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Abstract

Mobile devices are now more than ever present in our everyday lives. They have multiple hardware

components that can enrich user experience, like WiFi, cameras, and GPS. When developing mobile

applications that utilize these resources, the developer has to carefully manipulate when to acquire

and when to release them. Not managing to do so has an energy impact, causing the application to

consume more battery than necessary and, in some cases, causing the resource to not function properly.

This problem is known as a resource leak and can affect any Android application that uses hardware

components available on the device. To help developers fix this problem, we present an extension

EcoAndroid, an Android Studio plugin that improves the energy efficiency of Android applications, with

the ability detect resource leaks and present their location in the code to the developer. We implemented

our detection on top of Soot, FlowDroid, and Heros, which provide a static-analysis environment capable

of processing Android applications and performing inter-procedural analysis with the IFDS framework.

It currently supports the detection of four Android resources - Cursor, SQLiteDatabase, Wakelock, and

Camera. We evaluated our tool with the DroidLeaks benchmark and compared it with 8 other resource

leak detectors. We obtained a precision of 72.5% and a recall of 83.1% on all the leaks detected. Our

tool was able to uncover 194 previously unidentified leaks in this benchmark. These results show how

our analysis can help developers on discovering resource leaks.
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Resumo

Os dispositivos móveis estão cada vez mais presentes no nosso dia-a-dia. Estes possuem diferentes

componentes de hardware – como WiFi, cameras, e GPS – que enriquecem a experiência do utilizador.

Quando estão a desenvolver aplicações que utilizem estes recursos, os programadores têm que ma-

nipular cuidadosamente quando os adquirem e os libertam. Fazer isto incoretamente têm um impacto

energético, que faz com que a aplicação consuma mais bateria do que necessário, e podendo causar o

incorreto funcionamento do recurso. Este problema é conhecido como fuga de recursos e pode afetar

qualquer aplicação Android que utilize componentes de hardware e não só. Para ajudar os progra-

madores a solucionar este problema, apresentamos uma extensão para o EcoAndroid, um plugin para

o Android Studio, que melhora a eficiência energética de aplicações Android, com a capacidade de

detetar autoamticamente fugas de recursos e apresentar a sua localização no código ao programdor.

Implementámos esta deteção com o auxı́lio das frameworks Soot, FlowDroid, e Heros, capazes de pro-

cessar aplicações Android e de realizar análises inter-procedimentais com a framework IFDS. A nossa

ferramenta suporta atualmente a deteção de quarto recursos de Android – Cursor, SQLiteDatabase,

Wakelock, e Camera. Avaliamos a nossa análise com benchmark DroidLeaks e comparámos com oito

ferramentas que detetam fugas de recurso. Obtivemos uma precisão de 72.5% e uma exatidão de

83.1% nas fugas detetadas. Fomos foi ainda capaz de detetar 194 fugas nunca antes identificadas

neste benchmark. Estes resultados mostram que a nossa análise pode ajudar os programadores a

identificarem fugas de recursos.

Palavras Chave

Eficiência Energética; Análise Estática; Fuga de Recursos; Android.
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Mobile devices are more than ever prevailing in our society. The number of smartphone users in

2020 is estimated to be around 3.8 billion worldwide [4]. Of the two most used operating systems in

smartphones, Android is in the top one, with its market share hitting an estimated 85%, followed by

iOS with 15% [5]. The market for Android applications has also grown throughout the years, totaling a

number of 3 million applications on the Google Play Store [6,7].

Recent research has been uncovering energy problems and inefficiencies, created by application

developers, that decrease the battery life of Android devices [8–10]. Taking action to solve these energy

problems and increasing the overall energy efficiency of Android applications can have an impact in user

experience. A 2013 study has shown that approximately 18% of the complaints in the Google Play Store

were related to energy problems in applications [11].

Another factor that gives rise to new energy problems in mobile applications is the evolution of smart-

phones. Smartphones have been evolving, and the diversity of sensors they provide have also been

growing [12]. The sensors and resources that smartphones possess (e.g. camera, GPS, etc) allow

the developers to create applications that interact with them. This interaction between applications and

sensors can be handled manually by the developer through the Application Programming Interface (API)

provided by Android; however, if not well implemented, this can have huge costs on the battery life of

the device [13]. One problem that may arise from this incorrect implementation of resources is known as

resource leak, and happens when the developer acquires a resource to be used by the application, but

forgets to release it (i.e. turning off the resource). Recent research around resource leaks shows that

this problem is prevalent regarding energy and performance in Android devices [13–15], but not always

have researchers been able to find resource leaks in applications [16].

1.1 Objectives and Contributions

The main goal of this project is to extend EcoAndroid [17] – an Android Studio plugin – with the ability

to automatically detect resource leaks in Android applications. In this work, we also (1) introduce basic

notions of the Android framework that are relevant for our work (2) research about the topic of static

analysis and some existing techniques that could be applied to our project, and (3) discuss the current

research around energy problems in Android applications and existing tools to detect and fix these

problems.

Our main contribution translates in the creation of a fully-precise context- and flow-sensitive inter-

procedural static analysis capable of detecting resource leaks in Android applications, integrated in an

IntelliJ plugin. Currently, our analysis supports the detection of four resources: Cursor, SQLiteDatabase,

3



Wakelock and Camera. These resources were chosen based on how frequently Android developers use

them, and the impact they have on the mobile device if a leak occurs [13].

We evaluated our analysis on DroidLeaks, a publicly available resource leaks benchmark, and man-

aged to detect 203 leaks, where 194 are new and undiscovered leaks. From the 50 experimented leaks

of this benchmark, we obtained a bug detection rate of 18% and a false alarm rate of 2%. Regarding all

the detected leaks, our tool achieved a precision of 72.5%, a recall of 83.2%, and an F-Score of 77.5%.

Contributions summary. The main contributions achieved from our work can be summarized as fol-

lows:

• a fully-precise context- and flow-sensitive inter-procedural static analysis capable of detecting re-

source leaks in Android applications

• integration of the aforementioned resource leak analysis on two Integrated Development Environ-

ment (IDE): IntelliJ and Android Studio

• the extension of the DroidLeaks benchmark, with the addition of 194 new resource leaks identified

and described

Illustrative example. Listing 1.11 provides an example of a resource leak detected by our tool, in an

older version of Wordpress which is part of the DroidLeaks dataset. This resource leak was found by our

analysis and was not identified in the benchmark. As we can see in this example, the leaked resource

is a cursor, acquired in lines 11-12, which is never released and, therefore, is leaked.

1.2 Organization of the Document

This thesis is organized as follows:

• Chapter 2 (Background and Related Work) explores the work being done in the area of energy

problems and patterns of Android applications - from categorization of problems to their detec-

tion. This Chapter also provides insight on the basics of the Android framework, and also on the

fundamental of static analysis, its techniques, and frameworks used

• Chapter 3 (Design and Architecture) provides an overview of our tool, and shows how its require-

ments were achieved
1Source code at https://github.com/wordpress-mobile/WordPress-Android/blob/3f6227e2d4c80d9b758928ce4b3d7488ac982e62/

src/org/wordpress/android/util/ImageHelper.java

4
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1 public static int[] getImageSize(Uri uri, Context context){

2 String path = null;

3 if (uri.toString().contains("content:")) {

4 String[] projection;

5 Uri imgPath;

6

7 projection = new String[] { Images.Media._ID, Images.Media.DATA };

8

9 imgPath = uri;

10

11 Cursor cur = context.getContentResolver()

12 .query(imgPath, projection, null, null, null);

13 String thumbData = "";

14

15 if (cur.moveToFirst()) {

16 int dataColumn;

17 dataColumn = cur.getColumnIndex(Images.Media.DATA);

18 thumbData = cur.getString(dataColumn);

19 path = thumbData;

20 }

21 } else { // file is not in media library

22 path = uri.toString().replace("file://", "");

23 }

24

25 BitmapFactory.Options options = new BitmapFactory.Options();

26 options.inJustDecodeBounds = true;

27 BitmapFactory.decodeFile( path, options);

28 int imageHeight = options.outHeight;

29 int imageWidth = options.outWidth;

30 int[] dimensions = { imageWidth, imageHeight};

31 return dimensions;

32 }

Listing 1.1: Cursor leak in an older version of Wordpress

• Chapter 4 (Implementation) describes in detail the implementation of the different components of

our tool

• Chapter 5 (Evaluation) shows the results of the evaluation of our analysis on the DroidLeaks

dataset

• Chapter 6 (Conclusions) addresses some shortcomings and future work, and summarizes our

contributions.
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In this chapter we start by presenting, in Section 2.1, the basics of the Android architecture to give a

simple overview of how the Android operating system works, and to introduce some of the terminology

used in the course of this work. We then describe, in Section 2.2 the fundamentals of program analysis

and static analysis techniques commonly used for analyzing Android applications. In Section 2.3 present

some frameworks that leverage this techniques to analyze Java programs, as well as the frameworks

used in our work. Finally, for the remainder of the chapter, we focus on Android energy problems and

patterns being researched and how they are being detected, with a focus on resource leaks.

2.1 Android Architecture

Android applications are built upon four essential components [1,18,19]. Figure 2.1 illustrates how these

components interact with each other.

1. Activity. It represents a screen with a user interface and handles all user interaction.

2. Service. Component that runs in the background to perform time intensive operations and work

related to remote processes. It does not provide a user interface.

3. Broadcast Receivers. Allows an application to receive events from the user or the system.

4. Content Provider. Is used to manage shared data between multiple applications.

Figure 2.1: Android component communication (adapted from Li et al. [1])

An activity can transition through multiple states as the user interacts with the application and with

the system itself. There are four states an activity can go through: running, paused, stopped, and de-

stroyed. The developer has to explicitly program how an activity transitions between these states. This

is done using callbacks provided by the Android API: onCreate(), onStart(), onResume(), onPause(),

onStop(), and onDestroy() [2, 19]. The complete lifecycle and state transitions of an activity are illus-

trated in Figure 2.2.

The Android system starts a new Linux process when an application component starts and no other

component from that application is running. After that, all components from an application run in the

9
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Figure 2.2: Android activity lifecycle (adapted from Android Guide [2] and Android Fundamentals [3])

same process and in the same thread, unless otherwise specified. The thread created when the appli-

cation is launched is called the main thread. It is responsible for dispatching events to the user interface

widgets, and is almost always the thread that interacts with the components from the Android User In-

terface (UI) toolkit, and so it is often called the UI thread. To avoid blocking the UI thread, as to keep the

application responsive, tasks that are not instantaneous should be done using a separate thread [2].

The Android framework is mainly event-driven [20]. Event-based programs make use of callbacks,

which are functions that are called after certain events are completed. An example of callbacks are

the functions used in the activity lifecycle to transition between states. These functions are called after

certain events occur, and are responsible for managing the activity’s state. A more specific callbacks are

event handlers, which are functions that are executed after a certain event related to the user interaction

happens (e.g. the function that executes when a user clicks on a button) [13,21,22].

2.2 Static Analysis Fundamentals and Techniques

Li et al. [1] studied and compiled several works of static analysis related to private data leaks, vulnera-

bilities, and energy consumption in Android applications. This section summarizes some of the findings

in their work - focused on energy - and adds insights regarding program analysis [23,24].

Program analysis – static or dynamic – is typically done using an abstraction of the program. This

abstraction differs depending on the type of analysis. One of the main abstractions models used in

static analysis of Android applications is control-flow graphs [1]. Variations of this abstraction can

10



be found in the literature – a component call graph is such an example, as it is used to abstract the

relationship between components of an Android application [25]. More examples can be found in the

works presented in Section 2.6 and Section 2.7.

There are properties and attributes an analysis can have that change depending on its type:

• an analysis is intra-procedural when the focus is at the procedure level (i.e. only inside a proce-

dure).

• an analysis is inter-procedural when the it takes into account information about the relationship

between multiple procedures.

• an analysis is flow sensitive if the information discovered at some point in the program depends

on the (control-flow) path involving that point.

• an inter-procedural analysis is context sensitive if the information discovered regarding a function

is different when the calling context of that function is also different.

There are three main static analysis techniques used in static analysis of Android applications that

leverage control-flow graphs:

• Control-flow analysis: used to find information about what basic block may lead to what basic

blocks. More specifically, the order in which instructions are executed in the program.

• Data-flow analysis: used to gather information about the runtime behaviour of a program (e.g. if

a variable definition can reach a point in the program)

• Points-to analysis: used to get information about the data a pointer can point during the program

execution.

Regarding energy problems, control- and data-flow analysis are the most used in the literature to

solve them [1]. Specific examples of tools and techniques that use these types of analysis are shown

later in Sections 2.6 and 2.7.

Besides the aforementioned techniques, there are also six more than can be used to enhance anal-

ysis, and that are also used in conjunction in the techniques presented above:

• Abstract Interpretation: the program semantics are approximated while ensuring soundness. It

makes use of abstract values (i.e. a set of concrete values), flow functions that define the abstract

semantic of statements, and an initial state. The flow function receives as input the abstract values

as well as an input statement, and outputs the abstract state of the program after executing that

statement.
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• Taint analysis: objects are tainted (i.e. marked) and through data-flow analysis, checked to see if

they reach a point that they should not.

• Symbolic execution: the program is executed but its input are replaced by symbols. In the end,

the result are expressions and constraints composed by those symbols. This can be a way to

determine what inputs cause each part of a program to execute, and help detect, for example,

infeasible paths.

• Code instrumentation: used to help static analysis by addressing some of its problems (e.g.

switching reflection calls with normal Java calls and, specific to Android, artificially connecting

components for inter-component communication detection).

• Type checking: used to ensure the program is type-safe (e.g. float operation applied to a string).

• Model checking: used to verify if a system meets a given specification, using an abstraction of

the program as a model and expressing its properties as boolean formulas.

2.3 Static Analysis Frameworks

There are several logical and programming frameworks that aid researchers in building static analysis

tools for Java programas that can also be used for Android applications. Next we describe, with more

detail, the frameworks used in our work.

Soot1 started as a Java optimization framework [26]. Now it is used by researchers to instrument

and analyze Java and Android applications. It works by translating programs into one of four interme-

diate representations that can later be analyzed. It supports call graph construction, point-to analysis,

intra- and inter-procedural data-flow analysis, and taint analysis. For its purposes, Soot has a few data

structures to represent objects used in analysis. The Scene class is used to represent the environment

the analysis will take place in. Through it, the developer can see the application classes, the main class

(which contains the application’s main method), and access information the analysis (e.g. control-flow

graphs, call graphs). The SootMethod represents a single method of a class. Classes loaded or created

in Soot are represented as a SootClass. A Body represents a method body, which contain Units. Units

represent statements (e.g. assignment statements, return statements, conditional statements, etc) in

the code. A single datum is expressed as a Value, which can be locals (Local), expressions (Expr),

and more. A Local represents a variable in Soot’s intermediate representations. Soot provides four

intermediate representations to be used: Baf, Jimple, Grimp, and Shimple. The most used intermediate

represenation is Jimple, which is typed and statament based. It has a total of 15 statements, compared

1https://soot-oss.github.io/soot
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to more than 200 instructions in Java bytecode. This, and other properties not described here, make

Jimple more convenient for performing analysis and optimizations. The execution of Soot is divided into

phases called packs. The developer can create transformations, which can be registered to a pack that

will run it. Transformations are what allow developers to create optimizations, analysis, or even annotate

code in an intermediate representation.

FlowDroid is a data-flow analysis tool capable of computing data-flows in Android applications and

Java programs [27]. It specializes in tracking the flow of sensitive information through sources and sinks

defined by the developer. FlowDroid can be used as a library together with Soot, from which it also

depends. When used as a library, FlowDroid also allows Soot to take as input Android applications (as

an Android Application Package (APK)), and allows the creation of call graphs with knowledge of the

callbacks of the Android framework.

Inter-procedural Finite Distributive Subset (IFDS) [28] is a framework for solving inter-procedural

data-flow subset problems. These problems must have distributive flow-functions over finite domains,

and the merge operator for two data-flow facts must be the set union. The IFDS framework works by

reducing these problems into a graph reachability problem by specializing the inter-procedural Control

Flow Graph (CFG) of the program to the analysis being conducted, creating an exploded super graph.

Instead of containing one node to represent program statements, the exploded super graph contains

multiple nodes to represent the data-flow facts. In the exploded super graph, a node n containing a

data-flow fact f is reachable from a start node if and only if the data-flow fact f holds at the node n. The

flow-functions must be represented as nodes and edges. To express IFDS problems, the user needs to

define four different kinds of edges:

• Call edges: responsible for passing information from call sites to callees

• Return edges: pass information from callees to call sites

• Call-to-return: pass information from before a call site to all possible call site’s successor state-

ments. Information passing from this edges typically do not concern the callee

• Normal edges: for all other statements

Heros is a generic IFDS/IDE solver that can be plugged into existing Java-based analysis frame-

works [29]. Connecting Heros to a program analysis framework only requires the user to implement a

version of the interprocedural CFG. The authors already provide an implementation for the Soot frame-

work. As per the definitions of the IFDS framework, to specify an IFDS problem in Heros, the user needs

to choose a representation for the data-flow facts, and also needs to implement the four flow-functions

required by IFDS. In the Heros framework, the flow-functions are the following:
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• getNormalFlowFunction: to handle normal edges

• getCallFlowFunction: to handle call edges

• getReturnFlowFunction: to handle return edges

• getCallToReturnFlowFunction: to handle call-to-return edges

For the remainder of the section, we present other frameworks also used for static analysis of Java

programs.

ASM 2 is a Java bytecode engineering library used to generate, transform, and analyze compiled

Java classes. It enables both data- and control-flow analysis.

The T. J. Watson Libraries for Analysis (WALA) 3 is a framework that provides static analysis ca-

pabilities for Java bytecode. Some of its features include Java type system and class hierarchy analysis,

general analysis utilities and data structures, a bytecode instrumentation library and, like Soot, it fea-

tures a framework for iterative data-flow, pointer analysis, call graph construction and inter-procedural

data-flow analysis.

Androguard 4 is a Python 3 tool and library that can be used to parse and decompile APK, Dalvik

Executable (DEX), and other files from Android projects. Ĩt also provides API to perform some static

analysis.

APKtool 5 is a Java tool that allows reverse engineering of Android applications. Apktool is also

capable of rebuilding decoded applications back to APK.

Android Lint 6 is a static analysis tool that detects potential problems and optimizations in Android

projects. Developers can also extend Android Lint with custom analysis of their own. The tool is included

in Android Studio.

2.4 Android Energy Problems and Patterns

There are several works in the literature that aim to define energy-related patterns to help developers

and researchers in their work.

Cruz and Abreu [30] define 22 energy patterns for Android applications. The detection of 5 of these

patterns (i.e. Dynamic Retry Delay, Push Over Poll, Reduce Size, Cache, and Avoid Extraneous Graph-

ics and Animations) is already implemented in the current version of EcoAndroid.
2https://asm.ow2.io/index.html
3http://wala.sourceforge.net/wiki/index.php/Main_Page
4https://github.com/androguard/androguard
5https://ibotpeaches.github.io/Apktool/
6http://android-doc.github.io/tools/help/lint.html
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Jiang et al. [25] list typical energy bugs, divided into resource leaks and layout defects. Resource

leaks bugs (also called no-sleep bugs) refer to when some sensors or wakelocks are acquired, but never

released. Layout defects are related to how the layout of the activities is constructed.

Pathak and Jindal [31] specify no-sleep bugs into three categories: no-sleep code path (i.e. when

there is a code path that acquires a component wakelock, but never releases), no-sleep race condition

(i.e. when the power management of a particular component was carried out by different threads in the

application), and finally no-sleep dilation (i.e. when a component is put to sleep, but after a long period

of time than necessary).

Guo et al. [21] categorize resource leak bugs, but taking into account the type of the resource and

the Android API reference. It separates them into 3 categories: exclusive resources (e.g. camera),

memory-consuming resources (e.g. media player), and SensorManager releasing.

Liu et al. [22] categorize common bug patterns regarding performance of Android applications while

stating that some also cause energy problems. Such example of this is wasted computations for Graph-

ical User Interface (GUI) (i.e. when an Android application switched to the background, but continues to

update its GUI).

Le Goaër [32] describes 11 Android energy bugs alongside with their severity. Some of them are

already presented here (e.g. sensor leak) but new ones are described (e.g. everlasting service).

Riganelli et al. [33] expand on the works of Liu et al. [13], Banerjee et al. [34], and Wu et al. [35]

to create a resource leak benchmark to help developers and researchers. The benchmark contains

40 reproducible resource leaks, each one containing information about the source code location of the

resource leak, information about the faulty and fixed application, and a brief execution summary of the

test cases the authors generated.

Similarly to Riganelli et al. [33], Liu et al. [13] create a database of 292 leaks from 33 different

resource classes, contained in some Android applications. They categorize the resource leaks into 2

categories: Android platform resources, and Java platform resources, providing examples on how to

acquire and release them.

2.5 Resource Leaks

As introduced in Chapter 1, the number of sensors and hardware components in mobile devices has

been growing over the years. These components – also called resources – are known for being one

of the biggest energy consumers in Android devices [35]. When a developer wants to use a resource,

they must do it manually. This is done via Android-specific API calls, which vary from resource to

resource [13]. Here, we show an example from an older version of AnkiDroid7. In Listing 2.1, we see a

7https://github.com/ankidroid/Anki-Android
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1 private static SQLiteDatabase upgradeDB(...) {

2 (...)

3 Cursor c = mMetaDb.rawQuery(...);

4 int columnNumber = c.getCount();

5 if (columnNumber > 0) {

6 if (columnNumber < 7) {

7 (...)

8 }

9 } else {

10 mMetaDb.execSQL(...);

11 }

12 mMetaDb.setVersion(databaseVersion);

13 Timber.i(...);

14 //leak! missing call to c.close()

15 return mMetaDb;

16 }

Listing 2.1: Resource leak of a database cursor on an old version of AnkiDroid

resource – in this case, a database cursor – being acquired at the beggining of a function. The developer

performs some operations but, at the end of the function, forgets to close the database cursor, creating

a resource leak 8. A resource leak occurs when a programmer forgets to release a resource they

previously acquired, after it is done being used. In Listing 2.1 the leak no longer exists, as the developer

now uses a try-catch to perform the operations and releases the resource only if it was used 9. A

resource leak causes components to stay active and consume battery, even if they are not being used.

Apart from the unnecessary battery usage, the leak of some resources may cause them to not function

properly for other applications or even cause the Android system to crash [13,35].

2.6 Detection of Android Energy Problems

The works present below focus on the the detection of several Android energy problems, although some

of them also touch on the detection of problems related to resource leaks.

Liu et al. [22] develop PerfChecker, a tool capable of detecting two performance bugs (i.e. lengthy

operations in main thread, and violation of View Holder pattern). This detection is done using a class

hierarchy analysis to create checkpoints and then building a call graph for each of them and check if the

checkpoint transitively invokes heavy API or if a rule is violated, respectively for each bug.

Wang et al. [10] focus on searching for energy optimizations regarding I/O operations. This is done

by searching for specific I/O patterns that are poorly optimized (i.e. periodic I/O operations that could
8Commit at https://github.com/ankidroid/Anki-Android/commit/3725ce75828aaf4fa0b7bc36416a973f2ea6a157
9Commit at https://github.com/ankidroid/Anki-Android/commit/c993a3398ec325672fd43307d8e2b457b3be9db7
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1 private static SQLiteDatabase upgradeDB(...) {

2 (...)

3 Cursor c = null;

4 try {

5 c = mMetaDb.rawQuery(...);

6 int columnNumber = c.getCount();

7 if (columnNumber > 0) {

8 if (columnNumber < 7) {

9 (...)

10 }

11 } else {

12 mMetaDb.execSQL(...);

13 }

14 mMetaDb.setVersion(...);

15 Timber.i(...);

16 return mMetaDb;

17 } finally {

18 if (c != null) {

19 c.close();

20 }

21 }

22 }

Listing 2.2: Resource leak fix of Listing 2.1

be closer together) and then building a flow graph between the two I/O operations. Lastly, data-flow

analysis is performed on this graph to check if it is possible to optimize the I/O operations.

Li et al. [36] explore how to optimize HTTP requests in Android applications. They employ intra- and

inter- procedural analysis on dominator trees – computed from control-flow graphs from Soot – to search

for sequential HTTP request sessions that could be bundled together to save energy.

Couto et al. [16] focus on automatic refactoring 11 Android energy-inefficient patterns. They use

Android Lint to detect the patterns, and AutoRefactor to automatic refactor some of them. They suc-

cessfully detect and refactor 3 resource leaks regarding the sensor, camera, and media, but in the set

of analyzed applications, there were no resource leaks found.

Cruz et al. [37, 38] develop a tool called Leafactor to automatic refactor 5 Android energy patterns

(i.e. Draw Allocation, Wake Lock, Recycle, Obsolete Layout Parameter, and View Holder) using Au-

toRefactor. This tool is integrated in the Eclipse IDE.

2.7 Detection of Resource Leaks

In this section we present some works that focus exclusively on the detection of resource leaks.
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Liu et al. [39] create a technique called Elite capable of detecting common wakelock misuses. This

is done in two steps: first decompiling the application’s APK files to Java bytecode using Dex2jar, and

then performing an analysis with the help of Soot and Apache Byte Code Engineering Library (BCEL).

This analysis is done by locating the application entry points, and then traversing the call graph of each

entry point to see if wakelock acquiring and releasing calls can be transitively reached.

Guo et al. [21] create Relda, a tool that detects resource leaks. Relda uses Androguard to translate

the application APK into Dalvik bytecode. The bytecode is then traversed in sequential order to build the

control-flow graph of the application. To find resource leaks, an algorithm that uses depth-first search is

run, producing a resource summary.

Wu et al. [15] develop a tool called Relda2 (the successor of the aforementioned Relda [21]) capable

of detecting resource leaks. Unlike most tools that are built on top of frameworks like Soot and WALA,

Relda2 analyzes Dalvik bytecode directly, leveraging only Androguard to disassemble the app into the

Dalvik bytecode. It first preprocesses the application and builds a function call graph to perform inter-

procedural analysis which can be flow-sensitive or flow-insensitive.

Vekris et al. [19] create a tool to verify if an Android application complies with a set of energy policies,

focused on the acquiring and releasing of wakelocks. The analysis is done by using inter-procedural

data-flow analysis from WALA on a control-flow graph that has the notion of the Android lifecycle in it.

Jiang et al. [25] build a tool called SAAD capable of detecting energy bugs. They use Apktool to

transform the APK file into Dalvik bytecode, using then SAAF, an analysis framework, to search for

resource leaks, and Android Lint, to search for layout defects. For research leak detection, they apply

intra- and inter-procedural analysis on a component call graph of the application.

The Automated Android Energy-Efficiency InspectiON (AEON) [40] is an IntelliJ IDEA plugin

capable of inspecting energy problems related to the Android API. The plugin is able to detect resource

leaks, mainly focusing on wakelocks. It is also capable of estimating the energy consumption of methods

and has integration with Trepn profiler. AEON was used in the work of Deng et al. [41] to design the

WakeLock Release Deletion mutation operator, used to mimic an energy bug.

Bhatt and Furia [14] implement PlumbDroid, a tool capable of detecting and repairing resource

leaks. It works by building several resource-flow graphs – an abstraction based on control-flow graphs

– that captures information about the acquiring and releasing of resources. The underlying control-

flow graphs are built using Androguard. The tool performs intra-procedural analysis using pushdown

automatons, and inter-procedural analysis by combining the results of the intra-procedural analysis. In

a final stage, it fixes the resource leak by injecting the corresponding release operation in a suitable

location.

Wu et al. [20] aim to detect two patterns related to resource leaks – activity adding a listener but

not removing, and activity adding a listener but putting it in a long-wait state – using a stack-based
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approach. They first build a inter-procedural control-flow graph, in order to create candidate paths that

can represent the aforementioned patterns. In a last phase, they take the candidate paths and search

for sequences where a leak is present.

Banerjee et al. [34] expand on their previous work [9] and create a framework for detecting resource

leaks and implement it into an Eclipse plugin called EnergyPatch. The detection is done by building

an event flow graph and applying abstract interpretations techniques. After detection, a reduction of

the search space (i.e. removing the event flow graph nodes that are not in acquire-release paths) is

performed. In the last phase of the analysis, the detected resource leaks are repaired by generating the

resource release expression and inserting it into an existing activity.
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In this chapter, we give an overview of our tool and discuss the design choices made and its architec-

ture. Section 3.2 goes through the functional and non-functional requirements of the tool. In Section 3.3,

we present information regarding the several components, and explain how our extension operates.

3.1 Overview

EcoAndroid is an Android Studio plugin capable of automatically detecting and refactoring energy pat-

terns in Android applications [17]. It is built upon IntelliJ Platform Software Development Kit (SDK),

which provides developers with the tools needed to build plugins for the InteliiJ IDEA. The IntelliJ Plat-

form SDK also allows plugins to be used by IDE based on IntelliJ IDEA, where Android Studio is one

such example. One of the tools IntelliJ SDK provides is the Program Structure Interface (PSI), which is

used extensively by EcoAndroid to detect and refactor energy patterns. The PSI is responsible for pars-

ing files and creating semantic and syntactic code model of projects. It also allows the manipulation of

PSI files, which represent the hierarchy of PSI elements (e.g. a PSI file contains multiple PSI elements,

which can represent variables, identifiers, methods, etc.). This allows EcoAndroid to detect energy pat-

terns and create their respective fixes directly in the code. Figure 3.1 shows the current process, from

beginning to end, of detection and refactoring of energy patterns.

The proposed work extends EcoAndroid in order to automatically detect resource leaks in Android

applications, and is built upon some of the existing features of the plugin, while integrating static analysis

frameworks required for the detection. The extension is fully compatible with energy pattern detection,

which remains fully functional. The automated detection of resource leaks is divided into two main com-

ponents – the Analysis Component and the Results Component – each one responsible for a specific

step in the detection of resource leaks.

3.2 Requirements

In this section, we define the functional and non-function requirements for our work. These requirements

follow the previous guidelines set for the EcoAndroid plugin.

3.2.1 Functional Requirements

Static analysis. The extension must use static analysis techniques to detect resource leaks. This is

one of the main requirements of the extension. As seen from current research, detecting resource leaks

requires the use of static analysis techniques.
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Figure 3.1: EcoAndroid detection and refactoring of energy patterns

Language elements. The extension must process elements from the Java language and the Android

framework. This is essential to perform static analysis and is offered by open-source static analysis

frameworks and the API provided by IntelliJ IDEA.

Report analysis results. The extension must report the analysis results to the user. This is a re-

quirements of EcoAndroid, which our extension must also follow. Going even further, this must be done

in the same way done in the current version of EcoAndroid: displaying warnings in the source code,

specifically where the resource was leaked.

3.2.2 Non-Functional Requirements

Integration. The extension shall be consistently integrated with the current version of EcoAndroid and

IntelliJ IDEA. As previously said, the extension shall uphold the design choices made in the current
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version of EcoAndroid, providing a consistent user experience in every aspect of the plugin.

Extensible. The extension shall ease the implementation of the detection of other resources. This

is an important requirement, as the Android framework is continuously updated, as new resources are

added and old ones are changed.

User control. The extension shall give the user total control over their actions. The user shall have

the ability to start, check the analysis progress, and cancel the analysis at any point in execution. This

is important specially because this type of analysis may take some time.

Standalone version. The extension shall be able to run as an independent application. This provides

an easy way to run the analysis on multiple projects and applications, which allows automated evaluation

and testing of the analysis.

3.3 Architecture

In this section, we will expand on how the different components of our work were structured and de-

signed, while discussing the different decisions made during this process.

3.3.1 Analysis Component

The Analysis component is one of the the two main components of our tool. It is responsible for creating

and setting up the environment for the analysis, and is also responsible for running the analysis itself.

Our work focus is the design and implementation of an inter-procedural resource leak analysis. There

are multiple ways of approaching this task, as seen in Chapter 2. With the time constraints for the de-

velopment of our work, we decided to use existing static-analysis frameworks. During our research, we

verified that the Soot ecosystem provided all the necessary tools for us to implement our analysis. As

mentioned in Section 2.3, the Soot framework enables the transformation and analysis of Java applica-

tions. Since we intend to analyze Android applications, we require a framework that can parse these

applications and also create the necessary abstractions with information of how the Android framework

works (see Section 2.1). FlowDroid satisfies these two needs, although it can only parse Android APK.

Lastly, we want to be create an inter-procedural analysis. Soot alone does not have the necessary

means for this, and although FlowDroid implements a data-flow analysis, this analysis does not satisfy

our requirements. For these reasons we chose Heros, another framework from the Soot ecosystem,

that enables the creation of inter-procedural analysis through the IFDS framework. We also explored

the VASCO framework and created an inter-procedural resource leak analysis with it; however, we were
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unable to model our problem to be compatible with the restrictions imposed by the VASCO framework –

specifically, that the flow functions had to be monotonic.

The Analysis component was designed to accommodate different types of resource leak analysis.

As previously said, the focus of this work is on the creation of an inter-procedural resource leak analysis,

but we have also implemented a simpler, intra-procedural analysis. The intra-procedural analysis was

implemented to understand how the Soot framework works before deciding on how to implement the

inter-procedural analysis. In the current version of our extension, due to its simplicity, the intra-procedural

analysis is disabled.

Summary. The Analysis component handles everything related to the analysis, from setting up the

environment to running the analysis itself. This is enabled by Soot, FlowDroid, and Heros, three static-

analysis framework that meet our requirements and demands.

3.3.2 Results Component

The Results component is the other main component of our tool. It is responsible for acquiring the results

at the end of the analysis and then, from these results, collect the location of possible leaks, process

them, and present the final results to the user.

As we support multiple analysis, the Results component is designed to be able to acquire results from

the implemented analysis, and process them accordingly. In the case of the inter-procedural analysis, to

acquire its results, we use Soot and Heros. Heros’ IFDS solver provides the necessary method for this

task. As for the intra-procedural analysis, we simply implemented it to allow retrieving its results. The

Analysis and the Results component are then designed in a way that allows the Results component to

visit each analysis after they terminated, to acquire the results.

Another aspect to take into consideration when designing the Results component is that our tool

can be used in EcoAndroid or in the command line as a standalone tool. The Results component must

take into account the different requirements for each version, since the results are presented differently

in each one. This means that each version of the tool has their own leak storage, which allows the

reported leaks to be presented accordingly. The Results component is responsible for, after acquiring

the leaks and processing them, storing them correctly depending on the version of the tool being run.

For the EcoAndroid version, the Results component requires the use of the PSI API to correctly assign

each leak location to the corresponding method in the source code of the application. The standalone

version does not require the PSI API, as leaks are simply stored to be stored in .csv files.

Summary. The Results component handles everything related to acquiring, processing, and storing

the results from the analysis – which depends on the analysis and version of the tool being run.
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3.3.3 Other Components

Besides these two main components described in this chapter, there are two auxiliary and essential com-

ponents that ensure the integration with the IntelliJ IDEA and Android Studio: the Platform component

and the UI component.

The Platform component handles the required verification to ensure the analysis is run either on

IntelliJ IDEA or Android Studio. It is also responsible for locating the APK for the analysis input, and

locating the Android SDK, also required for the analysis. For this purpose, the PSI API is needed and

used.

The UI component generates error and information messages for the analysis, and also handles the

creation of line markers in source code location where a leak is present. It works by using the available

functionalities of the PSI API regarding UI and line markers.

These two components are heavily inspired in the IntelliJ version of CogniCrypt [42].
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Figure 3.2: EcoAndroid detection of resource leaks
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3.3.4 User Interaction and Operation

The current EcoAndroid interaction process and operation of the plugin is unaffected by our extension,

remaining unaltered and fully functional, and is described in Figure 3.1. The new functionality brought by

our extension adds more complexity to EcoAndroid. This translates in a new, longer, and more detailed

user interaction process and plugin operation. Figure 3.2 shows this new user interaction process and

operation. The plugin starts the process by transforming the source code into an Abstract Syntax Tree

(AST), aided by the PSI API ( 1 and 2 ). The developer, who wants to detect resource leaks, must

compile the application into an APK, which will be used as input for the analysis, together with information

related to the project and the location of the Android SDK ( 3 , 4 , and 5 ). Now, everything is set

for the analysis to start. First, FlowDroid is in charge of setting up the environment and Soot’s Scene,

by loading the application’s classes, building the call graph and choosing Soot’s options. Then, Jimple

is ready to be pre-processed, and the analysis can start, with Heros in charge ( 6 and 7 ). After the

analysis is completed, the plugin processes and stores the results ( 8 ). When the results are processed

and stored, the plugin can initiate the inspection. The inspection will go through the AST and match any

methods that contain resource leaks ( 9 and 10 ). Finally, aided by the PSI API, the plugin highlights

the leaks’ location in the source code, and the user is warned about any possible resource leaks ( 11

and 12 ).

The operation of the standalone version of our tool is much simpler. Using a Gradle command, the

user inputs the APK and the location of the Android SDK, which is sent to Soot ( 4 and 5 ). Then, the

process follows the same flow until the results storage ( 6 , 7 , and 8 ), where it stops and outputs

the reported leaks to .csv files.
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In this chapter we show, in detail, how the multiple components presented in Section 3.3 were devel-

oped and how they interact with each other. Section 4.1 describes the data structure used to represent

Android resources. Section 4.2 and Section 4.3 explains how the Analysis and Results component were

implemented in our tool. Finally, Section 4.4 shows how our analysis is integrated in IntelliJ IDEA and

Android Studio.

4.1 Resource Representation

The resource leak detection extension for EcoAndroid supports the detection of four different Android

resources. The resources chosen for our detection are presented in Table 4.1. Figure 4.1 shows the

class diagram of the resource representation. To represent an Android resource and its proprieties, we

use an Enum containing the following fields:

• type - A String containing the fully-qualified class name of the resource

• acquireOp - An Array of String containing the name of the methods used to acquire the resource

• acquireClass - An Array of String containing the fully-qualified name of the class where the

acquireOp can be used

• releaseOp - An Array of String containing the name of the methods used to release the resource

• releaseClass - An Array of String containing the fully-qualified name of the class where the

releaseOp can be used

• heldCheckOp - A String containing the name of the method used to check if the resource is

acquired (if this method does not exist, the placeholder #NONE 1 is used)

• placeToRelease - A String containing the name of the callback method where the resource is

supposed to be released (if there is no such callback, the placeholder #NONE 1 is used)

Resource name Resource class

Cursor android.database.Cursor
SQLite Database android.database.sqlite.SQLiteDatabase
Wakelock android.os.PowerManager.WakeLock
Camera android.hardware.Camera

Table 4.1: Resources detection by our extension

1Using # as the first chracter of the placholder prevents collisions with any Java method.

31



Representing a resource with this structure allows any interested developer to easily add another

resource to the analysis. The main restriction is that the resource respects the contract established

by our representation, which means it must abide by the acquire-release pattern, i.e. must possess

methods for opening and closing, and this mechanism must be done manually by the developer using

the resource.

While it is easy to create a new representation for a resource, further steps must be done to ensure

its correct implementation in the analysis:

Step 1 The developer must check the Android documentation and learn the resource’s respective

acquire and release methods. They also need to check if there is a method for checking if the

resource is being acquired, and, for class-scope resources, if there is a suggested place to release

the resource.

Step 2 Examine how Soot translates the resource usage in Jimple and extract needed information

about the resource. This means, for example, debugging and inspecting the Body and its Units of

the SootMethod where the resource is being used

Step 3 Create a new instance in the Enum with the newly acquired information about the resource

Step 4 (optional) Modify the analysis and/or the processing of the results to handle new mecha-

nisms specific to the resource being added

We will use the Cursor as a follow-along example of this process. Examining the Jimple transla-

tion in Listing 4.2, we have an example of how a cursor can be acquired: In this example, we see an

IdentityStmt assigning the first method parameter, a ContentResolver, to the $r1 local. Then, we see

a AssignStmt where the query method is being invoked on the previously assigned ContentResolver.

The result of this method invocation is an instance of a Cursor, which is being assigned to $r6. With

this information, we are able to discern that a Cursor can be acquired with the query method on a

ContentResolver instance. Using this methodology, a developer can learn how a resource is acquired

and released in the Jimple representation, providing the necessary information to implement the re-

source in the analysis.

4.1.1 Cursor

A Cursor provides read-write access to the result returned by a database query [43]. It can be acquired

via a database our via a content provider. A cursor works, typically, by acquiring and releasing an

instance of it. However, as the Android framework evolves, new mechanisms to facilitate their usage

have appeared. The ContentQueryMap is one such mechanism, and is used to cache the contents of

a cursor into a map. It works by passing the cursor to the ContentQueryMap constructor, performing all
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1 public static String getContactName(final Context context, final String address) {

2 //(...)

3 Cursor cursor = getContact(context, address);

4 //(...)

5 return cursor.getString(ContactsWrapper.FILTER_INDEX_NAME);

6 }

7

8 public Cursor getContact(final ContentResolver cr, final String number) {

9 //(...)

10 final Uri uri = Uri.withAppendedPath(Contacts.Phones.CONTENT_FILTER_URL, n);

11 final Cursor c = cr.query(uri, PROJECTION_FILTER, null, null, null);

12 //(...)

13 return c;

14 }

Listing 4.1: Resource leak (simplified) of an older version of SMSDroid

1 public Cursor getContact(final ContentResolver cr, final String number) {

2 $r1 := @parameter0: android.content.ContentResolver

3 (...)

4 $r6 = virtualinvoke $r1.<android.content.ContentResolver:

5 android.database.Cursor query(...)>($r3, $r5, null, null, null)

6 (...)

7 }

Listing 4.2: Snippet of Jimple code from the getContact method seen in Listing 4.1
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the operations needed, and then closing the ContentQueryMap [44]. This and other mechanisms add

new logic to how a cursor works, which becomes harder to support in our analysis. We only support

traditional (i.e. acquiring and releasing the Cursor resource) use of cursors. Table 4.2 shows how we

represent it in our tool.

Field name Field content

type android.database.Cursor
acquireOp rawQuery, query

acquireClass
android.database.sqlite.SQLiteDatabase,
android.content.ContentResolver

releaseOp close
releaseClass android.database.Cursor
heldCheckOp isClosed
placeToRelease #NONE

Table 4.2: Cursor information

4.1.2 SQLite Database

The SQLite Database resource is used to manage SQLite databases. Like the Cursor, the SQLite

Database also has additional mechanisms designed to ease its use by the developers [45]. One such

mechanism is the SQLiteOpenHelper, which helps manage database creation and version control. The

SQLiteOpenHelper encapsulates the methods used to acquire and release an SQLite Database, which

interfere with how Soot creates the calllgraph and interfere with how our analysis works. We only sup-

port traditional use (i.e. acquiring and releasing the SQLiteDatabase resource) of SQLite databases.

Table 4.3 shows how we represent it in our tool.

Field name Field content

type android.database.sqlite.SQLiteDatabase
acquireOp getWritableDatabase, getReadableDatabase
acquireClass android.database.sqlite.SQLiteOpenHelper
releaseOp close

releaseClass

android.database.sqlite.SQLiteClosable,
android.database.sqlite.SQLiteOpenHelper,
android.database.sqlite.SQLiteDatabase

heldCheckOp #NONE
placeToRelease #NONE

Table 4.3: SQLite Database information
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4.1.3 Wakelock

The Wakelock is a mechanism used to indicate to the application that the device needs to stay on.

It is usually used when performing critical operations to keep the device from going to sleep. It is

acquired through the PowerManager. The wakelock can also be acquired with a timeout, in which the

wakelock is automatically released after the timeout has passed [46]. Our detection does not support

this mechanism. Table 4.4 shows how we represent the Wakelock in our tool.

Field name Field content

type android.os.PowerManager$WakeLock
acquireOp acquire
acquireClass android.os.PowerManager$WakeLock
releaseOp release
releaseClass android.os.PowerManager$WakeLock
heldCheckOp isHeld
placeToRelease onPause

Table 4.4: Wakelock information

4.1.4 Camera

The Camera resource manage operations related to the camera, which include setting image capture

settings, start/stop preview, snap pictures, and retrieve frames for encoding for video [47]. Table 4.5

shows how we represent the Camera in our tool. We support the Camera resource up until the API level

21 of the Android framework.

Field name Field content

type android.hardware.Camera

acquireOp
lock, open,
startFaceDectection, startPreview

acquireClass android.hardware.Camera

releaseOp

unlock, close,
stopFaceDetection, stopPreview,
release

releaseClass android.hardware.Camera
heldCheckOp #NONE
placeToRelease surfaceDestroyed

Table 4.5: Camera information
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4.2 Analysis Component

As mentioned in Section 3.3.1, the Analysis component is built upon Soot, FlowDroid, and Heros. These

three frameworks are built to be easily integrated with each other, as they are maintained by the same

group of developers. To connect Heros to a program analysis framework only requires the user to imple-

ment a version of the interprocedural CFG. The framework’s authors already provide an implementation

for the Soot framework. As mentioned in Section 2.3, Heros implements a solver for the IFDS framework,

and provides the following functions, which we need to implement to create our analysis:

• getNormalFlowFunction, which handles normal edges

• getCallFlowFunction, which handles call edges

• getReturnFlowFunction, which handles return edges

• getCallToReturnFlowFunction, which handles call-to-return edges

Each flow-function serves a different purpose for the IFDS framework. Their implementation reflects

this fact. Next, we describe the implementation of these functions in our work.

getNormalFlowFunction. The main goals of the getNormalFunction is to handle acquiring and re-

leasing class-scope resources and to handle the flow of data-flow facts when dealing with if statements.

We use a trick to known when we are before a class-scope resource. Typically, and from what we

have seen, class-scope resources are declared in Jimple as SootField. When Soot translates the

source code to Jimple, these types of resources must be always assigned to a local before calling

methods on them. When this happens, under the correct conditions, we know we are dealing with an

operation on a class-scope resource. After knowing this, we only need to check if are dealing with an

acquire (or release) operation, and if so, we create (or eliminate) the data-flow fact.

For a correct flow of facts about resources, we must take into consideration if statements. A correct

usage of resources uses null checks and held checks (i.e. checking, via a method, if the resource is

acquired) in if statements – if a resource is null or not acquired, it does not make sense to branch and

release it. For this same reason, if we are before a if statements that branches if a resource is null

or not acquired, we must kill the data-flow fact regarding that resource, if the fact exists. For the best

of our knowledge, our analysis takes into account all the possible cases regarding null checks and held

checks.

getCallFlowFunction. This function is responsible for handling flow of facts when a method is called.

When resources are passed as arguments to methods, we must update which local refers to the re-

source, because in Jimple different methods assign different locals to the same resource.
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This function only looks at method-scope resources. Class-scope resources do not follow the same

logic, and can be used freely throughout the methods in the class where the resource is declared.

getReturnFlowFunction. The getReturnFlowFunction is responsible for the flow of facts when re-

turning from a method. There are two important cases to deal with: (1) when a resource is acquired in

the called method, and returned to the callee, and (2) when a resource is passed by reference from the

callee to the called method.

For the first case, we simply update the local of the data-flow fact, for the same reasons described

in getCallFlowFunction. The second case is needed to avoid false positives. If a resource is passed

by reference, we let any facts related to it flow through this flow function. To ensure the correct flow of

these facts, we must eliminate them in getCallToReturnFlowFunction.

getCallToReturnFlowFunction. In our analysis, this function is responsible for acquiring and releas-

ing method-scope resources and also for their correct flow, in conjunction with getReturnFlowFunction.

When a resource is acquired or released, it is necessary to call a method. In the case of our analysis,

this method belongs to the Android framework. Due to how Soot works, we are unable to handle it in

getCallFlowFunction, and need to handle in this flow function. For the best of our knowledge, in Jimple,

acquiring a method-scope resource can be done through an AssignStmt or an InvokeStmt. Releasing

a method-scope resource, on the other hand, is done only through InvokeStmt. Our implementation

reflects this rules.

Regarding the intra-procedural analysis, Soot provides everything need to implement it. Our intra-

procedural analysis is implemented as ForwardBranchedFlowAnalysis. The ForwardBranchedFlowAnalysis

allows the developer to propagate different data-flow facts into different branches of the code, enabling

the construction of a more precise analysis.

For the representation of the data-flow facts for the IFDS analysis, we created a class called ResourceInfo,

which contains, as the name suggests, information about the specific resources seen during the analy-

sis. This is a different representation from the one used for Android resources. It is composed by:

• name - A String that is the name of the local that represents the resource. For class-scoped

variables, this is their source-code name, for method-scope variables, this is typically $rx, where x

is a number generated by Soot

• resource - The Resource representation of the seen resource

• declaringClass - The SootClass where the seen resource was declared

• declaringMethod - The SootMethod, belonging to the declaringClass, where the seen resource

was declared
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• isClassMember - An boolean used to indicate if the seen resource was declared in a class field or

not

In addition to the ResouceInfo, we use a Local to keep track of the resource and (1) check if it leaves

the scope where it was defined, and (2) check if is passed as argument to a method, or returned from

a method. The final data-flow fact representation is a Pair of a ResourceInfo and a Local. Figure 4.1

shows a class diagram of the Resource and ResourceInfo structures created for our analysis.

Resource

- type: String

- acquireOp: String[]

- acquireClass: String[]

- releaseOp: String[]

- releaseClass: String[]

- heldCheckOp: String

- placeToRelease: String

1

ResourceInfo

- name: String

- declaringClass: SootClass

- declaringMethod: SootMethod

- isClassMember: boolean

1

Leak

- leakedMethod: SootMethod

- declaredMethod: SootMethod

- classMember: boolean

- lineNumber: int

Figure 4.1: Class diagram of the implemented data structures: Resource, ResourceInfo and Leak (getters and
setters omitted)

It is also important to note the differences between handling resources that are class-scoped, and

resources that are method-scoped. The expected behaviour with class-scoped resources is that they

can be used freely within the class, without the need to pass them as arguments or to return them from

methods. This does not apply to method-scope resources. With this basis, we assume that class-scope

resources are available only on their respective class. This decision was made based on their usage on

some examples in the datasets [13,33], and based on how the Android lifecycle works [3].

Resource leak example. To illustrate and better understand how the IFDS framework and our analysis

work, we provide a real-world example of a leak detected by our tool and taken from the DroidLeaks

dataset, shown in Listing 4.1. This is a cursor leak that spans two different methods, getContact and

getContactName in a version of SMSDroid 2. In getContact, the cursor c is acquired (line 11) and

returned (line 13). The getContactName then calls getContact (line 3), and uses the cursor to return

a string. From here, reference to c and cursor are lost, and the resource is never released, therefore,

c is leaked. In Figure 4.2, we see the exploded super-graph of this example. The graph provides an

overview of all the different type of edges defined in the IFDS framework, and how data flows through

2Source code at https://github.com/felixb/smsdroid/blob/5020594a25c7dd1d77b5e4571bce2135f4a17138/src/de/

ub0r/android/smsdroid/AsyncHelper.java and https://github.com/felixb/ub0rlib/blob/master/lib/src/main/java/

de/ub0r/android/lib/apis/ContactsWrapper3.java
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them. In this specific example, there are only two facts present: the zero value – that represents a fact

that is always valid, and used to generate another data-flow facts – and the C fact – that is our data-flow

fact representing the cursor that is leaked. C is generated from the zero value when c is acquired, and

flows through getContact until the end of getContactName since no release operation for cursor was

performed.

Cursor cursor = getContact(...)

return cursor.getString(...)

final Uri uri = Uri.withAppendedPath(...)

final Cursor c = cr.query(...)

return c

0

call-to-return
edge 

call edge

C

0 C

0

normal edge

C

0 C

0

return edge

C

0 C

resource leak in data-flow

control-flow edge

data-flow edge

Figure 4.2: Exploded super-graph for the example in Listing 4.1

The process to run the resource leak analysis is similar to when it is run in IntelliJ IDEA or as a

standalone tool. Next, we describe the steps for this process in detail.

1. Setup Soot. Required to configure Soot together with FlowDroid. We define the Soot options and

then create both FlowDroid’s and Soot’s configurations, which are used to setup the application to

be analyzed.

2. Pre-process Jimple. On more long and complex methods, Jimple sometimes aliases locals.

This creates false positives in our analysis, because the IFDS framework requires problems to be

distributive, which do not handle aliasing well. To prevent aliasing altogether, we perform a simple

transformation of Jimple code: whenever an instance of a resource is assigned to multiple locals

in a method, we change the name of these multiple locals to a single one of the form RESOURCE ID,

where ID is a unique number.

3. Register the transformers. In order to run the analyis, Soot requires the implementation of a

scene transformer, which is then associated to a specific pack. In our analysis, we have imple-

mented two transformers: one for the inter-procedural analysis and another for the intra-procedure
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analysis. The transformers are associated, respectively, with the whole-Jimple transformation pack

(wjtp) – that enables transformations on the entire Scene – and the Jimple transformation pack (jtp)

– that enables transformations on each individual SootMethod contained in the Scene.

4. Run the analysis. Having registred the scene transformers, the analysis can be started by apply-

ing the aforementioned packs

5. Gather performance metrics. In the last step of the analysis, we gather performance metrics.

If the user is running the analysis on IntelliJ IDEA, the total duration is presented in the Event

Log; if the user is running the standalone version, this information is presented in the output file

containing all the results.

The current version of our extension allows multiple analysis to be implemented using the IAnalysis

interface. This allows the creation of a visitor to connect the analysis’ results to the Results component.

4.3 Results Component

As mentioned in Section 3.3.2, the Results component is built upon the Analysis component and the PSI

API, while using some structures defined in Soot.

The AnalysisVisitor is responsible for visiting all the analysis that have run. This class is the core

of the Results component, and is responsible for: acquiring the results, collecting the possible leaks,

processing them, and sending them to their respective storage. Both existing analysis – intra-procedural

and IFDS analysis – have methods to extract the raw results. The raw results obtained from the intra-

procedural analysis are a Set of Locals, while the raw results from the IFDS analysis are a Set of Pairs,

which contain a ResourceInfo and a Local (i.e. our data-flow facts). The AnalysisVisitor has access

to these raw results and processes them independently by visiting both analysis.

Currently, the results obtained from the intra-procedural analysis do not suffer any kind of processing,

and are simply added to the final results. On the other hand, the results from the IFDS analysis go

through a 2-step process of collecting the location of possible leaks, and processing these locations to

filter false positives. Figure 4.3 provides an overview of the process done by the Results component.

From now on, we will focus on the process regarding the IFDS analysis.

4.3.1 Collection of Raw Results

To collect the results, we first need to know how to gather them after the analysis is finished. Heros’ IFDS

solver provides a method to gather results from individual statements of analyzed methods. The results

are a set containing the data-flow facts at any given statement of the analyzed methods. Considering
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Figure 4.3: Data overview of the Results component processes

the properties of our problem, we designed a simple collection algorithm. As previously said, our data-

flow facts are used to indicate if a given resource is acquired at some point in the code. If, in some

statement, we have a data-flow fact, it means that, prior to that statement, a resource was acquired and

has not yet been released. Having this in mind, our algorithm gathers, under certain conditions, the

return statements where there are data-flow facts present. The conditions in which we gather the results

depend mainly on the scope of the (possibly) leaked resource. For class-scoped resources, we are

interested to see if they are leaked in a callback of interest - onStop() or onPause(). If a class-scoped

resource was not released in these two callbacks, it is most likely leaked. For method-scoped resources,

there can be a leak if the supposed leaked resource is not the being returned by the return statement

and is leaked at this point – because this means that the program will lose reference to the supposed

leaked resource. A pseudo-code representation of the algorithm created to collect the raw results is

shown in Algorithm 4.1.

Algorithm 4.1: IFDS possible leaks location collection algorithm
begin

for each analyzed method m do
for each statement stmt in m do

Collect the raw results in stmt into results

if stmt is a ReturnStmt then
for each fact in results do

if (the fact’s resource is class-scoped and m is a callback of interest) or (stmt
does not return the fact’s Local and the fact’s resource is not class-scoped)
then

Collect the pair stmt and m

else if stmt is a ReturnVoidStmt then
if (the fact’s resource is class-scoped and m is a callback of interest) or (fact’s
resource is not class-scoped) then

Collect the pair stmt and m
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4.3.2 Processing the Collected Results

This step focus on filtering false positives collected in the previous step. When using our algorithm, it

is not enough to collect leaks at the end of a method’s execution – we have to keep in mind the inter-

procedural nature of the analysis, and that the collected leaks may not be real leaks (i.e. they can be

false positives). This problem can be presented in a simple example.

False positive example. Let us imagine that methodA acquires a resource r and then calls methodB

with r as a parameter. Then, methodB uses r but does not release it neither does return it. Then, after

the call to methodB, methodA releases the resource r, meaning that the resource is not leaked. In this

example, our analysis would propagate to methodB the fact that r was acquired in methodA. Then, our

algorithm would collect a leak in methodB – seeing that this method does not return the resource and that

there is a data-flow fact regarding r in the method’s return statement. Figure 4.4 shows the exploded

super-graph of this example, with methodA on the left and methodB on the right.

With this problem in mind, we developed the algorithm presented in Algorithm 4.2, to process the

collected results. The algorithm goes through the previously collected possible leaks and, for method-

scoped resources, checks if the callers of the method where the leak was found use the leaked resource

and also have the leak; if so, this means we have a leak. For class-scoped resources, there is a leak if

the resource was leaked in the method where it was supposed to be released.

methodB(r)

release(r)

(. . .)

return

0

call-to-return
edge 

call edge

R

0

normal  
edge

R

0 R

return edge

return

0 R

0 R

0 R control-flow edge

data-flow edge

acquire(r)

0 R

Figure 4.4: Example of a false positive of a resource leak
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Algorithm 4.2: IFDS leaks processing algorithm
begin

for each statement stmt and method m pair previously collected do
for each fact at stmt do

if fact’s resource is class-scoped then
if the declaring class of the resource in fact is the declaring class of m and the
place to be released of the resource in fact is m then

Collect the pair stmt and fact

else
for each caller of m do

if caller uses fact’s resource and fact’s resource is leaked in caller then
Collect the pair stmt and it fact

4.3.3 Result Storage and Presentation

As mentioned in Section 4.3, we implemented our tool to allow obtaining the results from both the intra-

and inter-procedural. To make this process uniform, we created the Leak data structure to represent, as

the name indicates, a leak. This is a very simple data structure, containing:

• resource - the Resource that was leaked

• leakedMethod - the SootMethod where the resource was leaked

• declaredMethod - the SootMethod where the resource was declared

• classMember - a boolean which indicates if the resource is class-scoped

• lineNumber - the line number in the source code where the resource was declared

This is the data structure used to store the final results for both analysis. Its class diagram is shown

in Figure 4.1. We also need to take into account how to store the results depending on how the tool

is being run – on IntelliJ IDEA/Android Studio or standalone. To know how to store the results, we first

need to evaluate how we want to present them to the user.

For the standalone version, the results are to be presented in Comma Seperated Values (CSV) files.

For this purpose, we simply store the leaks in three sets: one for the intra-procedural, one for the inter-

procedural analysis, and one containing the leaks from both analysis. The CSV files are generated at the

very end of the detection process, having the information contained in all the leaks, plus the class where

the resource was declared and the class where the resource was leaked, and performance metrics.

For the IntelliJ IDEA version, we wish to follow the current methodology in EcoAndroid, which is to

give warnings in the code, as well as to make them available as results of a code inspection. To allow

this, we first identify the PsiMethods corresponding to the leakedMethod in the reported leaks, and we
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map the leaks to the corresponding PsiMethod where they were leaked. To present them to the user, we

implement a code inspection responsible for visiting each PsiMethod in the PSI tree and checking, in the

reported results, if there are any leaks in the visited PsiMethods. At the end of the detection process,

we force IntelliJ Code Analyzer Daemon to restart, which causes the code to be inspected and code

warnings to appear without the user needing to run a full code analysis.

4.4 Integration with IntelliJ IDEA

Throughout this chapter we have explained how our analysis was integrated with IntelliJ IDEA and

Android Studio. In this section, we summarise this aspects and provide more insights on the integration.

When it comes to integration, we aim to maintain consistency with the current version of EcoAndroid

– even if we need to add new logic to the user interface of the plugin – and keep the interaction process

simple. The current implementation of EcoAndroid, which detects and refactors energy patterns, only

uses the IntelliJ SDK and the PSI API, meaning that the detection is already implemented within the

plugin, and therefore, integrated with the IDE. On the other hand, our analysis is implemented with other

static analysis frameworks, which forces us to think on how to integrate with the plugin and with the IDE.

There are three important aspects regarding the integration of our analysis in the EcoAndroid plugin:

(1) how the user will initiate the analysis, (2) how can the user know the current state of the analysis,

and (3) how will the analysis present the results to the user.

Initiating the analysis. When a user wants to run the resource leak analysis, they must go to menu

Analyze | Run Resource Leak Analysis. We achieve by implementing an Action in plugin.xml.

Then, the user selects the APK built from the current source code, and the analysis starts. How the

user starts the analysis is shown in Figure 4.5 and Figure 4.6.

Checking the state of the analysis. The lower toolbar of the IntelliJ IDEA shows the current running

tasks in the IDE. Our analysis is implemented as a task, which allows us to program information about

each step, so that its progress is shown in the lower toolbar. This can be seen in Figure 4.7. There

are current three steps shown to user: ”Setting up Soot”, ”Running intra-procedural analysis”, ”Running

inter-procedural analysis”. When the analysis is over, a popup appears, notifying the user.

Showing the results. As mentioned in Section 4.3.3, the results are shown in two different ways: as

warning in the source code, and as a report obtained when the user performs a Code Inspection. The

warning in the source code follow the current implementation for the warnings of the energy patterns;

however, they are accompanied by line markers, so the user can easily identify in which methods there
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Figure 4.5: Starting the resource leak analysis

were leaks reported. To implement this functionality, we used a code inspection, just like EcoAndroid

currently does for detecting energy patterns. The results of the resource leak analysis are given to the

inspections, which prompts it to highlight the leaked methods. The line markers in IntelliJ work similarly

to code inspections – they are implemented in the code and then described in plugin.xml. Both the

warnings in the source code and the line markers can be seen in Figure 4.8. The Code Inspection report

presents the full list of resource leaks, together with the source code of the method where the leak is

reported, as it can be seen in Figure 4.9.
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Figure 4.6: Choosing the APK to analyze

Figure 4.7: State of the analysis

Figure 4.8: Warning of a leak in the source code
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Figure 4.9: Full report of resource leaks
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In this chapter we describe the dataset used for evaluating our tool, and the process for collecting

and analyzing the results. In Section 5.1 we present the methodology used in our evaluation process.

Section 5.2 shows the results obtained in the evaluation of our tool.

5.1 Methodology

5.1.1 Resource Leak Dataset

As seen in Section 2.4, researchers have created public datasets and benchmarks containing resource

leaks in multiple applications. We have chosen DroidLeaks [13] as our golden standard for evaluation.

The DroidLeaks dataset provides information on resource leaks found on 32 popular and large-scale

open-source Android applications, taken from F-Droid. The authors collected a total of 292 resource

leaks from 33 resource classes, which include the 4 resources – Cursor, SQLite Database, Wakelock,

and Camera – our tool is able to identify.

The authors of DroidLeaks also evaluated 8 resource leak detectors with the dataset, to help future

researchers create and improve resource leak detection tools. For the evaluation of each tool t, the au-

thors defined two metrics: the Bug Detection Rate, denoted BDR(t), and the False Alarm Rate, denoted

FAR(t). A detected leak happens when a tool detects one of the specified leaks on the faulty version of

the application. A false alarm happens when a tool detects one of the specified leaks on the patched

version of the application (it should not since the leak is fixed).

The Bug Detection Rate and False Alarm Rate are calculated as follows:

BDR(t) =
# bugs detected by t on buggy app versions

# bugs experimented on t
(5.1)

FAR(t) =
# false alarms reported by t on patched app versions

# bugs experimented on t
(5.2)

The authors of DroidLeaks made the decision to evaluate only 116 of the 292 resource leaks found,

due to the labor-intensive work of compiling all APK found. The 116 leaks they have chosen also

include leaks from all the patterns described in their work which, according to them, is enough for their

evaluation. For our evaluation, we are only interested in resource leaks regarding the resources our tool

is able to detect. From those 116 resource leaks only 50 fit our criteria (herafter “reduced dataset”).

We will use the reduced dataset to evaluate our tool with DroidLeaks. Table 5.1 shows, regarding the

reduced dataset, the number of leaks from each resource class, as well as the applications where they

were identified.

There is a publicly available website 1 that contains all the information about the dataset. From the
1http://sccpu2.cse.ust.hk/droidleaks/
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Resource class # leaks Related applications

Cursor 38

AnkiDroid, AnySoftKeyboard, APG, BankDroid,
ChatSecure, CSipSimple, Google Authenticator,
IRCCloud, Osmand, OSMTracker, Owncloud,
SMSDroid, TransDroid, WordPress

SQLiteDatabase 3 AnySoftKeyboard, ConnectBot, FBReader
Wakelock 8 CallMeter, ConnectBot, CSipSimple, K-9 Mail,
Camera 1 SipDroid

Table 5.1: Subset of resource leaks evaluated in DroidLeaks

available information, there is a spreadsheet 2 containing the 292 identified leaks together with their

relevant information:

• name of the application where the leak was found

• the concerned class, i.e. the resource class

• the version of the application where the problem was discovered, and the version where the prob-

lem was resolved

• the problematic method, and the file where this method is implemented

• the bug report, if exists

• for the 8 evaluated resource leaks detectors, whether they detected the resource leak or not

• information regarding leak: if is related to component life cycle, if the resource escapes local

context, and the extent of the leak (complete leak, only in certain paths, etc)

Additionally, the authors of DroidLeaks provide the APK used in the evaluation they performed. There

is a total of 137 made publicly available3 – which includes the versions were the leaks were found and

the versions where the leaks were fixed. From what we have verified, only 129 APK were used in

DroidLeak’s evaluation of the 8 resource leak detectors. In our evaluation, we will consider the 137

available APK, as described next.

5.1.2 Data Collection and Analysis

To gather the results, we will run our analysis on the 137 provided APK by DroidLeaks (hereafter ”full

analysis”). We will first consider the evaluation with the reduced dataset to compare the efficiency of

our tool with the others evaluated in DroidLeaks. We will use the Bug Detection Rate and the False
2http://sccpu2.cse.ust.hk/droidleaks/project_data/droidleaks.xlsx
3http://sccpu2.cse.ust.hk/droidleaks/bugs/apks.php
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Alarm Rate, as to also compare with the other 8 tools evaluated in DroidLeaks. Additionally, we will

measure three metrics: precision, recall, and F-Score [48]. These metrics will be calculated based on

the full analysis. As for performance, we will calculate the average and median time that our tool took to

analyze the provided applications.

We ran our evaluation on the standalone version of our analysis, on an Intel i5-8265U (8 cores)

machine, with 8GB of RAM running Ubuntu 18.04.5 LTS. The process used to evaluate our tool is

summarized below:

1. Run our analysis in standalone mode on the 137 APK from DroidLeaks

2. Collect and organize the obtained results into a spreadsheet

3. Compare the obtained results with the reduced dataset to identify correctly detected leaks and

non-detected leaks (i.e. true positives and false negatives, respectively).

4. Manually categorize the remaining results (i.e. the results obtained and not described in the re-

duced dataset)

5. Calculate the analysis’ detection rate and compare with the tools evaluated in DroidLeaks, from

the reduced dataset

6. Calculate the remaining efficiency metrics – precision, recall, and F-Score – based on the full

analysis and false negatives obtained from DroidLeaks

7. Calculate performance metrics – average and median duration of the analysis – based on the full

analysis.

5.2 Results

5.2.1 Errors in the Analysis

From the 137 APK provided by DroidLeaks, our analysis failed to run on 30 due to call graph generation

failure in Soot and FlowDroid. We define a call graph generation failure as the failure to generate a

call graph in under 5 minutes. The applications suffering from this failure and their versions can be

seen on Table 5.2. For these applications, our analysis is unable to run and detect resource leaks.

Regarding evaluation on the reduced dataset, this means that the cursor leak on version 1747b81da8

of BankDroid can not be evaluated, but will be accounted in our evaluation as a call graph generation

failure. Regarding the evaluation of the full analysis, this means that we will only consider 107 out of the

137 APK provided by DroidLeaks.
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Application Versions

K-9 Mail

0a07250417, 0e03f262b3, 1596ddfaab,
2df436e7bc, 3077e6a2d7, 3171ee969f,
378acbd313, 57e55734c4, 58efee8be2,
71a8ffc2b5, 7e1501499f, acd18291f2

Cgeo
23bf7d5801, 253c271b34, 8987674ab4
e2c320b5f9, ea04b619e0, fb2d9a3a57

BankDroid
1747b81da8, 265504aa4, 2b0345b5c2,
bf136c7b0a, f4fbbfd966

Ushahidi
337b48f5f2, 52525168b5, 9d0aa75b84,
d578c72309

ConnectBot 2dfa7ae033, ef8ab06c34
CallMeter 4e9106ccf2

Table 5.2: Applications that suffered from call graph generation failure

5.2.2 Reduced Dataset

With everything considered in this Chapter, we evaluated our tool on the reduced dataset obtained from

DroidLeaks. For the 50 resource leaks in the reduced dataset, our tool was able to detect 9 (18%),

while failing to detect the remaining 41 (82%), meaning we achieved a Bug Detection Rate of 18%

and a False Alarm Rate of 2%. We have investigated the cause of this results and observed that, for

the 41 that our tool failed to detect, the two main reasons were due to Soot and Heros not analyzing

the method where the resource was leaked, which happened in 25 (61%) of the leaks, and also due to

special mechanisms used by some resources and not supported by our tool, which happened in 7 (17%)

of the leaks. Table 5.3 shows each cause for failure to detect the leaks in the reduced dataset, together

with their corresponding number of cases (percentage is calculated based on only the 41 leaks our tool

failed to detect, and does not account for 100% due to approximation errors).

Cause for failing to detect # of cases % of cases

Method not analyzed 25 61%
Logic not supported 8 20%
Unresolved bug in tool 5 12%
Call graph generation failure 1 2%
Call graph generation error 1 2%
Unknown cause 1 2%

Total 41 100%

Table 5.3: Causes for failing to detect leaks in reduced dataset

As mention in Section 5.1.1 and Section 5.1.2, the authors of DroidLeaks performed an evaluation
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of 8 resource leak detectors with their dataset, calculating their detection rate. Table 5.4 shows how the

tools evaluated in DroidLeaks and EcoAndroid performed on the reduced dataset.

Tool # experimented leaks
# detected leaks
(Bug Detection Rate)

# false alarms
(False Alarm Rate)

EcoAndroid 50 9 (18.0%) 1 (2.0%)
Code Inspections 41 32 (78.0%) 19 (46.3%)
Infer 38 23 (60.5%) 2 (5.3%)
Lint 38 12 (31.6%) 0 (0.0%)
Relda2-FS 9 7 (77.8%) 7 (77.8%)
Relda2-FI 9 3 (33.4%) 2 (22.2%)
Elite 8 7 (87.5%) 5 (62.5)
Verifier 8 4 (50.0%) 3 (37.5%)

Table 5.4: Performance of evaluated tools in DroidLeaks, from the reduced dataset

5.2.3 Full Analysis

Full reported leaks Unique reported leaks

Total apps analyzed 107

Number of leaks reported 312 127
Unclassified leaks 27 9
Errors 5 4
True positives (TP) 203 86
False positives (FP) 77 28
False negatives (FN) 41 (from reduced dataset)

Precision 0.725 0.754
Recall 0.832 0.677
F-Score 0.775 0.714

Table 5.5: Results obtained from full analysis

As previously said, we also evaluated our tool on all 137 avaliable APK provided by DroidLeaks. Due

to call graph generation failures on 37 APK, we only consider 107 for the evaluation of the full analysis

presented in this section.

Our tool reported a total of 312 leaks, from which 203 (65%) are true positives, 77 are false positives

(25%), 27 (9%) were not classified due to missing code in the application’s repository and due to the

leak being reported in an Android class, and 5 (1%) suffered from errors in the Jimple translation. We

obtained a precision of 72.5%, a recall (with false negatives based on the reduced dataset) of 83.2%,

and an F-Score of 77.5%.
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Resource
Full reported leaks Unique reported leaks

Total (%) TP (%) FP (%) Total (%) TP (%) FP (%)

Cursor 165 (53%) 108 (53%) 42 (55%) 63 (50%) 40 (47%) 14 (50%)
SQLite Database 114 (37%) 90 (44%) 20 (26%) 51 (40%) 43 (50%) 6 (21%)
Wakelock 31 (9%) 5 (3%) 13 (17%) 12 (9%) 3 (3%) 7 (25%)
Camera 2 (1%) 0 (0%) 2 (2%) 1 (1%) 0 (0%) 1 (4%)

Sum 312 203 77 127 86 28

Table 5.6: Results obtained from full analysis, organized per resource

We observed that some of the reported leaks were duplicated in different versions of the same

application. This phenomenon can be seen, for example, in WordPress: in four versions of this appli-

cation (57c0808aa4, 4b1d15cb26, 42de8a232c, and 3f6227e2d4) we have uncovered several identical

reported leaks. Since this happens in several applications, we decided to also present the results of

our tool taking into account only unique reported leaks. In this case, our tool reported 127 leaks, from

which 86 (67.7%) are true positives, 28 (22%) are false positives, 9 (7.1%) were unclassified, and 4

(3.1%) suffered errors in the Jimple translation. For the unique reported leaks, we obtained a precision

of 75.4%, a recall (with false negatives based on the reduced dataset) of 67.7%, and an F-Score of

71.4%. Table 5.5 summarizes the results obtained and the efficency metrics calculated regarding the

full analysis.

Table 5.6 shows the results obtained from the full analysis, from both all reported leaks and unique

reported leaks, but categorized by each resource. Percentages in each column are calculated based on

the sum of their respective column.

For performance evaluation, we recorded the time our tool took to setup and run the analysis. To

setup the analysis, our tool took, on average, 43941 milliseconds and, on median, 20577 milliseconds.

To run the analysis it took, on average, 3520 milliseconds and, on median, 3869 milliseconds. Table 5.7

shows this recorded times, as well as total time, presented in milliseconds and in minutes.

Setup Analysis Total

Average time (ms) 43941 3520 47461
Median time (ms) 20577 3869 24356

Average time (min) 0.73235 0.05866 0.79102
Median time (min) 0.34295 0.06448 0.40593

Table 5.7: Time performance of the analysis
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In this chapter we discuss the contributions provided by our extension to EcoAndroid, as well as

the shortcomings and possible improvements for our work. Section 6.1 describes the contributions of

our extension, as well as if our objectives were met. In Section 6.2 we discuss some of the limitations

of our work, ways to overcome them, and improvements that could be made in a future version of our

extension.

6.1 Conclusions

The main objective for this thesis was to extend EcoAndroid with automated detection of resource leaks

in Android applications. This result was achieved through the design and implementation of a fully-

precise context- and flow-sensitive inter-procedural static analysis with the IFDS framework. Our analy-

sis supports the detection of leaks regarding four frequently used and impactful Android resources, and

can be run in IntelliJ IDEA or Android Studio through EcoAndroid, and also as a command-line tool, if

needed. When using our tool to analyze 107 Android applications from the DroidLeaks dataset, we have

been able to detect 194 previously undetected leaks. Our analysis achieved a low Bug Detection Rate

due to problems in the frameworks used, but our False Alarm Rate was one of the best when comparing

to the 8 resource leak detectors evaluated in DroidLeaks. We also obtained a precision of 72.5% and a

recall of 83.2% when evaluating the leaks detected in the 107 applications provided by DroidLeaks.

6.2 Shortcomings and Future Work

Architecture. While we designed and implemented our extension with the creation of other analysis

in mind, the resulting architecture can be further improved. Taking into account the need to run the

analysis as a standalone tool, one can abstract the whole Analysis and Results components into a

separated module. This module could be implemented in such a way that could be used as a library

by any developer. This would allow, for example, a implementation of our analysis in another IDE like

Eclipse.

Use of static analysis frameworks. While static analysis frameworks like Soot provide the necessary

tools to build static analysis, these frameworks also have problems of their own. In our extension we

observed that Soot’s and FlowDroid’s call graph generation can sometimes fail, which makes it impos-

sible to run our analysis. Another problem that can also happen is the erroneous construction of call

graphs. Although that, in this case, it is possible to run the analysis, this can cause false positives or

false negatives. Unfortunately, we could not uncover the causes nor fix this type of failures.
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Improving intra-procedural analysis. As previously mentioned, although we have implemented an

intra-procedural analysis, our inter-procedural analysis outperforms it and so it is currently disabled.

The intra-procedural analysis could be revisited and improved as much as possible, with the goal of

implementing single-method resource leak analysis in EcoAndroid.

Special mechanisms used by resources. Throughout testing and evaluation of our analysis, we

uncovered that, for the resources supported, many possess different kinds of mechanisms that affect

how they are acquired and released, as discussed in Section 4.1. One massive improved to our tool

would be taking into account as many special mechanisms as possible, to improve the true positives

detected, and reduce the false positives.

Refactoring resource leaks. An obvious step in our extension would be to implement automated

refactoring of the detected leaks. This would require a greater expertise of how each resource works

and the leaks express themselves in the code, so that the refactoring would not impact the rest of the

application. A similar mechanism to the refactor of energy patterns could be used.

Broader evaluation. Although the user interacts directly with our extension, we did not perform user

tests due to time constraints. For future work, an evaluation regarding usability could be performed and

the interaction process improved based on these results.
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