
Evaluating generalization in Deep Reinforcement Learning with

Procedurally Generated Environments

Miguel Borges Freire

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Arlindo Manuel Limede de Oliveira

Examination Committee

Chairperson: Prof. José Luı́s Brinquete Borbinha
Supervisor: Prof. Arlindo Manuel Limede de Oliveira

Member of the Committee: Prof. Francisco António Chaves Saraiva de Melo

December 2021

Acknowledgments

First of all, I’d like to thank my supervisor Professor Arlindo Oliveira for his guidance, friendship, and

all the trust placed in me.

My humble thank you to Alexandre and André for all the support, discussions, and friendship.

A special thanks to João, Henrique C., Henrique P., and Guilherme for all the adventures and com-

panionship over the last six years.

A big thank you to all my friends and family for the constant support and love.

Finally, I’d like to thank my parents for every opportunity they gave me; for all the love and care. It’s

been a privilege being your son, and I’m sure you are proud of the man I’ve become.

Abstract

Deep Reinforcement Learning agents, mainly those who learn from visual observations, often fail to

transfer their knowledge to unseen environments. In games, standard Deep Reinforcement Learning

protocols commonly promote testing in the same set of levels used in training. This practice leads an

agent to easily overfit a given training set, failing to transfer its knowledge to out of distribution lev-

els. To overcome this problem, we construct two separate training and test sets using procedurally

generated environments from the Procgen Benchmark. We use this benchmark to measure the ex-

tent of overfitting and systematically study the effects of using regularization and data augmentation

methods on the capacity of the agent to generalize. We found that, in general, using regularization

and data augmentation improves generalization, with an efficacy that is dependent on the environ-

ment’s dynamics. Furthermore, we study how network architectural decisions such as the depth and

the width of the convolutional network, the usage of pooling layers, skip-connections, and modifications

of the classification layer affect generalization. Finally, we empirically demonstrate that convolutional

neural networks with small kernels in the early convolutional layers can accomplish the same gener-

alization level as a deeper residual model. The code used for this dissertation is publicly available on

https://github.com/MiguelFreire/rl-generalization.

Keywords

Deep Reinforcement Learning; Generalization; Overfitting; Procedural Generated Content.

iii

https://github.com/MiguelFreire/rl-generalization

Resumo

Agentes de aprendizagem profunda por reforço, principalmente aqueles que aprendem de observações

visuais tendem a falhar a transferência do seu conhecimento para ambientes nunca antes vistos. Em

jogos, é comum protocolos de aprendizagem profunda por reforço promoverem o teste no mesmo con-

junto de nı́veis usado durante o treino. Esta prática leva o agente a dar overfit no conjunto de treino,

não conseguindo transferir o seu conhecimento para nı́veis fora da distribuição. Para ultrapassarmos

este problema, construı́mos dois conjuntos separados de treino e de teste usando ambientes gera-

dos processualmente do Procgen Benchmark. Usamos este benchmark para medir a extensão do

overfitting e estudar sistematicamente os efeitos da regularização e de métodos de augmentação de

dados, frequentemente usados em aprendizagem supervisionada, na capacidade de generalização

do agente . Descobrimos que, em geral, usar regularização e augmentação de dados melhora a

generalização, e que a sua eficácia está dependente das dinâmicas do ambiente. Além disso, es-

tudámos como as decisões sobre a arquitetura neuronal, tais como a profundidade e largura da rede, o

uso de camadas de pooling, skip-connections, e como modificações à camada de classificação, afetam

a generalização. Finalmente, demonstramos empiricamente que uma rede convolucional com filtros pe-

quenos nas primeiras camadas convolucionais consegue atingir o mesmo nı́vel de generalização que

modelos residuais mais profundos. O código usado nesta dissertação está disponı́vel publicamente em

https://github.com/MiguelFreire/rl-generalization.

Palavras Chave

Aprendizagem Profunda por Reforço; Generalização; Overfitting; Conteúdo gerado por procedimentos.

v

https://github.com/MiguelFreire/rl-generalization

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Thesis Proposal . 3

1.3 Contributions . 3

1.4 Structure of the document . 4

2 Background 5

2.1 Reinforcement Learning . 7

2.1.1 Value functions . 7

2.1.2 Solving the MDP . 8

2.1.3 Exploration-Exploitation Dilemma . 10

2.2 Deep Learning . 10

2.2.1 Preventing Overfitting in Deep Learning . 13

2.3 Deep Reinforcement Learning . 14

2.3.1 Proximal Policy Optimisation . 14

2.3.2 Generalized Advantage Estimation . 16

2.4 Related Work . 17

3 Evaluating Generalization in Deep Reinforcement Learning 19

3.1 Overfitting in Deep Reinforcement Learning and Generalization 21

3.2 Procedurally Generated Environments . 22

3.3 Generalization Gap and Evaluation Metrics . 23

3.4 Training and Testing . 24

3.4.1 Training . 24

3.4.2 Testing . 25

4 Results and Discussion 27

4.1 Evaluating Training Set Size . 29

4.2 Evaluating Regularization Methods . 32

4.2.1 Batch Normalization . 32

vii

4.2.2 Dropout . 33

4.2.3 L2 Regularization . 36

4.2.4 Entropy Regularization . 37

4.3 Evaluating Data Augmentation . 41

4.4 Evaluating Neural Network Architectures . 43

5 Conclusions and Future Work 53

5.1 Overview on the Results . 55

5.2 Future Work . 56

viii

List of Figures

2.1 An example of a MLP network with n inputs, 3 hidden layers, and 2 outputs. Each neuron

in the hidden layer applies a non-linearity to the weighted sum of its inputs 12

2.2 An example of a Convolutional Layer where a 2 × 2 kernel is applied to a 3 × 3 × 1 input

which generates a 2× 2 feature map . 12

2.3 An example of a MaxPooling Layer where a 2 × 2 kernel is applied to a 3 × 3 × 1 input

which generates a 2× 2 output . 13

3.1 Nature CNN Architecture . 24

4.1 Training curves for several models trained with different set sizes 29

4.2 Percentage of levels solved in train and test as a function of the training set size 30

4.3 Attention Maps for several models trained with different training set sizes 30

4.4 Training curves for several models trained with and without Batch Normalization 32

4.5 Attention Maps for models trained with batch normalization 33

4.6 Training curves for several models with different Dropout’s probability p 34

4.7 Percentage of levels solved in train and test as a function of Dropout’s probability p 34

4.8 Attention Maps for several models trained with different dropout probability p 36

4.9 Training curves for several models trained with different L2’s weight 36

4.10 Percentage of levels solved in train and test as a function of L2’s weight 37

4.11 Attention Maps for several models trained with different values of L2’s weight 37

4.12 Training curves for several models trained with different entropy weight 39

4.13 Percentage of levels solved in train and test as a function of entropy’s weight 39

4.14 Attention Maps for several models trained with different entropy’s bonus value 41

4.15 Example of all data augmentation methods applied to an observation from CoinRun . . . 41

4.16 Training curves for models trained using data augmentation 42

4.17 Attention Maps for several models trained with different augmentation methods 43

4.18 IMPALA Architecture . 45

ix

4.19 Training curves for models trained using max pooling layers 46

4.20 Training curves for models trained using smaller convolutional filters 46

4.21 Training curves for models trained using more convolutional layers 47

4.22 Training curves for models trained using different numbers of convolutional channels . . . 47

4.23 Training curves for models trained using different number of neurons in the fully-connected

layer . 48

4.24 Training curves for models trained using a MLP instead of just a single fully-connected

layer . 48

4.25 Training curves for models trained using skip-connections 50

4.26 Attention Maps for architectures with modified convolutional encoder 50

4.27 Attention Maps for architectures with modified fully-connected layer 50

4.28 Attention Maps for architectures with residual layers . 51

x

List of Tables

3.1 Default hyperparameters’ values for PPO Algorithm . 25

4.1 Summary results for training set size experiment . 31

4.2 Summary results for batch normalization experiment . 34

4.3 Summary results for dropout experiment . 35

4.4 Summary results for L2 regularization experiment . 38

4.5 Summary results for entropy regularization experiment . 40

4.6 Summary results for data augmentation experiments . 44

4.7 Summary results for architecture experiments . 49

List of Algorithms

2.1 Actor-Critic PPO Clipped . 16

xi

xii

Acronyms

ALE Arcade Learning Environment

ANN Artificial Neural Network

CNN Convolutional Neural Network

DQN Deep-Q Network

DL Deep Learning

DRL Deep Reinforcement Learning

FC Fully Connected

GAE Generalized Advantage Estimation

GG Generalization Gap

MDP Markov Decision Process

MLP Multilayer Perceptron

PPO Proximal Policy Optimisation

RL Reinforcement Learning

xiii

xiv

1
Introduction

Contents

1.1 Motivation . 3

1.2 Thesis Proposal . 3

1.3 Contributions . 3

1.4 Structure of the document . 4

1

2

1.1 Motivation

Deep Reinforcement Learning (DRL) has been broadly used in recent years to train agents capable of

playing games and solving tasks at expert level. Some examples of these agents are MuZero [1] for

board games such as Chess, Go, Shogi and Atari games, AlphaStar [2] for Starcraft II, OpenFive [3] for

Dota 2 and DeepStack [4] for Poker.

Despite their broad success deep reinforcement learning algorithms require millions or even billions

of data points and huge computational resources to train agents to achieve master performance. Even

though these agents can perform at the highest level in the environment they were trained on, they

fail, sometimes catastrophically, to transfer their knowledge to unseen environments. Biological agents,

however, are able to learn quickly and to generalize to a number of different tasks and environments,

using methods that are still not fully understood. [5,6].

Classic Reinforcement Learning (RL) game benchmarks commonly promote training and testing in

the same environment, but recent studies [7–9] have shown that the capacity to generalize to unseen

environments can be used to optimize data efficiency and develop more robust and capable agents. For

example, in real-world applications of reinforcement learning like robotics the agent must be trained in a

simulated environment with a large collection of data and then have its knowledge transferred to a real-

world environment [10]. These challenges are also present in pixel-based reinforcement learning, where

the agent learns from pixel-based observations, due to its high-dimesionality and partial-observability

[11]. Bridging the gap between generalization and data-efficiency is pivotal not only to develop better

and robust agents for digital environments such as videogames but also for real-world applications such

as robotics.

1.2 Thesis Proposal

In this work, we provide a systematic empirical study on how different algorithmic and architectural

decisions impact generalization in pixel-based reinforcement learning in games. We use the power of

procedural generation to evaluate the level of overfitting by using two different sets of levels, one for

training and another one for testing.

1.3 Contributions

The main contributions of this dissertation are as follows:

• We extend a previous empirical study [7] on how different neural network architecture modules,

regularization methods and data augmentation techniques impact generalization by applying it to

3

different environments and by using a smaller neural-network architecture.

• We identify the source of generalization bottlenecks in small neural-network architectures helping

to bridge the gap between these and more robust models such as deeper Residual Networks.

• We employ a visual method (GradCAM) to understand the effects of different algorithmic and

neural architectural decisions on the learned vector produced by the convolutional encoder.

1.4 Structure of the document

This dissertation is structured as follows. Chapter 2 introduces fundamental concepts and background

for DRL as well as related work on the topic of Generalization in pixel-based DRL. Chapter 3 describes

the problem at hand, the proposed solution, and the experimental setup. Chapter 5 describes all exper-

iments, presents all results and associated discussions. Finally, Chapter 6 presents the main findings

and provides possible directions for future work.

4

2
Background

Contents

2.1 Reinforcement Learning . 7

2.2 Deep Learning . 10

2.3 Deep Reinforcement Learning . 14

2.4 Related Work . 17

5

6

This chapter presents all background, fundamental concepts and related work referred in this dis-

sertation, allowing for readers without a background in Deep Reinforcement Learning to be introduced

to the topic. In Section 2.1 we introduce the learning framework of Reinforcement Learning. In Section

2.2 we introduce deep learning and regularization methods. In the following section, 2.3, we introduce

Deep Reinforcement Learning that allows the usage of Neural Networks as function approximators for

Reinforcement Learning algorithms. Finally, in section 2.4 we cover the work related to the topic.

2.1 Reinforcement Learning

Reinforcement Learning is a learning framework where an agent learns to solve a sequential decision

problem through trial-and-error by interacting with an environment. This framework can be mathemat-

ically described as a Markov Decision Process (MDP). A MDP is described by a tuple (S,A, P,R, γ)

where S is the set of all possible states, A is the set of actions the agent can execute, P : S ×A× S →

[0, 1] is the transition probability of transitioning from one state to another given an action, R : S×A → R

is the reward function that gives a real value for a given action and state, and 0 < γ ≤ 1 the discount

factor which decreases the value of rewards received in the future. The interaction between the agent

and the environment can be done in a continuing setting (infinite horizon task) or in a episodic setting

(finite horizon task). In this work we are only concerned with the episodic setting. In this setting each

episode is further broken into individual timesteps t. At each timestep t the agent observes a state st

executes an action at, transitions to a new state st+1 and receives a reward rt. Let π : S ×A → [0, 1] be

a policy that determines the probability of executing a particular action for a given state and πθ a policy

parameterized by a weight vector θ. The goal of the agent is to find a policy πθ parameterized by θ that

maximizes an objective function Jθ.

Jπθ = E[

∞∑
t=0

γtrt]. (2.1)

The most common objective functions in the episodic setting are the undiscounted reward-to-go (Eq.

2.12 with γ = 1) and the discounted reward-to-go (Eq. 2.12 with γ < 1). In policy based methods, which

we will explain in section 2.1.2, it is often used the average per-step reward as an objective function:

Jπθ = lim
T→∞

1

T
E[

T∑
t=0

γtrt]. (2.2)

2.1.1 Value functions

Value functions are functions that describe how good it is for an agent to be in a given state or executing

a given action based on expected future rewards. The value of a state s following policy π is defined as

7

the expected return when starting in state s and following π thereafter. It’s formally defined as follows:

Vπ(s) = E[

∞∑
t=0

γtrt | st = s]. (2.3)

We can define a similar function for each state-action pair which describes how good is for an agent to

be in a given state and executing a given action based on expected future rewards. The value of a state

s and executing action a following policy π is defined as the expected return when starting in state s,

executing action a and following policy π thereafter. It’s formally defined as follows:

Qπ(s, a) = E[

∞∑
t=0

γtrt | st = s, at = a]. (2.4)

We call Vπ(s) the state-value function and Qπ(s, a) the action-value function.

Another value function that can be defined is the advantage function, which is the difference between

the action-value function Qπ(s, a) and the state value function Vπ(s) and measures how good it is to take

an action a in state s compared to taking the average action at state s. It is formally defined as follows:

Aπ(s, a) = Qπ(s, a)− Vπ(s) (2.5)

2.1.2 Solving the MDP

Solving a reinforcement learning problem, that is solving the MDP, means finding a policy that maximizes

some objective function in the long run. A policy π is said to be better or equal to a policy π′ if its

expected return is greater or equal to the one of π′ which can be defined formally as π ≤ π′ if and only

if Vπ(s) ≤ Vπ′(s) ∀s ∈ S. An optimal policy π∗ is defined as a policy that is equal or better than all other

policies: Vπ∗(s) ≤ Vπ(s) ∀π, ∀s ∈ S. Similarly, we can define optimal value functions as:

V ∗(s) = max
π

Vπ(s),∀s ∈ S, (2.6)

Q∗(s, a) = max
π

Qπ(s, a),∀s ∈ S,∀a ∈ A. (2.7)

The optimal policy can than be extracted directly from the optimal action-value function:

π∗(s) = arg max
a∈A

Q∗(s, a). (2.8)

8

We can rewrite equation 2.3 as a recursive definition:

Vπ(s) = E[rt +

∞∑
t=1

γtrt | st = s],

= E[rt + γVπ(st+1) | st = s].

(2.9)

The same can be done to the action-value function in Equation 2.4:

Qπ(s, a) = E[

∞∑
t=0

γtrt | s0 = s, a0 = a],

= E[rt + γQπ(st+1, at+1)) | st = s, at = a].

(2.10)

The two equations above are called Bellman Equations.

For tasks with finite MDPs (i.e processes with a finite set of states and actions), we have guarantees

of the existence of a solution which is independent of the policy and is a fixed point of the Bellman

Equation. The recursive relation in the Bellman equation can thus be used to compute the optimal

policy.

There are several methods to compute the optimal policy or a near optimal one. If the environment’s

transition dynamics are known or can be estimated, one may use Dynamic Programming to compute

the optimal policy. The methods where the environment’s dynamics are known or can at least be ap-

proximated are known as model-based methods. Another kind of methods that exploit the recursive

relationship on the Bellman equation are value-based methods which directly compute or approximate

value functions using Monte Carlo methods from complete episode’s trajectories or Temporal Difference

Learning using incomplete episode trajectories. The third and final method to compute the solution is to

directly optimize a parametrized policy using collected data and the policy gradient theorem (equation

2.11).

∇θJ(θ) = Eπ[∇π lnπθ(a|s)Ψt]. (2.11)

All methods that exploit the policy gradient theorem are called policy-based and play an important role

in Deep Reinforcement Learning. There are several different functions Ψt that can be used in equa-

tion 2.11, for example the action-value function (2.4), undiscounted total reward 2.12 or the advantage

function (2.5).

When using temporal difference methods or policy-based methods, one typically optimizes the policy

that the agent is currently following using data collected using the same policy. This type of learning is

called on-policy learning. If the agent is instead optimizing a policy using data collected using a different

policy this type of learning is called off-policy learning.

Policy-based methods usually have better convergence guarantees, are effective in high-dimensional

state and action spaces, can learn stochastic policies but are subject to local optima and are sample

9

inefficient (high variance). On the other hand, value-based methods are more sample efficient but are

less stable and can only model deterministic policies.

We can combine policy-based methods and value-based methods by decoupling the policy optimiza-

tion and value function learning in the policy gradient. These types of methods are called actor-critic and

have two components: the actor who executes a policy πθ and the critic, which is typically a value-

function, evaluates a policy.

Note that for small state and action spaces, it is possible to use matrices to represent any of the

value-functions and the policy, but when the state and action space starts to grow the computational

memory grows quadratically to each state-action pair so we need to find compact representations (ap-

proximations) of these functions. Furthermore, the state space is, in many cases, exponential or the

dimension of the problem.

2.1.3 Exploration-Exploitation Dilemma

One of the most famous problems in Reinforcement Learning is the trade-off between exploration and

exploitation. Should the agent explore and try new actions and perhaps find better policies or exploit

the knowledge that it has to earn high reward while probably missing the optimal policy? This dilemma

exists because the agent cannot exclusively choose one of the two strategies without failing. The agent

must try several actions and favor the ones that bring higher reward. The control between the two

strategies is key to develop agents that can master tasks. There are several strategies to tackle this

problem. Here, we present two. The first is the ε-greedy strategy where the agent as an ε probability of

choosing a random action instead of the one chose by its current policy, decreasing ε over time to favor

exploitation. In policy-based methods, the policy can also be optimized to favor long-term entropy which

provides early exploration, i.e unpredictability when taking actions. The entropy term can be added to

the objective function: 2.12:

Jπθ = E[

∞∑
t=0

γtrt + kH(πθ(st))], (2.12)

where k is a weight that controls the strength of the entropy’s term.

2.2 Deep Learning

Deep Learning (DL) is a class of machine learning methods based on deep Artificial Neural Net-

work (ANN), that can model compact representations or complex relationships through a sequence

of non-linear transformations. Artificial neural networks are represented by a composition of layers that

transform the input through non-linear operations and the sequence of these operations can represent

different levels of abstraction. Deep Learning’s objective is to find a function f : X→ Y parametrized by

10

a vector θ ∈ Rn(n ∈ N):

y = f(x, θ), (2.13)

whose parameters can be directly learned by minimizing a loss function that evaluates how good is the

neural network’s prediction. The most famous method to optimize the parameters of a neural network is

based on gradient descent using the backpropagation algorithm [12]. In its simplest form, the parameters

are updated using the gradient of the loss function L with respect to parameters θ, given a learning rate

α:

θt+1 = θt + α∇θL(θt), (2.14)

which indicates how much the weights will change at each update. This rate can be fixed or adaptive

i.e varies during training. Another way to update the parameters of the model is by using mini-batch

gradient descent where it approximates the loss’ gradient at each step by averaging the loss’ gradient

over a batch of datapoints:

∇θL(θt) ≈
1

N

N∑
n=0

∇θL(ŷn, yn), (2.15)

resulting in a trade between learning efficiency and oscillations towards the solution.

There are several variants of Neural Networks, each one with its own applications and advantages.

The simplest type of Neural Network is the Multilayer Perceptron (MLP) or Fully Connected (FC). The

MLP is defined as a succession of layers where information is fed forward, each layer has an arbitrary

number of units called neurons, each neuron from layer nth is connected to every neuron in layer (n+1)th

where a non-linear function σ is applied to a weighted average of its inputs plus a bias term:

hn = σ(Wnxn + bn), (2.16)

where xn is the input of size nxn , Wn a learnable matrix of size nxn × nhn , bn a learnable vector of size

nxh and σ a differentiable non-linear function. Figure 2.1 shows an example of a MLP network.

Convolutional Neural Network (CNN), are a type of neural networks that use convolutional layers to

capture spatial relationships and patterns within data. A convolutional layer is based on how the human’s

visual cortex and its receptive field perceives and responds to visual patterns. In a convolutional layer,

a learnable kernel or receptive filter of size F × F is applied using a convolution operation to an input

of size W × H × C and generates a lower-dimensional feature map Wn that retains some of its input

information and passes it to the next layer. A example of a convolution layer is shown in figure ??. The

first layers of the network, which have higher resolution, are responsible for capturing low-level patterns

such as edges and colors while deeper layers are responsible for capturing high-level patterns such as

curves, figures and textures. Finally, the feature map from the last convolutional layer is flattened and fed

to a fully-connected layer in order to produce a low-dimensional vector that can be used for classification

11

Figure 2.1: An example of a MLP network with n inputs, 3 hidden layers, and 2 outputs. Each neuron in the hidden
layer applies a non-linearity to the weighted sum of its inputs

and regression tasks.

After each convolutional layer it is common to insert a pooling layer, which is responsible to reduce

the spatial size of the feature map thus reducing the number of parameters and computation operations.

Pooling layers can also work as regularizers as they prevent small changes in the input to have a major

effect in the produced feature map. The most common pooling layer is the Max Pooling which applies a

max operation channel-wise over an input using a K ×K filter. An example of a max pooling operation

is shown in figure 2.3.

Figure 2.2: An example of a Convolutional Layer where a 2×2 kernel is applied to a 3×3×1 input which generates
a 2× 2 feature map

Residual Networks, are a special type of CNN that use skip-connections to improve the flow of infor-

mation to deeper layers. These type of layers allow to combine low-level and high-level features in order

to create richer feature maps while also preventing the vanishing of gradients during backpropagation.

A Residual layer can be formaly defined by:

yn = σ(Wnxn) + xn, (2.17)

12

Figure 2.3: An example of a MaxPooling Layer where a 2× 2 kernel is applied to a 3× 3× 1 input which generates
a 2× 2 output

where xn is the input of size nxn , Wn a learnable matrix of size nxn × nhn , and σ a differentiable non-

linear function. Since the dimensions of the non-linear output σ and xn must be the same, a linear

projection Wl is often applied to the input to match both dimensions:

yn = σ(Wnxn) +Wlxn. (2.18)

2.2.1 Preventing Overfitting in Deep Learning

Deep Learning uses models with a large number of parameters that can model complex relationships

within data. These type of models are often prone to overfitting. Overfitting occurs when a machine

learning model captures relationships and noise within the training data but fails to generalize to unseen

data points. In this section we present the regularization methods used in this work to prevent overfitting

in deep neural networks.

The simplest regularization method that doesn’t require changing the network architecture is to im-

pose a constraint in the loss function that is proportional to the size of the parameters. These type of

methods encourage the weights of the model to be kept small. In this work we use the sum of L2-norm

of the parameters to constraint their size:

Lregularized = Loriginal + w

K∑
k=0

θ2k, (2.19)

where w ∈ R controls the regularizing effect. Other regularization methods that prevent overfitting but

require changing the neural network architecture are Dropout and Batch Normalization.

Dropout [13] is a technique where some neurons and their connections are dropped with a probability

p during training. It makes it possible to train several different pruned smaller networks and test on the

complete larger network with smaller weights.

Batch Normalization [14] is a method that stabilizes layers input distributions by normalizing them within

the training batch. While it is a method to stabilize learning by allowing higher learning rates it also has

13

a regularizing effect. For each batch, the input is normalized following:

y =
x− E[x]√
V ar[x]− ε

∗ γ + β, (2.20)

where the mean and standard-deviation are calculated per-dimension over the mini-batch, β and γ are

learnable parameters and ε a small positive constant for numerical stability. During training this layer

keeps the running estimates of its computed mean and variance, which is then used for normalization

during testing.

2.3 Deep Reinforcement Learning

In this section we introduce the deep reinforcement learning algorithms and methods used in this work.

As we are working with pixel-based reinforcement learning it is unfeasible to model policies and value-

functions as matrices. We make use of deep neural networks as function approximators to model com-

pact representations of policies and value-functions that can be trained end-to-end using deep rein-

forcement learning algorithms. The neural architectures used in pixel-based reinforcement learning are

based on convolutional networks, where the input is the environments screen represented by a 3D ten-

sor, where the first dimensions corresponds to the RGB channel, the second dimension to the screen’s

width and the third to the screen’s height.

In actor-critic methods, one can use two separate neural networks to approximate the actor (pol-

icy) and the critic (value function) but in literature is standard just to use one network with a shared

convolutional encoder and two output heads corresponding to the policy and value function.

2.3.1 Proximal Policy Optimisation

Model-free policy gradient poses some major challenges such as large policy changes that can cause

training to diverge, improper learning rates that can cause vanishing or exploding gradients and sample

inefficiency. The main idea behind constrained policy optimization is to enforce a constraint on the

update of the policy at each iteration.

Proximal Policy Optimisation (PPO) [15] is an on-policy first-order method that updates the current

policy with the biggest step possible without stepping to far to cause the learning to collapse. There

are two versions of PPO: PPO-Penalty which adds a KL-divergence term to the objective function and

PPO-Clip that clips the policy update in order to maintain the updated policy close to the previous one.

Here we’ll present the clipped version which is the one used in this work.

14

The objective function that is maximized by gradient ascent at each iteration t for PPO is:

Lt(θ) = E[Lπ − kvLV F + kwH(πθ(st))], (2.21)

where kv, kw are two coefficients that control the weight of each loss term, Lπ is the policy objective, LV F

the loss for the value function and H denotes the entropy bonus to control the Exploration-Exploitation

trade-off as mentioned in section 2.1.3.

Let rt(θ) denote the probability ratio between the old and the updated policy rt(θ) = πθ(a|s)
πθold (a|s)

. The

policy objective is given by:

Lπt = min (rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât), (2.22)

where ε is a hyperparameter and Ât an estimator for the Advantage function. The estimator used in this

work is Generalized Advantage Estimation (GAE) [16] and is presented in the next chapter.

The motivation for this objective is to take the minimum update step between rt(θ)Ât and its clipped

version clip(rt(θ), 1 − ε, 1 + ε)Ât. The clipped version clips the probability ratio, which removes the

incentive to move the probability ratio rt outside [1− ε, 1 + ε], thus having a lower-bond on the unclipped

version. If a given state-action pair (at, st) has negative advantage Â(at, st) < 0 the optimizer should

make πθ(at|st) smaller, but there is no motivation to make it smaller than (1 − ε)πθold(at|st). If, on the

other hand, a given state-action pair (at, st) has positive advantage Â(at, st) > 0 the optimizer should

make πθ(at|st) bigger, but there is no motivation to make it bigger than (1 + ε)πθold(at|st).

Finally the value-function loss is given by the squared-loss:

LV F =
1

2
(Vθ(st)−Rt)2, (2.23)

where Vθ(st) is the estimator of the state-value function for state st and Rt the sum of discounted

rewards.

Let Vφ(s) and πθ(s|a) be approximated by neural networks and parametrized by vectors φ and θ

respectively. At each iteration, N actors collect T timesteps of data following policy πθk , the neural

networks are then optimized for NT steps using the ADAM optimizer [17] and updated following:

θk+1 = arg max
1

T

T∑
t=0

min (rt(θk)Ât, clip(rt(θk), 1− ε, 1 + ε)Ât), (2.24)

φk+1 = arg min
1

T

T∑
t=0

1

2
(Vφk(st)−Rt)2, (2.25)

for K epochs. The full algorithm is presented below:

15

Algorithm 2.1: Actor-Critic PPO Clipped
Input: Initial policy parameters θ, initial value-function parameters φ
for K epochs do

foreach actor do
Run policy πθk and collect trajectories τ = (st, at, rt, st+1) with T timesteps
Compute rewards-to-go R1, ..., RT
Compute advantage estimates Â1, ..., ÂT

end
Update policy parameters following:
θk+1 = arg max 1

NT

∑T
t=0 min (rt(θk)Ât, clip(rt(θk), 1− ε, 1 + ε)Ât)

Update state-value function parameters following:
φk+1 = arg min 1

NT

∑T
t=0

1
2 (Vφk(st)−Rt)2

end

2.3.2 Generalized Advantage Estimation

As we explained in the previous section, to optimize the policy using PPO we need to estimate ad-

vantages at each timestep. Most techniques developed to compute a low-variance estimator for the

Advantage function make use of a learned state-value function such as a Neural Network. [18] uses an

n-step TD-residual of the state-value function with discount γ:

Â
(n)
t =

n−1∑
i=0

γlδVt+i, (2.26)

where δVt = rt +V (st+1)−V (st). While the estimator bias decreases with the increase in the number of

steps, since the terms become exponentially more discounted with n→∞, the variance increases. GAE

is a method that uses a exponentially-weighted average of n-step (2.26) estimators [16] which controls

the tradeoff between the estimator’s bias and variance using a parameter 0 < λ < 1. GAE is defined as:

Â
GAE(γ,λ)
t =

∞∑
i=0

(γλ)lδVt+i. (2.27)

If λ = 0, we recover the advantage estimator using single-step state-value TD-residual which has

high bias:

Â
GAE(γ,0)
t = δVt = rt + V (st+1)− V (st). (2.28)

By the other hand, if we set λ = 1 we recover the empirical return minus a baseline which has high

variance:

Â
GAE(γ,1)
t = Â

(∞)
t =

∞∑
i=0

γlrt+i − V (st). (2.29)

16

2.4 Related Work

Deep Reinforcement Learning methods used in pixel-based reinforcement learning, commonly perform

training and testing in the same environment. Recent studies were focused on measuring the capacity

of trained agents to generalize to unseen levels.

Several studies [9, 11] identified that classic DRL algorithms such as Deep-Q Network (DQN) [19]

and policy-based methods struggle to generalize to remarkably similar environments. They propose a

protocol to evaluate the generalization capabilities of DQNs agents by using different modes of Atari

games. They also show that regularization methods, widely used in the supervised setting, such as L2-

regularization and dropout improves DQNs agents’ generalization and performance in continuous control

tasks. Other authors [20] measured the level of overfitting and capacity of generalization in continuous

domains, for a system trained in a simulated environment and tested in a real-world application. They

also noted that DRL algorithms generalize well if there is enough diversity in the training data.

In practice, evaluation protocols and Reinforcement Learning (RL) setups need to be designed in

order to be able to detect overfitting. Several benchmarks were introduced to evaluate the capacity of

the agents to generalize to out-of-distribuition levels or domains. The benchmark based on the classic

game Sonic The Hedgehog [8] was designed to assess generalization by separating levels of the game

into training and test sets as is standard in the supervised setting. They found that the agent struggles to

generalize between sets while having difficulties to measure progress and overfitting. A similar bench-

mark [21] is based on several video games from the General Video Game AI framework [22], where

the training and test sets are also generated using different game levels. They also found that agents

regularly overfit to particular training distributions. Other authors proposed a different benchmark to

measure generalization by using a modified version of classic control RL environments [23], which are

controlled by a set of parameters. The generalization capability is quantified by training and testing in

environments with different parameter ranges.

The aforementioned studies generated separate sets for training and testing by using different game

levels, different difficulties or different parameters but this can cause issues when measuring gener-

alization, given that the separated sets can have different dynamics. To overcome this issue, several

proposals [24] evaluated overfitting in RL agents using procedurally generated gridworld mazes. They

found that agents have a trend to memorize specific levels in a training set, and that techniques that

add stochasticity and help prevent overfitting, such as sticky actions [25] and random starts [26], often

fail to work in procedurally generated environments. The Procgen Benchmark [27], a set of 16 game-

like procedurally generated environments were particularly designed to measure both generalization and

sample-efficiency. These environments are based on the Arcade Learning Environment [28] and provide

enough diversity to measure generalization. A recent study [7] used CoinRun, an environment from the

Procgen benchmark, to generate large training and test sets to better evaluate generalization and over-

17

tiffing. It introduced a new metric, the Generalization Gap, to measure the level of overfitting between

training and test sets. The results showed how regularization methods such as Dropout, BatchNorm,

L2-regularization and data augmentation techniques can help improve generalization.

18

3
Evaluating Generalization in Deep

Reinforcement Learning

Contents

3.1 Overfitting in Deep Reinforcement Learning and Generalization 21

3.2 Procedurally Generated Environments . 22

3.3 Generalization Gap and Evaluation Metrics . 23

3.4 Training and Testing . 24

19

20

This chapter provides a detailed description on the systematic empirical study performed in order

to evaluate generalization of Reinforcement Learning agents trained in Procedural Generated Environ-

ments following the structure employed by previous works [7]. Section 3.1 provides details of the prob-

lem, section 3.2 details the environments used, section 3.3 introduces all the metrics and finally section

3.4 details the experimental setup.

3.1 Overfitting in Deep Reinforcement Learning and Generaliza-

tion

In Deep Reinforcement Learning, in particular when using the model-free actor-critic framework, the

value-function and the policy are approximated using a neural network. In the pixel-state setting, which

is usually applied to videogames, the neural network architecture is usually a Convolutional Neural

Network followed by a MLP, which outputs an approximation of a value-function and of a policy given an

input state which is represented by the raw-pixels image of the game’s screen. In the classic RL setting,

the learning is made in a continuous setting without explicitly separate training and testing sets, where

the objective is to maximize a discounted-cumulative reward over time. The usage of high-capacity

models such as Neural Networks, within the classic RL training setting and with long-training times could

lead to overfitting. Overfitting may be the consequence of a fundamental trade-off in Machine Learning.

Controlling and regularizing training is key to the development of robust agents that learn a relevant skill

and don’t just memorize specific trajectories. In this setting, agents often perform at expert level in seen

environments but fail to transfer experience to unseen ones, overfitting the ones seen during training.

The capacity of an agent to perform at expert-level in unseen environments is called generalization.

The lack of generalization, overfitting, can happen by several reasons:

Data Size: The training samples are few and/or exists low diversity between them (high correlation)

Convolutional Encoder: The convolutional encoder does not produce an invariant low-dimensional

representation vector of the input state.

MLP acting over latent vector: The MLP which acts over the latent vector produced by the Convo-

lutional Encoder is not able to output a good value function or policy.

Policy stochasticity: Following the Exploration vs. Exploitation dilemma, policy stochasticity con-

trols how much the agent wants to exploit what it knows or to explore new paths. If policy stochasticity

is small the agent will keep following the same trajectories resulting in overfitting.

In the next sections we introduce the experimental setup used in this work to assess each one of

the sources presented above and their dependencies affect the generalization capability of the agents.

In our first experiment we assess how the size of the training set effects generalization. In our second

experiment we evaluate if regularization methods, often used in Supervised Learning such as Dropout,

21

Batch Normalization and L2 Regularization, lead to an improvement in generalization in the RL setting.

We also evaluate Entropy Regularization, which is often used in Policy-Based Actor-Critic methods to

control the Exploration vs Exploitation Dilemma, as explained in chapter 2.1.3. In the third experiment

we evaluate the impact of data augmentation in generalization and in on the fourth and final experiment

we evaluate how architectural decisions effects generalization.

3.2 Procedurally Generated Environments

In order to evaluate generalization we need to separate training and testing into two sets. We use

the power of procedural content generation, the algorithmic creation of a near-infinite supply of highly

randomized content, to accomplish this. We use the Procgen benchmark [27], a set of 16 procedural

generated games designed to benchmark generalization and sample efficiency. Procedural generation

logic controls level layout, the spawning location and time of game entities, a selection of game assets

and other details. To master any one of these environments, an agent must learn a robust policy that

takes into account all variables related to the environment dynamics and not just overfit to a subset of

fixed levels.

All the environments were designed to satisfy a condition of high diversity since there are various

degrees of freedom for procedural generated content subject to very basic constraints. The benchmark

also presents tunable difficulty with guarantees of very high percentage of solvable levels (99%). It is

also optimized for fast evaluation. The set of environments have a shared observation and action space,

with a focus on visual recognition and motor control based in other environments such as the Arcade

Learning Environment (ALE).

In this work we chose three environments from the Procgen Benchmark:

CoinRun: A very simple platform game, where the objective is to collect a coin in the far right of the

level while the player spawns at the far left. The player must overpass a series of obstacles such

as stationary saws, moving enemies and crates. Procedural generated logic controls the location of

crates, platforms, obstacles and enemies. The game also presents the option to add a colorful box

at the top left corner of the screen where the color is proportional to the velocity of the player. If the

player collects the coin, the episode (level) ends, giving the player a reward of 10. Otherwise, if the

player falls into a crate or collides against an enemy, it receives a reward of 0 and the episode ends.

Jumper: A platform game, where the objective is to collect a carrot that spawned somewhere in an

open-world map. The player must explore the world to find the carrot, using a ”double-jump” ability

to reach higher platforms while dodging spike obstacles. A compass is presented in the top right

corner of the screen that shows the direction and distance to the carrot. If the player collects the

coin, the episode ends giving the player a reward of 10. Otherwise, if the player collides against a

22

spike obstacle, the episode also ends giving the player a reward of 0. Procedural generated logic

controls the map layout through the use of cellular-automata.

Maze: A labyrinth game, where the player must find the sole piece of cheese to earn a reward of

10. Procedural generated logic controls the map size and layout by generating mazes using Kruskal

Algorithm.

The three environments above give a reward of 0 at every time-step except the goal. The episode times

out and ends without reaching the goal after 500 steps in Maze and 1000 steps in CoinRun and Jumper.

We chose these three environments based on the following requirements:

1. The baseline model can learn a policy that can solve more than half the levels in the training set.

2. The generalization gap between training and testing, for the baseline model, is noticeable i.e GG >

10%

The first requirement guarantees that the baseline model can learn a policy that can solve a majority

of levels in the training set. The second requirement guarantees that the generalization gap is big

enough to notice the regularizing effect of our experiments.

3.3 Generalization Gap and Evaluation Metrics

In this section we present the evaluation metrics used in this study. The Generalization Gap (GG) [27]

measures how successfully agents generalize from a training set of levels to an unseen testing set. It is

defined as the difference between the percentage of levels solved in the training set and the percentage

of levels solved in the testing set. We consider that a level is solved if the agent reaches the goal without

dying or before the episode times out. The Generalization Gap also determines the extent of overfitting

as training and test levels are drawn from the same distribution. If the percentage of levels in testing is

higher than in testing there is no overfitting so we set a generalization gap of 0%. We use the Average

Discounted Return to track agent performance during training. We also employ a visual gradient-based

method called GradCAM [29] that highlights the locations of the screen the agent focuses in order to

make a decision. The spatial attention maps are extracted by flowing the gradients from action taken

(policy output), and into the first convolutional layer of the agent’s Neural Network. We expect that a

general convolutional encoder in order to produce invariant feature vectors will pay more attention to

game deciding elements such as the agent’s position, the objective, traps and enemies.

23

3.4 Training and Testing

The usage of procedural generated environment enables us to define two different sets of levels. The

training of the agent is done in the training set and the evaluation is made on the testing set. There is no

cross-over between the sets, the agent never sees the same level both in testing and training.

3.4.1 Training

Following the same experimental setup as done in a previous work [7], all the agents are trained using

Proximal Policy Optimization with the advantage function being approximated using Generalized Advan-

tage Estimation in order to control the bias-variance tradeoff. The choice of this training algorithm is

justified by its stability and monotonic increase in performance. In terms of hyperparameters, we use

the ones suggested by a previous work [7], which guarantees an increasing learning progress over time.

All the hyperparameters values can be found in table 3.1. We don’t change the hyperparameters values

between experiences unless stated otherwise. We set the difficulty to all environments to ”easy” and

train using PPO for 25M steps in CoinRun and Jumper and 50M steps in Maze. We use 64 actors and

1 critic. Each actor collects trajectories with a max of 256 timesteps and sends them to the critic. We

set PPO’s clip value to be 0.2 and the entropy bonus to be 0.01. The actor uses 8 mini-batches of 256

timesteps for 3 epochs to optimize the policy following equation 2.24. The critic uses the Advantage

Function as the value-function, estimated using GAE with λ set to 0.95 and optimized following equation

2.25. We use the Adam Optimizer to optimize the parameters of the model. Our baseline model is the

NatureCNN [19], the architecture that consists of 3 convolutional layers and one fully-connected layer

with two shared heads: one for policy and the other for the value-function. The first convolutional layer

has 32 kernels of size 8x8 with stride 4 and padding 0, the second has 64 kernels of size 4x4 with stride

3 and padding 0, the third has 64 kernels of size 3x3 with stride 1 and padding 1. The convolutional

encoder is connected to a fully-connected layer of 512 neurons which outputs a vector of size 15 that

represents the policy π and a value that represents the value-function for a given input. The ReLU ac-

tivation function is applied at the output of each layer. The input for the network is the game’s screen

image with size 3x64x64 for all environments. The input is normalized to be between 0 and 1. The

neural network’s architecture is shown in figure 3.1.

Figure 3.1: Nature CNN Architecture

24

Hyperparameter Value

λ .999

γ .95

timesteps per rollout 256

epochs per rollout 3

minibatches per epoch 8

Entropy Bonus 0.01

Learning Rate 5× 10−4

environments per worker 64

Workers 8

Total timesteps
25M (CoinRun, Jumper)

50M (Maze)

Table 3.1: Default hyperparameters’ values for PPO Algorithm

We set our training size to be 200 levels in all experiments except for the first one where we vary the

number of training levels in order to evaluate how generalization depends on training set size. We use

this particular value because is where the Generalization Gap is still big between training and testing

(as we show in the results Chapter), and allows us to evaluate which methods and architectures are

effective in increasing generalization.

All agents were trained in Google Cloud’s E2 Compute instances with 8 virtual CPUs, 32 GB of RAM

and one NVIDIA’s T4 Graphics Card. We use the rlpyt framework [30], a set of optimized algorithms

and unified infrastructure for Reinforcement Learning that uses PyTorch [31] for all deep learning related

operations to train our models. In each experiment, during training, we track the discounted average

reward as a signal for how learning is progressing.

3.4.2 Testing

During testing, we assess the zero-shot-performance from three different training seeds and average

the results. The testing set has 500 different levels that were not seen during training. We consider that

the agent completed the level if it could reach the goal without dying or before the episode timed out.

We also assess the zero-shot-performance in the training set to be able to calculate the generalization

gap between both sets.

25

26

4
Results and Discussion

Contents

4.1 Evaluating Training Set Size . 29

4.2 Evaluating Regularization Methods . 32

4.3 Evaluating Data Augmentation . 41

4.4 Evaluating Neural Network Architectures . 43

27

28

In this chapter, we present the experimental setup, related results and discussion. This experimental

setup is based on a previous work [7]. We try to replicate the original authors’ results while using a

smaller neural network model (NatureCNN). We extend their study, by trying to identify the source of

bottleneck in generalization capability of these types of architectures. In section 4.1 we analyse how the

size of the training set can impact generalization. In section 4.2 and 4.3 we analyse how regularization

and data augmentation methods impact generalization and learning. Finally, in section 4.4, we evaluate

several architectures and different types of layers.

4.1 Evaluating Training Set Size

In this section we assess how training set size impacts training and generalization. We vary the training

set size in the range [100, 15000]. With the access to a broader set of levels in training we expect the

agent to be able to generalize better, thus decreasing the generalization gap (overffiting).

(a) CoinRun (b) Jumper (c) Maze

Figure 4.1: Training curves for several models trained with different set sizes

Results In this experiment we find that the agent overfits for small training sets in all environments.

The increase of training set size allows the agent to build a curriculum able to generalize to unseen

levels thus decreasing the generalization gap. For Maze, we also see a decrease in the generalization

gap but a big drop in training performance with the increase of training size. This might be related

to the nature of the environment. Compared to CoinRun and Jumper, Maze is an environment that

requires more exploration and backtracking. This is expected to happen given the large variability of

levels and the need for higher exploration capabilities. Original authors reported an unusual trend in this

same experiment: past a certain threshold, training performance improves as the training set increases.

29

(a) CoinRun (b) Jumper (c) Maze

Figure 4.2: Percentage of levels solved in train and test as a function of the training set size

Figure 4.3: Attention Maps for several models trained with different training set sizes

As stated by the original authors, a larger training set can improve training performance if the agents

learn how to generalize across a broad distribution of levels. Here we did not find this behavior. The

only difference between the experiments is the model used. The original authors used the IMPALA

model [32], while we used a smaller one, as claimed by previous authors: larger architectures improve

sample efficiency and generalization. We present the results and discussion of using larger models and

other architectures in section 4.4. We chose to use a smaller model given the limited computational

resources and the large quantity of proposed experiments.

Figure 4.3 shows the attention maps extracted using GradCAM. The increase in number of levels of

training shifts the agent’s attention to more smaller and game-deciding elements such as: the objective,

traps and its position.

For the remaining experiments, we set the training levels to 200 given that the results show a notice-

30

Environment Training Set Size % Levels Solved - Train % Levels Solved - Test GG

CoinRun

100 99.00% 80.81% 18.19%

200 98.50% 86.93% 11.57%

500 99.20% 90.53% 8.67%

1000 96.70% 92.90% 3.80%

10000 96.30% 96.12% 0.18%

15000 96.00% 95.73% 0.27%

Jumper

100 86.00% 34.93% 51.07%

200 88.00% 49.73% 38.27%

500 85.80% 59.40% 26.40%

1000 81.40% 61.40% 20.00%

10000 74.39% 71.53% 2.86%

15000 74.38% 72.07% 2.31%

Maze

100 79.00% 26.73% 52.27%

200 77.00% 33.30% 43.70%

500 62.20% 44.47% 17.73%

1000 44.90% 42.33% 2.57%

10000 50.86% 51.53% 0.00%

15000 49.17% 49.80% 0.00%

Table 4.1: Summary results for training set size experiment

31

able generalization gap with this set size across all environments.

4.2 Evaluating Regularization Methods

In this section we show the results and discuss how regularization methods impact training and gener-

alization.

4.2.1 Batch Normalization

In this subsection, we assess the usage of Batch Normalization. The baseline architecture NatureCNN

is augmented with Batch Normalization after every convolutional layer. All running estimates of its in-

put’s computed mean and variance are saved during training and then the moving average is used for

normalization during testing.

Results The usage of Batch Normalization results in a higher percentage of levels solved in the training

set in all three environments. Figure 4.4 shows an increase in sample-efficiency as the agent earns a

higher average discounted reward in less timesteps which also results in an increase in the percentage of

levels solved in the training set. In Jumper, Batch Normalization shows a regularizing effect by increasing

both percentage of levels solved in both sets while decreasing the generalization gap. On the other hand

it shows the opposite effect in CoinRun and Maze. The regularizing effect of Batch Normalization seems

to be environment-dependent and may have a stronger effect when working with larger training sets with

higher data variability.

(a) CoinRun (b) Jumper (c) Maze

Figure 4.4: Training curves for several models trained with and without Batch Normalization

32

Figure 4.5: Attention Maps for models trained with batch normalization

4.2.2 Dropout

In this subsection we evaluate the impact of Dropout in training and testing. Each convolutional layer of

the baseline architecture NatureCNN is augmented with Dropout with probability p . We vary p in the

range [0, 0.25]. During testing Dropout’s probability p is set to 0.

Results The average discounted reward for different values of p, shown in Figure 4.6, shows the

decrease in sample efficiency when increasing the value of p. For higher values of p, sample efficiency

is significantly reduced, needing more time-steps to converge to the same final average discounted

reward as the baseline in all three environments.

We also report in Figure 4.7 and Table 4.3, the percentage of levels solved and the generalization

gap showing a clear decrease in overfitting with the increase of p in all environments. Dropout is a

method that induces stochasticity in the network nodes, making training noisy and adding variance to

the process. Higher values of p induce an even higher variance in training, resulting in needing many

more timesteps to converge to the same average discounted reward as the baseline agent.

33

Environment Model % Levels Solved - Train % Levels Solved - Test GG

CoinRun
Baseline 98.50% 86.93% 11.57%

Batch Normalization 99.50% 87.26% 12.24%

Jumper
Baseline 88.00% 49.73% 38.27%

Batch Normalization 89.50% 53.67% 35.83%

Maze
Baseline 77.00% 33.30% 43.70%

Batch Normalization 83.00% 31.73% 51.27%

Table 4.2: Summary results for batch normalization experiment

(a) CoinRun (b) Jumper (c) Maze

Figure 4.6: Training curves for several models with different Dropout’s probability p

(a) CoinRun (b) Jumper (c) Maze

Figure 4.7: Percentage of levels solved in train and test as a function of Dropout’s probability p

34

Table 4.3: Summary results for dropout experiment

Environment Dropout Probability % Levels Solved - Train % Levels Solved - Test GG

CoinRun

0.00 (Baseline) 98.50% 86.93% 11.57%

0.05 98.00% 87.10% 10.90%

0.10 99.00% 87.52% 11.48%

0.15 99.00% 87.79% 11.21%

0.20 96.00% 84.41% 11.59%

0.25 92.50% 81.70% 10.80%

Jumper

0.00 (Baseline) 88.00% 49.73% 38.27%

0.05 88.00% 56.67% 31.33%

0.10 89.00% 58.00% 31.00%

0.15 86.50% 57.47% 29.03%

0.20 83.00% 55.00% 28.00%

0.25 80.00% 54.33% 25.67%

Maze

0.00 (Baseline) 77.00% 33.30% 43.70%

0.05 75.00% 40.20% 34.80%

0.10 67.50% 34.20% 33.30%

0.15 53.50% 32.93% 20.57%

0.20 56.00% 36.00% 20.00%

0.25 32.00% 22.27% 9.73%

35

Figure 4.8: Attention Maps for several models trained with different dropout probability p

4.2.3 L2 Regularization

In this subsection we evaluate how L2 regularization impacts training and testing. We add a L2 penaliz-

ing term w‖θ‖22 to the loss function, where θ are the model’s parameters and w a parameter that controls

the weight of the regularization. We vary the parameter w in the range [0, 2.5 ∗ 10−4].

Results Results are presented in table 4.4 and 4.10. Figure 4.9 shows the learning curves for all

three environments. Higher values of L2 regularization weight cause a drop in sample efficiency and

final discounted average reward, with a higher impact in Maze. L2’s regularization weight seems to

have a very small effect in CoinRun. On the other hand, in Jumper there is a 10% decrease in the

generalization gap compared to the baseline while maintaining a constant successful rate in the training

set. Maze presents the largest decrease in overfitting from all three environments for higher values of w.

(a) CoinRun (b) Jumper (c) Maze

Figure 4.9: Training curves for several models trained with different L2’s weight

36

(a) CoinRun (b) Jumper (c) Maze

Figure 4.10: Percentage of levels solved in train and test as a function of L2’s weight

Figure 4.11: Attention Maps for several models trained with different values of L2’s weight

Figure 4.11 shows the attention maps produced by GradCAM for models trained with different values

of L2 weight. L2 regularization seems to cause a small-effect in the produced attention maps, as they

all share similar attention patterns.

4.2.4 Entropy Regularization

In this section we evaluate the impact of varying the weight kw that controls the level of the policy’s

stochasticity. We vary the weight kw between [0, 0.1]. Note that the baseline model has an entropy

weight of 0.01.

37

Table 4.4: Summary results for L2 regularization experiment

Environment L2 Weight % Levels Solved - Train % Levels Solved - Test GG

CoinRun

0.00 (Baseline) 98.50% 86.93% 11.57%

1.0E-5 97.50% 85.65% 11.85%

2.5E-5 98.50% 86.61% 11.89%

5.0E-5 98.50% 85.57% 12.93%

1.0E-4 99.00% 86.28% 12.72%

2.5E-4 98.50% 85.14% 13.36%

Jumper

0.00 (Baseline) 88.00% 49.73% 38.27%

1.0E-5 88.00% 52.87% 35.13%

2.5E-5 88.50% 53.93% 34.57%

5.0E-5 88.00% 55.10% 32.90%

1.0E-4 88.50% 56.80% 31.70%

2.5E-4 84.00% 56.13% 27.87%

Maze

0.00 (Baseline) 77.00% 32.30% 43.70%

1.0E-5 80.00% 32.73% 47.27%

2.5E-5 80.00% 35.60% 44.40%

5.0E-5 76.50% 37.48% 39.02%

1.0E-4 72.00% 42.87% 29.13%

2.5E-4 56.00% 46.80% 9.20%

38

Results The test results for this experiment are presented in 4.5 and figure 4.13 showing that an

increase in kw improves generalization. It is expected that higher values of kw should result in higher

early exploration which results in smaller discounted average reward early in training due to the high

randomeness when taking an action. This trend is illustrated in figure 4.12(a) and 4.12(b). CoinRun

and Jumper learning curves suggest that exploration is not a problem in this type of environments, given

the inverse trend between final discounted average reward and kw. On the other hand, Maze’s learning

curve shows a higher final discounted average reward when trained with higher values of kw. The

attention maps produced by GradCAM are presented in figure 4.14. The attention patterns for CoinRun

and Jumper are very similar for different values of kw. In Maze, the resulting attention maps are scattered

around the observation.

(a) CoinRun (b) Jumper (c) Maze

Figure 4.12: Training curves for several models trained with different entropy weight

(a) CoinRun (b) Jumper (c) Maze

Figure 4.13: Percentage of levels solved in train and test as a function of entropy’s weight

39

Table 4.5: Summary results for entropy regularization experiment

Environment Entropy Weight % Levels Solved - Train % Levels Solved - Test GG

CoinRun

0.00 97.50% 82.35% 15.15%

0.01 (Baseline) 98.50% 85.65% 11.57%

0.02 98.50% 88.17% 10.33%

0.05 96.00% 86.16% 9.84%

0.07 96.50% 86.36% 10.14%

0.10 94.50% 83.97% 10.53%

Jumper

0.00 90.00% 48.33% 41.67%

0.01 (Baseline) 88.00% 49.73% 38.27%

0.02 87.50% 50.33% 37.17%

0.05 85.50% 52.53% 32.97%

0.07 83.50% 53.13% 30.37%

0.10 83.00% 50.93% 32.07%

Maze

0.00 57.00% 27.93% 29.07%

0.01 (Baseline) 77.00% 32.30% 43.70%

0.02 78.50% 33.07% 45.43%

0.05 82.00% 39.40% 42.60%

0.07 75.50% 34.80% 40.70%

0.10 76.50% 38.60% 37.90%

40

Figure 4.14: Attention Maps for several models trained with different entropy’s bonus value

4.3 Evaluating Data Augmentation

In the third experiment we evaluate how data augmentation methods impact generalization. Data Aug-

mentation is often effective in the supervised setting to reduce overfitting. We augment the input of our

(a) Color Jitter (b) Cutout (c) Network Randomization

Figure 4.15: Example of all data augmentation methods applied to an observation from CoinRun

baseline model with a Data Augmentation Layer that augments the input screen. The augmentation is

applied sample-wise within a minibatch both during training and testing. We evaluate the following data

augmentation methods:

Color Jitter: This augmentation layer changes randomly the value of the input’s color channel.

Cutout: This augmentation layer, based on the method by [33], cuts out a rectangular area of the

screen and fills it with a random color. If the game contains areas of the screen with useful information

for learning such as the velocity information rectangle in CoinRun or the compass in Jumper, those

41

areas are masked and are never cut out.

Network Randomization: This augmentation layer, introduced by [34], augments the baseline model

with a random convolutional layer that perturbs the input image. This layer has 3 output channels,

a 3x3 kernel with stride 1 and padding 1. The weights are not learnable and they get reset at each

forward pass sample-wise using Xavier Normal Distribution [35]. During evaluation we use a Monte-

Carlo approximation that stabilizes performance by reducing variance. This method generates M

random inputs for each observation which are than aggregated as follows:

π(a|s; θ) ≈ 1

M

M∑
m=1

π(a|f(s;φm); θ), (4.1)

where f is a convolutional layer whose parameters φ are sampled from N (0, 1/18) We use M = 10

as suggested by a previous study [36] for the Procgen Benchmark.

Figure 4.15 shows a CoinRun observation augmented with each one of the data augmentation methods.

Results The results, shown in table 4.6, show that the effectiveness of data augmentation varies

between environments. Models trained using data augmentation in CoinRun seem to perform worse

compared to the baseline. In Jumper and Maze, every data augmentation method performed better than

the baseline, with Cutout being the most effective. Figure 4.16 shows that Network Randomization and

Cutout in comparison with Color Jitter and the baseline introduce more noise in the training process

thus reducing sample efficiency. Figure 4.17 shows similar attention patterns, where the agent focus its

attention in important game elements.

(a) CoinRun (b) Jumper (c) Maze

Figure 4.16: Training curves for models trained using data augmentation

42

Figure 4.17: Attention Maps for several models trained with different augmentation methods

4.4 Evaluating Neural Network Architectures

In our fourth experiment, we assess how different neural networks architectures affect generalization.

Each experiment stated below is independent and the modifications are not combined unless stated

otherwise. The first batch of experiments are a direct modification of our baseline model’s convolutional

encoder and are as follows:

Max Pooling: A Max Pooling Layer is added after each Convolutional Layer. The Max Pooling layer

has the same kernel size and padding as the previous convolutional layer. The name for this archi-

tecture is NatureCNN-MaxPool.

Convolutional Layer Hyperparameters: The baseline model’s convolutional channels, kernel size,

strading and padding are modified. The first convolutional layer has 16 kernels of size 4x4 with stride

2 and 0 paddings. The second layer has 32 kernels of size 3x3 with stride 2 and 0 paddings. The

third and final layer has 32 kernels of size 3x3 with stride 2 and 1 padding. A Max Pooling layer is

added after every convolutional layer due to the increase of the last convolutional layer output size.

This architecture is named NatureCNN-HyperP. We want to assess the impact in generalization of

using smaller-filters in early layers in order to capture more local information.

Depth: The depth of the network is increased by adding 1 or 2 convolutional layers with 128 chan-

nels, 2x2 kernel sizes, 1 stride and 0 padding. The name for this architecture with 1 and 2 additional

convolutional layers is, respectively, NatureCNN-IncreasedDepth-A and NatureCNN-IncreasedDepth-

43

Table 4.6: Summary results for data augmentation experiments

Environment Augmentation % Levels Solved - Train % Levels Solved - Test GG

CoinRun

None (Baseline) 98.50% 86.93% 11.57%

Color Jitter 100.00% 86.00% 14.00%

Cutout 87.50% 82.00% 5.50%

Network Rand 91.50% 77.40% 14.10%

Jumper

None (Baseline) 88.00% 49.73% 38.27%

Color Jitter 89.50% 54.47% 35.03%

Cutout 76.50% 59.67% 16.83%

Network Rand 75.00% 55.47% 19.53%

Maze

None (Baseline) 77.00% 33.30% 43.70%

Color Jitter 77.00% 34.07% 42.93%

Cutout 61.50% 53.80% 7.70%

Network Rand 56.00% 51.20% 4.80%

B. We want to assess if by increasing depth, the network produces a more general agent.

Number of channels: The number of channels in each convolutional layer is doubled or halved. The

name for this architecture with half and double channels is, respectively, NatureCNN-HalfChannels

and NatureCNN-DoubleChannels. We want to assess if there is a relation between the number of

channels and generalization.

Skip Connections: The baseline model is augmented with residual connections. [37] reported that

skip-connections are more effective if skipping 2 convolutional layers. As the baseline architecture

only has 3 convolutional layers, we double each convolutional layer and short-cut the odd layers.

The identity function is used as short-cut if the input’s and output’s shape are the same, otherwise

a 1x1 convolutional layer is applied in order to match both dimensions. This architecture is named

NatureCNN-ResNet. We want to assess if skip-connections, by combining high-level and low-level

features, improve generalization.

The second batch of experiments are modifications to the fully-connected layer of our baseline model.

We want to assess if the number of neurons and depth of the fully-connected layer, which acts over the

latent vector produced by the convolutional encoder, has impact in generalization.

Variation of the number of neurons: The number of neurons in the fully-connected layer is de-

creased to 256 or increased to 1024. The architecture with decreased number of neurons is named

NatureCNN-FC-A and the one with increased number of neurons is named NatureCNN-FC-B.

Multilayer Perceptron The fully connected layer is replaced by a deeper feedforward network. The

44

first architecture has a MLP with 2 hidden layers. The first layer has 512 neurons and the second

256. This architecture is named NatureCNN-MLP-A. The second architecture has a MLP with 3

hidden layers. The first layer has 512 neurons, the second 256 and the third 128. This architecture

is named NatureCNN-MLP-B.

Finally, we evaluate how a larger residual model such as IMPALA [32] performs compared to our base-

line. IMPALA is a much deeper network compared to NatureCNN, with 5x more convolutional layers and

with skip-connections. Figure 4.18 shows IMPALA’s architecture.

Figure 4.18: IMPALA Architecture

Results Results for all architectural experiments are shown in table 4.7. Figure 4.26, 4.27 and 4.28

provides the attention maps produced by GradCAM for the various modified models. The use of Max

Pooling layers (NatureCNN-MaxPool) seems to slightly improve generalization across all environments

while having no effect in training (figure 4.19) The attention maps in 4.26, show that Max Pooling reduces

the magnitude of attention in CoinRun and Jumper, while scattering attention in small separated chunks

in Maze.

Decreasing the number of channel and filters’ size (NatureCNN-HyperP), results in a major improve-

ment in performance in all environments. The resulting attention map is presented in figure 4.26 and

shows the attention patterns concentrated around important game elements. Figure 4.20 shows a small

improvement in training sample efficiency in CoinRun and Jumper. In Maze, the use of smaller convolu-

45

(a) CoinRun (b) Jumper (c) Maze

Figure 4.19: Training curves for models trained using max pooling layers

tional filters seems to unlock a better sample efficiency during training that results in a much higher final

discounted average reward.

(a) CoinRun (b) Jumper (c) Maze

Figure 4.20: Training curves for models trained using smaller convolutional filters

Varying the number of channels (NatureCNN-HalfChannels, NatureCNN-DoubleChannels) or in-

creasing the depth of the network (NatureCNN-IncreasedDepth) results in no improvement in perfor-

mance during testing. Increasing the number of channels improves learning in Maze while maintaining

the same learning performance in CoinRun and Jumper (figure 4.22. Increasing the depth has no effect

to the training process (figure 4.21). The attention maps in figure 4.26 for this experiment show similar

attention patterns within the same environment.

Modifications to the fully-connected layer (NatureCNN-FC, NatureCNN-MLP) also result in no im-

provement in testing performance, suggesting that there is no source of bottleneck in the fully-connected

layer. Figure 4.27 shows similar attention patterns across all environments and figures 4.23 4.24 show

46

(a) CoinRun (b) Jumper (c) Maze

Figure 4.21: Training curves for models trained using more convolutional layers

(a) CoinRun (b) Jumper (c) Maze

Figure 4.22: Training curves for models trained using different numbers of convolutional channels

47

similar training performances across all environments.

(a) CoinRun (b) Jumper (c) Maze

Figure 4.23: Training curves for models trained using different number of neurons in the fully-connected layer

(a) CoinRun (b) Jumper (c) Maze

Figure 4.24: Training curves for models trained using a MLP instead of just a single fully-connected layer

Using skipped-connections (NatureCNN-ResNet) results in a small performance improvement during

testing in Jumper and CoinRun, but this can be due to the increase in the number of convolutional

layers. The IMPALA model surpasses most of all other models, only having a similar performance with

NatureCNN-HyperP in Jumper and Maze. During training (figure 4.25), NatureCNN-ResNet shows a

better sample efficiency in CoinRun and Jumper but is completely surpassed both in sample efficiency

and final discounted average reward in Maze. The attention maps for these models are shown in figure

4.28, where the attention is heavily concentrated in deciding game elements.

48

Table 4.7: Summary results for architecture experiments

Environment Architecture % Levels Solved - Train % Levels Solved - Test GG

CoinRun

NatureCNN (Baseline) 98.50% 86.93% 11.57%

NatureCNN-MaxPool 99.00% 87.10% 11.90%

NatureCNN-HyperP 100.00% 88.80% 11.20%

NatureCNN-IncreasedDepth-A 99.50% 86.35% 13.15%

NatureCNN-IncreasedDepth-B 100.00% 85.49% 14.51%

NatureCNN-HalfChannels 97.50% 83.40% 14.10%

NatureCNN-DoubleChannels 100.00% 87.19% 12.81%

NatureCNN-ResNet 99.50% 88.73% 10.77%

NatureCNN-FC-A 99.50% 86.10% 13.40%

NatureCNN-FC-B 100.00% 85.10% 14.90%

NatureCNN-MLP-A 99.00% 85.45% 13.55%

NatureCNN-MLP-B 98.50% 87.23% 11.27%

IMPALA 100.00% 93.53% 6.47%

Jumper

NatureCNN (Baseline) 88.00% 49.73% 38.27%

NatureCNN-MaxPool 87.50% 52.53% 34.97%

NatureCNN-HyperP 88.50% 56.60% 31.90%

NatureCNN-IncreasedDepth-A 89.00% 51.52% 37.48%

NatureCNN-IncreasedDepth-B 88.50% 51.00% 37.50%

NatureCNN-HalfChannels 89.00% 54.20% 34.80%

NatureCNN-DoubleChannels 89.00% 52.20% 36.80%

NatureCNN-ResNet 88.00% 53.80% 34.20%

NatureCNN-FC-A 89.00% 52.27% 36.73%

NatureCNN-FC-B 88.50% 51.53% 36.97%

NatureCNN-MLP-A 88.50% 51.73% 36.77%

NatureCNN-MLP-B 88.50% 50.47% 38.03%

IMPALA 88.50% 56.60% 31.90%

Maze

NatureCNN (Baseline) 77.00% 33.30% 43.70%

NatureCNN-MaxPool 76.00% 36.13% 40.00%

NatureCNN-HyperP 91.00% 51.33% 39.67%

NatureCNN-IncreasedDepth-A 78.50% 32.73% 45.77%

NatureCNN-IncreasedDepth-B 80.50% 28.87% 51.63%

NatureCNN-HalfChannels 73.00% 35.00% 38.00%

NatureCNN-DoubleChannels 81.50% 31.47% 50.03%

NatureCNN-ResNet 82.00% 32.00% 50.00%

NatureCNN-FC-A 74.50% 33.20% 41.30%

NatureCNN-FC-B 81.00% 32.47% 48.53%

NatureCNN-MLP-A 74.50% 30.60% 43.90%

NatureCNN-MLP-B 78.50% 31.00% 47.50%

IMPALA 91.00% 51.30% 39.70%

49

(a) CoinRun (b) Jumper (c) Maze

Figure 4.25: Training curves for models trained using skip-connections

Figure 4.26: Attention Maps for architectures with modified convolutional encoder

Figure 4.27: Attention Maps for architectures with modified fully-connected layer

50

Figure 4.28: Attention Maps for architectures with residual layers

51

52

5
Conclusions and Future Work

Contents

5.1 Overview on the Results . 55

5.2 Future Work . 56

53

54

In this work, we provided an empirical study on the effects and dependencies of overfitting in Deep

Reinforcement Learning. This chapter presents a clear overview of the obtained results, and highlights

possible directions for future research.

5.1 Overview on the Results

An overview of the results are as follows:

• In general, using regularization and data augmentation in reinforcement learning improves gener-

alization. There is no golden rule for which method to use. Results showed that the effectiveness

of each method varies between environments.

• Data variability seems to be key in Reinforcement Learning. Scaling the training set size enables

the agent to learn in a more general way, which enables it to perform well in unseen levels.

• The different results between environments suggest that improving generalization by inducing

stochasticity such as in the agent’s decision (policy’s entropy), network nodes (dropout) or the

input (data augmentation) are deeply dependent on the environment dynamics.

• GradCAM attention maps confirms that the majority of the agents, when deciding what action to

take, they pay attention to deciding game elements such as traps, objectives, agent’s position,

objective’s direction (Jumper’s compass), velocity information (CoinRun’s velocity rectangle). At-

tention maps from Nature-ResNet and IMPALA suggest that deeper residual networks produce

attention maps with smaller and isolated attention patterns that focus deciding game elements.

• The results involving architectural modifications suggest that the generalization bottleneck in Na-

tureCNN is presented in the first layers of the convolutional encoder. Modifying, in isolation, the

number of channels and the depth of the network seems to have a very small effect in performance

and generalization. The number of neurons and depth of the fully-connected layer seems also not

to have impact in generalization and training performance. There is no type of layer (BatchNorm,

MaxPooling, Residual) that used in isolation causes a major improvement in both performance

and generalization. Networks with max pooling and residual connections make it possible to train

deeper models that produce more capable and general agents as it is suggested by the results

using IMPALA. However by using smaller early convolutional filters (NatureCNN-HyperP) we can

achieve similar performance to IMPALA in Jumper and Maze.

55

5.2 Future Work

We leave two possible directions for future work. First, it is standard in Deep Reinforcement Learning to

train using one neural network with shared weights for two different objectives (policy and value function).

Investigate to what extent there is some interference between objectives during training and if using two

separate training phases [38] improves testing performance and generalization. Furthermore, assess

if there is any advantage in using two separated neural network instead of a shared one. Second,

investigate if using more advanced architectures and mechanisms such as Dense Networks [39] or

Transformers (attention) [40] improves generalization.

56

Bibliography

[1] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez,

E. Lockhart, D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver, “Mastering Atari, Go,

Chess and Shogi by Planning with a Learned Model,” nov 2019. [Online]. Available:

http://arxiv.org/abs/1911.08265http://dx.doi.org/10.1038/s41586-020-03051-4

[2] K. Arulkumaran, A. Cully, and J. Togelius, “Alphastar: An evolutionary computation perspective,”

GECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary Computation Con-

ference Companion, pp. 314–315, 2019.

[3] OpenAI, :, C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dȩbiak, C. Dennison, D. Farhi,

Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki, M. Petrov, H. P.

d. O. Pinto, J. Raiman, T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang,

F. Wolski, and S. Zhang, “Dota 2 with Large Scale Deep Reinforcement Learning,” dec 2019.

[Online]. Available: http://arxiv.org/abs/1912.06680

[4] M. Moravčı́k, M. Schmid, N. Burch, V. Lisý, D. Morrill, N. Bard, T. Davis, K. Waugh, M. Johanson,

and M. Bowling, “DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker,” jan 2017.

[Online]. Available: http://arxiv.org/abs/1701.01724http://dx.doi.org/10.1126/science.aam6960

[5] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman, “Building Machines That Learn

and Think Like People,” apr 2016. [Online]. Available: http://arxiv.org/abs/1604.00289

[6] Z. Ghahramani, D. M. Wolpert, and M. I. Jordan, “Generalization to local remappings

of the visuomotor coordinate transformation.” The Journal of neuroscience : the official

journal of the Society for Neuroscience, vol. 16, no. 21, pp. 7085–96, nov 1996.

[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/8824344http://www.pubmedcentral.nih.

gov/articlerender.fcgi?artid=PMC6579263

[7] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quantifying Generalization in

Reinforcement Learning,” dec 2018. [Online]. Available: http://arxiv.org/abs/1812.02341

57

http://arxiv.org/abs/1911.08265 http://dx.doi.org/10.1038/s41586-020-03051-4
http://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1701.01724 http://dx.doi.org/10.1126/science.aam6960
http://arxiv.org/abs/1604.00289
http://www.ncbi.nlm.nih.gov/pubmed/8824344 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6579263
http://www.ncbi.nlm.nih.gov/pubmed/8824344 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6579263
http://arxiv.org/abs/1812.02341

[8] A. Nichol, V. Pfau, C. Hesse, O. Klimov, and J. Schulman, “Gotta Learn Fast: A New Benchmark

for Generalization in RL,” apr 2018. [Online]. Available: http://arxiv.org/abs/1804.03720

[9] A. Zhang, N. Ballas, and J. Pineau, “A Dissection of Overfitting and Generalization in Continuous

Reinforcement Learning,” jun 2018. [Online]. Available: http://arxiv.org/abs/1806.07937

[10] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,

M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan,

W. Zaremba, and L. Zhang, “Solving Rubik’s Cube with a Robot Hand,” oct 2019. [Online].

Available: http://arxiv.org/abs/1910.07113

[11] J. Farebrother, M. C. Machado, and M. Bowling, “Generalization and Regularization in DQN,” sep

2018. [Online]. Available: http://arxiv.org/abs/1810.00123

[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-

propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, oct 1986. [Online]. Available:

http://www.nature.com/articles/323533a0

[13] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A Simple

Way to Prevent Neural Networks from Overfitting,” Journal of Machine Learning Research, vol. 15,

no. 56, pp. 1929–1958, 2014. [Online]. Available: http://jmlr.org/papers/v15/srivastava14a.html

[14] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing

internal covariate shift,” 32nd International Conference on Machine Learning, ICML 2015, vol. 1,

pp. 448–456, feb 2015. [Online]. Available: http://arxiv.org/abs/1502.03167

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy Optimization

Algorithms,” jul 2017. [Online]. Available: http://arxiv.org/abs/1707.06347

[16] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-Dimensional Continuous

Control Using Generalized Advantage Estimation,” jun 2015. [Online]. Available: http:

//arxiv.org/abs/1506.02438

[17] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” dec 2014. [Online].

Available: http://arxiv.org/abs/1412.6980

[18] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu,

“Asynchronous Methods for Deep Reinforcement Learning,” feb 2016. [Online]. Available:

http://arxiv.org/abs/1602.01783

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller,

“Playing Atari with Deep Reinforcement Learning,” dec 2013. [Online]. Available: http:

//arxiv.org/abs/1312.5602

58

http://arxiv.org/abs/1804.03720
http://arxiv.org/abs/1806.07937
http://arxiv.org/abs/1910.07113
http://arxiv.org/abs/1810.00123
http://www.nature.com/articles/323533a0
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602

[20] Z. Liu, X. Li, B. Kang, and T. Darrell, “Regularization Matters in Policy Optimization – An Empirical

Study on Continuous Control,” oct 2019. [Online]. Available: http://arxiv.org/abs/1910.09191

[21] N. Justesen, R. R. Torrado, P. Bontrager, A. Khalifa, J. Togelius, and S. Risi, “Illuminating

Generalization in Deep Reinforcement Learning through Procedural Level Generation,” jun 2018.

[Online]. Available: http://arxiv.org/abs/1806.10729

[22] D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and S. M. Lucas, “General

Video Game AI: a Multi-Track Framework for Evaluating Agents, Games and Content Generation

Algorithms,” feb 2018. [Online]. Available: http://arxiv.org/abs/1802.10363

[23] C. Packer, K. Gao, J. Kos, P. Krähenbühl, V. Koltun, and D. Song, “Assessing Generalization in

Deep Reinforcement Learning,” oct 2018. [Online]. Available: http://arxiv.org/abs/1810.12282

[24] C. Zhang, O. Vinyals, R. Munos, and S. Bengio, “A Study on Overfitting in Deep Reinforcement

Learning,” apr 2018. [Online]. Available: http://arxiv.org/abs/1804.06893

[25] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. Hausknecht, and M. Bowling,

“Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for

General Agents,” Journal of Artificial Intelligence Research, vol. 61, pp. 523–562, mar 2018.

[Online]. Available: https://jair.org/index.php/jair/article/view/11182

[26] M. Hausknecht and P. Stone, “The Impact of Determinism on Learning Atari 2600 Games,” in AAAI

Workshop on Learning for General Competency in Video Games, jan 2015.

[27] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman, “Leveraging Procedural Generation to Benchmark

Reinforcement Learning,” dec 2019. [Online]. Available: http://arxiv.org/abs/1912.01588

[28] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The Arcade Learning Environment: An

Evaluation Platform for General Agents,” jul 2012. [Online]. Available: http://arxiv.org/abs/1207.

4708http://dx.doi.org/10.1613/jair.3912

[29] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: Visual

Explanations from Deep Networks via Gradient-based Localization,” oct 2016. [Online]. Available:

http://arxiv.org/abs/1610.02391http://dx.doi.org/10.1007/s11263-019-01228-7

[30] A. Stooke and P. Abbeel, “rlpyt: A Research Code Base for Deep Reinforcement Learning in

PyTorch,” sep 2019. [Online]. Available: http://arxiv.org/abs/1909.01500

[31] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,

59

http://arxiv.org/abs/1910.09191
http://arxiv.org/abs/1806.10729
http://arxiv.org/abs/1802.10363
http://arxiv.org/abs/1810.12282
http://arxiv.org/abs/1804.06893
https://jair.org/index.php/jair/article/view/11182
http://arxiv.org/abs/1912.01588
http://arxiv.org/abs/1207.4708 http://dx.doi.org/10.1613/jair.3912
http://arxiv.org/abs/1207.4708 http://dx.doi.org/10.1613/jair.3912
http://arxiv.org/abs/1610.02391 http://dx.doi.org/10.1007/s11263-019-01228-7
http://arxiv.org/abs/1909.01500

B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-Performance

Deep Learning Library,” dec 2019. [Online]. Available: http://arxiv.org/abs/1912.01703

[32] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu,

T. Harley, I. Dunning, S. Legg, and K. Kavukcuoglu, “IMPALA: Scalable Distributed Deep-

RL with Importance Weighted Actor-Learner Architectures,” feb 2018. [Online]. Available:

http://arxiv.org/abs/1802.01561

[33] T. DeVries and G. W. Taylor, “Improved Regularization of Convolutional Neural Networks with

Cutout,” aug 2017. [Online]. Available: http://arxiv.org/abs/1708.04552

[34] Z. Xu, D. Liu, J. Yang, C. Raffel, and M. Niethammer, “Robust and Generalizable

Visual Representation Learning via Random Convolutions,” jul 2020. [Online]. Available:

http://arxiv.org/abs/2007.13003

[35] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural

networks,” in Proceedings of the Thirteenth International Conference on Artificial Intelligence and

Statistics, ser. Proceedings of Machine Learning Research, Y. W. Teh and M. Titterington, Eds.,

vol. 9. Chia Laguna Resort, Sardinia, Italy: PMLR, 2010, pp. 249–256. [Online]. Available:

http://proceedings.mlr.press/v9/glorot10a.html

[36] K. Lee, K. Lee, J. Shin, and H. Lee, “Network Randomization: A Simple Technique

for Generalization in Deep Reinforcement Learning,” oct 2019. [Online]. Available: http:

//arxiv.org/abs/1910.05396

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” dec 2015.

[Online]. Available: http://arxiv.org/abs/1512.03385

[38] K. Cobbe, J. Hilton, O. Klimov, and J. Schulman, “Phasic Policy Gradient,” sep 2020. [Online].

Available: http://arxiv.org/abs/2009.04416

[39] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional

Networks,” aug 2016. [Online]. Available: http://arxiv.org/abs/1608.06993

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin, “Attention Is All You Need,” jun 2017. [Online]. Available: http:

//arxiv.org/abs/1706.03762

60

http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1802.01561
http://arxiv.org/abs/1708.04552
http://arxiv.org/abs/2007.13003
http://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1910.05396
http://arxiv.org/abs/1910.05396
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/2009.04416
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Thesis Proposal
	1.3 Contributions
	1.4 Structure of the document

	2 Background
	2.1 Reinforcement Learning
	2.1.1 Value functions
	2.1.2 Solving the MDP
	2.1.3 Exploration-Exploitation Dilemma

	2.2 Deep Learning
	2.2.1 Preventing Overfitting in Deep Learning

	2.3 Deep Reinforcement Learning
	2.3.1 Proximal Policy Optimisation
	2.3.2 Generalized Advantage Estimation

	2.4 Related Work

	3 Evaluating Generalization in Deep Reinforcement Learning
	3.1 Overfitting in Deep Reinforcement Learning and Generalization
	3.2 Procedurally Generated Environments
	3.3 Generalization Gap and Evaluation Metrics
	3.4 Training and Testing
	3.4.1 Training
	3.4.2 Testing

	4 Results and Discussion
	4.1 Evaluating Training Set Size
	4.2 Evaluating Regularization Methods
	4.2.1 Batch Normalization
	4.2.2 Dropout
	4.2.3 L2 Regularization
	4.2.4 Entropy Regularization

	4.3 Evaluating Data Augmentation
	4.4 Evaluating Neural Network Architectures

	5 Conclusions and Future Work
	5.1 Overview on the Results
	5.2 Future Work

	Bibliography

