
Predict Lost Flights Connections. An Interpretable Machine
Learning Approach

Hugo Miguel Silva Lopes

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisors: Prof. Cláudia Alexandra Magalhães Soares
Prof. Rodrigo Martins de Matos Ventura

Examination Committee

Chairperson: Prof. Paulo Jorge Coelho Ramalho Oliveira
Supervisor: Prof. Rodrigo Martins de Matos Ventura

Member of the Committee: Prof. Maria da Conceição Esperança Amado

December 2021

ii

I declare that this document is an original work of my own authorship and that it

fulfils all the requirements of the Code of Conduct and Good Practices of the

Universidade de Lisboa.

iii

iv

Acknowledgments

O trabalho desenvolvido nesta tese não teria sido possı́vel se não fosse pelo constante apoio, acon-

selhamento e assistência dos meus orientadores, Professora Cláudia Soares e Professor Rodrigo Ven-

tura, aos quais só tenho a agredecer a dedicação e ajuda. Adicionalmente gostava também de agrade-

cer ao Departamento de Informática da FCT NOVA pela utilização do seu cluster, que me permitiu

desenvolver os modelos computacionalmente exigentes presentes neste trabalho.

Igualmente importante é agredecer todo o suporte que obtive da minha familia, não só durante

a execução do presente trabalho, mas também ao longo destes últimos 5 anos. Um muito obrigado

a todos vós por tudo. Obrigado também a todos os meus amigos e aos meus colegas de curso, em

particular aos 6, por me terem acompanhado ao longo deste percurso e por terem tornado a experiência

de ser estudante em algo inesquecivel. Por último, o meu muito obrigado à Maria e à Teresa por me

terem feito companhia ao longo destes últimos meses e por me terem motivado durante este periodo.

v

vi

Resumo

A otimização da programação de voos e a satisfação dos passageiros são problemas que afetam

profundamente as receitas do setor da aviação civil. A perda de voos de ligação, que muitas vezes

resulta da falta de mecanismos preventivos, afeta as operações regulares das companhias aéreas e

consequentemente as suas receitas e imagem. Propomos uma nova abordagem para a previsão do

sucesso das conexões dos passageiros com um foco na interpretabilidade, uma vez que o sucesso

das conexões é fundamental para o lucro das companhias aéreas, e que a tomada de decisões por

parte dos dirigentes requer explicações que sustentem tais escolhas de gestão. Os modelos foram

desenvolvidos a partir de dados da atividade da TAP Air Portugal de janeiro de 2019 a fevereiro de

2020. Os dados foram analisados em conjunto com alguma feature engineering, incluindo a codificação

de variáveis e a geração de novos dados para reequilibrar o problema. No total, estudamos cinco

modelos, dois não interpretáveis e três interpretáveis. Os resultados dos modelos interpretáveis não

foram tão bons quanto os resultados dos modelos não interpretáveis, mas o desempenho dos modelos

interpretáveis na classe minoritária, as conexões perdidas, foi próximo ao visto no melhor modelo não

interpretável. As métricas usadas incluı́ram o Recall na classe minoritária e o Recall macro-average na

tarefa de classificação global. Todos os modelos sugeriram que a variável mais crı́tica nas previsões é

o tempo agendado para a conexão e todos eles não atribuiram grande importância a variáveis como a

idade ou o género.

Palavras-chave: Aprendizagem Automática, Classificação em Dados não Balanceados,

Explicação de Modelos, Modelos Interpretáveis, Voos de Ligação

vii

viii

Abstract

In airlines, flight schedule optimization and passenger satisfaction are problems that profoundly im-

pact the airline industry revenue every year. Missed connections are often a consequence of unexpected

disruptions and the lack of preventive mechanisms that affect airlines’ regular operations and image.

This thesis proposes a new approach for models to classify the success of passengers’ connections

through an airline hub, focusing on interpretability. This issue is key to airline profitability since decision-

makers often want to have hard evidence before taking action. The models were trained on data from

TAP Air Portugal’s passenger activity from 2019 and the beginning of 2020, along with some data from

airport movements. We analyzed the data and did some feature engineering, including encoding some

features and generating new samples to re-balance the dataset. In total, we studied five models, two

non-interpretable plus three interpretable models. The overall accuracy of the interpretable models was

not as good as the results from the non-interpretable models. However, when looking for critical metrics

for imbalanced data, as this is the case, and the performance on the minority class, i.e., missed connec-

tions, the interpretable models had a performance close to the one seen in the best non-interpretable

model. These metrics included the Recall on the minority class and the macro-average Recall of the

classification task as a whole. All models suggested that the most critical feature is the time scheduled

for the connection and all of them gave none to marginal importance to features such as age or gender.

Keywords: Flight Connections, Imbalanced Classification, Interpretable Models, Machine Learn-

ing, Model Explanation.

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Tables . xv

List of Figures . xvii

Nomenclature . xix

List of Acronyms . xx

1 Introduction 1

1.1 Topic Overview . 2

1.1.1 Model Interpretability . 2

1.1.2 Flight Operations . 3

1.2 Objectives and Deliverables . 5

1.3 Thesis Outline . 5

2 Background 7

2.1 Supervised Learning . 7

2.1.1 Logistic Regression . 8

2.1.2 Decision Trees . 9

2.1.3 Ensemble Learning Algorithms . 11

2.1.4 RuleFit . 13

2.1.5 Neural Networks . 13

2.2 Data Imbalance . 16

2.2.1 Model Selection Criteria . 18

2.3 Data Preprocessing . 19

2.3.1 Feature Scaling . 19

2.3.2 Categorical Encoding . 19

2.3.3 Imputation . 20

2.4 Classification Evaluation Metrics . 21

2.5 Shapley Additive Explanations . 24

xi

3 Data Preparation 25

3.1 Exploratory Data Analysis . 25

3.1.1 Pax dataset . 26

3.1.2 Other Features . 30

3.1.3 Flight dataset . 31

3.2 Data Enhancement . 34

3.2.1 Data Cleaning . 34

3.3 Creation of New Features . 35

3.4 Data Selection . 36

3.5 Data Transformation . 38

3.5.1 Data Encoding . 38

3.5.2 Data Scaling . 38

3.6 Data Generation . 38

3.6.1 Data Re-balancing . 40

4 Modelling 43

4.1 Model Baseline . 43

4.2 Model Proposed . 44

4.3 XGBoost . 44

4.3.1 Hyperparameter Tuning . 44

4.3.2 Results on the Test Set . 47

4.3.3 Model Explainability . 49

4.4 Neural Networks . 52

4.4.1 Hyperparameter Tuning . 52

4.4.2 Results on the Test Set . 54

4.4.3 Model Explainability . 55

4.5 Logistic Regression . 57

4.5.1 Hyperparameter Tuning . 57

4.5.2 Results on the Test Set . 58

4.5.3 Model Explanability . 59

4.6 Decision Tree Classifier . 61

4.6.1 Hyperparameter Tuning . 61

4.6.2 Results on the Test Set . 63

4.6.3 Model Explainability . 64

4.7 RuleFit . 66

4.8 Costs Assessment . 67

4.9 Results Assessment . 69

xii

5 Conclusions 71

5.1 Achievements . 72

5.2 Future Work . 72

Bibliography 73

xiii

xiv

List of Tables

2.1 Classification metrics description. 22

4.1 Classification metrics of the Baseline algorithm for each of the classes. 43

4.2 Normalized Confusion Matrix of the Baseline model. 44

4.3 Tuning the hyperparameters of the XGBoost classification model with cross-validation

based on the Accuracy. 46

4.4 Tuning the hyperparameters of the XGBoost classification model with cross-validation

based on the Precision. 46

4.5 Tuning the hyperparameters of the XGBoost classification model with cross-validation

based on the Recall. 46

4.6 Tuning the hyperparameters of the XGBoost classification model with cross-validation

based on the ROC-AUC. 46

4.7 Classification metrics of the XGBoost algorithm for each of the classes. 48

4.8 XGBoost Normalized Confusion Matrix results for both thresholds. 49

4.9 Tuning the hyperparameters of the DNN classification model based on the ROC-AUC of

the validation dataset. 53

4.10 Classification report of the DNN algorithm. 55

4.11 DNN Normalized Confusion Matrix results for both thresholds. 55

4.12 Classification report of the Logistic Regression algorithm. 59

4.13 Logistic Regression Normalized Confusion Matrix results for both thresholds. 59

4.14 Classification report of the Decision Tree Classifier algorithm. 64

4.15 Decision Tree Classifier Normalized Confusion Matrix results for both thresholds. 64

4.16 Preliminary study of the ROC-AUC score on the validation dataset for the hyperparame-

ters of the RuleFit classification model. 67

4.17 Cost structure of the different approaches. 68

4.18 Relationship between Precautionary and Corrective costs for each model. 68

xv

xvi

List of Figures

2.1 Decision Tree Schematic Representation. 9

2.2 Bagging and Boosting Schematics. 12

2.3 Neural Network schematic. 14

2.4 Confusion matrix for a binary classification problem. 22

3.1 Difference between incoming and departing passengers throughout the 14 months. . . . 26

3.2 Distribution of passengers among the different months. 27

3.3 Distribution of the connections among days of the week. 28

3.4 Distribution of the travelling classes on the incoming flights. 28

3.5 Distribution of the travelling classes on the departing flights. 29

3.6 Correlation factor between all numeric features within the Pax Dataset. 31

3.7 Distribution of missing timestamps among the arrival flights. 32

3.8 Distribution of missing timestamps among the departure flights. 33

3.9 Distribution of bus usage among the departure flights. 34

3.10 Distribution of Missing values across the features. 37

3.11 AIC and BIC scores for the GMM parameters selection. 39

3.12 Fitting of the GMM over the traffic network feature. 40

4.1 Performance results of the XGBoost Algorithm. 47

4.2 Average feature impact on XGBoost output. 49

4.3 SHAP summary plot for the XGBoost algorithm. 50

4.4 Intrinsic feature Importance of XGBoost model. 52

4.5 Performance results of the DNN Algorithm. 54

4.6 Average feature impact on the DNN output. 56

4.7 SHAP force plot for one DNN prediction. 57

4.8 Performance results of the Logistic Regression Algorithm. 58

4.9 SHAP summary plot for the Logistic Regression algorithm. 60

4.10 Feature Coefficients of Logistic Regression model. 61

4.11 Decision Tree Classifier hyperparameter tuning. 62

4.12 Performance results of the DNN Algorithm. 63

4.13 Average feature impact on Decision Tree Classifier output. 65

xvii

4.14 SHAP summary plot for the Decision Tree Classifier algorithm. 65

4.15 Intrinsic feature Importance of Decision Tree Classifier model. 66

xviii

List of Acronyms

ACARS Aircraft Communications Addressing and Reporting System

AIC Akaike Information Criterion

AMRP Aircraft Maintenance Routing Problem

AP Average Precision

AUC Area Under the Curve

BIC Bayesian Information Criterion

CART Classification and Regression Trees

CSP Crew Scheduling Problem

DNN Deep Neural Networks

EDA Exploratory Data Analysis

ELU Exponential Linear Unit

FAP Fleet Assignment Problem

FN False Negative

FNR False Negative Rate

FP False Positive

FPR False Positive Rate

FSP Flight Scheduling Problem

GBM Gradient Boosting Machine

GMM Gaussian mixture model

IML Interpretable Machine Learning

k-NN k-nearest neighbors

MAR Missing at Random

xix

MCAR Missing Completely at Random

MCT Minimum Connecting Time

ML Machine Learning

MNAR Missing not at Random

NN Non-Schengen to Non-Schengen

NS Non-Schengen to Schengen

OCC Operations Control Center

PR Precision-Recall

PReLU Parametric leaky Rectified Linear Unit

ReLU Rectified Linear Unit

RIPPER Repeated Incremental Pruning to Produce Error Reduction

ROC Receiver Operating Characteristic

SHAP SHapley Additive exPlanations

SMOTE Synthetic Minority Oversampling Technique

SN Schengen to Non-Schengen

SS Schengen to Schengen

TN True Negative

TP True Positive

TPR True Positive Rate

XGBoost Extreme Gradient Boosting

xx

Chapter 1

Introduction

With the ever-increasing passenger demand, airports worldwide have to face traffic congestion prob-

lems at several levels, including, but not limited to, arrival and departure delays and bottlenecks within

terminal facilities. Hence, with the development of the Intelligent Transportation System (ITS), on which

large amounts of data are recorded every day, many approaches have been proposed to deal with the

different congestion problems based on data collection from ITS. The problems airports face are also ex-

tremely important for airlines that see the flight schedule as a critical factor for their profitability success

and client satisfaction.

However, and this is not a problem specific to this domain, the approaches being developed nowa-

days tend to follow the widespread belief that the most accurate models must be inherently complicated

and non-interpretable by humans. These are commonly called Black-Box models, and even the human

entity in charge of modelling cannot understand what combination of variables the model is basing its

predictions on. The result is a model with no cap on complexity.

The use of such models can be especially harmful when dealing with decisions that have a direct

impact on people’s life. As stated by Rudin and Radin [1] studies have shown that complicated Black-

Box models used to predict the likelihood being arrested in the future are not more accurate than simple

predictive models. Moreover, Angelino et al. [2] showed that rule lists with a certificate of optimality could

be as accurate as a state-of-the-art proprietary risk prediction tool, but that is entirely interpretable. Non-

interpretable classification models defined by Guidotti et al. in [3] include Neural Networks, Deep Neural

Networks, Tree Ensembles and Support Vector Machines.

Conversely, White-Box models are models that try to answer the same type of questions as Black-

Box models do but are fundamentally different from them in the sense that the former are mannered so

that they provide reasoning on how the algorithm reached its predictions, something that did not happen

with the latter. Interpretable models are often comprised of simpler models. However, most of them are

not designed with interpretability issues in mind, they are just designed, like all other Machine Learning

(ML) algorithms, to be as accurate as possible, and their interpretability is just an afterthought.[1]

The interpretability of ML models can be further branched according to several criteria. One of those

criteria is the mechanism with which the interpretability is reached. Intrinsic and post hoc distinguishes if

1

interpretability is achieved by capping the ML model complexity or by applying methods that analyze the

model after training, respectively [4]. An example of intrinsic interpretability refers to models with a simple

structure and are therefore considered interpretable, such as shallow decision trees. In contrast, a post

hoc interpretability model refers to applying explanation methods after the model training is concluded.

Post hoc explanation methods can be applied to both White-Box models as well as Black-Box models.

The definition of interpretability can also be branched in terms of the scope of the interpretability. Local

or global if it explains a single instance, the model as a whole, respectively.

Examples of intrinsic interpretable models include Linear Regression, Logistic Regression, short

Decision Trees and Decision Rules algorithms where RuleFit is included. Here, the depth of the tree

is important since the number of leaves in a tree grows exponentially with the tree depth. The RuleFit

algorithm was proposed by Friedman and Popescu [5] and it is capable of learning sparse linear models

that include interaction effects in the form of decision rules that are automatically detected.

It is important to mention that despite the development of some algorithms capable of explaining

Black-Box models predictions, this does not alleviate its inherent problems and the modeller confidence

in the model’s output still requires a high degree of abstraction. The solution to stop perpetuating bad

practices is to design inherently interpretable models, as explained by Rudin in [6].

1.1 Topic Overview

This thesis addresses a conjugation of two problems and both of them have some literature on their

specific broad topics. However, literature studying an interpretable approach to the prediction of missed

connections is not yet available. In this section, we provide a wide but non-exhaustive review of works

related to this thesis.

1.1.1 Model Interpretability

Interpretability in the context of ML was defined by Murdoch et al. [7] using a unique framework called

PDR — Predictive, Descriptive, Relevant — for discussing interpretations. This framework provides

three prerequisites for evaluation: predictive accuracy, meaning the quality of a model’s fit; descriptive

accuracy, the degree to which an interpretation method captures the relationships learned by the model;

and relevancy, if it provides insight for a particular audience into a chosen domain problem with relevancy

primarily judged relative to a human being. Before this definition, Doshi-Velez and Kim [8] described

interpretability in terms of the model’s ability to elucidate in intelligible terms a human.

Although only recently gaining importance, Interpretable Machine Learning (IML) models have been

around under-explored for many years [9]. Linear regression models were used as early as the 19th

century and have since then grown into, for example, generalized additive models [10] by Hastie and

Tibshirani.

After the mid-2010s and even with the rapid development of deep learning models the research in

the field of IML did not stop and many new IML methods have been proposed since. Many of those mod-

2

els are model-agnostic, but explanation techniques specific to deep learning and tree-based ensembles

models were also subject to research. Nowadays, regression analysis and rule-based ML remain rele-

vant topics and the linear regression model has seen many extensions proposed [11]. Rule-based ML

research extensions have also been proposed. For example, these two domains are even blending as

seen in model-based trees [12] or the RuleFit algorithm [5]. Both regression models and rule-based ML

models serve as native ML algorithms, and as sub-blocks for many IML approaches.

In terms of the current research stage, the IML field has seen consolidation in terms of knowledge

with, for example, [13] and work about defining interpretability like [14] or evaluation of IML methods

[15].

1.1.2 Flight Operations

Historically, the airline scheduling problem is separated into four more minor problems: Flight Schedul-

ing Problem (FSP), Fleet Assignment Problem (FAP), Aircraft Maintenance Routing Problem (AMRP),

and finally Crew Scheduling Problem (CSP), as stated by Eltoukhy et al. in [16].

In past work, we can see that most of the attempts did not include an effort to cover all sub-problems

of the big picture problem at once. The majority of researches focused on one stage only, as seen in

the work from Etschmaier and Mathaisel [17] that focused on the flight schedule, or in the work from

Sherali et al. [18] and Gopalakrishnan and Johnson [19], which focused on fleet assignment and crew

scheduling, respectively.

The first problem that airlines typically need to solve before start operations is the FSP since the

other sub-problems are dependent on this. The goal is to reach the end of this stage with a timetable

containing a list of all flight schedules, while considering some constraints and limitations, just as pre-

sented by [20] that considered the influence of market constraints such as passenger demand and ticket

price.

Still in the topic of FSP Yan and Young first presented in [21] a study on the sub-problem that con-

sidered the expectation of demand variation by passengers. This work was later improved by Yan and

Tseng [22]. The difference between this second work and the original research by Yan and Young was

the consideration of the airline’s market share. However, the two models failed to consider the variability

and uncertainty of the market share percentage and the demand by passengers. To overcome these

limitations, other studies by Yan et al. [23] and Jiang and Barnhart [24], investigated the variability of mar-

ket share and passenger demand. These two works shifted towards a more authentic understanding

of the airline industry since they consider market share fluctuations and passenger demand. Nonethe-

less, several other researchers worked on the flight scheduling problem and methods to increase its

robustness. That was the case in the work of Lan et al. [25].

Regarding the other dimensions of the overall problem, Abara [26] presented a simple FAP solution

by applying integer linear programming based on the structure of a connection network and then Hane

et al. [27] and Rushmeier and Kontogiorgis [28] improved upon Abara’s model. These models were good

starting points. However, the assumptions of fixed flight schedules and deterministic passenger demand

3

compromise the applicability of these models in actual conditions.

When it comes to the other two pillars of the problem, the ’90s saw researchers proposing solutions

for the AMRP with a focus on the tactical side of the problem. The works of Liang and Chaovalitwongse

[29] and Talluri [30] are examples of such approaches. However, these approaches fail to consider

some of the characteristics of the requirements of operational maintenance. Over the 2000s, research

on the AMRP continued. However, it shifted and was dedicated to proposing models with a focus on

the operational side of the problem, like seen by Sriram and Haghani [31] that proposed an effective

operational model. However, this model was limited in terms of the number of flights that it could handle.

This limitation was then improved by Başdere and Ümit Bilge [32] to handle a large number of flights.

The last pillar, the CSP, moved from a daily horizon planning, like in the work of Hoffman and Padberg

[33], that despite being capable of handling large-scale problems and producing crew pairing to each

specific day of the week had the limitation of assuming a daily repetition of all flights in order to simplify

the computation. Since both the daily repetition and the weekly repetition assume a fixed departure

time, a stochastic and robust crew pairing approach was developed by Muter et al. [34] to balance this

point.

One of the main drawbacks of past solutions and approach is that each stage, i.e, each sub-problem,

is solved independently of other sub-problems, which means that the solution for one part of the problem

as a whole, might not be optimal for the following steps. This motivated researchers to pursue models

that integrate multiple sub-problems simultaneously. An example of such innovation was the introduction

of integrated models to simultaneously solve both the FSP and the FAP at once, by Lohatepanont and

Barnhart [35].

Moreover, most approaches presented so far correspond to algorithms and mathematical solutions

for their respective issues and have failed to work with real-world data. Studies using collected data tend

to focus on the prediction of flight delays and ways to mitigate them. An example of that was the work

introduced by Rebollo and Balakrishnan [36], on which they proposed a new model for predicting air

traffic delays using both temporal and network delay states with a 2h to 24h advance. Wu and Law [37]

investigated the relationship between delays, delay propagation, and delay causes with aircraft, crew

connections and passenger connections using a Bayesian Network in a delay-tree framework. The work

by Kafle and Zou [38] proposes a novel analytical-econometric approach to understand delay propaga-

tion patterns and associated mitigation measures using flight data as the backbone of the analysis.

Some authors also studied the repercussions of flights delays, complimenting the work from [38].

Li and Jing [39] proposed a delay causality network and Fageda and Flores-Fillol [40] investigated the

mutual influence between the airline network structure and the airport congestion. Their study suggested

that airlines with hub-and-spoke structures react less to delays than airlines operating fully connected

networks.

The problem of predicting flight delays based on flight information only was the object of study in

more recent research. For example, Yu et al. [41] presented a study analyzing data from an airport and

presented a deep learning flight delay prediction model based on a multi-factor approach. The devel-

opment of models with passenger data is generally more difficult due to the lack of available resources.

4

However, Bratu and Barnhart [42] established relationships between several factors. These included,

both passenger and flight delays, and passenger cancellation rates and load factors. Guimarães [43]

developed multiple ML frameworks centred around passenger data that additionally did a post hoc ex-

planation analysis for the Black-Box model predictions. However, all those frameworks used the same

Black-Box model, Extreme Gradient Boosting (XGBoost), and did not try to include intrinsically inter-

pretable models.

1.2 Objectives and Deliverables

This work aims to develop two sets of distinctive predictive models belonging to the interpretable and

non-interpretable categories.

The work uses different ML approaches to determine whether a passenger will have a successful

connection or not. Afterwards, the models are compared to understand what types of benefits come with

using one model category or the other. All models perform classification tasks trained on historical data

collected by TAP regarding their operations, and all models receive the same information and make the

same type of predictions. With these models, it is possible to identify what type of feature combinations

the models are basing their predictions on.

This thesis contribution is a novel approach to determine whether a passenger will have a successful

connection or not. This approach uses the same data structure and content across multiple algorithms

and:

1. develops two sets of distinctive predictive models belonging to the interpretable and non-interpretable

categories;

2. compares the models performance and costs to understand what types of benefits come with the

use of one model category over the other;

3. identifies what type of feature combinations the models are basing their predictions on.

1.3 Thesis Outline

This document is organized as follows. The next chapter, Background, outlines the understanding of

key concepts of the scope of this topic. Chapter 3, Data Preparation, analyzes the initial data while dis-

cussing its content and cleanup procedures employed, as well as encompassing the feature engineering

and the generation of new data to re-balance the dataset. Chapter 4, Modelling, shows the different al-

gorithms, parameters tuning and their result scrutiny. Finally, Chapter 5, Conclusions and Future Work,

summarizes the developed work and enumerates future work directions.

5

6

Chapter 2

Background

The following sections introduce the theoretical concepts and techniques considered in this work.

They will serve as a foundation for the assumptions in this work.

2.1 Supervised Learning

In the field of ML the primary learning mechanisms are:

1. supervised learning, when the correct output is known for each set of inputs;

2. reinforcement learning, when the output is unknown but we know a reward, i.e., a grade evaluating

the action taken by the learning agent;

3. unsupervised learning, when no target output is known.

As the problem being studied is of the first type, only supervised will be studied further.

Central to supervised learning is the concept of training, the iterative improvement in learning. In

this mechanism, the data used to feed the model is divided into training and testing sets (and possibly

a validation set) [44]. A validation set, shall it be considered, is used simultaneously with the training

set as a means to validate the performance of the model on the training set, which is helpful to tune the

learning parameters of algorithms, also known as hyperparameters. The test set serves as the unseen

dataset to test the generalization error of the model that was developed.

Furthermore, there is another way to divide supervised learning, this time regarding the type of

predictions made by the algorithm. Regression and Classification are the most common learning tasks

in supervised learning problems. In essence, classification is about predicting a discrete category label,

whereas regression predicts a continuous value. In classification problems, the output variable is usually

called label or category, and the mapping function that predicts the results given the input infers the

category of a given observation. A common example to explain classification tasks relates to filtering

emails for spam or not spam. In regression problems, the output of the learning process is either an

integer or a floating-point, for a given observation. Regression problems can be extended and may

7

include more than one prediction of the output. As this work is a classification problem, the focus will be

on this type of problem.

When dealing with supervised learning methods for classification, several different algorithms are

available, such as Decision Trees, Neural Network, Nearest Neighbor Classifiers, and Support Vectors

Machines. Tree-based algorithms are among the methods most widely used for classification tasks due

to the simple interpretations they output.

2.1.1 Logistic Regression

Logistic Regression [45] is one of the simplest models available for binary classification problems.

It works by finding the probabilities of the different instances belonging to each of the classes. We

can think of the Logistic Regression model as an application of the linear regression to classification

problems.

The Logistic Regression algorithm fills the gap that exists in linear regression models since these

models fail to work appropriately in classification tasks. Classification tasks require anchor values to

separate classes; however, the linear model output is the hyperplane that minimizes the distance be-

tween the data points belonging to each class and the hyperplane. In the case of the linear regression

model, the meaning of the distance is not related with the probability of inclusion in a specific class or

another. Furthermore, since linear models do not support output probabilities but only distances to the

hyperplane, the boundary between classes is too rigid.

The solution to perform binary classification tasks is, therefore, Logistic Regression. This algorithm

limits the model’s output to the range between 0 and 1 and to be a probability instead of trying to fit a

hyperplane, as with the linear Regression. The algorithm uses the logistic function, which is defined as:

logistic(η) =
1

1 + exp(−η)
(2.1)

Since the output values of the Logistic Regression are limited to the range between 0 and 1, the

interpretation of its weights vastly differs from the interpretation of the weights of the standard linear

regression model. Unlike the latter, the relationship between the coefficients of the Logistic Regression

and the output is not linear. This happens since the weighted sum, η term of Equation (2.1), is converted

by the logistic function to a limited range.

A solution to extract insight from the weights is to look at the “odds” function, which represents the

probability of the occurrence of a given event divided by the probability of the same event not happening.

odds =
P (y = 1)

P (y = 0)
= exp(β0 + β1x1 + ...+ βjxj) (2.2)

where xj represents feature j value and βj represents the weight attributed to feature j. A simple mech-

anism that makes the Logistic Regression more intelligible is to understand what it means to change the

value of one of its features by 1 unit. To do so, we check the ratio between the two odds:

8

oddsxj+1

oddsxj

= exp(βj) (2.3)

Equation (2.3) shows that changing a feature by one unit induces a change in the odds ratio by a

factor of exp(βj). This means that when dealing with numerical features, the odds ratio changes by

the factor mentioned above whenever the feature is increased of one unit. Categorical features, on the

other hand, have a different interpretation and if j is a binary feature, changing the feature value from

the reference point, changes the odds by the factor mentioned above and if j is a non-binary categorical

feature, a preprocessing form of one-hot-encoding is required, and the interpretation is the same as in

the case of binary categorical features. The exp(β0) corresponds to the situation when all numerical

features are zero and the categorical features are at the reference levels. This corresponds to the

intercept value, and its interpretation is usually not relevant.

2.1.2 Decision Trees

Decision Trees [46] are a method that allows to classify or predict values. However, and unlike the

Linear and Logistic Regression models, they are non-linear. Decision Trees as learning algorithms are

attractive because their output is easy to interpret and study. For the construction of such structures,

the principle is to separate all observations into different categories. In the end, the goal is to have

similar observations included within the same category and different observations included in different

categories. After the training stage, the result is a list of rules that can be easily expressed and explained

to a human, translated to other machine languages, and applied to new, unseen observations to make

predictions.

Figure 2.1: Decision Tree Schematic Representation. Illustrative representation of the basic structure of

a decision tree, where the colors represent the hierarchical importance level, starting with blue followed

by green and then yellow.

The process to build a decision tree entails two steps, growing and pruning a tree. The first step

starts from the root node; then, the algorithm enumerates all possible splits to find the best split for the

node being investigated. When a split is performed, multiple descendants are created, and the process

9

is further repeated. Nodes that are not split further become a terminal node, i.e., a leaf. Figure 2.1

shows the basic structure of a Decision Tree. The second step, the pruning phase reduces the risk of

overfitting by removing overgrown sub-trees that do not add accuracy.

There are, in broad terms, three prominent families of tree growing algorithms: the Classification and

Regression Trees (CART) family; the ML family; and the AID family. These three families mainly differ in

the type of splitting criterion. The CART family, for example, uses the concept of impurity as defined by

Breiman et al. [47].

The analysis will focus on the CART family as this will be the basis for one of the explainable models.

As stated before, the reasoning behind the choice for splitting nodes is based on the impurity that can

be measured either in terms of the Gini or Entropy criteria. In simple terms, the Gini impurity quantifies

the frequency of mislabelled elements, and it is calculated according to:

Gini = 1−
∑
j

p2j (2.4)

where pj is the probability of belonging to class j. The minimum value possible, 0, corresponds to the

case when the node is pure and should not be further split, whereas the maximum possible value, 0.5,

occurs when the probabilities of the two classes are the same.

The entropy, H(x), is calculated using:

H(x) = −
∑
j

pj(x) log2(pj(x)) (2.5)

Where pj(x) is the probability of x belonging to class j. In simple terms, entropy measures the level of

disorder. As with the Gini Index, the optimum split is chosen by the feature with less entropy. Here, the

maximum value is attained when the probability of the two classes is the same, and a node is considered

pure when the entropy has its minimum value, which is 0.

The interpretation of a Decision Tree is relatively simple: from the root node, we follow the path to the

next node based on the relation between the instance being evaluated and the rules in the node being

evaluated. Then, we repeat the earlier step until a leaf node is reached, which means we obtained the

model’s prediction for the outcome of the instance being evaluated.

The importance of each feature can be assessed by looking at all splits in which the specific feature

was used and assessing how they contributed to the reduction in error compared to the parent node.

We can think of each feature importance as a part of the sum of all features importance since this value

is scale to 100 [48].

The decision tree algorithm presents some advantages, some of which were already disclosed.

Firstly, the tree structure can capture non-linear relationships between features. Then, the interpre-

tation is simple even when compared with other White-Box models since the interpretability is helped

by the fact that the tree structure has a human-friendly graphical representation. Another characteristic,

besides the structure, that helps its interpretability is that we do not need to transform features to extract

insights from decision trees, unlike the case with Logistic Regression where, for example, some feature

10

engineering can provide a more intelligible interpretation.

However, using decision trees as classification algorithms also present some disadvantages. One of

them is the fact that decision tress cannot learn linear relationships between features. These models try,

instead, to approximate linear relationships using strict splits, which creates a step function that might

not be efficient for some problems [48]. This disadvantage is highly correlated with another character-

istic that is also not desirable, which is the lack of smoothness seen in these algorithms since minor

changes in a feature can significantly impact the predicted outcome. Lastly, the primary advantage of

this algorithm is also one of its significant limitations since the intrinsic interpretability only exists as long

as the trees are short.

2.1.3 Ensemble Learning Algorithms

Ensemble is a ML concept where the idea is to use multiple classifiers belonging to the same learning

algorithm class. These methods help reduce the leading causes of learning errors like noise, bias, and

variability.

Bagging

Bagging [49], a word coming from the junction of the words bootstrap and aggregating, is an ensem-

ble method to improve stability and accuracy. Bootstrapping is a type of sampling where the instances

that will ultimately form the basis for the new set, are randomly chosen with replacement from the original

set of data.

The models are then fed with the newly form sub-sets, and the model predictions are aggregated to

be combined for the final prediction. Therefore the bagging mechanism includes a bootstrapping stage

followed by an aggregation of the results. In Bagging, the result is obtained by gathering the responses

of all learners — majority voting. A graphical explanation of the bagging concept is depicted in Figure

2.2(a).

Boosting

Boosting [50], contrarily to bagging, is not a parallel mechanism. Instead, it is a sequential ensemble

algorithm where the assigned weights and elements depend on the previous fitted functions. With

Boosting, the subset generation is not random and depends on the performance of the previous models:

every new subset focus on the elements that previous models mislabeled.

In Boosting, the algorithm assigns weights to each resulting model based on their results on the

training data, and the final prediction is obtained by taking into consideration the responses of all learners

and their respective weights. A graphical explanation of the boosting concept is depicted in Figure 2.2(b).

Random Forests

Random Forests are an ensemble algorithm that combines tree predictors sampled from the training

data, which are trained and then averaged. With this algorithm the model benefits from averaging since

11

trees are known to be able to capture complex structures in data but are also known for capturing noise

in the process.

(a) Bagging (b) Boosting

Figure 2.2: Bagging and Boosting Schematics.

Gradient Boosting

Gradient Boosting, also known as Gradient Boosting Machine (GBM), creates an ensemble model

of weak predictive models, e.g., decision trees, using the gradient descent technique. This technique

is used to find local minimum of differentiable functions. Gradient Boosting aims to minimize the cost

function by randomly sampling trees where each new tree is built and trained to reduce the errors of

previous trees. In each iteration, the algorithm fits a weak learner, and the error yielded by the weak

learner is used to compute the gradient of the loss function. With this approach, the algorithm determines

the direction in which the parameters must be changed to minimize the error.

XGBoost

The XGBoost [51] is an ensemble ML algorithm based on the gradient boosting mechanism and

has a decision tree basis. The XGBoost can be used to solve various ML problems where the tasks

discussed so far are also included: regression and classification.

The XGBoost algorithm is the most recent stage of the decision tree-based algorithm development

timeline. This development process started with the simple decision tree concept and then evolved to the

ensemble methods described earlier: bagging, boosting, random forests, and finally, gradient boosting.

Like GBM, the XGBoost is a method that leverages the concept of boosting weak learners by using the

gradient descent architecture. However, XGBoost takes this a step further from the GBM framework and

improves it through both system and algorithmic optimizations.

In terms of system optimization, it is important to mention:

1. the parallelization since the XGBoost algorithm uses a parallel implementation of tree building;

12

2. the XGBoost uses a different stopping criterion than the one seen with the GBM and uses the

specified maximum depth of the tree as a first stop criterion which significantly improves its com-

putational performance;

3. the optimization introduced by XGBoost allows for efficient use of hardware resources available,

and it is based on 2 foundations. The first is the allocation of internal buffers to store gradient statis-

tics and the second is further enhancements like ’out-of-core’ computing that optimizes available

disk space allowing for the handling of big data-frames that would not fit into memory otherwise.

On the other hand, the XGBoost algorithm is optimized to leverage Regularization, Sparsity, and

Cross-validation. With regularization, XGBoost penalizes complex models using L1 and L2 regulariza-

tion, which helps prevent overfitting. Then the algorithm can efficiently handle different types of sparsity

patterns in the data by using sparsity-aware splits.

2.1.4 RuleFit

The RuleFit, proposed by Friedman and Popescu [5], is a rule-based algorithm capable of learning

sparse linear models.

RuleFit, together with decision trees, fills the gap for simple models that are also easy to interpret,

just like linear models. However, RuleFit takes it a step further from decision trees and also integrates

interaction between the features. In the modelling phase, RuleFit uses as features both the original

features present in the data as well as some new features called decision rules. These newly generated

pseudo-features are the key to capturing interactions among the original features. They are generated

based in the structure of decision trees and each path from the root to the leafs of tree can be converted

into a decision rule by merging all split criteria into one single rule.

Furthermore, Molnar [48] presents the major advantages and disadvantages of RuleFit. To start, the

algorithm is versatile like Decision Trees and, unlike the Logistic Regression algorithm, is capable of

handling classification and regression problems. Then, the generated rules are intelligible (as long as

the number of conditions is low). Ideally, the number of split criteria used to generate a rule should not

exceed three, which can be though of as setting a maximum depth of three for the trees. The algorithm

interpretability is also helped because the rules are binary and either apply to an instance or not, and

even with many rules, only a part of those will apply to each particular instance.

As a downside, RuleFit sometimes creates too many rules that get a nonzero weight, which de-

grades the interpretability of the model, and its performance, especially in classification tasks, may be

disappointing.

2.1.5 Neural Networks

Besides the algorithms presented earlier, another type of algorithm that can be used for classification

problems is the popular Neural Networks. These algorithms belong to the Deep Learning field and, in

simple terms, consist of multilayer networks of neurons used to make predictions.

13

Among the most successful Neural Networks learning algorithms are the networks known as Deep

Neural Networks (DNN). Neural Networks are inspired by human neural networks, with the difference

that the former is more limited than the latter in terms of their domain of understanding. Within a Neural

Network, information is fed to the input end of the network. Then it flows through the network’s structure

until it reaches the output layer. The output result can be presented in multiple forms, such as integers

or floats. In the case of a binary classification problem, the output is a single float value indicating the

probability of belonging to class 0.

Their basic architecture includes:

• Input layer: Includes neurons (with the same number of available features in the data set) that

receive the input information and pass it onto the next layer.

• Hidden layer(s): Corresponding to all layers in between the input and output layers. They contain

a variable number of neurons that apply transformations to the inputs they receive before passing

them onto the next layer. As the network is trained, the weights are updated to have more predictive

power. It is possible to have a Neural Network without any hidden layer.

• Output layer: Corresponds to the final layer of the network and depends on the type of network

being built. In the case of a multiclass classification problem, it will have as many neurons (units) as

classes are being predicted, and in the case of a simple two-class binary classification, the output

layer will have only one unit. Figure 2.3 shows a simplified architecture of a Neural Network.

Figure 2.3: Neural Network schematic.

An important player within the structure of Neural Networks are the activation functions. In basic

terms, the activation function take as input the output signal from the last neuron that belongs to the

previous layer and transforms it into some form of information that can be taken as input to the next

neuron.

The activation functions follow non-linear equations. The main reasons to use non-linear functions in

a neural network instead of linear alternatives are performance and capabilities. The first reason is that

the activation function’s input is Wx+b, where matrix W corresponds to the cells’ weights, x corresponds

to the inputs, and then there is an additional term added called bias. If not restricted, this value can grow

high in magnitude, especially in the case of profound networks, and lead to computational issues. The

second reason to use non-linear functions is to add non-linearity to the Neural Network.

14

There are several types of nonlinear activation functions, where we discuss only a few:

• Sigmoid: The sigmoid function, also known as Logistic function, is defined as sig(t) = 1
1+e−t .

This function is, mathematically, the same as the Logistic Regression algorithm presented earlier.

Nowadays it is not widely because it is computationally expensive due to the exponential operation.

As the output from the sigmoid function is not centered at zero and the function derivative at sat-

uration approximates zero this function can suffer from the vanishing gradient problem. However,

this method is still used for binary classification problems.

• Softmax: This function can be considered a generalization of the sigmoid function. The difference

is that it is used in multiclass classification problems. Similar to sigmoid, it outputs values between

0 and 1 and is used as the final layer in classification models.

• Tanh: The tanh function, also known as Hyperbolic Tangent, is yet another variation of the sigmoid

function and intents to solve the problem that the latter is not zero-centered. When compared to

the sigmoid function, it solves just the problem of being zero-centered which means the vanishing

gradient problem is still a reality. It is mathematically defined as: tanh(t) = et−e−t

et+e−t

• ReLU: the name stands for Rectified Linear Unit (ReLU), and the function is defined as: f(t) =

max(0, t) and is a widely used activation function. Its wide acceptance comes from the fact that

it is easy to compute and yet does not saturate or cause the Vanishing Gradient Problem seen in

the previous activation functions. However, they also present some downsides like the fact that

they are not zero-centered and the possibility of suffering from an effect called “dying ReLU”. The

“dying ReLU” effect happens because the output of this function is zero for all negative inputs,

which might cause some nodes to die completely only outputting 0 and therefore not learning.

• Leaky ReLU: is an improvement over the standard ReLU activation function. It keeps all good

properties of ReLU and at the same time solves the issue with the dying ReLU problem. Mathe-

matically, the Leaky ReLU function is defined as f(t) = max(αt, t), where the hyperparameter α

defines how much the function leaks, or in other words, the slope of the function on the negative

domain. This slight slope ensures that Leaky ReLU never dies and that it does not suffer from the

dying ReLU effect.

• Parametric leaky Rectified Linear Unit (PReLU): is a variation of Leaky ReLU function, where

the variable α becomes a parameter that can be modified by backpropagation like the other pa-

rameters.

• Exponential Linear Unit (ELU): this is another variation of ReLU function that works by modifying

the slope of the negative part of the function. Unlike the Leaky ReLU and PReLU functions, instead

of making use of a straight line on the negative domain, the ELU function uses a log curve for the

negative values. The main drawback seen when using this type of activation is that it is slower to

compute than the ReLU and its variants discussed earlier.

15

Backpropagation refers to the backwards propagation of the gradients of the loss. To minimize the

loss, we invoke an optimizer like Stochastic Gradient descent that iterates on the parameters in the direc-

tion of the steepest descent of the loss, thus minimizing it. The concept of Epoch represents the number

of times the entire dataset is used to train the neural network. As a rule of thumb, multiple Epochs are

needed; however, as the number of epochs goes up, the entire data is passed through the network more

times, the weights of neurons are changed more often, and the learning curve goes from a situation

of underfitting to overfitting. Finally, the batch size is another crucial tuning parameter representing the

number of training examples present in each batch. This hyperparameter is fundamental since it is not

feasible to pass the entire dataset into the neural net at once, so the dataset is divided into batches, i.e.,

subsets of the whole data.

Besides the items described above, adding a layer responsible for normalizing the data and keeping

a 0 mean and standard deviation close to 1 before feeding it to the activation function is also beneficial.

This layer must be added before the activation function to keep the data limited to an acceptable range

and avoid very high numbers. Another standard customization method is to add a dropout layer, which is

responsible for randomly assigning 0 to a share of the units in each layer. Units that have inputs different

than 0 suffer a re-normalization with a factor of 1/(1 - dropout frequency). Thus, in the end, the sum over

all units is kept the same.

2.2 Data Imbalance

When working on ML classification problems, it is common to face situations where there is a disparity

between the number of elements in each one of the classes. This disparity can happen and is an

important issue in both binary and multi-class classification problems. As an example of why this is

relevant, we can think of a case of high data imbalance and a model that only outputs predictions

belonging to the majority class. This model would have an overall performance inside acceptable values

even though the classifier had no skill whatsoever. Since this is a common issue in many real-world

problems, there are plenty of available approaches to tackle it. The approaches can be further divided

into two levels regarding their focus: data and algorithm.

If we choose to fight data imbalance at the data level, one option is to, if possible, collect more data

on the minority class. However, this may not be an option, so this approach is seldom taken. The next

step is to understand how resampling the data, or in other words rebalancing the data classes, can solve

the imbalance. The overall neutral disparity in terms of the number of elements in each class can be

achieved by either making copies of instances belonging to the minority class or deleting instances from

the over-represented class. The first method is called oversampling or sampling with replacement, and

the second method is known as undersampling.

Undersampling the Majority Class

This method aims to remove random instances of the majority class to match the amount of the non-

dominating class. This is usually a method to avoid since it requires some possibly valuable data to be

16

lost.

Oversampling the Minority Class

This method works in the opposite way of the previous one. The procedure is to choose random

samples of the minority class and generate exact copies of those instances up to the point where there

is a match between the under-represented class and the number of cases in the dominating class. This

approach also presents some drawbacks because this algorithm essentially creates data duplicates,

which might not be a good approach when the minority class is not evenly distributed across the feature

span.

Synthetic Minority Oversampling Technique

This is another type of class oversampling, similar to the previous method in the sense that both work

by generating samples. The difference is that Synthetic Minority Oversampling Technique (SMOTE) con-

siders the characteristics of existing instances of the minority class in order to create new and synthetic

new samples. The characteristics of the synthetic instances are interpolated from the features of the

original data.

Bootstrap Sampling Method

This is another oversampling technique, but unlike the previous ones, the basic idea here does not

pass by separating the data in classes. Instead, the bootstrap method estimates parameters about a

population by averaging the parameters from multiple small data samples. It is a resampling algorithm

that works by initially sampling with replacement to form n starting sets from the original data, all with

the exact dimensions.

Gaussian mixture model (GMM)

Known to be a generative model, the GMM can be used to oversample the minority class instances

present in an imbalanced dataset. The GMM method assumes that, within each feature, there are many

sub-populations that follow their own normal distribution. The GMM algorithm works by modeling the

data as a composition of multiple Gaussian probability distributions.

The GMM is mostly known for its clustering properties. However, it can also be seen as an algorithm

capable of estimating densities and this makes it fall into the category of generative models. This means

that, after the GMM is fitted to some data, we obtain a generative probabilistic model of the data. In the

end, the GMM is a modeling technique capable of generating synthetic data close to the distribution of

the fitted data, i.e., the original data.

But before generating more synthetic instances, it is necessary to find the optimal number of clusters

so that, in the end, the original data is correctly described by the generated clusters. That is one of

parameters that needs to be chosen.

17

The other parameter to be chosen is the covariance matrix of the GMM, and it can take one out of

the following four forms:

• Spherical: in this case, each of the components has its particular variance, which means that the

shape of each cluster is spherical.

• Diagonal: in this case, each of the components has its particular diagonal covariance matrix,

which means that the shape of each cluster is an ellipsoid.

• Full: in this case, each of the components has its covariance matrix, which means that the shape

of each cluster is independent of the remaining.

• Tied: in this case, all components have the same covariance matrix, which means that the shape

is the same in all of them.

To generate new samples, the first step is to select the relevant elements such as the number of

Gaussian distributions (K), the mean (µk) and co-variance (Σk) of each of those distributions.

p(x) =

K∑
k=1

πkN (x;µk,Σk) (2.6)

The model in (2.6) is known to be capable to approximate any distribution as long as the number of

models, K, is large enough. [52]

2.2.1 Model Selection Criteria

When the modeller is faced with choosing between different options, some model selection criterium

is needed to assist the modeller. The standard practice is to choose the model that shows the best

performance on an unseen test dataset. Whenever this is not possible, an alternative approach involves

using models that quantify the performance of the training and the complexity of the developed model.

Examples of such statistical models include the Akaike Information Criterion (AIC) and the Bayesian

Information Criterion (BIC).

Akaike Information Criterion

The AIC [53] is used as a model selection criterion and is defined by

AIC = −2 log(L) + 2K (2.7)

where L is the likelihood and K the number of parameters. This is an evaluation criterion for the per-

formance of the model being studied and whose parameters are estimated by the maximum likelihood

method. It prioritizes the model performance over model complexity, which might result in the selection

of more complex models. The lowest the AIC value, the better the model being considered is.

18

Bayesian Information Criterion

The BIC [54] is also used as a model selection criterion, just like in the case of the AIC. However,

the BIC answer a different question from the AIC. In simpler terms, the BIC tries to find the actual model

among the candidates, whereas the AIC tries to select the model that most adequately describes the

problem. The BIC is defined by

BIC = −2 log(L) + 2K log(N) (2.8)

where L is the likelihood, K the number of parameters, and N the number of samples. The criterion

penalizes the model complexity significantly, meaning that more complex models are less likely to be

selected. With the BIC, the quantity calculated is naturally different from AIC, but they are related.

2.3 Data Preprocessing

Over the next Section, some techniques used to prepare the data for the modeling phase will be

presented. In broad terms, they tend to address the overfitting issue and/or are required for the correct

implementation of specific learning algorithms.

2.3.1 Feature Scaling

In ML, feature scaling tries to standardize the importance of data points across datasets of varying

scales of features. There are two popular approaches to scaling. One of them is normalization (or

MinMax scaling). In this method, the data within each feature is scaled to a fixed range, that defaults to

the range from 0 to 1. This may lead to minor standard deviations and consequently repress the outliers.

Another popular scaling mechanism is the standard scaling (or Z-score normalization). This method

transforms the data so that at the end, each feature has a mean 0 and a standard deviation of 1. The

standard scaling method does not have a bounding range so, even in the case the dataset have outliers,

they will not be affected by standardization.

2.3.2 Categorical Encoding

Despite some machine learning algorithms having the capability of learning directly from categorical

data with no data transformation required, many of them cannot operate on categorical data directly and

require all input variables to be numeric.

Ordinal Encoding

If we consider n as the number of distinct labels for each feature, hereafter cardinality, this type of

encoding method basically assign an integer value from 0 through n− 1 to each one the distinct labels.

As a downside, this type of encoding makes the model believe the data has some ordinal order and

incorrectly infers relationships between labels belonging to the same feature. All in all, this encoding

procedure has the potential to deteriorate the model predicting capacity.

19

One-Hot Encoding

The downside of using ordinal encoding can be overcome using the one-hot encoding method. This

method splits each column that contains categorical variables into multiple binary columns, one for each

unique label category on the original column. For each new column, the values are replaced by 1s or

0s whether the observations have the column-represented value or not, respectively. This method may

produce many columns if the cardinality is high and significantly slow down the learning process. There

is also the possibility of omitting one of the newly formed binary columns, and in that case, there would

be necessary n− 1 columns to encode a feature with cardinality n.

Target Encoding

For each category of value, the new feature value depends on the target’s mean value computed

using the target values of all instances that present the specific category and in the case of a binary

classification problem, the target’s mean value also corresponds to the probability. Like ordinal encoding,

target encoding does not increase the data volume, which is particularly helpful for faster learning and

dealing with large datasets.

Leave One Out Encoding

The Leave One Out technique uses a similar approach as the one seen in the target encoding tech-

nique but is less sensitive to outliers. This method achieves this by ignoring the target of the instance to

which it is calculating the target mean. This algorithm proves to be particularly useful for high cardinality

categorical features.

2.3.3 Imputation

Missing values can occur in the field of ML and their existence might compromise the results. The

origin of such missing values can be diverse, and the missing values can potentially affect the perfor-

mance of the algorithms. Since most ML algorithms do not accept missing values as inputs, it is crucial

to solve their occurrences shall they exist. To do so, one has to choose whether to impute or remove

the data, i.e., fix the missing value and update it to the correct value or completely ignore the instances

where missing values occur.

Types of Missing Data

Depending on the reason behind the missed data, the occurrences can be classified into different

categories of missing data. Each of these types has different constraints on how they should be handled

and the overall approach that should be followed, either to impute or ignore them.

• Missing Completely at Random (MCAR): When the data is missed entirely at random, and

there is no relationship between the the fact that the data is missing and any values observed or

missing. When such missing data issues are faced, the instances where missing data is observed

20

can be safely removed, and the analysis proceeds using only observations that have the complete

information.

• Missing at Random (MAR): In this case, there is a relationship between some of the observed

data and the tendency for a data point to be missing some feature(s). In these cases, it is assumed

a probabilistic relationship between the data that is missing and data that is not, which means that

data MAR can, in some cases, be predicted from other features not missing.

• Missing not at Random (MNAR): In this category of missing data, there is a relationship between

the tendency of a value to be missing and the value that is believed to be true, i.e., its hypothetical

value. In such cases, the fact that the data is missing is related to external factors. Occurrences

of MNAR should be addressed because the missing data mechanism itself has to and can be

modelled, and some reverse engineering can be used to recover the missing values.

In the case of MCAR, the standard practice is to remove the instances that include missing values.

In the second case, MAR, instances with missing values can be removed or imputed. Furthermore, in

the third case, instances MNAR, the standard procedure is to work backwards and impute the missing

data.

2.4 Classification Evaluation Metrics

In classification problems, there are plenty of metrics capable of assessing a model’s performance.

In this section, different metrics will be presented.

The most common evaluation metric for classification problems is the confusion matrix. This matrix

assesses the performance for ML classification problems whose output can have either two or multiple

classes. It corresponds to a table that has four different combinations of predicted and actual values in

the case of a binary classification problem.

The interpretation of the different combinations is relatively easy, and it is as follows:

• True Positive (TP): the predicted value is the positive class and the actual class is positive.

• True Negative (TN): the predicted value is the negative class and the actual class is negative.

• False Positive (FP): the predicted value is the positive class and the actual class is negative.

• False Negative (FN): the predicted value is the negative class and the actual class is positive.

21

Figure 2.4: Confusion matrix for a binary classification problem.

The data extracted from the table depicted in Figure 2.4 will prove to be extremely useful when

computing other types of metrics, such as Accuracy, Recall, Precision, and most importantly, Receiver

Operating Characteristic (ROC) and Precision-Recall (PR) curves. A common way to access the quality

of the predictions is to compute the accuracy that, in simple terms, measures the number of correctly

predicted values among all the dataset. Although commonly used, this metric does not consider class

imbalance and might produce a biased interpretation in such cases.

Some alternative metrics may be used to overcome the limitation of accuracy in dealing with imbal-

anced data. These include Precision, Recall, and F1-score. Precision measures how many labels are

positive (TP) from all instances predicted as positive (TP plus FP). Recall, which is also called sensitivity

or True Positive Rate (TPR), measures how many positive labels were predicted correctly (TP) from all

positive class instances (TP and FN). Moreover, the F1-score assesses the results both in terms of

Recall and Precision and uses a harmonic mean that penalizes extreme values. Table 2.1 summarizes

all metrics presented:

Table 2.1: Classification metrics description.

Metric Computation

Accuracy TP+TN
TP+FP+TN+FN

Precision TP
TP+FP

Recall TP
TP+FN

F1-score 2× precision·recall
precision+recall

The Confusion Matrix and the metrics derived from it presented good insights to evaluate the per-

formance on balanced datasets. However, when we are dealing with imbalanced datasets, some other

evaluation metrics may be needed to reason the trade-offs between the metrics mentioned above. This

is where ROC and PR curves come into existence.

The ROC curve is a plot of the pairs True Positive Rate (TPR)/False Positive Rate (FPR) on the y-axis

and x-axis, respectively. These values are plotted for every possible classification threshold. Both the

TPR and the FPR are contained in the range from 0 to 1.

22

To generate the ROC curve, the procedure is to plot the pairs of TPR and FPR for all possible classi-

fication thresholds. In the case of a straightforward binary classification task, the thresholds range from

0 to 1. This is a significant benefit of using the ROC curve as a metric instead of more superficial met-

rics to evaluate a classifier, such as accuracy, since the ROC curve visualizes all possible classification

thresholds. In contrast, accuracy and the other metrics previously presented, assess the classification

for a single threshold which defaults, for binary classification problems, to 0.5, so anything below this is

considered to belong to the negative class and anything above the threshold is considered to belong to

the positive class. It is important to note that it is impossible to see the thresholds used to generate the

ROC curve anywhere on the plot. In terms of performance, a classifier that can correctly separate the

classes will present a ROC curve that touches the upper left corner of the plot. At this point, FPR equals

0, and TPR equals 1 that corresponds to a perfect classification.

Other relevant points include the upper right corner that corresponds to both FPR and TPR equal to

1, which means that the model only predicts the positive class; and the lower-left corner that corresponds

to both the FPR and the TPR equal to 0, which means that the model only predicts the negative class.

Conversely, the plot of the ROC gets closer to the diagonal of the graph as the algorithm becomes a

worse classifier. The worse case scenario is when the algorithm is only making random guesses for the

predictions and in this case the plot corresponds to the diagonal of the graph.

Naturally, there are ways to compare different classifier performances using ROC plots, and for that

purpose, the Area Under the Curve (AUC) is used. AUC corresponds to the area of the graph under

the curve and can be though of as the probability of ranking a positive instance higher than a negative

instance when both are randomly selected. There is no rule of thumb to extract information solely from

the ROC-AUC value, but very poor classifiers have an AUC around 0.5, and excellent classifiers have

an AUC close to 1.

The PR curve is yet another helpful measure of the success of the model predictions when the

classes are very imbalanced. The procedure is the same as in the ROC curve, except the metrics pairs

are different. The PR curve plots multiple pairs of precision/recall points for different thresholds. As

in the case of the ROC-AUC, the higher the area under the curve plotted, the better is the classifier

performance. In the case of a high area, both high recall and high precision are seen.

High precision is usually associated with a low FPR, and high recall corresponds to a low False

Negative Rate (FNR). In this case, the best classifiers in terms of performance will tend to touch the

upper right corner of the graph and contrarily to the ROC, a random estimator would not have a specific

AUC but instead would have a PR-AUC corresponding to the same proportion of positive cases, i.e.,

10% positive outcomes would mean a 0.10 PR-AUC for a random estimator.

With interpretation issues in mind, we can also use the Average Precision (AP) metric to summarize

the PR plot. The AP is the weighted mean of all the precision values achieved for the different thresholds.

The gain in recall in going from a threshold to the following is used as the weight, AP =
∑

n(Rn −

Rn−1)Pn, where n refers to the nth threshold.

23

2.5 Shapley Additive Explanations

As ML algorithms evolve and become more advanced, they are able to produce more accurate

predictions. However, at the same time, the output is getting less interpretable and intelligible. SHapley

Additive exPlanations (SHAP) [55] is a method based on cooperative game theory introduced by Shapley

that explains individual model predictions. The cooperative game theory assumes that the primary

decision-makers might not only be single units but also groups of players, called coalitions, that may

cooperate towards a common goal. The objective is to interpret the prediction of a given instance by

assessing what was the contribution of each individual feature for the final prediction.

There are some benefits when using the SHAP approach. The first one is that it allows for global

interpretability. SHAP values indicate the degree of contribution of each one of the features towards the

target, either in the positive direction or in the negative direction. The second benefit of using SHAP is

that it allows for local interpretability since the process done for all instances can be done explicitly for

each occurrence, and each observation gets its own SHAP values. This increases model clarity since

a unique and personalized explanation will be available to all instances. Another benefit is that SHAP is

compatible with all tree-based models, while traditional methods do not always allow for this.

24

Chapter 3

Data Preparation

3.1 Exploratory Data Analysis

For the construction of the models developed in this work, we used data provided by TAP Air Portugal

referring to the period between January 2019 and February 2020 encompassing 14 months. The data

came further divided into three different datasets:

1. Serviço de Estrangeiros e Fronteiras;

2. Hub dataset;

3. Passenger dataset.

All datasets contained distinct, however, complementary data. Serviço de Estrangeiros e Fronteiras,

known as SEF, is the force responsible for the control of the border in Portugal and the first dataset was

a simple dataset with 8815 rows, three columns, and the information available on the dataset stated

whether the connecting passenger should go through the immigration office or not, depicting all possi-

ble combinations between departure and arrival airports. Then the hub dataset compiled information

regarding 109 attributes of all flight movements (both arrivals and departures), encompassing 345035

entries. These attributes included the date and time of arrival/departure, gates used, aircraft type, flight

number, etc. Finally, the passengers’ dataset included data from all 5,034,222 connecting passengers

with at least one leg of their flight operated by TAP Air Portugal. This dataset included, in total, 21

features and contained information such as arrival and departure flight numbers, time and date, gender,

age, state of the connection, among others.

Complexity-wise, the most manageable set to analyze was the one concerning SEF, given its small

size and simple information. The other two were more difficult to analyze due to their volume and more

complex information. As the final goal is to have a single dataset containing all relevant information with

predictive power to build a model, we performed a preliminary exploration before merging all information

from the three datasets since it was necessary to gain some insight about the data, such as to discover

anomalies, find patterns and test hypotheses. The idea was to acquire the knowledge about the data

needed to build the foundations for the modeling task ahead.

25

The approach chosen here was to join the Exploratory Data Analysis (EDA) with the data cleaning

process due to this being the most pragmatic approach.

3.1.1 Pax dataset

As stated before, this dataset initially included 5,034,222 records and 21 attributes. The first attempt

to clean the data was to eliminate duplicate entries, which reduced the number of rows to 5,034,214.

Then a test was made, and it was confirmed that no missing values existed among the information. The

following subsections summarize the main attributes of this dataset.

IDs

Each passenger has its identification number, which can indeed be present more than once in the

data as long as the passenger has taken more than one flight. In total, 2,780,085 different IDs were

present, meaning that each passenger has been in 2 connections on average. This is just a simple

assumption that does not correspond to the truth since some passengers only took one connecting

flight and others took well above 1.

Dates

The dataset also presented information regarding both the departure and arrival dates. The majority

of the connections had same-day arrival and departure, but it could also happen that passengers needed

to spend the night waiting for their connecting flight.

Figure 3.1: Difference between incoming and departing passengers throughout the 14 months. The

separation between the number of incoming and departing passengers in each day of the year repre-

sents the number of passengers that missed the connection or had an overnight layover.

26

To begin with, one noticed that the feature corresponding to the date of departure has a #425 car-

dinality, whereas the feature corresponding to the date of arrival contained #427 different entries. This

slight difference is because passengers leaving on January 1st 2019, could have arrived on December

31st 2018, and also to the fact that when a passenger misses his connection, the system, in some

conditions not disclosed, adds ’9999-12-31’ has the default arrival date. This represents a problem that

will be addressed later on. The two lines in Figure 3.1 should follow the same pattern. However, the

number of arrival passengers is below the number of departing passengers for most of the year because

the default arrival date when a passenger missed their connection is ’9999-12-31’ and therefore is not

accountable. Therefore, the difference between the lines represents the number of passengers that

missed the connection or had an overnight layover.

When thinking about the year as a whole, the day with the most passengers on transit was August

9th 2019 and other significant local maxima occurred around the holidays both at the beginning of 2019

and later that year during Christmas/New Year. During winter is where the minimum and local minima

are also observed.

If one moves the analysis to the month instead of the day, it is visible that August 2019, followed

by July 2019, saw the highest number of passengers among all months considered, whereas February

2019, followed by January 2019, saw the lowest number of passengers as shown in the Figure 3.2.

Finally, when looking at the day of the week, the highest number of departing passengers is observed

on Saturdays, while the lowest numbers are seen on Wednesdays and Tuesdays, as depicted in Figure

3.3.

Figure 3.2: Distribution of passengers among the different months. In terms of passenger volume,

August and July saw the highest passenger traffic while February 2019 saw the least connecting pas-

sengers.

27

Figure 3.3: Distribution of the connections among days of the week. In terms of passenger volume, the

cumulative number of passengers was the highest on Saturdays and the least on Wednesdays.

Arrival flights

Moving forward with the analysis, other valuable information comes from the origin airport, the flight

code, and the class in which the passenger was travelling.

128 possible different airports had flights into Lisbon. From that, Porto (OPO), Paris- Orly (ORY),

Funchal-Madeira (FNC), Sao Paulo/Guarulhos (GRU), and Faro (FAO) ranked the top 5 respectively.

Furthermore, the airline divides the passengers into 16 different travelling classes; however, some

of those are just slight variations from one another and can, in the end, be considered the same class

type. The complete list of classes is available in Figure 3.4. This figure also shows that the feature had

527,800 missing values, which corresponds to approximately 10.48% of the volume of data.

Figure 3.4: Distribution of the travelling classes on the incoming flights. The majority of connecting

passengers transited while travelling in economy class products and the least amount of passengers

were travelling in business class.

28

There are, in broad terms, five different types of classes: Economy, Allots, Groups, R1 and Business,

and by far the most common travelling class was the Economy.

The cardinality of the feature corresponding to the flight number is high and stands at #642. Here

not all flights are operated by TAP but some partner airlines instead. Most of the passengers arrived

in TAP-operated flights, marked with ’TP’, but there was a total of 59 different arrival airlines, with TAP

transporting 97.6% of the total inbound passengers.

Departure Flights

A similar analysis can be done regarding the departing flights.

A similar analysis can be done regarding the departing flights. This time 110 possible different

airports had flights scheduled from Lisbon. From that, Porto (OPO), Paris-Orly (ORY), Funchal-Madeira

(FNC), Sao Paulo/Guarulhos (GRU) and Faro (FAO) ranked, respectively, the top 5. Although the order

is the same, the absolute number of passengers travelling to each of these destinations was higher than

the corresponding number of incoming passengers from the same airports.

Again, 16 different travelling classes were set by the airline as possible travelling classes; however,

in broad terms, there are five different types of classes: Economy, Allots, Groups, R1 and Business; the

same as defined earlier. There were no missing values detected in this feature. The complete list of

classes is available in Figure Figure 3.5.

Figure 3.5: Distribution of the travelling classes on the departing flights. The majority of connecting

passengers transited while travelling in economy class products and the least amount of passengers

were travelling in business class.

Again, as in the case of arrival flights, the Economy class is the most common among the connecting

passengers.

The cardinality of the feature corresponding to the departure flight number is still high but lower than

in the arrival case and stands at #344. Here, all flights were operated by TAP.

29

3.1.2 Other Features

The remaining seven attributes are binary because they can only assume one out of 2 possibilities.

Is Group

This feature states whether the passenger was travelling on its own or within a group. This information

was provided directly from TAP, and it was extracted from the ticketing system that indicates whether a

specific reservation was made for a single person or multiple persons. The ’Is group’ variable assumes

0 when the passenger was travelling alone and 1 otherwise. From the 5,034,214 total entries, 2,991,162

of them, or 59.4%, were travelling in a group. The remaining ones correspond to passengers travelling

alone. All rows had valid data, and no missing data was detected.

Age

This feature is self-explanatory, and from the 5,034,214 total entries, 4,799,703 or 95.3% corre-

sponded to adult passengers. The remaining 234519 entries are infants or children.

Gender

Just like the previous attribute, the ’Gender’ feature is also self-explanatory. From all binary features,

this was the only one that presented missing data. Here the distribution was as follows: 2,361,199

entries were Female, 2,639,064 were Male, and 33959 were missing. This translates into a 46.9%,

52.4% and 0.7% distribution, respectively.

Check bags

When travelling, passengers, depending on other factors, can either carry their luggage into the

airplane cabin or handle it to the airline’s responsibility. The ’Check bags’ feature indicates whether the

passenger chooses to check its bags with the airline, in which case the variable assumes the value 1 or

0 otherwise. From all entries, 3,433,408 or 68.2% corresponded to passengers that did not check their

bags. The remaining 1,600,814 entries, or 31.8%, corresponded to passengers that checked their bags.

PAX Boarding

PAX Boarding is a binary variable that assumes 1 if the passenger has successfully boarded the

flight in question and 0 otherwise. At this point, it is important to mention that when a passenger misses

a connection and is allocated to another flight, its connection will appear duplicated among the data

the same number of times as the passenger was reallocated. In cases when a reallocation occurs, the

information regarding the passenger ID and arrival flight will be the same but information regarding the

departure flight, connection status, and boarding status will be different. The data shows that 86.2% of

the instances were marked as successfully boarded, leaving 693,933 total entries with ’Pax Boarding’

set to 0.

30

Connection Status

This variable is highly correlated with the previous one, at a correlation factor of 0.82, as seen in

Figure 3.6 that shows the correlation between these two variables and among all numeric features. The

data analysis shows that 80.6% of the entries were marked as a successful connection while 974,845

(or 19.4%) were marked as unsuccessful. No matter what happens after the first missed flight, the value

of this variable will always be 0, even on the sample where the original passenger boarded the new

outbound flight.

Overnight

Finally, the ’Overnight’ feature indicates when the missed connection implies that the airline must

provide a place for the passenger to spend the night. These cases represent only a tiny portion, meaning

that TAP only had to provide overnight accommodation to 74,787 passengers (or 1.49% of the total

samples).

Figure 3.6: Correlation factor between all numeric features within the Pax Dataset.

3.1.3 Flight dataset

Moving on to the other dataset, it initially included 345,035 records and 108 attributes. Again, and as

was performed in the PAX dataset, the first attempt to clean the data was to eliminate duplicate entries,

which reduced the number of rows to 332,727. Then a test was made, and it was confirmed that several

features presented missing values. At this early stage, not much concern was put into this issue since it

was still necessary to check how relevant the information contained in those features was to the model.

Among all flights registered in the dataset, 167,695 (or 50.4%) were arrivals, and 165,032 (or 49.6%)

31

were departures. In total, and within the 108 features, 18 are related with a timestamp associated with

the respective flight. The reason for this redundancy is that three different systems are in charge of

collecting the same variables: the airport authority itself (APT), Aircraft Communications Addressing

and Reporting System (ACARS) and finally, the Operations Control Center (OCC).

In total, there were three different types of timestamps for arrivals: Estimated Arrival Time, Landing

Time, and On-Blocks Time; and another three types for departures: Estimated Arrival Time, Take-Off

Time, and Off-Blocks Time. All three systems recorded these values for all the flights except for the

Estimated Arrival Time to which there is no data from the ACARS system, which makes up for the 17

(out of 18) different features associated with timestamps.

The ‘Estimated Departure Time’ is an attribute that indicates the estimated time for the beginning of

the aircraft movements associated with the departure stage. Both OCC and APT make this estimate (as

stated earlier, the ACARS does not register this variable), and the information is shown to the passengers

on the terminal information system to notify them about the flight status. The idea behind the ‘Estimated

Arrival Time’ is the same but for the opposite movement, the arrivals. It represents the expected time for

the arrival at the parking position, and all three systems measure it.

The ‘On/Off-Blocks Time’ details when the aircraft parks/pushes back the parking position, respec-

tively. APT, ACARS and OCC estimate these two timestamps. The ‘Landing/Take-Off Time’ details

the date and time at which an aircraft has landed/taken off from the runway, respectively. Again, APT,

ACARS, and OCC estimate this feature.

Since the timing of the aircraft movements has a lot of relevance within the scope of the proposed

study a deeper analysis was performed to these values. To begin with, it was studied what was the per-

centage of missing data within each of the variables in question. The results were very heterogeneous,

but in general, the data provided by the airport authority had the least amount of missing data, as one

can see in figures 3.7 and 3.8 for the arrival and departure features, respectively.

Figure 3.7: Distribution of missing timestamps among the arrival flights. Representing the three different

timestamps measured by the three different systems.

32

Figure 3.8: Distribution of missing timestamps among the departure flights. Representing the three

different timestamps measured by the three different systems, except for the Estimated Departure Time

since the CARS does not record this timestamp.

The 18th timestamp is known as ’Best time Hub Control’ and records information for both inbound and

outbound flights with no missing values. This attribute has the same information as the ’On-Block Time’

or ’Off-Block Time’ measured by the OCC depending if it is an arrival or departure flight, respectively.

Transport between the Terminal and the Aircraft

There are, in broad terms, two ways of commuting between the terminal building and the aircraft.

The first and more common way of doing it with TAP departure flights is for passengers to commute

by walking to the airplane, generally using jet bridges - structures that link the airport terminal and

the airplane. The second way is to use buses to transport passengers from the terminal to where the

airplane is parked. Regarding arrival flights, the situation is the opposite, and most of the passengers are

transported to the terminal using buses. All passengers arriving on flights that require bus transportation

are directed to one of 2 gates, depending on if they come from a Schengen or Non-Schengen flight.

Non-Schengen airports are located outside the Schengen area, which is a supra-national agreement

that includes most of the European Union plus some bordering countries.

To understand the details of the passengers boarding and unboarding of the aircraft, it was necessary

to perform a thorough analysis of different attributes from the dataset. First and foremost, it was detected

that the dataset shows what platform and gate were used by the specific flight movement. However, all

arrivals have their gate set to a default value and are therefore considered missing. Among the departure

flights, we found only 14,268 missing values (or 8.6% of the total) on the gate used for the departure.

The data also contained several columns dedicated to registering the different timestamps associated

with the loading start and finish of the buses. For each of the buses used, it was recorded the time

when the first and the last passengers boarded the bus. Therefore, if no buses were used, one could

33

assume that the specific flight movement did not require any bus, and if only the columns referring to

the first bus have non-default values, it means that only one bus was used, and so on. Again, the data

regarding arrivals was disrupted, and no information could be extracted, but regarding the departures, no

information was missing, and the distribution in terms of the number of buses is as follows in Figure 3.9.

Figure 3.9: Distribution of bus usage among the departure flights. Most of the airplane boarding pro-

cesses did not use any bus while only 0-41% of flights used 5 buses.

The most common way to board the aircraft is indeed to used the jet bridge and most of the flights

that required bus-assisted boarding only needed two or three buses.

3.2 Data Enhancement

The goal of this step was to merge the three existing datasets into one that had the relevant informa-

tion to feed good predictive models.

3.2.1 Data Cleaning

During the previous steps, only an initial and simple cleaning was performed, but the extent of the

scope of this thesis required a more detailed cleaning.

Pax dataset

As stated before, the issue created by the mechanism that uses the default ’9999-12-31’ as the

arrival date when passengers miss the connection needed to be addressed since this value is present

in 467,969 rows, which is equivalent to 9.3% of the data, therefore disregarding this data was not a valid

34

option. It was also noticed that within all rows that had this error, 467,758 of them (or 99.95 %) were

also missing the attribute indicating the travelling class on which the passenger arrived.

However, as disclosed before, this error is systematic and is related to the rescheduling of flights

when passengers miss their original connection, so in theory is possible to retrieve some, if not all

missing information. This issue represents the MNAR type of missing data presented in Section 2.3.3.

One outlined a strategy to attempt to retrieve information that consisted of checking all the registered

incoming flights for each distinct passenger ID.

Whenever some missing information was detected, it would be replaced by the correct information

(in this particular case, the date and class of the arrival flight) contained within the row that presented

the attribute passenger boarded equal to 1. Here is essential to notice that whenever a passenger has

multiple incoming flights with the same code, it can represent multiple connections, and to account for

this, it was set that the difference should be smaller than one day to be considered part of the same

connection.

Hub dataset

In terms of attributes, this was the dataset with the most data. However, when accounting for the

quality of the attributes and their usefulness, there was no necessity to perform a thorough cleansing of

all 108 attributes because a high number of them had plenty of missing data or were not helpful for the

goal model. Examples of such features were: the ones related to the cleaning and catering timestamps

of the aircraft, the ones related to the crew, among others.

3.3 Creation of New Features

Based on all data provided, we did some feature engineering to extract the most valuable information

from all data while keeping the total number of features as low as possible. This process is helpful

because it allows for capturing information that was not explicit in the original data.

The new variables created were:

• Scheduled Connection Time: The idea behind this engineered feature was to record the time, in

minutes, that the airline initially planned for the connection without considering any disruption or

operation problems, i.e., the time interval between the schedule on-block time and the schedule

off-block time. We extracted the information for this new feature from the ’Best time Hub Control’

timestamps records.

• Traffic Network: There are two possible types of origin airports and two types of destination

airports when it comes to the applicable legislation to transiting passengers. The outcome from

these conditions is that there are in total four types of traffic passengers that can happen when one

is dealing with connection flights: Schengen to Schengen (SS), Non-Schengen to Schengen (NS),

Schengen to Non-Schengen (SN) and Non-Schengen to Non-Schengen (NN). To assign each

of the origin/destination pairs to the correct type of traffic network, one performed a cross-check

35

between a list of all Schengen airports with a list of all Non-Schengen airports. This feature can

have an excellent predictive power because all four types demand different requirements from the

passengers regarding customs duties and even security issues.

• travelling Class: As stated earlier, the cardinality of the travelling class feature (both for arrivals

and departures) was 16, which is a relatively high number. For that reason and because, as stated

before, there are only five different types of classes in broad terms, the 16 classes were grouped

in different categories: Economy, Allots, Groups, R1, and Business.

• Label: Depending on the connection status, several labels were created in an attempt to cover all

possible scenarios:

– A: This represents the scenario where the passenger can have a successful connection as it

has been initially planned by the airline. The A label accounts for the majority of the connect-

ing passengers of TAP.

– B (or b): In this case, the passenger did not have a successful connection as planned initially,

but the airline reassigns the passenger to another flight. Since as stated in Section 3.1.2 there

are as many rows as flights reallocation, the connection record that saw the passenger board

the plane is marked with the label B, the remaining one(s) with b.

– O (or o): These labels were also attributed to passengers in the same conditions as the

previous ones except that, in this case, the airline had to pay for the passengers’ overnight

expenses. The connection record that saw the passenger board the plane is marked with O,

the remaining one(s) with o.

– X: This label was assigned to all cases on which some sort of incoherent data was detected.

Examples of such situations are when the same passenger is reassigned to multiple outbound

flights.

– N: Finally, the label N was given to all connections on which the lack of data might indicate

that the passenger did not show up on the flight.

3.4 Data Selection

After the feature engineering described in Section 3.3 one added the new features to others pre-

viously selected, adding up to 11 in total. These features include much valuable information primarily

due to the immense information the engineered features include. The chosen features are the incoming

and outgoing flight code, gender, age, type of traveller (solo or group), incoming and outgoing travelling

class, day of the week (Sunday through Saturday), day of the month, Scheduled Connection Time and

Traffic Network.

After the merge of all information in the same dataset, it included a lot of data. However, some of that

data was out of the scope of the current work or was unusable because it contained a large proportion

of missing values. To start, only rows with labels A, b, and o are within the scope of this thesis because

36

labels X and N include corrupted or unreliable information, and labels B and O refer to passengers that

board a flight other than the initially scheduled connection flight and are therefore also out of scope.

After this data cleaning, the dataset contained 3,592,004 samples, and from those, 3,381,353 were

labeled with A, 154,760 with b, and 55,891 with o. However, the data still presented some missing values

on some of the features, and a deeper cleaning was performed. The distribution of the missing values

among the 11 features is shown in Figure 3.10 and in relative terms 0.79% of Class FROM, 0.60% of

SchConnectionTime and 0.41% of Gender values are missing. The remaining features did not include

any missing values.

Figure 3.10: Distribution of Missing values across the features. White strips indicate the missing values

in each of the features.[56]

Before moving to the next stage, one dropped all instances that included missing values in any of

the features, and the dataset reduced the total size to 3,451,979 samples, including 3,261,690 A labels,

139,519 b and 50,770 o labels. Before the encoding phase, it was necessary to follow the best practices

within these types of work and divide the data.

A stratified label-based train/test/validation split was performed and the resulting datasets corre-

sponded to 80%, 10%, and 10% of the global data, respectively. In more concrete terms, the training

dataset has 2,761,583 samples, and both the validation and test sets have 345,198 samples. In all four

datasets discussed earlier, original clean dataset, train dataset, test dataset, and validation dataset, the

proportion of samples was maintained and corresponded to around 94.49% of the samples belonging

to the A label and the remaining 5.51%, including the b and o labels.

37

3.5 Data Transformation

3.5.1 Data Encoding

As stated in Section 2.3.2 there are plenty of methods to encode data for machine learning models.

In this specific case, from the 11 features present, 3 of them, namely, Age, Gender, and Is group are

binary features and, in practice, are by default encoded using a one-hot-encoding technique. One out

of the remaining eight features, the SchConnectionTime, is continuous and therefore does not require

any encoding. The other seven features are non-binary categorical features, and all require some type

of encoding.

As the general practice within this domain area, only the data in the training dataset was encoded,

and afterwards, the same encoding information was applied to the test and validation datasets. After

studying several scenarios to encode the seven features, one realized that the incoming and outgoing

flight codes required an encoding solution that did not add any extra columns to the dataset since these

features have a very high cardinality, standing at #332 in the case of TP from and #311 in the case of

TP to.

The solution found for the TP FROM and TP to features was to encode them with target encoding.

For the remaining five features, the cardinality was lower in all of them, ranging from #4 in the Traffic

Network, #5 in the travelling classes, #7 on the day of the week, and #31 in the day of the month. In

those cases, the same type of encoding was used as in the TP FROM and TP to features because using

ordinal encoding would artificially feed the model with a nonexisting ordinal order, i.e., there is no reason

why an SN transit would have a higher value than an NS transit or to impose ordering to weekdays.

3.5.2 Data Scaling

To avoid overflow, all 11 features were scaled to mitigate the issue. The choice of scaling made was

to use the Standard scaling technique so that all the features would have a mean of 0 and a standard

deviation of 1. By using this technique, we assured that no outliers would be suppressed, which might

be a good approach since some extreme behaviors may be associated with missed connections.

However, feature scaling was only used to the DNN, and Logistic Regression models because in

Decision Tree classification the data is split based on scores which are calculated using the homogeneity

of the resultant data points.

3.6 Data Generation

From all the possible methods to tackle the data imbalance issue discussed in Section 2.2, the choice

was made so that in the end, no data would be lost, the amount of added noise would be the lowest

possible, and the chances of overfitting would remain as low as possible.

These criteria meant that the Undersampling technique would be immediately excluded because this

would imply that the majority of the data of the majority class would be lost. Among the 2,761,583 training

38

samples, only 152,231 correspond to the minority class, which means that should this technique have

been chosen, 2,457,121 samples from the majority class would have been lost. This would represent

a significant loss, corresponding to approximately 90% of all data and therefore the Undersampling

technique was not pursued any further.

The following available options were to use any of the Oversampling techniques presented in Section

2.2. Contrary to the Undersampling option, these options would not cause any loss of information but,

in the case of the generic oversampling technique, would increase the likelihood of overfitting since the

method only creates new copies of existing data and as stated earlier does not account for the fact

that the minority class may not have an even distribution. The SMOTE method is know to be sensitive

to outliers specially in high-dimensional data. Thus, the GMM was better suited for the generation of

synthetic samples, and that is why we chose this method for the generation of new samples.

In order to define the parameters of the GMM that will be used, it was first necessary to select

the type of covariance and the number of components used to train the model. To do so, and as

explained before we used the AIC and BIC values that played an important role in the selection of the

parameters. Figure 3.11 shows the results for all the available types of covariance shapes and a number

of components ranging from 1 to 1500. Additionally, and as stated before, the criteria to select the

number of components and the covariance shape is to search for the lowest values for AIC and/or BIC.

Looking at Figure 3.11 we observed that between the diagonal and full covariance shapes, the di-

agonal attains the better performance for all numbers of components tested in terms of the BIC score

and has a lower or equal value to the full covariance shape in terms of the AIC score. This trend can

be justified by the fact that BIC penalizes the model complexity more than AIC, which means that the

diagonal covariance matrix returns a model less complex than the full shape. After a detailed analysis

of the results, it was considered that the increase of components up to 1000 was worth the decrease in

the AIC and BIC score values. After this point, the benefit of increasing the complexity of the model and

consequently its cost was no longer worth the benefits in terms of AIC and BIC.

(a) AIC Score (b) BIC score

Figure 3.11: AIC and BIC scores for the GMM parameters selection.

39

3.6.1 Data Re-balancing

After following the steps described in the previous sections and before feeding the training data to

the models, an extra step was taken to achieve the best result from the data. The first stage was to

re-balance the data and make the problem’s classes balanced, and to do that, one divided the training

dataset into two subsets, one corresponding to the majority class and another containing all samples

labeled as belonging to the minority class. After this step, new artificial samples were generated from the

minority class using the GMM technique as the oversampling mechanism, and the parameters founded

earlier.

The number of newly created samples corresponds to the difference between the total number of

samples of the majority class, 2,609,352, and the number of samples of the minority class, 152,231,

which translates to 2,457,121 new artificial samples. The new samples were generated after fitting the

GMM model to the data corresponding to the minority class, using 1000 components and a diagonal

covariance matrix.

These new data points follow the distribution of the original data points, as can be seen in Figure 3.12

for the case of the Traffic Network attribute. However, some additional processing is necessary since

the GMM generates continuous values, and some of the features present discrete values. To deal with

this, the newly generated data points were grouped in a specific number of clusters using a K-means

algorithm. The number of clusters in each feature corresponded to the cardinally of that feature in the

original data.

Figure 3.12: Fitting of the GMM over the traffic network feature.

One repeated this process to all features except for the ones concerning the flight numbers (both

inbound and outbound). For these features, one chose another methodology since the K-means could

have introduced new, previously unseen values with no real-world meaning, so one used the k-nearest

neighbors (k-NN) algorithm to find the values for the two features that would make the most sense,

knowing all other previously generated features.

40

After finishing all the clustering processes, we created a new dataset with 2,457,121 artificial sam-

ples all of which belonging to the minority class. This dataset was then merged with the original data

(that included the majority class and the minority class elements used to generate the artificial samples),

and a final dataset with 5,218,704 samples was reached. However, this dataset did not suffer from any

data imbalance, and the data was evenly distributed among the two classes, meaning 2,609,352 sam-

ples belong to the majority class (successful connections) and the same number of 2,609,352 samples

belong to the minority class (unsuccessful connections).

The final process to make the dataset ready to be fed to the model was to encode all the training

data, both the original data points and the generated ones. This step followed the guidelines described

in section 3.5.1.

41

42

Chapter 4

Modelling

The following chapter revolves around the experimental phase: the training and testing of the different

predictive models, the assessment of their performance on unseen data, and finally, the results and the

comparison of the experiments.

4.1 Model Baseline

As the baseline classifier, one considered the system used by the airline which assumes as the

criterion to decide whether a passenger will successfully connect the Minimum Connecting Time (MCT)

established by ANA - Aeroportos de Portugal, the airport authority of Portugal. This value corresponds

to 60 minutes and means that the airline assumes that a passenger will miss the connection if the

connection time is below 60 minutes.

The baseline model has an accuracy of 0.92, AUCROC equal to 0.61 and AUCPR to 0.28. Table 4.1

summarizes the results from each one of the classes.

Table 4.1: Classification metrics of the Baseline algorithm for each of the classes.

Precision Recall F1-score Support

Class 0 (successful connection) 0.96 0.95 0.96 326169

Class 1 (unsuccessful connections) 0.25 0.27 0.26 19029

Micro average 0.92 0.92 0.92 345198

Macro average 0.61 0.61 0.61 345198

Weighted average 0.92 0.92 0.92 345198

Table 4.2 represents the confusion matrix of the Baseline model. The positive class corresponds to

missing the connection and the negative class corresponds to have a successful connection.

43

Table 4.2: Normalized Confusion Matrix of the Baseline model.
Predicted Class

Positive Negative

True Class
Positive 27.46% 72.54%

Negative 4.72% 95.28%

Tables 4.1 and 4.2 evidence a good performance on the majority class; however, the performance

on the minority class is lower and the model miss-labeled around 72% of instances.

4.2 Model Proposed

The goal of the Decision-Making Models being designed is to ascertain whether a connecting pas-

senger is likely to miss the second leg of the journey. With that in mind, the information available shall

be the same as the information known by the airline after the flight schedule is made publicly available

and the passengers booked their flight, but still before the flight date. The idea here is to create several

models based on different machine learning algorithms and make predictions based on the input data

that comes from the available information.

These models aim to understand how the airline can translate data about the passengers into valu-

able insights. The data includes the features already discussed in the previous chapter: incoming and

outgoing flight numbers, the class on which the passenger is traveling, the week and month day of the

flight, and some demographic features such as gender, sex, and whether the passenger is traveling in a

group or not.

After carefully analyzing the models, the airline should be able to notice trends and clusters and

understand what profile of passengers is at most risk of missing the connection and will do it knowing

the relative importance of each feature for the final prediction.

4.3 XGBoost

4.3.1 Hyperparameter Tuning

The XGBoost algorithm presents some high-level parameters called hyperparameters that are the

variables whose function is to determine the structure of the trees, e.g., the Depth of the tree and the

variables that control the training, e.g., the Learning Rate. Since hyperparameters selection occurs

before the final training process, it is necessary to find a way to efficiently compare the performance of

different parameter settings, i.e., different hyperparameters configurations.

The process described above, designated model selection, demands extra care from the modeler to

avoid overfitting. To avoid biases, we shall not use the test data in any part of the training process. The

alternative is to either use the validation dataset, which is also unseen during training or use a k-fold

cross-validation technique. In the latter, the training data is split, while maintaining class proportions,

44

into k different folds, and from that, k−1 are used to train the XGBoost model, and the remaining fold is

used as a pseudo-validation set.

The described procedure is repeated as many times as there are folds to reach k different solutions.

We chose the number of folds so that each fold had the same size as the testing and validation sets,

which means that each fold corresponded to 1/8 of the training dataset. Thus, the final data distribution

among the pseudo-training, pseudo-validation, validation, and test sets is 70%, 10%, 10%, and 10%,

respectively.

Each one of the predictions made is used to calculate a corresponding confusion matrix. Then all

confusion matrices are added to yield a final confusion matrix, which is possible since the folds are

created randomly without replacement. One repeated the process for all possible combinations of pa-

rameters, and the configuration that yields the best result becomes the chosen set of hyperparameters.

This technique is known as grid search and is part of the XGBoost API, which facilitates its implementa-

tion.

Hyperparameter Space

The Gradient Boosting, Random Forest, and XGBoost methods are among the most popular tree-

based ensemble algorithms for classification problems and the most effective at it. Their performance

is substantially based on the depth of the trees they build and the learning rate. The XGBoost algo-

rithm was the chosen algorithm on the tree-based ensemble category due to its versatility and also

because this classifier presents system and algorithmic enhancements that increase the classification

performance and training efficiency both in terms of memory and time that were presented in Section

2.1.3.

For the XGBoost algorithm, one set the hyperparameter space to a grid space spanning learning

rates ranging from 0.3 up until 0.6 with steps of 0.1 and depths ranging from 30 to 50 with steps of 5.

One chose this search space after a preliminary study suggested that this would not be a significant

burden for the available computational tools at hand.

The grid search varied the above two parameters without limiting the number of estimators; however,

one defined an early stopping criterion that interrupts the learning process if the results did not improve

after a pre-determined number of boosting rounds. This parameter was set to 20. We used the validation

dataset to evaluate the results and decide upon enforcing the early stopping criterion to the training

process, and to do that the criterium chosen was the ROC-AUC.

Tables 4.3 to 4.6 show the results of the hyperparameter optimization process. Each one of the

tables is dedicated to a different metric evaluated during the training process.

45

Table 4.3: Tuning the hyperparameters of the XGBoost classification model with cross-validation based

on the Accuracy.

Accuracy
Tree Depth

30 35 40 45 50

Learning

Rate

0.3 0.9325 0.9325 0.9326 0.9333 0.9330

0.4 0.9332 0.9330 0.9328 0.9332 0.9335

0.5 0.9336 0.9332 0.9328 0.9331 0.9329

0.6 0.9337 0.9334 0.9331 0.9330 0.9327

Table 4.4: Tuning the hyperparameters of the XGBoost classification model with cross-validation based

on the Precision.

Precision
Tree Depth

30 35 40 45 50

Learning

Rate

0.3 0.9885 0.9884 0.9883 0.9883 0.9883

0.4 0.9884 0.9882 0.9881 0.9882 0.9881

0.5 0.9882 0.9881 0.9880 0.9880 0.9880

0.6 0.9880 0.9879 0.9878 0.9878 0.9878

Table 4.5: Tuning the hyperparameters of the XGBoost classification model with cross-validation based

on the Recall.

Recall
Tree Depth

30 35 40 45 50

Learning

Rate

0.3 0.8753 0.8755 0.8758 0.8772 0.8767

0.4 0.8769 0.8768 0.8764 0.8772 0.8778

0.5 0.8778 0.8773 0.8765 0.8773 0.8767

0.6 0.8783 0.8779 0.8772 0.8770 0.8766

Table 4.6: Tuning the hyperparameters of the XGBoost classification model with cross-validation based

on the ROC-AUC.

ROC-AUC
Tree Depth

30 35 40 45 50

Learning

Rate

0.3 0.9741 0.9745 0.9749 0.9752 0.9752

0.4 0.9742 0.9742 0.9746 0.9752 0.9752

0.5 0.9744 0.9743 0.9748 0.9748 0.9745

0.6 0.9742 0.9742 0.9744 0.9744 0.9741

The above results show that the combination of hyperparameters that yield the highest scores across

the different metrics varies. Precision and Recall present, as expected, opposite behaviors, and a

46

positive change in the Precision metric is reflected by an adverse change in the Recall metric reflecting

the trade-off between them. One chose to select the hyperparameters based on the score obtained on

the ROC-AUC metric, which corresponds to a learning rate equal to 0.3 and a maximum depth of the

tree of 45. The values, in terms of both Precision and Recall, that correspond to this selection are not

located in the extreme values of their ranges. The behavior of these metrics also indicate that extending

the search space to values of learning rate below 0.3 or above 0.6, or extending the maximum depth

below 30 or above 50, would not yield better results since the highest results for the ROC-AUC on

validation set do not occur in the edges.

4.3.2 Results on the Test Set

After selecting the hyperparameters, we trained the final model using the entirety of the training data

and the selected combination of hyperparameters.

XGBoost final predictions are obtained by weighting all ensemble learners’ results since this is a

boosting algorithm. The output from the model assigns, during the evaluation of each instance, its

probability of belonging to the first class (successful connection) and the probability of belonging to the

second class (unsuccessful connection). These two values add up to 1 in all instances. This way of

predicting classes imposes another choice, the probability threshold on which we include each of the

classes, and the first threshold used was 0.5, which corresponds to the default value. That means that

the algorithm classifies an instance as belonging to the successful connection class if the probability on

that class is higher than 0.5 (which would mean that the probability of belonging to the unsuccessful

connections class is below 0.5) and classified as belonging to the unsuccessful connection class if the

probability on that class is higher than 0.5 (which would mean that the probability of belonging to the

successful connections class is below 0.5).

The plots for both the ROC and PR curves are shown in Figure 4.1. The AUCROC is equal to 0.97,

the AP to 0.85 and the AUCPR to 0.80.

(a) ROC-AUC curve (b) PR curve

Figure 4.1: Performance results of the XGBoost Algorithm. The first plot shows, in blue, the ROC curve
of the model and the second plot shows, also in blue, the PR curve of the model. In both cases the
performance of a random classifier is shown in a dotted orange line.

47

The results can be further analyzed by looking at each class separately and at the confusion matrix.

Table 4.7 presents the results from each one of the classes.

When dealing with imbalanced data, which in the present case has a distribution of 0.945/0.055

between the majority and the minority classes, respectively, only looking at the standard computation of

the performance metrics might yield biased results. With that issue in mind, we tested the same metrics

previously assessed during the hyperparameters selection, considering the imbalance between classes

since the testing data is no longer balanced, contrarily to the training data.

It is essential to look at the Macro, Micro, and Weighted average of the different metrics because

they all assess different behaviors. In macro averaging, one computes the performance for each class

separately and then averages over classes, whereas, in micro averaging, one collects the decisions

for all classes into a single confusion matrix and then computes the metrics from that data. Therefore,

the majority class instances dominate the micro average metrics, and macro averaged metrics reflect

the influence of the minority class. Finally, in weighted metrics, each class contribution is weighted

by its size. Since we are dealing with a class-imbalanced dataset on which the correct prediction of

the underrepresented class is more important than the correct prediction of the majority class, macro-

averaging may be the better metric.

Overall, one can say that the model performance on what ends up being the majority class of the

test dataset surpasses the model performance on the minority class of the dataset. As a whole, the

accuracy is very high and stands at 0.98. Table 4.7 summarizes the remaining metrics.

Table 4.7: Classification metrics of the XGBoost algorithm for each of the classes.

Precision Recall F1-score Support

Class 0 (successful connection) 0.99 0.99 0.99 326169

Class 1 (unsuccessful connections) 0.80 0.75 0.78 19029

Micro average 0.98 0.98 0.98 345198

Macro average 0.89 0.87 0.88 345198

Weighted average 0.98 0.98 0.98 345198

To find what threshold different than the default value, if any, would lead to a better result, we con-

ducted a study that checked the results of the fitted model on the validation data and found that a

threshold value of 0.47 (instead of 0.50) increased the number of True Positives. However, the thresh-

old tuning also reduced the number of True Negatives. This study used the G-mean as the criterium to

choose the best threshold. The G-mean measures the balance between sensitivity (TPR) and specificity

(1-FPR) and focus on finding the best trade-off located in the upper right corner of the ROC curve.

Looking more concretely at the predictions, one can see that the model correctly predicted 98.9%

of the majority class instances for the default threshold value, missing only 1.1% of the unsuccessful

connection instances. However, as stated earlier, the performance on the unsuccessful connection class

was lower, and the model predicted the correct label on 79.1% of the instances and missed the label

48

20.9% of the time. For the tuned threshold, the model’s performance on the majority class decreased

to 98.7% of correctly predicted successful connections but increased on the minority class to correctly

label 80.2% of instances. Both results are depicted on Table 4.8.

Table 4.8: XGBoost Normalized Confusion Matrix results for both thresholds.
Threshold 0.47 0.50

True Negatives 98.72% 98.86%

False Negatives 19.78% 20.91%

False Positives 1.28% 1.14%

True Positives 80.22% 79.09%

4.3.3 Model Explainability

An essential part of the scope of this thesis is to go beyond the model output and enter the domain

of explainability and interpretability. The way that one chose to deal with this component of the post-

analysis is to use the principles stated in Section 2.5. The SHAP tool provides both local and global

interpretations. The following analysis will focus on more general interpretations that account for all

instances used to train the model.

To start with, the idea behind the concept of feature importance defined by SHAP is straightforward:

the larger the absolute Shapley value is, the more influential the feature is. Since the goal is to obtain

the global importance, one must sum the absolute Shapley values per feature across the data and then

sort the results by decreasing importance. The Figure 4.2 shows the SHAP feature importance for the

XGBoost model.

Figure 4.2: Average feature impact on XGBoost output. The chart shows, for each feature, the absolute

value of the average impact on the final prediction.

The feature that has the highest impact on the final prediction is the Schedule Connection Time,

followed by the incoming flight number closely trailed by the outbound flight number. Outside the top

49

3 most influential features, the sum of the impacts of the remaining eight features is lower than the

combined impact of the first three. The three most minor impactful features are Age, Sex, and if the

passenger is traveling within a group. It is also noticeable some importance clustering between similar

features, e.g., the feature for the day of the week and the feature for the day of the month have a similar

impact in the final prediction, which also happens with features that account for the classes on which the

passenger traveled.

Next, the SHAP summary plot accounts for each feature’s importance and their effects on the final

model output and allows for a more thorough analysis of the specificity of each of the features. This

representation is depicted in Figure 4.3. Each instance will be represented by the correspondent Shapley

value on the summary plot. The y-axis is reserved for the features ordered by their relative importance,

and the height of the clusters indicates the distribution of the Shapley values per feature. The x-axis

represents the Shapley value. The color attributed to each point represents the value of the instance on

the corresponding feature, ordered from low to high.

As said before, the feature with the highest importance is the Schedule Connection Time, and as

shown in Figure 4.3 samples with low connection time are associated with positive SHAP values, which

means that a low connection time value contributes to classify the connection as unsuccessful. This

follows the expected behavior, and it is consistent with common sense. From the distribution of the in-

stances’ points throughout the feature span, it is noticeable that low and medium values for the Schedule

Connection Time have a negative impact and contribute to classifying the output as a successful con-

nection; however, most samples are located within the range from 0 to 4, contributing to the classification

as unsuccessful. There is a clear separation between low values that contribute positively and low to

medium values that contribute negatively.

Figure 4.3: SHAP summary plot for the XGBoost algorithm. The plot shows, for each feature, what type

of impact each instance had on the final prediction. Low values in the features span are associated with

blue dots and high values with red dots.

Despite assuming an essential role in the prediction, the following two most important features, the

50

incoming flight and the outbound flight number cannot be analyzed entirely since the data is encoded

and represents a categorical feature with no ordinal logic behind it. In terms of impacts on the model

output, the span of these features is shorter than the one seen in the Schedule Connection Time, and

unlike in the latter, there is no clear separation between high and low values.

Then, the traffic network variable has a mixed impact on the final prediction. High values can either

have a high positive impact (classify the connection as unsuccessful) or a more moderate one. Low

values can either have a positive impact, but not as high as the previous statement, or have a negative

impact (classify the connection as successful). The encoding of the different combinations of transiting

routes followed the order NN < NS < SN < SS. It is interesting to notice that SS connections can have

such different impacts on the final prediction and that most NN connections have a negative impact (clas-

sify the connection as successful) which perhaps comes from the fact that these types of connections

relate with longer flights which tend to have more sparse schedules and higher connection times.

The following feature, DMonthDay, has a scattered distribution that comes naturally from its essence

since it represents the encoded day of the month (from 1 until 31) when the connection occurred. Due

to the moving nature of the placement of weekends and different weekdays as numbers, it is not easy to

extract information on this behavior; however, this feature holds some relevant information since SHAP

values are not zero. Instances with low values for the day of the week feature, DDay, tend to contribute

to classifying the instances as successful, and higher values in this feature tend to classify them as

unsuccessful.

For the traveling class, both inbound and outbound, the order on which the different categories were

encoded is the same and is as follows: Business < Groups < Economy < Allots < R1. For the case of

the outbound traveling class, high values have a marginal impact on the final predictions, which means

that Business class instances can either have a high positive impact or a modest negative impact.

Whereas in the case of the incoming traveling class, intermediary values corresponding to the Economy

and Groups classes have a marginal impact, and the business class keeps the same behavior as in the

incoming class feature.

The final three features have the most negligible impact on the predictions. Nevertheless, one noticed

some general trends in those features. To start with, the three have most of the instances concentrated

around zero, which indicates a null impact. Then for both the traveling within a group and sex features,

it is possible to spot a shy partition of the data on which high values tend to have a positive impact

and low values a negative impact. Both features are binary, which means that passengers traveling

in a group tend to have a slightly positive impact (classify the connection as unsuccessful), whereas

passengers traveling alone tend to classify the connection as successful, i.e., have a negative impact.

When considering the Sex of the passengers, the impact is even less expressive than in the case of the

group feature, and Men tend to have a positive impact, contrary to what happens with Women that have

a negative impact. The last binary feature, Age, has no impact on high values (adults) and moderate or

no impact on low values (infants).

51

Figure 4.4: Intrinsic feature Importance of XGBoost model. This chart shows, for each feature, the

relative importance measured in terms of the built-in tool of the model.

However, the results seen above for the feature importance assessed by the SHAP values are dif-

ferent from the feature importance results directly extracted from the XGBoost API. As shown in Figure

4.4, the top 2 contributors are the same as seen earlier, but the outgoing flight code and the Traffic Net-

work features switch places in terms of importance. Then both the date and the traveling class-related

features keep the same clustering seen above but in a different order. The XGBoost API assigns higher

importance to the class-related features, contrary to the SHAP that assigned day-related features more

importance than class-related ones. Finally, the last three features are the same and still present only a

moderate impact. Contrary to the SHAP explanation, the least important feature is Sex.

4.4 Neural Networks

4.4.1 Hyperparameter Tuning

With more computation power and data available, neural networks are becoming very popular. To

achieve the highest accuracy and faster convergence possible is essential to find the optimal architecture

of the DNN. Besides, the training process of DNNs becomes tedious with the increasing of the depth of

the network since they can be tweaked using several hyperparameters, such as the number of hidden

layers, the number of units at each hidden layer and the dropout rate, among others.

The optimal architecture of DNNs is usually found using a trial-and-error process, which is an ex-

ponential combinatorial problem and a tedious task which the colossal amount of data of this thesis

only exacerbates. To address this, an automatic hyperparameter optimization software framework was

used. This framework was mainly designed for machine learning problems and allows for the dynamic

construction of the search space for the hyperparameters. [57]

52

Hyperparameter Space

For the DNN, the tested hyperparameters were: the depth of the network, in the range from 1 to 10

hidden layers with multiple layer dimensions in the range of 4 to 256 units; dropout rates within the range

from 0.01 to 0.8, batch size of the set [128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768] and the

number of epochs in the set [20, 50, 80]. Additionally, on a higher level, the tuning process occurred

over 20 trials, which is yet another hyperparameter that comes from the Optuna framework, and to select

the activation function, one did two independent studies. There is no rule of thumb on addressing the

optimal amount of trials. Thus, the choice was 20 so that the framework could have some freedom to test

out different hyperparameters configurations but not too much freedom that would be a computational

burden. Regarding the activation function, the studies focused on the ReLU, and PReLU types due to

the reasons explained in Section 2.1.5. This was the choice for all layers except the final one that has

the Sigmoid activation function given the problem’s binary classification scope.

All values present on Table 4.9 refer to the value of the AUCROC on the validation set measured for

each of the hyperparameters combinations set by Optuna. In that sense, they are not directly compara-

ble because all hyperparameters combinations used different architectures, but since they measure the

same metric across the same set of data, this value will allow the selection of the best hyperparameters.

From the table, it is also possible to see that generally, the highest value is obtained for 50 epochs,

indicating that training with only 20 epochs might result in an under-fitted model while training with 80

epochs might produce over-fitted models.

As for the best model, one chose the model corresponding to 50 epochs and batch size of 8192. This

model obtained a AUCROC on the validation set of 0.854, the highest among all tested architectures.

For these hyperparameters, the optimization framework outputted five layers in total: the input layer,

three hidden layers, and the output layer.

Table 4.9: Tuning the hyperparameters of the DNN classification model based on the ROC-AUC of the

validation dataset.
ReLU PReLU

Epochs

20 50 80 20 50 80

Batch

Size

128 0.846 0.849 0.848 0.846 0.848 0.850

256 0.848 0.849 0.849 0.850 0.850 0.847

512 0.848 0.846 0.846 0.849 0.848 0.849

1024 0.852 0.850 0.847 0.851 0.847 0.848

2048 0.853 0.851 0.848 0.847 0.851 0.845

4096 0.846 0.845 0.848 0.848 0.845 0.846

8192 0.847 0.854 0.848 0.847 0.853 0.850

16384 0.842 0.846 0.846 0.848 0.851 0.847

32768 0.846 0.850 0.842 0.846 0.844 0.845

53

The input layer consists of 4 hidden units, a normalization layer, and a dropout rate of 0.3956. The

activation function of this layer is the ReLU which is a characteristic shared with the hidden layers.

The following three layers were composed of 100, 139, and 244 units, respectively. Like in the previ-

ous layer, a normalization step was added before the activation function to avoid unexpected behaviors.

The dropout rates for the hidden layers are 0.777, 0.591, and 0.713, respectively.

The final layer receives the information passed by the last hidden layer and outputs the prediction

after applying the Sigmoid function. Here the prediction is a single value, and again the absolute value

relative to the threshold will determine which class the prediction fits in.

4.4.2 Results on the Test Set

The procedure after the selection of the hyperparameters for the DNN is the same as the one fol-

lowed when training the XGBoost. The whole data was fed to the architecture based on the chosen

architecture. As stated before, DNN final predictions include a single value in the range from 0 to 1.

Figure 4.5 shows the plot for the ROC-AUC and PR curves. The AUCROC is equal to 0.85 and an

the AUCPR is equal to 0.29.

Overall, one can say that the model performance follows the same trend seen with the XGBoost

algorithm, and the performance on the majority class surpasses the model’s performance on the minority

class of the test dataset. With the DNN the results on the majority class were below but close to the

results seen with the XGBoost; however the results on the minority class were well below the ones seen

with the XGBoost making the macro averaged metrics of the DNN algorithm between 0.64 and 0.66

contrary to the range from 0.87 to 0.89 seen in the XGBoost. As a whole, the accuracy in the test

dataset is 0.92. Table 4.10 summarizes the remaining metrics.

(a) ROC-AUC curve (b) PR curve

Figure 4.5: Performance results of the DNN Algorithm. The first plot shows, in blue, the ROC curve

of the model and the second plot shows, also in blue, the PR curve of the model. In both cases the

performance of a random classifier is shown in a dotted orange line.

54

Table 4.10: Classification report of the DNN algorithm.

Precision Recall F1-Score Support

Class 0 (successful connection) 0.96 0.96 0.96 326169

Class 1 (unsuccessful connection) 0.32 0.36 0.34 19029

Micro average 0.92 0.92 0.93 345198

Macro average 0.64 0.66 0.65 345198

Weighted average 0.93 0.92 0.92 345198

As in the case of the XGBoost a threshold is needed and this value was again found via the G-mean

optimization on the validation data. When evaluating the fit of the validation data, the threshold that

corresponds to the highest G-mean is 0.30.

Applying the default threshold of 0.50, the model performed fairly well in the majority class, missing

only around 5% of the predictions. However, the case with the minority class is different, and the model

can only predict 36% of the instances correctly, miss-labeling the remaining ones. If instead the default

value one considers the tuned threshold, there is a big reduction in the number of correctly predicted

successful connections, but an expressive increase follows this in the number of correctly predicted

unsuccessful connections that go from only 36% to more than 75%. These results are depicted in Table

4.11. The same principle of the XGBoost analysis can be applied here, and, in theory, the gain from

predicting a higher number of unsuccessful instances can offset the reduction in the number of correctly

predicted successful classes. However, when factoring in the sheer difference in the absolute values,

this might not be the best approach for the airline in terms of costs because all precautionary measures

might become higher than all corrective costs.

Table 4.11: DNN Normalized Confusion Matrix results for both thresholds.
Threshold 0.30 0.50

True Negatives 77.88% 95.51%

False Negatives 24.79% 63.97%

False Positives 22.12% 4.49%

True Positives 75.21% 36.03%

4.4.3 Model Explainability

Figure 4.6 shows that the feature that has the highest impact in the final prediction is the Schedule

Connection Time, following the behavior of the XGBoost model.

55

Figure 4.6: Average feature impact on the DNN output. The chart shows, for each feature, the absolute

value of the average impact on the final prediction.

The following two most essential features also follow the trend seen in the interpretation of the

XGBoost model and are the incoming and outgoing flight codes, respectively. Here, and imitating the

previous behavior, the first three features account for most of the interpretative value of the predictions

made by the model.

From the 4th most impactful feature on, it is possible to spot a clear from the previous model, and the

remaining features, except for the day of the month, assume an equal and yet marginal contribution to

the model’s predictions. However, the traveling class (both inbound and outbound) and day of the week

have a slightly higher impact than the other 3. The overall order is similar to XGBoost’s explanation, with

age and sex being again ranked at the bottom.

The bold number in the plot shown in Figure 4.7, 0.08, is the model’s score under a specific obser-

vation. Higher scores lead the model to predict an unsuccessful connection, whereas lower scores lead

the model to predict a successful connection. The features that were important to predict this specific

observation are shown in red and blue colors, with red representing features that increased the model’s

score higher and blue representing features that did the opposite.

The relative position of each one of the features also indicates their relative impact on the final

prediction. Features that had the most impact on the score are located closer to the dividing boundary

between red and blue, and the length of each feature bar represents the size of that impact.

For the case of the first instance of the test set, the feature with the most impact on the final decision

was the Schedule Connection Time, followed by the incoming and outgoing flight numbers. All these

three features, among others less relevant, contributed negatively to the prediction and lowered the

model’s score. On the other hand, DMonthDay contributed the most to increase the model’s score.

These four features are the most relevant to the final prediction, and this result is coherent with the

global average feature impact shown in Figure 4.6.

56

Figure 4.7: SHAP force plot for one DNN prediction. The plot shows the explanation for a single pre-

diction by the model, showing in red, the the features that contributed the most positively and in blue

the features that contributed the most to decrease the model score to this specific data point. The bold

value represents the model’s prediction.

4.5 Logistic Regression

4.5.1 Hyperparameter Tuning

The Logistic Regression algorithm also involves the crucial hyperparameters tuning process. Several

parameters can be tuned, and among them there are five available solvers, all of each try to find the

parameter weights that minimize the cost function. The available solvers are: the Newton method solver,

newton-cg; the Limited-memory Broyden–Fletcher–Goldfarb–Shanno solver, lbfgs; the Stochastic Aver-

age Gradient descent, sag; and the saga.

However, it is important to notice that some solvers present limitations regarding the compatibility

with penalty types, such as the case with the sag and saga, where the former did not allow for the L1

regularization, but the latter did. Overall there are four penalty types available: adding an L2 penalty

term, which is the default choice of the Logistic Regression algorithm; adding an L1 penalty term; Elas-

ticnet that adds both L1 and L2 penalties; and the case no penalty is added. Another critical parameter to

tune is the inverse of the regularization strength, and here smaller values specify stronger regularization.

Hyperparameter Space

For the Logistic Regression, the tested hyperparameters were the 3 described earlier: the solver

type, the penalty term, and the inverse of regularization strength value.

For the solver type, one tested all five options, even the newton-cg and the lbfgs even though the

run time when using them could be longer than that with other options. For the penalty, the grid search

included all three penalty functions available plus the no penalty option, and for the regularization pa-

rameter, the values included the set [100, 10, 1.0, 0.1, 0.01].

The performance, measured in terms of AUCROC on the validation set, was very similar across the

different hyperparameters combinations. The absolute highest value was attained for the configuration

that included saga as the solver, L2 as the regularization, and 1 as the regularization parameter.

57

4.5.2 Results on the Test Set

After the selection of the hyperparameters, the final model was trained using the whole data and the

selected combination of hyperparameters.

Figure 4.8 shows the plot for the ROC-AUC and PR curves. The AUCROC is equal to 0.84 and an

the AUCPR is equal to 0.46.

(a) ROC-AUC curve (b) PR curve

Figure 4.8: Performance results of the Logistic Regression Algorithm. The first plot shows, in blue, the

ROC curve of the model and the second plot shows, also in blue, the PR curve of the model. In both

cases the performance of a random classifier is shown in a dotted orange line.

We can say that the model performance follows the same trend seen with the Black-Box models,

and the performance on the majority class surpasses the model’s performance on the minority class

of the test dataset, except for the Recall metric in which the model presented similar performance on

both classes. However, the difference in performance between the two classes on the Precision metric

is even greater than the difference seen in the former models, and the difference on the F1-score is

close to the difference seen in the DNN. In terms of macro-averaged metrics, this model performance

is worse than the XGBoost for all assessed metrics. When comparing with the DNN, the Precision and

F1-score macro-averages are lower yet similar, but the Recall is higher and equal to the value seen in

the XGBoost. As a whole, the accuracy is 0.77. Table 4.12 summarizes the remaining metrics.

As with the Black Box models, a threshold value is needed to analyze this algorithm performance at

the confusion matrix level correctly. This threshold value was again found via the G-mean optimization

on the validation data. When evaluating the fit of the validation data, the threshold that corresponds to

the highest G-mean is 0.49.

58

Table 4.12: Classification report of the Logistic Regression algorithm.

Precision Recall F1-Score Support

Class 0 (successful connection) 0.98 0.78 0.87 326169

Class 1 (unsuccessful connection) 0.16 0.75 0.27 19029

Micro average 0.77 0.77 0.77 345198

Macro average 0.57 0.76 0.57 345198

Weighted average 0.94 0.77 0.83 345198

The model had a limited performance by applying the default threshold value since it missed around

22% of the instances belonging to the majority class and around 25% of the cases when the instance

belonged to the minority class. These results, although modest, reached a performance in the minority

class better than the ones seen with the DNN and only slightly worse than the XGBoost results. However,

if one considers the tuned value instead, there is no big change regarding the predictions, and the

number of correctly predicted unsuccessful connections goes up from 75% to 75.7%, while the number of

correctly predicted successful connections goes down from 77.5% to 76.9%. These results are depicted

in Table 4.13.

Table 4.13: Logistic Regression Normalized Confusion Matrix results for both thresholds.

Threshold 0.49 0.50

True Negatives 76.92% 77.53%

False Negatives 24.28% 25.04%

False Positives 23.08% 22.47%

True Positives 75.72% 74.96%

4.5.3 Model Explanability

The SHAP post hoc explanation of the Logistic Regression model shows that, once again, the feature

with the highest importance is the Schedule Connection Time as shown in Figure 4.9. Instances with low

connection times are associated with positive SHAP values, meaning that a low connection time value

contributes to classifying the connection as unsuccessful, which is coherent with the behavior seen in the

XGBoost model. Data points with low and medium Schedule Connection Time values have a negative

impact and classify the connection as successful. In this feature, most samples are located within the

range from 0 to 5, meaning that the contribution of low connection time values is more localized than

the contribution of low connection times that span a larger influence region. There is a clear separation

in this feature between low values that contribute positively and low to medium values that contribute

negatively.

The following two most important features are the incoming flight and the outbound flight number

which was also the case with both Black Box models. Despite assuming a vital role in the prediction,

59

these features cannot be completely analyzed since the data represents a categorical feature that is

encoded, meaning that there is no ordinal logic behind it. The remaining eight features have only a

moderate in the model’s predictions.

Figure 4.9: SHAP summary plot for the Logistic Regression algorithm. The plot shows, for each feature,

what type of impact each instance had on the final prediction. Low values in the features span are

associated with blue dots and high values with red dots.

As in the case of the XGBoost, the Logistic Regression algorithm also has a built-in feature impor-

tance rank. As shown in Figure 4.10 the most crucial feature is once again the Schedule Connection

Time. Since this feature has negative coefficient, high Schedule Connection Time values push the

classification more towards the negative class, i.e., the successful connection class.

The other relevant features are the incoming and outbound flight numbers, which contrarily to the

most important feature, have positive importance. High values in these features push the classification

towards the positive class, i.e., the unsuccessful connection class. Again, as earlier, this behavior cannot

be analyzed entirely since the data is encoded and represents a categorical feature with no ordinal logic.

The interpretation extracted from the intrinsic feature importance is coherent with the explanations

made by SHAP. The main differences happen after the 3rd most relevant feature because SHAP expla-

nation attributed more modest importance to the remaining features. This is visible with, for example,

the day of the month feature, DMonthDay, which has a higher impact on the intrinsic explanation than

the one seen with SHAP. The top 5 features are the same for both sources, the remaining 6 have a

slightly different order, and the least important feature changes from the Age feature to Traffic Network.

Although applicable, the interpretability explanation given in Section 2.1.1 is not straightforward since

all data was previously encoded. Because of that, one needs first to understand what it means to in-

crease each of the features by one unit. In the case of the most important feature, Schedule Connection

Time, the data originally ranged from -2210 until 2825 minutes, and the encoded data ranges from -

10.9858 to 12.4891, which means increasing the scaled data by 1 unit corresponds to increase the

actual time by 214 minutes. In the case of binary features, they originally were either 0 or 1. After the

60

scaling process, they became either -1.025 or 0.975, meaning that, for example, a change between

being an infant to being an adult corresponds to an increase of 2 units in the scaled version of the

feature.

Figure 4.10: Feature Coefficients of Logistic Regression model. The coefficients outputted by The

Logistic Regression algorithm show that the most important feature is once again the time scheduled for

the connection followed by the incoming and outgoing flight codes, respectively.

An increase of 214 minutes in the Schedule Connection Time changes the odds of successful versus

unsuccessful connection by a factor of -2.4 when all other features remain the same. This roughly means

90% reduced odds of missing the connection when having an extra 214 minutes connection time than a

passenger who does not have the extra connection time.

The remaining non-binary categorical features do not have a meaningful interpretation since there

is no ordinal logic behind their nature. Despite being easily interpretable, the binary features have a

minimal impact, and their interpretability is not relevant. All binary features have a negative factor,

meaning that the odds for successful versus unsuccessful connection are by a factor of 0.97, 0.96, and

0.95 lower in the case of Age, Sex, and Is group, respectively. Since two units separate the scaled

versions of the binary features, this means that being an adult (Age equals 1) translates to a reduction

in terms of odds of missing the connection of 6%, or that being a male (Gender equals 1) translates to

a reduction in terms of odds of missing the connection of 7% or even that traveling in a group (Is group

equals 1) translates to a reduction in terms of odds of missing the connection of 8%.

4.6 Decision Tree Classifier

4.6.1 Hyperparameter Tuning

Before training the Decision Tree Classifier algorithm, one carefully considered the selection of hy-

perparameters since this model’s intrinsic interpretable nature might be lost if the tree grows in depth

beyond reasonable. As stated in Section 2.1.2 the width of the tree grows exponentially with the depth,

61

so this is an essential parameter to tune. Other relevant hyperparameters include the minimum number

of samples required to split an internal node, the minimum number of samples required at leaf nodes,

the number of features to consider when looking for the best split and the criteria for the split, either Gini

or Entropy.

Hyperparameter Space

For the Decision Tree Classifier, the tested hyperparameters were: the depth of the tree ranging from

2 until 10, the minimum number of samples to split an internal node as well as the minimum number of

samples required at leaf nodes between 2 and 400 and the the number of features to consider when

looking for the best split corresponding to the range of available features, therefore from 1 until 11. A

preliminary study found that the Gini criterion results are very similar to the results using the Entropy

criterion. Therefore the choice was to use the less computationally expensive method, i.e., the Gini

criterion.

(a) Maximum depth (b) Minimum number of samples required to split an internal
node.

(c) Minimum number of samples required at leaf nodes. (d) Number of features to consider when looking for the best
split.

Figure 4.11: Decision Tree Classifier hyperparameter tuning. For each of the four hyperparameters the
performance of the model was assessed both on the training and on the validations set.

Figure 4.11 shows the results for the AUCROC score both in terms of the training and validation

data. Each plot shows the evolution of the two metrics by studying the influence of varying a single

hyperparameter while keeping all other parameters with the default values. As already stated, the most

62

critical feature is the depth of the tree, and as seen in Figure 4.11 the slight gain in the performance after

a depth of 5 is not worth the loss in interpretability, therefore one chose a depth of 5 to build the tree.

Values lower than 5 are not advisable since the jump AUCROC from depth 3 or 4 is considerable at the

expense of augmenting the tree depth of 2 or 1 units, respectively.

The results for the minimum number of samples to split an internal node as well as the minimum

number of samples required at leaf nodes follow a similar behavior to each other and the maximum

performance in terms of AUCROC score on the validation dataset is attained for the smallest value

allowed for these parameters, i.e., 2. Finally, for the number of features to consider when looking for the

best split, the maximum performance in terms of AUCROC score on the validation dataset is attained for

the total number of features, i.e., 11.

4.6.2 Results on the Test Set

After the selection of the hyperparameters, one trained the final model using the whole data and the

selected combination of hyperparameters.

Figure 4.12 shows the plot for the ROC-AUC and PR curves. The AUCROC is equal to 0.82 and an

the AUCPR is equal to 0.46.

Once again, the model performance follows the same trend seen with the Black-Box models and

with the Logistic Regression, and the performance on the majority class is better than the model’s

performance on the minority class except for the Recall that has similar values on both classes. The

difference in performance between the two classes among the remaining metrics is similar to the one

seen in the Logistic Regression model. The macro-averages scores are close to the ones seen with the

Logistic Regression, and therefore lower yet similar to the ones seen with the DNN except for the Recall,

which is higher in the interpretable models. As a whole, the accuracy is 0.75 and Table 4.14 summarizes

the remaining metrics.

(a) ROC-AUC curve (b) PR curve

Figure 4.12: Performance results of the DNN Algorithm. The first plot shows, in blue, the ROC curve

of the model and the second plot shows, also in blue, the PR curve of the model. In both cases the

performance of a random classifier is shown in a dotted orange line.

63

Table 4.14: Classification report of the Decision Tree Classifier algorithm.

Precision Recall F1-Score Support

Class 0 (successful connection) 0.98 0.76 0.85 326169

Class 1 (unsuccessful connection) 0.15 0.75 0.25 19029

Micro average 0.75 0.75 0.75 345198

Macro average 0.57 0.75 0.55 345198

Weighted average 0.94 0.75 0.82 345198

For the decision tree classifier, the search for the adequate threshold showed that there are no

predictions made by the model on the validation dataset whose probabilities fall around the default

threshold value. Therefore both the default threshold value and the value yielded from the G-mean

analysis present the same distribution in terms of classification, i.e., TP, TN, FP and FN. Table 4.15

summaries the results.

Table 4.15: Decision Tree Classifier Normalized Confusion Matrix results for both thresholds.
Threshold 0.53 0.50

True Negatives 75.50% 75.50%

False Negatives 25.04% 25.04%

False Positives 24.50% 24.50%

True Positives 74.96% 74.96%

4.6.3 Model Explainability

Figure 4.13 display the only four relevant features to the model explanation. Besides the Schedule

Connection Time, only the incoming and outgoing flight numbers and the Traffic Network influence the

output. Despite assuming an important role in the prediction, the second and third most important fea-

tures cannot be completely analyzed since the data represents a categorical encoded feature; therefore,

there is no ordinal logic behind it. Finally, the Traffic Network feature has almost no impact on the final

predictions.

In terms of the distribution among the classes, all features influence predicting Class 0 in similar

terms as to predict Class 1. We looked at the instances’ contribution to the final prediction of data

belonging to the majority class. Figure 4.14 represents these contributions and the equivalent plot for

data points belonging to the minority class, is the symmetric of the graph in Figure 4.14 in relation to the

y-axis.

64

Figure 4.13: Average feature impact on Decision Tree Classifier output per class. The chart shows, for

each feature, the absolute value of the average impact on the final prediction separated between the two

classes.

The following two most important features, the incoming flight and the outbound flight numbers, do

not have, once again, any ordinal logic behind them. The span of these features, in terms of impact on

the model output, differs, and in the case of the outbound flight number, it is shorter than the one seen

in the Schedule Connection Time.

Figure 4.14: SHAP summary plot for the successful class of Decision Tree Classifier algorithm. The plot

shows, for each feature, what type of impact each instance belonging to the majority class had on the

final prediction. Low values in the features span are associated with blue dots and high values with red

dots.

However, the span of the range of impact for the incoming flight number is similar to the one seen in

the Schedule Connection Time. Unlike the Schedule Connection Time and the outbound flight number,

the incoming flight number does not separate the impacts of high and low values. The remaining fea-

65

ture with any impact on the predictions, the Traffic Network variable, has almost no impact on the final

predictions since most of the data points are concentrated on the origin.

Like in the case of the XGBoost and the Logistic Regression models, the Decision Tree Classifier

also presents a built-in feature importance rank which is depicted in Figure 4.15. The results show that

although the ranking of features’ importance is the same, their relative values are not, and the Schedule

Connection Time assumes a more preponderant position relative to the remaining three features.

Figure 4.15: Intrinsic feature Importance of Decision Tree Classifier model. This chart shows, for each

feature, the relative importance measured in terms of the built-in tool of the model.

4.7 RuleFit

As stated in Section 2.1.4, RuleFit results are not always promising regarding Classification Tasks.

Even with this in mind, one decided to train a rule-based algorithm as the third type of intrinsically

interpretable model.

The first step was, as always, to tune the hyperparameters. However, before jumping to the tuning

process, one did a preliminary inspection to find the acceptable range for the hyperparameters. The

entirety of the training dataset was fed to the algorithm to find how different sets of hyperparameters

influenced the results on the validation set. Keeping in mind that this is an intrinsic interpretable model,

the goal is to reach a good performance while keeping the number of rules and the maximum depth of

the auxiliary trees to the bare minimum.

However, the preliminary study showed poor model performance, even with great flexibility regarding

the number of rules and maximum tree depth. Even though the model was trained with the balanced

dataset, it was incapable of having a good classification performance on both classes and assigned the

majority of instances to the dominant class in all hyperparameters combinations that one tried. The

preliminary study was a grid search with the maximum depth of the tree in the set [3, 10] and the

maximum number of rules in the set [50, 250, 500]. In all trials, the accuracy was high, around 0.95.

However, the performance in the minority class was terrible across the board. The F1-score of the

minority class ranged from a minimum 0.11 in the smallest hyperparameters combination, a maximum

66

depth of 3 and a maximum of 50 rules, to a maximum of 0.21 in the combination of hyperparameters

corresponding to a maximum depth of 10 and a maximum of 500 rules.

Table 4.16 summarizes the results in terms of ROCAUC of all hyperparameters combinations tested

during the preliminary study.

Table 4.16: Preliminary study of the ROC-AUC score on the validation dataset for the hyperparameters

of the RuleFit classification model.

ROC-AUC
Maximum Number of Rules

50 250 500

Maximum

Depth

3 0.52 0.53 0.55

10 0.54 0.55 0.56

The highest value in terms of the ROCAUC score on the validation set corresponds to the edge

of the grid. However, no further search was performed because the correspondent hyperparameters

already make the model uninterpretable, and besides, the memory requirements would make this search

computationally expensive. The model corresponding to a maximum depth of 10 and a maximum of 500

rules had 277 rules with non-zero coefficients, making this model already non-intelligible for humans.

In light of the findings, the decision was made not to continue pursuing a rule-based interpretable

algorithm.

4.8 Costs Assessment

The analysis presented in this Section is based on the work developed by Guimarães [43]. The

original work presents the cost analysis of which we replicate the equations and approximations. The

present work is, therefore an extension of the original paper that includes other models besides the

XGBoost. All four strategies presented so far have different results than the values obtained by the TAP

baseline model described in Section 4.1.

As stated in the original work, the airline will incur in two types of expenses: Precautionary Costs,

CPre and Corrective Costs, CCor. The current system in place, using the Baseline model, does not

consider Precautionary costs and assumes a corrective only approach.

When the model correctly predicts a TP, the airline will have helpful information to minimize the

disruption and will incur precautionary costs. Some possible actions include, but are not limited to, the

delaying of the second leg of the journey, assigning some airport personnel to escort the passengers

to their next flight, or even assigning a seat closer to the exit door and giving those passengers priority.

When the model predicts an FP, the airline will incur the exact precautionary costs that we saw in the TP

case. Moreover, whenever the model predicts an FN, the airline will incur unexpected corrective costs

to solve the missed connection. These costs may include assigning the passenger onto a new flight

and making the arrangements necessary for the extended layover, including overnight accommodation

or meal vouchers.

67

Table 4.17 summarizes the information gathered by Guimarães:

Table 4.17: Cost structure of the different approaches.

Basline Model Developed Frameworks

Number of Precautionary actions No Actions TP & FP

Number of Corrective actions TP & FN FN

The following step, performed in the original research, was to consider the difference in costs be-

tween the implementation versus no implementation of the XGBoost model. We followed the same

approach but in the case of the current scope the difference will be computed to each one of the models

independently. Guimarães derived the following equations:

∆C = [CPre × (FP + TP) + CCor × FN]− CCor × (TP + FN) (4.1)

assuming a relationship between the costs of p, CCor = pCPre,

∆C = CPre × (FP + TP)− p× CPre × TP (4.2)

Since, as pointed in the original research, the models are intended to lower the costs with missed

connections for the airline, we aim at a negative change of ∆C,

∆C < 0 ⇔ p >
FP + TP

TP
(4.3)

Table 4.18 shows the computed results for each one of the models using Equation (4.3).

Table 4.18: Relationship between Precautionary and Corrective costs for each model.

pmin threshold not tuned pmin threshold tuned

XGBoost 1.25 1.27

DNN 3.14 6.04

Logistic Regression 6.14 6.22

Decision Tree Classifier 6.60 6.60

Table 4.18 indicate that the solution outputted by each one of the models is worth pursuing if CCor

are at least p times greater than CPre. There is no concrete data on TAP costs, but it is reasonable to

assume that corrective costs are more expensive than precautionary costs.

Overall, the results show that the tuned threshold approach produced worse results compared to the

default threshold. The results worsened because the threshold tuning focused on the G-mean, meaning

that the threshold value choice was based on a trade-off between classification performances on both

the majority and minority classes, i.e., it focused on precision and recall. When looking to Equation (4.3),

Guimarães noticed that (FP + TP)/TP is equivalent to 1/precision as defined in Section 2.4 meaning

that the ratio between costs is inversely proportional to the recall, which was not the strategy used to

68

tune the threshold value.

The XGBoost had the best results in terms of the easiness of possible savings for the airline since it

only requires CCor to be 1.25 times greater than CPre. The remaining algorithms had worse performance

than the XGBoost, but the use of the Logistic Regression or Decision Tree Classifier might still be

justifiable due to their interpretability.

4.9 Results Assessment

All models were trained in similar conditions and assessed on the same test data; therefore, a qual-

itative and quantitative comparison is possible. In terms of accuracy, and considering the case of the

default threshold value for all algorithms, the best model was, by far, the XGBoost with an accuracy

score of 0.98. The DDN had an accuracy of 0.92, followed by the Logistic Regression and the Decision

Tree Classifier with accuracies of 0.77 and 0.75, respectively. This accuracy rank shows that the Black

Box models had a higher accuracy than the White Box models in this classification task.

However, and as stated earlier, given that this is a highly imbalanced classification problem, the

accuracy is not the best metric since the algorithm might be biased towards the dominant class. A

simple model that only outputs predictions belonging to the majority class would present, in terms of

accuracy, a score of 0.94, which would make it better than all trained models except for the XGBoost

however, this simple model would have miss-labeled all unsuccessful connections and would have had

no skill whatsoever. Therefore, looking at either the Precision, Recall, or F1-score macro-average values

or the ROC-AUC or PR-AUC scores is a better indicator of the model performance. Multiple metrics

are essential in the current classification task because, for example, in the above-mentioned example,

although accuracy was high, the ROC-AUC was low, standing at 0.5, which would have indicated that

the model had no skill.

The optimal point between Precision and Recall depends on the severity of the issue in hand, in this

case the costs incurred by the airline. Nonetheless, for cases with missed connections, it is advised to

minimize the risk of not alerting the airline about a person that may be at risk of missing the connection

by minimizing the Miss Rate or False Negative Rate:

FNR =
FN

P
= 1−Recall (4.4)

Since the model is predicting if a passenger will make a successful connection or not, the model

aims to have a high Recall value, meaning that the model predicts only a smaller number of FN.

In light of this, the rank of the models by their respective macro-averaged Recall is XGBoost with

0.87; Logistic Regression with 0.76; Decision Tree Classifier with 0.75; and DNN with 0.66. When

ranked according to the Recall, the initial order set by the accuracy is no longer in place, and the White

Box models surpass the state-of-the-art Black Box model, the Neural Network, and shorten the distance,

in terms of scores, to the best model, the XGBoost. Looking at the Recall in the minority class yields

even better results in terms of the performance of White Box models since they achieve the best score

69

ex aequo with the XGBoost model. The results were XGBoost, Logistic Regression, and Decision Tree

Classifier with Recall on the minority class of 0.75, the DNN with a Recall on the minority class of 0.36.

Regarding the models’ interpretability/explainability, all approaches presented different results. In the

case of the XGBoost model, the Black Box tree ensemble algorithm, the explanation results that SHAP

gave differ from the feature importance results given by the built-in tool. In those cases, not only the less

important features saw a change in the rank but also among the top ranks the two approaches showed

different results.

In the second Black Box model, the DNN, the explanation given by SHAP was mostly coherent with

the explanation given by SHAP on the XGBoost algorithm predictions, except for the importance of day-

related features. The DNN was the only model among the four that did not have any form of built-in

feature importance tool.

In the cases of the White Box models, the results from the models’ intrinsic interpretability were

mostly coherent with the explanations by SHAP. The Decision Tree based its predictions on four fea-

tures, which are the same features to which SHAP outputted any level of importance, and the Logistic

Regression coefficients, when ordered by their absolute value, corresponding to the order of feature

importance outputted by SHAP. Only a slight deviation in the behavior was noticed in terms of the

DMonthDay feature to which SHAP outputted an impact well below the incoming flight number, although

the two features coefficients are not that different.

70

Chapter 5

Conclusions

The steady growing demand seen in the air transportation industry over the recent years has naturally

been followed by a growth in aviation traffic and overcrowded airports. More investment is required in

improving airline operations and passenger satisfaction in the aviation industry since it is a multi-billion

dollar industry with razor-thin profit margins. For stakeholders, this means that all improvements in

the business are welcomed, but at the same time, they might be unwilling to make decisions with no

knowledge of the reasoning behind it whatsoever.

One of the main problems in this work was the volume of data. This leads to some issues in terms of

memory and the computational power needed to train the models. Another problem was to find suitable

ways to compare models since there are many different requirements in terms of performance goals.

Ideally, the model should get as many correct predictions as possible while not hurting its interpretability

or the associated costs. However, these three conditions have different and contradicting behaviours.

Our analysis found that getting as many correct predictions as possible might hurt the interpretability

of the model, and putting too much emphasis on the interpretability might hurt the costs for the airline. As

shown in Section 4.8, focusing too much on, for example, minimizing the Miss Rate on the minority class

might come at the expense of degrading the performance on the majority class. While minimizing the

Miss Rate on the minority class may be the correct way to proceed in terms of passenger satisfaction,

ultimately, the airline profitability is affected, which is more desirable.

Section 4.9, on the other hand, showed that trying to explain a model after the training process has

occurred might lead the modeller to believe in some rank of importance that can be refuted by using

another tool to assess feature importance. This meets the original idea that the safest solution to certify

interpretability is to use inherently interpretable models.

All models attributed the highest importance to the feature corresponding to the time planned for

the connection, which is coherent with prior beliefs. Other important features common to all models

were the incoming and outgoing flight codes. These two features encode a lot of information given

the uniqueness nature of the flight identifiers. These features include information regarding the origin

or destination airport providing their refer to the incoming or outgoing flight codes, respectively. The

remaining features had mixed impacts across the different models. The feature indicating the type

71

of transit passenger, for example, had a considerable impact on the XGBoost and shy impact in the

Decision Tree Classifier but had only a marginal impact on the remaining algorithms.

The other features, namely the ones related to the day of the connection and the class on which

the passenger was traveling, had only marginal to no impact across all the models. Furthermore, the

demographic features such age and gender generally had the least impact on the final predictions, and

were not even considered on the Decision Tree Classifier.

5.1 Achievements

The major achievement of the present work was the introduction of model interpretability in the

airline connections optimization domain. The model and explanations developed allow for predicting the

likelihood of missed connections that might result in capital savings to the airline if it acts beforehand

and does this while presenting the reasons for such decisions allowing for the ownership by responsible

entities. We showed that despite not being globally as accurate as Black-Box models, White-Box models

can still have a good performance in the minority class of an imbalance dataset classification task.

5.2 Future Work

As this is a domain of knowledge experiencing a lot of research and interest from investigators,

new approaches and methods are coming up fast. As a possible extension of the current work, one

could apply new state-of-the-art algorithms. One of such new approaches is called Generalized Optimal

Sparse Decision Tree, an algorithm that intends to provide a general framework for optimizing Decision

Trees with a guarantee of optimality.

As a compliment, one could also try to implement a rule-based algorithm other than RuleFit to assess

its performance on the task and compare it with the remaining algorithms. One example could be

studying the performance of the Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

algorithm.

As a means to increase the performance on the different models one could also try to train indepen-

dent models to each class and then make the predictions based on the output from both models but this

approach has the potential to degrade the post hoc model explanations.

72

Bibliography

[1] C. Rudin and J. Radin. Why are we using black box models in ai when we don’t need to? a lesson

from an explainable ai competition. Harvard Data Science Review, 1, 10 2019. doi: 10.1162/

99608f92.5a8a3a3d.

[2] E. Angelino, N. Larus-Stone, D. Alabi, M. Seltzer, and C. Rudin. Learning certifiably optimal rule

lists. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, 2017. doi: 10.1145/3097983. URL https://doi.org/10.1145/3097983.3098047.

[3] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi. A survey of methods

for explaining black box models. ACM Comput. Surv, 51, 2018. doi: 10.1145/3236009. URL

https://doi.org/10.1145/3236009.

[4] D. V. Carvalho, E. M. Pereira, and J. S. Cardoso. Machine learning interpretability: A survey on

methods and metrics. Electronics, 8(8), 2019. ISSN 2079-9292. doi: 10.3390/electronics8080832.

URL https://www.mdpi.com/2079-9292/8/8/832.

[5] J. H. Friedman and B. E. Popescu. Predictive learning via rule ensembles. The Annals of Applied

Statistics, 2:916–954, 2008. doi: 10.1214/07-AOAS148.

[6] C. Rudin. Stop explaining black box machine learning models for high stakes decisions and use

interpretable models instead. Nature Machine Intelligence, 1:206–215, 10 2018. URL https:

//arxiv.org/abs/1811.10154v3.

[7] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu. Definitions, methods, and

applications in interpretable machine learning. Proceedings of the National Academy of Sci-

ences, 116(44):22071–22080, Oct 2019. ISSN 1091-6490. doi: 10.1073/pnas.1900654116. URL

http://dx.doi.org/10.1073/pnas.1900654116.

[8] F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable machine learning, 2017.

arXiv: 1702.08608.

[9] C. Molnar, G. Casalicchio, and B. Bischl. Interpretable machine learning – a brief history, state-of-

the-art and challenges, 2020. arXiv: 2010.09337.

[10] T. Hastie and R. Tibshirani. Generalized Additive Models. Statistical Science, 1(3):297 – 310, 1986.

doi: 10.1214/ss/1177013604. URL https://doi.org/10.1214/ss/1177013604.

73

https://doi.org/10.1145/3097983.3098047
https://doi.org/10.1145/3236009
https://www.mdpi.com/2079-9292/8/8/832
https://arxiv.org/abs/1811.10154v3
https://arxiv.org/abs/1811.10154v3
http://dx.doi.org/10.1073/pnas.1900654116
https://doi.org/10.1214/ss/1177013604

[11] M. Fasiolo, R. Nedellec, Y. Goude, and S. N. Wood. Scalable visualization methods for mod-

ern generalized additive models. Journal of Computational and Graphical Statistics, 29(1):78–86,

2020. doi: 10.1080/10618600.2019.1629942. URL https://doi.org/10.1080/10618600.2019.

1629942.

[12] A. Zeileis, T. Hothorn, and K. Hornik. Model-based recursive partitioning. Journal of Computational

and Graphical Statistics, 17(2):492–514, 2008. doi: 10.1198/106186008X319331. URL https:

//doi.org/10.1198/106186008X319331.

[13] A. Adadi and M. Berrada. Peeking inside the black-box: A survey on explainable artificial intelli-

gence (xai). IEEE Access, 6:52138–52160, 2018. doi: 10.1109/ACCESS.2018.2870052.

[14] K. Sokol and P. Flach. Explainability fact sheets. Proceedings of the 2020 Conference on Fairness,

Accountability, and Transparency, Jan 2020. doi: 10.1145/3351095.3372870. URL http://dx.

doi.org/10.1145/3351095.3372870.

[15] S. Mohseni, N. Zarei, and E. D. Ragan. A multidisciplinary survey and framework for design and

evaluation of explainable ai systems. ACM Trans. Interact. Intell. Syst. 1, 1, Article, 1:46, 2020. doi:

10.1145/3387166.

[16] A. E. Eltoukhy, F. T. Chan, and S. H. Chung. Airline schedule planning: A review and future

directions. Industrial Management and Data Systems, 117:1201–1243, 2017. doi: 10.1108/

IMDS-09-2016-0358.

[17] M. M. Etschmaier and D. F. X. Mathaisel. Airline scheduling: An overview. Transportation Science,

19:127–138, 1985. ISSN 00411655. doi: 10.1287/trsc.19.2.127.

[18] H. D. Sherali, E. K. Bish, and X. Zhu. Airline fleet assignment concepts, models, and algorithms.

European Journal of Operational Research, 172:1–30, 10 2006. ISSN 0377-2217. doi: 10.1016/J.

EJOR.2005.01.056.

[19] B. Gopalakrishnan and E. L. Johnson. Airline crew scheduling: State-of-the-art. Annals of

Operations Research 2005 140:1, 140:305–337, 10 2005. ISSN 1572-9338. doi: 10.1007/

S10479-005-3975-3. URL https://link.springer.com/article/10.1007/s10479-005-3975-3.

[20] L. H. Lee, C. U. Lee, and Y. P. Tan. A multi-objective genetic algorithm for robust flight scheduling

using simulation. European Journal of Operational Research, 177:1948–1968, 10 2007. doi: 10.

1016/J.EJOR.2005.12.014.

[21] S. Yan and H. F. Young. A decision support framework for multi-fleet routing and multi-stop flight

scheduling. Transportation Research Part A: Policy and Practice, 30:379–398, 1996. doi: 10.1016/

0965-8564(95)00029-1.

[22] S. Yan and C. H. Tseng. A passenger demand model for airline flight scheduling and fleet routing.

Computers & Operations Research, 29:1559–1581, 10 2002. ISSN 0305-0548. doi: 10.1016/

S0305-0548(01)00046-6.

74

https://doi.org/10.1080/10618600.2019.1629942
https://doi.org/10.1080/10618600.2019.1629942
https://doi.org/10.1198/106186008X319331
https://doi.org/10.1198/106186008X319331
http://dx.doi.org/10.1145/3351095.3372870
http://dx.doi.org/10.1145/3351095.3372870
https://link.springer.com/article/10.1007/s10479-005-3975-3

[23] S. Yan, C. H. Tang, and M. C. Lee. A flight scheduling model for taiwan airlines under market

competitions. Omega, 35:61–74, 10 2007. doi: 10.1016/J.OMEGA.2005.03.002.

[24] H. Jiang and C. Barnhart. Dynamic airline scheduling. Transportation Science, 43(3):336–354,

2009. doi: 10.1287/trsc.1090.0269. URL https://doi.org/10.1287/trsc.1090.0269.

[25] S. Lan, J.-P. Clarke, and C. Barnhart. Planning for robust airline operations: Optimizing aircraft

routings and flight departure times to minimize passenger disruptions. Transportation Science, 40

(1):15–28, 2006. doi: 10.1287/trsc.1050.0134. URL https://pubsonline.informs.org/doi/abs/

10.1287/trsc.1050.0134.

[26] J. Abara. Applying integer linear programming to the fleet assignment problem. Interfaces, 19(4):

20–28, 1989. ISSN 00922102, 1526551X. URL http://www.jstor.org/stable/25061245.

[27] C. A. Hane, C. Barnhart, E. L. Johnson, R. E. Marsten, G. L. Nemhauser, and G. Sigismondi.

The fleet assignment problem: Solving a large-scale integer program. Mathematical Programming

1995 70:1, 70:211–232, 10 1995. ISSN 1436-4646. doi: 10.1007/BF01585938. URL https:

//link.springer.com/article/10.1007/BF01585938.

[28] R. A. Rushmeier and S. A. Kontogiorgis. Advances in the optimization of airline fleet assignment.

Transportation Science, 31(2):159–169, 1997. doi: 10.1287/trsc.31.2.159. URL https://doi.org/

10.1287/trsc.31.2.159.

[29] Z. Liang and W. A. Chaovalitwongse. The aircraft maintenance routing problem. Springer Opti-

mization and Its Applications, 30:327–348, 2009. doi: 10.1007/978-0-387-88617-6 12.

[30] K. T. Talluri. The four-day aircraft maintenance routing problem. Transportation Science, 32(1):

43–53, 1998. doi: 10.1287/trsc.32.1.43. URL https://doi.org/10.1287/trsc.32.1.43.

[31] C. Sriram and A. Haghani. An optimization model for aircraft maintenance scheduling and re-

assignment. Transportation Research Part A: Policy and Practice, 37:29–48, 10 2003. ISSN 0965-

8564. doi: 10.1016/S0965-8564(02)00004-6.

[32] M. Başdere and Ümit Bilge. Operational aircraft maintenance routing problem with remaining time

consideration. European Journal of Operational Research, 235:315–328, 10 2014. ISSN 0377-

2217. doi: 10.1016/J.EJOR.2013.10.066.

[33] K. L. Hoffman and M. Padberg. Solving airline crew scheduling problems by branch-and-cut. Man-

agement Science, 39:657–682, 1993. doi: 10.1287/MNSC.39.6.657.

[34] I. Muter, I. Birbil, K. Bülbül, G. Şahin, H. Yenigün, D. Taş, and D. Tüzün. Solving a robust airline

crew pairing problem with column generation. Computers & Operations Research, 40:815–830, 10

2013. ISSN 0305-0548. doi: 10.1016/J.COR.2010.11.005.

[35] M. Lohatepanont and C. Barnhart. Airline schedule planning: Integrated models and algorithms

for schedule design and fleet assignment. Transportation Science, 38:19–32, 2004. doi: 10.1287/

TRSC.1030.0026.

75

https://doi.org/10.1287/trsc.1090.0269
https://pubsonline.informs.org/doi/abs/10.1287/trsc.1050.0134
https://pubsonline.informs.org/doi/abs/10.1287/trsc.1050.0134
http://www.jstor.org/stable/25061245
https://link.springer.com/article/10.1007/BF01585938
https://link.springer.com/article/10.1007/BF01585938
https://doi.org/10.1287/trsc.31.2.159
https://doi.org/10.1287/trsc.31.2.159
https://doi.org/10.1287/trsc.32.1.43

[36] J. J. Rebollo and H. Balakrishnan. Characterization and prediction of air traffic delays. Trans-

portation Research Part C: Emerging Technologies, 44:231–241, 10 2014. ISSN 0968-090X. doi:

10.1016/J.TRC.2014.04.007.

[37] C. L. Wu and K. Law. Modelling the delay propagation effects of multiple resource connections in

an airline network using a bayesian network model. Transportation Research Part E: Logistics and

Transportation Review, 122:62–77, 10 2019. ISSN 1366-5545. doi: 10.1016/J.TRE.2018.11.004.

[38] N. Kafle and B. Zou. Modeling flight delay propagation: A new analytical-econometric approach.

Transportation Research Part B: Methodological, 93:520–542, 10 2016. ISSN 0191-2615. doi:

10.1016/J.TRB.2016.08.012.

[39] Q. Li and R. Jing. Characterization of delay propagation in the air traffic network. Journal of Air

Transport Management, 94:102075, 10 2021. ISSN 0969-6997. doi: 10.1016/J.JAIRTRAMAN.

2021.102075.

[40] X. Fageda and R. Flores-Fillol. Airport congestion and airline network structure. Advances in Airline

Economics, 6:335–359, 2017. ISSN 2212-1609. doi: 10.1108/S2212-160920170000006013.

[41] B. Yu, Z. Guo, S. Asian, H. Wang, and G. Chen. Flight delay prediction for commercial air transport:

A deep learning approach. Transportation Research Part E: Logistics and Transportation Review,

125:203–221, 10 2019. ISSN 1366-5545. doi: 10.1016/J.TRE.2019.03.013.

[42] S. Bratu and C. Barnhart. An analysis of passenger delays using flight operations and passenger

booking data. Air Traffic Control Quarterly, 13(1):1–27, 2005. doi: 10.2514/atcq.13.1.1. URL

https://doi.org/10.2514/atcq.13.1.1.

[43] M. Guimarães. Predicting passenger connectivity in an airline’s hub airport. Master’s thesis, Insti-

tuto Superior Técnico – Universidade de Lisboa, Av. Rovisco Pais. 1049-001 Lisboa, 1 2021.

[44] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin. Learning From Data. AMLBook, 2012. ISBN

1600490069.

[45] V. Bewick, L. Cheek, and J. Ball. Statistics review 14: Logistic regression. Critical Care, 9:112–118,

2 2005. doi: 10.1186/CC3045.

[46] J. Gentle, W. K. Härdle, and Y. Mori. Handbook of Computational Statistics: Concepts and Methods.

Springer, Berlin, Heidelberg, 01 2012. ISBN 978-3-642-21550-6. doi: 10.1007/978-3-642-21551-3.

[47] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.

Wadsworth and Brooks, Monterey, CA, 1984.

[48] C. Molnar. Interpretable Machine Learning. 2019.

[49] L. Breiman. Bagging predictors. Machine Learning 1996 24:2, 24:123–140, 1996. ISSN 1573-0565.

doi: 10.1007/BF00058655. URL https://link.springer.com/article/10.1007/BF00058655.

76

https://doi.org/10.2514/atcq.13.1.1
https://link.springer.com/article/10.1007/BF00058655

[50] P. Buhlmann. Bagging, Boosting and Ensemble Methods. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2012. ISBN 978-3-642-21551-3. doi: 10.1007/978-3-642-21551-3 33. URL https:

//doi.org/10.1007/978-3-642-21551-3_33.

[51] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-August-2016:

785–794, 3 2016. doi: 10.1145/2939672.2939785. URL https://arxiv.org/abs/1603.02754v3.

[52] H. W. Sorenson and D. L. Alspach. Recursive bayesian estimation using gaussian sums. Automat-

ica, 7:465–479, 7 1971. ISSN 0005-1098. doi: 10.1016/0005-1098(71)90097-5.

[53] H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic

Control, 19(6):716–723, 1974. doi: 10.1109/TAC.1974.1100705.

[54] M. Stone. Comments on model selection criteria of akaike and schwarz. Journal of the Royal

Statistical Society. Series B (Methodological), 41(2):276–278, 1979. ISSN 00359246. URL http:

//www.jstor.org/stable/2985044.

[55] S. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. Advances in

Neural Information Processing Systems, 2017-December:4766–4775, 10 2017. URL https://

arxiv.org/abs/1705.07874v2.

[56] A. Bilogur. Missingno: a missing data visualization suite. Journal of Open Source Software, 3(22):

547, 2018. doi: 10.21105/joss.00547. URL https://doi.org/10.21105/joss.00547.

[57] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyperparameter

optimization framework. In Proceedings of the 25rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2019.

77

https://doi.org/10.1007/978-3-642-21551-3_33
https://doi.org/10.1007/978-3-642-21551-3_33
https://arxiv.org/abs/1603.02754v3
http://www.jstor.org/stable/2985044
http://www.jstor.org/stable/2985044
https://arxiv.org/abs/1705.07874v2
https://arxiv.org/abs/1705.07874v2
https://doi.org/10.21105/joss.00547

78

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	List of Acronyms
	1 Introduction
	1.1 Topic Overview
	1.1.1 Model Interpretability
	1.1.2 Flight Operations

	1.2 Objectives and Deliverables
	1.3 Thesis Outline

	2 Background
	2.1 Supervised Learning
	2.1.1 Logistic Regression
	2.1.2 Decision Trees
	2.1.3 Ensemble Learning Algorithms
	2.1.4 RuleFit
	2.1.5 Neural Networks

	2.2 Data Imbalance
	2.2.1 Model Selection Criteria

	2.3 Data Preprocessing
	2.3.1 Feature Scaling
	2.3.2 Categorical Encoding
	2.3.3 Imputation

	2.4 Classification Evaluation Metrics
	2.5 Shapley Additive Explanations

	3 Data Preparation
	3.1 Exploratory Data Analysis
	3.1.1 Pax dataset
	3.1.2 Other Features
	3.1.3 Flight dataset

	3.2 Data Enhancement
	3.2.1 Data Cleaning

	3.3 Creation of New Features
	3.4 Data Selection
	3.5 Data Transformation
	3.5.1 Data Encoding
	3.5.2 Data Scaling

	3.6 Data Generation
	3.6.1 Data Re-balancing

	4 Modelling
	4.1 Model Baseline
	4.2 Model Proposed
	4.3 XGBoost
	4.3.1 Hyperparameter Tuning
	4.3.2 Results on the Test Set
	4.3.3 Model Explainability

	4.4 Neural Networks
	4.4.1 Hyperparameter Tuning
	4.4.2 Results on the Test Set
	4.4.3 Model Explainability

	4.5 Logistic Regression
	4.5.1 Hyperparameter Tuning
	4.5.2 Results on the Test Set
	4.5.3 Model Explanability

	4.6 Decision Tree Classifier
	4.6.1 Hyperparameter Tuning
	4.6.2 Results on the Test Set
	4.6.3 Model Explainability

	4.7 RuleFit
	4.8 Costs Assessment
	4.9 Results Assessment

	5 Conclusions
	5.1 Achievements
	5.2 Future Work

	Bibliography

