where it was able to solve 57% of the benchmark, whereas existing deep

learning approaches achieve less than 10%.

REGEL - Synthesizing Regular Expressions from Natural Language and examples The authors

of [6] propose a tool, named REGEL, which leverages a multi-modal synthesis technique for automat-

ically constructing regular expressions given a combination of natural language descriptions and ex-

amples. It first parses the given description into a hierarchical sketch, which is then used by their

PBE (programming-by-example) engine to find regular expressions that match the developer’s intent.

The authors conclude that REGEL achieves an 80% accuracy rate, while a state-of-the-art NLP, DEEP-

REGEX [48], achieved 43% and a pure PBE approach only achieved 26%. Also, when comparing

REGEL’s PBE engine with ALPHAREGEX, a state-of-the-art PBE tool, the authors found that REGEL

is an order of magnitude faster. In order to further evaluate the effectiveness of REGEL, the authors

conducted a user study involving 20 participants where users had to perform 6 regular expression tasks,

randomly selected from Stack Overflow and asked the participants to solve half the tasks with REGEL

and the other half without it. Results show that REGEL greatly improves the effectiveness of developers:

without REGEL users only solved 28.3% of the tasks, while with REGEL they were able to solve 73.3%

of the tasks.

12

Chapter 3

Regular Expression Debugging Tools

In this chapter, we review the existing non-academic tools for code-stepping regular expressions. In

order to find such tools, we searched the web for tools and applications for debugging and analysing

regular expressions, having obtained a total of 26 tools. Then, we inspected each tool to determine

if it came with code-stepping facilities. All inspected tools are listed in Table 3.1 together with their

respective URL and a checkmark indicating whether or not they have support for code-stepping regular

expressions. Surprisingly, out of the 26 analysed tools, only three do come with code-stepping facilities:

REGEX 101 [12], REGEX BUDDY [13], and REGEX COACH [14].

Most tools are very simple and intuitive, having an input box for the regular expression being anal-

ysed and another one for the input string to be matched against the given regular expression. Matches

are typically represented with colored highlights. Furthermore, some tools make use of additional visual-

isation cues, aids and/or diagrams to help the user understand the different components/elements of the

regular expression being analysed. For instance, DEBUGGEX [49] and CYRILEX [50] represent regular

expressions as finite state machines, where each basic expression is mapped to a state and transitions

between states represent possible matching paths.

In the following, we analyse the three tools that come with code-stepping facilities, comparing them

against each other with respect to the following criteria:

• Type: How is the tool distributed to users? Typical options include: web application, desktop

application, and/or IDE plugin/extension.

• Host Language/System: What is the host language/system of the regular expression language

being considered? There are many possible host languages/systems, such as JavaScript, PERL,

Python, and the POSIX system. Importantly, some host languages have different regular expres-

sion syntaxes.

• Converts between Flavours: Is the tool able to transpile a regular expression of a given host

language/system to another one, automatically substituting equivalent syntax? For instance, while

in JavaScript, the regular expression used to match digits is \d, in POSIX it is [[:digit:]].

• Explanation on Expression / String: Does the tool provide a textual description of the given

13

Tool Name URL Code-Step

DEBUGGEX https://www.debuggex.com 7

REGEX 101 https://regex101.com 3

REGEXR https://regexr.com 7

REGEX BUDDY https://www.regexbuddy.com 3

CODVERTER REGEX
TESTER

https://codverter.com/src/regextester 7

KODOS https://sourceforge.net/projects/kodos/ 7

THE REGEX COACH http://weitz.de/regex-coach 3

REXV.2 http://www.rexv.org 7

REGEX PAL https://www.regexpal.com 7

REGULATOR https://sourceforge.net/projects/regulator 7

RUBULAR https://rubular.com 7

PERL REGEX TUTOR http://www.perlfect.com/articles/regextutor.shtml 7

REGEX HERO http://regexhero.net 7

CODVERTER https://codverter.com/src/regextester 7

NREGEX http://www.nregex.com/default.aspx 7

SITE24X7 https://www.site24x7.com/tools/regex-parser.html 7

CYRILEX https://extendsclass.com/regex-tester.html 7

REGEXPLAINED https://projects.verou.me/regexplained 7

SCRIPTULAR https://scriptular.com 7

VISUAL REGEXP http://laurent.riesterer.free.fr/regexp 7

REGEXPER https://regexper.com 7

REGULEX https://jex.im/regulex/#!flags=&re= 7

LARS OLVA REGEX http://regex.larsolavtorvik.com 7

MYREGEXP http://myregexp.com/ 7

REGEXP TESTER
https://chrome.google.com/webstore/detail/regexp-
tester/fekbbmalpajhfifodaakkfeodkpigjbk 7

REGEX TESTER VISUAL
STUDIO

https://marketplace.visualstudio.com/items?itemName=RomanKu
rbangaliyev.RegexTester 7

Table 3.1: Existing Regular Expression Debugging Tools.

regular expression and of the reasons for the current matching outcome? Typical examples in-

clude: having textual aids that describe the matching process and its outcome; for instance: what

is the intended behaviour of the basic expressions or flags being used? What was the result of the

match? What string(s) were captured?

• Unit Tests: Does the tool allow for the creation of positive and/or negative tests/examples? For

14

instance, developers often use a set of examples that the regular expression is supposed to match

as a means to validate it.

• Visual Support: Does the tool provide any visual cues to improve the user’s experience? There

are many ways this can be achieved, such as using coloured highlights or tokens to visually sepa-

rate the components of a regular expression, to map what is being matched in the regular expres-

sion with what is being matched in the input string, to indicate what strings were captured in each

capture group, etc; or using visual representations of the matching process such as trees or other

diagrams.

• Code-Step: Does the tool offer the ability to step back and forth on each state of a given match?

This facility is a strong advantage when debugging regular expression because users can walk-

through the whole matching process one step at a time and clearly observe when the execution

starts to show unexpected results.

• Real-Time Results: Is the tool able to automatically update its outcome when the given regular

expression and/or input string are edited?

• Free: Is the tool available for free?

In Tables 3.2 and 3.3 we detail the aforementioned criteria for the three tools that support code-

stepping.

Tool Name Type
Explanation

on Expression
/ String

Unit
Tests

Visual
Support

Real-Time
Results

Converts
between
Flavors

Free

REGEX 101 Web
App

3 3 3 3 7 3

REGEX
BUDDY

Desktop
App

3 7 3 3 3 7

REGEX
COACH

Desktop
App

3 7 3 3 7 3

Table 3.2: Existing Regular Expression Debugging Tools With Code-Stepping - Part 1

Tool Name Host Language/System

REGEX 101 PCRE2, PCRE, ECMA Js, Python, Golang

REGEX
BUDDY

AceText 2 and 3, boost::regex, C#, C++Builder, Delphi, EditPad, GNU ERE,
Groovy, HTML5, Java, JavaScript, MySQL, Oracle, PCRE, Perl, PHP preg,
PostgreSQL, PowerGREP, PowerSheel operators, Python, R, Ruby, Scala,
std::regex, Tcl, VBscript, Visual Basic, wxWidgets, XML Schema, XPath,
XRegExp

REGEX
COACH

PCRE

Table 3.3: Existing Regular Expression Debugging Tools With Code-Stepping - Part 2

15

3.1 Regex 101

REGEX 101 seems to be the go-to debugger for regular expressions among the community, it is up-to-

date, visually appealing and provides a lot of information about regular expressions. It is divided in three

main sections: a menu at the left with several components from which we highlight the following: host

language selection; unit tests; generation of code; a community library containing regular expressions

made by other users; and an account tab that allows users to save custom regular expressions. The

middle section contains the main interface, with an input box for the regular expression and another

one for the input string(s). This interface is complemented by coloured highlights on both the regular

expression and string, over which we can hover the mouse to get more information. Finally, at the

right, we have three more components, namely: (1) Explanation: a specific section for explaining every

basic element of the given regular expression; (2) Match Information: a section showing the match result

and the captured groups; and (3) Quick Reference: a section for quickly searching regular expression

elements and their meanings, by category, including practical examples.

As for the code-stepping capability, it only supports it for PERL regular expressions, represented in

Figure 3.1. This facility offers the user a clear notion of which step he is in, both in the regular expres-

sion and in the input string. Additionally, it represents backtracks with a red arrow pointing backwards.

The downsides of this code-stepper are (1) it skips whole sub-patterns, for instance, if we match the

expression a+ against the string aaa, step 0 is the starting state, matching nothing, and step 1 matches

all three a’s at a time, instead of just one of them; and (2) it does not show the user any runtime values

about the match, such as captured groups.

Figure 3.1: Code-stepping in REGEX 101, when matching expression (a+)\1b against the string aaab

3.2 Regex Buddy

REGEX BUDDY is a paid desktop application, costing 29.95C, it is up-to-date and is one of the most

complete tools available, offering an impressive set of approximately 30 regular expression host lan-

guages/systems. REGEX BUDDY has a lot of built-in functionalities, such as the Create tab, which ex-

plains each basic component of a given regular expression; the Library tab, which includes sample

regular expressions from their community; the GREP tab, which enables users to search through a large

16

Figure 3.2: Code-stepping capability in REGEX BUDDY

number of files or folders using regular expressions; and the Forum tab, which acts as a help forum

where users can ask and answer each other’s questions. Additionally, it supports the code-stepping

feature (Figure 3.2) by showing a list of all the steps of the matching process over the given input string,

including backtrack indicators in red. To the best of our knowledge, REGEX BUDDY is also the only tool

that can convert regular expressions from one regular expression host language to another, automati-

cally substituting equivalent syntax. The main downsides of this tool are (1) it is not available to users

for free; and (2) the code-stepping section shows all steps at the same time, instead of letting the user

step back and forth through the matching process and analyse them individually, which can be visually

overwhelming and make it hard to target a specific state.

3.3 The Regex Coach

REGEX COACH is a free desktop application that despite being very simple is fairly complete. When

creating a regular expression, users are offered:

• a textual explanation of what that expression is supposed to match;

• a tree view, allowing users to visualize the composition of regular expression elements;

17

• a code-stepping feature (Figure 3.3) which allows users to drive the matching process forward one

step at a time; however, this tool does not allow users to go back in the matching process, only

allowing forward steps;

• a split functionality, where the actual expression is used as the delimiter to split the input string;

• a replace functionality, where the portion of the input string that matches is replaced by a given

expression chosen by the user.

Figure 3.3: Code-stepping in REGEX BUDDY, when matching expression (a+)\1b against string aaab

3.4 Code-Stepping Limitations

In this section we highlight the main limitations of the three aforementioned tools regarding their code-

stepping capability:

• None of the tools supports code-stepping of regular expressions while maintaining their enclosing

environments;

• REGEX 101 and REGEX COACH fail to represent which strings were captured by capture groups

along the matching process;

• REGEX 101 only allows code-stepping for PERL regular expressions and when matching a quan-

tified sub-expression against a string, it consumes multiple characters in one state;

• REGEX BUDDY’s code-stepping feature only details the progress of the matching process with

respect to the string and not to the regular expression. Additionally, it does not give the user the

ability to navigate through the steps, it simply depicts a list of states in a section of the program.

18

Chapter 4

RexRef: Reference Implementation of

JS Regular Expressions

We describe REXREF, our reference interpreter of JS regular expressions on top of which we developed

REXSTEPPER. REXREF is a reference interpreter in that it follows the text of the JS standard [15]

faithfully and passes all the applicable tests of TEST262, the official JS test suite.

At the core of REXREF is a regular expression interpreter that evaluates regular expressions to

regular expression matchers. A matcher is simply a JS function that recognises expansions of its cor-

responding regular expression. Besides the regular expression interpreter, REXREF includes: (1) a JS

transpiler that replaces all occurrences of literal regular expressions in a program with JS expressions

that build their corresponding matchers and (2) REXREF implementations of all the JS built-in functions

that interact with regular expressions (e.g. RegExp.prototype.exec and String.prototype.split).

Before describing the components of REXREF, we give a quick recap of the syntax of JS regular

expressions. The syntax of JavaScript regular expressions is given in the table below. It is defined

using several auxiliary syntactic classes, of which the most relevant are: characters, c ∈ CH; boundary

assertions, ba ∈ BA; character ranges, rg ∈ CR; and quantifiers, qt ∈ QT .

Syntax of JS Regular Expressions

c ∈ CH , CHs ∪ CHm

sc ∈ CHs , ASCII ∪ Control ∪ Decimal ∪ Hex ∪ Unicode

mc ∈ CHm , \t | \n | \v | \f | \r | \w | \W | \d | \D | \s | \S

ba ∈ BA ::= ˆ | $ | \b | \B

rc ∈ CHr ::= c | \b

rg ∈ CR ::= rc | rc1− rc2 | rg1rg2

qt ∈ QT ::= ? | ∗ | + | { i } | { i, } | { i1, i2 }

r ∈ RE ::= c | ba | r1 r2 | r1 | r2 | (r)i | (? : r) | \i | (?= r) | (?! r) | r qt | r qt ? | [rg] | [ˆrg]

19

We explain the syntax of regular expressions bottom-up, first describing the auxiliary syntactic con-

structs.

Characters, c ∈ CH, are taken from two distinct sets: the set CHs of source characters and the set

CHm of meta characters. A source character simply denotes itself; it can be written directly in ASCII, or

using a decimal, hexadecimal, or unicode escape expression. For instance, a, \97, \x61, and \u0061 all

denote the character a. In contrast, meta characters are used to denote pre-established sets of source

characters. For example, the meta character \w denotes the set of the lower-case letters, upper-case

letters, digits and the underscore character.

Boundary Assertions, ba ∈ BA, are used to refer to specific points of the given input string, not

necessarily related to the characters that occur at those points. The boundary assertions ˆ and $

respectively denote the beginning and the end of the input string, and the boundary assertions \b and

\B respectively denote word boundaries and non-word-boundaries. A word boundary can either be a

white space, a line break, or the beginning/end of the input string.

Character Ranges, rg ∈ CR, are used to denote sets of characters in a compact way. A character

range is a list of range characters rc ∈ CHr and character intervals rc1− rc2. A character range denotes

the union of the denotations of the characters and character intervals that it comprises, where the char-

acter interval rc1− rc2 denotes all of the characters between rc1 and rc2, when ordered according to the

ASCII codes. For instance, the character range ad-x denotes the letter a and all the lowercase letters

between d and x.

Quantifiers, qt ∈ QT , are used to specify the number of times a given regular expression is supposed

to be matched. Their meaning is standard: ? signifies zero or one time, ∗ signifies zero or more times,

+ signifies at least one time, { i } signifies precisely i times, { i, } signifies at least i times, and { i1, i2 }

signifies from i1 times to i2 times.

We can now explain the meaning of JavaScript regular expressions, which we divide into the following

five groups:

• Basic Expressions comprise: characters, c, matching the characters denoted by c; boundary as-

sertions, ba, checking if ba holds at the current position of the input string; sequences of regular

expressions, r1 r2, matching expansions of r1 followed by expansions of r2; and disjunctions of reg-

ular expressions, r1 | r2, matching expansions of either r1 or r2. For instance:

– ^ab|cd$ matches input strings that either start with the characters ab or end with the characters

cd.

– a$|cd matches input strings that either end with character a, or contain the characters cd.

• Grouping Expressions comprise: capturing groups, (r), matching expansions of r and storing the

matching result for future reference; non-capturing groups, (? : r), matching expansions of r while not

storing the corresponding result; and backreferences, \i, only matching the most recent match of the

i-th labelled capture group. The following expressions exemplify these concepts:

– (.*)\1 matches any string consisting of the same string repeated twice; the capturing group (.∗)

20

matches any string and stores its value, while the backreference \1 only matches the previously

stored value.

– (ab)c\1, identically, the capturing group (ab) matches and stores characters ab, followed by a

match of character c and finally the backreference \1 matches what the first group captured, i.e.

characters ab. An example of a string that would be matched by this expression is abcab.

In the following, we assume that each capturing group (r)i is annotated with a unique index i to

be used by our regular expression interpreter. Such indexes can be added to the official regular

expression AST via simple pre-processing.

• Look-Ahead Expressions comprise: positive look-ahead expressions, (?= r), matching expansions

of r while not updating the matched string; and negative look-ahead expressions, (?! r), matching

strings that do not correspond to expansions of r while not updating the matched string. For instance:

– x(?=a)(a|b) matches the string xa with matching result xa, given that the positive look-ahead

is not taken into account for the construction of the match. Analogously, the regular expression

x(?!a)y matches the string xy with matching result xy but does not match the string xay.

– \w+(?=\.com), in this regular expression, \w+ matches one or more alphanumeric characters

and the lookahead (?=\.com) makes sure that string .com exists ahead, but does not take it

into account in the final match. For instance, given the input string google.com, this regular

expression would match google;

• Quantified Expressions comprise: greedily quantified expressions, r qt, recognising expansions

of r the number of times specified by the quantifier qt; and non-greedily quantified expressions,

r qt ? , which stop the matching process once a successful match is found within the bounds of the

given quantifier. For instance, when applied to the string aaa, the regular expression a+ produces

the matching result aaa, while the regular expression a+? produces the matching result a. More

examples include:

– a? matches character a, zero or one time;

– a* matches character a, zero or more times;

– a{3,6} matches character a, three to six consecutive times.

• Range Expressions comprise positive and negative range expressions. A positive range expres-

sion, [rg] , matches any character in the denotation of the range rg, while a negative range expres-

sion, [ˆrg], matches any character that is not in the denotation of the range rg. Examples include:

– [abc] matches either character a, b or c, one time;

– [A-Z] matches any capital letter from A to Z, one time;

– [^3t] matches any character that is not a 3 nor a t, one time.

21

4.1 Regular Expression Interpreter

Following the JS standard [15], REXREF evaluates regular expressions to regular expression matchers.

Hence, our regular expression interpreter can be seen as a mathematical function interp :: 2FL →

RE → M that given a set of flags fl ⊆ FL and a regular expression r ∈ RE , produces a matcher

m ∈ M. The set FL of regular expression flags comprises: (1) g for global, indicating that the matching

process should output all possible matches instead of just the first one, (2) i for ignore case, indicating

that character case is to be ignored when computing matches, and (3) m for multiline, indicating that

new lines should be treated as the beginning of the input string for the purpose of matching boundary

assertions.

Interpretation Domains. Regular expression matchers follow the continuation-passing discipline [51,

52] in that each matcher receives as input not only the current matching state but also a continuation

representing the matching process to be carried out once the current matcher finishes executing. For-

mally, a matcher can be thought of as a mathematical function that maps a matching state σ ∈ Σ and

a continuation κ ∈ K to a matching outcome o ∈ O, where: (1) a continuation κ ∈ K is a function

that takes a matching state σ ∈ Σ and produces an outcome o ∈ O and (2) an outcome can either be

a successful final matching state, denoted by S〈σ〉, or a failing final matching state, denoted by F〈σ〉.

Besides matchers, the regular expression interpreter makes use of the concept of tester functions. A

tester function t ∈ T is simply a function that takes a matching state σ ∈ Σ and returns a boolean

value indicating whether or not that state satisfies a given regular expression assertion; for instance,

if the character at the current index is a non-word character. The table below summarises our regular

expression interpretation domains.

Interpretation Domains

MATCHERS m ∈M :: Σ→ K⇀ O

TESTERS t ∈ T :: Σ→ Bool

CONTINUATIONS κ ∈ K :: Σ −→ O

OUTCOMES o ∈ O ::= S〈σ〉 | F〈σ〉

STATES σ ∈ Σ , Str × [Str⊥]× Int

STRINGS s ∈ Str⊥ , Str] {undefined}

FLAGS fl ⊆ FL , {g, i,m}

Matching States. Matching states, σ ∈ Σ, bookkeep the matching information during the matching

process. More precisely, a matching state σ can be viewed as a triple (i, ~s, s), consisting of: (1) the index

of the input string to be processed next, i, (2) an internal array ~s, called captures array, mapping capture

group indexes to their corresponding captures, and (3) the input string on which the outermost matcher

was called, s. To better understand how the captures array works, let us consider the two examples

given in Figure 4.1.

In the left-hand-side example, we match the regular expression /(a+)(b*)(c*)/ against the string

aabbbbccc (ignore underlined characters for now). This expression has three capture groups, each

22

RE /(a+)(b*)(c*)/
Str aabbbbccc

INDEX CAPTURES
0 [⊥, ⊥, ⊥]
2 [aa, ⊥, ⊥]
6 [aa, bbbb, ⊥]
FINAL [aa, bbbb, ccc]

RE /(a(b*))+(c*)/
Str ababbbaccc

INDEX CAPTURES
0 [⊥, ⊥, ⊥]
2 [ab, b, ⊥]
6 [abbb, bbb, ⊥]
FINAL [a, ε, ccc]

Figure 4.1: Matching states and capture groups

corresponding to a different parenthesised subexpression. During the matching process, the matched

expansions of the capture groups are stored in the captures array at the corresponding index: i.e., the

expansion of the first capture group is stored at the first index, etc. Figure 4.1 shows the content of

the captures array before processing the indexes 0, 2, and 6 of the input string, which correspond to its

underlined characters, as well as at the final matching state. Initially, all captures are undefined as no

expansions of their corresponding capture groups were yet found. In contrast, at index 2, the captures

array maps index 0 to the string aa as the first capture was already found. The same reasoning applies

to index 6 and to the final matching state.

In the right-hand-side example we match the regular expression /(a(b*))+(c*)/ against the input

string ababbbaccc. This example is a bit more involved than the previous one in that this regular ex-

pression contains a nested capture group. Capture groups are ordered according to the position of their

left-parenthesis in the regular expression source text. Hence, the first capture group corresponds to the

expression (a(b*)), the second one to (b*), and the third onde to (c*). Importantly, given that the first

and second capture groups occur inside a quantified expression, (a(b*))+, the values of their corre-

sponding captures are updated every time the enclosing regular expression is matched. For instance, at

index 2, the enclosing expression was matched one time, so we have that the first and second capture

groups are mapped to ab and b, respectively. At index 6, the enclosing expression was matched two

times, so now, the first and second capture groups are mapped to abbb and bbb, respectively. Note, how-

ever, that before the matching process completes, the enclosing expression is matched yet a third time.

Hence, the values of the first and second capture groups at the final matching state are respectively a

and the empty string ε, corresponding to the third expansion of the quantified expression.

State Interface. In the implementation, we model matching states as JS objects storing the original

input string, the current index, and the captures array. However, to make the interpreter independent

of the chosen representation of matching states, we do not interact with the components of matching

states directly. Instead, we expose the following methods for accessing/updating their components:

• σ.getS() for obtaining the input string on which the outermost matcher was called;

• σ.getIdx() and σ.setIdx(i) for obtaining and updating the current matching index, respectively;

• σ.getCap(i) and σ.setCap(i, s) for obtaining and updating the i-th capture of σ, respectively;

• σ.getCaps() and σ.setCaps(caps) for obtaining a deep copy of the captures array and updating its

value; and

• σ.copy() for creating a copy of the given state.

23

Matching Combinators. We structure the code of REXREF as a collection of matching combinators,

each corresponding to a specific class of regular expressions. In the following, we describe the most

relevant combinators. All our combinators are available as part of the REXSTEPPER implementation. To

keep the exposition as clear as possible, we present streamlined versions of the presented combinators,

focusing on their core functionality and eliding non-instructive technicalities.

CHARMATCHER: A character regular expression cmatches the characters denoted by c. Accordingly, the

charMatcher combinator receives as input a single character c1 and returns a matcher which checks if

the character at the current matching index belongs to the denotation of c1. If so, the matcher advances

the current matching index by one and calls the given continuation on the current state; otherwise, it

returns failure. Importantly, a regular expression character may denote a set of string characters. To

account for this, we convert the regular expression character to a set of character codes and check if the

code of the current character belongs to the computed set.

Character ranges are interpreted similarly, except that one has to compute the set of character codes

denoted by the range, which corresponds to the union of the individual ranges included in the character

range; for instance:

codes(a− zA− Z) = codes(a− z) ∪ codes(A− Z)

function charMatcher (c1) {

return function(st, cont) {

var idx = st.getIdx(), c2 = st.getS(idx);

if (contains(codes(c1), code(c2)) {

st.setIdx(idx+1);

return cont(st)

} else { return MakeFail(st) }

}

}

SEQUENCE: A sequence regular expression r1 r2 matches expansions of r1 followed by expansions of r2.

Accordingly, the seq combinator receives as input two matchers m1 and m2, respectively corresponding

to the first and the second regular expressions, and returns a new matcher that first applies m1 and then,

if it succeeds, m2. Given that matchers follow the continuation-passing discipline [51, 52], the generated

matcher first creates a new wrapping continuation cont_d that captures the computation of m2 followed

by that of cont and only then calls m1 with the argument state and the wrapping continuation cont_d.

24

function seq (m1, m2) {

return function(st, cont) {

var cont_d = function (st_d) {

return m2(st_d, cont)

}

return m1(st, cont_d)

}

}

The seq combinator trivially lifts to arrays of matchers by applying it recursively and using the identity

matcher for the base case. The identity matcher simply applies the given continuation to the given state.

function mapSeq (ms) {

if (ms.length == 0)

return function (st, k) { return k(st) }

else {

var m1 = ms.shift(), m2 = mapSeq(ms);

return seq (m1, m2)

}

}

DISJUNCTION: A disjunction of regular expressions r1 | r2 matches expansions of either r1 or r2. Accord-

ingly, the or combinator receives as input two matchers m1 and m2 and returns a new matcher that first

applies m1 and then, if it fails, applies m2. Note that the return matcher succeeds if either m1 succeeds

or m2 succeeds, only applying m2 if m1 fails. Hence, both matchers are called with the given continuation

cont.

function or (m1, m2) {

return function(st, cont) {

var r = m1(st, cont);

if (!isSuccess(r)) {

var _st = st.copy();

return m2(_st, cont);

} else { return r }

}

}

GROUP: A group regular expression (r)i matches expansions of r and stores the matching result in the

captures array; note that we annotate group expressions with the index of the corresponding capture

group. Accordingly, the group combinator receives as input a matcher m and a capture group index i and

25

returns a new matcher that applies m and then saves the substring matched by m at i-th position of the

captures array. Intuitively, the returned matcher first executes the matcher given as input, then updates

the i-th capture group of the resulting matching state, st_d, with the substring matched by m, and, finally,

calls the continuation cont.

function group (m, i) {

return function(st, cont) {

var j1 = st.getIdx();

var cont_d = function (st_d) {

var j2 = st_d.getIdx(),

str = st_d.getS(),

cap = str.sub(j1, j2);

st_d.setCap(i, cap);

return cont(st_d)

}

return m(st, cont_d)

}

}

BACKREFERENCE: A backreference regular expression \i matches the most recent match of the i-th

capture group. Analogously, the backref combinator receives an integer i and returns a matcher that

checks if the string corresponding to the i-th capture group coincides with the next characters to match of

the input string. If it does, the matcher moves the current index forward and calls the given continuation

cont on the input state st.

function backref (i) {

return function(st, cont) {

var s = st.getCap(i), len = s.length,

j1 = st.getIdx(), j2 = j1 + len,

s_aux = st.getS().sub(j1, j2);

if (s === s_aux) {

st.setIdx(j2);

return cont(st)

} else { return MakeFail(st) }

}

}

ASSERTION: Boundary Assertions, ba ∈ BA, are used to refer to specific points of the given input string,

not necessarily related to the characters that occur at those points; for instance, the boundary assertions

ˆ and $ respectively denote the beginning and the end of the input string. Boundary assertions are

evaluated to testers functions, detailed in 4.1.1, which simply take an input state and check if their

26

respective boundary assertions hold at that state. The assert combinator is used for lifting a tester

function to a matcher function. The returned matcher applies the supplied tester t to its state parameter,

st, to determine whether or not the corresponding assertion holds. If it does, the generated matcher

calls the continuation cont on the given state and returns its result; otherwise, it returns failure.

function assert (t) {

return function(st, cont) {

if (t(st)) {

return cont(st)

} else { return MakeFail(st) }

}

}

LOOK-AHEAD: A positive lookahead regular expression (?= r) matches expansions of r without moving

the matching index forward or updating the captures array. Accordingly, the lookAhead combinator re-

ceives a matcher m and returns a new matcher that first applies the matcher m and then, if m succeeds,

resets the matching index and captures array to their original values.

function lookAhead (m) {

return function(st, cont) {

var caps = st.getCaps(), i = st.getIdx(),

r = m(st, cont_id);

if (isSuccess(r)) {

var st_new = r.getState();

st_new.setIdx(i);

st_new.setCaps(caps);

return cont(st_new)

} else { return r }

}

}

A negative look-ahead expression, (?! r), matches strings that do not correspond to expansions of r

while not updating the matching index and the captures array. Their associated combinator is similar to

the one above, so we omit it from the presentation.

REPEAT: A greedily quantified expression r qt recognises expansions of r the maximum possible number

of times within the bounds of the quantifier qt that will lead to a successful match. As defined in the table

below, a quantifier qt ∈ QT is evaluated to a pair of integers (i1, i2), respectively denoting the upper

and lower bounds of the quantifier. For instance, the quantifier + evaluates to the pair (1,∞), while the

quantifier ? evaluates to the pair (0, 1).

27

Quantifier Compilers: QT :: QT → Int × Int

QT(∗) , (0,∞) QT(+) , (1,∞) QT(?) , (0, 1) QT({n}) , (n, n) QT({n, }) , (n,∞)

QT({n,m}) , (n,m)

Greedily quantified expressions are interpreted using the gRepeat combinator, which receives as

input a matcher m together with the minimum and maximum number of times it should be matched,

respectively min and max, and generates a new matcher m_new that executes successfully if the matcher

m can be executed successfully at least min times. The new matcher is greedy in that, once the minimum

number of matches is reached, it will continue to apply the supplied matcher m either until max is reached

or until it gets a matching failure, in which case it will call cont on the matching state corresponding to

the last successful match.

function gRepeat (m, min, max) {

return m_new(st, cont) {

if (max == 0) { return cont(st) }

var cont_d = function (st_d) {

max = max - 1, min = min - 1;

return m_new(st_d, cont)

}

if (min > 0) { return m(st, cont_d) }

var old_st = st.copy()

var ret = m(st, cont_d);

if (isSuccess(ret)) {

return ret

} else { cont (old_st) }

}

}

We associate non-greedily-quantified expressions with their own combinator ngRepeat, whose be-

haviour is analogous to the one described above except that it tries to apply the matcher m the minimum

possible number of times within the bounds of the quantifier that will lead to a successful match. We

omit this combinator as it is analogous to the one given above.

4.1.1 Testers

Boundary assertions ba ∈ BA are interpreted as tester functions, which receive an input state and check

if their respective boundary assertions hold at that state. In the following, we explain the assertion tester

generated for the word boundary assertion; the remaining cases are analogous.

The tester generated for the word boundary assertion \b checks if the character at the current pro-

cessing index, i, is a word character (s[i] ∈ WC), obtaining the boolean value b1. Then, the tester checks

28

if the character at the previous processing index, i−1, is a word character (s[i−1] ∈ WC), obtaining the

boolean value b2. Finally, the tester returns b1 XOR b2, meaning that it returns true if and only if either

s[i−1] is a word character and s[i] is not, or vice versa. All assertion testers are defined below:

Beginning of the line assertion ^

function (state) {

i = state.getIdx();

if(i == 0) {

return true;

}

else if(isMultiline(flags)) {

return false;

}

else {

c = state.getS()[i-1]

return isLineTerminator(c);

}

}

End of the line assertion $

function (state) {

i = state.getIdx();

len = state.getS().length;

if(i == len - 1) {

return true;

}

else {

c = state.getS()[i]

return isLineTerminator(c);

}

}

Boundary assertion \b

function (state) {

s = state.getS();

i = state.getIdx();

b1 = isWordChar(s[i]);

b2 = isWordChar(s[i - 1]);

return (b1 && !b2) || (!b1 && b2);

}

Non-Boundary assertion \B

function (state) {

s = state.getS();

i = state.getIdx();

b1 = isWordChar(s[i]);

b2 = isWordChar(s[i - 1]);

return !((b1 && !b2) || (!b1 && b2));

}

4.2 Compiling Regular Expressions

REXREF comes with a JS transpiler that replaces all the occurrences of literal regular expressions in a

program with the JS expressions that build their corresponding matchers. For instance, the JS program:

var s = /(a*)(b+)\1/.exec("aabaa")

is transpiled to the one given in Figure 4.2. We give a stylised version of the compilation for clarity. Ob-

serve that the transpiled program creates the matcher corresponding to the original regular expression

using the matching combinators discussed in the previous section. Naturally, in order for the transpiled

program to run properly, we have to override the native implementation of the RegExp constructor with

our own implementation, which receives the generated matcher as input.

29

var __matcher1 = mapSeq([
group(gRepeat(

charMatcher("a"), 0, Infinity)),
group(gRepeat(

charMatcher("b"), 1, Infinity)),
backref(1)

]);
var s = new RegExp(__matcher1).exec("aabaa")

Figure 4.2: Transpiled JS Program

4.3 RexRef Built-in Libraries

REXREF comes with a runtime library that contains JS implementations of all regular expression func-

tions described in the ECMAScript 5 standard (Section 15.5), as well as all string functions that interact

with regular expressions (Section 15.0). These JS implementations make use of the matchers generated

by our regular expression compiler, and follow their corresponding descriptions in the standard line-by-

line. This line-by-line correspondence between the text of a standard and its reference implementations

is a well-accepted methodology for establishing trust in reference implementations [17].

We illustrate our approach using the exec function (Section 15.10.6.2 of the ES5 standard), whose

code is given in Figure 4.3, annotated with the corresponding text of the standard.

Before we go into the details of exec, we briefly review how regular expressions are represented

in the JS heap. In a nutshell, the evaluation of a regular expression yields a regular expression ob-

ject. Regular expression objects store the matchers of their corresponding regular expressions in an

internal property [[Match]]. Furthermore, all regular expression objects share the same prototype,

RegExp.prototype, which stores all regular expression methods. Our implementation mimics the native

one by evaluating regular expressions to regular expression objects and storing the regular expression

methods in their shared prototype; the main difference being that we store the matchers in a standard

property __matcher__, given that ES5 does not allow for direct access to internal object properties.

RegExp.prototype.exec. The exec method is supposed to be called on a regular expression object and

takes as input the string to be matched against the receiver regular expression. This method recognises

the first expansion of the supplied regular expression in the input string and returns an array, storing

the matched string at index 0, followed by the bindings of the capture groups at the end of the matching

process. Furthermore, the returned array has the additional properties index, which stores the index at

which the match occurred, and input, which stores the input string. Finally, if no match is found, exec

returns null. Consider, for instance, the execution of exec on the regular expression /(a*)b/g with input

string cdaadaabcd; in this case, the returned array object is:

{ 0: "aab", 1: "aa", length: 2, index: 5, input: "cdaadaabcd" }

The core of the exec function corresponds to the WHILE loop included in Figure 4.3, which calls

the function match of the given regular expression at each index of the input string until it either finds

a successful match or reaches the end of the input. The function match, given in Figure 4.5, is just a

30

// 15.10.6.2 RegExp.prototype.exec(string)
function exec (string) {

var state_r;
// 1. Let r be this RegExp object
var r = this;
// 2. Let s be the value of ToString(string)
var s = internalToString(string);
// 3. Let length be the length of s
var length = s.length;
// 4. Let lastIndex be the result of calling [[Get]] internal method of r with argument "last index"
var lastIndex = r.lastIndex < 0 ? 0 : r.lastIndex;
// 5. Let i be the value of ToInteger(lastIndex)
var i = toInt(lastIndex);
// 6. Let global be the result of calling [[Get]] internal method of r with argument "global"
var global = r.global;
// 7. If global is false, then i = 0
if (!global) {

i = 0;
}
// 8. Let matchSucceeded be false
var matchSucceeded = false;
// 9. Repeat, while matchSucceeded is false
while (matchSucceeded === false) {

// a. If i < 0 or i > length, then
if (i < 0 || i > length) {

// i. Call the [[Put]] internal method of r with arguments: "lastIndex", 0, and true.
r.lastIndex = 0;
// ii. Return null.
return null

}
// b. Call the [[Match]] internal method of r with arguments: s and i.
var ret = r.match(s, i);
// c. If [[Match]] returned failure, then
if (isFailure(ret)) {

// i. Let i = i+1.
i = i+1
// d. else

} else {
// i. Let r be the State result of the call to [[Match]].
state_r = makeSuccess(ret);
// ii. Set matchSucceeded to true.
matchSucceeded = true

}
}
// 10. Let e be r's endIndex value
var e = endIndex(state_r);
// 11. If global is true
if (global) {

// a. Call [[Put]] internal method of r with arguments: "lastIndex", e and true
r.lastIndex = e;

}
// 12. Let n be the length of r's captures array
var n = nCaps(state_r);
// 13. Let a be a new array created as if by the expression new Array() where Array is the standard

built-in constructor with that name.↪→

var a = new Array();
// 14. Let matchIndex be the position of the matched substring withing the complete String s
var matchIndex = i;

Figure 4.3: RegExp.prototype.exec(string) - Part 1

31

// 15. Call the [[DefineOwnProperty]] internal method of a with arguments: "index", Property Descriptor
{[[Value]]: matchIndex, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true} and true↪→

defineOwnProperty(a, 'index', matchIndex, true, true, true);
// 16. Call the [[DefineOwnProperty]] internal method of a with arguments: "input", Property Descriptor

{[[Value]]: s, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true} and true↪→

defineOwnProperty(a, 'input', s, true, true, true);
// 17. Call the [[DefineOwnProperty]] internal method of a with arguments: "length", Property Descriptor

{[[Value]]: n + 1} and true↪→

defineOwnProperty(a, 'length', n, false, false, false);

// 18. Let matchedSubstr be the matched substring (portion of s between i inclusive and e exclusive)
var matched_substr = s.substring(i, e);
// 19. Call the [[DefineOwnProperty]] internal method of a with arguments: "0", Property Descriptor

{[[Value]]: matchedSubstr, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true} and true↪→

defineOwnProperty(a, "0", matched_substr, true, true, true);
// 20. For each integer i such that i > 0 and i <= n
var caps = captures(state_r);
for (var i=1; i<n; i++) {

// a. Let captureI be the i'th element of r's captures array
var capture_i = caps[i];
// b. Call the [[DefineOwnProperty]] internal method of a with arguments: ToString(i), Property

Descriptor {[[Value]]: captureI, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:
true} and true

↪→

↪→

defineOwnProperty(a, int2str(i), capture_i, true, true, true)
}
// 21. Return a
return a;

}

Figure 4.4: RegExp.prototype.exec(string) - Part 2

function match (str, index) {
var cont_c = function (st) { return st }
var st_0 = new State(str, index, this.__caps__);
return this.__match__(st_0, cont_c);

}

Figure 4.5: __match__ wrapper

wrapper around internal matchers. More concretely, it simply constructs the initial matching state and

calls the matcher of the given regular expression with the newly created matching state and the identity

continuation.

As a regular expression matcher might be executed multiple times on a given input string (each time

starting at a different input index), it is useful, for debugging purposes, to be able to inspect the input

index at which the matching process started. In the following, we refer to this index as global index.

32

Chapter 5

RexStepper: Code-Stepping Regular

Expressions

REXSTEPPER is, first and foremost, a tool for code-stepping regular expression matches. Hence, it

offers a variety of debugging commands for navigating the matching process. Importantly, REXSTEPPER

supports the use of regular expression break points, which allow the developer to quickly move the

control to the point where they think a bug might originate. Before diving into the supported debugging

commands we need to clarify the definitions of iteration and execution in the context of REXSTEPPER.

An iteration is the process of matching an expression against an input string, starting from a given index

of that string (initially from index 0). In many cases, matching can fail and if that is the case, a new

iteration is computed, i.e. the starting index is incremented by one and the matching process starts over

from that position instead. REXSTEPPER also supports multiple executions, i.e., a developer can match

a given expression against many input strings, for instance, having multiple exec calls for the chosen

regular expression. Thus, from a hierarchical point of view, executions can contain multiple iterations,

which in its turn contains multiple matching states.

Debugging commands include:

(1) single backward step, to move the control to the previous matching state;

(2) single forward step, to move the control to the next matching state;

(3) multi backward step, to move the control to the matching state at the previous break point;

(4) multi forward step, to move the control to the matching state at the next break point;

(5) first step, to move the control to the starting matching state;

(6) last step, to move the control to the final matching state;

(7) single backward iteration, to move the control to the previous iteration of the current execution;

(8) single forward iteration, to move the control to the next iteration of the current execution;

(9) single backward execution, to move the control to the previous execution; and

(10) single forward execution, to move the control to the next execution;

When it comes to the implementation of a code-stepper such as REXSTEPPER, there are two comple-

mentary strategies. Either one executes the debugger at runtime, effectively interleaving the execution

33

of the program/regular expression being debugged with the execution of the debugger itself, or one

runs the debugger only after the execution terminates using information gathered at execution time. As

REXSTEPPER is intended to execute in the browser, to follow the first approach, we would have to be

able to pause the execution of the running program in order to display a debugging console to the devel-

oper and then decide what to do next depending on the developer’s input. In the browser, however, user

interaction happens mostly asynchronously, with the exception of a few browser commands (e.g. alert

and confirm) that are not fine-grained enough to allow for the implementation of a debugging console.

Hence, we opted for the second approach, meaning that, with REXSTEPPER, debugging takes place af-

ter the program finishes executing. To this end, we instrument REXREF so that it additionally computes a

matching trace containing all the matching states generated during the matching process. REXSTEPPER

then parses the generated matching trace and represents it visually, allowing developers to navigate it

as they please. In the following, we describe the inner workings of REXSTEPPER, focusing on three main

aspects: implementation of break points, runtime instrumentation, and debugging facilities.

5.1 Break Points

In order to cater for the use of break points, we extend the syntax of regular expressions with a distin-

guished break point instruction, •; formally:

r• ∈ RE• ::= r ∈ RE | • (5.1)

In the online tool, we use the sequence of characters [!] instead of the symbol • to denote a break point.

Break points allow developers to quickly navigate the matching process. For instance, when matching

against the regular expression /(a*) • (b+) • \1/, the user will first be presented with the matching state

after the expansion of (a*) is recognised; then, they must decide what to do next. If, for one, they choose

to proceed to the next break point, they will be shown the matching state after the expansion of (b+) is

recognised.

5.2 Runtime Instrumentation

Debugging state interface. To be able to execute debugging commands, we must bookkeep the infor-

mation generated during the matching process. To this end, we extend the matching state interface with

the methods σ.save() and σ.saveBP() to save the current state for later use at debugging time. The main

difference between these two methods is that the σ.saveBP() is used specifically to save intermediate

matching states associated with break points. Extended states expose various other methods that will

be introduced by need.

Bookkeeping matching combinators. We extend the matching combinators introduced in Section

4.1 with the following two combinators, whose goal is to bookkeep intermediate matching states during

execution.

34

function saveState (m) {

return function (st, cont) {

var cont_d = function(st_d) {

st_d.save(); return cont(st_d);

}

return m(st, cont_d)

}

}

function saveStateBP() {

return function(st, cont) {

st.saveBP(cont); return cont(st)

}

}

These combinators are simply wrappers around the corresponding extended state methods described

above. The first one, saveState, returns a new matcher that starts by creating a wrapper continuation

that saves the state produced by matcher m before calling the supplied continuation, and then calls

the given matcher with the wrapper continuation. The second one, saveStateBP, is used to bookkeep

matching states associated with breakpoints. Hence, instead of calling the method save on the state st,

it calls the method saveBP.

var __matcher1 = mapSeq([
group(gRepeat(

saveState(charMatcher("a"), 0, Infinity))),
saveStateBP(),
group(gRepeat(

saveState(charMatcher("b"), 1, Infinity))),
saveStateBP(),
saveState(backref(1))

]);

Figure 5.1: Transpiled Regular Expression with Break Point

Instrumentation. The REXREF transpiler discussed in Section 4.2 was instrumented to produce the

matching trace necessary for REXSTEPPER to work. More concretely, REXREF was modified so as to

save the required intermediate matching states. To this end, the generated matchers make use of the

combinators saveState and saveStateBP introduced above. Importantly, we do not have to bookkeep all

the states that are generated during the matching process but only those for which the current match-

ing index or the captures array change. Hence, instead of wrapping all intermediate matchers inside

a saveState combinator, we only wrap the matchers corresponding to: characters, character ranges,

backreferences, and capturing groups. For instance, Figure 5.1 shows the stylised compilation of the

regular expression /(a*)•(b+)•\1/. This instrumentation differs from the one given in Figure 4.2 in that:

(1) the character matcher combinators are wrapped inside calls to saveState and (2) it makes use of the

combinator saveStateBP to save the matching states associated with the two break points.

35

Saved states can be of two types, matching states and administrative states. Matching states are

those generated by the application of the regular expression combinators, while administrative states

signal the points of the matching process where branching occurs and where the matching process is

forced to backtrack due to a matching failure. We distinguish four types of matching states: forward

states, failure states, break point states, and epsilon states. Forward states result from successfully

matching either a character of the input string or a capturing group expression, respectively causing

the matching index to advance and the captures array to be updated. Failure states signal a matching

failure. Break point states signal a break point instruction. And, epsilon states signal the points where a

quantified expression is matched against the empty string. Epsilon states are only used to facilitate the

construction of the matching tree. Administrative states are used to bookkeep the information regarding

branching and backtracking. Every time the matching process branches, it adds a branch administrative

state to the matching trace. Analogously, every time the matching process backtracks, it adds a back-

track administrative state to the matching trace. In the following, we depict forward states in white, failing

states in red, branch states in dark blue, backtrack states in light blue, epsilon states in grey, and break

point states in purple.

Both matching states and administrative states are internally represented as JavaScript objects with

a property id storing the state’s identifier and a property type storing the corresponding state type rep-

resented as a string (e.g. "forward", "breakpoint", "failure", "branch", "backtrack", and "epsilon").

The property id is interpreted differently depending on the type of state. The id of a matching state

corresponds to its unique identifier, while the id of an administrative state identifies the matching state

with which it is associated, that being the state where the branching occurred. In the case of a branch

state, the associated matching state is always the previous state, while in the case of a backtrack state,

the associated matching state is the state to which the matching is supposed to jump.

While administrative states only have the properties id and type, matching states additionally define

the following properties:

• Initial - [optional] Boolean - identifies the starting state;

• Index - Integer - tells us where we are in the input string, i.e., what index is currently being matched;

• Loc - Object - tells us what part of the regular expression is currently being matched, and its start

and end indexes;

• Inner Loc - [optional] Object - identifies what part of a character range is being matched, for

instance, in the expression [a-zA-Z], it tells us if a-z or A-Z is being matched;

• Captures - Array - represents all captured strings up to the current state of the matching process;

• Caps - Integer - tied to the previous attribute, tells us how many captures exist in the entire match-

ing process;

• Str - String - represents the initial input string.

36

Figure 5.2: Trace generated when matching a|b against string b

In order to better understand how matching traces are constructed and represented inside REXSTEP-

PER, we will now consider three examples.

Example 1: Consider the matching of regular expression a|b against the string b. The generated

matching trace is depicted in Figure 5.2 (a) as a JS object collection and in Figure 5.2 (c) as a diagram.

In this example, we start by matching regular expression a against string b in state 1, which corresponds

to a failure. Afterwards, a backtrack state with id = 0 indicates that the matching process needs to

backtrack to the matching state with the corresponding id. Finally, the right side of the disjunction,

regular expression b, successfully matches string b, in state 2. In this example we can observe the

behaviour of four types of states: forward; branch; backtrack; and failure.

Let us further detail one state of this trace, for instance state with id 1, depicted in Figure 5.2 (b):

• Captures: This state has no captures;

• Index: Has the value of 0, meaning it tried to match the first character of the input string;

• Id: Uniquely identifies this state with the number 1;

• Loc: Tells us which part of the regular expression is being matched, in this case it tells us we are

matching the expression a which starts at index 1 and ends at index 2 of the regular expression;

• Type: Has the value failure, meaning it corresponds to a matching failure;

37

• Caps: Represents the global number of captures for the current match, which is 2;

• Str: Represents the initial input string being matched, b.

Example 2: Consider the matching of regular expression a+b against the string aab. The generated

matching trace is depicted in Figure 5.3. In this example we introduce another type of matching state:

the epsilon state. The matching process starts by successfully matching two as. Then, we can observe

the typical sequence of states generated by greedily quantified expressions, i.e. a failure followed by a

backtrack: it fails when trying to match a third a against the input string b, in state 3; and backtracks to

a copy of state 2 by an epsilon transition, in state 4. Finally, in state 5, we end the matching process by

successfully matching string b.

Figure 5.3: Trace generated when matching a+b against string aab

Example 3: Finally, consider the matching of regular expression (a*)\1b against the string aaab. The

generated matching trace is depicted in Figure 5.4.

In this example, we can observe the second iteration of this particular matching process. Notice

that the first Index to be matched is 1, and not 0, which would be the first index to consider. This is

because when a given matching process does not find a match, it restarts that process from the next

index available, in this case, index 1. This example starts by matching two as; failing to match a third one

in state 22; and then backtracking to a copy of state 21 by an epsilon transition. It matches a capture

group in state 24, updating the captures array to [aa] and proceeds to fail when trying to consume the

backreference, which was expecting string aa but got character b. This causes the matching process

to backtrack to a copy of state 20, which will then match another capture group, this time updating the

38

Figure 5.4: Trace generated when matching (a*)\1b against string aaab

captures array to [a] in state 27. Finally, it matches the backreference, which in this case is a, and the

final character b.

5.3 Runtime Debugging

REXSTEPPER receives as input the sequence of matching states produced by our instrumented version

of REXREF and presents them visually to the developer. REXREF has two main trace visualisation

modes: code-stepping mode and tree visualisation mode.

Code-stepping mode. In code-stepping mode the developer is shown a matching state at a time. Fig-

ure 5.5 depicts the REXSTEPPER state inspection interface, which showcases: (1) the current matching

index, (2) the captures array, (3) two boolean values respectively indicating if the current state corre-

sponds to a break point or to a matching failure, and (4) the unique identifier of the depicted state.

Furthermore, the global index, i.e. the index at which the current matching process started, is shown as

the number of the current iteration. For instance, the matching state shown in Figure 5.5 corresponds to

the second iteration of its respective regular expression match, for which the matching process started

at index 1. Importantly, REXSTEPPER highlights both the part of the input string that has been consumed

so far as well as the part of the regular expression against which it was matched. Accordingly, the first a

of the input string is not highlighted.

39

Figure 5.5: REXSTEPPER Matching State Interface

Figure 5.6: Tree generated for the match of a|b against the string b

Tree visualisation mode. It is often helpful to combine code-stepping with a global view of the entire

the matching process. To achieve this, REXSTEPPER constructs a matching tree for each iteration of a

regular expression match. For illustration purposes, we first constructed two trees from simple examples,

namely for (1) matching the regular expression a|b against string b, in Figure 5.6; and for (2) matching

the regular expression a+b against string aab, in Figure 5.7. These trees correspond to the traces

presented in Figures 5.2 and 5.3, respectively. By inspecting the figures, we can clearly map states

between both trace and tree representations. Some visual cues are shared between code-stepping

mode and tree visualisation mode. For instance, white nodes continue to represent forward states and

red nodes failure states. In contrast, epsilon states and break point states are only represented via text

annotations. In order to improve the understandability of our tree examples, all transitions contain a grey

box explaining what was matched in both the regular expression and the input string when transitioning

from one state to another.

We depict a more complex example in Figure 5.8, which shows the matching tree generated for the

second iteration of the match of (a*)\1b against the string aaab. This matching process was also rep-

40

Figure 5.7: Tree generated when matching the regular expression a+b against the string aab

Figure 5.8: Tree generated for the second iteration of the match of (a*)\1b against the string aaab

resented as a trace before, in Figure 5.4. This tree clearly shows that the matching process backtracks

two times before finding a successful match:

• first backtrack (state 22): the matcher tries to consume a third a and finds a b;

• second backtrack (state 25): the matcher consumes two as, updates the first capture group to aa,

and then tries to consume two as again to match the backreference \1.

REXSTEPPER also generates the matching tree from the matching trace computed by REXREF. To

this end, we include administrative states in the trace that signal the points of the matching process

where branching occurs and where the matching process is forced to backtrack due to a failure.

We generate a matching tree using the auxiliary JavaScript library, D3 [53]. To this end, we first

rearrange the matching trace for it to form a tree of state nodes, taking advantage of the administrative

nodes created for this purpose. State nodes are simply wrappers around matching states, represented

by the class NodeD3 defined below.

class NodeD3 {

constructor(name, node, arr) {

this.name = name;

this.node = node;

this.children = arr;

}

}

41

Now, we describe the algorithm that we use to convert a trace into a tree of state nodes, MAKETREE,

which is depicted in the Algorithm 1. The algorithm is implemented recursively. The base case cor-

responds to the empty trace, which is mapped to the empty tree. In the recursive case, the algorithm

proceeds as follows:

• It starts by separating the received trace in two elements: head, the first state of the given trace,

and tail corresponding to the remaining states.

• Then, it searches for a backtrack state with the same id as the head. If true, this means that in

the tree, this node will have two children, so we need to calculate the left and right children of this

node as described below:

– In order to do that, the algorithm gets the actual id number of that state and uses it to call the

methods left and right, which will then divide the trace in two: the left side, leftList, will

contain all states from the actual head to the backtrack with the same id; and the right side,

rightList, will contain the nodes from that backtrack until the end of the trace.

– Afterwards, the algorithm applies itself recursively on leftList and rightList in order to

generate tree representations of those elements, obtaining leftTree and rightTree.

– Finally, the algorithm returns a new node composed of the head node and its children, leftTree

and rightTree.

• In case there is no backtrack state with the same id as the head, this means the current node will

have only one child, so the algorithm just needs to recursively call itself on tail, obtaining tree;

and returning a new node composed of the head and its only child tree.

Algorithm 1 Transform a trace into a tree

1: function MAKETREE(trace)
2: if trace.length === 0 then
3: return null . If trace has no states, return empty array.
4: end if
5: head, tail← trace
6: if existsBacktrackNodeWithId(head.id) then . If a Backtrack node with ID == head.ID exists
7: id← getBacktrackNodeId(head.id) . there is a bifurcation in this node.
8: leftList← left(head, tail, id) . We calculate the left and
9: rightList← right(head, tail, id) . right sides of the bifurcation;

10: leftTree← makeTree(leftList) . recursively call this function for each side;
11: rightTree← makeTree(rightList)
12: name← ‘State$head.id‘
13: return node(name, head, [leftTree, rightTree]) . and return the ’head’ as a new Node.
14: else . Otherwise, no bifurcation occurs, so this node contains exactly one child;
15: name← ‘State $head.id‘
16: tree← makeTree(tail) . We calculate the child, recursively calling this function for the tail;
17: return node(name, head, [tree]) . and finally return the ’head’ as a new Node.
18: end if
19: end function

42

Chapter 6

Evaluation

We evaluate REXREF and REXSTEPPER separately. REXREF was tested against TEST262, the official

JavaScript test suite, while REXSTEPPER was used to debug 18 faulty regular expressions obtained from

the Stack Overflow and Stack Exchange websites.

6.1 REXREF Evaluation

We show that REXREF is trustworthy by passing all applicable tests from Test262 [16], the official EC-

MAScript test suite. Test262 contains more than 35K tests, out of which 1893 target regular-expression-

related functionality. From these tests, 729 tests target ES5; they are easily identifiable as they are

labeled with the tag es5id. Out of these 729 tests, REXREF passes 718. The failing tests are not cur-

rently applicable to REXREF for reasons detailed below. The fact that we pass all the applicable tests,

which constitute 98.49% of all ES5 regular-expression-related tests gives us a strong guarantee that our

reference implementation is consistent with the behaviour described in the ECMAScript Standard. A

breakdown of the testing results is presented in Table 6.1.

Category Sub-category Total Compiled Passed

RegExp exec 61 61 60

RegExp test 38 38 37

RegExp others 28 28 28

String match 37 37 35

String replace 42 42 40

String search 29 29 28

String split 103 103 101

Matchers _ 391 389 389

Total 729 727 718 (98,49%)

Table 6.1: Test262 test suite results.

43

For clarity, we divide the tests into three main categories:

• RegExp: behaviour and internal representation of regular expressions, with emphasis on the built-in

functions exec and test.

• String: behaviour of built-in String functions that interact with regular expressions: match, replace,

search, and split.

• Matchers: other categories and sub-categories related to regular expression matchers.

We further subdivided these categories, providing for each sub-category the number of: (1) available

tests in the test suite, (2) compiled tests, and (3) passing tests.

We classified 11 tests as not applicable: two fail to compile successfully, while others fail at execu-

tion time. We consider these tests not applicable (Table 6.2), as they make use of features currently

unsupported by REXREF; in particular:

• REGEXPTREE [54], the regular expression parser used by REXREF, does not support forward ref-

erences, which should match the empty string (onward referred to as Parser Error);

• REXREF only supports strict mode code as it uses ES6 modules, which automatically enforce strict

mode even if the test is intended to be run in non-strict mode: for instance, strict mode causes the

keyword this to be undefined in contexts in which it would otherwise be bound to the global object

in non-strict mode (onward referred to as Strict this keyword) and does not allow for identifiers

to be declared more than once in the same scope (onward referred to as Strict Re-declaration);

• REXREF does not throw an exception when built-in methods are invoked as constructors (e.g. new

String.split("abc", "b")) (onward referred to as Constructor Call Error).

In order to extend REXREF to support the third category of non-applicable tests we would need to

further instrument of the compilation, passing an extra argument to each method/constructor call to

indicate whether or not the function is being called as a constructor. Given the limited scope and time

frame of this thesis, we did not implement it.

Test file Justification

RegExp/prototype/exec/S15.10.6.2_A1_T9
RegExp/prototype/test/S15.10.6.3_A1_T9 Strict Re-declaration

String/prototype/match/S15.5.4.10_A1_T3
String/prototype/replace/S15.5.4.11_A12
String/prototype/split/S15.5.4.14_A1_T3

Strict this keyword

String/prototype/match/S15.5.4.10_A7
String/prototype/replace/S15.5.4.11_A7
String/prototype/search/S15.5.4.12_A7
String/prototype/split/S15.5.4.14_A7

Constructor Call Error

RegExp/decimal-escape/S15.10.2.11_A1_T5
RegExp/decimal-escape/S15.10.2.11_A1_T7 Parser Error

Table 6.2: Not applicable tests

44

6.2 REXSTEPPER Evaluation

To evaluate REXSTEPPER, we composed a benchmark consisting of 18 faulty regular expressions ob-

tained from the Stack Overflow and Stack Exchange forums. We divided the obtained regular expres-

sions into five categories, each corresponding to a type of bug/misunderstanding. Table 6.3 summarizes

our results, listing, for each category, the corresponding question ID. Stack Overflow IDs are prefixed

with SO and Stack Exchange IDs with SE.

Category Amount Stack Overflow / Stack Exchange IDs

Assertion 5 SO_16472301, SO_18861, SO_49292762,
SO_30441151, SO_32863970

Character
Range 3 SO_47207164, SO_2211788,

SO_53987537

Greediness 7
SE_54612, SO_40316670, SO_60142675,
SO_37954914, SO_1413587,
SO_37621986, SO_49671575

Groups 1 SO_12224711

Flags 2 SO_2851308, SO_1520800

Table 6.3: Categories of faulty regular expressions.

In the following, we explain each category together with its corresponding buggy regular expressions.

For each analysed expression, we explain how to insert a break point that would lead directly to the error

and how to identify the error from the inspection of the matching state at the break point.

6.2.1 Assertion bugs

The bugs in this category are mainly caused by developers misunderstanding the semantics of the exec

method. Many developers ignore that exec tries to match the given regular expression starting at every

index of the given input string. This leads them to omit the assertions ^ and $ when they want the

supplied regular expression to match the entire input string instead of just a part of it. For instance, the

regular expression /\d+/ was used instead of /^\d+$/ to match integer numbers. With REXSTEPPER,

developers can place a break point at the beginning of the regular expression, immediately understand-

ing that the matching process would restart for each index of the given string. All faulty regular expression

in this category are succinctly described in the tables below.

45

A1

Regular expression used ^[0-9]+$

Correct regular expression ^[0-9].*[0-9]$

Expected match Match any text that starts with at least one digit and ends with at least one
digit.

Ideal break point placement [!]^[0-9]+$

How can RexStepper help?
It clearly demonstrates that the expression [0-9]+ is only matched once and
the regular expression fails as soon as it tries to match characters other than
numbers, because it is not taking them into account.

Table 6.4: Assertion Bug A1

A2

Regular expression used ^([a-zA-Z0-9_])+

Correct regular expression ^([a-zA-Z0-9_])+$

Expected match Match only numbers, letters and underscores.

Ideal break point placement ^([a-zA-Z0-9_])+[!]

How can RexStepper help? It makes it clear that this regular expression is not matching the whole input
string but just a part of it.

Table 6.5: Assertion Bug A2

A3

Regular expression used \d+

Correct regular expression ^\d+$

Expected match Allow digits only.

Ideal break point placement \d+[!]

How can RexStepper help? It makes it clear that this regular expression is not matching the whole input
string but just a part of it.

Table 6.6: Assertion Bug A3

A4

Regular expression used

(https|http)?:\/\/(?:\w[\-\w.]+)(?:\/[\-\w+&@#\/%=~_|!:,.;]*)?(?:\?[\-A-Z0-9+&@#\/%=~_|
!:,.;]*)?/i

Correct regular expression

^(https|http)?:\/\/(?:\w[\-\w.]+)(?:\/[\-\w+&@#\/%=~_|!:,.;]*)?(?:\?[\-A-Z0-9+&@#\/%=~_|
!:,.;]*)?$/i

Expected match

Validate whole URL’s.

Ideal break point placement

(https|http)?:\/\/[!](?:\w[\-\w.]+)(?:\/[\-\w+&@#\/%=~_|!:,.;]*)?(?:\?[\-A-Z0-9+&@#\/%=
~_|!:,.;]*)?/i

How can RexStepper help?

It makes it clear that just a part of the URL is being matched, it needs assertions to match entire URL’s.

Table 6.7: Assertion Bug A4

46

A5

Regular expression used ^[a-zA-Z]

Correct regular expression ^[a-zA-Z]+$

Expected match Alphabet characters only.

Ideal break point placement ^[!][a-zA-Z]

How can RexStepper help?
It shows that an assertion is missing in order to match the whole string. As
a secondary mistake, it would also show that there is a quantifier missing in
order to match more than one character.

Table 6.8: Assertion Bug A5

6.2.2 Character Range bugs

The bugs in this category are mainly caused by developers ignoring the precise denotation of character

ranges. For instance, the expression /^[A-z0-9]+$/ was wrongly used instead of /^[A-Za-z0-9]+$/ to

match strings composed exclusively of alphanumeric characters. The problem is that the range [A-z]

does not coincide with [A-Za-z], additionally including various special characters whose ASCII codes

lie between the code of Z and that of a. REXSTEPPER visually highlights the sub-range that is used to

match each character of the sub-string, allowing the developer to easily identify this type of bug. All

faulty regular expressions in this category are succinctly described in the tables below.

CR1

Regular expression used ^[A-z0-9]+$

Correct regular expression ^[A-Za-z0-9]+$

Expected match Alphanumeric characters only.

Ideal break point placement ^[!][A-z0-9]+$

How can RexStepper help?
It shows that character [is being matched by range A-z, which does not co-
incide with A-Za-z, additionally including various special characters whose
ASCII codes lie between the code of Z and that of a.

Table 6.9: Character Range Bug CR1

CR2

Regular expression used [0-9]

Correct regular expression .*[0-9].*

Expected match Strings with one digit.

Ideal break point placement [!][0-9]

How can RexStepper help? It helps understanding that a character range only matches 1 character and
not multiple ones.

Table 6.10: Character Range Bug CR2

47

CR3

Regular expression used ^[gG][o0O()\[\]{}][o0O()\[\]{}][gG][lLI][eE3]

Correct regular expression [gG](?:[o0O]|\(\)|\[\]|<>){2}[gG][lLI][eE3]

Expected match
The word Google, with characters that may resemble the shape of O’s, L’s
and E’s as their substitutes. O can be (), <>, [], , 0 and o; E can be e and 3;
and L can be l and I. For instance, the string ’G()()gI3’ would match.

Ideal break point placement ^[gG][!][o0O()\[\]{}][o0O()\[\]{}][gG][lLI][eE3]

How can RexStepper help?

It shows that when attempting to match the two Os, with special characters
such as (and), only one of them is being taken into account in the char-
acter range. For instance, the expression would only match (and not the
corresponding).

Table 6.11: Character Range Bug CR3

6.2.3 Greediness bugs

The bugs in this category are mainly caused by developers misunderstanding the semantics of greedy

quantifiers when combined with the meta character ·. For instance, the expression /Good .+\./ was

wrongly used to match sentences starting with the word “Good” and ending with a period. This ex-

pression does not have the desired effect, since it matches any sequence of sentences such that the

first word of the first sentence is “Good”. For instance, instead of producing two separate matches for

the string “Good morning. Good afternoon.”, it produces a single match including both sentences. The

fix is to forbid the matching of the period character before the end of the sentence: /Good [^\.]+\./.

With REXSTEPPER, the developer can place a break point before the +-quantifier to understand which

characters are being matched before the final period. All faulty regular expressions in this category are

succinctly described in the tables below.

GR1

Regular expression used �.+?IJ�

Correct regular expression �[^�]+?IJ�

Expected match User wants to match strings enclosed by� � containing the characters IJ

in the end, for instance�ABIJ�

Ideal break point placement �[!].+?IJ�

How can RexStepper help? Our tool would show that expression .+ is consuming � and � after the
first� match and the user should use [^�]+ instead

Table 6.12: Greediness Bug GR1

48

GR2

Regular expression used :.+\(.[^)]*$

Correct regular expression :.+\([^)]+$

Expected match Strings starting with : then any character, then (, then any character except
).

Ideal break point placement :.+\([!].[^)]*$

How can RexStepper help? It would show that expression . is matching the character) which the user
does not want to match.

Table 6.13: Greediness Bug GR2

GR3

Regular expression used Good .+\.

Correct regular expression Good [^\.]+\.

Expected match

Sentences starting with “Good”, followed by a space, other work and ending
in a dot. For instance “Good Morning.” or “Good afternoon.”. The problem
is this expression consumes strings like “Good morning. Good afternoon.”

as a whole match.

Ideal break point placement Good [!].+\.

How can RexStepper help? It shows that greedy expression .+ consumes the actual dot that is supposed
to be matched and all words that follow, up to the last dot of the input.

Table 6.14: Greediness Bug GR3

GR4

Regular expression used

^(?=.*?[A-Z])(?=.*?[a-z])(?=(.*?[0-9])|(.*?[@#&~])).{8,20}$

Correct regular expression

^(?=[^A-Z]*[A-Z])(?=[^a-z]*[a-z])(?=[^0-9@#&~]*[0-9@#&~])[A-Za-z0-9@#&~]{8,20}$

Expected match

String between 8 and 20 of length. Must contain 1 uppercase character, 1 lower case character and either at
least 1 digit or at least 1 of these special characters @, #, &, ~.

Ideal break point placement

^[!](?=.*?[A-Z])(?=.*?[a-z])(?=(.*?[0-9])|(.*?[@#&~])).{8,20}$

How can RexStepper help?

It shows that expression .* consumes every character, including most special characters (except for the new
line).

Table 6.15: Greediness Bug GR4

49

GR5

Regular expression used ^%?\S{3}

Correct regular expression ^(%\S{3,})|((?!%)\S{3,})

Expected match String with a minimum of 3 characters. If % is the first character, that mini-
mum changes to 4 characters.

Ideal break point placement ^[!]%?\S{3}

How can RexStepper help?

With an example string such as %AB users can see that the regular expres-
sion eventually backtracks when it does not find any match and consumes
character % as part of expression \S, i.e., because %? means to "match
character %, 0 or 1 times", it matches it 0 times in order to find a successful
match.

Table 6.16: Greediness Bug GR5

GR6

Regular expression used ^[^;]*?variable2

Correct regular expression ^[^;\n]*?variable2

Expected match

A variable name with the shortest match possible from the beginning of the
given line. The problem is the resulting match also consumed the 2 lines
before the one that contains the variable name (it undesirably consumes
new lines).

Ideal break point placement ^([^;][!])*?variable2

How can RexStepper help?
Users can see that expression [^;]* is consuming new lines, resulting in a
match that contains two extra lines, up until it reaches the desired variable
name.

Table 6.17: Greediness Bug GR6

GR7

Regular expression used \b(.*)\n*\s*\((\n*\s*.*\n*\s*)\)\n*\s*;

Correct regular expression \b(.*?)\(([^)]*)\)\s*;\s*\n?

Expected match Match and capture function names and arguments. User had problems with
multiple functions in the same line, which are matched as a whole.

Ideal break point placement \b(.*)\n*\s*\([!](\n*\s*.*\n*\s*)\)[!]\n*\s*;

How can RexStepper help? Users can understand that expression .* consumes the supposing end of
the first match, which is character ;.

Table 6.18: Greediness Bug GR7

50

6.2.4 Group bugs

This category deals with faulty expressions in which the developer does not make a consistent use

of capture groups. Capture groups are used not only to further constrain the matching process via

backreferences, but also in the context of the replace method. If a regular expression contains multiple

capture groups at different nesting levels, it may be difficult to understand which ones correspond to the

desired captures. In REXSTEPPER, developers can see all captures of the match as part of the current

matching state. The faulty regular expression included in this category is described in the table below.

G1

Regular expression used ((\d+\.?\d+?)|(\d{1,3}(\,\d{3})+))*([a-zA-Z]+)

Correct regular expression ((?:\d+\.?\d+?)|(?:\d{1,3}(?:\,\d{3})+))*([a-zA-Z]+)

Expected match

User is trying to match the specific input string ’Price: 123 dollar.’ and he
wants to capture the strings after ’Price:’ but ends up capturing ’123’ in
the two capture groups, instead of ’123’ and ’dollar’. The user is captur-
ing unnecessary groups, ending up having too many captures and not
being able to access the right ones via JavaScript.

Ideal break point placement ((\d+\.?\d+?)|(\d{1,3}(\,\d{3})+))*([a-zA-Z]+)[!]

How can RexStepper help?
Users can see which strings have been captured in each step of the
match, effectively observing that too many groups were being captured
at the end of the match.

Table 6.19: Group Bug G1

6.2.5 Flag Bugs

Faulty expressions in this category are related to the incorrect usage of flags. Most frequent mistakes

have to do with the global flag, which developers misunderstand, thinking that it causes the expression

to be matched multiple times within the same call to the exec method. Instead, it simply instructs the

exec method to save the index corresponding to the end of the last computed match and to use that

index as the starting index in the following call to exec. All faulty regular expressions in this category are

succinctly described in the tables below.

F1

Regular expression used /\d/g

Correct regular expression /\d/

Expected match User is testing this expression against the same string two times with
JavaScript’s test method. His results alternate between true and false.

Ideal break point placement /[!]\d/g

How can RexStepper help?

The test method internally calls exec, which is instructed by flag g to
save the index corresponding to the end of the last computed match and
to use that index as the starting index in the following call to exec. Users
can clearly observe that by inspecting the second execution.

Table 6.20: Flag Bug F1

51

F2

Regular expression used /FooB/gi

Correct regular expression /FooB/

Expected match
Similarly to the previous buggy expression, the user is testing his regular
expression against the same string two times, with JavaScript’s test

method. His results also alternate between true and false.

Ideal break point placement /[!]FooB/gi

How can RexStepper help?

The test method internally calls exec, which is instructed by flag g to
save the index corresponding to the end of the last computed match and
to use that index as the starting index in the following call to exec. Users
can clearly observe that by inspecting the second execution.

Table 6.21: Flag Bug F2

6.3 Comparison with REGVIZ

In this section we compare REXSTEPPER with REGVIZ, the academic tool that most resembles our

debugger. In the following, we explain how to debug regular expressions with REGVIZ, the features that

it offers, and its advantages and disadvantages when compared to REXSTEPPER.

REGVIZ Overview REGVIZ is a JavaScript visual augmentation tool for regular expressions that aims

at improving the readability of regular expressions by augmenting their syntax with extra visual cues

instead of creating separate visual representations, such as finite state automata. REGVIZ offers visual

augmentation of regular expressions by highlighting regular expression structural elements and colour-

izing special tokens. In particular:

• Capture groups are identified with horizontal lines below their corresponding expressions and are

annotated with a unique identifier that maps directly to the respective captured string;

• Disjunctions are identified by placing their corresponding vertical slash character over a light purple

background;

Other special tokens, such as quantifiers, anchors, and characters, are also highlighted with their own

specific colours and/or lines.

REGVIZ supports user-defined tests, which are substrings of the sample text that should be matched

by the given regular expression. Matched tests are marked with a green box, contrarily to the non-

matched tests, which are marked with a red one.

The interface of REGVIZ, depicted in Figure 6.1, is divided into three sections: at the top, an editable

text box shows the visually augmented expression; below, a text area where users insert the sample

text they wish to match against the given regular expression; and lastly, at the right side, a cheat sheet

explaining the colour codes used for each regular expression element.

52

Figure 6.1: REGVIZ example - regular expression that matches the generalization of e-mail addresses.

Comparison with REXSTEPPER In order to compare REXSTEPPER with REGVIZ, we analysed a real

use case from REGVIZ’s article [9], which is a regular expression that matches the generalization of

e-mail addresses.

When debugging the expression, the visual cues implemented in REGVIZ, especially groupings (hor-

izontal lines), are particularly helpful in order to visually understand such a complex expression as a

whole, as it ends up slicing the "problem" into smaller pieces and making it easier to visually compre-

hend. Despite having visual augmentation and giving the user the ability to clearly identify that a given

expression has a bug, it is still hard to pinpoint exactly where the actual bug is.

Regarding REXSTEPPER, its code-stepping capability and all the runtime information shown for each

state offers a different kind of granularity when debugging complex expressions. Navigating between

states gives the user the ability to identify the states with unexpected partial results.

One may think that REXSTEPPER is not practical when the regular expression is more complex or

extensive, because users may have to step into hundreds of states before reaching a particular state

they specifically want to debug. Breakpoints solve this problem, offering users the ability to jump directly

to certain locations of the expression where they think a problem may arise and navigate between them

with the help of the specific break point buttons, detailed in Section 5.1 and depicted in Figure 5.5.

53

54

Chapter 7

Conclusions

7.1 Conclusions

In this thesis, we studied a wide range of papers, covering four distinct topics: user studies; visualisation

mechanisms; static analysers and regular expression synthesis. Summarizing these papers main find-

ings, we conclude that: (1) there is a necessity to create better tools for writing and debugging regular

expressions; (2) there is a lack of tools for detecting bugs in regular expressions; (3) regular expressions

are not sufficiently tested in the wild; (4) graphical representations of regular expressions are more ef-

fective than their standard textual representations; and (5) synthesizing regular expressions can be an

effective way of automatically fixing or generating regular expressions given a set of examples and/or

descriptions.

We analysed 26 non-academic debugging tools, concluding that only three of them: REGEX 101,

REGEX BUDDY and REGEX COACH offer the capacity of code-stepping regular expressions. These

three tools have some limitations regarding that specific feature, mainly: some tools do not support

the most used regular expression flavours; other tools do not represent which strings were captured by

capture groups; and all of them are incapable of code-stepping regular expressions while maintaining

their enclosing environment.

We have presented REXSTEPPER, the first regular expression code-stepper that allows for the de-

bugging of ES5 regular expressions without taking them out of their enclosing JavaScript programs. We

have built REXSTEPPER on top of REXREF, our novel reference implementation of ES5 regular expres-

sions. REXREF was tested against TEST262, passing all the applicable tests, and REXSTEPPER was

used to debug 18 real-world buggy regular expressions. REXREF and REXSTEPPER are Open Source

code, available at the online repositories [28] and [27], respectively, for every developer to use.

55

7.2 Future Work

There are various action points we can cover in the future in order to improve REXSTEPPER. First of all,

we plan to extend it with further debugging facilities, such as conditional break points, as well as syntactic

visualisation mechanisms inspired by those introduced in REGVIZ [9]. Having REXREF support the next

most recent version of the ECMAScript, ES12, would also be a considerable improvement. The new

version of REXREF would have to be tested against the 1893 regular expression tests included in the

most recent version of Test262. Finally, we would like to integrate REXSTEPPER with standard IDEs and

browser engines. For instance:

• Deploying REXSTEPPER as a browser plug-in, where the plug-in itself would compile the JS code

and the runtime environment would run on the console, with a simplified version of our debugging

interface, offering the ability to visualize the match and navigate through the matching trace;

• Integrating REXSTEPPER with an existing IDE. This could be done by showcasing REXSTEPPER

debugging facilities as a simplified interface on a side menu or as a split tab of the IDE. Then, every

time the developer selected a regular expression, a right click option would trigger the debugger,

copying the expression and string(s) to that interface and enabling the code-stepping and tree

visualization modes.

56

Bibliography

[1] E. Gavrin, S. Lee, R. Ayrapetyan, and A. Shitov. Ultra lightweight javascript engine for internet of

things. In Companion Proceedings of the 2015 ACM SIGPLAN International Conference on Sys-

tems, Programming, Languages and Applications: Software for Humanity, SPLASH 2015, pages

19–20. ACM, 2015.

[2] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, E. C. R. Shin, and D. Song. A systematic analysis

of XSS sanitization in web application frameworks. In 16th European Symposium on Research in

Computer Security, Lecture Notes in Computer Science. Springer, 2011.

[3] M. Samuel, P. Saxena, and D. Song. Context-sensitive auto-sanitization in web templating lan-

guages using type qualifiers. In Y. Chen, G. Danezis, and V. Shmatikov, editors, Proceedings of the

18th ACM Conference on Computer and Communications Security, CCS.

[4] S. Gulwani. Automating string processing in spreadsheets using input-output examples. In Pro-

ceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL 2011.

[5] M. Lee, S. So, and H. Oh. Synthesizing regular expressions from examples for introductory au-

tomata assignments. In Proceedings of the 2016 ACM SIGPLAN International Conference on

Generative Programming: Concepts and Experiences, GPCE 2016.

[6] Q. Chen, X. Wang, X. Ye, G. Durrett, and I. Dillig. Multi-modal synthesis of regular expressions.

In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2020, page 487?502, New York, NY, USA, 2020. ACM.

[7] R. Pan, Q. Hu, G. Xu, and L. D’Antoni. Automatic repair of regular expressions. Proc. ACM

Program. Lang., 3(OOPSLA), 2019.

[8] X. Ye, Q. Chen, X. Wang, I. Dillig, and G. Durrett. Sketch-driven regular expression generation

from natural language and examples. CoRR, abs/1908.05848, 2019. URL http://arxiv.org/abs/

1908.05848.

[9] F. Beck, S. Gulan, B. Biegel, S. Baltes, and D. Weiskopf. RegViz: visual debugging of regular

expressions. In 36th International Conference on Software Engineering, ICSE ’14,.

57

http://arxiv.org/abs/1908.05848
http://arxiv.org/abs/1908.05848

[10] A. F. Blackwell. Swyn. In Your Wish is My Command, The Morgan Kaufmann series in interactive

technologies.

[11] T. Hung and S. H. Rodger. Increasing visualization and interaction in the automata theory course. In

Proceedings of the 31st SIGCSE Technical Symposium on Computer Science Education, SIGCSE

2000.

[12] regex101. Regular expressions 101. https://regex101.com.

[13] J. G. Software. Regexbuddy. https://www.regexbuddy.com.

[14] Weitz. The regex coach. http://www.weitz.de/regex-coach/.

[15] M. Sulzmann and K. Z. M. Lu. Fixing regular expression matching failure.

[16] ECMA TC39. Test262 Test Suite. https://github.com/tc39/test262, 2017.

[17] M. Bodin, A. Charguéraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene, A. Schmitt, and

G. Smith. A Trusted Mechanised JavaScript Specification.

[18] D. Park, A. Stefanescu, and G. Rosu. KJS: a complete formal semantics of javascript. In Proceed-

ings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion. ACM, 2015.

[19] A. Charguéraud, A. Schmitt, and T. Wood. Jsexplain: A double debugger for javascript. In Com-

panion of the The Web Conference 2018 on The Web Conference 2018. ACM, 2018.

[20] J. G. Politz, M. J. Carroll, B. S. Lerner, J. Pombrio, and S. Krishnamurthi. A tested semantics for

getters, setters, and eval in JavaScript. In A. Warth, editor, Proceedings of the 8th Symposium on

Dynamic Languages. ACM, 2012.

[21] J. F. Santos, P. Maksimovic, D. Naudziuniene, T. Wood, and P. Gardner. Javert: Javascript verifica-

tion toolchain. Proc. ACM Program. Lang., (POPL), 2018.

[22] J. Park, J. Park, S. An, and S. Ryu. JISET: javascript ir-based semantics extraction toolchain. In

35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020. IEEE,

2020.

[23] J. F. Santos, P. Maksimovic, G. Sampaio, and P. Gardner. Javert 2.0: compositional symbolic

execution for javascript. Proc. ACM Program. Lang., 3(POPL), 2019.

[24] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A symbolic execution

framework for javascript. In 31st IEEE Symposium on Security and Privacy, S&P 2010.

[25] B. Loring, D. Mitchell, and J. Kinder. Sound regular expression semantics for dynamic symbolic

execution of javascript. In Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2019.

58

https://regex101.com
https://www.regexbuddy.com
http://www.weitz.de/regex-coach/

[26] K. Sen, S. Kalasapur, T. G. Brutch, and S. Gibbs. Jalangi: a selective record-replay and dynamic

analysis framework for javascript. In Joint Meeting of the European Software Engineering Con-

ference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, ES-

EC/FSE’13.

[27] Anonymous. Rexstepper repository. https://github.com/icst22sub36/icst22sub36.github.io, .

[28] Anonymous. Rexref repository. https://github.com/icst22sub36/RexRef, .

[29] Anonymous. Rexstepper online tool. https://icst22sub36.github.io/source_html/, .

[30] C. Chapman, P. Wang, and K. T. Stolee. Exploring regular expression comprehension. In Proceed-

ings of the 32nd IEEE/ACM International Conference on Automated Software Engineering, ASE

2017, page 405–416. IEEE Press, 2017. ISBN 9781538626849.

[31] C. Chapman and K. T. Stolee. Exploring regular expression usage and context in python. In Pro-

ceedings of the 25th International Symposium on Software Testing and Analysis, ISSTA 2016, page

282–293, New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450343909.

doi: 10.1145/2931037.2931073. URL https://doi.org/10.1145/2931037.2931073.

[32] P. Wang and K. T. Stolee. How well are regular expressions tested in the wild? In Proceedings of

the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, ESEC/FSE 2018, page 668–678, New York, NY,

USA, 2018. Association for Computing Machinery. ISBN 9781450355735. doi: 10.1145/3236024.

3236072. URL https://doi.org/10.1145/3236024.3236072.

[33] J. C. Davis, D. Moyer, A. M. Kazerouni, and D. Lee. Testing regex generalizability and its im-

plications: A large-scale many-language measurement study. In 2019 34th IEEE/ACM Inter-

national Conference on Automated Software Engineering (ASE), pages 427–439, 2019. doi:

10.1109/ASE.2019.00048.

[34] N. Hollmann and S. Hanenberg. An empirical study on the readability of regular expressions:

Textual versus graphical. In 2017 IEEE Working Conference on Software Visualization (VISSOFT),

pages 74–84, 2017. doi: 10.1109/VISSOFT.2017.27.

[35] G. R. Bai, B. Clee, N. Shrestha, C. Chapman, C. Wright, and K. T. Stolee. Exploring tools and

strategies used during regular expression composition tasks. In 2019 IEEE/ACM 27th International

Conference on Program Comprehension (ICPC), pages 197–208, 2019. doi: 10.1109/ICPC.2019.

00039.

[36] J. C. Davis. On the impact and defeat of regular expression denial of service. 2020.

[37] S. C. Z.-X. Zheng, Li-Xiao; Ma and X.-Y. Luo. Ensuring the correctness of regular expressions: A

review. 2021. doi: 10.1007/s11633-021-1301-4.

[38] . H. L. Andersson, A. Modernizing the syntax of regular expressions. 2020.

59

https://github.com/icst22sub36/icst22sub36.github.io
https://github.com/icst22sub36/RexRef
https://icst22sub36.github.io/source_html/
https://doi.org/10.1145/2931037.2931073
https://doi.org/10.1145/3236024.3236072

[39] C. A. Chapman. Usage and refactoring studies of python regular expressions. 2016.

[40] M. Veanes, P. de Halleux, and N. Tillmann. Rex: Symbolic regular expression explorer. In

Third International Conference on Software Testing, Verification and Validation (ICST), pages

498–507. IEEE, April 2010. URL https://www.microsoft.com/en-us/research/publication/

rex-symbolic-regular-expression-explorer-2/.

[41] S. H. Rodger. JFLAP: An Interactive Formal Languages and Automata Package. Jones and Bartlett

Publishers, Inc., USA, 2006. ISBN 0763738344.

[42] J. R. S. T. S. H. Susan H. Rodger, Anna O. Bilska (Anya).

[43] E. Larson. Automatic checking of regular expressions. In 2018 IEEE 18th International Working

Conference on Source Code Analysis and Manipulation (SCAM), pages 225–234, 2018. doi: 10.

1109/SCAM.2018.00034.

[44] Regexlib. https://regexlib.com/.

[45] V. Antimirov. Partial derivatives of regular expressions and finite automaton constructions. The-

oretical Computer Science, 155(2):291–319, 1996. ISSN 0304-3975. doi: https://doi.org/

10.1016/0304-3975(95)00182-4. URL https://www.sciencedirect.com/science/article/pii/

0304397595001824.

[46] P. R. L. in Korea University. Alpharegex. https://github.com/kupl/AlphaRegexPublic.

[47] Microsoft. Z3 theorem prover. https://github.com/Z3Prover/z3.

[48] N. L. Nick Locascio. Deepregex. https://github.com/nicholaslocascio/deep-regex.

[49] P. P. Serge Toarca. Debuggex. https://www.debuggex.com/.

[50] Cyril. Cyrilex. https://extendsclass.com/regex-tester.html.

[51] J. C. Reynolds. The discoveries of continuations. LISP Symb. Comput., 6(3-4).

[52] D. P. Friedman and A. Sabry. CPS in little pieces: composing partial continuations. J. Funct.

Program., 12(6).

[53] M. Bostock. D3.js. https://github.com/d3/d3.

[54] D. Soshnikov. regexp-tree. https://www.npmjs.com/package/regexp-tree.

60

https://www.microsoft.com/en-us/research/publication/rex-symbolic-regular-expression-explorer-2/
https://www.microsoft.com/en-us/research/publication/rex-symbolic-regular-expression-explorer-2/
https://regexlib.com/
https://www.sciencedirect.com/science/article/pii/0304397595001824
https://www.sciencedirect.com/science/article/pii/0304397595001824
https://github.com/kupl/AlphaRegexPublic
https://github.com/Z3Prover/z3
https://github.com/nicholaslocascio/deep-regex
https://www.debuggex.com/
https://extendsclass.com/regex-tester.html
https://github.com/d3/d3
https://www.npmjs.com/package/regexp-tree

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	1 Introduction
	1.1 Contributions
	1.2 Replication Package

	2 Related Work
	2.1 User Studies
	2.2 Visualisation Mechanisms
	2.3 Static Analysers for Regular Expressions
	2.4 Regular Expression Synthesis

	3 Regular Expression Debugging Tools
	3.1 Regex 101
	3.2 Regex Buddy
	3.3 The Regex Coach
	3.4 Code-Stepping Limitations

	4 RexRef: Reference Implementation of JS Regular Expressions
	4.1 Regular Expression Interpreter
	4.2 Compiling Regular Expressions
	4.3 RexRef Built-in Libraries

	5 RexStepper: Code-Stepping Regular Expressions
	5.1 Break Points
	5.2 Runtime Instrumentation
	5.3 Runtime Debugging

	6 Evaluation
	6.1 RexRef Evaluation
	6.2 RexStepper Evaluation
	6.3 Comparison with RegViz

	7 Conclusions
	7.1 Conclusions
	7.2 Future Work

	Bibliography

