Learning User Profiles for Automatic Test of Games

Luis Fernandes
luis.martins.fernandes@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

October 2021

Abstract

Since the increase of the complexity of video games, its getting harder and expensive to fully test,
and assure the quality of the game components. To solve this issue, the industry is moving towards the

automation of the testing process.

This thesis focuses on the development of an agent that will have the capability of testing different
video game features. In addition to this capability, our agent will be able to have different types of
behaviour when playing through the game. These behaviors are usually generated through the use of
functions or heuristics that are manually created by the game designers. Instead of this method, we
proposed a method that will generate the behaviours based on observing a player, this way we are going
to create profiles that are closer to the human player behaviour.

Keywords:
Apprenticeship learning

1. Introduction

1.1. Motivation

One of the most important parts of software devel-
opment, in particular for video game development,
is the testing process. In this process the various
features and concepts of the game are evaluated,
considering a set of defined metrics. This is done
with the goal of ensuring the quality of the video
game, regarding technical quality and experience.

Typically, this process is performed manually by
groups of people, hired by the developer company
or, in some cases, by members of the development
team. One problem with this manual approach is
the process scalability, since the results obtained are
related to the number of tests performed and who
performs them. Also, to increase the test coverage,
it may be necessary to test the game with different
players. This scalability greatly affects the time and
resources spent during the testing phase.

To solve the escalation problem, the testing pro-
cess is starting to be automated. Meaning the tests
are now being done by software agents, rather than
real people. This automation introduced many ad-
vantages to the testing process. Regarding the tech-
nical quality, with test automation, it allows for a
reduction in the feedback cycle of new video game
features and accelerates their validation. By in-
creasing the number of tests, the coverage of the
testing process will also increases. This will help
to test all of video game features, and their overall
quality.

Player profiles, Inverse Reinforcement Learning, Automated Testing, Max Entropy,

1.1.1 Learning Player Profiles

With the removal of real users from the testing
process, it will be necessary for agents, to have
behaviours that are similar to real users. There
are various techniques of creating these said agents.
One of those techniques is based on collecting player
data. Then use this data in order to make the agent
learn the profiles/personas of players, based on their
observable behavior. This learning process is de-
fined as apprenticeship learning. Considering that
the agent will try to infer the goal of the player
and not try to copy it directly. This works as an
alternative to having to manually create policy or
heuristics for agents to follow.

To carry out this type of learning, the approach
followed in this thesis is based on Inverse Reinforce-
ment Learning(IRL).

With these agents, it will be possible to see how
different types of players interact on a level. What
a player considers most important to play. And
finally how do certain levels allow for different types
of gameplay. For example, a certain level can cause
a player to explore more or be more aggressive.

1.1.2 Profile clustering

As mentioned before, the approach analysed here
is based observed data. Although, after we gather
the said data, we cannot use it directly on the IRL
algorithm. Since different players play differently.

This will cause disturbance in the agent learning,
and will result in very poor results.

So first we need to organize the player data. To
do this, we are going to use and analyse different
clustering approaches. This will create clusters of
players, where we will have a different type of be-
havior in each one.

Then we are going to use the defined player clus-
ters in the IRL algorithm to train the agent.

1.2. Objective

With this thesis, we aim to create agents capable
of testing video games and are capable of follow-
ing different profiles. To replicate these profiles, we
are first developing a clustering tool that will be
able to group the player data. Then we are going
to present an approach based on the Inverse Rein-
forcement Learning framework. This approach will
take the resulting clusters and then replicate the
player profile that exists within that cluster.

In the end, we will be analysing the performance
of these agents, by comparing them to their respec-
tive player data. With this we will see if using this
approach is possible to replicate player profiles.

1.3. Thesis Outline
As mentioned before, this thesis is composed of
three major parts following the introduction.

On Chapters ??7 and 7?7, we explain the theory
behind this area of research. We briefly present
some important concepts such as: Clustering algo-
rithms; We explain in detail IRL, then we delve
into a specific IRL algorithm that we are interested
in for this project: Max Entropy IRL. Finally, we
present some work done in areas that are relevant
to the topic of this thesis.

In Chapter 7?7, we will analyse the different clus-
ter approaches, present the implementation of the
proposed architecture, and present the method used
for evaluation.

In Chapters 7?7 and ?? we will discuss obtained
results, from which we will draw conclusions regard-
ing the effectiveness of the approach followed.

2. Background

In this section, we will give a more detailed ex-
planation, regarding what is the method of agent
learning, how the Inverse Reinforcement problem
can be formulated, bases behind the analysed algo-
rithm, and how such algorithm is capable of gener-
ating/capturing a player profile.

2.1. Apprenticeship learning

As Mentioned before, the propose of this thesis is
to create an agent, who would be able to learn from
human behaviour. This type of learning is usually
called Apprenticeship learning. This method via
inverse reinforcement learning, will try to infer the

goal of the expert behaviour. In other words, it will
learn a reward function from observations, which
can then be used in reinforcement learning to gen-
erate policies. For example, if it discovers that the
goal is to hit a nail with a hammer, it will ignore
the blinks and scratches from the expert, as they
are irrelevant to the goal.

2.2. Markov Decision Process

The base for reinforcement learning and inverse re-
inforcement learning is the Markov Decision Process
formulation.

A (finite-state) Markov Decision Process (MDP)
can be represented as the following tuple M =
(S, A, {Psa},7v,R) where S is S is a finite set of
states; A is a set of actions; P, is a set of state tran-
sition probabilities (here, P(s,a) is the state transi-
tion distribution upon taking action a in state s);
~ € [0, 1]is a discount factor; and R : S — A is the
reward function,

2.3. Max Entropy theorem

The principle of maximum entropy states that the
most appropriate distribution, to model a given set
of data, is the one with highest entropy among all
those that satisfy the constrains of our prior knowl-
edge.

2.4. Clustering

Is an unsupervised learning technique where the
goal is to divide data points into a number of
groups. Such that the data points in the same
groups, are more similar to other data points in the
same group, than those in other groups.

Therefore, when providing data, that is described
by a set of variables, the goal is to identify the con-
straints that put each record in a specific cluster.
In some manner, the goal is just to recognize what
are the most important variables, and what are the
values assigned to them in each cluster.

We can say that the act of clustering, is similar
to classifying. But, in clustering we are discrimi-
nating among records, and in classification, we are
discriminating as a function of the target variable.

In the book [2] about clustering, the term is gen-
eral for formal, planned, purposeful, or scientific
classification.

This technique is used on a variety of areas for
example:

e Economy - where customer segmentation has
been its most paradigmatic case.

e Biology - clustering can be applied in phylo-
genetics for identifying groups of similar or-
ganisms, and in transcriptomics, to recognize
groups of genes with related expression pat-
terns.

2.4.1 Algorithm types

As we can see, this technique is based on concept
of similarity. Which may vary from algorithm to
algorithm. In this thesis, we chose to analyze 3
different algorithms, that follow different models.

Connectivity models: As the name suggests,
these models are based on the notion that the data
points closer in data space exhibit more similarity
to each other than the data points that are lying far-
ther away. These models can follow two approaches.
In the first approach, they start with classifying
all data points into separate clusters and then ag-
gregating them as the distance decreases. In the
second approach, all data points are classified as a
single cluster and then partitioned as the distance
increases. Also, the choice of distance function is
subjective. These models are very easy to interpret
but lack scalability for handling big datasets. Ex-
amples of these models are hierarchical clustering
algorithm and its variants.

Centroid models: These are iterative clustering
algorithms in which the notion of similarity is ob-
tained through the distance of a data point to the
centroid of clusters. K-Means clustering algorithm
is a popular algorithm that falls into this category.
In these models, the number of clusters required
at the end, has to be mentioned beforehand, which
makes it important to have prior knowledge of the
dataset. These models run interactively to find the
optimal solution.

Distribution models: These clustering models are
based on the notion of probabilities of all data
points in the cluster belonging to the same distri-
bution (For example: Normal, Gaussian). These
models often suffer from overfitting. A popular ex-
ample of these models is Expectation-maximization
algorithm which uses multivariate normal distribu-
tions.

2.5. K-Means algorithm
As mentioned in the previous section K-means is
a centroid based (or a distance-based) algorithm.
The goal of this algorithm is to partition n points
into k clusters, where each point belongs to the clus-
ter with the nearest mean (cluster centers or clus-
ter centroid), serving as a prototype of the cluster.
The first time this algorithm was proposed was at
Bell Labs in 1957, in relation to the field of sig-
nal processing by Stuart Lloyd as a technique for
pulse-code modulation.

This algorithm is divided into 2 steps or phases,
the algorithm iterates between this 2 steps until it
satisfies the stopping criteria.

e Assignment step - where we assign points to
the cluster with the closest centroid

e Update step - where we update the centroids

of the new formed clusters

To define the stopping criteria, we can use one
of the three stopping criteria to stop the K-means
algorithm:

1. Centroids of newly formed clusters do not
change

2. Points remain in the same cluster
3. Maximum number of iterations are reached

Unfortunately, this algorithm has some limita-
tions: The fact that the number of clusters, k is
an input parameter. An inappropriate choice of k
may lead to poor results. One way to solve this,
before performing k-means, it is important to run
diagnostic checks to determine the number of clus-
ters in the dataset. Another way is to execute the
algorithm multiple times with different values of k,
then comparing the results.

Other important limitation of k-means is its clus-
ter model. The concept is based on spherical clus-
ters that are separable so that the mean converges
towards the cluster center. The clusters are ex-
pected to be of similar size, so that the assignment
to the nearest cluster center is the correct assign-
ment.

2.6. Expectation—Maximization algorithm

As mentioned in the previous section the Expecta-
tion—-Maximization algorithm or EM for short, is a
model based on distribution.

Before explaining the algorithm, we first need to
define what EM is. Em consists on a iterative op-
timization method, where the goal is to estimate
some unknown parameter ©, given measurement
data U. Although, we don’t receive some hidden
variables J, which we need to integrate. We mainly
want to maximize the posterior probability of the
parameter © given the data U, marginalizing over
J as the following equation:

©* = argmaze Z P(©,J|U).
JeJn
The intuition behind EM is an old one: alter-
nate between estimating the unknowns © and the
hidden variables J. This idea has been around for
a long time. However, instead of finding the best
J € J given an estimate © at each iteration, EM
computes a distribution over the space J. The al-
gorithm was initially presented in the article [3]. A
good reference to EM and its applications can also
be found in [8].
Taking into account some of the equations pre-
sented in [4] we can simplify the EM algorithm into:

(1)

e E-Step. Estimate the missing variables in the
dataset.

e M-Step. Maximize the parameters of the
model, in the presence of the data.

As we can see, the technique used in EM is similar
to the K-Means technique. Since both are divided
into 2 steps, that are related to the assignment step
and update step, respectively. Nonetheless, each
approach will reach different ends. In the case of k-
means, we obtain a hard clustering solution, where
a point belongs specifically to one, and only one
cluster. In EM we obtain a soft solution, where
a point has different probabilities of belonging to
different clusters.

In terms of limitations, the EM also has some:

e Similar to k-means, it is necessary to know the
number of desired clusters before we start.

e In EN we don’t have the guarantee that we will
find the globally best solution.

e The algorithm is slow for large datasets.

2.7. Hierarchical algorithm

Hierarchical clustering is another cluster technique
that we decided to explore. The most dominant ap-
proach for this algorithm, has been the Agglomera-
tive strategy. This strategy consists of a ”bottom-
up” approach, where each observation will start in
its own cluster, and pairs of clusters are merged as
one moves up the hierarchy.

Before we start this algorithm, there are things
that we need to consider first, beyond the number
of clusters we want.

Firstly, since we want to group the data, we need
a way to measure each element size, and their dis-
tances relative to each other in order to decide
which elements belong to a group. This choice of
distance metrics, should be made based on the the-
oretical concerns of the domain under analysis. In
other words, the distance metric needs to define
similarity in a way that is sensible for the field of
study. The most used metrics are Euclidean, Man-
hattan and Chebyshev distances. Where the Eu-
clidean distance is generally the most used one. In
the example shown, the metric we are going to use,
is Euclidean.

Secondly, we need to determine from where we
are going to compute the distance. This is de-
fined as the linkage criteria, which has different ap-
proaches. For example, in the single-linkage, the
distance is computed between the two most simi-
lar parts of a cluster. In the complete-linkage, are
taken in consideration the most different parts of a
cluster. Or we can use the average-linkage that uses
the center of the clusters.

Similarly to the distance metrics, when choosing
a linkage criteria, we should analyze the domain of
application.

Seeing that, this algorithm does not use random
centroids for its computation. Saying that, we can
affirm that hierarchical clustering consists of a de-
terministic process, meaning cluster solution won’t
change when the algorithm is executed multiple
times, with the same input data.

2.8. IRL

The main objective in is to obtain a decision process
to produce a behavior in a way to maximize some
predefined reward function.

In the inverse reinforcement learning initial de-
fined by [7], tries to flip the goal of a traditional rein-
forcement learning (RL) scenario, instead of learn-
ing a behaviour. The objective is to learn the goals,
values or rewards of an agent, by observing his be-
havior.

The main purpose of this approach was to change
the perspective of the traditional RL tasks. In RL,
the agent aims to maximize a known reward func-
tion. With IRL, the main objective of the agent is
to find to the reward function based on observed
behaviour.

An IRL task can be defined ruffly as the following:

Given:

e 1) measurements of an agent’s behaviour over
time, in a variety of circumstances

e 2) if needed measurements of the sensory in-
puts to the agent

e 3) if available, a model of the environment

Obtain:

Later in [5] an alternate approach based on In-
verse Reinforcement Learning was proposed. Here
the proposed strategy consists on matching feature
expectations (Equation 2) between an observed pol-
icy and a learner’s behavior.

The reward function being optimized

> P =f (2)

PathC;

Then was demonstrated that with this matching
it was possible for an agent to achieve the same
performance, as if the agent were in fact solving an
MDP with a reward function linear in those fea-
tures.

The advantage of using this framework, is that
the reward function has more value to an agent,
since the reward function can be migrated from task
to task. When applying the framework to video
games, we can change the first item with video
game runs performed by players, and give represen-
tation of the game environment. By doing this, the

agent will get the reward function behind the play-
ers actions, and their limitations that will be repre-
sented in the different runs that the algorithm will
receive. This will result in a better understating of
a player profile. Although, in this approach, it will
still be necessary manual testing of the game, to re-
trieve the user maneuvers. However, in the end, the
overall number of manual tests will be lesser than,
the situation where the tests are all done manu-
ally. Considering that, once the agent obtains the
rewards of the player, it can automatically test the
game as a player.

3. Implementation

In this section it is explained the approach taken to
resolve the defined problem. This section is dived
into 5 subsections. First, we will provide specifica-
tions for the software used in this thesis. Then in
the other subsections, the other parts of the solution
are going to be analysed. Namely, the testing en-
vironment, the different clustering algorithms, the
agent proprieties, in addition to their Profiles. End-
ing with an explanation on how the validation pro-
cess for the project, will be carried out.

3.1. System Requirements

The most important software used in this thesis is
the programming language Python, since, all of im-
portant computations, are simplified using Python
modules. We give special attention to the Numpy
module that facilitates matrix operations and com-
putations. The clustering algorithms used in this
thesis also come from a python module, in this case
sklearn. We used this module due to the variety
of different types of clustering algorithms provided
by the module, and also, it has methods to perform
clustering analysis. The game environment was also
built in Python, through the use of the Pygame en-
gine. In addition, to present some of the results in
a more visual way, Matplotlib module was used.

3.2. Game Environment

As mentioned in the acknowledgements section, this
thesis is based on a game developed by Pedro Fer-
nandes. In Figurel we can see a screenshot of the
game environment.

The game is named infinite game. It consists on a
2d top down inspired by the classic Legend of Zelda
games [6]. In this game the player can explore a
level with the main objective of reaching the flower
at the end. When navigating through the level, the
player will encounter enemies. Then the player can
fight these enemies or escape from them. Finally,
in the game, the player can collect optional coins.

The game is divided into 3 levels, which have
same layout as we show in figure 2. In addition
to the layout of the levels, the player’s starting po-
sition, and the objective’s position, are the same.

Figure 1: Infinite Game.

The main differences between the levels are related
to the number of objects that the player can in-
teract with. In this case, the number of enemies,
the number of coins, and finally the health pickups.
Furthermore, this also has an affect on the difficulty
of each level. Making the level 1 the easiest one, and
the level 3 the hardest.

Figure 2: Infinite Game level layout.

There were several reasons for choosing this game
as an analysis environment. The first reason is re-
lated with the simplicity of the game. Since, in
terms of mechanics the game isn’t very complex,
and it’s world has only 2 dimensions. This makes
it easier for us to create a symbolic representation
of it, mainly available actions, and possible agent
states.

Secondly, there is already some available data.
Since this game is part of the ivdXR project, and is
being used for other project components, we already
have access to player data, that was collected in
previous experiments. The said data is composed
of the following:

e For each level, we have 90 player traces, making
a total of 270 traces.

e Each player trace is dived into 3 parts:

position all positions the player has gone
through.

actions all actions the player performed.

preceptor traces of relevant game data, for
example, distance to the final objective.

In order to train the agents, we are going to use all
available traces. However, as we mentioned before,
the IRL algorithm that we are going to use, is prone
to noise. With this in mind, instead of using the
data directly, we are going to perform clustering,
with the goal of producing smaller datasets.

3.3. Clustering

As mentioned, all algorithms used here, came from
the sklearn module. When performing the cluster-
ing as we mentioned in section 2.4 one common
problem on the 3 algorithms, is that we first need to
define a number of clusters k. Basically, k needs to
be an input value, and it is hard to define a value for
k. Therefore, to overcome this problem, we decided
to run the 3 algorithms several times, with differ-
ent k values. Then, compare the different results
according to specific metrics. So, first we define
an array with the various values for k. array =
[2,3,5,7,9,11,13,15,17,19, 21, 23, 25, 27, 29]

Now we define the relevant features that are going
to be used for clustering. For this we decided to
use 4 that we defined as the most relevant when
establishing a player profile. Those are:

e Distance to objective

e Remaining life

e Number of coins collected

e Number of enemies defeated

Since the data has 4 dimensions, we decided to
test if it was possible to reduce the dimension space,
mainly to simplify the readability of the different
clustering solutions. To do this we decided to test
Principal Component Analysis (PCA), to see if with
only 2 variables it is possible to represent most of
the data.

As shown in figure 3 with 2 features, PCA covers
89% of the not normalized data, and 91% of the
normalized data.

Now we select the metrics that we are going to use
with purpose of comparing the different algorithms.
We decided on two metrics, the Mean Square Error
(MSE) and the Silhouette Score. Both metrics are
already implemented in the sklearn module.

3.4. Agent Structure

For the creation of agents, we decided to follow an
approach similar to [9]. We decided to divide the
agent’s behavior into two main components, so that
the agent has two types of behaviours when playing
trough the level. These two modes are: the naviga-
tion mode and the combat mode. This division
was created for 2 main reasons:

E)(\] ained variance ratio

64.7

(a) No normalization

E)(\] ained variance ratio

25.4

(b) Normalized

Figure 3: PCA variance.

e Since the levels have enemies whose position
is not fixed, it would make somewhat complex,
represent agent states if we consider the various
enemy positions.

e This division simplifies the combination of dif-
ferent behaviors. For example it will be possi-
ble to have an aggressive agent, who wants to
explore the level or go straight to the end.

The transition between these two modes is mainly
related to the distance between the agent and the
closest enemy. In essence, the agent will switch to
the combat mode when it gets close to an enemy.

3.4.1 Navigation mode

This mode is related to how the agent navigates
through the different levels. Here, the objective was
to represent a level using a GridWorld approach.
In this approach, the state space of the MDP will
match all valid positions of a level.

To define MDP state space, we decide to take the
level structure, defined as a csv file. In figure 4 we
show a part of the csv map file. Then we divided
the map into different areas as later shown in figure
?? (a). This division was done to reduce the size of
the state space.

PN

Figure 4: CSV map file.

To extract the states from the file, the method
used was as follows. First, we store the positions
of all important cells of the file. These are repre-
sented as ”.”, ”P” numbers, among others. These
cells, when they are registered, are stored in lists
according to the area where they belong. Secondly,
we obtain the cell position that corresponds to the
player’s starting position, identified in the file by
P. Then for each area we will normalize the values
of the positions that belong to its list, according to
the value of P. For example if P is (10, 10) and A
is (14, 10), then after normalization P is (0,0) and
A is (4,0). Finally, we create a Python dictionary
where each key corresponds to an area id and the
value points to a list of all positions of the said area.

It is important to mention that the positions that
are extracted from the csv do not correspond to a
specific position on the game map. Instead they
encompass several positions on the map.

The final state space has a total value of 1285
states with the following area division:

Table 1: States per area.

Area NOStates
area 1 125 states
area 2 197 states
area 3 126 states
area 4 202 states
area 5 255 states
area 6 105 states
area 7 147 states
area 8 128 states

For the action space, we consider 5 simple actions:

e The four directions for movement UP, DOWN,
LEFT and RIGHT.

e An "empty” action STAY since when analyz-
ing the player’s data, we saw that the player is
sometimes in the same position.

As for the transition matrix between states, we
define that all of the actions as deterministic. Mean-
ing an action performed in a specific state can only
transit to only one state. Because in a video game

scenario, actions with an associated error don’t usu-
ally exist. As an error we can consider selecting the
action RIGHT and instead of going right we go left.

3.4.2 Combat mode

For the structure of combat MDP, we decided on a
more abstract solution. Since during combat, the
most important features, are the location of the en-
emy and the current player’s life. We define the
state space as a combination of these 2 elements,
giving a total of 12 states as shown in table 2.

Table 2: Combat mode states.
dist to enemy 0-29 30-59 60-89 90-100

\ Life %

< 40 1 2 3 4
> 40 and < 80 5 6 7 8
< 100 9 10 11 12

For the available actions we decided on 5 possible
actions:

e moving towards the enemy

e moving away from the enemy

e move towards and attack the enemy
e attack the enemy

e stay

With these actions, it is possible to replicate several
behaviors that are related to combat. Such as, we
can have one that only escapes from enemy, or one
that goes straight to the attack.

3.5. IRL
For the implementation of the IRL algorithm, we
followed the Max Entropy as it was presented in
[10]. Inspired also by [1] that had already an im-
plementation of this same algorithm defined here as
MaxFEnt. To his code, we made some modifications
to deal with the concept of level areas. To execute
the MaxEnt IRL the most important function to
consider is the following:

def irl(feature_matrix, n_actions, discount, transi-
tion_probability, trajectories, epochs, learning rate,
area_mdp_id, profile_id):

Where the attributes correspond to the following

- feature_matrix: matrix for state features
- n_actions: number of available actions
- discount: discount factor of the MDP

- transition_probability:
State) matrix

a (Action, State,

- trajectories: a set of trajectories based on ob-
served behaviour

- epochs:the number of epochs used to train

- learning_rate:the learning rate of algorithm
between 0 and 1

- area_mdp_id: id of the current area under

analysis

- profile_id: id of the current profile under anal-
ysis

For this project we decided on using an Iden-
tity matrix for the feature matrix, for the training
epochs we decided on a value of 60. In relation
to trajectories, we define a trajectory as being a
list of following: (state, action, reward), here the
state is the cell position, the action is one of the
five defined in section 3.4.2, the reward is the value
extracted from a basic reward function where most
of the states have a value equal to 0, the cells where
are coins have a value of 0.5 and the final objective
has a value of 1.

3.6. Verification and Validation
To test the approach analysed in this thesis we de-
fined a process that is divided into 3 parts:

1. IRL results
2. Profiles vs Traces

3. New level

In the first part, we are going to compare the
learned policies to the player behaviour. This pro-
cess will be based on 2 metrics: similarity and prob-
ability. In the case of similarity, for each state, we
are going to analyse the average of player actions.
Then compare it to the action in the agent pol-
icy. For the probability, the process is similar to
the similarity, but, instead of counting the actions
that are equal, we will calculate the probability of
the agent performing the action sequence described
by the average player behaviour. To validate these
results, we consider similarity superior to 50% to
be positive. For the probability we expect very low
values, having said that we consider an exponent
-35 to be positive.

On the second part, we are going to compare the
performance of the agent and compare it to the
player behaviour. To do this, we are going to make
the agent play the average level of the traces used
to train it. For example, if profile 0 has the most
traces of level 1 playthroughs, we should test it on
level 1. Then we are going to measure its perfor-
mance based on the following features: remaining
life or HP, the number of coins collected, number of
kills or enemies defeated, the time taken to complete

the level, and the percentage of map exploration. In
case the agent gets stuck in a part of the map, we
will set a limit on the time taken.

Finally, we are going to take the different pro-
files and test them on a new made level. This new
level will have a similar layout to the previous ones.
Here, we only change the number and position of
enemies and coins. Then we are going to evaluate
the agents using the previous features.

4. Results

In this section we will analyze the results obtained
for the different approaches taken. But first we will
describe the baseline problem

As mentioned in the previous sections, the objec-
tive of this work is to create agents that are capable
of having different profiles, making it possible for
the agents to be able to play the game in different
ways. It is also important to test the profile learned
at the level used in the training, in order to compare
it’s performance with that of real players. Also it
is important to test it in a level different from the
one used in training.

First, we need to consider the level layout, as
mentioned before, the level was divided into 8 areas.
In figure 5 we present the final division of the level
into areas and the labeling on them.

Figure 5: Level map areas

4.1. Solution 1
For solution 1, we decided to use the not normalized
data.

From the table 3, as expected, we can see that
only profile 4 didn’t reach the level objective since
its remaining HP is equal to 0. We can also see that
most of the profiles captured here did not explore
much of the level, most of them move directly to
the objective since their map coverage is inferior to
40%. Although the performance of the agents was
very similar to that of the player behaviour. We can
also see that the agents tend to be more aggressive
that the player, since in all cases the agents defeated
more enemies than the players average.

From the table 4, when playing the new level,
we see that the results are not as good. We can see
that only 1 of the agents was able to finish the level,
1 of them died, and the other 3 became stuck. It
is interesting that 1 of the 3 that got stuck is the

profile that does not have knowledge of the area
where the objective is, as was expected. One other
that also got stuck, was the one that got lost in
the previous experiment. In terms of percentage of
the map explored, the values obtained here are very
similar to the previous levels.

Table 3: Solution 1 Base Performance Results Ta-
ble.

in all cases the agents defeated more enemies than
players average.

From Table 6, when playing the new level, the
results here are not as bad as the previous solu-
tion. We see here that 3 agents got stuck, 1 of them
got stuck in the previous experiment, the other 2
are agents that don’t possess knowledge of the area
where the objective is, meaning they are incapable
to finish the game. In addition to this, we also

have different agents losing. But, these were trained

agents time coins enemies Hp map hased on the level 1 witch only has 1 enemy, which
level collect killed coverage can have an impact on the agent combat perfor-
PO-12 45 0 5 45 31.15% mance.
TO-12 42 5 1 20 20.99%
P1-11 28 1 0 100 22.04% Table 5: Solution 2 Base Performance Results Ta-
T1-11 30 1 0 100 21.18% ble.
P2-13 11 0 4 0 16.67% agents time coins enemies Hp map
T2-13 24 0 1 0 15.34% level collect killed coverage
P3-12 78 0 3 25 32.39% PO - 12 200 10 1 90 22.04%
T3-12 53 8 2 90 25.61% _10-12 38 10 0 0 21.17%
PA-12 200 15 6 30 313% FPi-1to28 1 0 100 21.57%
T4-12 97 18 5 30 3246% _1l-1 34 1 0 100 22.72%
P2-13 13 0 5 0 17.92%
T2-13 22 0 2 0 15.96%
Table 4: Solution 1 E ot Results T P3-12 45 0 5 65 31.30%
bg e 4: dolution xtra Performance Results Ta- T3-12 43 N 1 85 24.87%
agent time coins enemies Hp map P4-11 27 0 0 100 23.83%
collect killed coverage T4 -11 64 2 1 80 28.53%
PO 200 4 5 40 31.30% P5-13 26 0 8 0 2251%
P1 2] 4 70 24.45% T5-13 26 0 2 0 17.62%
P2 200 8 5 70 16.98% P6-12 89 0 7 0 34.34%
P3 25 3 3 0 23.29% T6 - 12 59 6 6 0 23.26%
P4 200 12 5 100 35.5% P7-11 64 0 0 100 35.11%
T7-11 56 1 1 95 25.76%
P8-11 28 0 0 100 23.75%
%.2. S(ilutt.ion; tecided ¢ " led T8 - 11 37 0 0 100 22.27%
data. Since, we sce that with the not normalized P27 %6 0B 35 3LOT%
data it is harder to compare the behaviours between T9-12 80 11 4 85 28.71%
levels, even though all levels have the same layout, P10-12 62 0 4 30 32.23%
they have different elements. T10-12 85 10 4 10 33.56%

From Table 5, we see that the performance of the
agents shows similar results to that of the player
average. As expected we see that 3 profiles didn’t
reach the level objective, since its remaining HP is
equal to 0. An interesting observation taken from
this results is that even though the agents map cov-
erage is inferior to 40%, meaning that they did not
explore much of the level, all of the agent values are
slightly higher than players. Although, most values
related to the collection of coins are smaller. Simi-
lar to the previous solution, we see that the agents
tend to be more aggressive that the player, since

5. Achievements

After analysing the obtained results, we can draw
some conclusions regarding what was achieved on
the work done during this thesis development.
First, we demonstrate that it is possible for an
agent, to learn only based on observed player be-
haviour. And this was enough to make agents play
in a slightly different way among them. It was
also possible to make the agents play on a differ-
ent level, other that the ones that were used to train

Table 6: Solution 2 Extra Performance Results Ta-
ble.

agent time coins enemies Hp map
collect killed coverage
PO 200 10 5 10 28.42%
P1 27 12 4 100 24.76%
P2 121 11 5 0 26.55%
P3 67 16 5 65 3247%
P4 38 10 4 0 27.18%
P5 200 8 4 100 28.97%
P6 200 18 6 70 33.25%
P7 38 0 3 0 23.75%
P8 28 17 5 70 24.76%
P9 41 16 5 55 31.15%
P10 78 18 6 5 36.36%

it. Although, the disadvantage is that this new level
needs to have the same layout has the previous ones.

Even though the model we used here was the sim-
plest one, and has some limitations, making it not
the best one. For example, it tends to make agents
less interested in level exploration, and punish those
who try to explore. Even thought with those con-
strains, the obtained results were positive, where
most of the agents performed similar to the respec-
tive player averages.

The division of the agent behaviour into naviga-
tion and combat proved to be a good addition. This
division helped to simplify the structure of agents,
and had an impact on the learning process. Thanks
to this when training the agents, we could divide
the observed behaviour into parts, which allow the
training to be focused on a specific part. Other good
addition was the area division, and this helped by
reducing the time taken by the agents to learn a
profile. Although, it creates a new problem, when
diving the map we might lose the level structure. In
addition, to define these areas, it is necessary to be
careful with the number of areas that are defined
and the size of them. And this design might not be
suitable to every video game.

When talking about the IRL algorithm, choosing
the use of the MaxEnt algorithm turned out to be a
good choice. This algorithm was already prepared
to receive the player behaviour in the form of a list
of trajectories. Although, this algorithm has some
limitations such as: It was necessary for the all the
trajectories, to be of the same size, so it was nec-
essary to add extra elements to some of the trajec-
tories, creating duplicated ones. Another problem
with this algorithm is the time it takes to provide
results, during the research, we saw that the default
value for the training epochs was 60, and this value

10

with the original level structure simply takes a long
time to obtain results. To solve this we created the
separation of a level into areas.

Acknowledgements
I would like to thank everyone who was essential in
this academic phase.

A big thanks to everyone.

References
[1] M. Alger. Inverse reinforcement learning, 2016.

[2] J. A. Hartigan. Clustering algorithms. John
Wiley & Sons, Inc., 1975.

[3] H. O. Hartley. Maximum likelihood estimation
from incomplete data. Biometrics, 14(2):174—

194, 1958.

T. Minka. Expectation-maximization as lower
bound maximization. Tutorial published on
the web at hitp://www-white. media. mit.
edu/tpminka/papers/em. html, 7:2, 1998.

A. Y. Ng and S. J. Russell. Algorithms for
inverse reinforcement learning. In Proceedings
of the Seventeenth International Conference on
Machine Learning, ICML ’00, page 663-670,
San Francisco, CA, USA, 2000. Morgan Kauf-
mann Publishers Inc.

Nintendo. Legend of zelda, 1986.

S. Russell. Learning agents for uncertain envi-
ronments (extended abstract). In Proceedings
of the Eleventh Annual Conference on Compu-
tational Learning Theory, pages 101-103. ACM
Press, 1998.

M. A. Tanner. The data augmentation algo-
rithm. In Tools for Statistical Inference, pages
90-136. Springer, 1996.

B. Tastan and G. Sukthankar. Learning poli-
cies for first person shooter games using inverse
reinforcement learning. In Proceedings of the
Seventh AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment,
ATIDE’11, page 85-90. AAAI Press, 2011.

[10] B. D. Ziebart, A. Maas, J. A. Bagnell, and
A. K. Dey. Maximum entropy inverse rein-
forcement learning. In Proceedings of the 23rd
National Conference on Artificial Intelligence
- Volume 3, AAAT08, page 1433-1438. AAAI

Press, 2008.

