
Online Learning of MPC For Autonomous Racing

Gabriel Alexandre Francisco Costa

Thesis to obtain the Master of Science Degree in

Mechanical Engineering

Supervisors: Prof. Miguel Afonso Dias de Ayala Botto
Prof. Pedro Manuel Urbano de Almeida Lima

Examination Committee

Chairperson: Prof. Carlos Baptista Cardeira
Supervisor: Prof. Pedro Manuel Urbano de Almeida Lima

Member of the Committee: Prof. João Manuel Lage de Miranda Lemos

December 2021

Para a minha famı́lia.

ii

Acknowledgments

First, I would like to thank both my supervisors, professors Pedro and Miguel, for their support

throughout the development of this dissertation. Their technical overview on this subject was a fun-

damental contribution for this thesis. I would also like to thank them for encouraging me to develop this

work in C++, which has become an extremely valuable tool in my skill set. I extend this gratitude to

João Pinho, a fellow master thesis student, who welcomed me on his meetings with our supervisors and

helped me to take the first steps by teaching me the basis of FST Lisboa’s software pipeline. Besides

this, João also contributed to this work through our interesting discussions on the autonomous driving

topic, which lead to many of the ideas developed in this dissertation.

I would also like to thank in general FST Lisboa’s team for providing me the necessary material for

this dissertation as well as helping me with code management.

I also thank my friends from Instituto Superior Técnico, who not only make some of the best jokes

I have ever heard but are also great and intelligent people to study and work with. Thank you Beatriz,

Bruno, David, Paula, and Pedrocas Bombocas.

Last but not least, I would like to thank my family and girlfriend, Joana, for their incredible support

provided not only during the development of this dissertation but for the past five years at Instituto

Superior Técnico. They always helped to calm down during many stressful days and made sure I would

laugh in situations that should not be possible. You bring out the best in me.

iii

Resumo

Nesta dissertação, é projetada uma arquitetura de Controlo por Modelo Preditivo (MPC) baseada em

técnicas de aprendizagem automática com o propósito de controlar um veı́culo autónomo de Formula

Student (FS). Para a implementação em tempo real deste controlador e também para satisfazer os

requisitos das competições de FS autónomas, o controlador é implementado em C++ e o problema de

otimização do MPC é resolvido utilizando um software comercial.

Resumidamente, o controlador projetado é capaz de aprender iterativamente à medida que o veı́culo

se auto conduz. O processo de aprendizagem é realizado para dois propósitos distintos: melhoria da

precisão do modelo dinâmico do veı́culo utilizado pelo controlador e encontrar automaticamente os

parâmetros do controlador que resultam nos tempos de volta mais rápidos possı́veis. Encontrar as

equações matemáticas que descrevam na totalidade a dinâmica de um veı́culo FS requer o uso de

modelos nominais de veı́culo não lineares cuja obtenção é não trivial. Para este propósito, um modelo

de Rede Neuronal Artificial (ANN) é adicionado ao modelo nominal com o intuito de modelar dinâmicas

não consideradas no modelo original. A AAN é treinada com recurso a Aprendizagem Supervisionada

(SL) de modo online, cuja aprendizagem se baseia em erros de previsão anteriores. Além disto, os

parâmetros do controlador são afinados com recurso a métodos de Aprendizagem por Reforço (RL) com

o objetivo de determinar os parâmetros que, iterativamente, permitem tempos de volta mais rápidos.

Em ambiente de simulação, serão realizados vários testes em três pistas diferentes. Nomeada-

mente, é demonstrado que, aplicando as duas técnicas mencionadas, o algoritmo de controlo permite

uma redução até 16.5% dos tempos de volta.

Palavras-chave: Controlo por Modelo Preditivo, Aprendizagem de Modelo, Trajetória e Segui-

mento de Caminho, Corridas Autónomas.

iv

Abstract

In this dissertation, a Learning based Model Predictive Control (LMPC) architecture is designed for

the control of a Formula Student (FS) autonomous vehicle. For the implementation of this controller

in real time to satisfy the FS driverless requirements, the C++ programming language is used and the

MPC’s optimization problem is solved using a commercial solver.

In summary, the developed controller is able to iteratively learn as the vehicle drives itself. This

learning process is carried out for two distinct purposes: improving the accuracy of the vehicle model

used by the controller and automatically finding the controller parameters that result in the fastest lap

times. Finding the mathematical equations that fully describe the race car dynamics requires the use of

highly nonlinear vehicle nominal models which are difficult to obtain. For this purpose, an Artificial Neural

Network (ANN) is added to a vehicle nominal model in order to correct for unmodeled dynamics not

considered in the nominal model. The ANN is trained in an online Supervised Learning (SL) approach,

which learns based on past model prediction errors. Furthermore, the controller’s parameters are tuned

in a Reinforcement Learning (RL) environment in order to find the set of parameters that iteratively allow

for faster lap times.

In a simulation environment, various tests on three different tracks are performed. Moreover, it is

shown that by employing these two learning procedures, the full control algorithm is able to reduce lap

times up to 16.5%.

Keywords: Model Predictive Control, Model Learning, Motion and Path Planning, Autonomous

Racing.

v

Contents

Acknowledgments . iii

Resumo . iv

Abstract . v

List of Tables . ix

List of Figures . x

Nomenclature . xii

List of Abbreviations . xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Topic Overview . 8

1.3 Objectives and Deliverables . 11

1.4 Thesis Outline . 11

2 Theoretical Background 13

2.1 Model Predictive Control . 13

2.1.1 Optimization Problem . 15

2.2 Supervised Learning . 16

2.2.1 Artificial Neural Networks . 17

2.2.2 Elliptical Basis Function Networks . 18

2.2.3 Online Gradient Descent . 19

2.2.4 Levenberg-Marquardt Algorithm . 20

2.3 Reinforcement Learning . 22

2.3.1 Genetic Algorithm . 24

3 Vehicle Models 28

3.1 Vehicle Description . 28

3.1.1 Vehicle Geometry . 28

3.1.2 Lateral Tire Forces . 30

3.1.3 Longitudinal Forces . 31

3.1.4 Summation of Forces and Moments Around the CG 32

3.2 Kinematic Bicycle Model . 32

vi

3.3 Dynamic Bicycle Model . 34

3.4 Model Discretization . 35

3.5 Blended Bicycle Model . 37

3.6 Error Correction Model . 38

3.6.1 Training and Feature Selection . 39

4 MPC Formulation 48

4.1 Track Progress . 48

4.2 MPC Based On Track Progress . 51

5 Controller Parameter Learning 55

5.1 Reward System . 55

5.1.1 Vehicle Point Mass Model . 56

5.1.2 Reward Function . 58

5.2 Genetic Algorithm for Learning the Controller Design . 59

5.3 Genetic Operations . 59

5.3.1 Reproductions . 60

5.3.2 Crossovers . 60

5.3.3 Mutations . 61

5.4 Algorithm Procedure . 61

6 Implementation 65

6.1 Simulation Environment . 65

6.2 Tracks . 66

6.3 Controller Implementation . 66

6.3.1 MPC Solver . 68

6.3.2 Model Correction . 69

6.3.3 Controller Parameter Learning . 70

7 Results 71

7.1 FST10d Simulations . 71

7.2 AMZ’s Gotthard Simulations . 74

8 Conclusions 79

8.1 Main Conclusions . 79

8.2 Future Work . 80

Bibliography 81

A Algorithms 87

B Tables of parameters 91

vii

C Results for Track 2 and 3 94

viii

List of Tables

B.1 FST10d’s model parameters for the kinematic, dynamic, and blended models. 91

B.2 Correction model parameters. 92

B.3 Fixed MPC parameters. 92

B.4 Genetic algorithm parameters. 93

B.5 Initial generation parameters. 93

B.6 Some of AMZ’s Gotthard model parameters for the simulator. 93

ix

List of Figures

1.1 Levels of autonomous driving according to SAE J3016. 2

1.2 Some autonomous vehicles. 4

1.3 Typical autonomous driving pipeline. 5

1.4 Fastest team’s corrected Trackdrive time evolution. 6

1.5 First FST Lisboa’s autonomous vehicle - FST10d. 8

2.1 Receding Horizon principle. 14

2.2 Example neural network scheme. 17

2.3 General learning scheme of Reinforcement Learning. 23

2.4 Scheme of states and transitions of a MDP. 24

2.5 Visual representation of the three different genetic operations. 25

3.1 Vehicle geometry comparison. 29

3.2 tire-slip model. 30

3.3 Zero order hold scheme. 36

3.4 Example track with two similar curves and two similar straight lines. 40

3.5 Discrepancy and error representation. 42

3.6 Example mean squared error signal vs. smoothed mean squared error. 46

3.7 Schedule template function. 47

4.1 Track progress based on the track’s center line length. 48

4.2 Race track from FSG. 50

4.3 Approximation mechanism for the track progress. 51

4.4 Effect of the exponent of the center line error cost. 52

4.5 Effect of qvmax in the maximum velocity soft constraint cost. 53

5.1 Maximum achievable velocity and track segmentation. 57

5.2 Example lap time reduction by using check points vs. not using check points. 64

6.1 Tracks to be used in simulation and testing. 67

6.2 ROS nodes for the developed control architecture. 67

6.3 Example solve time histogram. 69

x

7.1 Lap time simulation results for the FST10d vehicle in Track 1. 72

7.2 FST10d simulation trajectory for Track 1 using the full algorithm. 73

7.3 Controller parameter for the FST10d vehicle in Track 1. 74

7.4 MSE and SMSE for each sampling instant for FST10d. 75

7.5 Lap time simulation results for AMZ’s Gotthard in Track 1. 76

7.6 AMZ’s Gotthard simulation trajectory for Track 1 using the full algorithm. 77

7.7 Controller parameter for AMZ’s Gotthard vehicle in Track 1. 78

7.8 MSE and SMSE for each sampling instant for AMZ’s Gotthard. 78

C.1 FST10d simulation results for Track 2 using the full algorithm. 95

C.2 FST10d simulation results for Track 3 using the full algorithm. 96

C.3 AMZ’s Gotthard simulation results for Track 2 using the full algorithm. 97

C.4 AMZ’s Gotthard simulation results for Track 3 using the full algorithm. 98

xi

Nomenclature

Controller parameter learning

λT Segment average time low pass filter parameter.

P Probability.

D Population.

d Individual genes.

f Fitness vector.

r Reward vector.

dlow/high Parameter space exploration limit.

kc Cone hit penalization.

kT Reward function shape parameter.

L Track length [m].

mlow/high Mutation random variable.

ncones Number of cones hit in a given track segment.

NCP Number of check points.

Npop Number individuals in a population.

nd Number of genes in an individual.

R Track curvature radius [m].

r Reward function.

Ti Segment lap time.

Tlap Point mass model theoretical lap time.

v Point mass model velocity [m/s].

Error correction model

xii

ε Discrepancy vector.

Γ Forgetting factor normalization term.

γ Forgetting factor.

λ Levenberg-Marquardt damping factor.

λMSE MSE low pass filter parameter.

A Transformation matrix.

J Jacobian matrix.

p Parameter vector.

v Feature vector.

MSE Mean squared error.

SMSE Smoothed mean squared error.

e Correction function.

ne Number of outputs.

nh Number of hidden neurons.

nv Number of features/inputs.

nbatch Learning batch size.

R Learning loss function.

Model predictive control

α Center line penalization weight.

αCLmax Maximum center line error allowed.

βδ Steering smoothness weight.

∆umax Maximum control action variation.

∆smin /max Neighborhood track progress interval limits.

êCL Center line error estimation [m].

êL Lag error estimation [m].

λs Last predicted track progress weight.

umin /max Control actions’ limits.

eCL Center line error [m].

xiii

g Track’s center line function.

J MPC cost function.

N Prediction horizon.

n Center line penalization exponent.

qvy Lateral velocity penalization weight.

qvmax
Exponential velocity soft contraint shape parameter.

s Track length or track progress [m].

Ts Sampling time [s].

vmax Maximum longitudinal velocity.

Kinematic, Dynamic and Blended bicycle models

α Tire-slip angle [rad].

δ Steering angle [rad].

ηmotor Motor and transmission efficiency [-].

λ Blending factor [-].

R Rotation matrix [-].

u Input vector.

x State vector.

Ψ Vehicle orientation [rad].

ρ Air density [Kg m-3].

AF Vehicle’s frontal area [m2].

Bf/r Tire model shape parameter [-].

Cd Drag coefficient [-].

Cf/r Tire model shape parameter [-].

Cr Rolling resistance coefficient [-].

d Normalized throttle [-].

Df/r Tire peak force [N].

f State transition function.

g Gravity acceleration [m s-2].

xiv

GR Transmission gear ratio [-].

Iz Vehicle’s inertia around the yaw axis [kg m2].

L Wheelbase [m].

lf Distance from front axis to the vehicle’s CG [m].

lr Distance from rear axis to the vehicle’s CG [m].

m Vehicle’s mass [kg].

r Vehicle’s yaw rotation speed [rad s-1].

rwheel Wheel radius [m].

Tmax Motor’s maximum torque [Nm].

Vblend Blended model blending parameter [m s-1].

vx/y Vehicle’s longitudinal and lateral velocity [m s-1].

X/Y Vehicle’s global spatial coordinates [m].

xv

xvi

List of Abbreviations

ANN Artificial Neural Network.

CG Center of Gravity.

DL Deep Learning.

DV Driverless Vehicle.

EBFN Elliptical Basis Function Network.

ERM Empirical Risk Minimization.

FSG Formula Student Germany.

FS Formula Student.

GA Genetic Algorithm.

GD Gradient Descent.

LMPC Learning-based Model Predictive Control.

LM Levenberg-Marquardt.

ML Machine Learning.

MPC Model Predictive Control.

NLP Nonlinear Programming.

OGD Online Gradient Descent.

OLM Online Levenberg-Marquardt.

PU Processing Unit.

RBFN Radial Basis Function Network.

RL Reinforcement Learning.

ROS Robot Operating System.

SAE Society of Automotive Engineers.

SLAM Simultaneous Localization And Mapping.

SL Supervised Learning.

ZOH Zero Order Hold.

xvii

Chapter 1

Introduction

In this first chapter, a comprehensive overview of driverless vehicles will be presented in order to

provide insight into the work developed in this dissertation. Firstly, the motivation that drove this disser-

tation will be described. Furthermore, an overview of the control theory applied to driverless vehicles will

be presented. Finally, the objectives of this thesis and an outline of this dissertation will be presented.

1.1 Motivation

Developing self-driving vehicles has been one of the major technology focuses of the twenty-first

century. This topic has been experiencing large growth with breakthroughs in technology that enable

such vehicles to drive themselves and to perform tasks like parking autonomously. Following this topic,

Formula Student teams were recently introduced to a new type of racing competition: the driverless

competition. To participate in such competitions, teams are required to build and test a self-driving

vehicle, which relies on the use of sensors and complex control algorithms in order to guide the vehicle

through the race track at fast speeds.

According to the American Society of Automotive Engineers (SAE), autonomous vehicles can be

ranked on a zero to five scale as suggested in figure 1.1. In summary, level 0 represents a standard

vehicle that is thoroughly controlled by a human driver without any kind of automation or supervision.

Level 1 and level 2 include vehicles that offer automatic driving assistance such as cruise control, lane

keeping assistance, highway assistance, and many others. Overall, from levels 0 to 2 the driver must

actively participate in driving as the automation/supervision technologies available in these levels do

not allow for the vehicle to drive autonomously. At level 3, the car is considered to be able to take

over control in certain traffic conditions, for example, being able to drive autonomously on a highway or

having a traffic jam assistance. At this level, the driver is able to do other tasks while the car drives itself.

Nevertheless, an issue inherent to this automation level is that the driver is always expected to take over

control if the automated functions are disturbed or unable to handle certain traffic situations. In level

4, full autonomous driving functions are available in the vehicle for all required traffic scenarios so that

human interventions are not required. Furthermore, at this level, the driver still has the possibility to take

1

over control in case of system failure or personal desire. Finally, level 5 represents the fully autonomous

vehicle that does not need human interaction anymore. At this level, the cars are mainly robots that

transport passengers and/or goods independently [1].

Figure 1.1: Levels of autonomous driving according to SAE J3016 [1].

Besides technology-related research, autonomous driving is a far reaching topic that is constantly

under evaluation regarding legal, social, and ethical aspects. The advantages and disadvantages of au-

tonomous driving are intensively discussed due to the big impact of this technology on human mobility

behavior, infrastructure and environment. In general, autonomous driving includes a tremendous poten-

tial to improve life quality, reduce traffic accidents and decrease impacts on environmental pollution, but

still, there are open points in terms of safety, costs, and ethical issues.

Several companies have been pioneers in the development of autonomous vehicles. In the last

decade, these companies have seen clear improvements, both in safety and technology each year in

their autonomous vehicles. Waymo, a company that began as the Google self-driving project in 2009,

is currently operating in cities like Phoenix, San Francisco, and Mountain View in the United States of

America (USA). Waymo’s mission is to make autonomous driving safe and easy for people and things to

get to their destination. As of today, Waymo’s vehicles operate with a level 4 autonomy, meaning that, for

the most part, Waymo’s vehicles drive their passengers without any human occupying the driver’s seat.

At the moment, Waymo’s fleet has driven more than 20 million miles on the road and more than 15 billion

miles in simulation. During 2019 and the first nine months of 2020, Waymo claimed that their vehicles

were involved in 18 car accidents and 29 near-miss collisions while driving more than 6.1 million miles,

without any fatality or severe injuries [2]. An illustration of the Waymo One fully autonomous vehicle can

be seen in figure 1.2a in page 4.

Tesla is a well known car manufacturer founded in the year 2003 in the state of California, USA.

Tesla’s mission is to accelerate the world’s transition to sustainable energy by producing electric vehicles.

Besides this objective, Tesla vehicles are known for their autopilot capabilities - their autonomous driving

system. As for today, Tesla’s vehicles are classified to have level 2 autonomy, with the objective being to

2

achieve level 5 autonomy. Tesla’s vehicle safety report [3] shows an improvement in the autopilot’s safety

by an accident rate reduction from one accident per 3.34 millions driven miles in the 3rd quarter of 2018

to one accident per 4.19 million driven miles in the 1st quarter of 2021 with the autopilot engaged. They

also compare these autopilot’s values to accidents that occurred when driving without the autopilot or

any of the vehicle’s safety features on, which amounted for one accident per 978 thousand miles driven

in the 1st quarter of 2021 - a significantly higher accident rate when compared to the autopilot’s rate.

In [4], a survey on Tesla’s users, showed that these drivers frequently use the autopilot and that these

users in general do not perceive eventual autopilot’s failures as posing a significant risk. Nevertheless,

Tesla’s autopilot strategy has been target to many criticism with claims that Tesla’s self driving strategy

is outdated and possibly dangerous [5]. An illustration of the well known Tesla Model S can be seen in

figure 1.2b.

Regarding autonomous racing, the Indy Autonomous Challenge1 is promoting an university com-

petition with the objective of developing an autonomous racing vehicle using a modified Dallara IL-15

racecar to compete in the world’s first head to head autonomous race at the Indianapolis Motor Speed-

way, which is set to take place in October 2021. One of the competition’s objectives is to bring new

and improved technologies to autonomous vehicle commercialization by tackling three issues related to

autonomous driving:

1. Solving edge case scenarios: to develop innovative technologies for problems and situations

that occur only at an extreme operating parameter, such as avoiding unanticipated obstacles at

high speeds while maintaining vehicle control;

2. Catalyzing new autonomous vehicle technologies and innovators: claiming that autonomous

vehicles are too expensive for scaled commercial deployment and that automakers and technology

companies are seeking sources of new intellectual property and qualified engineers;

3. Acceptance and use of autonomous vehicle technologies: by engaging the public with in-

creased exposure to autonomous vehicle technologies, the competition hopes for facilitating an

understanding of autonomous vehicles and their potential.

An example modified Dallara IL-15 for the Indy Autonomous Challenge competition can be seen in

figure 1.2c.

For the realization of autonomous driving functions reliable and robust determination of position and

trajectory of the vehicle on the road for tracking and controlling the vehicle is fundamental. In addition

to the vehicle’s self behavior, the behavior of all other traffic participants, like vehicles and pedestrians,

has to be observed and predicted. In combination with environmental models, like digital maps, the

recognition of all traffic participants is required for continuous modeling of the traffic situation in different

scenarios. All this information must be processed in real time, resourcing to sensor fusion and evaluation

[6, 7].

The typical autonomous driving pipeline is illustrated in figure 1.3. Referring to diagram (a) in this

figure, from left to right, the block that corresponds to sensing concerns the collection of sensor data from
1https://www.indyautonomouschallenge.com/

3

https://www.indyautonomouschallenge.com/

(a) Waimo One (b) Tesla Model S

(c) Modified Dallara IL-15

Figure 1.2: Some autonomous vehicles.

a multitude of sensors such as cameras, Light Detection And Ranging (LiDAR) sensors, Radio Detection

And Ranging (radar) sensors, ultrasonic sensors, Inertial Measurement Units (IMUs), and many others.

The next block relates to the application of perception algorithms to the sensor data. Two main tasks are

accomplished in this block: object detection and tracking and localization. Object detection and tracking

concerns the necessary detection of road features and objects, like traffic signs and pedestrians, as well

as the tracking of these objects. Localization, as suggested by the word itself, concerns the localization

of the vehicle with respect to some map/coordinates in the world. The next block, regarding assessment

and behavior prediction, concerns the interpretation of the object detection and localization data, for

example, for identifying a pedestrian and tracking its movement to predict its path. Overall, this block

is responsible for estimating other agents’ intents. The planning block is responsible for planning a

feasible vehicle trajectory that respects traffic rules while respecting the information extracted from the

assessment and behavior prediction block. Finally, the control block is responsible for computing the

required actuation, i.e., vehicle steering and throttle, in order to follow the planned trajectory.

Furthermore, object detection state-of-the-art algorithms often rely on Computer Vision (CV) [9]

and/or Deep Learning (DL) [10] techniques, while generally using data from exteroceptive sensors,

like LiDARs, cameras and radars. Localization can be accomplished resourcing to, for example, Si-

multaneous Localization and Mapping (SLAM) algorithms [11, 12]. SLAM can be defined as a process

where a robot or a vehicle builds a map representing its spatial environment while keeping track of its

position within the built map. SLAM algorithms take into account a variety of parameters like sensor

measurements, map representation, robot dynamics, environmental dynamics, and many others. These

algorithms commonly rely on Kalman Filters (KFs), the most popular being the Extended Kalman Fil-

4

Figure 1.3: Typical autonomous driving pipeline: (a) a generic modular system, and (b) an end-to-end
driving system [8].

ter (EKF) [13, 14]. SLAM algorithms in autonomous driving use a variety of sensors, namely a stereo

vision system (cameras), LiDARs, IMUs and wheel encoders [15]. Behavior prediction algorithms typi-

cally resource to Deep Learning [16], nevertheless, recent research on this topic has been done using

Monte Carlo algorithms [17] as well as using particle filter classifiers [18]. Path planning problems are

typically formulated as nonlinear optimization problems that revolve around a set of waypoints - points

that characterize where the vehicle should pass. Generally, these algorithms work by generating a set of

candidate paths and the optimal path is selected according to path cost criteria, like path smoothness or

consistency [19, 20]. Finally, control algorithms for autonomous driving may range from the well known

Proportional Integral Derivative (PID) controllers [21], classical optimal control theory methods as iter-

ative versions of the Linear Quadratic Regulator (LQR) [22] to more computationally complex methods

like Model Predictive Control (MPC) [23]. Other successful control approaches on autonomous driving

have used predictive control algorithms aided by some Machine Learning (ML) techniques in order to

improve the controller’s performance [24].

Similar to the previously mentioned Indy Autonomous Challenge, Formula Student (FS) is Europe’s

most established educational engineering competition, where various university teams design, build,

test, and compete with a formula type racecar. FS competitions are subdivided into static and dynamic

events.

Regarding static events, the goal of the Business Plan Presentation is to evaluate the team’s ability

to develop and deliver a comprehensive business model, which demonstrates how their product – a

prototype racecar – could become a rewarding business opportunity that creates monetary profit. The

Cost and Manufacturing event aims at evaluating the team’s understanding of the costs and manufac-

turing processes associated with manufacturing the team’s vehicle. Inherent to this, teams should justify

their trade off decisions between content and cost, and make or buy as well as understanding the differ-

ences between developing a racecar prototype and mass production. For this purpose, students create

a detailed report of all costs associated with materials, processes, and assembly of the car. The last

static event, Engineering Design, concerns the evaluation of the student’s knowledge of the vehicle and

its related engineering concepts. As such, teams are expected to support their engineering design by

5

delivering a detailed engineering report of the vehicle.

The dynamic events’ purpose is to test the developed racecar’s different driving abilities. These

events can be characterized as follows:

• Acceleration: the vehicle drives in a straight track of approximately 75 m in length in order to test

its longitudinal acceleration capabilities;

• Skidpad: the vehicle drives in a track formed by two pairs of circles in an ”eight” pattern in order

to test the vehicle’s lateral acceleration capabilities;

• Autocross: the vehicle drives a single lap track, roughly with 1 km, with components such as

hairpins, slaloms and chicanes;

• Trackdrive: the vehicle drives 10 laps in a closed loop track with similar characteristics to Au-

tocross;

• Efficiency: the vehicle is evaluated in terms of energy efficiency regarding the previous event.

Since 2017, Formula Student Germany (FSG) - a FS competition held in Hockenheim, Germany -

introduced a new competition class for autonomous racecars, the Driverless Vehicle (DV) class.

With the purpose of accelerating research in autonomous vehicles, this new class was mainly en-

couraged by automotive industry stakeholders like Audi, Daimler, and Continental which also sponsor

the competition and provide officials and design judges for the competition. Indeed, throughout these

years, the competition’s new class has seen new fastest lap times when compared to the previous

years2. Figure 1.4 displays the corrected Trackdrive times (i.e. clock time plus potential penalties) for

the fastest year’s team able to complete the event’s 10 laps. This figure shows a significant performance

improvement on this event. This is a product of the team’s yearly evolution by developing an increasingly

better vehicle control pipeline.

Figure 1.4: Fastest team’s corrected Trackdrive time evolution. Note that in 2020 the competition was
not realized due to the coronavirus pandemic.

2https://www.formulastudent.de/fsg/

6

https://www.formulastudent.de/fsg/

Furthermore, as an incentive for teams to develop driverless vehicles, from 2022 onwards, the DV

class will be merged with the human driver classes. As such, all the vehicles in the FSG competition

must be adapted with an autonomous driving system, or else teams will not score in driverless events,

losing points. In addition, in the following year, 2023, it is planned to add another driverless dynamic

event.

Regarding the DV class competitions’ environment, no pedestrians or other vehicles are allowed near

the track. The track itself is composed of blue and yellow cones that represent the left and right limits of

the track, respectively. Exit and entry points are marked by small orange cones and big orange cones

are used in the track’s start and finish lines as well as for timing the vehicle. Given this, the DV class

competition environment is rather controlled and simplified when compared to the commercial vehicle’s

typical urban driving scenario, which allows FS teams to develop a simpler pipeline. For example,

object detection tasks are made simpler since the vehicle only needs to detect the four different cone

types mentioned previously. Despite this, localization, path planning, and control problems can become

harder, as, in order to achieve fast lap times and maximizing the team’s score, the vehicle should be

pushed to its handling limits. A priori track information is not allowed for the Autocross event, while for the

Trackdrive event some competitions allow for prior track data collection. This makes SLAM algorithms

one of the main components of the DV class pipeline, as for example, for Trackdrive events without a

priori track data, the vehicle can use the first lap to collect track information, driving slower while only

using current measurements. As the second lap starts the SLAM algorithm has built a virtual map of the

track which can be exploited by localization, path planning, and control algorithms that potentially allow

the vehicle to drive much faster.

The FS team from Instituto Superior Técnico (IST), FST Lisboa, has been building FS vehicles since

2001. Since 2019, the team has been working on its first autonomous vehicle, FST10d. This vehicle was

adapted from the 9th FST Lisboa’s vehicle, designed for the 2018/19 competitions. Figure 1.5a and 1.5b

show FST10d performing the Trackdrive event at FSG 2021 and figure 1.5c shows the original vehicle

on which FST10d was built, FST9e.

With the goal of designing a self-driving vehicle, several theses have been developed addressing the

topic of self-driving vehicles [25–29]. This dissertation is inserted in such topic, namely the development

and application of control algorithms.

Currently, FST Lisboa’s software pipeline includes simple controllers, while the rest of the pipeline

is more advanced. The implemented controllers so far are a Pure Pursuit Controller [30] for vehicle

lateral control and a Proportional Integral (PI) controller for its longitudinal control. Raffaello D’Andrea, a

professor of dynamic systems and control at ETH Zürich, once made the analogy of robot athleticism, in

which he claims that for humans to achieve remarkable athletic performance their athletic bodies require

athletic minds, similarly, for pushing robots to their physical limits their ”minds” must also be gifted with

”athletic” power, with complex yet powerful algorithms. As such, this thesis aims at developing a control

algorithm for FST Lisboa that is capable of not only guiding the car through the race track in the least

possible amount of time but also to apply Machine Learning (ML) techniques that provide more accurate

and precise control of the vehicle, allowing FST10d to be driven near its physical limits.

7

(a) FST10d at FSG 2021. (b) FST10d at FSG 2021.

(c) Original FST9e.

Figure 1.5: First FST Lisboa’s autonomous vehicle - FST10d.

1.2 Topic Overview

As expressed in the previous section, various control algorithms are being researched with the appli-

cation of autonomous driving. These controllers vary widely in terms of complexity, ranging from simple

and well studied controllers like Proportional Integral Derivative (PID) controllers [21] up to more complex

optimal based controllers like Model Predictive Control (MPC) [23].

As an example, Levinson et al. [22] presents decoupled planning and control techniques, meaning

that trajectory planning and control are two different consecutive tasks, as suggested in the pipeline

scheme in figure 1.3. As such, in that paper, before the control tasks, the vehicle’s trajectory is planned.

In summary, this trajectory planning task is based on optimization algorithms that tend to minimize

the lateral and longitudinal jerk - the derivative of acceleration. After the trajectory is planned, the

control algorithm’s task is to find the control actions - throttle and steering - that the vehicle has to

maintain in order to follow that trajectory. The developed control techniques are based on a mixture

of a MPC strategy based on physically based vehicle models, along with PID control for the lower

level feedback control tasks such as applying a given torque to the wheels in order to achieve a given

reference steering angle. The developed MPC’s cost function reflects a quadratic cost based on the

planned trajectory. More specifically, the MPC’s cost is higher if the predicted vehicle states are far from

the desired trajectory states and lower otherwise.

8

Contrary to the previous example, Liniger et al. [31] developed a MPC for autonomous racing in which

the trajectory planning and control are coupled. The main advantage of this strategy is that trajectory

planning and tracking can be combined into one nonlinear optimization problem, allowing to find the op-

timal trajectory and also the corresponding optimal control actions using the same optimization problem.

As such, the developed MPC’s cost function is based on the vehicle’s progress along the track instead

of a reference given by the trajectory planning, as in the previous example. The controller developed in

this dissertation also follows the idea of Liniger et al. [31]. Moreover, the developed controller aims at

finding the control actions that maximize the vehicle’s center line progress at a given sampling instant.

The mathematics and mechanisms used by the developed controller will be further introduced in chapter

4 - MPC Formulation.

Furthermore, another relevant topic in autonomous driving is the use of Machine Learning (ML)

for controller improvement purposes. This is often referred to as learning based control, in which ML

techniques are typically used with a MPC for several purposes. Hewing et al. [32] overviewed some of

this recent research. The authors claim that this research addresses three main topics:

1. Learning the system dynamics: addressed by most of the research, this technique relates to

learning for automatic improvement of the system’s prediction model from recorded data. This

considers the automatic adjustment of the system model, either during operation or between dif-

ferent operational instances;

2. Learning the controller design: With a recent increasing interest, this technique infers the pa-

rameterization of the MPC controller, i.e., the cost and constraints, that lead to the best closed-loop

performance;

3. MPC for safe learning: a technique used to derive safety guarantees for learning-based con-

trollers. This technique’s main idea is to decouple the optimization of the objective function from

the requirement of constraint satisfaction, which is addressed using MPC techniques.

This thesis mainly adopts techniques from the two first topics: learning the system dynamics and

learning the controller design.

Regarding learning the system dynamics, as mentioned before, this approach mainly consists in

collecting data offline and/or online, such as state measurements, and using this information either to

derive a system’s model or to improve the prediction model used in the MPC. Many learning based

MPC techniques make use of an explicit distinction between a nominal system model and an additive

learned term that corrects for the nominal model’s uncertainty. In the scope of autonomous driving,

the vehicle’s nominal model is often derived through physical principles, namely using Newton’s laws

of motion. The additive correction model is then derived through data, which is learned by some ML

technique. Researched ML techniques for this purpose include, for example, the use of Artificial Neural

Networks (ANNs) [33, 34] and full or sparse Gaussian Process (GP) regressions [35, 36].

Despite the system’s prediction model being a core element of a MPC, other elements in the MPC

formulation, such as the design of the cost function and constraints also have a major influence on the

9

resulting closed loop performance. As mentioned previously, learning the controller design concerns

the parameterization of the MPC’s cost function and constraints. Moreover, one can successively adjust

these parameters according to a desired performance indicator. As an example regarding autonomous

racing, consider a vehicle controlled by a MPC parameterized by nd parameters in its cost function and

constraints. Considering that, for example, the goal is to minimize the vehicle’s lap time for a given closed

loop track, the objective of an algorithm for learning the controller design would be to find the best value

for the nd parameters that result in the lowest lap time possible. There are many optimization algorithms

one can use to solve such problems. Furthermore, in research papers like [37, 38] this is accomplished

using Reinforcement Learning (RL) techniques. Moreover, Genetic Algorithms (GAs) have also been

used for automatic parameter tuning [39–41].

Focusing on research being done in the Formula Student autonomous racing context, several teams

have been publishing research papers detailing their approach for developing a driverless Formula Stu-

dent vehicle. Namely, the driverless FS team from ETH Zürich named AMZ Driverless, which was

previously mentioned in figure 1.4 as the fastest team completing the Trackdrive event in the years 2017

and 2018, published several research papers regarding the work performed on their autonomous ve-

hicles [35, 42, 43]. Namely, [42] presents a vehicle model built on physical principles, which was also

employed in this thesis - further detailed in chapter 3. This model results from a blend of two well known

models in vehicle dynamics: the kinematic bicycle model and the dynamic bicycle model. Furthermore,

in AMZ’s most recent paper by Srinivasan et al. [43], the authors claim that the developed control ar-

chitecture is capable of outperforming a professional driver racing the same car. The fastest team at

completing the Trackdrive event in the recent years of 2019 and 2021, KA-RaceIng, the team from Karl-

sruhe Institute of Technology (KIT), also published some research papers regarding the development of

their autonomous vehicles [44, 45]. In [45] two separate controllers are used for motion control. Namely,

the team uses a MPC for the lateral movement of the vehicle, which is responsible for computing the

steering control actions, and a PI controller for the longitudinal movement of the car, as the authors claim

that the longitudinal dynamics of a racecar are well represented by a double integrator.

In this thesis, a nonlinear MPC for FST Lisboa’s FST10d driverless vehicle is developed for the tasks

of trajectory planning and control. This controller is developed based on the blended model suggested

in [42] with an additive correction model based on Artificial Neural Networks. The additive correction

model makes use of using real time data to improve itself in an online learning fashion. The MPC’s

cost function and constraints are based on the idea of Liniger et al. [31] in order to couple the path

planning and control tasks in a comprehensive manner. Finally, in order to learn the controller design,

the parameters used in the MPC’s cost function and constraints are tuned in a Reinforcement Learning

procedure consisting of time measurements between given track segments divided by check points,

which will be further explained in chapter 5 - Controller Parameter Learning.

Several other theses from Instituto Superior Técnico have contributed to research on the topic of

autonomous racing while also contributing to FST Lisboa’s autonomous vehicles. Namely in [25] a MPC

is designed while using a neural network model trained in a detailed vehicle simulator. The author also

trains another neural network to learn the resulting MPC control actions. In [26] and [27] torque vectoring

10

and sideslip estimation techniques are explored. In [29] path following techniques coupled with classical

linear control methods, such as the Linear Quadratic Regulator (LQR) are developed. Finally, Pinho [28]

proposes a LMPC design based on [46]. Furthermore, the author exploits Gaussian Process Regression

(GPR) techniques in order to learn a vehicle model correction. João Pinho’s thesis [28] can be seen as

a thesis parallel to this dissertation, as Pinho’s thesis also presents techniques for learning the model

correction and learning the controller design.

1.3 Objectives and Deliverables

The objective of this thesis is to provide FST Lisboa with a new autonomous vehicle controller.

As such, this controller aims at improving the trajectory planning and control algorithms currently being

used in FST Lisboa’s software pipeline. To achieve this, a Model Predictive Controller with characteristics

mentioned in the previous section was chosen as the control architecture. This controller should improve

itself by making use of previously collected data and real time data, in order to be able to improve the

vehicle’s performance in an iterative manner. Being the Trackdrive event the main dynamic event of

driverless FS competitions, the learning methods employed by the controller should result in decreasing

lap times as the vehicle completes more laps around the track. This will be achieved by learning in a

supervised manner an additive correction term to the vehicle’s physics based model and automatically

tuning the MPC parameters in a Reinforcement Learning procedure.

Given this, the necessary adaptations to implement this controller should be made to the FST Lis-

boa’s software pipeline mainly by delivering the required C++/ROS packages which should be in con-

formity with the rest of the pipeline. Other external tools required for some code generation, such as

MATLAB scripts, shall be included as well.

1.4 Thesis Outline

This dissertation is organized in several chapters.

Chapter 2 - Theoretical Background - introduces the theoretical methods that serve as the basis of

the algorithms developed for this thesis. Namely, this chapter starts with a description of Model Predic-

tive Control. Then, Supervised Learning is introduced, which will be used in the context of improving

the vehicle’s predictive model. Algorithms relevant for Supervised Learning will be introduced as well.

Finally, the generic environment of Reinforcement Learning will be introduced. Reinforcement Learn-

ing will be used to learn the controller parameters that maximize a given performance criterion. In this

section, the Genetic Algorithm will also be presented in a Reinforcement Learning context.

Chapter 3 - Vehicle Models - contains the vehicle models used by the controller. This chapter starts

with an overview of the vehicle geometry as well as how the vehicle reacts with its environment by

applied forces. Then, two famous vehicle models are presented and deducted: the kinematic bicycle

model and the dynamic bicycle model, both being continuous time models deduced from Newton’s laws

of motion. Then, the discretization method employed for transforming the previously mentioned models

11

into discrete time models will be explained and the blended bicycle model will be introduced. Finally,

the error correction model will be presented with the purpose of learning an additive correction term to

correct for the blended model mismatch.

Chapter 4 - MPC Formulation - presents and explains the formulation of the MPC optimization prob-

lem for the autonomous racing purpose. In order to understand this formulation, this chapter starts by

introducing the idea of center line track progress. Then, the MPC’s cost function and constraints, which

are based on track progress, are introduced.

Chapter 5 - Controller Parameter Learning - presents a method for automatically tuning the controller

parameters. This method is based on testing different parameter combinations in given track segments.

As such, this chapter starts with an introduction to this problem, and then the method used for track

segmentation is presented. Finally, an explanation of how the parameter learning algorithm works is

given.

Chapter 6 - Implementation - contains notes regarding the implementation of the developed controller

in FST Lisboa’s software pipeline. Moreover, the tools used for this implementation will be introduced.

Chapter 7 - Results - contains results withdrawn from simulations. Afterward, these results are

discussed and explained.

Chapter 8 - Conclusions - presents final conclusions regarding the achievements accomplished in

this dissertation and ideas for future work on this research topic are given.

12

Chapter 2

Theoretical Background

In this chapter, the theoretical foundations on which the following chapters are based will be intro-

duced. First, a general overview of Model Predictive Control (MPC) will be introduced as well as the

concept of Receding Horizon Control (RHC). Then, under the scope of model learning resourcing to

Supervised Learning (SL), Artificial Neural Networks (ANNs) are introduced as well as two well known

training algorithms: the Online Gradient Descent (OGD) and Levenberg-Marquardt (LM) algorithms. Fi-

nally, with the purposed of automatically tuning the MPC parameters, Reinforcement Learning (RL) will

be introduced as well as the genetic algorithm which will be used to maximize the RL’s reward function.

As a further note, column vectors will be denoted in bold lowercase, x ∈ Rn, and matrices will be

denoted as bold uppercase, X ∈ Rn×m. Scalars are denoted as non-bold uppercase or lowercase,

x,X ∈ R.

2.1 Model Predictive Control

Receding Horizon Control (RHC) is a general purpose control scheme that assumes that an infinite

horizon sub-optimal controller can be attained by repeatedly solving a Finite-Time Constrained Optimal

Control (FTCOC) problem at each discrete sampling instant [47]. Consider sampling instant t and the

system’s current state at this sampling instant. An open-loop optimal control problem is then solved over

a finite time horizon, i.e., for the corresponding sampling instants in the interval [t, t+N] as illustrated

by the top diagram in figure 2.1. As a result of solving the optimal control problem, a sequence of control

actions are obtained for each instant in the finite horizon, however, the computed control actions are only

applied in the sampling interval [t, t+ 1]. In other words, only the first control action computed from the

control actions sequence is applied during this interval. When the next sampling instant occurs at t + 1

a new optimal control problem is solved according to the new measured system state at this sampling

instant over a shifted finite time horizon, i.e. for sampling instants in [t+ 1, t+ 1 +N] as illustrated by the

bottom diagram in figure 2.1. This process is then repeated over each next sampling instant attaining an

infinite horizon sub-optimal controller.

Model Predictive Control (MPC) is based on the idea of RHC. Similarly to RHC, the MPC objective

13

Figure 2.1: Receding Horizon principle [47].

is to solve at each iteration the set of future input variables that, when applied to the system, the system

behaves in the desired manner. MPC accomplishes this by predicting future system states through a

system’s dynamic prediction model. As such, the main idea of MPC is to take advantage of mathematical

models developed for a given system, with the purpose of controlling that system.

This controller’s scheme can be further explained by implementing the following general steps:

1. At a given sampling instant, t, predict the N future states of the system, xt+k, k = 1, ..., N , by using

the system’s model as a function of the states at time instant t and future system inputs, ut+k−1,

k = 1, ..., N ;

2. Define a cost function as well as constraint function(s) based of the system’s states and inputs and

optimize it with respect to future inputs, ut+k−1, k = 1, ..., N ;

3. Apply the first input as computed by the optimization problem, u∗t , to the system;

4. Repeat this procedure at the next sampling instant.

As stated previously, in step 2, the optimization problem solved by MPC is able to take into account

constraints regarding system limitations [48]. These constraints can be, for example, constraints regard-

ing input actuation limitations, safe working of the system, and many others. When comparing MPC to

classical control techniques, it is noticeable that taking the system’s constraints into the control algorithm

is one of the greatest advantages of MPC. The main downside of MPC is the computational power re-

quired to compute the optimal solution: for a nonlinear problem, high computational power is required for

solving the MPC problem, thus, the applicability of MPC is heavily dependent on the available hardware

to control the system.

14

2.1.1 Optimization Problem

As stated in the previous section, a correct formulation of the MPC optimization problem is a funda-

mental step to develop a MPC to achieve the desired system behavior. Consider a generic nonlinear

discrete-time system with the following state transition dynamics:

xk+1 = f(xk,uk) (2.1)

where f : Rn × Rm → Rn is C1 and the states, x and inputs, u are subject to constraints:

xk ∈ X ⊆ Rn, uk ∈ U ⊆ Rm, ∀k ∈ Z+ (2.2)

Considering that the controller predicts N > 0 system steps into the future i.e. the prediction horizon

is N , and J : Rn × Rm×N → R the cost function, generally defined as:

Jt→t+N = lt+N (xt+N) +

t+N−1∑
k=t

lk(xk,uk) (2.3)

where lk represents a general stage cost at time instant k ∈ [t, t + N]. Note that the cost of the last

stage, lt+N is considered to only depend on xt+N since the input at the prediction horizon, ut+N , would

only have an impact at the time instant t+N + 1, which is outside the considered prediction horizon.

From above mentioned definitions, it is possible to write the general MPC optimization problem as

follows:

min
uk,∀k∈[t,t+N−1]

Jt→t+N (2.4a)

s.t. xk+1 = f(xk,uk) ∀k ∈ [t, ..., t+N − 1] (2.4b)

xt = x(t) (2.4c)

uk ∈ U ∀k ∈ [t, ..., t+N − 1] (2.4d)

xk ∈ X ∀k ∈ [t, ..., t+N] (2.4e)

where uk, k = t, ..., t + N − 1 represents the sequence of the next N optimal inputs to be determined.

Equation (2.4b) represents an equality constraint which translates the state prediction model used by

the MPC. Equation (2.4c) represents the initialization of the MPC problem: the current measured state

of the system, x(t), is assigned to the first element of the sequence of N predicted states of the system.

Equations (2.4d) and (2.4e) represent the (possibly nonlinear) equality or inequality constraints of the

inputs and states of the system, respectively.

After solving this optimization problem, the optimal inputs, u∗k, k = t, ..., t + N − 1, are obtained, but

only the first optimal input, u∗t , is applied to the system until a new sampling instant occurs.

15

2.2 Supervised Learning

Supervised Learning (SL) is inserted in the broad topic of Machine Learning (ML). In Supervised

Learning, the learning process relies on a training set which consists of a set of labeled examples. This

technique is most commonly associated with classification, regression, and ranking problems [49]. In

this thesis, Supervised Learning will be used in the context of regression.

Further expliciting the Supervised Learning general problem, consider the training set with N training

examples of the form {(v1,y1) , ..., (vN ,yN)}. In this training set vi is commonly known as the feature

vector of the ith example in the set and yi the corresponding target output vector. The objective of SL

is to find a learner function f : Rnv → Rny , nv being the dimension of the feature vector and ny being

the dimension of the target vector, that learns the training set. In other words, the objective is to find the

function f such that ŷi ≈ yi, being ŷi = f (vi) the learner function output for a given feature vector in

the training set.

In order to find the learner function, f , an algorithm for minimizing a loss function over the training

set is employed. The loss function can be generally defined as a function L : Rny × Rny → R that

approaches a minimum value as the predicted output, ŷi, converges to the target output, yi, i.e. ŷi → yi

and tends to infinity as the predicted output diverges from the the target output.

As such, the learner function is generally obtained from solving an optimization problem which mini-

mizes the loss function over the training data, obtaining the trained learner function, f∗, as the solution

of:

f∗ = arg min
f

1

N

N∑
i=1

L (yi, f (vi)) (2.5)

The minimization problem presented in equation (2.5) is commonly referred to in the literature as

Empirical Risk Minimization (ERM) [49].

Regarding model selection, the act of choosing the inner workings and the structure of the learner

function, f , one can consider two major model categories to choose from: parametric models and non

parametric models.

• Parametric models: are characterized by having a fixed finite number of parameters;

• Non parametric models: are characterized by having an infinite number of parameters.

The main advantage of non parametric models over parametric models is that non parametric models

typically offer higher flexibility, in the sense that they are capable of fitting a large number of function

forms. However, non parametric models typically require more data to train [50].

For the purpose of model correction learning, presented in section 3.6 - Error Correction Model,

parametric models were chosen for the reasons presented therein. Moreover, Artificial Neural Networks

(ANN) were chosen as the learner function. The next section introduces the general definition of an

ANN architecture, then, Elliptical Basis Function Networks (EBFNs), a type of ANN, are introduced.

16

2.2.1 Artificial Neural Networks

In this section, single-layer Artificial Neural Networks (ANNs) will be introduced. Artificial Neural

Networks are inspired by biological neural networks as seen in the neurological system of animals,

which consist of a highly connect neuron network [51]. Similar to biological neural networks, ANNs are

also composed of several artificial neurons which are connected to each other. An illustrative example

of a shallow Artificial Neural Network architecture can be seen in figure 2.2. In this figure, neurons are

represented by the blue dots and their connections are represented by gray lines.

Figure 2.2: Example neural network with 4 input features, 12 hidden neurons and 6 outputs.

As suggested by figure 2.2, these networks consist of three main layers:

• The input layer: where the feature vector is fed as an input to the network;

• The hidden layer: where the neuron activation function is some nonlinear function of feature

vector;

• The output layer: where the output of the network is, generally, computed as a biased linear

combination of the hidden layer activations.

In general, the connections between these neurons are mathematically represented by a weight and

the neurons themselves represent a nonlinear function of the previous layer. The ANN architecture

chosen for this dissertation is Elliptical Basis Function Networks which will be introduced in the following

section.

17

2.2.2 Elliptical Basis Function Networks

Elliptical Basis Function Networks (EBFNs) can be described as a generalization of the more com-

monly known Radial Basis Function Networks (RBFNs) [52]. These networks, which have an input layer,

one hidden layer, and an output layer are closely related to clustering: a neuron i in the hidden layer

represents a data cluster that is parameterized by its cluster center and its variance. The activation func-

tion of the hidden neurons is radial in the RBFN case and elliptical in the EBFN case. Mathematically,

consider the previously mentioned v as the input vector, µi the cluster center and Σ−1
i the inverse of

the positive definite covariance matrix of neuron i in the hidden layer (i.e. the covariance matrix with

respect to the cluster center µi). The activation of neuron i in the hidden layer, hi, is computed through

the following equation:

hi = exp
(
− (v − µi)

T
Σ−1
i (v − µi)

)
, i = 1, ..., nh (2.6)

As a further simplification, the covariance matrix of neuron i, Σi is approximated by a diagonal

matrix, i.e. Σi ≈ diag (σi,1, ..., σi,nv). In other words, this approximation considers that the components

of v − µi are independent, since the off diagonal terms of this matrix are zero. For notation purposes,

consider the matrix Ωi as the inverse of Σi, commonly referred as the precision matrix. Given that Σi

is diagonal, Ωi is also approximated by a diagonal matrix, Ωi ≈ diag (ωi,1, ..., ωi,nv). Also given that Σi

is positive definite, its inverse, Ωi must also be positive definite. As a result, the eigenvalues of Ωi must

be positive, i.e. ωi,l > 0, l = 1, ..., nv, i = 1, ..., nh. For further notation, the subset of the parameter

vector that regards the eigenvalues of the clusters’ precision matrices will be denoted as ω ⊂ p. This

simplification can be introduced in equation (2.6) resulting in:

hi = exp
(
− (v − µi)

T
Ωi (v − µi)

)
, i = 1, ..., nh (2.7)

Regarding the output layer, the output is composed of a linear combination of the hidden layer acti-

vations. Mathematically, consider the previously mentioned output of the hidden layer, hi, in its vector

format, h, where component i of this vector corresponds to activation i in the hidden layer, hi, and wj

the weights’ vector of neuron j in the output layer. Then, output j, ej , is given by:

ej = wj · h , j = 1, ..., ne (2.8)

Note that, taking into consideration equation (2.7), it is possible to intuitively understand how a cluster

affects the behavior of these networks. For an input vector near a cluster center, v ≈ µi, the activation

value of that neuron converges to its maximum value, hi → 1. In other words, the hidden layer neurons

are more active when the input vector is near the cluster centers and inactive far from these. As such,

if a given input vector is far from all cluster centers, all neuron activations tend to zero, i.e., hi → 0, i =

1, ..., nh. Further taking into account equation (2.8), as the activations tend to zero, the error estimation

(output) of the network will also tend to zero, hi → 0 =⇒ ei → 0. In other words, such network

architecture ensures that the error is not extrapolated for input data regions where no learning occurred.

18

Note also that the Ωi matrix is responsible for shaping the ellipse according to its eigenvalues. This

matrix is the main difference between RBFN and EBFN: as the name suggests, RBFN has a circular

neuron activation region instead of an elliptical neuron activation region, which in turn allows EBFN to

potentially ensure better data fitting at the cost of some more parameters when compared to RBFN.

Further analyzing the number of required parameters to model a network with nv input features, nh

neurons in the hidden layer, and ne outputs, it can be observed that a neuron in the hidden layer needs

nv inverse covariance matrix parameters and nv cluster center parameters, thus 2 · nv parameters, and

a neuron in the output layer needs nh parameters for the output weights. Finally, given the number of

input features, neurons in the hidden layer, and outputs, the total number of parameters required by this

type of network is given by: np = 2 · nh · nv + ne · nh.

Regarding the training of these networks, Man-Wai Mak and Sun-Yuan Kung [53] propose a method

which, in summary, applies a clustering algorithm to the input data, estimates the variance of the data

with respect to the cluster centers, and extracts the diagonal of Σi, i = 1, ..., nh. With the hidden layer

parameters estimated, linear least squares are used to estimate the output layer parameters given the

linear relation between the network output and the hidden layer activations, as per equation (2.8).

2.2.3 Online Gradient Descent

In this section, the Online Gradient Descent training algorithm will be introduced. However, in order

to introduce this training algorithm, the more commonly known Gradient Descent (GD) algorithm will be

firstly presented. Consider that the adaptive learning function, f , which is dependent on parameters

represented by a parameter vector, p. Using this notation, the predicted output of the learner function

given parameters p and feature vector v is computed as ŷ = fp (v). Recall the ERM problem presented

in equation (2.5). Considering a fixed structure of the learner function, fp, for example, by using an EBFN

as previously presented, this problem can now be modified in order to optimize the learning parameters,

p, as follows:

p∗ = arg min
p

1

N

N∑
i=1

L (yi, fp (vi)) (2.9)

Consider Rp the Empirical Risk of the previous equation, i.e. the term that is optimized:

Rp =
1

N

N∑
i=1

L (yi, fp (vi)) (2.10)

The GD algorithm’s approach considers a learning step that is attained by computing the gradient of the

ERM problem. In other words, given parameters p, the GD algorithm will take a learning step according

to the steepest direction with the purpose of minimizing Rp. This direction can be computed by taking

the gradient of Rp with respect to the parameter vector, p. This direction is mathematically defined as

−∇pRp, where the operator ∇p represents the gradient operation with respect to p. The components of

the gradient operator are computed as [∇p]i ≡
∂
∂pi

, i.e., the ith component of the gradient is computed

as a derivative with respect to component i of the parameter vector. As such, the parameter update

19

equation of the GD algorithm is defined as:

pk+1 = pk − η∇pRpk (2.11)

In this equation, the index k represents the current time instant and k+ 1 the next time instant. As such,

the terms pk and pk+1 can be read as the current and next parameter vectors, respectively. Furthermore,

the parameter η ≥ 0 represents the learning rate. This parameter controls the step size of the learning

algorithm. The choice of η often depends on the problem, but, in general, a large value of the learning

rate results in faster learning but coarser parameter tuning, and a small value results in slower learning

but finer parameter tuning.

Note, however, that when large training sets are used, i.e., N is large, computing the Empirical Risk

gradient becomes computationally exhaustive as N increases, as shown by the following equation:

∇pRp = ∇p
1

N

N∑
i=1

L (yi, fp (vi)) =
1

N

N∑
i=1

∇p [L (yi, fp (vi))] (2.12)

Furthermore, in an online learning scenario, the training data becomes available iteratively, i.e., as

time passes, more and more data becomes available leading toN increasing. For this reason, the Online

Gradient Descent algorithm approximates the gradient of the Empirical Risk as the gradient of the loss

function with respect to the most recent data point. As such, the OGD parameter update equation is

defined as follows:

pk+1 = pk − η∇p [L (yk, fpk (vk))] (2.13)

Algorithm 1 summarizes the idea behind the OGD algorithm.

Algorithm 1 Online Gradient Descent update step
1: procedure OGD(vk, yk, pk, η, fp(·), L(·)) . Input data for the method
2: ŷ← fpk (vk) . Predict the expected target
3: ∆p← −η∇p [L (yk, ŷ)] . Compute parameter increment
4: pk+1 ← pk + ∆p . Compute new parameters as per equation (2.13)
5: return pk+1 . Output next parameter vector
6: end procedure

2.2.4 Levenberg-Marquardt Algorithm

In this section, the Levenberg-Marquardt algorithm will be introduced. The Levenberg-Marquardt

(LM) algorithm, also known as damped least-squares is an optimization algorithm that was first sug-

gested by Levenberg (1944) and by Marquardt (1963) in the context of nonlinear least-squares opti-

mization. This algorithm interpolates between other known algorithms known as the Gauss-Newton

algorithm and the previously mentioned Gradient Descent (GD) algorithm. Since this method is used for

solving nonlinear least squares function, the ERM problem, as per equation (2.9), must be in general ex-

pressed as a sum of squares. In order to introduce one possible ERM problem that may be solved using

the LM algorithm, consider a target in the training set, yi, and the corresponding prediction, ŷi = fp (vi),

20

where the index i ranges for every training set data point, i.e., i = 1, ..., N . The sum squared error (SSE)

of a target in the training set is defined as:

SSEi =

ne∑
j=1

(
[yi]j − [ŷi]j

)2

(2.14)

where ne is the dimension of vector yi, or, in other words, the dimension of the targets in the training

set. With the SSE defined, the ERM problem to be considered can be applied. The Empirical Risk, R,

can then be defined as:

Rp =

N∑
i=1

SSEi =

N∑
i=1

ne∑
j=1

(
[yi]j − [ŷi]j

)2

(2.15)

Similar to the previously presented algorithm, the Online Gradient Descent (OGD) algorithm in sec-

tion 2.2.3, the LM’s objective is to find the optimal parameters, p∗, as the solution of the following

optimization problem:

p∗ = arg min
p
Rp (2.16)

To further define the equations used by the LM algorithm, consider the jacobian matrix, Jif , of the

learner function referring to data point i = 1, ..., N , which component
[
Jif

]
l,j

, where the indexes l =

1, ..., np and j = 1, ..., ne represent a row and a column, respectively, can be computed as
[
Jif

]
l,j

=

∂[fp(vi)]j
∂pl

. Note also that, considering a small parameter variation, ∆p, the new value of the ERM

problem with new parameters added by this variation, p + ∆p, can be approximated by a linearization

given by:

Rp+∆p ≈
N∑
i=1

ne∑
j=1

(
[yi]j − [fp (vi)]j −

[
Jif
]T

∆p
)2

(2.17)

Taking the derivative of Rp+∆p with respect to the parameter increment, ∆p, and setting the result to be

a null vector, results in the Gauss-Newton algorithm equation:

(
JRJR

T
)

∆p = JR (yR − ŷR) (2.18)

where JR represents the jacobian matrix of the ERM problem. The vectors yR and ŷR result from

the concatenation of the training set targets and current predictions as computed by fp, respectively.

Mathematically, these variables are assembled as follows:

JR =
[
J1
f · · · JNf

]
(2.19a)

yR =

y1

...

yN

 (2.19b)

21

ŷR =

ŷ1

...

ŷN

 (2.19c)

The main difference between the Gauss-Newton algorithm is that the LM algorithm adds a damping

term to the Gauss-Newton equation, presented in equation (2.18). Thus, the LM algorithm equation can

be written as follows:

(
JRJR

T + λI
)

∆p = JR (yR − ŷR) (2.20)

The learning parameter λ > 0 is known as the damping parameter in the LM algorithm. A larger value of

λ results in taking a step in the steepest direction, i.e., the algorithm behaves like the Gradient Descent

(GD) algorithm and a smaller value of λ results in taking a step towards the Gauss-Newton step. Note

that for large values of λ the damping parameter term λI becomes much larger than JRJR
T . As a result,

JRJR
T + λI ≈ λI and by of solving equation (2.20), ∆p ≈ 1

λJR (yR − ŷR). Thus, the LM’s damping

parameter is analogous to the inverse of the learning rate parameter of the GD’s algorithm.

Furthermore, note that in equation (2.20), the matrix λI+JRJR
T is guaranteed to be positive definite

as λI > 0 and JRJR
T ≥ 0. Justifying, λI is positive definite as all the eigenvalues of this diagonal matrix

are λ > 0 and JRJR
T is positive semi definite as, given a non null vector v, it can be concluded that

vT
(
JRJR

T
)

v =
(
JR

Tv
)T (

JR
Tv
)
≥ 0 [54]. Thus, this linear system of equations can be solved using

a Cholesky decomposition, with a computational complexity of O(n3/3) [55], which is computationally

more efficient than inverting λI + JRJR
T , which has a computational complexity of O(n3).

The new parameters, pk+1, are obtained by solving for ∆p equation (2.20) and adding this parameter

increment to the previous parameter vector as follows:

pk+1 = pk + ∆p (2.21)

Algorithm 2 summarizes the idea behind the LM algorithm for minimizing the ERM problem presented

in equation (2.15).

2.3 Reinforcement Learning

Reinforcement Learning (RL) is inserted in the broad topic of machine learning. Unlike the previously

mentioned learning scheme of Supervised Learning, introduced in section 2.2, the learner does not

passively receive a labeled data set. Instead, it collects information through a course of actions by

interacting with the environment. As a result of performing an action, the learner, also known as the

agent in RL, generally receives two types of information: its current state in the environment and a

reward, which is specific to the learner’s task or goal [49]. Figure 2.3 represents the general learning

scheme of RL.

22

Algorithm 2 Levenberg-Marquardt update step
1: procedure LM(vt=1,...,N , yt=1,...,N , pk, N , np, ne, λ, fp(·)) . Input data for the method
2: for integer t = 1 to t = N do . Iterate over training set
3: ŷt ← fpk (vt) . Predict the expected target
4: initialize Jtf ∈ Rnp×ne . Allocate memory space for the learner function jacobian
5: for integer i = 1 to i = np do
6: for integer j = 1 to i = ne do

7:
[
Jtf

]
i,j
←

∂[fpk (vt)]
j

∂pi
. Compute the jacobian components

8: end for
9: end for

10: end for
11: JR ←

[
J1
f · · · JNf

]
. Assemble Empirical Risk jacobian as per equation (2.19a)

12: yR ←

y1

...
yN

 . Assemble target’s vector as per equation (2.19b)

13: ŷR ←

 ŷ1

...
ŷN

 . Assemble prediction’s vector as per equation (2.19c)

14: ∆p← Cholesky solve
(
JRJR

T + λI
)

∆p = JR (yR − ŷR) . Obtain ∆p as per equation (2.20)
15: pk+1 ← pk + ∆p . Compute new parameters as per equation (2.21)
16: return pk+1 . Output next parameter vector
17: end procedure

Figure 2.3: General learning scheme of Reinforcement Learning [49].

In RL, the learner’s objective is to maximize its received reward, determining which is the best course

of action, or policy, to achieve that objective.

The learner is faced with the dilemma between exploring unknown states and actions to gain more

information about the environment and the achievable rewards, and exploiting the already gathered

information to optimize its reward. In RL this is known as the exploration versus exploitation trade-off.

In order to further define Reinforcement Learning, the model of Markov Decision Processes (MPDs),

a model of the environment and interactions with the environment, will be introduced. MDPs represent a

wide range of models which can represent various real world tasks. RL algorithms are based on discrete

time MDPs for a time horizon of t ∈ {0, ..., T} which can essentially be defined by the:

• Set of states, S, possibly infinite;

• Initial state, s0 ∈ S;

23

• Set of actions, A, possibly infinite;

• Transition probability, P (st+1|st,at) ∀at ∈ A, st, st+1 ∈ S: distribution over future states, st+1 =

δ (st,at);

• Reward probability, P (rt+1|st,at) ∀at ∈ A, st, st+1 ∈ S: distribution over expected future rewards,

rt+1 = r (st,at).

At time t the state st is observed by the agent and an action, at, is taken. At the next time instant the

state st+1, associated with probability P (st+1|st,at), is observed and a reward, rt+1 ∈ R, is received,

also associated with probability P (rt+1|st,at). This process is illustrated by figure 2.4.

Figure 2.4: Scheme of states and transitions of a MDP at different times [49].

The main challenge for an agent in a MDP environment is to determine the action to take at each

state. Formally, a policy is a mapping πt : S → ∆ (A), where ∆ (A) is the set of probability distributions

over A. A policy πt is deterministic if an unique at ∈ A exists such that πt (s,a) = 1. In that case, πt

can be identified with a mapping from S to A. As mentioned previously, the agent’s objective is to find a

policy that maximizes its expected reward, called the optimal policy.

The value of a policy, Vπ, at state s ∈ S for a finite horizon, T , along a specific sequence of states

s0, ..., sT is generally defined as the expected reward returned when starting at s0 = s and following

policy π:

Vπ (s) = E

[
T∑
t=0

r (st, π (st))

∣∣∣∣s0 = s

]
(2.22)

The definitions regarding RL presented in this section are enough for understanding the methods

developed in this dissertation. For further reading on this topic, please refer to the book by Mohri et al.

[49].

Classic RL algorithms are, for example, Q-Learning, Policy iteration, Value Iteration, as well as Monte

Carlo algorithms [56]. Nevertheless, gradient based [57] and evolutionary [58] methods have been

employed in a RL framework. In the next section an evolutionary optimization method - the Genetic

Algorithm (GA) - will be presented in a RL problem solving framework.

2.3.1 Genetic Algorithm

In this section, the Genetic Algorithm (GA) will be presented while focusing on using GAs for solving

a Reinforcement Learning problem.

GAs are derivative free metaheuristic algorithms based on the mechanics of natural selection and

natural genetics. These algorithms combine survival of the fittest among a population with a structured

24

yet randomized information exchange for a search algorithm. The main idea behind this algorithm is that

at each new generation, a new set of individuals (denoted by population) is generated using bits and

pieces of the fittest individuals of the previous generation, hoping that the new generation contains an

overall fitter population when compared to the previous generation individuals. An individual is essen-

tially represented by a string of genetic code that, in turn, translates to certain traits and fitness. The

new generation individuals can be generated according to three main genetic operations [59]:

1. Reproduction: some individuals of the previous generation are randomly selected according to

their fitness values. If an individual is selected, its genetic code is passed directly onto the new

generation without changes in its genetic code;

2. Crossover: pairs of individuals of the previous generation are randomly selected and parts of their

genetic code are swapped, generating two new children that are passed onto the new generation;

3. Mutation: some individuals of the previous generation are randomly selected according to their

fitness values. If an individual is selected, part of its genetic code is randomly changed and the

mutated individual is then passed onto the new generation.

These three genetic operations have three different distinct purposes. Moreover, the reproduction

operation aims at retaining the, so far, best individuals of the previous generation so that their genetic

code does not get randomly lost in case the newly generated individuals are genetically worse than the

previous generation individuals. The crossover operation aims at generating new individuals that retain

portions of the genetic code of each parent, hoping that the generated children’s genetic code is better

than the individual parent’s genetic code. The mutation operation consists of generating new individuals

by randomly mutating a piece of an individual’s genetic code, expecting that the mutated individual is

genetically better than the original one. It can be further noted that the crossover operation generally

exploits the genetic code space whereas the mutation operation generally explores the genetic code

space. In other words, crossovers tend to improve (potentially local) optimality points whereas mutations

can escape local optimality points. Figure 2.5 schematically represents these three genetic operations,

in this case, using binary strings that represent the individuals’ genetic code.

Figure 2.5: Visual representation of the three different genetic operations [60].

To mathematically define the inner workings of the Genetic Algorithm, consider an optimization prob-

lem that, for example, reflects the reward maximization problem presented in the previous section re-

25

garding Reinforcement Learning (RL), section 2.3. One can generally define this problem as follows:

max
d

r (d) (2.23)

Equation (2.23) reflects an optimization problem which purpose is to maximize a reward function

denoted as r. This reward function is slightly different from the expected reward function defined in

equation (2.22) in the previous section, as the reward function presented in equation (2.23) reflects ”how

good” a genetic string d ∈ Rnd is for a given RL problem. For purposes that will be further explained

consider a designed reward function that respects r (d) ≥ 0 ∀d ∈ Rnd . This can be considered as the

reward function is defined by the user according to the desired RL task. Furthermore, a population of N

individuals can be defined by a matrix, D ∈ Rnd×N , in which component di,j represents gene i = 1, ..., nd

of individual j = 1, ..., N . As such, the columns of matrix D contain the population individuals. Given

this, the population matrix can be defined as follows:

D =
[
d1 . . . dN

]
(2.24)

The GA starts by defining an initial randomly generated population of N individuals. In other words,

the initial generation matrix components are randomly generated over a given search space. The GA

then obtains a reward value for each individual in the initial generation, i.e., let r represent the reward

vector, its components rj ≡ r (dj) represent the reward obtained by using the individual’s j = 1, ..., N

genes in the learning process. With the reward vector computed, the next task is to find a mechanism

that maps the reward of each individual to the probability of the individuals being selected for a genetic

operation. In other words, an individual is likely to be selected if its reward is a large value and unlikely

to be selected if its reward value is small. Given this, a common mapping method to attain a selection

probability distribution over each individual is the relative fitness. The relative fitness, f , is essentially

a normalization of the individual’s reward. Note that the relative fitness of an individual represents its

probability of being selected for a given genetic operation, thus, the components of f , denoted by fj ,

must respect the following properties:

0 ≤ fj ≤ 1 , j = 1, ..., N (2.25a)

N∑
j=1

fj = 1 (2.25b)

Equation (2.25a) denotes that the probability of an individual being picked must be some value be-

tween it always being picked, 1, and never being picked, 0. Equations (2.25b) represent the probability

of the whole set, i.e., an individual must always be picked from the population set.

In order to compute the relative fitness of each individual, a common approach is to map the reward

of each individual to its relative fitness by normalizing the reward vector to the sum of its components.

As such, the relative fitness components can be computed as follows:

26

fj =
rj∑N
n=1 rn

, j = 1, ..., N (2.26)

Note that the mapping method presented in equation (2.26) respects the properties in equation (2.25)

since the reward function was previously considered to respect r (d) ≥ 0 ∀d ∈ Rnd .

With the relative fitness of each individual defined, the number of each genetic operation to perform

must be selected. Typically, the number of each operation to perform is also randomly selected, and, as

a parameter to the Genetic Algorithm, there is typically a user defined probability associated with each

operation. Let R, C and M denote the reproduction, crossover and mutation operations, respectively.

The probability of each operation being picked must also be some value between zero and one, i.e.,

0 ≤ P (R) ≤ 1, 0 ≤ P (C) ≤ 1, and 0 ≤ P (M) ≤ 1. Moreover, an operation must always be picked

between the three operations. As such, P (R) + P (C) + P (M) = 1. Further note that the balance be-

tween the exploitation and exploration problem inherent to the RL problem can be tuned by manipulating

P (C) and P (M), as increasing P (C) and decreasing P (M) increases the exploitation behavior of the

algorithm whereas decreasing P (C) and increasing P (M) increases the exploration behavior of the al-

gorithm. After selecting N operations according to these probabilities and applying these operations to

the initial population, a new generation is generated with new individuals. This process is then recur-

sively repeated with the new generation, forming populations that, statistically, should be better than the

previous ones.

Note, however, that the number of crossover operations selected at each algorithm iteration must

be even, since a pair of parents is always required to generate the new children. Furthermore, the two

selected parents must not be the same individual, since this would result in two children with the same

genetic code as the parent. This would essentially be equivalent to a double reproduction of an individual

in the old generation.

Algorithm 4 in appendix A summarizes the inner workings of the GA. This algorithm also presents a

simple solution to the issue of the number of crossovers to be performed, presented in the last paragraph.

This solution consists of, if the number of crossovers is odd, subtracting one to it and adding one to

either the number of reproductions or mutations. For further insight on Genetic Algorithms and their

applications, the author recommends the book by Goldberg [59].

27

Chapter 3

Vehicle Models

In this chapter, vehicle models that will be used in the MPC algorithm will be introduced.

Vehicles in general have complex underlying dynamics due to the presence of multiple subsystems.

Representing these complex dynamics and the relationships between them is not an easy task. Fur-

thermore, in a racing competition environment, the vehicle is expected to perform high-speed and high-

acceleration maneuvers which may lead to certain simplifications being invalid, leading to more complex

models than, for example, a regular traffic-driving scenario. In conclusion, modeling race cars is indeed

a challenging task.

Despite the already mentioned complexity of modeling a racing car, the design of appropriate mod-

els represents the fundamental initial step of the design of a MPC. The degree of complexity and how

well the model represents the real system dynamics will directly influence the performance of the con-

troller. However, the use of higher complexity models is not always desired: in general, a well-modeled

higher-order model better describes the system dynamics. Nevertheless, by including more variables

than a simpler model, the MPC optimization problem will become more complex, resulting in a higher

computation cost.

3.1 Vehicle Description

3.1.1 Vehicle Geometry

The vehicle that is to be modeled has two axles with two wheels each. Propulsion is achieved by two

electric motors that apply torque to the rear axle wheels, thus accelerating the vehicle forward. Moreover,

to steer the vehicle, the front wheels typically move according to Ackermann’s steering geometry. A

general free-body diagram that represents the main geometry of such a vehicle can be seen in figure

3.1a.

Despite being a better representation of the real vehicle to be modeled, the geometry shown in figure

3.1a will add unwanted complexity for control purposes. For this reason, a model with the geometry

shown in figure 3.1b will be used. Such a model is commonly known as a bicycle model. The main

purpose of this model is to represent the two wheels of the front and the two wheels of the rear of the

28

real vehicle by a single wheel at the front and another at the rear. The steering angle of the front wheel is

represented by δ. The distance from the Center of Gravity (CG) of the vehicle to the rear axle is denoted

by lr. Similarly, the distance from the CG to the front axle is denoted by lf . The wheelbase of the vehicle

can therefore be written as L = lr + lf .

(a) Full vehicle geometry. (b) Bicycle model geometry.

Figure 3.1: Vehicle geometry comparison.

Note that in the bicycle model, in figure 3.1b, two frames of reference are represented: (X,Y) and

(x, y) which respectively refer to the global fixed frame of reference i.e. a frame of reference that is fixed

to the ground and a local frame of reference which is fixed to the vehicle’s center of mass with the x

coordinate aligned with the vehicle’s longitudinal direction and the y coordinate aligned with the vehicle’s

lateral direction, respectively. Moreover, the orientation of the vehicle relative to the global frame of

reference is represented by Ψ, often referred to as the vehicle Yaw angle. Ψ can be seen as the angle

formed by the global X direction and the vehicle’s heading direction, x. In order to rotate some vector,

v, from one frame to the other, a rotation matrix is employed. Moreover, to transform a vector in the

vehicle’s frame of reference, v(x,y), to the global frame of reference, v(X,Y), the following transformation

can be used:

v(X,Y) = R
(X,Y)
(x,y) v(x,y) (3.1)

where:

R
(X,Y)
(x,y) =

cos(Ψ) − sin(Ψ)

sin(Ψ) cos(Ψ)

 (3.2)

As suggested from equation (3.1), R
(X,Y)
(x,y) ∈ R2×2 is a rotation matrix that can be interpreted as a

matrix that when multiplied on the left side of a vector in frame (x, y) it rotates that vector to frame (X,Y).

29

As this matrix is a rotation matrix, the inverse transformation, i.e. the matrix R
(x,y)
(X,Y) that transforms

a vector expressed in frame (X,Y) to frame (x, y) can be easily computed by transposing R
(X,Y)
(x,y) .

Mathematically:

R
(x,y)
(X,Y) =

[
R

(X,Y)
(x,y)

]−1

=
[
R

(X,Y)
(x,y)

]T
(3.3)

Thus, the inverse transformation of equation (3.1) can be expressed as follows:

v(x,y) =
[
R

(X,Y)
(x,y)

]T
v(X,Y) (3.4)

3.1.2 Lateral Tire Forces

The lateral forces that act on the lateral tire direction, represented in figure 3.1b by F fy and F ry for

the front and rear wheels, respectively, are responsible for steering the vehicle and keeping the vehicle

on track. To analyze these forces, the tire-slip angle definition is employed. This angle is defined as the

difference between the wheel’s steering angle and the wheel’s direction of travel. A visual representation

of this angle can be seen in figure 3.2.

Figure 3.2: tire-slip model [61].

The tire-slip angle, α, can then be computed as follows:

α = θV f − δ (3.5)

Using the previous equation, the front and rear wheels’ slip angle can be computed as follows in equa-

tions (3.6), where αf and αr denote the tire-slip angles of the front and rear wheels [61]. In these

equations, the angle θV f can be computed from the velocities in the vehicle’s frame of reference, (x, y),

where vx and vy represent the longitudinal and lateral velocities of the vehicle in x and y, respectively,

as well as the rate of change of the orientation of the vehicle, denoted as Ψ̇. Note that, the rear wheels

of the vehicle are considered not to steer, which results in δr = 0.

αf = arctan

(
vy + Ψ̇lf

vx

)
− δ (3.6a)

30

αr = arctan

(
vy − Ψ̇lr

vx

)
(3.6b)

With the tire-slip angles computed, a model for the lateral tire forces on each wheel can be applied

as follows in equations (3.7) [42]. In this model, Df/r represents the maximum value of the lateral force

for one tire, Cf/r is a shape factor, Bf/r is the stiffness factor of the tire and F
f/r
y are the resultant

forces applied on the front (f) and rear (r) wheels. These forces are applied contrary to the movement

direction, hence the negative sign. Moreover, note also that the coefficient 2 that appears in equations

(3.7) denotes the existence of two wheels in the front axle as well as two wheels in the rear axle, as in

the real vehicle’s geometry.

F fy = −2Df sin (Cfarctan (Bf · αf)) (3.7a)

F ry = −2Dr sin (Crarctan (Br · αr)) (3.7b)

3.1.3 Longitudinal Forces

Regarding forces that are applied in the longitudinal axis of the vehicle, x, three main forces are

considered: motor’s propulsion, rolling resistance, and aerodynamic drag.

The motor’s propulsion is the force that allows the vehicle to accelerate in its longitudinal direction,

as it is commonly known. This propulsion force is provided by the torque generated by electric motors,

which is then transferred to the wheels via the drivetrain. The electric motors, gearbox, and transmission

are complex subsystems that require extensive knowledge about the internal workings of such compo-

nents. Nevertheless, these components can be assumed to be controlled by a low-level controller. For

this purpose, to model the propulsion force provided by each motor, equation (3.8) is used. In this equa-

tion, ηmotor represents the efficiency of the motors, Tmax the maximum torque one motor can provide,

rwheel the radius of the wheels and GR the gear ratio of the drivetrain assembly. The variable d repre-

sents the normalized throttle input. This variable, d ∈ [−1, 1], represents the typical throttle the driver

can input to the car through the pedals i.e. the situation of d = 1 translates to maximum acceleration,

and for d = −1 a full breaking situation.

Fmotor = ηmotor
Tmax ·GR
rwheel

d (3.8)

Since there are two motors located in the rear axle of the considered FST10d Formula Student

vehicle, the total propulsion force, Fprop, is given by the following equation:

Fprop = 2Fmotor = 2ηmotor
Tmax ·GR
rwheel

d (3.9)

31

As for the resistive forces, i.e. the rolling resistance and aerodynamic drag, the rolling resistance,

Froll, can be modeled as follows:

Froll = Cr ·m · g (3.10)

where Cr represents the fraction of the vehicle’s weight that contributes to rolling resistance and g the

gravitational acceleration.

As for the aerodynamic drag force, it can be computed as follows:

Fdrag =
1

2
ρCdAF vx

2 (3.11)

where ρ is the density of air, Cd the drag coefficient of the vehicle, and AF the frontal area of the vehicle.

3.1.4 Summation of Forces and Moments Around the CG

With the forces acting on the vehicle and its subsystems computed in the previous sections, the sum-

mation of forces and moments with respect to the vehicle’s CG can be computed as in equations (3.12).

As the vehicle is driven by the rear wheels, it is considered that the forces acting on the longitudinal

direction of the tires, represented in figure 3.1b by F fx and F rx are zero and equal to the propulsion force,

respectively, i.e. F fx = 0 and F rx = Fprop.

Fx = Fprop − Fdrag − Froll − F fy sin (δ) (3.12a)

Fy = F fy cos (δ) + F ry (3.12b)

Mz = F fy cos (δ) · lf − F ry · lr (3.12c)

3.2 Kinematic Bicycle Model

The kinematic bicycle model is commonly used for modeling vehicles in urban driving scenarios. It

provides a mathematical description of the vehicle without considering the forces acting on it. For this

reason, the equations that lead to this model are purely based on geometric relations that govern the

system. Consider again the previously shown bicycle model geometry represented in figure 3.1b.

An important consideration taken by this model is that the vehicle is assumed to have planar motion,

not taking vehicle pitch and roll effects under consideration. For this reason, three coordinates are

considered in this model: X, Y and Ψ. X and Y are inertial coordinates of the location of the CG of

the vehicle while Ψ represents the orientation of the vehicle, also know as the vehicle’s yaw angle. The

velocity at the CG of the vehicle is denoted by V which direction makes an angle β, called the slip angle

of the vehicle, with the longitudinal axis of the vehicle.

32

The major assumption that this model takes into account is that the velocity vectors of the rear and

front wheel are aligned with the orientation of the rear and front wheels, respectively. In other words, this

model assumes that the front and rear tires do not slip with respect to the ground, which is a reasonable

assumption for low speeds and accelerations of the vehicle. By algebraic manipulation of the kinematic

relations given by the model described in figure 3.1b, it is possible to write the set of differential equations

[61] that govern this system, as shown in equations (3.13). It can also be noted that these equations

result in a multi-input vehicle model that takes the vehicle velocity, V , and the steering angle, δ, as

control inputs.

Ẋ = V cos(Ψ + β) (3.13a)

Ẏ = V sin(Ψ + β) (3.13b)

Ψ̇ =
V cos(β)

lr + lf
tan(δ) (3.13c)

where the slip angle of the vehicle, β, can be computed as shown in equation (3.14).

β = arctan
(

lf
lf + lr

tan(δ)

)
(3.14)

Considering the vehicle’s frame of reference, in which the x axis is aligned with its longitudinal direc-

tion and y with the lateral direction and centered at the CG of the vehicle, one can denote the velocities

of the vehicle in this frame of reference as projections of the CG velocity, V , as follows:

vx = V cos(β) (3.15a)

vy = V sin(β) (3.15b)

Since it is desired to have the throttle, t, as the input to the system the following dynamic equation

for the derivative of the longitudinal velocity is introduced:

v̇x =
Fprop(d)− Fdrag(vx)− Froll

m
(3.16)

where m represents the vehicle’s mass. From a velocity triangle, it is also possible to write a static

relation for the lateral vehicle velocity vy as follows:

vy = Ψ̇ tan(δ)
lr

lr + lf
(3.17)

As a summary, the kinematic bicycle model results in the following set of equations, regarding the

quantities expressed in the vehicle’s frame of reference.

v̇x =
Fprop(d)− Fdrag(vx)− Froll

m
(3.18a)

33

Ψ̇ =
vx

lr + lf
tan(δ) (3.18b)

vy = Ψ̇lr = vx tan(δ)
lr

lr + lf
(3.18c)

To obtain the global coordinates of the vehicle, (X,Y), as a function of the local vehicle velocities,

vx and vy, the transformation shown in equation (3.1) from section 3.1.1 is employed, resulting in the

following dynamic equation:

Ẋ
Ẏ

 = R
(X,Y)
(x,y)

vx
vy

 =

vx cos(Ψ)− vy sin(Ψ)

vx sin(Ψ) + vy cos(Ψ)

 (3.19)

Using equations (3.18) and (3.19), a state space model formulation of this system of equations can

be written: ẋ = f(x,u), where x = [X,Y,Ψ, vx]T is the state vector and u = [d, δ]T is the input vector.

Ẋ

Ẏ

Ψ̇

v̇x

 =

vx cos(Ψ)− vy sin(Ψ)

vx sin(Ψ) + vy cos(Ψ)

vx
lr+lf

tan(δ)

Fprop(d)−Fdrag(vx)−Froll
m

 (3.20)

For purposes of notation and further use, let r ≡ Ψ̇. In other words, r will be introduced to represent

the time variation of the yaw angle. Then, r and vy can be computed using the relation presented in

equations (3.18b) and (3.18c), respectively.

In order to implement these dynamics in a MPC, a discretization of the continuous model presented

in equation (3.20) must be computed. Using a discretization method a discrete state space model can

be obtained as xk+1 = f(xk,uk), where xk = [Xk, Yk,Ψk, vxk]T is the state vector and uk = [dk, δk]T is

the input vector. The employed discretization method can be further consulted in section 3.4.

3.3 Dynamic Bicycle Model

Despite the model presented in the previous section being a fair model for describing a vehicle at

relatively low speeds, for the reasons presented in this chapter, it is clear that the no slip assumption of

the rear and front wheels of the kinematic bicycle model is not valid considering a racing scenario, which

requires the vehicle to perform high acceleration and velocity maneuvers. For the purpose of developing

a model that better describes the tire-slip dynamics of the vehicle, consider again the model described

in figure 3.1b.

Similarly to the kinematic bicycle model, assuming a planar motion of the vehicle and neglecting the

effects caused by the pitch and roll of the vehicle, for a frame of reference in which axis x and y are

aligned with the longitudinal and lateral directions of the vehicle, respectively, the following dynamics

34

equations can be written with respect to this frame of reference, resulting in equations (3.21) [61].

Fx = mv̇x −mΨ̇vy (3.21a)

Fy = mv̇y +mΨ̇vx (3.21b)

Mz = Ψ̈Iz (3.21c)

where m and Iz represent the mass of the vehicle and the inertia moment with respect to its z axis.

vx and vy represent the velocity of the CG of the vehicle expressed in the vehicle’s frame of reference.

Fx and Fy represent the sum of forces being applied to the CG of the vehicle expressed in the vehicle’s

frame of reference. Mz represents the sum of moments being applied to the CG of the vehicle with

respect to its z axis. These quantities can be computed using the equations presented in section 3.1.

Similarly to the kinematic bicycle model, it is possible to express the global coordinates of the vehicle

as a function of the local vehicle velocities as shown by equation (3.19) from the previous section.

The dynamic bicycle model can be obtained by algebraic manipulation of equations (3.21) and (3.19)

and written in a state space format: ẋ = f(x,u), where x = [X,YΨ, vx, vy, r]
T is the state vector and

u = [d, δ]T is the input vector, as in equation (3.22). Note that, similarly to the kinematic bicycle model,

Ψ̈ was rewritten as ṙ i.e. Ψ̈ ≡ ṙ, where r represents the time variation of the yaw angle, Ψ.

Ẋ

Ẏ

Ψ̇

v̇x

v̇y

ṙ

=

vx cos(Ψ)− vy sin(Ψ)

vx sin(Ψ) + vy cos(Ψ)

r

1
m

(
Fprop(d)− Fdrag(vx)− Froll − F fy sin (δ)

)
+ vyr

1
m

(
F fy cos (δ) + F ry

)
+ vxr

1
Iz

(
F fy cos (δ) · lf − F ry · lr

)

(3.22)

3.4 Model Discretization

For the purpose of implementing the two previously presented models in a Model Predictive Con-

troller, a discretization method must be employed. Consider a continuous-time dynamical system de-

scribed by the following state space equation:

ẋ(t) = f(x(t),u(t)) (3.23)

The first consideration one must take into account is how the control actions are intended to be

applied. As the vehicle will be controlled by a digital system, discrete control inputs at a fixed time

rate are expected. Similarly, the MPC assumes that the control actions are kept constant between two

sampling instants. For this reason, a zero order hold input method for the control actions is chosen. A

scheme of this input method can be seen in figure 3.3

35

Figure 3.3: Zero order hold input scheme illustration [62].

Mathematically, a zero order hold input method consists in applying a piecewise constant control

discretization between two time instants throughout the MPC prediction horizon, N , as suggested by the

following equation:

u(t) = uk ∀t ∈ [tk, tk+1] , k = i, ..., i+N − 1 (3.24)

Focusing on the discretization of the state trajectory, a multiple shooting discretization method was

chosen. This method works as follows: consider the time interval between two sampling instants,

[tk, tk+1]. Given an initial state xk ≡ x(tk), one can apply a numerical integration method in order

to obtain xk+1 as suggested by the following equation:

xk+1 = Φk(x(t),u(t)) (3.25)

where Φk is a suitable integrator [63]. A frequent choice for Φk is a Runge-Kutta 4th order (RK4) approxi-

mation, since this method is reasonably simple and robust and is a good general candidate for numerical

solution of differential equations. As an input to this method, a step size, h, such that 0 < h ≤ Ts and

nh = Ts for some n ∈ N is chosen as the interval between two integration nodes, called the shoot-

ing nodes. In general, h is chosen to be equal to the sampling time Ts, however, if better accuracy is

required, h should be chosen to be smaller than the sampling time. Then, algorithm 3 is applied.

Algorithm 3 Runge-Kutta 4th order
1: procedure RK4(h, Ts,xk,uk, f(·)) . Input data for the method
2: x0 ← xk . Assign initial state
3: for integer n = 0 to n = Ts

h − 1 do . Integrate between shooting nodes
4: k1 ← f(xn,uk)
5: k2 ← f(xn + h

2k1,uk)

6: k3 ← f(xn + h
2k2,uk)

7: k4 ← f(xn + hk3,uk)
8: xn+1 ← xn + h

6 (k1 + 2k2 + 2k3 + k4)
9: end for

10: xk+1 ← xTs
h

. The next state corresponds to the last integration node state
11: return xk+1 . Output next state
12: end procedure

With the discretization procedure defined, for control purposes it is desired to discretize the state

36

vector as xk = [Xk, Yk,Ψk, vxk , vyk , rk]T , the input vector as uk = [dk, δk]T , and define the discrete state

transition function as xk+1 = f(xk,uk), where, for notation purposes, f , refers to the discretization of

the continuous model dynamics using algorithm 3.

For the discretization of the kinematic bicycle model, the following approach was adopted. Since,

in this model, the state vector is defined as xkin = [X,Y,Ψ, vx]T , the state space model presented in

equation (3.20) is discretized using the procedure in algorithm 3, obtaining a discrete time dynamic

model: xkin
k+1 = fkin partial (xk,uk). Then, to compute the remaining states, vyk+1

and rk+1 the kinematic

relations of equations (3.18b) and (3.18c) are employed as follows:

rk+1 =
vxk+1

lr + lf
tan(δk) (3.26a)

vyk+1
= rk+1lr = vxk+1

tan(δk)
lr

lr + lf
(3.26b)

Finally, a discrete state space model for the kinematic bicycle, xk+1 = fkin(xk,uk), is obtained by

annexing the states vyk and rk to the state space vector. Resulting in the desired state space vector:

xk =

xkin
k

vyk

rk

 =⇒ xk+1 =

fkin partial (xk,uk)

vyk+1

rk+1

 = fkin(xk,uk) (3.27)

The discretization of the dynamic bicycle model is made simpler by the fact that this model already

utilizes the desired state space vector. Thus, a direct discretization of equation (3.22) using algorithm 3

is employed, resulting in the discrete state space model for the dynamic bicycle, xk+1 = fdyn(xk,uk).

3.5 Blended Bicycle Model

In the previous sections, two methods were presented for modeling the dynamics of the vehicle:

the kinematic bicycle model and the dynamic bicycle model. Compared to the dynamic bicycle model,

the kinematic model is a simpler model that does not include tire-slip dynamics, which are important

to model for vehicles that perform high acceleration and high velocity maneuvers, as in the case of

a Formula Student vehicle. The importance of modeling such dynamics for these vehicles may lead

to, naively, exclusively using the bicycle dynamic model as the model to use in the control algorithm.

However, it is easy to notice that, for low velocities, the tire-slip angle as computed in equations (3.6) in

section 3.1.2 is ill defined for low velocities. This may result in unrealistically high lateral forces acting on

the vehicle when the vehicle is moving at low velocities or even stopped.

For the previously mentioned reasons, it is noticeable that the kinematic bicycle model is not valid

for high velocities, where tire-slip dynamics are not neglectable, but valid for low velocities, and that

the dynamic bicycle model is desirable for high velocities but unreliable for low velocities due to the ill

definition of the tire-slip angle. Attempting to solve this problem, this section aims at developing a model

valid for all velocity regions using a similar blending method to [42].

37

Taking into account the discretizations developed for the kinematic and dynamic bicycle models, pre-

sented in section 3.4, given by xk+1 = fkin(xk,uk) and xk+1 = fdyn(xk,uk), respectively. The state

vector, xk = [Xk, Yk,Ψk, vxk , vyk , rk]T , represents the state variables and uk = [dk, δk]T the input vari-

ables at time instant k. By this definition, the functions fkin and fdyn relate the states of the system at

time instant k, to the next time instant, k+ 1. The discrete state transition function of the blended bicycle

model is expressed in equation (3.28).

xk+1 = λkfdyn(xk,uk) + (1− λk)fkin(xk,uk) = fblend(xk,uk) (3.28)

where the variable λk ∈ [0, 1] represents the relevance of the dynamic bicycle model. In other words, for

λk = 1, the dynamic model is used as the state transition function, whereas for λk = 0, the kinematic

model is used. Consequently, λk is computed based on the vehicle’s velocity, Vk =
√
vxk

2 + vyk
2, as

follows.

λk = min
(

max
(

Vk − Vblendmin

Vblendmax − Vblendmin

, 0

)
, 1

)
(3.29)

where Vblendmin and Vblendmax define the velocity boundaries at which either only the kinematic or dynamic

model is used, i.e. for Vk ≥ Vblendmax the dynamic bicycle model is used and for Vk ≤ Vblendmin the kinematic

bicycle model is used. If the velocity, Vk, lies between these boundaries, Vblendmin < Vk < Vblendmax , a linear

combination of both models will be used as expressed in equation (3.28).

Furthermore, the parameter values relating to the FST10d vehicle are summarized in table B.1 in

appendix B.

3.6 Error Correction Model

So far, the previous models are built based on first principles, more specifically, based on Newtonian

mechanics. These models describe a fair representation of the physics of a race car. However, several

considerations were taken when developing these models which may result in inaccuracies when com-

paring predictions from the bicycle models to the actual real vehicle dynamics. Furthermore, not only do

these considerations affect the disparity between the real car and the car model, but also uncontrollable

and unpredictable phenomena. Consider the following example: if the tire parameters were taken with

reference to ideal track conditions, in dry asphalt, there is no guarantee that the road is dry at the time of

the race. If the road is wet, it is expected that the tires do not have an ideal grip, thus leading to greater

disparity between the bicycle model and the real vehicle dynamics. Other unpredictable phenomena

that may incur might be related to wind conditions, a slight malfunction in one of the vehicle motors, etc.

For a personal vehicle, in a normal traffic scenario, this disparity may not be so important since such

vehicle is not subject to high accelerations and overall aggressive driving. However, for race cars such

as the ones Formula Student teams develop, precision in the control of these vehicles is fundamental in

order to ensure that not only the vehicle does not crash but also to achieve the highest score possible in

the competitions.

38

For the reasons mentioned in the previous paragraph, a machine learning technique that minimizes

the disparity between the vehicle model and the real vehicle was developed. The focus of this technique

is to learn some function e that is able to model the error between the real vehicle dynamics and the

blended bicycle model presented in the previous section by introducing the error correction on the state

transition function, as suggested in equation (3.30).

xreal
k+1 ≈ fblend(xk,uk) + e

(X,Y)
Ψk

(pk,vk) (3.30)

In this equation, xreal
k+1 is the real measured and/or estimated states of the vehicle in the next time

instant, fblend(xk,uk) is the state transition function given by the blended bicycle model from the previous

section and e
(X,Y)
Ψk

(pk,vk) is the error between the real vehicle dynamics and the bicycle model. The

parameter vector, p, is the vector of parameters that shape the error function, e, and v is the feature

vector which consists of a subset of the vehicle states and control actions, v ⊆ {x,u}. The superscript

(X,Y) refers tho the global frame of reference and the subscript Ψk refers to the vehicle’s orientation

at time instant k. The meaning of this superscript and subscript will be further explained in the training

paragraph.

Note that the exact real vehicle states at the next time instant, xreal
k+1, are unknown at time instant k.

Furthermore, in order to introduce the learning scheme used to learn the error function, consider the

same equation as 3.30, but applied to the previous time instant, as in equation (3.31).

xreal
k ≈ fblend(xk−1,uk−1) + e

(X,Y)
Ψk−1

(pk−1,vk−1) (3.31)

In this equation, every state and control actions are known at time instant k: xreal
k is the real vehicle

current state measure/estimation and xk−1 and uk−1 were the real vehicle state and control actions in

the previous time instant, k − 1.

Further defining the error function, e : Rnp × Rnv → Rne is described as a function with np shaping

parameters, nf input features and ne outputs, equal to the dimension of the state vector.

For the purpose of learning the error function, e, a parametric model was chosen, since not only it

requires less data to train but also makes it possible to input the fixed number of model parameters into

the MPC solver, which will be further detailed in section 6.3.1. As such, single-layer neural networks

were chosen to learn the error function, namely Elliptical Basis Function Networks (EBFNs). For an

introduction to these neural networks recall sections 2.2.1 and 2.2.2.

3.6.1 Training and Feature Selection

The objective of employing this model correction method is to improve the vehicle model’s accuracy

online, as the vehicle drives itself. In other words, consider the previously mentioned equation (3.31). As

the vehicle drives, at time instant k, the state vector, xreal
k is known: either by direct sensor measurement

or by some state estimation technique. At the previous time instant, k − 1, the blended bicycle vehicle

model predicted that by applying control actions uk−1, the next time instant (instant k) state vector would

39

be xblend
k . However, due to the reasons mentioned before, xreal

k may be different from xblend
k . The error

correction term, ek = e(pk−1,vk−1), is then added to xblend
k such that it closely matches xreal

k . As such,

at time instant k, it is desired that the discrepancy between the real state vector xreal
k and the corrected

model, i.e., xblend
k added by ek is minimized. The discrepancy at time instant k, εk, is defined as follows:

ε
(X,Y)
k = xreal

k −
(
fblend(xk−1,uk−1) + e

(X,Y)
Ψk−1

(pk−1,vk−1)
)

(3.32)

In order to achieve the best possible next time instant prediction, as in equation (3.30), it is necessary

that the discrepancy’s components converge to zero. Thus, it is necessary to find a parameter learning

algorithm that minimizes the discrepancy over time, as the vehicle gathers more data. The indexes

(X,Y) that are present in equation (3.32) in the discrepancy term mean that, in this equation, the

discrepancy spatial coordinate (i.e., X and Y) values are expressed in the global frame of reference.

For further clarification on the global and local frames of reference refer to section 3.1.1.

Feature selection

The feature vector, v, was introduced at the beginning of section 3.6 as a vector which may contain

some components of the state vector, x, and some components of the input vector, u, i.e., as a subset

of these two vectors: v ⊆ {x,u}. Feature selection can be defined as finding this subset such that

it maximizes the learner’s ability to classify patterns. It may bring several benefits such as reducing

overfitting, improving model accuracy, and training time reduction [64]. For the purpose of learning

the parameters of the error function, p, local features, i.e., related with the local frame of reference

were chosen. Recalling equation (3.22) from the dynamic bicycle model, note that the vehicle’s global

coordinates, X and Y , and the vehicle’s orientation, Ψ, are essentially obtained by an integration of the

local states, vv, vy and r. If the X, Y , and Ψ components were used, the learning would be based on

the geometry of the track itself, which is not desired. To illustrate this, one can consider a track with

two or more identical sections, for example, consider the track illustrated in figure 3.4. The presented

track contains two identical curves and two identical straight lines in different locations. While driving

through, for example, the two curves, the local states are expected to have similar values despite the

global coordinates and vehicle’s orientations being different. Thus, introducing the global coordinates

and orientation variables in the feature vector would result somewhat in the learning of the track while

potentially disregarding similar driving conditions, i.e., similar local states.

Figure 3.4: Example track with two similar curves and two similar straight lines.

Regarding the control actions, both the steering angle and throttle can be chosen to be inserted in

40

the feature vector since these quantities are also locally related to the vehicle.

In summary, the feature vector, v, was initially chosen to have the local vehicle states as well as

control actions, mathematically, vk =
[
vxk, vyk, rk, dk, δk

]T .

However, using data from previous simulations and performing a correlation analysis between the

previously mentioned feature vector variables, it was observed that vy and r were highly correlated.

This can be intuitively noted in the kinematic bicycle model equations. Equation (3.18c) states that

vy = Ψ̇lr ↔ vy = rlr, showing that the kinematic bicycle model, indeed, fully correlates the vehicle’s

lateral velocity with the yaw rate. This behavior is not predicted by the dynamic bicycle model since

this model allows for the vehicle to drift sideways. Nevertheless, FS vehicles are not designed to drift

sideways as such technique is inefficient energy wise. If, however, the vehicles drifts, it is typically for

short periods of time. As such, since, statistically and also mathematically, these variables offer the

same information, one of them was removed in order to simplify the error correction model. Thus, the

yaw rate, r, was chosen to be kept in the feature vector, removing the lateral velocity, vy. Finally, the

feature vector was considered to be defined as vk = [vxk, rk, dk, δk]
T .

Training algorithm

For the purpose of fitting the error correction function, e, a training algorithm is proposed which

involves two consecutive general steps:

1. A pre-training phase, in which offline data previously collected allows for a prior estimation of the

parameter vector, p;

2. An online training phase, in which the parameter vector, p, is fine tuned in order to minimize the

model discrepancy, ε, as the vehicle drives itself.

Regarding the pre-training phase, as suggested by Man-Wai Mak and Sun-Yuan Kung [53], previ-

ously collected data is used to find the EBFN’s cluster centers, µi and variance, Σi, i = 1, ..., nh. This

technique consists in applying the fuzzy c-means algorithm to cluster the feature space. Then, the clus-

ter’s variance are found using the variance estimator with respect to each cluster center, as follows in

equation (3.33). In this equation, Ni represents the number of data points that belong to cluster i. As

such, Ni is found by counting how many data points in the training set have their maximum membership

degree in cluster i using the partition matrix that the fuzzy c-means algorithm outputs.

Σi =
1

Ni

Ni∑
j=1

(vj − µi) (vj − µi)
T

, i = 1, ..., nh (3.33)

Then, the diagonal terms of Σi are extracted and the precision matrix Ωi ≈ diag (ωi,1, ..., ωi,nv) is ob-

tained by the inverse of the diagonal components of Σi: ωi,j = 1/σi,j , j = 1, ..., nv where σi,j represents

the jth diagonal components of cluster’s i covariance matrix. As for the output layer weights, these are

then initialized as small random numbers which will be tuned in the online learning phase that will be

described next.

41

Recall the definition of the discrepancy vector expressed in the global frame of reference, ε(X,Y)
k , as

written in equation (3.32). For notation purposes, the sampling index k will be omitted for the following ex-

pressions. Further analyzing the individual components of this vector, ε(X,Y) =
[
εX , εY , εΨ, εvx , εvy , εr

]T ,

it can be observed that the first two components, regarding the spatial coordinates discrepancy, εX and

εY are expressed in the global frame of reference, as was also stated before. By the definition presented

in equation (3.32) there is no guarantee that εX and εY are independent of the vehicle’s orientation, Ψ.

However, as justified before in the feature selection paragraph, learning local features is desired. On the

other hand, if local features are learned and the vehicle’s orientation, Ψ, is not fed as an input feature,

directly outputting the correction for X and Y , i.e., eX and eY is not trivial since eX and eY may depend

on the vehicle’s orientation. As such, in order to keep the vehicle’s orientation out of the feature vector

such that the geometry of the track is not learned, as explained in the feature selection paragraph, a

transformation such that εX , εY , eX and eY are converted into a local frame of reference, obtaining εx,

εy, ex and ey, is employed. For the purpose of explaining this transformation consider the illustration

from figure 3.5.

Figure 3.5: Discrepancy and error transformation to the previous local frame of reference

Consider the previous time instant k − 1. At this time instant the vehicle was oriented according to

Ψk−1 and a state vector prediction of the current time instant k was made according to xk−1, uk−1 and

vk−1. This prediction is denoted by xpred
k . However, at the current time instant k the vehicle states were

measured/estimated to be xreal
k . The discrepancy can then be computed as ε(X,Y)

k = xreal
k − xpred

k , with,

as mentioned before, its first two components, εX and εY , expressed in the global frame of reference.

Since Ψk−1 is known, these two quantities can be projected, i.e. rotated, to the the previous local frame

of reference, obtaining εx and εy. Furthermore, since it is desired to learn these quantities expressed in

the local frame of reference, the error correction function, e(x,y), will also have its first two components,

ex and ey, expressed with respect to the previous local frame of reference. These quantities can easily

be transformed to the local frame of reference using the rotation matrix R
(X,Y)
(x,y) presented in equation

(3.2) in section 3.1.1. Recalling some properties of this matrix, given some vector with its components

42

expressed in the local frame of reference, left-multiplying this matrix by that vector will rotate that vector

to the global frame of reference. Recall also that the inverse transformation, R
(x,y)
(X,Y) can be obtained by

R
(x,y)
(X,Y) =

[
R

(X,Y)
(x,y)

]T
. Contrary to R

(X,Y)
(x,y) , its inverse transformation, R

(x,y)
(X,Y), rotates a vector expressed

in the global frame of reference into a local frame of reference. Then, the following equations can be

used to transform ε(X,Y) into ε(x,y) and e(x,y) into e(X,Y).

ε(x,y) = AT (Ψk−1) ε(X,Y) (3.34a)

e
(X,Y)
Ψk−1

= A (Ψk−1) e(x,y) (3.34b)

where the A ∈ R6×6 matrix is defined as:

A (Ψ) =

R
(X,Y)
(x,y) (Ψ) 02×4

04×2 I4×4

 (3.35)

Further specifying the vehicle model equation as well as introducing the state transition function that

represents the vehicle model that will be used in the MPC, fvehicle (xk,uk,pk), and the local discrepancy

equation by introducing the previous transformations:

xpred
k+1 = fvehicle (xk,uk,pk) = fblend(xk,uk) + A(Ψk)e(x,y)(pk,vk) (3.36a)

ε
(x,y)
k = AT (Ψk−1)

(
xreal
k − xpred

k

)
(3.36b)

Note that Ψk and vk are not inputs of the blended bicycle vehicle model. However, recall that these

values are a subset of xk and uk, thus, the vehicle’s orientation and feature vector can be reconstructed

from the state vector and input vector.

With the local discrepancy defined, ε(x,y), as well as the transformations mentioned before it comes

naturally, from equation (3.36b) as well as from observing figure 3.5, that minimizing the discrepancy

components over time improves the prediction accuracy, i.e., ε(x,y) → 0 =⇒ xreal ≈ xpred. Since the

discrepancy is a vector which components are desired to be minimized, the mean squared error of the

discrepancy vector will be used to design a cost function. The mean squared error of the discrepancy

vector is then defined as follows:

MSEk =
1

ne

ne∑
j=1

(εk,j)
2 (3.37)

where, for simplicity, εj corresponds to component j of the local discrepancy vector, ε(x,y)
k . Since there

are six state variables, ne = 6.

Considering a learning batch of size nbatch, meaning that both feature vectors, vt, and discrepancy

vectors, ε(x,y)
t are stored up to nbatch instants before instant k, i.e. computationally, the feature vectors

and discrepancies are stored for t = k − nbatch + 1, ..., k. At each time step k, the developed algorithm

43

takes a step towards minimizing the following empirical risk cost function:

R =
1

Γ

k∑
t=k−nbatch+1

γk−t ·MSEt (3.38)

where the learning parameter γ ∈]0, 1] refers to the forgetting factor. The forgetting factor, γ, is intro-

duced due to the way a learning data point is treated at each sampling instant k. To better understand

this, considered that at instant k − 1, the mean squared error was measured to be MSEk−1. With this

measurement, the error function parameters were updated towards reducing MSEk−1. However, since

this data point cannot be resampled at time instant k, due to the vehicle being in different driving condi-

tions, the previous time instant mean squared error, MSEk−1 has to be estimated at the current instant

k. As such, a new value for the previous instant mean squared error value is considered, given by

γMSEk−1. Further analyzing how the value of γ affects equation (3.38), a forgetting rate close to one,

γ → 1, represents a high contribution of the previous samples on the cost function whereas a forgetting

factor close to zero, γ → 0, represents a low contribution of the previous samples on the cost func-

tion. Furthermore, the parameter Γ is a normalization parameter defined on the geometric series of the

forgetting factor, γ. This term can be computed using equation (3.39).

Γ =

nbatch−1∑
n=0

γn =
1− γnbatch

1− γ
(3.39)

Regarding the online learning algorithm, which minimizes R, several options were considered. The

developed algorithm is an online version of the commonly known Levenberg-Marquardt algorithm. This

algorithm merges two famous optimization algorithms for training neural networks:

1. Online Gradient Descent (OGD): a first order method in which the parameter vector increment is

made using the gradient with respect to the most recent data point;

2. Levenberg-Marquardt algorithm (LM): an algorithm that interpolates between the Gauss-Newton

algorithm and gradient descent.

The ”Online Levenberg-Marquardt” (OLM) algorithm’s objective is to capture the benefits of OGD and

LM by combining them, taking the online training scheme of OGD and applying the LM hessian matrix

approximation in order to improve the learning step direction of OGD. For the purpose of explaining

this algorithm, the cost function Jacobian must be specified first. Recall from equations (3.36), that the

discrepancy vector, ε(x,y)
k , can be expressed as:

ε
(x,y)
k = AT (Ψk−1)

(
xreal
k − fblend(xk−1,uk−1)

)
− e(x,y)(pk−1,vk−1) (3.40)

As such, the Jacobian matrix of the discrepancy vector at instant k with respect to the parameter

vector, Jεk
p , where component

[
Jεk
p

]
i,j

, in which index i represents a row and index j a column, can be

computed as:

[
Jεk
p

]
i,j

=
∂εk,j
∂pi

= −∂ej(p,vk−1)

∂pi
(3.41)

44

For the purpose of this thesis, the derivatives presented in equation (3.41) are computed using

automatic differentiation tools, namely MATLAB’s Symbolic Toolbox1. Nevertheless, these derivatives

can be computed mainly resourcing to the chain rule, as shown in [65]. Note that the parameter vector,

written as p, refers to the current parameters, i.e., in this equation, the derivative is always evaluated

with respect to the most recent parameters used at instant k despite using the corresponding features

previous to instant k. Furthermore, the gradient of the mean squared error at instant k with respect to

the discrepancy vector, ∇εMSEk, can be computed as:

[∇εMSEk]j =
∂MSEk
∂εk,j

=
2

ne
· εk,j =⇒ ∇εMSEk =

2

ne
· εk (3.42)

The gradient of the learning cost function with respect to the parameter vector, ∇pR, can be com-

puted as follows:

∇pR =
1

Γ

k∑
t=k−nbatch+1

γk−t · Jεt
p · ∇εMSEt =

2

ne · Γ

k∑
t=k−nbatch+1

γk−t · Jεt
p · εt (3.43)

The expression in equation (3.43) could be used if a gradient descent method, like OGD, was used.

However, for the Levenberg-Marquardt update step, a Jacobian matrix of the whole cost function, Jp,

and a discrepancy vector of the data in the learning batch, εbatch, are required. As such, the expression

in equation (3.43) for ∇pR can be alternatively rewritten in a matrix format as follows:

∇pR = Jp · εbatch (3.44)

where the Jacobian matrix of the whole cost function, Jp, is computed by horizontally concatenating the

discrepancy Jacobians of each data point in the learning batch, and the discrepancy vector of the data in

the learning batch, εbatch, is also computed by vertically concatenating the discrepancy vectors of each

data point with the forgetting factor applied, as in the following equations.

Jp =
[
Jεk
p J

εk−1
p · · · J

εk−nbatch+1

p

]
(3.45a)

εbatch =
2

ne · Γ

εk

γ · εk−1

...

γnbatch−1 · εk−nbatch+1

 (3.45b)

With the cost function Jacobian, Jp, and batch discrepancy, εbatch, defined, the parameters are up-

dated as in equation (2.21) introduced in section 2.2.4 - Levenberg-Marquardt Algorithm. Where ∆p is

obtained by solving the following linear system of equations:

(
λI + JpJp

T
)

∆p = −Jpε
batch (3.46)

1https://www.mathworks.com/products/symbolic.html

45

https://www.mathworks.com/products/symbolic.html

Furthermore, in order to prevent overfitting as well as controlling the learning step size, a schedule

based on the mean squared error for the damping factor was implemented. This schedule’s purpose is to

achieve a faster learning rate, i.e. a coarser but faster parameter tuning, when the mean squared error is

high and a slower learning rate, i.e. a finer and slower parameter tuning, when the mean squared error is

low. However, upon performing various simulations it was verified that the mean squared error is a noisy

signal. Thus, to capture the average mean squared error, a first order low pass filter was implemented,

resulting in a smoothed mean squared error. Figure 3.6 contains an example of the raw mean squared

error in red and the low pass filtered mean squared error in blue for each sampling instant.

Figure 3.6: Example mean squared error signal vs. smoothed mean squared error

The smoothed mean squared error (SMSE) can be obtained through the general equation of a digital

low pass filter as follows:

SMSEk = λMSE ·MSEk + (1− λMSE) · SMSEk−1 (3.47)

The parameter λMSE ∈ [0, 1] controls the filter’s cutoff frequency, fc, of the low pass filter. The filter’s

cutoff frequency can be computed as fc = λMSE

(1−λMSE)·2π·Ts [Hz] where Ts represents the controller’s

sampling time. Further analyzing λMSE, a value of λMSE close to one results in a high cutoff frequency,

i.e. the raw mean squared error is less filtered while achieving faster response times, and a value of

λMSE close to zero results in a low cut off frequency, i.e. a smoother signal, while achieving slower filter

response times.

The damping parameter schedule is then defined as a function of the smoothed mean squared error

as represented in figure 3.7. This figure represents a template function of the damping parameter which

reflects the desired learning behavior of the algorithm. For high values of SMSE, i.e. for SMSE >

SMSEhigh, the damping parameter, λ, takes the value of λhigh, the lowest value λ can take, which is

analogous to a high learning rate, meaning that when the smoothed mean squared error is high the

algorithm learns faster in order to minimize the discrepancy as fast as possible such that the vehicle

model is adapted quickly. For intermediate values of SMSE, i.e. for SMSElow ≤ SMSE ≤ SMSEhigh,

the damping parameter λ starts to linearly increase as the SMSE decreases, which is analogous to

decreasing the learning rate as the smoothed mean squared error starts to decrease, meaning that, in

46

Figure 3.7: Schedule template function of the damping parameter, λ.

this region, the learning rate is decreased in order to fine tune the parameter vector. For low values of

SMSE, i.e., for 0 ≤ SMSE < SMSElow the damping parameter takes an infinite value, which is equivalent

of turning off the learning algorithm as, by recalling equation (3.46), ∆p = 0 in order to prevent overfitting.

Mathematically, the schedule function for the damping parameter can be defined as follows in equation

(3.48).

λ (SMSE) =

+∞ , 0 ≤ SMSE < SMSElow

λhigh−λlow
SMSEhigh− SMSElow

SMSE +λlow ,SMSElow ≤ SMSE ≤ SMSEhigh

λhigh ,SMSE > SMSEhigh

(3.48)

In summary, the Online Levenberg-Marquardt learning algorithm for the blended model error cor-

rection can be described as follows in algorithm 5 in appendix A and the learning parameter values

can be consulted in table B.2 in appendix B. The parameter update algorithm takes the learning batch

discrepancies and feature vectors as well as other relevant parameters as inputs and computes the cur-

rent local discrepancy. After this, the current and smoothed mean squared errors are computed. If the

smoothed mean squared error is above a threshold, the damping factor is computed according to the

previously defined learning schedule and the Levenberg-Marquardt parameter update step is applied. It

is important to note that as EBFNs are used, an additional step is added to ensure that the subset of

the parameter vector regarding the eigenvalues of Ωi, i = 1, ..., nh remains positive, i.e. to ensure that

ωi,l > 0, l = 1, ..., nv, i = 1, ..., nh.

47

Chapter 4

MPC Formulation

In this chapter, the designed MPC architecture will be explained in detail. First, the concept of track

progress with respect to the track’s center line will be introduced, then the MPC optimization problem will

be presented. This formulation was strongly influenced by Liniger et al. [31], in which a reference-free

MPC based on the vehicle’s track progress for autonomous racing is developed.

4.1 Track Progress

With the objective of developing a reference-free MPC, a common approach to design the MPC’s

cost function, J , to be optimized is to base this function on a measure of track progress. A natural way

of measuring the track progress of a race vehicle is to project the vehicle’s position at a given instant

onto the race track center line, obtaining the length of the center line from the beginning of the track up

to that projected point [31, 42, 66]. An illustration of this process can be seen in figure 4.1.

Figure 4.1: Track progress based on the track’s center line [31].

With the track progress defined, it is natural to think of what are the optimal control actions to be

applied to the vehicle at a given instant in order to maximize its track progress or the track progress

velocity for a given prediction horizon. As such, a Model Predictive Controller based on the maximization

of the track progress at a given time instant will be designed.

Note that, to use this center line projection to measure track progress, the track itself must be known

prior to the race, which is generally the case for FS driverless competitions. Consider that the center

48

line of the track is parameterized as a function of its length. In other words, consider the center line to

be parameterized by a two dimensional vector, g, which is a function of the center line length, s.

g(s) =

gX(s)

gY (s)

 (4.1)

where the components gX(s) and gY (s) are C2 and express the coordinates of a center line point in

the global frame of reference, (X,Y). With such parameterization of the center line, it is also possible

to retrieve its direction at a given center line length by computing the derivative of g with respect to the

center line length, s, denoted as ∂g
∂s . Furthermore, to compute the curvature radius of the track at a

given center line length, the second derivatives of g, denoted as ∂2g
∂s2 , are required. The mathematical

definition of both these quantities is expressed in equations (4.2).

∂g

∂s
(s) =

∂gX∂s (s)

∂gY
∂s (s)

 (4.2a)

∂2g

∂s2
(s) =

∂2gX
∂s2 (s)

∂2gY
∂s2 (s)

 (4.2b)

Since g is parameterized by its length, ∂g
∂s represents a unitary vector in the direction of the center

line at a given length, s [67].

In order to find the center line parameterization, g, cubic splines are used for gX and gY . In practice,

using MATLAB and MATLAB’s Symbolic Toolbox, a script was developed that takes a track as the input

and computes the spline functions for gX and gY and also its derivatives ∂gX
∂s and ∂gY

∂s , all function of

the center line length, s.

Figure 4.2 shows an example track from the Formula Student Germany (FSG) competition and has

represented the center line of the track in blue, the direction of the center line in black arrows and the

left and right limits of the race track represented in green and red colors, respectively.

As stated previously, to compute the track progress, the position of the vehicle in the global frame

of reference must be projected onto the center line of the track. Since the center line parameterization

function, g(s), is considered to be C2, the track progress at a given vehicle position, (Xk, Yk), can be

retrieved as the center line length value, s, for which the distance from the corresponding center line

point to the vehicle position is minimal. This idea is equivalently formulated in the following equation:

sk = arg min
s

√
(Xk − gX(s))2 + (Yk − gY (s))2 (4.3)

Another important measurement that can be taken from the previous idea is the distance to the center

line itself, represented by eCL. The distance of the vehicle to the center line is important to ensure that

the car stays within the limits of the race track. This distance can be computed as follows:

eCLk = min
s

√
(Xk − gX(s))2 + (Yk − gY (s))2 (4.4)

49

Figure 4.2: Race track from FSG.

Recall that ∂g
∂s is a unitary vector with direction aligned with the track direction. The center line

progress velocity can be computed by the dot product between the vehicle velocity expressed in the

global frame of reference, [Ẋk, Ẏk]T , and the direction of the center line, ∂g∂s , at the corresponding track

progress, sk. Consider the rotation matrix, R
(X,Y)
(x,y) , from equation (3.2) in section 3.1.1. This rotation

matrix transforms the velocity of the vehicle in its local frame of reference, [vxk , vyk]T , to the global frame

of reference, the center line progress velocity can be expressed as in the following equation.

ṡk =
∂g

∂s

T

R
(X,Y)
(x,y) (Ψk)

vxk
vyk

 (4.5)

Despite equations (4.3) and (4.4) representing an exact manner of computing sk and eCLk , respec-

tively, these equations do not guarantee explicit expressions for sk and eCLk . As a result, the exact

solution for sk and eCLk would have to be retrieved by solving the respective optimization problems

shown in these equations at each time step. However, solving an optimization problem within the op-

timal control problem of the MPC is not desired due to employing a high computational cost. For this

reason, as suggested in [31, 42], a method for approximating the values of sk and eCLk is employed.

Figure 4.3 represents a visualization of the mechanisms involved in this approximation. The variable

êCL represents an approximation of eCL, and êL represents the lag error.

At a given estimated track length, ŝ, the values for êCL and êL can be explicitly expressed as follows:

êCL(ŝ) =
∂gY
∂s

(ŝ) · (X − gX(ŝ))− ∂gX
∂s

(ŝ) · (Y − gY (ŝ)) (4.6a)

êCL(ŝ) = −∂gX
∂s

(ŝ) · (X − gX(ŝ))− ∂gY
∂s

(ŝ) · (Y − gY (ŝ)) (4.6b)

50

(a) True projection on the center line. (b) Approximated projection on the center line.

Figure 4.3: Approximation mechanism for the track progress.

Note that, in order to obtain a good estimation of s ≈ ŝ and eCL ≈ êCL, both êCL and êL should take

a minimum absolute value. For this reason, êCL and êL can be included in the MPC’s cost function in

order to compute an approximation of the center line progress at any prediction stage, sk.

4.2 MPC Based On Track Progress

In order to develop a reference-free MPC based on the track progress, the formulation presented in

equations (4.7) was developed.

min
uk,∀k∈[t+1,...,t+N−1]

sk∀k∈[t,...,t+N]

αCLê
n
CLt + αLê

2
Lt+

t+N−1∑
k=t+1

(
qvyvyk

2 + αCLê
n
CLk

+ αLê
2
Lk

+ βδ(δk − δk−1)2 + eqvmax(vxk−vmax)
)

− λsst+N + qvyvyt+N
2 + αCLê

n
CLt+N + αLê

2
Lt+N + eqvmax(vxt+n−vmax) (4.7a)

s.t. xk+1 = fvehicle (xk,uk,pt) ∀k ∈ [t, ..., t+N − 1] (4.7b)

xt = x(t) (4.7c)

ut = u(t) (4.7d)

st−1 = s(t− 1) (4.7e)

−∆umax ≤ uk − uk−1 ≤ ∆umax ∀k ∈ [t+ 1, ..., t+N − 1] (4.7f)

umin ≤ uk ≤ umax ∀k ∈ [t+ 1, ..., t+N − 1] (4.7g)

− êCLmax
≤ êCLk ≤ êCLmax

∀k ∈ [t+ 1, ..., t+N] (4.7h)

∆smin ≤ sk − sk−1 ≤ ∆smax ∀k ∈ [t, ..., t+N] (4.7i)

The main objective of this formulation is to obtain the set of control actions at time instant t that maximize

the track progress (i.e. center line progress) at the prediction horizon instant, t + N . This behavior is

51

reflected by the final stage cost term: −λsst+N in the MPC’s objective function as per equation (4.7a),

where λs > 0 is the weight of the track progress at the prediction horizon, t + N . A value of λs close to

zero translates to a controller that does not prioritize as much the track progress, while a large value for

λs translates to a controller that greatly prioritizes the track progress at the prediction horizon.

Furthermore, in the cost function, the parameters that control the approximation of the track progress

at a given prediction instant, sk, k ∈ [t, ..., t + N], are denoted by αCL > 0 and αL > 0. Recall that,

as suggested from equations (4.6) from section 4.1, for a good approximation of s ≈ ŝ and eCL ≈ êCL,

the absolute values of êCL and êL should be minimum. For this reason, the terms αCLênCLk + αLê
2
Lk

,

k ∈ [t, ..., t+N], n ∈ {2, 4, 6, 8, ...} (positive even number), are introduced in the cost function. Since, as

suggested from figure 4.3, for a value of ŝ close to the real track progress value, s, êL is more sensitive to

small variations of ŝ than êCL and also since it is not necessarily desired to penalize the center line error,

êCL, in general a choice of αCL and αCL such that αL � αCL is preferred. For the same reason, n, is

chosen to be a positive even number since, for small values of center line error, a higher exponent will

result in a lower cost as suggested in figure 4.4. Thus, by tuning both αCL and n, the controller is able

to get good approximations for the track progress at a given prediction stage, sk, while still computing

optimal trajectories that do not heavily penalize the center line error. It can be further noted that, in the

cost function, at the current time instant t the only terms being penalized are these center line projection

terms, as the states and control actions at this time instant are considered to be fixed. For this reason,

cost function terms regarding the vehicle states and control actions are introduced only between t + 1

and t+N .

Figure 4.4: Effect of the exponent of the center line error cost.

Still related to the cost function, to limit the vehicle velocity, either to a given maximum velocity related

to safety or to the vehicle’s physical maximum velocity, the term eqvmax(vxk−vmax), k = t + 1, .., t + N is

added. This term translates to a soft constraint on the vehicle’s maximum velocity, parameterized by

vmax. The parameter qvmax > 0 controls the steepness of the exponential function: a larger value of

qvmax results in a steeper exponential function, i.e., the constraint gets harder and smaller value of qvmax

results in a flatter exponential function, i.e., the constraint gets softer. To better understand the effect of

52

qvmax on the maximum velocity soft constraint cost refer to figure 4.5. Prior to using this soft constraint,

a hard constraint was being used for the same purpose, however, upon performing simulations while

using the hard constraint it was verified that jerky control actions, both in steering and throttle, were

being applied when the vehicle’s velocity was close to vmax. It was also verified that this happened

due to model mismatch: since there was a slight model mismatch, the vehicle’s velocity would slightly

surpass vmax, as such, the control system would be at an unfeasible point, and, as a result, the control

actions to be applied were the ones that would slow the vehicle down as much as possible, resulting in

the observed jerky control actions. Hence, a soft constraint is preferred over a hard constraint for the

maximum velocity.

Figure 4.5: Effect of qvmax in the maximum velocity soft constraint cost.

The remaining parameters in the cost function of the MPC problem serve to control the aggressive-

ness of the MPC. Moreover, the parameter βδ acts on the steering variation (i.e. the steering rate)

between two instants to ensure a smooth steering control action. The parameter qvy penalizes high lat-

eral velocities. This parameter is especially important to control possible sideways drifting of the vehicle

as the vehicle may lose control when drifting if the model mismatch is high. All parameters that refer to

the MPC cost function should take positive values.

As for the constraints, equation (4.7b) is the vehicle model state transition function constraint. Note

that the model correction parameter vector, pt is considered to be constant throughout the horizon as

at time instant t this term includes the most up to date parameters. For further information about the

vehicle model refer to chapter 3. Equations (4.7c) to (4.7e) are the initial constraints, i.e., the states

measured at time instant t, the control actions being applied at time instant t, and the previous instant

track progress, respectively. Equation (4.7f) represents control action variation constraints to ensure a

realistic smooth control action, where ∆umax = [∆dmax,∆δmax]
T . Equation (4.7g) represents control

action constraints representative of the maximum and minimum throttle values as well as the maximum

and minimum steering angles of the vehicle, which values can be specified by umin = [−1,−δmax] and

umax = [dmax, δmax]T . Note that the minimum allowed throttle is −1 and the maximum is dmax since,

in general, a deceleration is safer than accelerating, as a deceleration ultimately leaves the vehicle

stationary. For this reason, full deceleration, d = −1, is allowed whereas the vehicle acceleration is

53

limited by dmax ∈]0, 1] in order to control the vehicle’s maximum acceleration. Finally, δmax represents the

physical steering limits of the vehicle. Equation (4.7h) is the track constraint that ensures that the vehicle

stays within a fixed distance from the center line. On average, the track width of FS competitions is 2

meters. Equation (4.7i) is a constraint that forces neighboring track progress values to be within a given

range of each other. Recall that the main objective of this controller is to maximize the track progress at

the prediction horizon. As the center line parameterization function, g, is periodic, with a period equal

to the center line length, function g verifies the following: g(s) = g(s + i · center line length), ∀i ∈ Z.

Thus, without this constraint, the optimization algorithm would always be able to find a greater value,

more precisely a multiple of the track length apart, for the final stage track progress, not converging.

As such, this formulation employs a set of run time parameters and a set of fixed parameters. The run

time parameters, denoted by the variables αCL, dmax, qvy , n and βδ, are meant to be tuned for a given

track as the vehicle drives itself. These parameters will be learned by the method presented in chapter

5. The fixed parameters, mainly determined by the physical properties of the vehicle are summarized

in table B.3 in appendix B. The parameters ∆smin and ∆smax were obtained by assuming that the

vehicle can follow the center line with a velocity between 2 and 30 m/s, respectively, by multiplying these

velocities by the sampling time, Ts. The prediction horizon was chosen such that the vehicle is able

to react to an incoming obstacle when traveling at maximum velocity. In other words, it is desired that

the spatial prediction horizon is greater or equal to the maximum braking distance - equivalent to fully

braking at the maximum speed. The maximum braking distance is roughly 40 m, as such, using N = 40

at Ts = 0.05 s, the spatial prediction at maximum velocity is 40 · 0.05 · 30 = 60 m, which is greater than

40 m.

Furthermore, note that in order to obtain the MPC’s optimization problem solution some solver must

be used in order to solve the MPC’s problem in real time. However, due to the solver’s complex computa-

tions, the solution to the MPC optimization problem is only available some time after the sampling instant

t. As such, the solution will only be available some time between t and t+ 1. For this reason, it would be

impossible to get the current states, solve the MPC’s problem and apply the control action corresponding

to the sampling instant t, as that would require some method to instantly obtain the optimal solution. To

overcome this issue, the next sampling instant control action ut+1, as computed based on the known

xt and ut and determined between t and t + 1, is applied at the next sampling instant, t + 1, i.e. at the

corresponding sampling instant. A disadvantage of this method is that this is equivalent to adding an

input time delay equal to Ts in the control loop. Despite this disadvantage, it was found to be the next

best solution to overcome the computation time issue. This control loop technique is summarized by

algorithm 6 in appendix A. Furthermore, in section 6.3.1, the employed MPC solver will be introduced in

which details of some of the terms used in algorithm 6 will be given.

54

Chapter 5

Controller Parameter Learning

In this chapter, a method for automatically tuning the parameters of the MPC presented in chapter

4 - MPC Formulation is developed. The inner workings of this method are based on Reinforcement

Learning (RL) resourcing to the Genetic Algorithm (GA), which has been introduced in section 2.3.

The developed MPC’s cost function and constrains are parameterized by parameters that directly

relate to safety and aggressiveness of controller. As such, in summary, this method aims at maximizing

a reward function that is based on the Trackdrive event lap times by testing several combinations of

these parameters. The smaller the obtained corrected lap time, the higher the reward and vice versa.

The term ”corrected lap time” refers to the raw lap time, i.e., the time between two start line crossings,

plus possible penalties, namely cones that were hit by the vehicle.

5.1 Reward System

This section’s goal is to present a comprehensive and detailed explanation behind the design of the

parameter learning reward function for learning the MPC design presented in chapter 4 in a Reinforce-

ment Learning (RL) environment. Designing a reward function is in general task-specific for a given RL

problem. In general, the behavior of a reward function should reflect what is desired for the agent to

learn.

For the purpose of learning the controller’s design in the autonomous racing context, one can design

a reward system based on the time the vehicle takes at driving in track segments. These track segments

are divided by check points marked along the track. Given this, a reward system can be developed

such that if the time the vehicle takes traveling a track segment is large the reward should be small.

Otherwise, if the time the vehicle takes traveling that track segment is small, the reward should be large.

This reward value would then be linked to the respective MPC parameters, denoted as d, that were

being applied to the MPC when driving through that particular track segment. However, due to model

mismatch, there can be some parameters that may result in the vehicle colliding with cones. As cone

collisions result in penalties in FS competitions, this is not desired. Consequently, the reward function

should also reflect whether cones were hit in a given track section while using some parameters, d, or

55

not. The reward obtained in each segment would then be compared in order to retain the parameters

that maximize the reward.

Note, however, that dividing a closed loop track into different segments is not a trivial task. For

example, a track section characterized by a straight line is not comparable to a track section described by

a sharp curve. This could be solved if the track was segmented into a single segment (i.e. the segment

would be the track itself) as testing different parameters in the same track is comparable. However, this

would result in a slow learning process as the new parameters to be tested would be applied to the

controller at the beginning of the track and the respective reward obtained after the vehicle completes

that lap. Nevertheless, if there was a mechanism that would make different track segments comparable,

more than one parameter vector could be tested within the same lap, accelerating the learning process.

With the objective of finding such a mechanism, the following method is proposed for making different

track sections comparable. This method is based on two principles: an estimation of where the check

points should be located such that the expected time the vehicle takes at driving each segment is equal

between all segments and a normalization of the times obtained in each segment.

5.1.1 Vehicle Point Mass Model

The method presented in this section aims at estimating the check point locations along the track

such that the expected time the vehicle takes at driving each segment is equal between all segments.

This method is based on a simple point mass model of the vehicle which only purpose is to estimate

these check point locations. This model takes the track and vehicle parameters as input and is based

on the following principles:

1. The vehicle travels along the track’s center line always heading towards the center line direction;

2. The vehicle always travels at its maximum speed, which is either limited by the maximum allowed

centripetal force or the vehicle’s physical maximum velocity.

Given these principles, the mathematical equation that describes the vehicle’s maximum velocity at

a given center line length, v (s), is expressed in equation (5.1). In this equation, Df/r is the maximum

value of the lateral force in the front and rear tires, respectively, as introduced in section 3.1.2 - Lateral

Tire Forces. Moreover, m stands for the mass of the vehicle and vmax the maximum velocity the vehicle

can achieve in a straight line.

v (s) = min

(
vmax,

√
R (s)

2Df + 2Dr

m

)
(5.1)

Furthermore, R (s) represents the track’s curvature radius at a given center line length. The curvature

radius can be computed from the previously defined center line parameterization function derivatives,

which are defined in equations (4.2) in page 49 from section 4.1. The mathematical definition of the

curvature radius obtained from these derivatives is expressed in equation (5.2) [68].

56

R(s) =
1∣∣∣∂gX∂s (s) · ∂2gY

∂s2 (s)− ∂gY
∂s (s) · ∂2gY

∂s2 (s)
∣∣∣ (5.2)

Note that, when the track’s center line is a straight line, the second derivatives tend to zero, as such,

the radius tends to infinity. In this case, the vehicle’s maximum achievable velocity is its maximum straight

line velocity as per equation (5.1). Otherwise, its velocity will be limited by the maximum allowable lateral

centripetal force, which is dependent on the vehicle’s mass and tire parameters.

Given a track and the required vehicle parameters, one can plot the maximum achievable velocity as

seen in figure 5.1 represented by the green line.

Figure 5.1: Maximum achievable velocity and track segmentation using 4 check points for the track
shown in figure 4.2.

Still referring to figure 5.1, the blue dashed lines represent the check point locations that, according

to the point mass model, require the same time for the vehicle to travel each segment. The first check

point, s0, coincides with the track starting line, i.e., s0 = 0. Considering L as the track length for the

given track, an estimation of the lowest achievable lap time, Tlap, can be obtained as follows:

Tlap =

∫ L

0

1

v(s)
ds (5.3)

Then, considering the number of desired check points for track segmentation, NCP ∈ N, one can obtain

the remaining check point locations by solving for si ∀ i = 1, ..., NCP−1 the following system of equations:

∫ si

si−1

1

v(s)
ds =

Tlap

NCP
, s0 = 0 , i = 1, ..., NCP − 1 (5.4)

One could argue that another method for check point placement would be to place these check points

equally spaced throughout the track. However, this check point placement method aims at placing the

check points equally separated in time. The reason behind this is that a curved segment of the track

becomes more comparable with a straight line segment, as by using track segments that, in theory,

require the same time for the vehicle to travel, the parameters being tested in each segment are also

tested for an equal time amount. This behavior can be observed in figure 5.1: the last track segment

defined by s3 and the end of the track is longer than, for example, the second segment defined by s1 and

57

s2 as, in this segment, on average, the vehicle velocity is lower than in the last segment. In other words,

the second segment contains more curves than the last segment, nevertheless, both segments are

expected to take the same time to travel. Furthermore, if the track segments would require different times

to travel, these time measurements themselves could be affected due to the discrete time resolution used

to time the segments.

5.1.2 Reward Function

The designed reward function is built using the track segmentation method presented in section

5.1.1. The reward function, r : R+ × Z+
0 → R+, is mathematically defined as follows:

r (Ti,k, n
cones
i) = exp

(
−kT

(
Ti,k − T avg

i,k + kcn
cones
i

))
(5.5)

where Ti ∈ R+ is the time measurement of segment i, i.e., the time the vehicle needed for traveling

segment i and ncones
i the number of cones that were hit in segment i. Furthermore, T avg

i,k represents

the average time measurement of segment i, which will be further detailed. The parameters kT > 0

and kc > 0 are meant to shape the reward function. To understand the idea behind the development

of this reward function, consider the time difference of Ti,k − T avg
i,k as shown in equation (5.5), with no

cones being hit in segment i, ncones
i = 0. Note that, being kT a positive number, if the time measured in

segment i is larger than the average time taken in that segment, Ti,k −T avg
i,k > 0, the reward function will

take a small value. Otherwise, if the time measured in segment i is smaller than the average time taken

in that segment, Ti,k − T avg
i,k < 0, the reward function takes a larger value. In other words, if the current

controller parameters being tested in segment i resulted in a smaller travelling segment time than the

average, those parameters are attributed a higher reward value, as they resulted in a faster than average

lap time, otherwise, they are attributed a smaller reward. In addition to this, if the vehicle hits cones in

segment i, the number of cones that were hit translates into a time penalty, which will further reduce the

received reward value. As such, the parameter kc can be read as the time penalty per cone hit in a given

segment. Regarding kT , this parameter mainly affects the slope of the exponential function. The reward

function will become more sensitive to the measured time difference as kT increases and less sensitive

as it decreases.

Regarding the segment’s average time, T avg
i,k , one could attain this value using several methods. For

this purpose, it was chosen to use a low pass filter to retain the average time of each segment. This is

accomplished using the following equation:

T avg
i,k+1 = λTTi,k + (1− λT)T avg

i,k−1 , i = 1, ..., NCP (5.6)

As such, Ti,k can be read as the current time measurement, with index k, of segment i. The indexes

k+ 1 and k− 1 refer to the next and previous time average values. The parameters λT ∈ [0, 1] regulates

the intensity of the filter, similarly to the λMSE parameter introduced in equation (3.47) in page 46. Then,

a value of λT close to zero results in a smoother T avg but with slower response times, and a value of λT

58

close to one results in a less filtered T avg but with faster response times.

Note that, according to the point mass model presented in the previous section, the average times

across all segments, T avg
i,k , i = 1, ..., NCP, should all be equally valued due to this method’s check point

placement. However, in practice, the vehicle model is much more complex than the point mass model

presented previously, thus, the average times across all segments may be different. Hence the necessity

of using an average time for each segment in the reward function.

5.2 Genetic Algorithm for Learning the Controller Design

In this section, the Genetic Algorithm (GA) will be applied in a Reinforcement Learning (RL) environ-

ment for learning the controller design.

In order to apply the GA, one must first define the genetic code string. The MPC defined in chapter 4

is mainly parameterized by the following performance affecting set of parameters: αCL, αL, dmax, qvy , n,

βδ, qvmax
, vmax and λs. For an explanation of the effect of each of these parameters on the controller recall

section 4.2. Some of these parameters are related to the vehicle center line projection or to the vehicle’s

capabilities, like its maximum velocity. As such, αL, qvmax and vmax are fixed parameters which are not

meant to be tuned, since qvmax
and vmax directly relate to vehicle properties and αL only affects the

vehicle’s projection mechanism on the center line. Furthermore, λs was chosen to be a fixed parameter

as well since this parameter may be considered as a redundant parameter, as increasing or decreasing

this parameter is equivalent to decreasing or increasing the remaining parameters in the optimization

problem. For these reasons, the remaining parameters are classified as tunable parameters, as such,

the MPC parameter vector is described as d =
[
αCL, dmax, qvy , n, βδ

]T , which will also be used as the

genetic code string for the GA. Recall that these parameters are positive real numbers except for n,

which should be a positive even number.

Considering a population with Npop individuals, the population matrix, D, which columns represent

an individual and rows a given gene, can be defined as:

D =
[
d1 . . . dN

]
(5.7)

Given the population matrix and the reward values of each individual, one can generate a new popu-

lation, i.e., new generation resourcing to genetic operations: reproductions, crossovers, and mutations.

The following sections will define these genetic operations in detail.

5.3 Genetic Operations

This section will define the genetic operations used for the GA aiming at learning the controller

design.

59

5.3.1 Reproductions

Given an individual randomly chosen from the population with a probability according to the fitness

vector, referred to as individual i, i = 1, ..., Npop, the individual passes directly to the new generation.

This operation aims at retaining the characteristics of the best individuals in the case the generated

individuals of the remaining operations are worse than the original population. Mathematically, this is

accomplished by passing directly a column of the old population matrix to the new population matrix as

suggested by the following equations:

dold
i =

[
αiCL, d

i
max, q

i
vy , n

i, βiδ

]T
(5.8a)

dnew
i =

[
αiCL, d

i
max, q

i
vy , n

i, βiδ

]T
(5.8b)

5.3.2 Crossovers

Given two individuals, referred to as ”parent” individuals, randomly chosen from the population with

probability according to the fitness vector, i.e., two different columns chosen from the population matrix,

D, the reproduction is an operation with exploitative characteristics aiming at generating two new indi-

viduals, referred to as ”children” individuals, that take the best characteristics of each parent, resulting in

two new improved individuals. For this purpose, consider the two parents i and j, i 6= j, i, j = 1, ..., Npop,

characterized by their genetic code:

dparent
i =

[
αiCL, d

i
max, q

i
vy , n

i, βiδ

]T
(5.9a)

dparent
j =

[
αjCL, d

j
max, q

j
vy , n

j , βjδ

]T
(5.9b)

The reproduction operation starts by randomly choosing a gene index from a uniform discrete dis-

tribution between the second gene index in the genetic code, 2, and the last gene index in the genetic

code, in this case, 5. In other words, this index can be any given integer number between 2 and 5 with

probability 1/4. For illustration purposes, considered that the index 3 was selected. Then, the newly

generated children would be characterized as follows in equations (5.10), where child i contains the ge-

netic code of parent i until the second gene and the remaining genetic code of parent j. On the contrary,

child j contains the genetic code of parent j until the second gene and the remaining genetic code of

parent i. In summary, the children are generated by swapping the parents’ genetic code between the

second and third gene:

dchildren
i =

[
αiCL, d

i
max, q

j
vy , n

j , βjδ

]T
(5.10a)

dchildren
j =

[
αjCL, d

j
max, q

i
vy , n

i, βiδ

]T
(5.10b)

60

Note that if the selected index corresponded to the first gene, the children would have the same

genetic code as their parents. Hence the index selection starting at the second gene.

5.3.3 Mutations

Given an individual randomly chosen from the population with probability according to the fitness

vector, referred to as individual i, i = 1, ..., Npop, the mutation is characterized by randomly changing one

gene on the individual and inserting the newly mutated individual in the new generation. This operation

reflects an exploratory character by randomly trying a new gene combination hoping that the mutation

results in a better performing individual than the original individual. Mathematically, this operation is

characterized by randomly choosing a gene index from a uniform discrete distribution between the first

gene, 1, and the last gene index, in this case, 5. In other words, this index can be any given integer

number between 1 and 5 with probability 1/5. For illustration purposes, assume that the second index is

selected. Then, the newly mutated individual would be generated as follows:

dold
i =

[
αiCL, d

i
max, q

i
vy , n

i, βiδ

]T
(5.11a)

dnew
i =

[
αiCL, d

i
max +m, qivy , n

i, βiδ

]T
(5.11b)

where m represents a random variable obtained by some probability distribution function. For the case

of the selected index affecting a real valued parameter, like αCL, dmax, qvy , or βδ, as is the case of the

example given in equations (5.11), m is obtained by a continuous uniform distribution between some

predefined values mlow and mhigh, which can be defined by the probability density function freal:

freal

(
m,mlow,mhigh

)
=

 1
mhigh−mlow ,mlow ≤ m ≤ mhigh

0 ,otherwise
(5.12)

For the case of selecting the index affecting the n parameter - an even number - m is obtained

through a uniform discrete probability density function which can make n jump to the next even number

or to the previous even number. This probability density function, denoted as fn, is defined as follows:

fn (m) =

0.5 ,m = 2

0.5 ,m = −2

0 ,otherwise

(5.13)

5.4 Algorithm Procedure

In this section, a general explanation of how the previous methods are used in the GA will be given.

Recall that the track is segmented into NCP segments (which are divided by NCP check points) and

consider a population of Npop individuals.

61

When the vehicle is racing and crosses a check point, segment i corresponding to that check point is

timed, resulting in Ti,k and ncones
i . The reward value for that timing and number of cones hit is computed

as per equation (5.5). At the same time, the average time of that same segment is adjusted as per

equation (5.6). With these quantities computed, as the next segment begins, the MPC parameters are

updated to the next column of the population matrix, D. When the vehicle crosses the next checkpoint,

this process is repeated. When the reward that corresponds to the last population individual, i.e., the final

column of the population matrix, is computed, every individual in the population will have its respective

reward value, rj , j = 1, ..., Npop. As such, a new population can be generated.

To generate a new population, the fitness vector must firstly be computed. As the reward function

is always positive, r > 0, the fitness vector, f , can be generated from the normalization of the reward

value, as follows.

fj =
rj∑Npop
n=1 rn

, j = 1, ..., Npop (5.14)

With the fitness vector generated, the number of each genetic operation to perform is generated.

Let R, C and M denote the reproduction, crossover and mutation operations, respectively. The number

of reproductions, NR, crossovers, NC, and mutations, NM, can be stochastically generated according

to a discrete probability distribution function with probabilities P (R), P (R) and P (M). In other words,

being O a random variable that represents one genetic operation, O can be generated according to the

following probability density function, foperation:

foperation (O) =

P (R) , O = R

P (R) , O = C

P (M) , O = M

0 ,otherwise

(5.15)

After selecting Npop operations, NR, NC and NM are defined by recursively using the probability

function of equation (5.15) Npop times. Note that one must ensure that the NC is an even number

since the crossover operation requires the use of pairs of parents. For the purpose of this work, NC is

checked for being even. If this number is odd, NC is subtracted by one and one is added to the number

of mutations, NM. Then, the genetic operations are performed by selecting individuals stochastically

according to their fitness value. As such, considering individual j ∈ {1, ..., Npop} as the jth column of

the population matrix, D, as explicit in equation (5.7), for the reproduction and mutation operations,

individuals are selected according to the following probability function, fselection:

fselection (j) =

 fj , j = 1, ..., Npop

0 ,otherwise
(5.16)

Regarding crossovers, a similar method is used with a slight modification to ensure that the two

selected parents are not the same individual. As such, the first parent p1 ∈ {1, ..., Npop} is selected

from the probability function of equation (5.16). Then, one must rearrange the fitness vector such that

62

p1 is not selected again. As such, given the first parent index, p1, the second parent index, p2, can be

selected according to This can be done according to the following probability function, fparent 2:

fparent 2
(
p2|p1

)
=

rp2(∑Npop

n=1 rn
)
−rp1

, p2 ∈ {1, ..., Npop} \ {p1}

0 ,otherwise
(5.17)

Note that this probability function, in equation (5.17), is defined as if a new fitness vector was defined

after considering that the reward of p1 is zero.

After performing every genetic operation using the original population, the new generation’s individ-

uals are created. These individuals are then shuffled such that each individual receives a random track

segment. Finally, they are inserted into the new population matrix which describes the new generation.

This whole process is then repeated for the new generation. As the number of generations increases

the individuals’ genetic code should, statistically, result in iteratively better MPC parameters.

As a further note regarding the mutation operation, an extra step was added to ensure that the

parameters remain valid. Recall that mutations are responsible for exploring the parameter space, how-

ever, for safety purposes and to ensure the validity of the parameters, the parameter exploration space

was limited such that dmin ≤ d ≤ dmax. In other words, a constraint is added such that each parameter

in the parameter vector, d, must be contained within an interval,
[
dmin

]
i
≤ di ≤ [dmax]i, ∀i = 1, ..., 5.

For notation purposes, to refer to the parameters, for example, dmin
αCL and dmax

αCL will refer to the minimum

and maximum values that αCL can take after being mutated, respectively, dmin
dmax

and dmax
dmax

will refer to

the minimum and maximum values that dmax can take after being mutated, respectively, and so on for

the remaining qvy , n and βδ variables.

Moreover, the mutation ranges as per equation (5.12), mlow and mhigh, for the real valued parameters,

i.e., for αCL, dmax, qvy , or βδ are also defined for each one of these parameters. In other words, for the

αCL variation range should be between mlow
αCL and m

high
αCL , the dmax variation range should be between

mlow
dmax

and m
high
dmax

and so on for the remaining qvy and βδ parameters. By customizing this parameter

variation for each one of the real valued parameters one can manipulate both the expected value and

the standard deviation of the variation of each parameter. This may be useful to accelerate learning as

the starting MPC parameters, i.e. the initial population, should be formed by conservative parameters

that do not result in an aggressive control of the vehicle. In other words, the initial parameters should

reflect high values of αCL, qvy and βδ and low values of dmax and n in order to ensure the vehicle starts

in a safe controller configuration. With such parameters, it is expected that by slightly decreasing αCL,

qvy and βδ or increasing dmax and n, the vehicle is able to drive faster as such variation would result

in more aggressive parameters than the initial ones. As such, by manipulating the expected value of

the αCL, qvy and βδ variations to be negative and the expected value of the dmax and n variations to be

positive, on average, a mutation would result in slightly more aggressive parameters. Furthermore, one

can define maximum and minimum variation values to be positive and negative, respectively, in order to

allow a mutation to escape a parameter that is too aggressive, i.e., for the population to move to a safer

parameter configuration if needed.

In summary, the new generation can be computed using a similar procedure to algorithm 4 presented

63

in appendix A. Instead, an algorithm for the reward and average segment times computation will be

presented to clarify this idea - algorithm 7 in appendix A. This algorithm should be applied the instant

the vehicle crosses a new check point. Finally, the GA algorithm parameters can be consulted in table

B.4 and the initial generation parameters in table B.5, both in appendix B. Furthermore, note that NCP

and Npop can be different positive integer numbers, however, if one was to choose some NCP < Npop

the time measurements of each individual would be influenced by the time measurements of other

individuals in the same population since there are more individuals than track segments. In other words,

if two individuals in the same population share the same segment, the average segment time of the

second individual would be biased by the segment time of the first individual. Since this is not desired,

the author recommends a choice of Npop and NCP such that Npop ≤ NCP, as this ensures that a segment

is never shared between two individuals in the same population.

Finally, figure 5.2 contains simulation data showing that by using track segments instead of using

the whole track as one single segment, for the same Npop, using various segments may indeed lead to

faster learning.

Figure 5.2: Example lap time reduction by using check points vs. not using check points.

64

Chapter 6

Implementation

In this chapter, details regarding the controller implementation will be described. Firstly, the sim-

ulation environment in which the controller was implemented and tested will be described. Then, the

tracks used for performing simulation tests will be presented. Finally, the details of the learning MPC

implementation are given.

6.1 Simulation Environment

The simulation of choice of FST Lisboa is FSSIM1. FSSIM is a high fidelity simulator developed by

the AMZ Driverless FS team from ETH Zürich. This simulator was developed with the purpose of testing

the vehicle pipeline in a virtual environment, which in turn allows for the adjustment of these algorithms

prior to the implementation in the real vehicle. This team reported 1% lap time accuracy compared with

their FSG 2018 Trackdrive run [42].

The simulator includes the standard Acceleration and Skidpad competition tracks. It also includes

tracks that were mapped from the 2018 FS events from Italy and Germany. The simulator also features

systems required for racing in the real competitions such as the Remote Emergency Stop (RES) activa-

tion when the vehicle’s four wheels leave the track, time penalization when hitting a track cone, and a

lap time counter.

To simulate raw sensor data, the simulator also features a cone sensor model that simulates the cone

detections around the vehicle. Moreover, the employed vehicle model is a complex model which also

results from a blend of a kinematic model for low velocities and a dynamic model for high velocities. The

kinematic vehicle model used by the simulator is similar to the one presented in section 3.2. However,

the dynamic model used by the simulator deeply details the various subsystems present in FS vehicles.

Namely, as an example, the simulator models all the vertical and horizontal loads applied to all four tires,

as well as the angular velocity of each wheel. This complex vehicle model is responsible for allowing a

high fidelity match between the real vehicle and the simulated one.

By default, FSSIM contains the parameters of the AMZ’s Gotthard vehicle. However, these param-
1https://github.com/AMZ-Driverless/fssim

65

https://github.com/AMZ-Driverless/fssim

eters can be manually defined, allowing for the introduction of the FST10d parameters previously pre-

sented in table B.1 in appendix B. Furthermore, with the purpose of testing the controller’s robustness,

simulations were also performed using AMZ’s Gotthard parameters. In order to compare both vehicles,

some of the parameters of AMZ’s Gotthard model are present in table B.6 in appendix B.

6.2 Tracks

As mentioned in the previous section, the FSSIM simulator includes various tracks from FS competi-

tions. Namely, three of the included tracks will be used for simulation and testing. The track files contain

essentially the coordinates of the various cones that form the track. Recall that orange cones mark the

track’s starting line which is also used for timing and the right and left limits of the track are marked by

yellow and blue cones respectively. The tracks are mainly composed of sections designed to test the

vehicle for a given driving scenario, namely slaloms - sequence of consecutive short left and right turns,

hairpins - sharp curves, thin sections - where the track width is reduced, and straight lines. The layout

of these tracks can be consulted in figure 6.1.

Regarding the first track, which will be referred to as Track 1, is the track from the FSG 2018 Track-

drive event. This Track, which can be seen in figure 6.1a is mainly characterized by a slalom around

X = −4 m and Y = −34 m and a hairpin, around X = 28 m and Y = −70 m. Moreover, Track 2, from

a FS Italy Trackdrive event is mostly characterized by hairpins as can be seen in figure 6.1c. Finally,

Track 3, presented in figure 6.1b and nicknamed ”thin” is not from a FS competition but is still relevant

since this track, as its nickname suggests, contains track sections with reduced track width combined

with hairpins and slaloms.

6.3 Controller Implementation

As referred previously in chapter 1 - Introduction - the developed controller should be implemented in

the current FST Lisboa autonomous systems’ software pipeline. As such, this section aims at clarifying

the procedure involved in such implementation.

Overall, FST Lisboa autonomous systems’ software pipeline is written in Python, C and C++ while

resourcing to the Robot Operating System2 (ROS). ROS is an open source set of software libraries and

tools made for robotic applications. ROS mainly supports two programming languages: Python and C++.

Due to the real time requirements, C++ was chosen since it is a compiled language that is capable of

creating powerful and light weight software. For this implementation, three ROS nodes were created for:

model correction learning, controller parameter learning, and another for the model predictive controller

itself. A scheme of these nodes and their communications can be seen in figure 6.2.

Furthermore, note that the modularity offered by the control system in figure 6.2 allows for the acti-

vation or deactivation of the auxiliary MPC nodes if needed. For example, the control system can work
2https://www.ros.org/

66

https://www.ros.org/

(a) Track 1. (b) Track 3.

(c) Track 2.

Figure 6.1: Tracks to be used in simulation and testing.

Figure 6.2: ROS nodes for the developed control architecture.

67

with the MPC node alone, the model correction learning node with the MPC, the controller parameter

learning node with the MPC, or with all these nodes, as intended.

6.3.1 MPC Solver

For solving the MPC optimization problem a commercial solver was employed. FORCESPRO [69,

70], designed by Embotech AG, enables users to generate tailor-made solvers from a high-level mathe-

matical description of an optimization problem. This commercial solver generates an optimized C code

library which solves the MPC optimization problem formulated in equations (4.7) in chapter 4 - MPC For-

mulation. This C library, which is callable from C++, can then be embedded on many hardware platforms,

and, moreover, on FST’s autonomous systems’ pipeline. FORCESPRO achieves this by extracting the

MPC optimization problem’s structure and automatically applying a suitable optimization algorithm, out-

putting the optimized and compact solver. Due to its compact size and optimized code, the generated

solver is appropriate for solving the MPC optimization problem in real time.

The MPC’s structure and the track are defined using FORCESPRO’s MATLAB high-level interface3.

The previously mentioned MPC optimization problem is a Nonlinear Programming (NLP) optimization

problem, which can be solved using FORCESPRO NLP for non-convex finite-time non-linear optimal

control problems. Additionally, using MATLAB’s Symbolic Toolbox, the track spline function is generated,

containing the center line coordinates and the center line direction as a function of the track length, and

automatically embedded into the MPC problem. Furthermore, this interface also allows the algorithm to

use real time parameters, i.e. allowing for the update of the vehicle model correction parameters as well

as the MPC parameters themselves.

Additionally, these solvers can be generated with several user selected options. Namely, due to the

real time solving requirement, the solver’s timeout option can be exploited. The timeout option allows

the user to add a time limit for the solving process. In other words, since the vehicle is being controlled

at a fixed sampling time of Ts one can define the solver’s timeout option to be slightly less than the

sampling time (slightly less in order to allow other less time consuming operations to proceed). As such,

this option ensures that the solver does not take over Ts to find the next control actions and that a new

problem is ready to be solved at the next time instant. Furthermore, the solver also returns several flags

which, in turn, have three different meanings: flag 1 - the solver reached the optimal solution within the

timeout, flag 2 - the solver did not reach the optimal solution within the timeout and returned the best

feasible solution found within the timeout, and flag 3 - the solver was unable to find a feasible solution

within the timeout. In order to correct for the possibility of the solver returning an infeasible solution (flag

3), a previously computed feasible control action is applied, i.e., the corresponding time instant control

action solved at some previous time instant at which the solver returned flag 1 or flag 2.

Other options that were used relate to the code optimization, which were set to optimize the code

for the target platform as much as possible as well as enabling parallel computing, which allows for the

selection of the number of Processing Unit (PU) threads dedicated to the solver in order to split the

workload among the selected number of threads.
3https://forces.embotech.com/Documentation/high_level_interface/index.html

68

https://forces.embotech.com/Documentation/high_level_interface/index.html

Figure 6.3 contains an example of the solver’s computation time required obtained in the simulations.

These results were obtained with four CPU threads dedicated to solving the MPC problem in a machine

equipped with an Intel Core i7-3610QM, a quad core processor with eight threads that was released in

the second quarter of 2012. Recall that the selected sampling time is Ts = 50 ms. As such, a timeout

of 48 ms was selected, which explains the bump seen at the histogram’s rightest values. The timeout

value is slightly less than the sampling time in order to allow for other lightweight finishing operations to

take place. Furthermore, the FST10d vehicle is equipped with an Intel i7-8700T, a six core processor

with twelve threads that was released in the second quarter of 2018 which has much higher processing

capabilities than the processor used for performing the simulations. Thus, the vehicle’s PU should be

able to achieve better solve times than the ones presented in figure 6.3.

Figure 6.3: Example of the computation time histogram.

6.3.2 Model Correction

A neural network library for the application of the vehicle correction model, as in section 3.6, was

developed. This library creates a MATLAB function that takes the neural network features and param-

eters as input and outputs the model corrections. Due to being a MATLAB function, the neural network

model can be embedded directly onto the FORCESPRO solver using, once again, the high-level inter-

face, which in turn allows for taking advantage of the FORCESPRO code generation to generate the

optimized code for the full vehicle model, i.e., the blended model plus the correction model. Further-

more, as the training algorithm is made explicitly in C++, the developed MATLAB library also generates

C++ code for the computation of the neural network jacobian, by taking advantage of MATLAB’s Sym-

bolic Toolbox for automatic differentiation. This is accomplished by, once again, generating an optimized

MATLAB function and then automatically translating the MATLAB code into C++ code while resourcing

to the Eigen4 library.

Overall, to use this developed library, the user simply has to select the number of clusters, i.e., the

number of neurons in the hidden layer of the Elliptical Basis Function Network. Then, the necessary

code for implementation in FST Lisboa’s pipeline is generated.
4https://eigen.tuxfamily.org/index.php?title=Main_Page

69

https://eigen.tuxfamily.org/index.php?title=Main_Page

6.3.3 Controller Parameter Learning

Regarding learning the MPC parameters, the procedure described in chapter 5 - Controller Param-

eter Learning was directly implemented in the ROS node using C++. Moreover, this node is activated

when the vehicle crosses a check point. As explained previously, this results in a given segment time

and a number of cones that were hit. After this, it computes the individual’s reward value and returns the

next individual parameters to the MPC node, as per figure 6.2.

This module relies on the previously mention Eigen C++ library as well as the C++ standard library

for random number generation. Recall that the Genetic Algorithm heavily relies on random numbers due

to the stochastic genetic operations. Given this, various tests/simulations of this algorithm should be

performed in order to prove some statistical validity of the algorithm. Contrary to the model correction

learning node, this node does not require heavy algebraic operations. Nevertheless, the Eigen library

was used for variable organization, for example, for keeping the population organized in the population

matrix.

70

Chapter 7

Results

In this chapter, results obtained from simulations will be presented. Firstly results obtained with the

simulator containing the FST10d parameters will be shown and discussed. Then, results using AMZ’s

Gotthard parameters will be shown in order to test the algorithm’s robustness.

The results presented in this chapter are, in general, based on three different tests of the MPC: a

test using the model correction node, a test using the controller parameter node learning, and a test

using both the model correction and controller parameter learning nodes. Each test is composed of 100

laps performed in Track 1. Moreover, five simulations for each test were performed. As such, each line

corresponds to the average of all five simulations and the colored area surrounding the respective line

corresponds to the extreme values, minimums and maximums, obtained in each test.

Furthermore, the control algorithm is using the previous parameters presented in the previous tables

- table B.3 contains the parameters used in the MPC, table B.2 the parameters for learning the model

correction and tables B.5 and B.4 contain the initial parameter generation and the parameters used for

learning the control design, respectively. All tables can be found in appendix B.

7.1 FST10d Simulations

In this section, results obtained in simulation by using the FST10d vehicle parameters in the simulator

are shown and discussed. In other words, the simulator is using similar vehicle parameters to the ones

in table B.1.

Figure 7.1 shows the lap times obtained for each lap for three different tests of the MPC: a test using

the model correction node (in blue), a test using the controller parameter node learning (in green), and

a test using both the model correction and controller parameter learning nodes (in red).

One of the first noticeable facts in figure 7.1 is that the blue line, corresponding to the model correction

node plus the MPC, is basically constant throughout each lap. Moreover, this line shows negligible

variance with respect to the average line. This happens for two main reasons: the controller parameters

are kept constant throughout the test since there is no learning regarding the MPC parameters and that

the simulator model closely matches the controller’s predictive model. As such, the model correction

71

node is pretty much inactive as the blended bicycle model describes the vehicle dynamics with enough

accuracy. Recall that the tunable MPC parameters that are used in this test, expressed in table B.5, are

parameters that are considered to be safe, i.e. parameters that do not result in overall aggressive control

of the vehicle, like high lateral and longitudinal accelerations and decelerations.

The other two lines, regarding using the controller parameter node learning plus the MPC (in green)

and using both the model correction and controller parameter learning nodes plus the MPC (in red),

are observed to have similar behaviors. Approximately at lap 50, the results roughly achieve steady

lap times: the green test achieves a 15.52 s steady state lap time and the red test a 15.27 s lap time.

These steady lap times are rather close to each other, which is explained once again by the blended

bicycle model matching well the simulator’s model. Despite this, the steady lap time that uses both the

controller parameter learning and model correction is slightly smaller than the one that uses the controller

parameter learning alone. This happens for the following reason: as the controller parameters move to a

more aggressive state, the vehicle mismatch becomes clearer as higher accelerations and decelerations

start to take place. At this point, the model correction is able to learn this slight mismatch, resulting in

more precise control of the vehicle which in turn also achieves faster lap times. Furthermore, note that

these two lines are shown to have a higher variance when compared to the blue line. Recall that the

controller parameter’s learning algorithm, the Genetic Algorithm, heavily relies on randomly generated

numbers, whereas the model correction node alone does not employ any stochastic algorithm. Thus, it

is expected for these two lines to show higher variance than the blue line due to the stochastic nature of

the Genetic Algorithm.

Figure 7.1: Lap time simulation results for the FST10d vehicle in Track 1.

Focusing now on the full algorithm test, the test using the model correction and controller parameter

learning nodes plus the MPC, corresponding to the red curve in figure 7.1. By observing the vehicle’s

trajectory between lap 1 and lap 50, and between lap 51 and lap 100, as in figure 7.2, it can be observed

that during the learning period - laps 1 to 50, figure 7.2a - the trajectory varies (although slightly) as the

72

algorithm learns the controller design and the model correction, as the trajectory line on the left figure is

thicker than the one on the right. On the other hand, as the algorithm reaches a learning steady state

- laps 51 to 100, figure 7.2b - the trajectory line becomes fixed as can be observed by the thinner line

on the right figure. In other words, the trajectory presented in 7.2b can be thought out as the optimal

trajectory as found by the algorithm that, by being followed, achieves the fastest lap time possible for this

track. In figure 7.1c the average longitudinal velocity between laps 1 to 50 and 51 to 100 is displayed. As

expected from this figure, there is a significant increase in velocity throughout the track.

(a) laps 1 to 50. (b) laps 51 to 100.

(c) Longitudinal velocity evolution.

Figure 7.2: FST10d simulation trajectory for Track 1 using the full algorithm.

Still focusing on the full algorithm test, the controller parameter learning behavior can be analyzed in

figure 7.3. Once again, this figure shows a line corresponding to the average parameters across the five

simulations with the corresponding extreme values area, denoting the minimums and maximums across

the five simulations. Furthermore, the parameter evolution is shown as a function of each generation

of the Genetic Algorithm. Recalling the parameter description in section 4.2 - MPC Based On Track

Progress - this figure shows, as expected, an overall increase in the aggressiveness of the parameters

as new generations are created. It can be further noted that the track was segmented into five segments

73

and the that the population is also composed of five individuals. Therefore, a new generation is created

at each new lap, hence, for this particular figure 7.3, the generations can be seen as laps as well.

Figure 7.3: Controller parameter for the FST10d vehicle in Track 1.

Regarding the model correction learning, figure 7.4 contains the values for the mean squared error

(MSE) and for the smoothed mean squared error (SMSE) for each sampling instant k. Moreover, figure

7.4a contains data related to one of the simulations of the full algorithm test, corresponding to the red line

of figure 7.1 whereas figure 7.4b contains data related to one of the simulations of the model correction

node plus the MPC test, corresponding to the blue line of figure 7.1. Recall the values for the model

correction learning algorithm in table B.2, namely, for SMSElow and SMSEhigh. Recall also that if the

SMSE is smaller than SMSElow the model learning algorithm is inactive. As shown in 7.4b, the value of

SMSE remained below this threshold throughout this simulation, therefore, no model correction learning

occurred, which explains why the blue line of figure 7.1 remains constant. On the other hand, in figure

7.4a it can be seen that this threshold was crossed at some instants, as controller design learning starts

to explore MPC parameters that are more aggressive than the starting ones.

Finally, more tests regarding the two other tracks, Track 2 and Track 3 were performed for FST10d.

Figures C.1 and C.2 from appendix C contain the equivalent results for the full algorithm for Track 2 and

Track 3, respectively.

7.2 AMZ’s Gotthard Simulations

In this section, results obtained in simulation by using AMZ’s Gotthard vehicle parameters in the

simulator are shown and discussed. In other words, the simulator is using vehicle parameters that differ

from the FST10d’s model that is used in the MPC. AMZ’s Gotthard parameters are shown in table B.6.

Similarly to the last section, figure 7.5 contains the lap times obtained for, in this case, two different

74

(a) Model correction data for the full algorithm.

(b) Model correction data for the model correction algorithm alone.

Figure 7.4: MSE and SMSE for each sampling instant for FST10d.

tests for the MPC: a test using the model correction node (in blue) and a test using both the model

correction and controller parameter learning nodes (in red).

The tests involving using the controller parameter learning node with the MPC alone were not per-

formed since due to the high model mismatch the vehicle crashes somewhere along the 100 laps, being

unable to finish the test. In fact, the learning correction node becomes much more relevant when the

controller uses a different model from the simulator, as this node directly reduces model mismatch. In

figure 7.5, this becomes clear as by using the model correction node alone the lap time is reduced from

17.89 s to 16.56 s. A rather noticeable difference when compared to the same test with the FST10d

vehicle, as shown in figure 7.1, where using the model correction node alone did not result in a lap time

improvement. Further using the controller parameter learning node, the lap times can be further reduced

from 16.56 s to 14.93 s.

Focusing now on the full algorithm test, the test using the model correction and controller parameter

learning nodes plus the MPC, corresponding to the red curve in figure 7.5. Once again, by observing

the vehicle’s trajectory between lap 1 and lap 50, and between lap 51 and lap 100, as in figure 7.6, the

same conclusions from the last section can be withdrawn: during the learning period - laps 1 to 50 -

75

Figure 7.5: Lap time simulation results for AMZ’s Gotthard in Track 1.

slightly different trajectories are explored, and the longitudinal velocities are in general lower, whereas

during the steady period - laps 51 to 100 - the trajectories become more consistent and the longitudinal

velocities higher.

For the MPC’s parameter evolution, figure 7.7 shows similar parameter evolution results to the ones

for FST10d, as in figure 7.3.

Regarding model correction learning, figure 7.8 contains the values for the mean squared error (MSE)

and for the smoothed mean squared error (SMSE) for each sampling instant k. Moreover, figure 7.8a

contains data related to one of the simulations of the full algorithm test, corresponding to the red line of

figure 7.5 whereas figure 7.8b contains data related to one of the simulations of the model correction

node plus the MPC test, corresponding to the blue line of figure 7.5. For the case of AMZ’s Gotthard,

figure 7.8b expectedly reflects the perceived model mismatch from the learning period of the blue curve

from figure 7.5, as in the first sampling instants, the SMSE is above the learning threshold, SMSElow,

and is then reduced by the model correction algorithm. After the SMSE crosses the learning threshold,

on average, it remains constant. On the other hand, in figure 7.4a it can be seen that this threshold was

crossed more than one instant. This happens because, as controller design learning starts to explore

MPC parameters that are more aggressive than the starting ones, i.e., as new driving scenarios are

explored. As prior to exploring these learning scenarios no learning occurred in that feature space, the

SMSE rises and is then attenuated by the model correction node.

For reference, in AMZ’s most recent research paper by Srinivasan et al. [43], it is claimed that the

optimal lap time in Track 1 while subjected to the vehicle constraints mentioned in that paper is 18.0

s. Nevertheless, the tests presented in that paper were performed using AMZ’s full pipeline. At the

moment of writing this dissertation, FST Lisboa’s autonomous systems’ pipeline was not fully developed

yet. However, depending on the rest of the pipeline, the path planning and control algorithm developed

in this dissertation may potentially reach faster lap times than the ones presented in AMZ’s paper.

76

(a) laps 1 to 50. (b) laps 51 to 100.

(c) Longitudinal velocity evolution

Figure 7.6: AMZ’s Gotthard simulation trajectory for Track 1 using the full algorithm.

Finally, the results obtained for Track 2 and 3 for AMZ’s Gotthard can be seen in figures C.3 and C.4

in appendix C.

77

Figure 7.7: Controller parameter for AMZ’s Gotthard vehicle in Track 1.

(a) Model correction data for the full algorithm.

(b) Model correction data for the model correction algorithm alone.

Figure 7.8: MSE and SMSE for each sampling instant for AMZ’s Gotthard.

78

Chapter 8

Conclusions

8.1 Main Conclusions

A Learning Model Predictive Controller was designed with two learning principles in play: learning

the dynamic model mismatch such that it is iteratively corrected as the vehicle drives itself and learning

the controller design by developing an algorithm that automatically tunes the MPC parameters in a

Reinforcement Learning background.

The results obtained in simulation have proven that, indeed, the developed methods effectively tend

to maximize the vehicle’s performance as the vehicle drives itself through the track. Namely, these

methods have allowed, for Track 1, lap time reductions up to 16.5% when compared to the initial lap,

achieving a lap time of 14.93 s for AMZ’s Gotthard. As such, the objectives previously mentioned in

section 1.3 - Objectives and Deliverables - were achieved. Moreover, these results were shown to be

competitive towards other approaches developed by other FS teams, such as the team from ETH Zürich

- AMZ Driverless.

The methods developed in this dissertation have some advantages and disadvantages. Namely,

the developed MPC formulation, as mentioned before, requires previously collected data of the track

itself. This might be a disadvantage if previously collected track data is not allowed. Nevertheless, FS

competitions often allow teams to collect track data prior to the race. Track data offers the developed

controller the advantage of being able to predict far ahead into the track for possible future obstacles

and act accordingly. If, however, track data is not previously available, to overcome this issue, the race’s

first lap could be used to collect the required track data while the vehicle is controlled by a simpler

controller. After this first lap, the developed LMPC could be activated since the required track data has

been gathered. Another drawback of the developed approach is that it requires for the vehicle to drive

roughly 40 laps until a minimum lap time is achieved. As such, to mitigate this issue, the parameters

can be tuned in simulation, as the employed simulator was proven to obtain similar results to the real

vehicle. Then, one could retrieve the final parameters from the simulations and then implement these

parameters in the real vehicle as its initial parameters. The real vehicle should then drive some more

laps in order to fine tune these parameters.

79

8.2 Future Work

Unfortunately, due to the work in progress in the vehicle’s earlier pipeline stages, such as the SLAM

algorithm for pose estimation, it was not possible to validate the developed control system in the real

FST10d vehicle. For this reason, the obtained results should be replicated on the real vehicle to validate

the results withdrawn from the simulations.

As expressed in [22], the research on model based controllers has been towards reducing model

mismatch. However, instead of using the concept of adding a correction learning model to the nominal

model, one could experiment with an online parameter estimation of the nominal model. Often, the

vehicle parameters are estimated with some uncertainty, given this, by employing an online parameter

estimation technique, the vehicle parameters could be adapted as the vehicle drives itself such that

model mismatch is reduced. Moreover, more complex models than the blended bicycle models can be

used for this purpose. This online system identification concept has been explored in research papers

like [71, 72].

Contrary to the previous idea, one could employ a full machine learning model for learning the sys-

tem’s dynamics. For example, in [73], deep auto encoder networks have been used for learning the

system’s dynamics. Moreover, deep auto encoders aim at finding some coordinate transformation that

transforms nonlinear system dynamics into linear dynamics. With such transformation, one could then

apply classic well known linear control theory methods with the objective of controlling the nonlinear

system through the coordinate transformation.

Furthermore, one could experiment ideas such as the ones in [74, 75]. In these research papers,

evolutionary algorithms, such as Genetic Algorithms, are used to learn the vehicle’s controller. Recall

that FS vehicles drive in a track delimited by cones. If, for instance, the distance of these cones to

the vehicles is measured one could estimate the position of the vehicle relative to the track’s left and

right limits. Then, using these measurements as an input to a learner function, such as an Artificial

Neural Network, one could apply Reinforcement Learning techniques to estimate the learner function

parameters that are able to drive the car. Nevertheless, this may be rather challenging to implement,

as, in general, a lot of training is required to obtain a good controller. However, if succeeded, this would

result in a fast computing nonlinear controller for the vehicle.

Finally, a mentioned downside to the implementation of the control algorithm in this dissertation is

that it requires previously collected track data, such as the locations of the cones. To overcome this, one

could modify this controller, or use similar techniques, to control the vehicle by using what the car ”sees”.

In other words, as the car detects new cones ahead, the track path is estimated until the last detectable

cone, then, a MPC could be designed to control the vehicle using this track path estimation.

80

Bibliography

[1] M. Hirz and B. Walzel. Sensor and object recognition technologies for self-driving cars. Computer-

Aided Design and Applications, 15:1–8, 01 2018. doi: 10.1080/16864360.2017.1419638.

[2] M. Schwall, T. Daniel, T. Victor, F. Favaro, and H. Hohnhold. Waymo public road safety performance

data. arXiv preprint arXiv:2011.00038, 2020.

[3] Tesla Vehicle Safety Report, Jan. 2019. URL https://www.tesla.com/VehicleSafetyReport.

[4] M. Dikmen and C. M. Burns. Autonomous driving in the real world: Experiences with tesla autopilot

and summon. In Proceedings of the 8th international conference on automotive user interfaces and

interactive vehicular applications, pages 225–228, 2016.

[5] T. B. Lee. Tesla has a self-driving strategy other companies aban-

doned years ago, Mar. 2019. URL https://arstechnica.com/cars/2019/03/

teslas-self-driving-strategy-is-outdated-and-possibly-dangerous/.

[6] C. Amsel and D. Stapel. Compact radar sensors enabling autonomous driving, pages 843–849. 04

2017. ISBN 978-3-658-16987-9. doi: 10.1007/978-3-658-16988-6 67.

[7] A. Uçar, Y. Demir, and C. Güzeliş. Object recognition and detection with deep learning for au-

tonomous driving applications. Simulation, 93(9):759–769, 2017.

[8] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda. A survey of autonomous driving: Common

practices and emerging technologies. IEEE access, 8:58443–58469, 2020.

[9] G. Ros, S. Ramos, M. Granados, A. Bakhtiary, D. Vazquez, and A. M. Lopez. Vision-based offline-

online perception paradigm for autonomous driving. In 2015 IEEE Winter Conference on Applica-

tions of Computer Vision, pages 231–238, 2015. doi: 10.1109/WACV.2015.38.

[10] M. Al-Qizwini, I. Barjasteh, H. Al-Qassab, and H. Radha. Deep learning algorithm for autonomous

driving using googlenet. In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 89–96, 2017.

doi: 10.1109/IVS.2017.7995703.

[11] S. Thrun. Probabilistic robotics. Communications of the ACM, 45(3):52–57, 2002.

[12] M. Montemerlo and S. Thrun. FastSLAM: A scalable method for the simultaneous localization and

mapping problem in robotics, volume 27. Springer, 2007.

81

https://www.tesla.com/VehicleSafetyReport
https://arstechnica.com/cars/2019/03/teslas-self-driving-strategy-is-outdated-and-possibly-dangerous/
https://arstechnica.com/cars/2019/03/teslas-self-driving-strategy-is-outdated-and-possibly-dangerous/

[13] T. Suzuki, Y. Amano, and T. Hashizume. Development of a sift based monocular ekf-slam algorithm

for a small unmanned aerial vehicle. In SICE Annual Conference 2011, pages 1656–1659. IEEE,

2011.

[14] H.-j. Wang, J. Wang, L. Yu, and Z.-y. Liu. A new slam method based on svm-aekf for auv. In

OCEANS’11 MTS/IEEE KONA, pages 1–6. IEEE, 2011.

[15] T. Chong, X. Tang, C. Leng, M. Yogeswaran, O. Ng, and Y. Chong. Sensor technologies and

simultaneous localization and mapping (slam). Procedia Computer Science, 76:174–179, 2015.

[16] S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, P. Jennings, and A. Mouzakitis. Deep learning-based

vehicle behavior prediction for autonomous driving applications: A review. IEEE Transactions on

Intelligent Transportation Systems, pages 1–15, 2020. doi: 10.1109/TITS.2020.3012034.

[17] J. Li, W. Zhan, Y. Hu, and M. Tomizuka. Generic tracking and probabilistic prediction framework and

its application in autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 21

(9):3634–3649, 2020. doi: 10.1109/TITS.2019.2930310.

[18] N. Muhammad and B. Åstrand. Predicting agent behaviour and state for applications in a

roundabout-scenario autonomous driving. Sensors, 19(19), 2019. ISSN 1424-8220. doi:

10.3390/s19194279. URL https://www.mdpi.com/1424-8220/19/19/4279.

[19] K. Chu, M. Lee, and M. Sunwoo. Local path planning for off-road autonomous driving with avoid-

ance of static obstacles. IEEE Transactions on Intelligent Transportation Systems, 13(4):1599–

1616, 2012. doi: 10.1109/TITS.2012.2198214.

[20] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel. Practical search techniques in path planning

for autonomous driving. Ann Arbor, 1001(48105):18–80, 2008.

[21] W. Farag. Complex trajectory tracking using pid control for autonomous driving. International

Journal of Intelligent Transportation Systems Research, 18(2):356–366, 2020.

[22] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink,

V. Pratt, et al. Towards fully autonomous driving: Systems and algorithms. In 2011 IEEE intelligent

vehicles symposium (IV), pages 163–168. IEEE, 2011.

[23] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli. Kinematic and dynamic vehicle models for

autonomous driving control design. In 2015 IEEE Intelligent Vehicles Symposium (IV), pages 1094–

1099, 2015. doi: 10.1109/IVS.2015.7225830.

[24] S. Lefèvre, A. Carvalho, and F. Borrelli. A learning-based framework for velocity control in au-

tonomous driving. IEEE Transactions on Automation Science and Engineering, 13(1):32–42, 2016.

doi: 10.1109/TASE.2015.2498192.

[25] H. Furtado. Model predictive control with a neural network model of a formula student prototype.

Master’s thesis, Instituto Superior Técnico, 2020.

82

https://www.mdpi.com/1424-8220/19/19/4279

[26] J. Antunes. Torque vectoring for a formula student prototype. Master’s thesis, Instituto Superior

Técnico, 2017.

[27] A. Antunes. Sideslip estimation of formula student prototype. Master’s thesis, Instituto Superior

Técnico, 2017.

[28] J. Pinho. Learning to drive autonomously a race car. Master’s thesis, Instituto Superior Técnico,

2021.

[29] A. Passo. Path following and control for autonomous driving of a formula student car. Master’s

thesis, Instituto Superior Técnico, 2021.

[30] R. C. Coulter. Implementation of the pure pursuit path tracking algorithm. Technical report,

Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, 1992.

[31] A. Liniger, A. Domahidi, and M. Morari. Optimization-based autonomous racing of 1: 43 scale rc

cars. Optimal Control Applications and Methods, 36(5):628–647, 2015.

[32] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger. Learning-based model predictive

control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous

Systems, 3(1):269–296, 2020. doi: 10.1146/annurev-control-090419-075625.

[33] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine, and C. Finn. Learning to

adapt in dynamic, real-world environments through meta-reinforcement learning. arXiv preprint

arXiv:1803.11347, 2018.

[34] S. Piche, B. Sayyar-Rodsari, D. Johnson, and M. Gerules. Nonlinear model predictive control using

neural networks. IEEE Control Systems Magazine, 20(3):53–62, 2000.

[35] J. Kabzan, L. Hewing, A. Liniger, and M. N. Zeilinger. Learning-based model predictive control for

autonomous racing. IEEE Robotics and Automation Letters, 4(4):3363–3370, 2019. doi: 10.1109/

LRA.2019.2926677.

[36] L. Hewing, J. Kabzan, and M. N. Zeilinger. Cautious model predictive control using gaussian pro-

cess regression. IEEE Transactions on Control Systems Technology, 28(6):2736–2743, 2020. doi:

10.1109/TCST.2019.2949757.

[37] H. Boubertakh, M. Tadjine, P.-Y. Glorennec, and S. Labiod. Tuning fuzzy pd and pi controllers using

reinforcement learning. ISA Transactions, 49(4):543–551, 2010. ISSN 0019-0578. doi: https://

doi.org/10.1016/j.isatra.2010.05.005. URL https://www.sciencedirect.com/science/article/

pii/S0019057810000601.

[38] S. Gros and M. Zanon. Data-driven economic nmpc using reinforcement learning. IEEE Transac-

tions on Automatic Control, 65(2):636–648, 2019.

83

https://www.sciencedirect.com/science/article/pii/S0019057810000601
https://www.sciencedirect.com/science/article/pii/S0019057810000601

[39] F. Leung, H. Lam, S. Ling, and P. Tam. Tuning of the structure and parameters of a neural network

using an improved genetic algorithm. IEEE Transactions on Neural Networks, 14(1):79–88, 2003.

doi: 10.1109/TNN.2002.804317.

[40] J. Zhang, J. Zhuang, H. Du, and S. Wang. Self-organizing genetic algorithm based tuning of

pid controllers. Information Sciences, 179(7):1007–1018, 2009. ISSN 0020-0255. doi: https:

//doi.org/10.1016/j.ins.2008.11.038. URL https://www.sciencedirect.com/science/article/

pii/S0020025508004970.

[41] A. H. Wright. Genetic algorithms for real parameter optimization. volume 1 of Founda-

tions of Genetic Algorithms, pages 205–218. Elsevier, 1991. doi: https://doi.org/10.1016/

B978-0-08-050684-5.50016-1. URL https://www.sciencedirect.com/science/article/pii/

B9780080506845500161.

[42] J. Kabzan, M. I. Valls, V. J. Reijgwart, H. F. Hendrikx, C. Ehmke, M. Prajapat, A. Bühler, N. Gosala,

M. Gupta, R. Sivanesan, and et al. Amz driverless: The full autonomous racing system. Journal of

Field Robotics, 2020. doi: 10.1002/rob.21977.

[43] S. Srinivasan, S. N. Giles, and A. Liniger. A holistic motion planning and control solution to chal-

lenge a professional racecar driver. IEEE Robotics and Automation Letters, 6(4):7854–7860, 2021.

[44] O. Dünkel, L. Ohnemus, and J. Kaths. Virtual test drives for the development of the kit driverless

18d. ATZextra worldwide, 23(1):62–65, 2018.

[45] S. Nekkah, J. Janus, M. Boxheimer, L. Ohnemus, S. Hirsch, B. Schmidt, Y. Liu, D. Borbély,

F. Keck, K. Bachmann, et al. The autonomous racing software stack of the kit19d. arXiv preprint

arXiv:2010.02828, 2020.

[46] U. Rosolia and F. Borrelli. Learning model predictive control for iterative tasks. a data-driven control

framework. IEEE Transactions on Automatic Control, 63(7):1883–1896, 2017.

[47] F. Borrelli, A. Bemporad, and M. Morari. Predictive control for linear and hybrid systems. Cambridge

University Press, 2017.

[48] L. Ljung. Control theory: multivariable and nonlinear methods. Taylor & Francis, 2000.

[49] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT press, 2018.

[50] L. Hana. Parametric and nonparametric machine learning al-

gorithms, Aug 2020. URL https://lamiae-hana.medium.com/

parametric-and-nonparametric-machine-learning-algorithms-ec9a21f25705.

[51] J. M. Keller, D. Liu, and D. B. Fogel. Fundamentals of computational intelligence: neural networks,

fuzzy systems, and evolutionary computation. John Wiley & Sons, 2016.

[52] RBF and EBF Models. URL https://abaqus-docs.mit.edu/2017/English/IhrUserMap/

ihr-c-Reference-RBFandEBF.htm#GeneralizingRBFtoEBF.

84

https://www.sciencedirect.com/science/article/pii/S0020025508004970
https://www.sciencedirect.com/science/article/pii/S0020025508004970
https://www.sciencedirect.com/science/article/pii/B9780080506845500161
https://www.sciencedirect.com/science/article/pii/B9780080506845500161
https://lamiae-hana.medium.com/parametric-and-nonparametric-machine-learning-algorithms-ec9a21f25705
https://lamiae-hana.medium.com/parametric-and-nonparametric-machine-learning-algorithms-ec9a21f25705
https://abaqus-docs.mit.edu/2017/English/IhrUserMap/ihr-c-Reference-RBFandEBF.htm#GeneralizingRBFtoEBF
https://abaqus-docs.mit.edu/2017/English/IhrUserMap/ihr-c-Reference-RBFandEBF.htm#GeneralizingRBFtoEBF

[53] Man-Wai Mak and Sun-Yuan Kung. Estimation of elliptical basis function parameters by the EM

algorithm with application to speaker verification. IEEE Transactions on Neural Networks, 11(4):

961–969, July 2000. ISSN 10459227. doi: 10.1109/72.857775. URL http://ieeexplore.ieee.

org/document/857775/.

[54] R. Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[55] R. A. van de Geijn. Notes on cholesky factorization. The University of Texas at Austin Austin, 2011.

[56] C. Szepesvári. Algorithms for reinforcement learning. Synthesis lectures on artificial intelligence

and machine learning, 4(1):1–103, 2010.

[57] J. Baxter and P. L. Bartlett. Direct gradient-based reinforcement learning. In 2000 IEEE International

Symposium on Circuits and Systems (ISCAS), volume 3, pages 271–274. IEEE, 2000.

[58] S. Khadka and K. Tumer. Evolutionary reinforcement learning. arXiv preprint arXiv:1805.07917,

2018.

[59] D. E. Goldberg. Genetic algorithms in search, optimization, and machine learning. addison. Read-

ing, 1989.

[60] S. R, R. Sundaresan, N. ebénézer, and R. Natarajan. Evolutionary bi-criteria optimum design of

robots based on task specifications. International Journal of Advanced Manufacturing Technology,

41:386–406, 03 2009. doi: 10.1007/s00170-008-1483-8.

[61] R. Rajamani. Vehicle dynamics and control. Springer, 2012.

[62] L. Grüne and J. Pannek. Discrete Time and Sampled Data Systems, pages 13–42. 04 2011. ISBN

978-0-85729-500-2. doi: 10.1007/978-0-85729-501-9 2.

[63] G. Sánchez, M. Murillo, L. Genzelis, N. Deniz, and L. Giovanini. Mpc for nonlinear systems: A

comparative review of discretization methods. In 2017 XVII Workshop on Information Processing

and Control (RPIC), pages 1–6, 2017. doi: 10.23919/RPIC.2017.8214333.

[64] R. Shaikh. Feature Selection Techniques in Machine Learn-

ing with Python, Oct. 2018. URL https://towardsdatascience.com/

feature-selection-techniques-in-machine-learning-with-python-f24e7da3f36e.

[65] T. H. Park and P. Cook. Radial/elliptical basis function neural networks for timbre classification.

Proceedings of the Journées d’Informatique Musicale, Paris, 2005.

[66] F. Fuchs, Y. Song, E. Kaufmann, D. Scaramuzza, and P. Duerr. Super-human performance in gran

turismo sport using deep reinforcement learning. arXiv preprint arXiv:2008.07971, 2020.

[67] J. H. (https://math.stackexchange.com/users/114036/john hughes). Why arc-length parametrized

curves has unit tangent vector? Mathematics Stack Exchange. URL https://math.

stackexchange.com/q/2122376. URL:https://math.stackexchange.com/q/2122376 (version: 2017-

01-31).

85

http://ieeexplore.ieee.org/document/857775/
http://ieeexplore.ieee.org/document/857775/
https://towardsdatascience.com/feature-selection-techniques-in-machine-learning-with-python-f24e7da3f36e
https://towardsdatascience.com/feature-selection-techniques-in-machine-learning-with-python-f24e7da3f36e
https://math.stackexchange.com/q/2122376
https://math.stackexchange.com/q/2122376

[68] Curvature and Radius of Curvature. URL https://math24.net/curvature-radius.html.

[69] A. Domahidi and J. Jerez. Forces professional. Embotech AG, 2014–2019. URL https:

//embotech.com/FORCES-Pro.

[70] A. Zanelli, A. Domahidi, J. Jerez, and M. Morari. Forces nlp: an efficient implementation of interior-

point... methods for multistage nonlinear nonconvex programs. International Journal of Control,

pages 1–17, 2017.

[71] M. Boufadene, A. Rabhi, M. Belkheiri, and A. Elhajjaji. Vehicle online parameter estimation using

a nonlinear adaptive observer. In 2016 American Control Conference (ACC), pages 1006–1010,

2016. doi: 10.1109/ACC.2016.7525046.

[72] G. Reina, M. Paiano, and J. L. Blanco. Vehicle parameter estimation using a model-based estimator.

Mechanical Systems and Signal Processing, 87, 07 2016. doi: 10.1016/j.ymssp.2016.06.038.

[73] G. Beintema, R. Toth, and M. Schoukens. Nonlinear state-space identification using deep encoder

networks. In Learning for Dynamics and Control, pages 241–250. PMLR, 2021.

[74] H. Marques, J. Togelius, M. Kogutowska, O. Holland, and S. Lucas. Sensorless but not senseless:

Prediction in evolutionary car racing. pages 370 – 377, 05 2007. ISBN 1-4244-0701-X. doi:

10.1109/ALIFE.2007.367819.

[75] Y. Sáez, D. Perez Liebana, O. Sanjuán, and P. Isasi. Driving cars by means of genetic algorithms.

pages 1101–1110, 09 2008. doi: 10.1007/978-3-540-87700-4 109.

86

https://math24.net/curvature-radius.html
https://embotech.com/FORCES-Pro
https://embotech.com/FORCES-Pro

Appendix A

Algorithms

In this appendix, various algorithms for further understanding of the methods developed in this dis-

sertation are presented.

87

Algorithm 4 Genetic Algorithm new generation step
1: procedure GA(Dk, N , nd, P (R), P (C), P (M), r (·)) . Input data for the method
2: r, f ∈ RN . Allocate memory space for the reward and relative fitness vector
3: for integer j = 1 to j = N do . Compute the reward for each individual
4: rj ← r (dj) . Recall that individuals genetic code can be retrieved from the columns of Dk

5: end for
6: for integer j = 1 to j = N do . Compute the fitness for each individual
7: fj ← rj∑N

n=1 rn
. Fitness is mapped according to equation (2.26)

8: end for
9: nR, nC, nM ← distribution (P (R) ,P (C) ,P (M) , N) . Select the N operations to the probabilities

of each operation
10: if nC is odd then . Check if the number of crossovers is odd
11: nC ← nC − 1 . Subtracts one from nC so that nC is even
12: chose one: nR ← nR + 1 or nM ← nM + 1 . Add one to nR or nM such that

nR + nC + nM = N
13: end if
14: Dk+1 ∈ Rnd×N . Allocate memory space for the new generation
15: t← 0 . Initialize a counter variable
16: for integer n = 1 to n = nR do . Perform reproductions
17: t← t+ 1
18: column t of Dk+1 ← select one (Dk, f)
19: end for
20: for integer n = 1 to n = nC

2 do . Perform crossovers
21: p1,p2 ← select two (Dk, f) . Select two different parents
22: c1, c2 ← crossover (p1,p2) . Get two children from a crossover of the parents
23: t← t+ 1
24: column t of Dk+1 ← c1

25: t← t+ 1
26: column t of Dk+1 ← c2

27: end for
28: for integer n = 1 to n = nM do . Perform mutations
29: d← select one (Dk, f)
30: d← mutation (d) . perform mutation on selected individual
31: t← t+ 1
32: column t of Dk+1 ← d
33: end for
34: return Dk+1 . Return the next generation
35: end procedure

88

Algorithm 5 Online Levenberg-Marquardt parameter update algorithm for the vehicle model

1: procedure OLM(ε(x,y)
t=k−nbatch+1,...,k−1, vt=k−nbatch+1,...,k, pk,Ψk−1, xreal

k , xpred
k , γ, λMSE,

nbatch, SMSEk−1, ns, np, SMSElow, Γ) . Input data for the method
2: A← A (Ψk−1) . Compute the transformation matrix as per equation (3.35)
3: ε

(x,y)
k ← AT

(
xreal
k − xpred

k

)
. Compute the current discrepancy as per equation (3.36b)

4: MSEk ← 0 . Initialize current mean squared error as zero
5: for integer j = 1 to j = ns do . Compute mean squared error as per equation (3.37)
6: MSEk ← MSEk +

(εk,j)
2

ns
7: end for
8: SMSEk = λMSE ·MSEk + (1− λMSE) · SMSEk−1 . Compute smoothed mean squared error as

per equation (3.47)
9: if SMSEk ≥ SMSElow then . Update is only required if above a threshold, recall figure 3.7

10: λ← λ (SMSEk) . Compute lambda according to the schedule defined by equation (3.48)
11: for integer t = k − nbatch + 1 to t = k do . Iterate over the learning batch
12: initialize Jεt

p ∈ Rnp×ns . Allocate memory space for the discrepancy jacobian matrix
13: for integer i = 1 to i = np do . Iterate over the number of network parameters
14: for integer j = 1 to i = ns do . Iterate over the number of network outputs
15:

[
Jεt
p

]
i,j
← −∂ej(pk,vt)∂pi

. Assign element i,j to the discrepancy jacobian
16: end for
17: end for
18: end for
19: Jp ←

[
Jεk
p J

εk−1
p · · · J

εk−nbatch+1

p

]
. Obtain cost function jacobian as per equation (3.45a)

20: εbatch = 2
ns·Γ

εk

γ · εk−1

...
γnbatch−1 · εk−nbatch+1

 . Obtain batch discrepancy as per equation (3.45b)

21: ∆p← Cholesky solve ∆p :
(
λI + JpJ

T
p

)
∆p = −Jpεbatch . Obtain ∆p as per equation

(3.46)
22: pk+1 ← pk + ∆p
23: if The selected neural network is EBFN then
24: for parameter pk+1 in ω ⊂ pk+1 do . Iterate over each parameter regarding each

cluster’s precision matrix, recall section 2.2.2
25: if pk+1 ≤ 0 then
26: pk+1 ← δ . Ensure that each eigen value remains positive being δ a small positive

value
27: end if
28: end for
29: end if
30: else
31: pk+1 ← pk . Parameter vector remains the same
32: end if
33: return pk+1, ε(x,y)

k , SMSEk . Output new parameters, current discrepancy vector and current
smoothed mean squared error

34: end procedure

89

Algorithm 6 Controller loop scheme
1: u∗ ← 0 . Apply null throttle and steering at the beginning
2: integer fail counter← 0
3: while Event not finished do
4: tinitial ← current time . Get loop starting time
5: apply u∗ . Apply control actions computed at the previous time instant
6: x← xt . Update vehicle states
7: pmodel ← pmodel

t . Update vehicle model correction parameters (if needed)
8: pMPC ← pMPC

t . Update MPC parameters (if needed)
9: flag,uk, sk,∀k ∈ [t, ..., t+N − 1]← FORCESPRO Solve

(
st−1,x,u

∗,pmodel,pMPC, timeout
)

.
Solve the MPC optimization problem with FORCESPRO’s solver

10: if flag = 3 then . Check if the obtained solution is unfeasible
11: fail counter← fail counter +1
12: u∗ ← usafe

fail counter +1

13: else . Else, if solution is feasible
14: fail counter← 0
15: u∗ ← ut+1

16: usafe ← uk, ∀k ∈ [t, ..., t+N] . Store the control action sequence
17: end if
18: tfinal ← current time . Get loop finishing time
19: wait Ts − (tfinal − tinitial) . Wait for the next sampling instant
20: end while

Algorithm 7 Reward and average segment time computation
1: procedure GA(Ti,k, ncones

i , T avg
i,k , T avg

i,k−1, i, j, r, NCP, Npop) . Input data for the method
2: rj ← r (Ti,k, n

cones
i) . compute reward for individual j as per equation (5.5)

3: T avg
i,k+1 ← λTTi,k + (1− λT)T avg

i,k−1 . update average segment time, as per equation (5.6)
4: j ← j + 1 . Select next individual of the population
5: if j > Npop then
6: Dk+1 ← new generation (Dk, r) . If the previous individual was the last individual on the

population, create new generation
7: j ← 1 . Reset population counter
8: else
9: Dk+1 ← Dk . Else, move on to the next individual in the current generation

10: end if
11: dk+1 ← column j of Dk+1 . Select next parameters to apply on the next segment
12: i← i+ 1 . Increment segment counter
13: if i > NCP − 1 then
14: i← 1 . If the previous segment was the last segment, restart the segment counter
15: end if
16: return dk+1, Dk+1, T avg

i,k+1, i, j, r . Return parameters to be applied in the next segment and
other variables

17: end procedure

90

Appendix B

Tables of parameters

In this appendix, various tables containing various parameters used for the development and imple-

mentation of the methods in this dissertation are presented.

Table B.1: FST10d’s model parameters for the kinematic, dynamic, and blended models.
Parameter Value Unit

m 250 kg
Iz 80 kg m2

lf 0.832 m
lr 0.708 m
Cd 1.2 -
AF 1.18 m2

GR 15.74 -
rwheel 0.23 m
Tmax 21 Nm
ηmotor 0.9 -
Cr 0.092 -
Bf/r 10 -
Cf/r 138 -
Df/r 1500 N
ρ 1.18 kg m-3

g 9.81 m/s2

Vblendmin
2 m/s

Vblendmax
5 m/s

Ts 50 ms
h 10 ms

91

Table B.2: Correction model parameters.
Parameter Value
nbatch 300
γ 0.98

SMSEhigh 0.025
SMSElow 0.008
λhigh 5
λlow 50
λMSE 0.005
nv 4
nh 12
ne 6

Table B.3: Fixed MPC parameters.
Parameter Value Unit

λ 200 m-1

αL 1000 m-2

qvmax
5 s/m

vmax 30 m/s
∆dmax 0.2 -
∆δmax 0.075 rad
δmax 0.47 rad

∆smin 0.1 m
∆smax 1.5 m
êCLmax

1 m
Ts 50 ms
N 40 -

92

Table B.4: Genetic algorithm parameters.
Parameter Value Unit

P (R) 0.1 -
P (C) 0.5 -
P (M) 0.4 -
λT 0.3 -
Npop 5 -
NCP 5 -
m

high
αCL 20 m-n

mlow
αCL -40 m-n

m
high
dmax

0.2 -
mlow
dmax

-0.1 -
m

high
qvy 5 s2/m2

mlow
qvy

-10 s2/m2

m
high
βδ

-80 rad-2

mlow
βδ

40 rad-2

kT 4 s-1

kc 0.5 s/cone
dmax
αCL 500 m-n

dmin
αCL 100 m-n

dmax
dmax

1 -
dmin
dmax

0.1 -
dmax
qvy

40 s2/m2

dmin
qvy

2 s2/m2

dmax
n 10 -
dmin
n 2 -
dmax
βδ

800 rad-2

dmin
βδ

100 rad-2

Table B.5: Initial generation parameters.
Parameter Value Unit

αCL 200 m-n

dmax 0.5 -
qvy 20 s2/m2

n 4 -
βδ 400 rad-2

Table B.6: Some of AMZ’s Gotthard model parameters for the simulator.
Parameter Value Unit

m 190 kg
Iz 110 kg m2

lf 0.765 m
lr 0.765 m
Cd 1.0 -
Af 1.4 m2

93

Appendix C

Results for Track 2 and 3

In this appendix, obtained results in simulation are presented for Track 2 and 3 for both vehicles -

FST10d and AMZ’s Gotthard.

94

(a) Lap time evolution.

(b) Laps 1 to 50.

(c) Laps 51 to 100.

(d) Longitudinal velocity evolution.

Figure C.1: FST10d simulation results for Track 2 using the full algorithm.

95

(a) Lap time evolution.

(b) Laps 1 to 50. (c) Laps 51 to 100.

(d) Longitudinal velocity evolution.

Figure C.2: FST10d simulation results for Track 3 using the full algorithm.

96

(a) Lap time evolution.

(b) Laps 1 to 50.

(c) Laps 51 to 100.

(d) Longitudinal velocity evolution.

Figure C.3: AMZ’s Gotthard simulation results for Track 2 using the full algorithm.

97

(a) Lap time evolution.

(b) Laps 1 to 50. (c) Laps 51 to 100.

(d) Longitudinal velocity evolution.

Figure C.4: AMZ’s Gotthard simulation results for Track 3 using the full algorithm.

98

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Topic Overview
	1.3 Objectives and Deliverables
	1.4 Thesis Outline

	2 Theoretical Background
	2.1 Model Predictive Control
	2.1.1 Optimization Problem

	2.2 Supervised Learning
	2.2.1 Artificial Neural Networks
	2.2.2 Elliptical Basis Function Networks
	2.2.3 Online Gradient Descent
	2.2.4 Levenberg-Marquardt Algorithm

	2.3 Reinforcement Learning
	2.3.1 Genetic Algorithm

	3 Vehicle Models
	3.1 Vehicle Description
	3.1.1 Vehicle Geometry
	3.1.2 Lateral Tire Forces
	3.1.3 Longitudinal Forces
	3.1.4 Summation of Forces and Moments Around the CG

	3.2 Kinematic Bicycle Model
	3.3 Dynamic Bicycle Model
	3.4 Model Discretization
	3.5 Blended Bicycle Model
	3.6 Error Correction Model
	3.6.1 Training and Feature Selection

	4 MPC Formulation
	4.1 Track Progress
	4.2 MPC Based On Track Progress

	5 Controller Parameter Learning
	5.1 Reward System
	5.1.1 Vehicle Point Mass Model
	5.1.2 Reward Function

	5.2 Genetic Algorithm for Learning the Controller Design
	5.3 Genetic Operations
	5.3.1 Reproductions
	5.3.2 Crossovers
	5.3.3 Mutations

	5.4 Algorithm Procedure

	6 Implementation
	6.1 Simulation Environment
	6.2 Tracks
	6.3 Controller Implementation
	6.3.1 MPC Solver
	6.3.2 Model Correction
	6.3.3 Controller Parameter Learning

	7 Results
	7.1 FST10d Simulations
	7.2 AMZ's Gotthard Simulations

	8 Conclusions
	8.1 Main Conclusions
	8.2 Future Work

	Bibliography
	A Algorithms
	B Tables of parameters
	C Results for Track 2 and 3

