
Online learning of MPC for autonomous racing

Gabriel Alexandre Francisco Costa
gabrielafcosta@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

December 2021

Abstract

In this paper, a Learning-based Model Predictive Control (LMPC) architecture is designed for the control of a
Formula Student (FS) autonomous vehicle. For the implementation of this controller in real time to satisfy the FS
driverless requirements, the C++ programming language is used and the MPC’s optimization problem is solved using
a commercial solver. In summary, the developed controller is able to iteratively learn as the vehicle drives itself. This
learning process is carried out for two distinct purposes: improving the accuracy of the vehicle model used by the controller
and automatically finding the controller parameters that result in the fastest lap times. Finding the mathematical
equations that fully describe the race car dynamics requires the use of highly nonlinear vehicle nominal models which
are difficult to obtain. For this purpose, an Artificial Neural Network (ANN) is added to a vehicle nominal model
in order to correct for unmodeled dynamics not considered in the nominal model. The ANN is trained in an online
Supervised Learning (SL) approach, which learns based on past model prediction errors. Furthermore, the controller’s
parameters are tuned in a Reinforcement Learning (RL) environment in order to find the set of parameters that iteratively
allow for faster lap times. In a simulation environment, various tests on three different tracks are performed. Moreover,
it is shown that by employing these two learning procedures, the full control algorithm is able to reduce lap times up to 16.5%.

Keywords: Model Predictive Control, Model Learning, Motion and Path Planning, Autonomous Racing

1. Introduction
Developing self-driving vehicles has been one of the major
technology focuses of the twenty-first century. This topic has
been experiencing large growth with breakthroughs in tech-
nology that enable such vehicles to drive themselves and to
perform tasks like parking autonomously.

Various control algorithms are being researched for the ap-
plication of autonomous driving. These controllers widely
range in terms of complexity. This spectrum ranges from
simple and well studied controllers like Proportional-Integral-
Derivative (PID) controllers [1] up to more complex optimal
based controllers like Model Predictive Control (MPC) [2].

Moreover, [3] overviewed some of this recent research re-
garding Learning-based Model Predictive Control (LMPC).
The authors claim that this research addresses three main
topics:

1. Learning the system dynamics: addressed by most
of the research, this technique relates to learning for au-
tomatic improvement of the system’s prediction model
from recorded data. This considers the automatic ad-
justment of the system model, either during operation
or between different operational instances;

2. Learning the controller design: With a recent in-
creasing interest, this technique infers the parameteriza-
tion of the MPC controller, i.e., the cost and constraints,
that lead to the best closed-loop performance;

3. MPC for safe learning: a technique used to derive
safety guarantees for learning-based controllers. This
technique’s main idea is to decouple the optimization of
the objective function from the requirement of constraint
satisfaction, which is addressed using MPC techniques.

Following this increasing research, Formula Student teams
were recently introduced to a new type of racing competi-
tion: the driverless competition. To participate in such com-
petitions, teams are required to build and test a self-driving
vehicle, which relies on the use of sensors and complex con-
trol algorithms in order to guide the vehicle through the race
track.

In this paper, a nonlinear MPC for FST Lisboa’s FST10d
driverless vehicle is developed for the tasks of trajectory plan-
ning and control. The controller mainly adopts techniques
from the two first topics previously mentioned: learning the
system dynamics and learning the controller design. Learning
the system dynamics is accomplished by adding an Artificial
Neural Network (ANN) model to the blended bicycle model
suggested in [4] - a model built on Newtonian mechanics, lead-
ing to a gray-box system identification method. Learning the
controller design is accomplished by an algorithm that auto-
matically tunes the parameters used in the MPC’s cost func-
tion and constraints in a Reinforcement Learning (RL) en-
vironment based on time measurements between given track
segments divided by check points.

Moreover, the MPC’s cost function and constraints are
based on the idea of [5] which couples the vehicle’s path plan-
ning and control tasks into one single task, allowing for the
development of a control method that is based on the track
length maximization for a given prediction horizon.

2. Theoretical Background

As a note, column vectors will be denoted in bold lowercase,
x ∈ Rn, and matrices will be denoted as bold uppercase,
X ∈ Rn×m. Scalars are denoted as non-bold uppercase or
lowercase, x,X ∈ R.

1



2.1. Model Predictive Control
Model Predictive Control (MPC) is based on the idea of Re-
ceding Horizon Control (RHC), which is a general purpose
control scheme that assumes that an infinite horizon sub-
optimal controller can be attained by repeatedly solving a
Finite-Time Constrained Optimal Control (FTCOC) prob-
lem at each discrete sampling instant [6].

The general framework of such controller in typically
achieved by implementing the following general steps:

1. At a given sampling instant, t, predict over the prediction
horizon, N , the future states of the system, xt+k, k =
1, ..., N , by using the system’s model as a function of the
states at time instant t and future system inputs, ut+k−1,
k = 1, ..., N .

2. Define a cost function as well as constraint function(s)
based of the system’s states and inputs and optimize it
with respect to future inputs, ut+k−1, k = 1, ..., N .

3. Apply the first input as computed by the optimization
problem, u∗t , to the system

4. Repeat this procedure at the next sampling instant.

As such, at each sampling instant a potentially nonlinear
optimization problem is solved in order to find the optimal
control actions to apply at time instant t, u∗t . The definition
of this optimization problem is typically dependent on the
given application, however, such problem can be generally
represented by the following equations:

min
uk,∀k∈[t,t+N−1]

Jt→t+N (1a)

s.t. xk+1 = f(xk,uk) ∀k ∈ [t, ..., t+N − 1]
(1b)

xt = x(t) (1c)

uk ∈ U ∀k ∈ [t, ..., t+N − 1] (1d)

xk ∈ X ∀k ∈ [t, ..., t+N ] (1e)

Where uk, k = t, ..., t + N − 1 represents the sequence of
the next N optimal inputs to be determined. Equation (1b)
represents an equality constraint which translates the state
prediction model used by the MPC. Equation (1c) represents
the initialization of the MPC problem: the current measured
state of the system, x(t), is assigned to the first element of
the sequence of N predicted states of the system. Equations
(1d) and (1e) represent the (possibly non-linear) equality or
inequality constraints of the inputs and states of the system,
respectively.

2.2. Supervised Learning
Supervised Learning (SL) is inserted in the broad topic of
machine learning. In Supervised Learning, the learning pro-
cess relies on a training set which consists of a set of labeled
examples. This technique is most commonly associated with
classification, regression, and ranking problems [7]. In this
paper, Supervised Learning will be used in the context of
regression.

Further expliciting the Supervised Learning general prob-
lem, consider the training set with N training examples of
the form {(v1,y1) , ..., (vN ,yN )}. In this training set vi is
commonly known as the feature vector of the ith example in

the set and yi the corresponding target output vector. The
objective of SL is to find a learner function f : Rnv → Rny , nv
being the dimension of the feature vectors and ny being the
dimension of the target vector, that learns the training set.
In other words, the objective is to find the function f such
that ŷi ≈ yi, being ŷi = f (vi) the learner function output
for a given feature vector in the training set.

The learner function, f , is generally obtained by solving an
optimization problem which is, in general, based on the aver-
age of the loss function over the training data, obtaining the
trained learner function, f∗, as the solution of the following
Empirical Risk Minimization (ERM) problem.

f∗ = arg min
f

1

N

N∑
i=1

L (yi, f (vi)) (2)

2.3. Elliptical Basis Function Networks
Elliptical Basis Function Networks (EBFNs) can be described
as a generalization of the more commonly known Radial Basis
Function Networks (RBFNs) [8]. These networks, which have
an input layer, one hidden layer, and an output layer are
closely related to clustering: a neuron i in the hidden layer
represents a data cluster that is parameterized by its cluster
center and its variance. The activation function of the hidden
neurons is radial based in the RBFN case and elliptical based
in the EBFN case. Mathematically, consider the previously
mentioned input feature vector, v, with nv features, and µi
and Ωi the cluster center and the positive definite precision
matrix of neuron i in the hidden layer, respectively. Given
nh hidden neurons, the activation of neuron i in the hidden
layer, hi, is computed through following equation.

hi = exp
(
− (v − µi)

T
Ωi (v − µi)

)
, i = 1, ..., nh (3)

Moreover, as a simplification, the precision matrix of each
cluster Ωi is considered to be a diagonal positive definite
matrix: Ωi ≈ diag (ωi,1, ..., ωi,nv

), ωi,l > 0, l = 1, ..., nv,
i = 1, ..., nh. The network output is then composed of a linear
combination of the hidden layer activations. Mathematically,
consider the previously mentioned output of the hidden layer,
hi, in its vector format, h, where component i of this vector
corresponds to activation i in the hidden layer, hi, and wj

the weights’ vector of neuron j in the output layer. Then,
output j, ej , is given by:

ej = wj · h , j = 1, ..., ne (4)

Regarding the training of these networks, [9] proposes a
method which, in summary, applies a clustering algorithm in
the input data and estimates the covariance matrix of the
data with respect to the cluster centers. Then, the values
for ωi,l are computed by inverting the diagonal terms of each
clusters’ covariance matrix. With the hidden layer parame-
ters estimated, linear least squares are used to estimate the
output layer parameters given the linear relation between the
network output and the hidden layer activations, as per equa-
tion (4).

2.4. Online Gradient Descent
Consider Rp the Empirical Risk term in equation (5).

Rp =
1

N

N∑
i=1

L (yi, fp (vi)) (5)

2



The Online Gradient Descent’s (OGD’s) objective is to
minimize the Empirical Risk, as shown in the previous equa-
tion by using the most recent data point. In other words, the
parameters are updated by computing the gradient of the loss
function of the most recent data point alone:

pk+1 = pk − η∇p [L (yk, fpk
(vk))] (6)

Where index k denotes the most recent value, η > 0 the
learning rate and fpk

the learner function as parameterized
by the current parameter vector, pk.

2.5. Levenberg-Marquardt Algorithm
Consider an ERM problem written as the sum of sum squared
errors of the learning batch, as follows.

Rp =

N∑
i=1

ne∑
j=1

(
[yi]j − [ŷi]j

)2

(7)

In the previous equation, N represents the number of sam-
ples in the training set and ne the number of outputs of the
learner function. Moreover, [yi]j represents the jth compo-

nent of the ith target vector in the training set. Finally, ŷi is
the output of the learner function for feature vector i in the
training set: ŷi = fp (vi).

The Levenberg-Marquardt (LM) algorithm requires the
computation of the learner function jacobian with respect to
its parameters. This jacobian is computed as follows:

[
Jif
]
l,j

=
∂ [fp (vi)]j

∂pl
, l = 1, ..., np, , j = 1, ..., ne (8)

Then, the LM parameter update variation is computed by
solving the following linear system of equations.(

JRJR
T + λI

)
∆p = JR (yR − ŷR) (9)

Where JR represents the jacobian matrix of the ERM prob-
lem. The vectors yR and ŷR result from the concatenation of
the training set targets and current predictions as computed
by fp, respectively. Mathematically, these variables are as-
sembled as follows:

JR =
[
J1
f · · · JNf

]
(10a)

yR =

y1

...
yN

 (10b)

ŷR =

 ŷ1

...
ŷN

 (10c)

After solving the linear system of equations (9), the param-
eter update is computed as follows.

pk+1 = pk + ∆p (11)

The λ > 0 parameter seen in equation (9) is commonly
referred to as the LM’s damping parameter. Moreover, it can
be mathematically proved that matrix JRJR

T +λI is positive
definite. As such, this system of equations can be efficiently
solved resourcing to a Cholesky decomposition.

2.6. Reinforcement Learning
Reinforcement Learning (RL) is inserted in the broad topic
of machine learning. Unlike Supervised Learning, the learner
does not passively receive a labeled data set. Instead, it col-
lects information through a course of actions by interacting
with the environment. As a result of performing an action,
the learner, also known as the agent in RL, generally receives
two types of information: its current state in the environment
and a reward, which is specific to the learner’s task or goal
[7].

The learner’s objective is to maximize its received reward,
determining which is the best course of action, or policy, to
achieve that objective. The learner is faced with the dilemma
between exploring unknown states and actions to gain more
information about the environment and the achievable re-
wards, and exploiting the already gathered information to
optimize its reward. In RL this is known as the exploration
versus exploitation trade-off.

RL algorithms are based on discrete time Markov Decision
Processes (MDPs) for a time horizon of t ∈ {0, ..., T} which
can essentially be defined by the:

• Set of states, S, possibly infinite;

• Initial state, s0 ∈ S;

• Set of actions, A, possibly infinite;

• Transition probability, P (st+1|st,at) ∀at ∈ A, st, st+1 ∈
S: distribution over future states, st+1 = δ (st,at);

• Reward probability, P (rt+1|st,at) ∀at ∈ A, st, st+1 ∈
S: distribution over expected future rewards, rt+1 =
r (st,at).

At time t the state st is observed by the agent and an
action, at, is taken. At the next time instant the state st+1,
associated with probability P (st+1|st,at), is observed and a
reward, rt+1 ∈ R, is received, also associated with probability
P (rt+1|st,at).

The main problem for an agent in a MDP environment is
to determine the action to take at each state. Formally, a
policy is a mapping πt : S→ ∆ (A), where ∆ (A) is the set of
probability distributions over A. A policy πt is deterministic
if an unique at ∈ A exists such that πt (s,a) = 1. In that
case, πt can be identified with a mapping from S to A. As
mentioned previously, the agent’s objective is to find a policy
that maximizes its expected reward, called the optimal policy.

The value of a policy, Vπ, at state s ∈ S for a finite horizon,
T , along a specific sequence of states s0, ..., sT is generally
defined as the expected reward returned when starting at s0 =
s and following policy π:

Vπ (s) = E

[
T∑
t=0

r (st, π (st))

∣∣∣∣s0 = s

]
(12)

2.7. Genetic Algorithm
Genetic Algorithms (GAs) are derivative free metaheuristic
algorithms based on the mechanics of natural selection and
natural genetics. These algorithms combine survival of the
fittest among a population with a structured yet randomized
information exchange for a search algorithm. The idea behind
these algorithms is to create new generations better than the
previous ones based on a desired purpose. Generations are

3



composed by various individuals. An individual is essentially
represented by a string of genetic code that, in turn, translates
to certain traits and fitness. The new generation individuals
can be generated according to three main genetic operations
[10]:

1. Reproduction: some individuals of the previous gen-
eration are randomly selected according to their fitness
values. If an individual is selected, its genetic code is
passed directly onto the new generation without changes
in its genetic code;

2. Crossover: pairs of individuals of the previous gener-
ation are randomly selected and parts of their genetic
code are swapped, generating two new children that are
passed onto the new generation;

3. Mutation: some individuals of the previous generation
are randomly selected according to their fitness values.
If an individual is selected, part of its genetic code is
randomly changed and the mutated individual is then
passed onto the new generation.

To mathematically define the inner workings of the GA,
consider an optimization problem that, for example, reflects
the reward maximization problem presented in the previous
section regarding RL. One can generally define this problem
as follows.

max
d

r (d) (13)

The reward function, r ≥ 0, depends on the vector d ∈ Rnd

which, in turn, represents a genetic string. Furthermore, a
population of N individuals can be defined by a matrix, D ∈
Rnd×N , in which component di,j represents gene i = 1, ..., nd
of individual j = 1, ..., N . As such, the columns of matrix
D contain the population individuals. D can be defined as
follows.

D =
[
d1 . . . dN

]
(14)

New generations are stochastically created through the pre-
viously mentioned genetic operations. As such, there is a
probability associated with each individual which is computed
by its reward value as follows, obtaining each individuals rel-
ative fitness:

fj =
rj∑N
n=1 rn

, j = 1, ..., N (15)

As such, fj represents the probability of picking individual
j for performing a genetic operation when creating the new
generation.

For further insight on Genetic Algorithms and their appli-
cations, the author recommends the book [10].

3. Vehicle Models

The employed nominal vehicle model built on Newtonian me-
chanics is based on two well known vehicle models: the kine-
matic and dynamic bicycle models. These are well known
vehicle models which can be found in books such as [11].
Moreover, the geometry representation of these models can
be seen in figure 1.

Figure 1: Bicycle model geometry.

These models should predict the evolution of the vehicle
state vector, described as x = [X,Y,Ψ, vx, vy, r]

T . Where X
and Y refer to the vehicle global position coordinates, Ψ is
the vehicle’s orientation, vx and vy correspond to the vehicle’s
longitudinal and lateral velocities, respectively, and r the time
derivative of the vehicle’s orientation, r ≡ Ψ̇. Moreover, the
input vector, containing the vehicle’s normalized throttle, d,
and the steering angle, δ, is defined as u = [d, δ]T .

3.1. Kinematic Bicycle Model
The continuous time state space equations of the kinematic
bicycle model can be consulted in the following equation.

Ẋ

Ẏ

Ψ̇
v̇x

 =


vx cos(Ψ)− vy sin(Ψ)
vx sin(Ψ) + vy cos(Ψ)

vx
lr+lf

tan(δ)
Fx

m

 (16)

These equations do not model the full state vector desired
for the six vehicle states. However, the remaining, states, vy
and r, can be retrieved from the following kinematic relations:

r =
vx

lr + lf
tan(δ) (17a)

vy = rlr = vx tan(δ)
lr

lr + lf
(17b)

Where Fx represents the longitudinal forces being applied
to the vehicle. This component is modeled by a sum of forces
such as the propulsion force, aerodynamic drag and rolling
resistance, and can be computed as:

Fx = 2ηmotor
Tmax ·GR
rwheel

d− 1

2
ρCdAF vx

2 − Crmg (18)

3.2. Dynamic Bicycle Model
The main difference between the kinematic and dynamic
models is that the latter also takes into account the lateral
forces applied by the tires. These forces are modeled using
the following equations [4].

F fy = −2Df sin (Cfarctan (Bf · αf )) (19a)

F ry = −2Dr sin (Crarctan (Br · αr)) (19b)

4



Where the indexes f and r denote the front and rear wheels
respectively. Moreover, the tire slip angles of the front and
rear wheels, αf and αr, can be computed as follows.

αf = arctan

(
vy + Ψ̇lf

vx

)
− δ (20a)

αr = arctan

(
vy − Ψ̇lr

vx

)
(20b)

The continuous time state space equations of the dynamic
bicycle model can be consulted in the following equation.

Ẋ

Ẏ

Ψ̇
v̇x
v̇y
ṙ

 =



vx cos(Ψ)− vy sin(Ψ)
vx sin(Ψ) + vy cos(Ψ)

r
1
m

(
Fx − F fy sin (δ)

)
+ vyr

1
m

(
F fy cos (δ) + F ry

)
+ vxr

1
Iz

(
F fy cos (δ) · lf − F ry · lr

)

 (21)

3.3. Blended Bicycle Model

The two previously mentioned nonlinear models are dis-
cretized using a Runge-Kutta 4th order integrator. As such,
two discrete time models, xk+1 = fkin (xk,uk) and xk+1 =
fdyn (xk,uk), are obtained for the kinematic and dynamic bi-
cycle models, respectively.

As the kinematic model is reliable for low speed and unre-
aliable for high speeds and the dynamic model is reliable for
high speeds and unreliable for low speeds, these models are
then fused together using a similar approach to [4].

xk+1 = λkfdyn(xk,uk) + (1− λk)fkin(xk,uk)

= fblend(xk,uk) (22)

Where λk ∈ [0, 1] represents the relevance of the dynamic
bicycle model. In other words, for λk = 1, the dynamic model
is used as the state transition function, whereas for λk =
0, the kinetic model is used. Consequently, λk is computed
based on the vehicle’s velocity, Vk =

√
vxk

2 + vyk
2, as follows.

λk = min

(
max

(
Vk − Vblendmin

Vblendmax
− Vblendmin

, 0

)
, 1

)
(23)

3.4. Error Correction Model

Consider the definition of discrepancy in equation (24).

ε
(X,Y )
k = xreal

k − fvehicle (xk−1,uk−1,pk−1) (24)

The discrepancy vector measures the difference between the
vehicle model prediction and the real measured/estimated ve-
hicle states. Moreover, the vehicle state transition function is
defined by the previously introduced blended bicycle model
added with an EBFN learning model for model correction
purposes, as follows in equation (25).

fvehicle (x,u,p) = fblend(x,u) + e
(X,Y )
Ψ (p,v) (25)

Where v ⊆ {x,u} is the feature vector, a subset of the state
vector and control actions, and p is the parameter vector of
the EBFN model.

3.4.1 Feature Selection

The feature vector, v, is composed by the local vehicle states
and the control actions. The local vehicle states are vx, vy
and r as these quantities are locally related to the vehicle’s
frame of reference. In short, local features are used since these
should not allow for the EBFN to learn track related features.
Nevertheless, as suggested by equation (17b), in the kinematic
bicycle model section, vy and r are highly correlated. Thus,
only one of these quantities is present in the feature vector.
Hence, the feature vector is defined as v = [vx, r, d, δ]

T
.

3.4.2 Training Algorithm

The initial parameter vector of the EBFN is computed accord-
ing to a similar technique to the one presented in [9]. Then,
in simulation, these parameters are fine tuned using the ”On-
line Levenberg-Marquardt” (OLM) algorithm, which will be
further described. This algorithm’s objective is to capture
the benefits of OGD and LM by combining them, taking the
online training scheme of OGD and applying the LM hessian
matrix approximation in order to improve the learning step
direction of OGD.

To understand the developed training algorithm, one
should first analyze the discrepancy vector previously men-

tioned: ε(X,Y ) =
[
εX , εY , εΨ, εvx , εvy , εr

]T
. This vector’s first

two components, regarding the spatial coordinates discrep-
ancy, εX and εY are expressed in the global frame of refer-
ence, (X,Y ). By the definition presented in equation (24)
there is no guarantee that εX and εY are independent of the
vehicle’s orientation, Ψ. However, as justified before in the
feature selection section, learning local features is desired. On
the other hand, if local features are learned and the vehicle’s
orientation, Ψ, is not fed as an input feature, directly out-
putting the correction for X and Y , i.e., eX and eY is not
trivial since eX and eY may depend on the vehicle’s orienta-
tion. As such, in order to keep the vehicle’s orientation out
of the feature vector such that the geometry of the track is
not learned, as explained in the feature selection paragraph,
a transformation such that εX , εY , eX and eY are converted
into a local frame of reference, obtaining εx, εy, ex and ey.
For the purpose of explaining this transformation consider the
illustration in figure 2.

Figure 2: Discrepancy and error transformation to the previ-
ous local frame of reference

Given this, the following equations can be used to transform
ε(X,Y ) into ε(x,y) and e(x,y) into e(X,Y ).

5



ε(x,y) = AT (Ψk−1) ε(X,Y ) (26a)

e
(X,Y )
Ψk−1

= A (Ψk−1) e(x,y) (26b)

Where the A ∈ R6×6 matrix is defined as:

A (Ψ) =

[
R

(X,Y )
(x,y) (Ψ) 02×4

04×2 I4×4

]
(27)

Moreover, R
(X,Y )
(x,y) ∈ R2×2 is a rotation matrix that when

left multiplied by a vector with components expressed in the
vehicle’s local frame of reference, rotates this vector to the
global frame of reference. As such, this rotation matrix is
defined as follows in equation (28).

R
(X,Y )
(x,y) =

[
cos(Ψ) − sin(Ψ)
sin(Ψ) cos(Ψ)

]
(28)

With the local discrepancy defined, one can define an Em-
pirical Risk Minimization (ERM) problem to minimize the
discrepancy components. Consider the mean squared error of
the discrepancy vector as follows.

MSEk =
1

ne

ne∑
j=1

(εk,j)
2

(29)

Where, for simplicity, εj corresponds to component j of

the local discrepancy vector, ε
(x,y)
k . Since there are six state

variables, ne = 6.
Considering a learning batch of size nbatch, meaning that

both feature vectors, vt, and discrepancy vectors, ε
(x,y)
t are

stored up to nbatch instants before instant k, i.e. computa-
tionally, the feature vectors and discrepancies are stored for
t = k − nbatch + 1, ..., k. At each time step k, the developed
algorithm takes a step towards minimizing the following em-
pirical risk cost function:

R =
1

Γ

k∑
t=k−nbatch+1

γk−t ·MSEt (30)

Where the learning parameter γ ∈]0, 1] refers to the forget-
ting factor and Γ is a normalization parameter defined on the
geometric series of the forgetting factor, γ. This term can be
computed using equation (31).

Γ =

nbatch−1∑
n=0

γn =
1− γnbatch

1− γ
(31)

To apply the LM algorithm’s update step, one must first
compute the jacobian of the learner function, denoted as Jεk

p ,

where component
[
Jεk
p

]
i,j

, in which index i represents a row

and index j a column, can be computed as follows in equation
(32). Moreover, the index k refers to the discrepancy obtained
at instant k.

[
Jεk
p

]
i,j

=
∂εk,j
∂pi

= −∂ej(p,vk−1)

∂pi
(32)

Then, the jacobian and discrepancy of the entire learning
batch are computed by concatenating the jacobians and dis-
crepancy vectors of each data point in the learning batch, as
follows.

Jp =
[
Jεk
p J

εk−1
p · · · J

εk−nbatch+1

p

]
(33a)

εbatch =
2

ne · Γ


εk

γ · εk−1

...
γnbatch−1 · εk−nbatch+1

 (33b)

Finally, the linear system of equations (34) is solved for
∆p, and the parameters are updated as in equation (11).(

λI + JpJp
T
)

∆p = −Jpε
batch (34)

4. MPC Formulation
4.1. Track Progress

With the objective of developing a reference-free MPC, a com-
mon approach to design the MPC’s cost function, J , to be op-
timized is to base this function on a measure of track progress.
A natural way of measuring the track progress of a race vehi-
cle is to project the vehicle’s position at a given instant onto
the race track center line, obtaining the length of the center
line from the beginning of the track up to that projected point
[12, 5, 4]. An illustration of this process can be seen in figure
3.

Figure 3: Track progress based on the track’s center line [5].

Furthermore, consider that the center line of the track is
parameterized as a function of its length. In other words,
consider the center line to be parameterized by a two dimen-
sional vector, g, which is a function of the center line length,
s.

g(s) =

[
gX(s)
gY (s)

]
(35)

Where the components gX(s) and gY (s) are C2 and express
the coordinates of a center line point in the global frame of
reference (X,Y ). With such parameterization of the center
line, it is also possible to retrieve its direction at a given cen-
ter line length by computing the derivative of g with respect
to the center line length, s, denoted as ∂g

∂s . Furthermore, to
compute the curvature radius of the track at a given center

line length, the second derivatives of g, denoted as ∂2g
∂s2 , are

required. The mathematical definition of both these quanti-
ties is expressed in equations (36).

∂g

∂s
(s) =

[
∂gX
∂s (s)
∂gY
∂s (s)

]
(36a)

6



∂2g

∂s2
(s) =

[
∂2gX
∂s2 (s)
∂2gY
∂s2 (s)

]
(36b)

Since the center line parameterization function, g(s), is
considered to be C2, the track progress at a given vehicle
position, (Xk, Yk), can be retrieved as the center line length
value, s, for which the distance from the corresponding cen-
ter line point to the vehicle position is minimal. This idea is
equivalently formulated in the following equation.

sk = arg min
s

√
(Xk − gX(s))2 + (Yk − gY (s))2 (37)

However, solving an optimization problem within the opti-
mal control problem of the MPC is not desired due to employ-
ing a high computational cost. For this reason, as suggested
in [4, 5], a method for approximating the values of sk and
eCLk

is employed. Figure 4 represents a visualization of the
mechanisms involved in this approximation. The variable êCL
represents an approximation of eCL, and êL represents the lag
error.

(a) True projection on the center
line.

(b) Approximated projection on
the center line.

Figure 4: Approximation mechanism for the track progress.

At a given estimated track length, ŝ, the values for êCL and
êL can be explicitly expressed as follows:

êCL(ŝ) =
∂gY
∂s

(ŝ)·(X − gX(ŝ))− ∂gX
∂s

(ŝ)·(Y − gY (ŝ)) (38a)

êCL(ŝ) = −∂gX
∂s

(ŝ) · (X − gX(ŝ))− ∂gY
∂s

(ŝ) · (Y − gY (ŝ))

(38b)

Note that, in order to obtain a good estimation of s ≈ ŝ and
eCL ≈ êCL, both êCL and êL should take a minimum absolute
value. For this reason, êCL and êL can be included in the
MPC’s cost function in order to compute an approximation
of the center line progress at any prediction stage, sk.

4.2. MPC Based On Track Progress

The optimization problem formulated in equations (39) was
used and was influenced on the idea of [5].

min
uk,∀k∈[t+1,...,t+N−1]

sk∀k∈[t,...,t+N ]

αCLê
n
CLt

+ αLê
2
Lt

+

t+N−1∑
k=t+1

(
qvyvyk

2 + αCLê
n
CLk

+ αLê
2
Lk

+ βδ(δk − δk−1)2 + eqvmax(vxk
−vmax)

)
− λsst+N + qvyvyt+N

2 + αCLê
n
CLt+N

+ αLê
2
Lt+N

+ eqvmax(vxt+n
−vmax)

(39a)

s.t. xk+1 = fvehicle (xk,uk,pt) ∀k ∈ [t, ..., t+N − 1] (39b)

xt = x(t) (39c)

ut = u(t) (39d)

st−1 = s(t− 1) (39e)

−∆umax ≤ uk − uk−1 ≤ ∆umax ∀k ∈ [t+ 1, ..., t+N − 1] (39f)

umin ≤ uk ≤ umax ∀k ∈ [t+ 1, ..., t+N − 1] (39g)

− êCLmax ≤ êCLk
≤ êCLmax ∀k ∈ [t+ 1, ..., t+N ] (39h)

∆smin ≤ sk − sk−1 ≤ ∆smax ∀k ∈ [t, ..., t+N ] (39i)

The main objective of this formulation is to obtain the set
of control actions at time instant t that maximize the track
progress (i.e. center line progress) at the prediction hori-
zon instant, t + N . This behavior is reflected by the final
stage cost term: −λsst+N in the MPC’s objective function as
per equation (39a), where λs > 0 is the weight of the track
progress at the prediction horizon, t+N . A value of λs close
to zero translates to a controller that does not prioritize as
much the track progress, while a large value for λs translates
to a controller that greatly prioritizes the track progress at
the prediction horizon.

Overall, this formulation employs a set of run time param-
eters and a set of fixed parameters. The run time param-
eters, denoted by the variables αCL, dmax, qvy , n and βδ,
are meant to be tuned for a given track as the vehicle drives
itself. These parameters relate to the aggressiveness of the
controller. Moreover, αCL > 0 penalizes the vehicle’s center
line distance, dmax > 0 limits the maximum allowed vehicle
acceleration to dmax, qvy > 0 penalizes high lateral veloci-
ties which are characteristic of a sideways drifting scenario
which may lead to a crash, n ∈ {2, 4, 6, ...} is the exponent of
the center line penalization term, i.e. shaping this term, and
βδ > 0 controls the smoothness of the steering angle.

5. Controller Parameter Learning
For the purpose of learning the controller’s design in the au-
tonomous racing context, one can design a reward system
based on the time the vehicle takes at driving in track seg-
ments. These track segments are divided by check points
marked along the track. Given this, a reward system can be
developed such that if the time the vehicle takes traveling a
track segment is large the reward should be small. Otherwise,
if the time the vehicle takes traveling that track segment is
small, the reward should be large. This reward value would
then be linked to the respective MPC parameters, denoted as
d, that were being applied to the MPC when driving through
that particular track segment. However, due to model mis-
match, there can be some parameters that may result in the
vehicle colliding with cones. As cone collisions result in penal-
ties in FS competitions, this is not desired. Consequently, the
reward function should also reflect whether cones were hit in
a given track section while using some parameters, d, or not.
The reward obtained in each segment would then be com-
pared in order to retain the parameters that maximize the
reward.

5.1. Point Mass Model
The method presented in this section aims at estimating the
check point locations along the track such that the expected
time the vehicle takes at driving each segment is equal be-
tween all segments. This method is based on a simple point

7



mass model of the vehicle which only purpose is to estimate
these times. This model takes the track and vehicle parame-
ters as input and is based on the following principles:

1. The vehicle travels along the track’s center line always
heading towards the center line direction;

2. The vehicle always travels at its maximum speed, which
is either limited by the maximum allowed centripetal
force or the vehicle’s physical maximum velocity.

Given these principles, the mathematical equation that de-
scribes the vehicle’s maximum velocity at a given center line
length, v (s), is expressed in equation (40). In this equa-
tion, Df/r is the maximum value of the lateral force in the
front and rear tires, respectively, as introduced in section 3.2.
Moreover, m stands for the mass of the vehicle and vmax the
maximum velocity the vehicle can achieve in a straight line.

v (s) = min

(
vmax,

√
R (s)

2Df + 2Dr

m

)
(40)

Furthermore, R (s) represents the track’s curvature radius
at a given center line length. The curvature radius can be
computed from the previously defined center line parameter-
ization function derivatives, which are defined in equations
(36) from section 4.1. The mathematical definition of the
curvature radius obtained from these derivatives is expressed
in equation (41) [13].

R(s) =
1∣∣∣∂gX∂s (s) · ∂2gY

∂s2 (s)− ∂gY
∂s (s) · ∂2gY

∂s2 (s)
∣∣∣ (41)

Given a track and the required vehicle parameters, one can
plot the maximum achievable velocity as seen in figure 5 rep-
resented by the green line.

Figure 5: Maximum achievable velocity and track segmenta-
tion using 4 check points for the track shown in figure 8.

Still referring to figure 5, the blue dashed lines represent
the check point locations that, according to the point mass
model, require the same time for the vehicle to travel each
segment. The first check point, s0, coincides with the track
starting line, i.e., s0 = 0. Considering L as the track length
for the given track, an estimation of the lowest achievable lap
time, Tlap, can be obtained as follows:

Tlap =

∫ L

0

1

v(s)
ds (42)

Then, considering the number of desired check points for
track segmentation, NCP ∈ N, one can obtain the remaining
check point locations by solving for si ∀ i = 1, ..., NCP−1 the
following system of equations:

∫ si

si−1

1

v(s)
ds =

Tlap

NCP
, s0 = 0 , i = 1, ..., NCP − 1

(43)

5.2. Reward Function
The designed reward function is built using the track segmen-
tation method presented in the previous section. The reward
function, r : R+ × Z+

0 → R+, is mathematically defined as
follows:

r (Ti,k, n
cones
i ) = exp

(
−kT

(
Ti,k − T avg

i,k + kcn
cones
i

))
(44)

Where Ti ∈ R+ is the time measurement of segment i, i.e.,
the time the vehicle needed for traveling segment i and ncones

i

the number of cones that were hit in segment i. Furthermore,
T avg
i,k represents the average time measurement of segment i,

which will be further detailed. The parameters kT > 0 and
kc > 0 are meant to shape the reward function.

The segment’s average time, T avg
i,k , is attained from a low

pass filter. This is accomplished using the following equation.

T avg
i,k+1 = λTTi,k + (1− λT )T avg

i,k−1 , i = 1, ..., NCP (45)

5.3. Genetic Algorithm for Learning the Controller Design
Consider the set of run time MPC parameters previously pre-

sented in section 4.2: d =
[
αCL, dmax, qvy , n, βδ

]T
. Here, d

represents a genetic code string for the GA. Considering a
population with Npop individuals, the population matrix, D,
which columns represent an individual and rows a given gene,
can be defined as:

D =
[
d1 . . . dN

]
(46)

The GA is applied as follows. When the vehicle is racing
and crosses a check point, segment i corresponding to that
check point is timed, resulting in Ti,k and ncones

i . The reward
value for that timing and number of cones hit is computed as
per equation (44). At the same time, the average time of that
same segment is adjusted as per equation (45). With these
quantities computed, as the next segment begins, the MPC
parameters are updated to the next column of the population
matrix, D. When the vehicle crosses the next checkpoint,
this process is repeated. When the reward that corresponds
to the last population individual, i.e., the final column of the
population matrix, is computed. Therefore, every individual
in the population will have its respective reward value, rj ,
j = 1, ..., Npop. As such, a new population can be generated.

To generate a new population, the fitness vector is com-
puted according to equation (15). Then, the number of each
genetic operation to perform is generated. Let R, C and M
denote the reproduction, crossover and mutation operations,
respectively. The number of reproductions, NR, crossovers,
NC, and mutations, NM, can be stochastically generated ac-
cording to a discrete probability distribution function with
probabilities P (R), P (R) and P (M). Afterward, the selected
genetic operations are applied to the population. When per-
forming a genetic operation, the individuals are randomly se-
lected according to a discrete probability distribution function
according to the individuals’ fitness vector. Upon completing
every genetic operation, a new population matrix is obtained
and the whole process is repeated.

8



6. Implementation
6.1. Simulation Environment
The simulation of choice of FST Lisboa is FSSIM1. FSSIM
is a high fidelity simulator developed by the AMZ Driverless
FS team from ETH Zürich. This simulator was developed
with the purpose of testing the vehicle pipeline in a virtual
environment, which in turn allows for the adjustment of these
algorithms prior to the implementation in the real vehicle.
This team reported 1% lap time accuracy compared with their
FSG 2018 Trackdrive run [4].

6.2. Controller Implementation
Overall, FST Lisboa autonomous systems’ software pipeline
is written in Python, C and C++ while resourcing to the
Robot Operating System2 (ROS). ROS is an open source set
of software libraries and tools made for robotic applications.
ROS mainly supports two programming languages: Python
and C++. Due to the real time requirements, C++ was cho-
sen since it is a compiled language that is capable of creating
powerful and lightweight software. For this implementation,
three ROS nodes were created for: model correction learning,
controller parameter learning, and another for the model pre-
dictive controller itself. A scheme of these nodes and their
communications can be seen in figure 6.

Figure 6: ROS nodes for the developed control architecture.

6.2.1 Controller Implementation

For solving the MPC optimization problem a commercial
solver was employed. FORCESPRO [14, 15], designed by
Embotech AG, enables users to generate tailor-made solvers
from a high-level mathematical description of an optimiza-
tion problem. This commercial solver generates an optimized
C code library which solves the MPC optimization problem
formulated in equations (39).

6.2.2 Model Correction

A neural network library for the application of the vehicle
correction model was developed. This library creates a MAT-
LAB function that takes the neural network features and pa-
rameters as input and outputs the model corrections. Due to
being a MATLAB function, the neural network model can be
embedded directly onto the FORCESPRO solver using, once

1https://github.com/AMZ-Driverless/fssim
2https://www.ros.org/

again, the high-level interface, which in turn allows for tak-
ing advantage of the FORCESPRO code generation to gen-
erate the optimized code for the full vehicle model, i.e., the
blended model plus the correction model. Furthermore, as the
training algorithm is made explicitly in C++, the developed
MATLAB library also generates C++ code for the computa-
tion of the neural network jacobian, by taking advantage of
MATLAB’s Symbolic Toolbox for automatic differentiation.
This is accomplished by, once again, generating an optimized
MATLAB function and then automatically translating the
MATLAB code into C++ code while resourcing to the Eigen3

library.

6.2.3 Controller Parameter Learning

Regarding learning the MPC parameters, the procedure de-
scribed in section 5 was directly implemented in the ROS
node using C++. Moreover, this node is activated when the
vehicle crosses a check point. As explained previously, this
results in a given segment time and a number of cones that
were hit. After this, it computes the individual’s reward value
and returns the next individual parameters to the MPC node,
as per figure 6.

7. Results
In this section, simulation results of the designed controller
system are shown. For testing the controller robustness, the
results shown were obtained using FST10d’s - FST Lisboa’s
autonomous vehicle - parameters in the MPC dynamic vehicle
model while using AMZ’s Gotthard - the FS team from ETH
Zürich - parameters in the simulator.

Figure 7 contains the lap times obtained for, in this case,
two different tests for the MPC were performed: a test using
the model correction node (in blue) and a test using both the
model correction and controller parameter learning nodes (in
red).

Figure 7: Lap time simulation results for AMZ’s Gotthard in
FSG.

As can be seen from this figure, by employing the model
learning node alone, the lap times are reduced from 17.89
s to 16.56 s, a 7.43% reduction. By further employing the
parameter learning algorithm, the lap times are reduced to
14.93 s, a total reduction of 16.5%.

Focusing now on the full algorithm test, the test using the
model correction and controller parameter learning nodes plus
the MPC, corresponding to the red curve in figure 7. Observ-
ing the vehicle’s trajectory between lap 1 and lap 50, and

3https://eigen.tuxfamily.org/index.php?title=Main Page

9



between lap 51 and lap 100, as in figure 8, it can be seen
that during the learning period - laps 1 to 50 - slightly differ-
ent trajectories are explored and the longitudinal velocities
are in general lower, whereas during the steady period - laps
51 to 100 - the trajectories become more consistent and the
longitudinal velocities higher.

(a) laps 1 to 50. (b) laps 51 to 100.

(c) Longitudinal velocity evolution

Figure 8: AMZ’s Gotthard simulation trajectory for a FSG
2018 track using the full algorithm.

For reference, in AMZ’s most recent research paper [16], it
is claimed that the optimal lap time in the FSG 2018 track
while subjected to the vehicle constraints mentioned in that
paper is 18.0 s. Nevertheless, the tests presented in that pa-
per were performed using AMZ’s full pipeline. At the mo-
ment of writing this paper, FST Lisboa’s autonomous sys-
tems’ pipeline was not fully developed yet. However, depend-
ing on the rest of the pipeline, the path planning and control
algorithm developed in this paper may potentially reach faster
lap times than the ones presented in AMZ’s paper.

8. Conclusions

A Learning Model Predictive Controller was designed with
two learning principles in play: learning the dynamic model
mismatch such that it is iteratively corrected as the vehicle
drives itself and learning the controller design by developing
an algorithm that automatically tunes the MPC parameters
in a Reinforcement Learning background.

The results obtained in simulation have proven that, in-
deed, the developed methods effectively tend to maximize the
vehicle’s performance as the vehicle drives itself through the
track. Namely, these methods have allowed, for the FSG 2018
track, lap time reductions up to 16.5% when compared to the
initial lap, achieving a lap time of 14.93 s for AMZ’s Gotthard.
As such the objectives of the methods developed in this pa-
per were achieved. Moreover, these results were shown to be
competitive towards other approaches developed by other FS
teams, such as the team from ETH Zürich - AMZ Driverless.

The methods developed in this paper have some advantages
and disadvantages. Namely, the developed MPC formulation,
as mentioned before, requires previously collected data of the

track itself. This might be a disadvantage if previously col-
lected track data is not allowed. Nevertheless, FS competi-
tions often allow teams to collect track data prior to the race.
Track data offers the developed controller the advantage of
being able to predict far ahead into the track for possible fu-
ture obstacles and act accordingly. If, however, track data
is not previously available, to overcome this issue, the race’s
first lap could be used to collect the required track data while
the vehicle is controlled by a simpler controller. After this
first lap, the developed LMPC could be activated since the
required track data has been gathered. Another drawback of
the developed approach is that it requires for the vehicle to
drive roughly 40 laps until a minimum lap time is achieved.
As such, to mitigate this issue, the parameters can be tuned
in simulation, as the employed simulator was proven to obtain
similar results to the real vehicle. Then, one could retrieve
the final parameters from the simulations and then implement
these parameters in the real vehicle as its initial parameters.
The real vehicle should then drive some more laps in order to
fine tune these parameters.

References
[1] W. Farag, “Complex trajectory tracking using pid control for

autonomous driving,” International Journal of Intelligent Trans-
portation Systems Research, vol. 18, no. 2, pp. 356–366, 2020.

[2] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and
dynamic vehicle models for autonomous driving control design,” in
2015 IEEE Intelligent Vehicles Symposium (IV), 2015, pp. 1094–
1099.

[3] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger,
“Learning-based model predictive control: Toward safe learning in
control,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 3, no. 1, p. 269–296, 2020.

[4] J. Kabzan, M. I. Valls, V. J. Reijgwart, H. F. Hendrikx, C. Ehmke,
M. Prajapat, A. Bühler, N. Gosala, M. Gupta, R. Sivanesan, and
et al., “Amz driverless: The full autonomous racing system,” Jour-
nal of Field Robotics, 2020.

[5] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1: 43 scale rc cars,” Optimal Control Applica-
tions and Methods, vol. 36, no. 5, pp. 628–647, 2015.

[6] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for
linear and hybrid systems. Cambridge University Press, 2017.

[7] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of ma-
chine learning. MIT press, 2018.

[8] “RBF and EBF Models.” [Online]. Avail-
able: https://abaqus-docs.mit.edu/2017/English/IhrUserMap/ihr-
c-Reference-RBFandEBF.htmGeneralizingRBFtoEBF

[9] Man-Wai Mak and Sun-Yuan Kung, “Estimation of elliptical ba-
sis function parameters by the EM algorithm with application
to speaker verification,” IEEE Transactions on Neural Networks,
vol. 11, no. 4, pp. 961–969, Jul. 2000.

[10] D. E. Goldberg, “Genetic algorithms in search, optimization, and
machine learning. addison,” Reading, 1989.

[11] R. Rajamani, Vehicle dynamics and control. Springer, 2012.

[12] F. Fuchs, Y. Song, E. Kaufmann, D. Scaramuzza, and P. Duerr,
“Super-human performance in gran turismo sport using deep rein-
forcement learning,” arXiv preprint arXiv:2008.07971, 2020.

[13] “Curvature and Radius of Curvature.” [Online]. Available:
https://math24.net/curvature-radius.html

[14] A. Domahidi and J. Jerez, “Forces professional,” Embotech AG,
2014–2019. [Online]. Available: https://embotech.com/FORCES-
Pro

[15] A. Zanelli, A. Domahidi, J. Jerez, and M. Morari, “Forces nlp: an
efficient implementation of interior-point... methods for multistage
nonlinear nonconvex programs,” International Journal of Control,
pp. 1–17, 2017.

[16] S. Srinivasan, S. N. Giles, and A. Liniger, “A holistic motion plan-
ning and control solution to challenge a professional racecar driver,”
IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7854–
7860, 2021.

10


