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Abstract—In airlines, flight schedule optimization and pas-
senger satisfaction are problems that profoundly impact the
airline industry revenue every year. Missed connections are
often a consequence of unexpected disruptions and the lack of
preventive mechanisms that affect airlines’ regular operations
and image. This paper proposes a new approach for models
to classify the success of passengers’ connections through an
airline hub, focusing on interpretability. This issue is key to
airline profitability since decision-makers often want to have hard
evidence before taking action. The models were trained on data
from TAP Air Portugal’s passenger activity from 2019 and the
beginning of 2020, along with some data from airport movements.
We analyzed the data and did some feature engineering, including
encoding some features and generating new samples to re-balance
the dataset. In total, we studied five models, two non-interpretable
plus three interpretable models. The overall accuracy of the
interpretable models was not as good as the results from the non-
interpretable models. However, when looking for critical metrics
for imbalanced data, as this is the case, and the performance
on the minority class, i.e., missed connections, the interpretable
models had a performance close to the one seen in the best non-
interpretable model. These metrics included the Recall on the
minority class and the macro-average Recall of the classification
task as a whole. All models suggested that the most critical feature
is the time scheduled for the connection and all of them gave none
to marginal importance to features such as age or gender.

Index Terms—Flight Connections, Imbalanced Classification,
Interpretable Models, Machine Learning, Model Explanation

I. INTRODUCTION

With the ever-increasing passenger demand, airports world-
wide have to face traffic congestion problems at several levels,
including, but not limited to, arrival and departure delays
and bottlenecks within terminal facilities. Hence, with the
development of the Intelligent Transportation System (ITS),
on which large amounts of data are recorded every day, many
approaches have been proposed to deal with the different
congestion problems based on data collection from ITS. The
problems airports face are also of extreme importance for
airlines that see the flight schedule as a critical factor for their
profitability success and client satisfaction.

However, and this is not a problem specific to this domain,
the approaches being developed nowadays tend to follow
the widespread belief that the most accurate models must
be inherently complicated and non-interpretable by humans.
These are commonly called Black-Box models, and even the
human entity in charge of modelling cannot understand what
combination of variables the model is basing its predictions
on. The result is a model with no cap on complexity.

Fig. 1. Model development pipeline. The majority of approaches only focus
on the first four steps, but this work places an important focus on the last step
of the pipeline, and tries to understand what are the reasons for the model
prediction.

The use of such models can be especially harmful when
dealing with decisions that have a direct impact on people’s
life. As stated in [1] studies have shown that complicated
Black-Box models used to predict the likelihood being arrested
in the future are not more accurate than simple predictive mod-
els. Moreover, [2] showed that rule lists with a certificate of
optimality could be as accurate as a state-of-the-art proprietary
risk prediction tool, but that is entirely interpretable.

Conversely, White-Box models are models that try to answer
the same type of questions as Black-Box models do but are
fundamentally different from them in the sense that the former
are mannered so that they provide reasoning on how the algo-
rithm reached its predictions, something that did not happen
with the latter. Interpretable models are often comprised of
simpler models. However, most of them are not designed with
interpretability issues in mind, they are just designed, like all
other ML algorithms, to be as accurate as possible, and their
interpretability is just an afterthought.[1]

The interpretability of ML models can be further branched
according to several criteria. One of those criteria is the
mechanism with which the interpretability is reached. Intrinsic
and post hoc distinguishes if interpretability is achieved by
capping the ML model complexity or by applying methods that
analyze the model after training, respectively [3]. An example
of intrinsic interpretability refers to models with a simple



structure and are therefore considered interpretable, such as
shallow decision trees. In contrast, a post hoc interpretability
model refers to applying explanation methods after the model
training is concluded. Post hoc explanation methods can be
applied to both White-Box models as well as Black-Box
models. The definition of interpretability can also be branched
in terms of the scope of the interpretability. Local or global if it
explains a single instance, the model as a whole, respectively.

It is important to mention that despite the development
of some algorithms capable of explaining Black-Box models
predictions, this does not alleviate its inherent problems and
the modeller confidence in the model’s output still requires a
high degree of abstraction. The solution to stop perpetuating
bad practices is to design inherently interpretable models, as
explained by Rudin in [4].

A. Related Work

This paper addresses a conjugation of two problems and
both of them have some literature on their specific broad
topics. However, literature studying an interpretable approach
to the prediction of missed connections is not yet available. In
this section, we provide a wide but non-exhaustive review of
works related to this paper.

Interpretability in the context of ML was defined in [5] using
a unique framework called PDR — Predictive, Descriptive,
Relevant — for discussing interpretations. This framework
provides three prerequisites for evaluation: predictive accuracy,
meaning the quality of a model’s fit; descriptive accuracy,
the degree to which an interpretation method captures the
relationships learned by the model; and relevancy, if it provides
insight for a particular audience into a chosen domain problem
with relevancy primarily judged relative to a human being.
Before this definition, Doshi-Velez and Kim [6] described
interpretability in terms of the model’s ability to elucidate in
intelligible terms a human.

Although only recently gaining importance, Interpretable
Machine Learning (IML) models have been around under-
explored for many years [7]. Linear regression models were
used as early as the 19th century and have since then grown
into, for example, generalized additive models [8].

After the mid-2010s and even with the rapid development of
deep learning models the research in the field of IML did not
stop and many new IML methods have been proposed since.
Many of those models are model-agnostic, but explanation
techniques specific to deep learning and tree-based ensembles
models were also subject to research. Nowadays, regression
analysis and rule-based ML remain relevant topics and the lin-
ear regression model has seen many extensions proposed [9].
Rule-based ML research extensions have also been proposed.
For example, these two domains are even blending as seen
in model-based trees [10] or the RuleFit algorithm [11]. Both
regression models and rule-based ML models serve as native
ML algorithms, and as sub-blocks for many IML approaches.

In terms of the current research stage, the IML field has seen
consolidation in terms of knowledge with, for example, [12]

and work about defining interpretability like [13] or evaluation
of IML methods [14].

Historically, the airline scheduling problem is separated into
four more minor problems: Flight Scheduling Problem (FSP),
Fleet Assignment Problem (FAP), Aircraft Maintenance Rout-
ing Problem (AMRP), and finally Crew Scheduling Problem
(CSP), as stated in [15].

In past work, we can see that most of the attempts did not
include an effort to cover all sub-problems of the big picture
problem at once. The first problem that airlines typically need
to solve before start operations is the FSP since the other sub-
problems are dependent on this. The goal is to reach the end
of this stage with a timetable containing a list of all flight
schedules, while considering some constraints and limitations,
just as presented by [16] that considered the influence of
market constraints such as passenger demand and ticket price.

Still in the topic of FSP Yan and Young first presented in
[17] a study on the sub-problem that considered the expecta-
tion of demand variation by passengers. This work was later
improved in [18]. The difference between this second work
and the original research was the consideration of the airline’s
market share. However, the two models failed to consider the
variability and uncertainty of the market share percentage and
the demand by passengers. To overcome these limitations,
other studies like [19] and [20], investigated the variability of
market share and passenger demand. These two works shifted
towards a more authentic understanding of the airline industry
since they consider market share fluctuations and passenger
demand. Nonetheless, several other researchers worked on
the flight scheduling problem and methods to increase its
robustness. That was the case in [21].

Regarding the other dimensions of the overall problem, [22]
presented a simple FAP solution by applying integer linear
programming based on the structure of a connection network
and then [23] and [24] improved upon the original model.
These models were good starting points. However, the as-
sumptions of fixed flight schedules and deterministic passenger
demand compromise the applicability of these models in actual
conditions.

When it comes to the other two pillars of the problem,
the ’90s saw researchers proposing solutions for the AMRP
with a focus on the tactical side of the problem. The works
of [25] and [26] are examples of such approaches. However,
these approaches fail to consider some of the characteristics of
the requirements of operational maintenance. Over the 2000s,
research on the AMRP continued. However, it shifted and was
dedicated to proposing models with a focus on the operational
side of the problem, like seen in [27] that proposed an effective
operational model. However, this model was limited in terms
of the number of flights that it could handle. This limitation
was then improved in [28] to handle a large number of flights.
The last pillar, the CSP, moved from a daily horizon planning,
like in [29], that despite being capable of handling large-scale
problems and producing crew pairing to each specific day of
the week had the limitation of assuming a daily repetition of
all flights in order to simplify the computation. Since both



the daily repetition and the weekly repetition assume a fixed
departure time, a stochastic and robust crew pairing approach
was developed in [30] to balance this point.

One of the main drawbacks of past solutions and approach is
that each stage, i.e, each sub-problem, is solved independently
of other sub-problems, which means that the solution for one
part of the problem as a whole, might not be optimal for the
following steps. This motivated researchers to pursue models
that integrate multiple sub-problems simultaneously. An ex-
ample of such innovation was the introduction of integrated
models to simultaneously solve both the FSP and the FAP at
once, in [31].

Moreover, most approaches presented so far correspond
to algorithms and mathematical solutions for their respective
issues and have failed to work with real-world data. Studies
using collected data tend to focus on the prediction of flight
delays and ways to mitigate them. An example of that was
the work introduced in [32], on which they proposed a new
model for predicting air traffic delays using both temporal
and network delay states with a 2h to 24h advance. [33]
investigated the relationship between delays, delay propaga-
tion, and delay causes with aircraft, crew connections and
passenger connections using a Bayesian Network in a delay-
tree framework. The work in [34] proposes a novel analytical-
econometric approach to understand delay propagation pat-
terns and associated mitigation measures using flight data as
the backbone of the analysis. To compliment the work in [34],
[35] proposed a delay causality network and [36] investigated
the mutual influence between the airline network structure
and the airport congestion. Their study suggested that airlines
with hub-and-spoke structures react less to delays than airlines
operating fully connected networks.

The problem of predicting flight delays based on flight in-
formation only was the object of study in more recent research.
For example, [37] presented a study analyzing data from an
airport and presented a deep learning flight delay prediction
model based on a multi-factor approach. The development of
models with passenger data is generally more difficult due
to the lack of available resources. However, [38] established
relationships between several factors. These included, both
passenger and flight delays, and passenger cancellation rates
and load factors. [39] developed multiple ML frameworks
centred around passenger data that additionally did a post
hoc explanation analysis for the Black-Box model predictions.
However, all those frameworks used the same Black-Box
model, XGBoost, and did not try to include intrinsically
interpretable models.

This paper contributions is a novel approach to the deter-
mine whether a passenger will have a successful connection
or not. This approach uses the same data structure and content
across multiple algorithms and:

1) develops two sets of distinctive predictive models be-
longing to the interpretable and uninterpretable cate-
gories;

2) compares the models performance and costs to under-
stand what types of benefits come with the use of one

model category over the other;
3) identifies what type of feature combinations the models

are basing their predictions on.

II. DATA PREPROCESS

For the construction of the passenger-centric models devel-
oped in this paper, the data consists of 3 different datasets, all
of which belong to TAP Air Portugal, and refer to the period
between January 2019 and February 2020, encompassing 14
months. TAP is a legacy carrier based in Portugal that, like
most of the other legacy carriers still operates the Hub-and-
Spoke model where nearly all connecting passengers traveling
with TAP pass through Lisbon airport on-route to their finally
destination.

All 3 datasets contained distinct, however, complementary
data. Serviço de Estrangeiros e Fronteiras, known as SEF,
is the force responsible for the control of the border in
Portugal and the first dataset was relatively simple, with 8815
rows and 3 columns with information stating whether the
connecting passenger should go through the immigration office
or not. This dataset depicted all possible combinations between
departure and arrival airports. Then the hub dataset compiles
information regarding 109 attributes of all flight movements
(both arrivals and departures) encompassing 345,035 entries.
These attributes include the time of arrival/departure, gate
used, type of aircraft, etc. Finally, the passenger dataset
included information regarding all 5,034,222 connecting pas-
sengers that had at least one leg of their flight operated by TAP
Air Portugal. In total, 21 features were known and contained
information such as arrival and departure flight numbers,
gender, age, state of the connection, etc.

As the final goal is to have a single data set containing all
relevant information with predictive power to build classifi-
cation models, we performed an Exploratory Data Analysis
(EDA), simultaneously with data cleaning process.

Based on all data provided and some exploration, one did
some feature engineering in order to extract the most valuable
information while keeping the total number of features as low
as possible, maintaining interpretability. This process is helpful
because it allows for the capture of information that was not
explicit in the original data. The new features were: Scheduled
Connection Time, Traffic Network and Traveling Class. All of
these are self explanatory except for the Traffic Network which
is a relevant feature in the context of an airline that operates
flights within the European Union single air space as this acts
under a single legislation. TAP’s connecting passengers can
therefore be traveling between two airports belonging to the
Schengen space, meaning that they won’t need to go through
the immigration office, between two non-Schengen airports
which implies going through security and the immigration
office or between a Schengen and a non-Schengen airport (or
vice-versa) which will also require some type of immigration
check.

The engineered features were added to some other previ-
ously selected adding up to 11 in total. These features include



a lot of valuable information largely due to the immense in-
formation contained in the engineered features. The remaining
features are: incoming and outgoing flight designator, sex, age,
type of traveler (solo or group), day of the week (Sunday
through Saturday) and day of the month. The obtained dataset
included a lot of data, however, some of that was either out
of the scope of the current work or was unusable. To start,
one removed all rows corresponding to incoherent connections
and/or non-TAP flights since they are not within the scope of
this paper. We also removed all rows that contained at least
one missing value.

After applying all these transformations, the dataset consists
of 3,451,979 samples including 3,261,690 successful connec-
tions and 190,289 unsuccessful connections. As a next step one
performed a stratified label-based train/test/validation split and
the resulting data sets corresponded to 80%, 10% and 10% of
the global data, respectively. In more concrete terms, the train
data set has 2,761,583 samples and both the validation and
test sets have 345,198 samples. The proportion of samples
was kept during the process and it corresponded to around
94.5% of the samples being on the successful connections
class and the remaining 5.5% on the unsuccessful connections
class, making this an imbalanced problem.

The final steps involved the encoding and the scaling
processes of the features. The choice of encoding technique for
all features that required it was to perform a target encoding
in order to keep the number of features as low as possible.
To avoid overflow we created a new dataset with all 11
features were scaled used in the DNN and Logistic Regression
algorithms.

III. CHOSEN APPROACH

The goal of the Decision-Making Model being designed
is to ascertain whether a connecting passenger is likely or
not to miss the second leg of the journey. With that in mind,
the information available shall be the same as the information
known by the airline after the flight schedule is made public
and the passengers booked their flight, but still prior to the
flight date.

The aim of this model is to understand how the airline can
translate data about the passengers into valuable insights. The
data includes the features already discussed in the previous
section and the airline should, after carefully analyzing the
models, be able to notice trends and clusters and to understand
what profile of passengers is most at risk of missing the
connection and will do it knowing the relative importance of
each feature for the final prediction.

A. Imbalance

As one is dealing with an imbalanced dataset, an initial
step is to rebalance the training data so that the data fed to
the different classification algorithms is not biased towards
the majority class. With this objective in mind, one will
oversample the minority class using a probabilistic approach
that learns the distribution of the class as a sum of Gaussian
distributions, known as Gaussian Mixture Models (GMM).

To generate new samples, the first step is to select the
relevant elements such as the number of Gaussian distributions
(K), the mean (µk) and co-variance (Σk) of each of those
distributions.

p(x) =

K∑
k=1

πkN (x;µk,Σk) (1)

The model in 1 is known to be capable to approximate
any distribution as long as the number of models, K, is large
enough. [40]

To select the relevant parameters for the GMM, one used
two important statistical models which attempt to quantify the
performance on the training and the complexity of the model.
The AIC and BIC are defined by:

AIC = −2log(L) + 2K
BIC = −2log(L) + 2Klog(N)

(2)

where L is the likelihood, K the number of parameters,
and N the number of samples. The AIC prioritizes model
performance over model complexity, which might result in the
selection of more complex models, whereas the BIC penalizes
greatly model complexity, meaning that more complex models
are less likely to be selected. To both of them, the lower the
value the better the model is.

B. Baseline

As the baseline classifier, one considered the system used
by the airline that assumes as the criterion the Minimum
Connecting Time (MCT) established by ANA - Aeroportos
de Portugal, which is defined as 60 minutes. This means that
the airline assumes that a passenger will miss the connection
if the connection time is below 60 minutes.

The baseline model has an accuracy of 0.92 and the
AUCROC is equal to 0.61 and the AUCPR to 0.28. The
model has a good performance on the majority class correctly
labeling 95% of instances, however, the performance on the
minority class is lower and the model miss-labeled around
72% of instances.

IV. MODELING

Before feeding the training data and starting the modeling
stage, one implemented the oversampling sampling technique
described in the previous section.

The number of newly created samples corresponds to the
difference between the total number of samples of the majority
class, 2,609,352 and the number of samples of the minority
class, 152,231 which translates to 2,457,121 new artificial
samples. The new samples were generated after fitting the
GMM model to the data corresponding to the minority class,
using 1000 components and a diagonal covariance matrix since
this was the combination of parameters that yielded the best
results both in terms of AIC as in terms of BIC.



(a) ROC-AUC curve of the XGBoost
algorithm.

(b) PR curve of the XGBoost algo-
rithm.

Fig. 2. XGBoost model results.

A. Black-Box Models

In total, one trained 2 Black-Box models. The first was
XGBoost, a Tree Ensemble Machine Learning algorithm that
makes use of the gradient boosting framework and has a
decision tree basis. Recent results suggest that in regard to
structured data (also known as tabular data), decision tree
based algorithms are considered to outperform the state-of-
the-art black-box models, artificial neural networks. It can be
used to solve a variety of different problems such as regression,
classification, ranking, or even some user-defined prediction
problem.

The second model was an artificial neural network, more
specifically a Deep Neural Network. These are structures
inspired by biology, that learn how to perform tasks by
studying previous examples and are formed by a set of con-
nected neurons. Information is transmitted between connected
neurons in both directions that are typically organized in layers
and different layers perform different transformations on their
inputs.

1) XGBoost: After the selection of the hyperparameters, the
final model was trained using the whole data and the selected
combination of hyperparameters.

The XGBoost algorithm obtains the final predictions
through weighting the results from all ensemble learners since
this is a boosting algorithm. The output from the model
assigns, to each instance being evaluated, its probability of
belonging to the first class (successful connection) and the
probability of belonging to the second class (unsuccessful
connection). These two values add up to 1 in all instances.

Figure 2 shows the plot for the ROC-AUC and PR curves
for both the specified thresholds. The AUCROC is equal to
0.97, the Average Precision (AP) to 0.85 and the AUCPR

to 0.80. As a whole, the accuracy is 0.98. Looking more
concretely at the predictions, one can see that the model
correctly predicted 98.9% of the majority class instances
for the default threshold value, missing only 1.1% of the
unsuccessful connection instances. However, the performance
on the unsuccessful connection class was lower, and the model
predicted the correct label on 79.1% of the instances and
missed the label 20.9% of the time.

An important part of the scope of this paper is to go beyond
the model output and enter the domain of the explainability
and interpretability. The way that one chose to deal with this

Fig. 3. SHAP summary plot for the XGBoost algorithm.

component of the post-analysis is to use the principles stated
in Section I-A and make use of the SHAP framework that
provides both local and global interpretations. The following
analysis will be focused on more general interpretations that
account for the effect of all instances used to train the model.

The SHAP summary plot accounts not only for the fea-
ture importance but also its effects and allows for a more
thorough analysis of the specificity of each of the features.
This representation is depicted in Figure 3. Each instance will
be represented by the correspondent Shapley value on the
summary plot. The y-axis is reserved for the features which
are order by their relative importance and the height of the
clusters indicate the distribution of the Shapley values per
feature. The x-axis represents the Shapley value. The color
attributed to each point represents the value of the instance on
the corresponding feature, ordered from low to high.

The feature with the highest importance is the Schedule
Connection Time and, as shown in Figure 3, samples with
low connection time are associated with positive SHAP values,
which means that a low connection time value contributes to
classify the connection as unsuccessful. This is aligned with
prior knowledge, since it is consistent with common sense.
From the distribution of the instances throughout the feature
span, it can also be seen that some low and medium values for
the Schedule Connection Time still have a negative impact and
contribute to classify as a successful connection however most
samples are located within the range from 0 to 4, contributing
to the classification as unsuccessful. On this feature, there is a
clear separation between low values that contribute positively,
and high to medium values that contribute negatively.

The next two most importance features, the incoming flight
and the outbound flight number, despite assuming an important
role in the prediction, cannot be completely analyzed since the
data is encoded and represents a categorical feature and there
is no ordinal logic behind it.

Then, the traffic network variable has a mixed impact on
the final prediction. For high values, it can either have a high
positive impact (classify the connection as unsuccessful) or a
more moderate one. For low values it can either have a positive
impact, however, not as high as the previous statement, or have
a negative impact (classify the connection as successful). The



(a) ROC-AUC curve of the DNN al-
gorithm.

(b) PR curve of the DNN algorithm.

Fig. 4. DNN model results.

different combinations of transiting routes, i.e., the different
combinations in terms of origin/destination airport pairs were
encoded following the order Non-Schengen to Non-Schengen
(NN) < Non-Schengen to Schengen (NS) < Schengen to Non-
Schengen (SN) < Schengen to Schengen (SS). Non-Schengen
airports are located outside the Schengen area, which is a
supra-national agreement that includes most of the European
Union plus some bordering countries. It is interesting to
notice that SS connections can have such different impacts
on the final prediction and that most NN connections have a
negative impact (classify the connection as successful) which
perhaps comes from the fact that these type of connections are
related with long-haul flights which tend to have more sparse
schedules and higher connection times.

The next feature, DMonthDay, has a scattered distribution
which come naturally from the its meaning since it represents
the encoded day of the month (from 1 until 31) when the
connection took place. Due to the moving nature of the
placement of weekends and different weekdays though as
numbers, it is difficult to extract information on this behavior,
however, this feature holds some relevant information since
SHAP values are not zero. Instances with low values for
the day of the week feature, DDay, tend to contribute for
the classification of the instances as successful and higher
values in this feature tend to contribute to classify them as
unsuccessful.

For the traveling class, both inbound and outbound, the
order on which the different categories were encoded is the
same and is as follows: Business < Groups < Economy <
Allots < R1. For the case of the outbound traveling class, low
values have a non-negligible impact on the final predictions,
which means that Business class instances can either have a
high positive impact or a modest negative impact. Whereas
in the case of the incoming traveling class, the business class
keeps the same behavior as in the incoming class feature.

The final three features have the least impact on the predic-
tions. Nevertheless, some general trends can be seen on those
features. To start with, the three have most of the instances
concentrated around zero, which indicates a null impact. Then
for both the traveling within a group and gender features,
it is possible to spot a shy partition of the data on which
high values tend to have a positive impact and low values a
negative impact. Both features are binary, which means that

Fig. 5. SHAP feature importance for the DNN algorithm.

passengers traveling in group tend to have a slight positive
impact (classify the connection as unsuccessful), whereas
passengers traveling alone tend to classify the connection as
successful, i.e., have a negative impact. When considering the
gender of the passengers the impact is even less expressive
than in the case of the group feature and men tend to have a
positive impact contrary to what happens with a woman that
has a negative impact. The last binary feature, the Age, has
no impact for high values (adults) and moderate positive or
negative impact for low values (infants).

2) Deep Neural Networks: The procedure after the selec-
tion of the hyperparameters for the DNN is the same as the
one followed when training the XGBoost.

The whole data was fed to the architecture designed based
on the chosen hyperparameters. The DNN final predictions
include a single value in the range from 0 to 1.

Figure 4 shows the plot for the ROC-AUC and PR curves.
The AUCROC is equal to 0.85 and an the AUCPR is equal
to 0.29. Overall the results of this Black-Box model are not
as good as the ones seen in XGBoost. Although very popular
and the state-of-the-art for some machine learning applications
Neural Networks don’t perform well in structured imbalance
data as they perform in unstructured like images. Overall, one
can say that the model performance follows the same trend
seen with the XGBoost algorithm, and the performance on
the majority class surpasses the model’s performance on the
minority class of the test dataset. With the DNN the results
on the majority class were below but close to the results seen
with the XGBoost; however the results on the minority class
were well below the ones seen with the XGBoost making the
macro averaged metrics of the DNN algorithm between 0.64
and 0.66 contrary to the range from 0.87 to 0.89 seen in the
XGBoost. As a whole, the accuracy in the test dataset is 0.92.

Applying the default threshold of 0.5 the model performed
fairly well in the majority class, missing only around 5% of
the predictions. However the case with the minority class is
different and the model can only predict 36% of the instances
correctly, miss-labeling the remaining ones.

Figure 5 shows the SHAP feature importance for the DNN
model. It is easily seen that the feature that has the highest
impact in the final prediction is the Schedule Connection Time
following the behavior of the XGBoost model. The next two



(a) ROC-AUC curve of the Logistic
Regression algorithm.

(b) PR curve of the Logistic Regres-
sion algorithm.

Fig. 6. Logistic Regression model results.

most important features also follow the trend seen in the
XGBoost interpretation and are the incoming and outgoing
flight codes, respectively. Here, and imitating the behavior seen
previously, the first three features account for the majority of
the interpretative value of the predictions made by the model.
Starting from the 4th most impactful feature, it is possible
to spot a clear divergence from the previous model, and the
remaining features, except for the day of the month, assume a
similar yet marginal contribution for the model’s predictions.
However, the traveling class (both inbound and outbound) and
day of the week have a higher impact than the other three. The
overall order is also similar to XGBoost’s explanations, with
age and gender being ranked at the bottom again.

B. White-Box Models

In total, one trained two white-box models and did a
preliminary study on a third. The first trained was a simple
logistic regression, which is one of the simplest models avail-
able for binary classification problems. The logistic regression
algorithm models the probabilities for classification problems
with two possible outcomes and it can be seen as an extension
of the linear regression model but applied to classification.

The second model to be trained was a tree based model that
split the data according to certain cutoff values in the features.
Different subsets of instances of the dataset are created through
the splitting process and the final subsets are called terminal
or leaf nodes and the intermediate subsets are called internal
nodes or split nodes.

As an extra attempt to build another interpretable model
one studied the RuleFit method. This a rule-based algorithm
that learns a sparse linear model with a composition of the
original features together with a number of new features that
are decision rules. These new features capture interactions
between the original features. This algorithm is primarily
used for regression tasks, however one decided to evaluate
its performance on this classification task.

1) Logistic Regression: The whole data was fed to the
model which outputs, to each instance being evaluated, its
probability of belonging to the first class (successful con-
nection) and the probability of belonging to the second class
(unsuccessful connection).

As this is a very simple White-Box model, the results are
not as good as the ones found with DNN or especially with
XGBoost. However, the performance in the minority class is

Fig. 7. SHAP summary plot for the Logistic Regression algorithm.

comparable to the found with the DNN algorithm which is
remarkable. Figure 6 shows the plot for the ROC-AUC and PR
curves. The AUCROC is equal to 0.84, which is close to the
value obtained with the DNN, and an the AUCPR is equal to
0.46, above the value obtained with the DNN. We can say that
the model performance follows the same trend seen with the
Black-Box models, and the performance on the majority class
surpasses the model’s performance on the minority class of the
test dataset, except for the Recall. However, the difference in
performance between the two classes on the Precision metric
is even greater than the difference seen in the former models,
and the F1-score is close to the difference seen in the DNN.
In terms of macro-averaged metrics, this model performance
is worse than the XGBoost for all assessed metrics. When
comparing with the DNN, the Precision and F1-score macro-
averages are lower yet similar, but the Recall is higher and
equal to the value seen in the XGBoost. As a whole, the
accuracy is 0.77.

Looking at the output from SHAP explanations only 3
features have an effective impact on the model’s predictions.
From those the feature with the highest importance is the
Schedule Connection Time, and as shown in Figure 7 samples
with low connection time are associated to positive SHAP val-
ues, which means that a low connection time value contributes
to classify the connection as unsuccessful. This behavior is
the same as the one observed with the interpretation of the
XGBoost algorithm. From the distribution of the instances
points throughout the feature span, it can also be seen that
some low and medium values for the Schedule Connection
Time have a negative or marginal impact classifying the
instance as a successful connection. On this feature, there is a
clear separation between low values that contribute positively,
and low to medium values that contribute negatively.

2) Decision Tree Classifier: Before training the Decision
Tree Classifier, one gave careful consideration to the selection
of hyperparameters since this model’s intrinsic interpretable
nature might be lost if the tree grows in depth beyond
reasonable. As stated in Section I the width of the tree
grows exponentially with the depth so this is a very important
parameter to tune. After the selection of the hyperparameters,
the final model was trained using the whole data and the



(a) ROC-AUC curve of the Decision
Tree algorithm.

(b) PR curve of the Decision Tree
algorithm.

Fig. 8. Decision Tree model results.

selected combination of hyperparameters.
During the tuning one noticed that a depth of 5 corresponded

to a good trade-off in terms of model performance while
maintaining interpretability. Figure 8 shows the plot for the
ROC-AUC and PR curves. The AUCROC is equal to 0.82,
the smallest value among all four algorithms, and an the
AUCPR is equal to 0.46, the same value as the Logistic
Regression. Once again, the model performance follows the
same trend seen with the Black-Box models and with the
Logistic Regression, and the performance on the majority class
is better than the model’s performance on the minority class
except for the Recall that has similar values on both classes.
The difference in performance between the two classes among
the remaining metrics is similar to the one seen in the Logistic
Regression model. The macro-averages scores are close to the
ones seen with the Logistic Regression, and therefore lower yet
similar to the ones seen with the DNN except for the Recall,
which is higher in the interpretable models. As a whole, the
accuracy is 0.75.

After training the model and building the decision tree,
the results and their intrinsic interpretability are clear. The
first split occurs by analyzing if the Schedule Connection
Time is less than or equal to 126.5 minutes. This means that
with this model the Schedule Connection Time is again the
most relevant feature. After the initial split, each sub-branch
is further split based on the incoming flight number code,
although the criteria for the split are different in each sub-
branch. The third and fourth splits are again based on either
the Schedule Connection Time or the Incoming flight code,
proving that these two features are the absolute most relevant
for the classification by this model. Only in the 5th split, new
features, namely the traffic network and the outgoing flight
code, become relevant. The results from the analysis of the
shape of the tree are coherent with both the feature importance
method native to the algorithm and the SHAP summary, Figure
9. The figure also shows that all features had similar impact
in both classes.

3) RuleFit: The entirety of the dataset was fed to the
algorithm, however the results weren’t promising. Keeping in
mind that this is an intrinsic interpretable model, the goal is
to reach a good performance while keeping the number of
rules and the maximum depth of the auxiliary trees to the
bare minimum.

Fig. 9. SHAP feature importance for the Decision Tree Classifier algorithm
divided by class.

Unfortunately, this was not the case and the model per-
formance was poor even when having great flexibility in
terms of the number of rules. Even though the model was
trained with the balanced dataset, it was incapable of having
a good classification performance on both classes and ended
up assigning the majority of instances to the same class. This
meant that it had 99.6% of true negatives but only 11.2%
of true positives, missing all the others instances belonging to
the unsuccessful class even when using 248 rules which would
have make this model already uninterpretable.

V. COSTS & RESULTS ASSESSMENT

A. Costs

The analysis presented in this Section is based on the work
developed in [39]. The original work presents the cost analysis
of which we replicate the equations and approximations. All
four strategies presented had different results than the results
obtained by TAP baseline model. The costs associated with
each type of predicted connection are difficult to breakdown
since ultimately all passengers are different and have dif-
ferent needs. To overcome that, the original research found
the relationship between costs that would make the model
economically viable for the airline.

According to the original work, the airline will incur in 2
types of expenses: Precautionary Costs, CPre and Corrective
Costs, CCor. The current system in place, using the Baseline
model, does not consider Precautionary costs and assumes a
corrective only approach. When the model correctly predicts a
True Positive (TP), the airline will have useful information to
try to minimize the disruption and will incur in precautionary
costs. Some possible actions include, but are not limited to,
the delaying of the 2nd leg of the journey, assigning some
airport personnel to escort the passengers to their next flight
or even assigning a seat closer to the exit door and give those
passengers priority. When the model predicts a False Positive
(FP) the airline will incur in the same type of precautionary
costs that we have seen in the TP case. And whenever the
model predicts a False Negative (FN), the airline will incur
in unexpected corrective costs to solve the missed connection.
These costs may include assigning the passenger onto a new
flight and making the arrangements necessary for the extended



TABLE I
COST STRUCTURE OF THE DIFFERENT APPROACHES.

Basline Model Developed Frameworks
# Precautionary actions No Actions TP & FP

# Corrective actions TP & FN FN

TABLE II
RELATIONSHIP BETWEEN PRECAUTIONARY AND CORRECTIVE COSTS FOR

EACH MODEL.

pmin

XGBoost 1.25
DNN 3.14

Logistic Regression 6.14
Decision Tree Classifier 6.60

layover, which might include overnight accommodation or
meal vouchers. Table I summarizes the costs.

The following step, performed in the original research, was
to consider the difference in costs between the implementation
versus no implementation of the XGBoost model. We followed
the same approach but in the case of the current scope
the difference will be computed to each one of the models
independently. The authors derived Equation (3) to find how
many times CCor must be larger than CPre, CCor = pCPre,
to make the model attractive. Since the goal is to lower the
costs, the authors aimed at a negative change of costs, ∆C,

∆C < 0 ⇔ p >
FP + TP

TP
(3)

The results from Table II indicate that the solution outputted
by each one of the models is worth pursuing if CCor are at
least p times greater than CPre. The XGBoost had the best
results in terms of the easiness of possible savings for the
airline since it only requires CCor to be 1.25 times greater than
CPre. The remaining algorithms had worse performance, but
the use of the Logistic Regression or Decision Tree Classifier
might still be justifiable due to their interpretability and the
importance the airline attributes to that characteristic.

B. Results

All models were trained in similar conditions and assessed
on the same test data, therefore a qualitative and quantitative
comparison is possible. In terms of accuracy, the best model
was, by far, the XGBoost with an accuracy score of 0.98.
The DDN had a 0.92 accuracy followed by the Logistic
Regression and the Decision Tree Classifier with 0.77 and
0.75, respectively. This shows that the Black-Box models
had a higher accuracy than the White-Box models in this
classification task.

However, given the fact that this is a highly imbalanced
classification problem, the accuracy is not a good metric
because the algorithm might be biased towards the dominant
class. Therefore, looking at either the Precision, Recall or F1-
score macro-average values or at the ROC-AUC or PR-AUC
scores is a better indicator of the model performance. The
quality of the model also depends on the optimal point between

Precision and Recall. This trade-off depends on the severity of
the issue in hands, in this case the costs incurred by the airline.
Nonetheless, for cases with missed connections, it is advised
to minimize the risk of not alerting the airline about a person
that may be at risk of missing the connection by minimizing
the Miss Rate or False Negative Rate:

FNR =
FN

P
= 1−Recall (4)

Since the model is predicting if a passenger will make
a successful connection or not, the aim of the model is to
have a high Recall value, meaning that a smaller number of
FN will be predicted by the model. Looking at the Recall
in the minority class, the White-Box models achieve a good
performance and have the best score ex aequo with the XG-
Boost model. The results were as follows: XGBoost, Logistic
Regression and Decision Tree Classifier with 0.75, the DNN
with 0.36. However the results on the macro-averaged metric
were not as good meaning that White-Box models do not
perform extremely well on the majority class but were still
better than the DNN.

Regarding the models interpretability/explainability, all ap-
proaches presented different results. In the case of the XG-
Boost model, the Black-Box tree ensemble algorithm, the
explanation results given by SHAP differ from the feature
importance results given by the built-in tool. In those cases, not
only the less importance features saw a change in the rank but
also among the top ranks the two approaches showed different
results.

In the second Black-Box model, the DNN, the explanation
given by SHAP was mostly coherent with the explanation
given by SHAP on the XGBoost algorithm predictions. This
was the only model among the 4 that did not have any form
of built-in feature importance tool.

In the case of the White-Box models, the results from the
models intrinsic interpretability were mostly coherent with the
explanations by SHAP. The Decision Tree based its predictions
in 4 features, which are the same features to which SHAP
outputted any level of importance and the Logistic Regression
coefficients, when ordered by their absolute value correspond
to the order of feature importance outputted by SHAP. Only
a slight deviation in the behavior was noticed in terms of
the DMonthDay feature to which SHAP outputted an impact
bellow the incoming flight number although the 2 features
coefficients are not that different.

VI. CONCLUSION

The major achievement of the present work was the in-
troduction of model interpretability in the domain. The airline
industry is a multi-billion dollar industry with razor thin profit
margins. This means that all improvements in the business
are welcomed but at the same time decision makers might
be unwilling to make decisions based solely in the output
of a Black-Box model with no knowledge of the reasoning
behind it whatsoever. The model and explanations developed
allow for the prediction of the likelihood of missed connections



which might result in capital savings to the airline if it acts
preventively, and do this while presenting the reasons for such
decisions allowing for the ownership by responsible entities.
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