
Epidemiological Models: SARS-CoV-2 in Portugal

Maria Beatriz Silva Santiago
mbeatrizsantiago@tecnico.ulisboa.pt
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Abstract

This analysis includes the computation of the level of under report, positivity rate, lethality and the (basic)
reproduction number accompanied by a new formula with a non-constant viral load. At last, there was fitting of
epidemiological models to the second and third wave of the pandemic in Portugal. To do so, we resorted to the SIR and
SEIRD models, where the latter had significantly better results. The error metrics used were squared errors and mean
absolute percentage error. For a more complete analysis, this process was also made per region and gender. Health care
systems endured a test like no other as COVID-19 patients filled up hospitals leading to increasingly crowded hospitals.
Overcrowded hospitals have severe consequences and for that reason, the proposal of a model that takes into account
the number of patients in the infirmary and in ICUs is the main contribution of this work.
Keywords: SARS-CoV-2, SIR Model, SEIRD Model, Reproduction Number

1. Introduction

Even though epidemics has been around for thousands
of years, its mathematical study is a relatively new field of
research. The first statistical study [7] developed in this
area was in 1662 by John Graunt. His small book con-
sisted of statistical analysis of weekly records of diseases
and casualties. It was not until the 19th and early 20th cen-
tury that remarkable breakthroughs concerning causes and
prevention of diseases were accomplished, paving the way
for mathematical modelling of infectious diseases. Major
progress was made from this point on.

The most influential contributions to the area are from
Kermack and McKendrick in 1927. Their famous trilogy
[11, 12, 13] captures diseases that established themselves
and persist in population. Their work considers a deter-
ministic epidemic model that takes into account susceptible,
infected and removed individuals.

Around the same time, the mathematical study of dif-
ferential equations was of the utmost importance, creating
a bridge between epidemics and its modelling. Regarding
ordinary differential equations, we follow the perspective of
[8] as a basic text in qualitative theory. The mathematician
Herbert Hethcote published groundbreaking work, such as
[3, 4, 5, 6], that were crucial to the fast development and
analysis of compartment models.

In 2015, the mathematical biologist Maia Martcheva pub-
lished her first book [14], an introduction to mathematical
modelling and analysis of infectious diseases. This book
covers ordinary differential equation models, which is the
foundation of this work.

With the global phenomenon of COVID-19, the study of
epidemiological diseases becomes of the utmost importance.
Suddenly, global economies had to come to an alt and peo-
ple’s livelihood were in danger. Mathematical models are of
great importance to get a better understanding of a given
system, providing us an opportunity to seek optimal per-
formances, intervention strategies and predictions about its

behaviour, all of which can be life saving.

The necessity to do further research on epidemic models
and make a thorough analysis of the evolution of COVID-19
in Portugal throughout the past year becomes clear. That
is the main goal of this work. Hopefully, this work will
pave the way for how to approach a future pandemic. To
fit epidemiological models, we will resort to square errors
metrics and mean absolute percentage error to choose the
best model to the given data. A similar type of work has
been made before in [1].

As the number of cases of COVID-19 increased, hospi-
tals were getting more crowded by the day. The overall
panorama was so worrying that some feared the collapse
of national health care systems. The main contribution of
this work is the proposal of a model that accounts for the
number of patients in infirmaries and intensive care units.
In terms of model fitting, a similar process will occur. The
only difference relies in choosing the best model with the
lowest mean error metric of the three curves.

The present work is organised as follows. Section 2 cov-
ers some basics regarding infections and its transmission.
This section also provides some mathematical background
for different types of models and computation of important
parameters. On Section 3 a brief overview of the evolution
of SARS-CoV-2 is provided, followed by a careful analysis
of the virus in Portugal. In this section, models discussed
in Section 2 will be fitted into the data. Finally, on Section
4 a new model is introduced, accounting for individuals in
infirmaries and in intensive care units.

2. Background
2.1. Basics: Infections, Transmission and Models

This subsection provides an introduction to the defini-
tions of infections, transmission, mathematical models and
key concepts [14, 21] in infectious disease epidemiology.

All species carry infections of a wide variety. Many are
harmless, some are beneficial, but some, the pathogens,
harm their hosts and lead to diseases. This article will focus

1



on the latter. When a transmission of the infection occurs
between two individuals it is usually called effective contact.
There are several ways to characterise the transmission of
a disease, including vertically/horizontally, direct/indirect
contact, airborne infection, droplet infection, vector-borne
and fecal-oral route. Some viruses are spread using multiple
mechanisms.

Once the pathogen establishes itself in the host, typically
it takes a certain period of time for the infectious agent to
replicate before being able to infect other individuals. To
understand the behaviour of infectious diseases and its dy-
namics, three essential time periods must be distinguished.
The latent period is defined as the time interval between the
infection of an host by a pathogen and when this host be-
comes infectious, i.e. capable of transmitting pathogens to
susceptible individuals. The incubation period refers to the
time period between exposure to an infectious agent and
the onset of symptoms of the disease. As for the infectious
period it refers to the period where an host can transmit
the pathogen to other individuals.

Time

Incubation period Clinical symptoms

Latent period Infectious period

t1 t2

t3

t4

t5

Figure 1: Summary of the relevant time periods.

Note that there might be individuals that make a poten-
tially disease transmitting contact, becoming exposed, and
may or may not develop the disease (typically are non infec-
tious). However, mathematical models often assume that
all exposed individuals develop the disease. Therefore, for
the purpose of this work individuals in the latent period
will be considered as exposed individuals.

There are different outcomes after an infection. Some
may be mild, causing little to no illness to their host, while
there are some more extreme that may be fatal. As far
as the duration of the infectiousness goes, it is usually de-
termined by the ability of the host to create an immune
response, or vaccine induced immunity.

Mathematical epidemiological models are developed to
help explain a system, study the effects of each component
and to help make predictions about their behaviour. Math-
ematical models consist of parameters and variables that
are somehow connected. These variables represent a part
of the system that can be quantified/measured.

In this work, ordinary differential equation models will be
used to model the distribution of infectious diseases in pop-
ulations. These models are nonlinear, dynamic, continuous
and deterministic.

2.2. Epidemiological Models
This subsection was written using [8, 14] which explore

two types of epidemic models, SIR and SEIRD model.

2.2.1 SIR Model

This model dates back to 1927 from the famous article
[10] of Kermack and McKendrick, and takes into account
susceptible (S), infected (I) and recovered (R) individuals.
This model supports itself on several assumptions: there
are neither births nor deaths in the population; the pop-
ulation is closed, there are no entries or exits to/from the

population; infected individuals are considered infectious;
recovered individuals are considered to have full immunity
and cannot be reinfected. Sometimes deceased individuals
are also included in this class.

The movement of individuals is unidirectional, i.e. an
individual cannot return to a previous class. Susceptible
individuals get infected according to β, the transmission
rate constant. Individuals leave the infected class at a per
capita probability per time unit ρ, known as recovery rate.

The model is given by the ODEs
S′(t) = −βS(t)I(t)

I ′(t) = βS(t)I(t)− ρI(t)

R′(t) = ρI(t),

(1)

with initial conditions S(0), I(0) and R(0). The population
remains constant. Adding all equations from (1), results in
N ′(t) = S′(t) + I ′(t) +R′(t) = 0 yielding N(t) = N , ∀t.

For a better understanding of the behaviour of this model,
a few computations are made with respect to the numbers
of susceptible and recovered individuals. By dividing S′(t)
for R′(t) and then, integrating and rearranging both sides,
it follows

S(t) = S(0)e
β
ρR(t). (2)

The number of recovered individuals is monotone and
bounded by N , and consequently S(t) > 0. Therefore, the
epidemics does not end. Some individuals always escape
the disease.

In order to solve the differential equations, let us divide
both equations

I ′

S′ =
βSI − ρI

−βSI
⇔ I ′ =

(
− 1 +

ρ

βS

)
S′, (3)

where one can inspect the behaviour of I(t). The infected
population arises at first reaching an all time high and then
declines.

A simple integration on both sides allow us to explicitly
attain I(t) as a function of S(t). Since S(t) is a monoton-
ically decreasing function, the maximum number of infec-
tions can be computed

I ′ = 0 ⇔ S(t) =
ρ

β
, (4)

which is an extremely important information when fighting
this type of disease. An important threshold is hidden in
the previous equation. The effective reproduction number
is

Rt =
β

ρ
S(t). (5)

2.2.2 SEIRD Model

Many infectious diseases have a latency period. Giving its
importance to how the spread of an infection can occur, this
particular model considers a new class, exposed individuals
(E). In addition, a class for the deceased individuals (D) is
also taken into consideration.

For an easier understanding of the model, Table 1
presents a summary of the notation of the model.
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Table 1: Summary of notation - SEIRD model.

β Transmission rate

1/σ Average latent period

1/ρ Average infectious period

γ Fraction of recovered individuals

The ODEs that define this model are

S′(t) = −βS(t)I(t)

E′(t) = βS(t)I(t)− σE(t)

I ′(t) = σE(t)− ρI(t)

R′(t) = γρI(t)

D′(t) = (1− γ)ρI(t),

(6)

with initial conditions S(0), E(0), I(0), R(0) and D(0).
Once again, this model is closed and consequently the pop-
ulation size remains constant, which is easily proven by
adding all equations from (6).

Linearization
Since the last two variables, R and D, can be obtained

using simple quadratures, the first three equations will pro-
vide full information on the behaviour of this model. With
the respective field, one can linearize the system near its
equilibrium point (1, 0, 0), resulting in

S′(t) = −βI(t)

E′(t) = −σE(t) + βI(t)

I ′(t) = σE(t)− ρI(t).

(7)

With the previous system, one can attain the formula

for the number of infected individuals: I(t) = eλt

N , where
λ is the dominant eigenvalue. If one considers the daily
growth rate a, where I(t + 1) = aI(t), the result λ = log a
follows. On the other hand, the eigenvalue can be computed
explicitly from the previous system. The transmission rate
β can be written as

β =
ρσ + ρ log a+ σ log a+ log2 a

σ
. (8)

Consequently, the basic reproduction number, R0, can be
computed as

R0 =
β

ρ
= 1 +

log a

ρ
+

log a

σ
+

log2 a

ρσ
. (9)

2.3. Herd Immunity
If the fraction of susceptible individuals is sufficiently low,

then the pathogen will not be able to successfully spread.
The reduction of susceptible individuals in a population is
achieved by individuals acquiring immunity, either through
natural infection or through vaccination.

Herd immunity defines itself as the indirect protection
from an infectious disease when a significant fraction of the
population is immune to the virus [19]. Herd immunity is of
the utmost importance since it allows immunocompromised
and younger people to remain unvaccinated.

The value of the reproduction number is required to com-
pute the percentage threshold of the population that must
be immune to block sustained transmission, i.e. the herd
immunity threshold

H = 1− 1

R0
. (10)

The herd immunity formula relies itself on a few assump-
tions. There must be an homogeneous mixing of individuals
within a population and all individuals must develop immu-
nity that provides a lifelong protection against the virus. In
real-world cases, population density differs immensely from
region to region and vaccines may not confer full immunity,
specially in new viruses where new variants can emerge.
With new variants, vaccines lose some of its efficacy result-
ing in a need to adjust the herd immunity value

Hadj =
(
1− 1

R0

) 1

Ve
, (11)

where Ve represents the vaccine effectiveness (the immunity
to the virus that the vaccine confers to an individual).

3. Analysis of SARS-CoV-2 in Portugal

Before entering into the analysis of any pathogen in
a given population, it is necessary to fully comprehend
how the virus spreads and its characteristics. SARS-CoV-
2 is a respiratory infectious disease and has the ability
to spread rapidly across all continents in our globalised
world. This virus can be spread through multiple ways:
contact with an infected person, touching a contaminated
surface, by droplet transmission of respiratory particles
that contain the virus and lastly by airborne transmission
droplets/particles suspended in the air for longer periods
of time and distance. All ages are susceptible to infection,
however clinical manifestations differ with age. As far as the
length of the latency and incubation period, recent studies
[17, 22] point to a shorter latency period.

3.1. Preliminary Analysis

The data here used is of public access and provided daily
in [20]. All the results here presented were obtained re-
sorting to the software Wolfram Mathematica. There are
several information of Portugal and its regions, including
number of confirmed cases (by age and gender), deaths,
recovered individuals, patients in the infirmary and ICU,
active cases, among others.

The first reported case was on the 2nd of March, however
the dataset starts on the 26th of February with 25 individ-
uals already in vigilance. All mentioned information was
reported daily, and the last day of the pandemic here con-
sidered is May 31st, 2021, which results in a total of 461
days.

One of the biggest problems when modelling this pan-
demic was the level of unreliability and inaccuracy of the
data. There were limitations regarding the number of tests
performed and most laboratories only being open during
the weekdays. Thus, to smooth the data, a 7-day moving
average was applied. There are three epidemiological waves
during this period, which are very clear on Figure 2(a),
where the number of daily cases is presented.

In order to fit epidemiological models into the data at our
disposal, we must take advantage of the number of infected
individuals. However, since the data provided by ”Direcção
Geral de Saúde”, the Portuguese health authority (DGS)
is unreliable, one must turn to other alternatives. For the
purpose of achieving a good approximation of the real num-
ber of infected individuals, one can take advantage of the
number of casualties. A recent article [2] used age specific
COVID-19 data from multiple countries to investigate the
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consistency of infection and fatality patterns. The infection
fatality ratio estimated for Portugal was 0.86% with a 95%
C.I. of 0.75 − 0.99%. With this information, and consid-
ering fourteen days from onset symptoms of COVID-19 to
death, we are able to compute the total number of cases.
The computation of the level of under report of cases follows
(see Figure 2(b)).
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Figure 2: New daily cases vs. ratio between the number of
cases reported and the number of estimated cases.

Also, if we know how much time an individual spends in-
fected, the number of active cases per day can be computed.
Consequently, the desired real number of infected individ-
uals for each point in time can be obtained. Two data sets
were created considering 7 and 14 days to recover. These
two curves and the original provided by DGS (presented in
Figure 3) will be used to fit epidemiological models in the
next section.
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Figure 3: Curves for the number of active cases.

There are several indicators that can help us have a bet-
ter understanding of how the pandemic is evolving. An
important indicator that a new wave may be emerging is
the positivity rate, the daily percentage of performed tests
that are actually positive. If the percentage of positive tests
starts increasing, it is a good indicator that the level of
under reporting is increasing and consequently, more tests
should be performed. During the weekend the number of
performed tests is reduced given that some laboratories are
only open on weekdays, and for this particular reason a 7-
day moving average is performed to stabilise these weekly
irregularities.

As it can be easily perceived on Figure 4(b), there were
spikes in the positivity rate representing all three waves.
This actively demonstrates that there was an higher number
of unreported cases during these periods.

Another indicator that help us evaluate the pandemic is
the number of individuals hospitalised. As we know, the
number of resources available is limited, whether it is in
terms of personnel or ventilators. Throughout time, the
number of beds available in the ICU for COVID-19 patients
has been adjusted according to the needs, but nonetheless
there is a ceiling for the maximum capacity of critical beds.
This value was reported to be 900 during the third wave of
the pandemic, even though an extra 4 critical beds above
this threshold were occupied by February 5th.
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Figure 4: On the left is the comparison between the number
of performed tests (blue line) and the number of positive
tests (purple line). On the right, the positivity rate (%) is
presented.
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Figure 5: The number of hospitalisations (infirmary and
ICU) is presented by a blue line. The purple curve repre-
sents the number of individuals in intensive care units. The
green line stands for the number of daily deaths.

Not only the population density is relevant when fighting
a virus, but also how elderly the population is on different
regions. Alentejo is the region with the most elderly pop-
ulation, followed by Centre of Portugal, as stated in [18].
The report [16] published in 2020 by the Organisation for
Economic Co-operation and Development (OECD) declares
Alentejo as the region with the lowest ratio of hospital beds
per 1000 inhabitants, followed in order by Algarve, Centre
of Portugal, North and Lisbon and Tagus Valley. It is ex-
pected that regions with worse scores on these factors to be
more likely to have an higher case fatality rate (CFR).

To compute the daily CFR, we can consider a 14-day gap
from the moment an individual tests positive for SARS-
CoV-2 to death. With the goal of smoothing the data, a
7-day moving average is performed. For the sake of having
more reliable computations, we will solely compute this ra-
tio during the time period where the number of deaths were
more significant, i.e. during the second and third wave. Our
suspicions are confirmed when observing Figure 6, where
the orange curve representing Alentejo stands out for the
worst reasons. For the most part, Alentejo has the high-
est CFR of all regions achieving an extremely high value of
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Figure 6: Case fatality ratio per region. The black curve
represents the overall CFR in Portugal.
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11.9213% on January 16th, 2021. The other regions have
a CFR that does not differ as much, even though there is
some relevance in pointing out that from all the curves,
the Centre of Portugal scores higher as expected from the
information in the previous paragraph.

3.2. Reproduction Number Computation
The reproduction number is a very important indicator in

order to have a better understanding on how fast a pathogen
is spreading. Hence, we must compute how many individ-
uals does in fact an infected person transmits the virus.

3.2.1 Robert Koch Institute Formula

The Robert Koch Institute (RKI) published a report [9]
with an empirical formula for the Rt. This formula consists
on studying the number of new daily cases, by considering
a moving given window of time to check the number of
new cases that emerge from the wave of infected from that
previous time. The formula is as follows

Rt,τ =

∑t
i=t−τ+1 Ei∑t

i=t−τ+1 Ei−ν

, (12)

where l the time lag corresponding to the latent period and
τ represents the time an individual spends as infectious.
The RKI assumes a time lag ν = 4 and considers two possi-
ble scenarios, τ = 4 or a more stable 7-dayRt value (τ = 7).
On Figure 7 is a visual representation of the formula, where
for the computation of Rt+11 it is considered that the new
cases in the blue box originated from contacts with individ-
uals that were initially infected during the purple period.

. . . Et Et+1 Et+2 Et+3 Et+4 Et+5 Et+6 Et+7 Et+8 Et+9 Et+10 Et+11 Et+12 . . .

Figure 7: Representation of Rt+11 with τ = 7 and τ = 4.

A big advantage of this formula is that allows the com-
putation of the reproduction number of the current day.

On Figure 8 the reproduction number for each day is
represented for an infectious period of τ = 4 and τ = 7, from
left to right. As expected, a 7-day period of infectiousness
creates a more stable and smoother Rt. It is also visible
when the pandemic waves occurred.
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Figure 8: Reproduction number in Portugal using the RKI
formula. The black line represents the important threshold
of Rt = 1.

3.2.2 Non-constant Viral Load Formula

Throughout this pandemic, we also resorted to a new em-
pirical formula to compute the reproduction number. In a
very similar manner, we took advantage of the new daily
cases and a 7-day infectious period. The major difference
with this formula relies on the fact that here we consider

that SARS-CoV-2 viral load is not constant during the in-
fectious period, and therefore an additional weight must be
added. The viral load will follow a Gaussian distribution
with its peak in the middle of the infectious period. The
formula is

Rt =

∑t+ω
i=t−ω wi−t+4Ei∑t+ω

i=t−ω wi−t+4Ei−ν

, (13)

where Ei is the number of new cases on day i, ν is the num-
ber of days in the latency period, wj with j ∈ {1, . . . , τ}
is the weight associated with jth day of infection, and
ω = ⌊ τ

2 ⌋, with τ an odd number (of days spent as infec-
tious). A disadvantage when comparing equations (12) and
(13) is that the latter will always compute the reproduction
number with a ⌊ τ

2 ⌋ days delay.

Similar to the RKI, a latency period of 4 days and an in-
fectious period of 7 days will be considered. As for the
percentage of viral load on each day, it will be consid-
ered a Gaussian distribution with mean value µ = 0 and
standard deviation σ = 2, leading to the weight vector
w ≈ (0.325, 0.607, 0.882, 1, 0.882, 0.607, 0.325).

One major disadvantage of this formula is that it com-
putes the reproduction number with a delay of 3 days, which
can be an important factor when fighting a pandemic on real
time. Since there are several variables that might influence
the value of the reproduction number in real-world scenar-
ios, a 10% error margin can be considered (see Figure 9).
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Figure 9: Reproduction number using the number of active
cases and the viral load during a 7-day infectious period
follows N (0, 4).

3.3. Model Adjustment

Here we will use the SIR and SEIRD model to fit into the
data at our disposal. To properly measure which epidemio-
logical model is the best fit, some error measurements [15]
were considered (mean absolute percentage error (MAPE)
and square errors metrics).

With the goal of adjusting the models discussed in Sec-
tion 2, the class that we must try to replicate with the epi-
demiological models is the infected class. The models were
fitted into the second (from September 13th to December
26th, 2020) and third wave (from December 26th, 2020 to
February 28th, 2021) of the pandemic.

The functions were implemented on Mathematica, one
for each model. At each time step, with a different set of
parameters, we resorted to command NDSolve to find a nu-
merical solution to the ordinary differential equations. The
method used by this command is automatic, meaning that
accordingly to the set of ODEs given, it will be chosen the
method that best fits the problem. This step is followed
by computing the error metrics (SSE, MSE, RMSE and
MAPE) between the numerical solution obtained via Math-
ematica and the number of infected individuals in Portugal.
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Finally, the function returns the models that had the best
scores in terms of square errors and MAPE.

Last but not least, the SEIRD model requires the knowl-
edge of how many individuals are already bearing the virus
but as non-contagious (i.e. in the exposed class) for the ini-
tial condition of the ordinary differential equation. To solve
this problem, we will consider that the number of individ-
uals in the exposed class is a ratio of how many are on the
infectious class. Thus, a variable pe is going to represent
the ratio between the number of individuals on the exposed
class and the ones on the infectious class. This ratio will be
tuned alongside the parameters of the model.

3.3.1 Second Wave

Focusing ourselves in the second wave, it lasts 105 days
and accounts for a total of 4696 casualties during this time
gap. For all three data sets, the curve does not have the
common shape known of epidemiological models. It has
a steady increase during a month and a half, but then it
stabilises in a dangerous area, leaving open the possibility
of major outbreak if a significant event were to disturb the
sensitive system, which unfortunately did occur with the
Christmas’ celebrations.

Table 2: Parameters and error measurements for the models
that best fit each data for the second wave.

Parameters Error Measurements

β σ ρ pe RMSE MAPE (%)

D
G
S

SIR 0.27 - 0.24 - 6446.64 9.56513

SEIRD
0.53 0.42 0.44 0.3 3995.62 8.55783

0.50 0.45 0.42 0.3 4736.89 8.29674

7-
d
ay SIR

0.46 - 0.4 - 5181.58 17.5323

0.39 - 0.34 - 8469.04 17.1954

SEIRD 0.87 0.5 0.7 0.26 6776.08 12.0944

14
-d
ay

SIR
0.34 - 0.28 - 11205.5 21.2055

0.29 - 0.24 - 12432.1 14.938

SEIRD
0.52 0.47 0.4 0.25 8868.81 9.05434

0.49 0.5 0.38 0.25 8984.05 8.5526

The first thing that stands out in Table 2 is how the
SEIRD models scored better. This was expected since one
of characteristics of SARS-CoV-2 is the existence of a la-
tency period that varies from 2− 5 days. All these models
indicate that the number of days before an individual be-
comes infectious (1/σ) range from 2 to 2.38. As far as the
infectious period goes in the SEIRD models, there is the es-
timation of values from 2.27 to 2.63 days for the DGS and
14-day data sets. The 7-day data set indicates a sightlier
smaller time period of 1/ρ ≈ 1.43 days. The SIR model
only has a period for the infected class, and consequently
it was expected values for this time period at least equal
to the ones attained for the infectious class in the model
referred previously. This sentence can be corroborated by
the values on Table 2, where the values for this time period
range from 2.5 to 4.17 days.
One should also be aware when using the RMSE to com-

pare different data sets. A downside of this error metric is

the inability to adjust to different scales, resulting in a bi-
ased estimator that would give more importance to bigger
values. Thus, when comparing the three data sets we must
look at the MAPE scores. On Figure 10 are presented each
data set and the model that obtained the best MAPE score.
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Figure 10: Visual representation (by a black line) of the best
models presented in Table 2 for each data set in terms of
MAPE. The data sets are represented by the purple points.
The remaining models will be represented with the same
color scheme.

With Figure 10, it becomes clear the dangerous period
where the pandemic could start its downward trend or a
new wave.

3.3.2 Third Wave

The third wave is shorter, but much deadlier. It lasts 65
days, and is responsible for around 9761 deaths, disregard-
ing that some in the beginning still belong to the second
wave and others occur after we consider this wave as over.
In consequence of being the deadlier wave, the data sets that
were generated from the daily deaths are a more accurate
representation of a epidemiological curve of an outbreak, so
better results are expected.

Similar to the previous wave, all the SEIRD models point
to latency periods that range from 2 to 2.5 days. For the
7-day data set, the model seems to have a bit of trouble fit-
ting since the values obtained for the remaining parameters
differ quite a bit in comparison to the other data sets. In
fact, this is the only scenario where the SIR model scored
better in terms of MAPE. As for the infectious period, even
though all point to relatively small time periods, there is a
bit of discrepancies when comparing data sets. The SEIRD
model in the DGS data set, states that a person remains
infectious for an average of 1.82 days, whereas in the 7-day
data set there is a slightly smaller infectious period of 1.43
and 1.47 days, depending on which error metric is used.

The model that scored the best out of the three data sets
was the one were a 14-day recovery period was considered.
This model states an infectious period of 1/ρ ≈ 2.60 and
2.56 days for the RMSE and MAPE best models, respec-
tively. The only reason this model did not have a better
score can be perceived on Figure 11(c). All SEIRD models
had a hard time fitting the initial days of the third wave of
the pandemic. The level of under report was not as high in
the beginning of the wave as one expected and hence, the
parameter pe was of the utmost importance to regulate the
initial number of infected individuals.

Even though the SEIRD model for the DGS data had
quite a low score, one can notice that fitting the shape of
the wave was not ideal. This did not happen with the other
two data sets, corroborating once again the unreliability of
the data provided by DGS.

A common occurrence on all results was the unexpected
values of the low time an individual spends as infectious.
The models return average infectious periods that vary from
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Table 3: Parameters and error measurements for the models
that best fit each data for the third wave.

Parameters Error Measurements

β σ ρ pe RMSE MAPE (%)

D
G
S

SIR
0.37 - 0.31 - 18169.5 13.9784

0.34 - 0.29 - 20615.1 13.3031

SEIRD
0.75 0.42 0.55 0.25 8394.9 6.87465

0.75 0.4 0.55 0.3 8692.67 6.82885

7
-d
ay

SIR
0.54 - 0.41 - 12710.5 10.787

0.56 - 0.42 - 14111.8 8.5582

SEIRD
1.1 0.49 0.7 0.4 9607.74 11.4101

1.05 0.5 0.68 0.4 10085.1 9.58651

14
-d
ay

SIR
0.366 - 0.256 - 32499.4 16.4994

0.388 - 0.27 - 38439.2 12.8535

SEIRD
0.66 0.415 0.385 0.18 11635.3 4.86516

0.67 0.41 0.39 0.18 11724 4.64901
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Figure 11: Visual representation of the best models pre-
sented in Table 3 for each data set in terms of MAPE.

one to three days. From scientific research on the virus,
this value should be higher, around fourteen days in most
cases even though the viral load might not be sufficiently
high during this whole period to make an effective infec-
tion. This phenomenon can be explained by people’s be-
haviour. In real-world scenarios, with a disease as danger-
ous as COVID-19, once a person discovers that it is in-
fected, the normal course of action is to isolate himself in
order to avoid infecting others that could potentially lead to
severe diseases/complications and eventually death. Con-
sequently, this individual will only be at risk of infecting
others for the first three days, until he realises that he car-
ries the virus.

Nevertheless, the results here achieved, particularly the
last scenario, are remarkable taking into consideration that
the curves we were adjusting our models into have a lot of
observational error associated.

3.4. Herd Immunity Threshold

Hopefully, vaccines for infectious diseases are able to be
fabricated in order to save a great number of lives. As
discussed in Subsection 2.3, the percentage threshold of the
population that must be immune, either by infection or
vaccination, allows a better understanding of the disease
and consequently, governments can have the most educated
decisions in regards of fighting the pandemic.

As mentioned previously, to compute the herd immunity
threshold one can use of the basic reproduction numbers
computed in Subsection 3.2, or one may use equation (9) if

the values σ and ρ are known. For the latter and similar
to Subsection 3.2, we will consider a latency period of 4
days and an infectious period of 4 and 7 days. We will also
take into account the best results obtained in the previous
Subsection for each wave.

Table 4: Basic reproduction number and herd immunity
values.

Input Parameters Results

σ ρ R0 H Hadj

1/4 1/7 10.7097 0.906627 1

1/4 1/4 7.27586 0.862559 0.980181

0.45 0.42 3.90608 0.743989 0.845442

0.41 0.39 4.24918 0.764661 0.868933

- - 3.38217 0.704331 0.800377

- - 3.83298 0.739106 0.839894

- - 3.91142 0.744338 0.845839

All computations indicate that at least 70% of the popu-
lation must be immune to the virus if there were no variants
besides the original one. With the Delta variant, the previ-
ous threshold rises to at least 80%, requiring an extra effort
on behalf of national health organizations to achieve such
goal.

By the end of May, a total of 809.135 individuals have
been reported to recover from the disease and at this point,
1.987.389 people have been fully vaccinated. This rep-
resents approximately 27% of individuals immune to the
virus, which is nowhere near enough to the herd immunity
threshold and to allow the population to fully return to the
lifestyle one had before COVID-19.

Note: After we closed our study, a number of nearly
85% individuals were vaccinated which is very close to the
number we believe to be safe to return to our almost regular
pre pandemic lives.

4. Proposal of a New Model
An alarming number of new cases occurred on a daily

basis during the fall and winter of 2020/21, leading to in-
creasingly crowded hospitals. The consequences of over-
crowded hospitals include shortage of medical beds, delays
in laboratory tests, shortage of healthcare professionals, in-
creased waiting times, higher mortality, emotional/physical
exhaustion of health care professionals and not to mention
economic costs. The creation of a model that considers
hospitalised patients was necessary.

4.1. SEIHCRD Model
In order to create the desired model, two new classes were

added to the preexisting model SEIRD: hospitalised (H)
and critical (C) individuals. Please note that even though
patients in critical conditions (ICU) are indeed hospitalised,
here we consider the class of hospitalised formed only by
those in the infirmary. In contrast to the previously men-
tioned models, more variables must be considered to cor-
rectly represent this new model (see Table 5). The com-
partment flowchart for the model is displayed in Figure 12,
where the scenario with overcrowded hospitals, specifically
saturation of ICUs, is taken into account by modifying the
flow between classes. This model will consider infected in-
dividuals to move directly to the critical class, and then
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Table 5: Summary of notation for the SEIHCRD model.

β Transmission rate

1/σ Average latent period

1/ρ Average infectious period outside the hospital

1/τ Average period spent in the infirmary

1/γ Average period spent in the ICU

Th Rate of individuals in the hospital (infirmary and ICU)

Tc Rate of ICU patients from the ones in the hospital

Lh Lethality in the infirmary

Lh Lethality without attending the hospital

Lc Lethality in ICU

move either to the infirmary or the deceased class. Suscep-
tible individuals are automatically considered as recovered
if they are vaccine-immune to the virus (transitioning from
class S to class R). The rate at which the vaccination occurs
is explained by f(t, S(t)).
Similarly to models that take into account the latency

period, an extra parameter hides beneath the system when
fitting it to real data. Generally, during the latency pe-
riod it is unbeknownst to the individual the bearing of such
virus, making it hard for the scientific community to ac-
curately predict the number of exposed individuals. Even
though this model is a better representation of the evolu-
tion of a virus in the modern day society, it will have other
troublesome problems of its own, including an high number
of parameters to tune leading to computationally expensive
algorithms.

The model is modelled by the system of equations

S′(t) = −βS(t)I(t)− f(t, S(t))

E′(t) = βS(t)I(t)− σE(t)

I ′(t) = σE(t)− ρI(t)

H ′(t) = Th(1− Tc)ρI(t)+

γ(1− Lc)C(t)− τH(t)

C ′(t) = (1− Incr(t)Sat(t))[ThTcρI(t)− γC(t)]

R′(t) = (1− Th)(1− Lh)ρI(t)+

(1− Lh)τH(t) + f(S(t), t)

D′(t) = (1− Th)LhρI(t)+

LhτH(t) + γLcC(t)+

Incr(t)Sat(t)[ThTcρI(t)− γC(t)],

where Ncb is the number of beds available in the ICU. Func-
tion Sat(t) will be responsible for monitoring if there is sat-
uration in the intensive care units. If all beds destined to
COVID-19 patients (Ncb) are occupied, the function will
return 1, otherwise Sat(t) = 0. As for function Incr(t),
it will indicate whether the number of ICU patients is in
an downward trend (Incr(t) = 0) or in a upward trend
(Incr(t) = 1). The previous functions are represented as
sigmoids to avoid discontinuity points

Sat(t) =
1

1 + e−10(NC(t)−Ncb)
(14)

Incr(t) =
1

1 + e−1010(ThTcρI(t)−γC(t))
. (15)
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Figure 12: Compartment flowchart for SEIHCRD model.

Finally, to have a mathematically well defined system of
ODEs, initial conditions S(0), E(0), I(0), H(0), C(0), R(0)
and D(0) must be established. The total population size N
remains constant for all time t, and can be obtained by
adding all classes.

4.2. Model Adjustment

Before starting with model fitting and its results, it must
be pointed out that only the third wave will be taken into
consideration here since it is the one with higher values of
hospitalisations, ICU admissions and deaths. During this
time period, some vaccines had already been administrated,
specially to health care workers, however it was a small por-
tion of individuals and consequently, the function f(t, S(t))
will be disregarded. Once again, we will resort to the three
data sets of infected individuals at our disposal.

Regarding error measurements, there is a need to use a
metric that incorporates the fit of all three curves simultane-
ously. This is where the square errors metrics lose relevance
on account of disregarding the scale of each curve. There-
fore, the only observational error here used will be the mean
absolute percentage error (MAPE). We will compute this
value for all curves with a given set of parameters and then
proceed to calculate the mean of these three values. The
chosen set of parameters shall be the one with the lowest
mean MAPE value.

Considering the large amount of parameters that can be
tuned, we will take advantage of the best set of parameters
obtained for the SEIRD model in the Subsection 3.3 for
each dataset. Nonetheless, that still leaves us with seven
variables to adjust. At this point, information from scien-
tific articles is extremely relevant, allowing us to start with
a more or less accurate interval for where the parameter
value must belong.

Two particular parameter need some extra attention.
The way our model was created, there is not a constant
to regulate how much it takes an individual to leave the
infected class in case he is moving to the infirmary or to
the ICU. The parameter ρ only controls how much time it
takes to leave class I, disregarding where the person is head-
ing to. One solution to overcome this obstacle is to write
Th = T ′

hth
1
ρ , where T

′
h represents the percentage of infected

individuals that will go to the hospital (infirmary and ICU)
and 1

th
is the time it takes for an individual to leave the

infected class if moving to the infirmary. A similar process
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will occur for the value of Tc, except in this case it will help
us separate the infirmary from the intensive care units and
we will have Tc = T ′

ctc
1
th
. The nomenclature follows the

same pattern: 1
tc

is the time it takes to leave the infected
class to go to the ICU and T ′

c is a fraction of T ′
h representing

the number of hospitalised individuals that will go to ICUs.
The values, T ′

h and T ′
c, for each data set are presented on

Table 6. These values were obtained by taking the mean of
each ratio during the third wave.

Table 6: Mean of T ′
h and T ′

c during the third wave period.

DGS data 7-day data 14-day data

T ′
h 0.0393962 0.0614479 0.0254821

T ′
c 0.154776 0.154776 0.154776

Excluding the parameters obtained from the best fittings
of SEIRD models in Table 3, the best set of parameters for
each dataset is presented on Table 7. The error metrics
obtained for each model are presented on Table 8.

Table 7: Parameters of the best SEIHCRD model for each
data set.

τ γ Th Tc Lh Lh Lc

DGS 0.285714 0.203008 0.0256451 0.108343 0.077 0.0005 0.4

7-day 0.0916667 0.04 0.00451823 0.0742926 0.14 0.0011 0.48

14-day 0.11 0.05 0.00458367 0.0773881 0.08 0.0011 0.49

The error measurements obtained for the DGS data are
quite good, except the hospitalised curve that scored an
19% error. Taking a closer look on Figure 13(a), the slightly
poor adjustment on the hospitalisations’ curve is confirmed.
This curve has a particular hard time fitting into the real
data regardless of the imputed parameters. As discussed
previously, the number of active cases provided by DGS
are severely affected by under reporting, especially in the
beginning of the third wave, leading to an uneven curve
with different levels of under report throughout time. For
this particular reason, the parameters have trouble tuning
since there are a lot of irregularities.

Table 8: Mean absolute percentage error for the three rele-
vant classes and its mean value, with the parameters from
Table 7.

Hospitalised Critical Deceased Mean value

DGS 19.1644 7.04538 3.18098 9.79691
7-day 5.2134 4.11551 2.86027 4.06306
14-day 8.00091 4.61049 1.80115 4.80419

It must be also pointed out that even though the MAPE
for the deceased curve in the DGS data set is very satisfac-
tory, it can be perceived (see Figure 13(c)) that the model
is increasing faster in the last few days than the real num-
ber of deaths, a direct consequence of the poor adjustment
of the infected curve.

The data sets built from the number of deaths achieve
a very low score (≤ 5%) on the MAPE considering the
amount of bias in the data (for example irregularities on the
number of tests performed and uneven population density).
The good fit of such models is confirmed when inspecting
Figures 13(d) to 13(i).
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Figure 13: Visual representation each model presented in
Table 7 for the three curves of interest.

The admission time in infirmary and ICU is overesti-
mated. This is a problem of this method. Nevertheless,
the second and third modelation in this section are very
good to estimate the actual numbers observed and can be
used in the future to predict pandemic waves.

All three fittings have mortality rates (in the infirmary
and ICU) within the expected range. The model attained
from the DGS data points to 3.5 days spent in the infirmary
and close to 5 days in the ICU, whereas the other two data
sets indicate a longer stay in the infirmary and ICU, around
10 and 20− 25 days, respectively.

One of the biggest struggles in this section was the
amount of parameters that needed tuning and the differ-
ent levels of sensitiveness. While in the previous section,
one had few parameters to tune and it was possible to try
a great amount of combinations with a given error, here it
was not possible to do so in a reasonable amount of time.

5. Conclusions and Future Work

The computation of reproduction number, Rt, was ex-
tremely important to understand on a daily basis how the
pandemic was evolving. Later on, these estimations were
helpful to compute the herd immunity threshold. All val-
ues attained for Hadj were very close to the 85% threshold.
The Portuguese government established, after we closed our
study, this threshold to be the goal of vaccines adminis-
trated in order to start returning to life pre COVID-19.

From the two models fitted into the data, SIR and SEIRD
model, the latter was the one with the best results. The
major difference from these models is that the SEIRDmodel
accounts for individuals in the latency period, which is a
characteristic of SARS-CoV-2, explaining why it performed
better. On Section 3, we were able to obtain models with
a mean absolute percentage error lower than 5% which is
remarkable considering the amount of bias in the data. Not
only the irregularities in the number of tests performed (due
to closed laboratories and lack of testing) took a toll on the
reliability of the data, but also factors as uneven population
density and more importantly, how unpredictable people’s
behaviour can be.
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Regarding the latency period, all SEIRD models indicate
a period of 1.5 to 4 days, which are results that confirm the
literature on the disease.

As far as the model proposed in Section 4, the results are
quite satisfactory. The mean MAPE of the three curves of
interest was particularly low (smaller than 5%) for the two
data sets built from the number of deaths. Since the fit of
the number of infected individuals for these models came
from Subsection 3.3, we are able to obtain models with
extremely good fits on four curves (infected, hospitalised,
critical and deaths). Nonetheless, unexpected results arose
when computing the time it takes to arrive to the hospital
and LoS in the ICUs. We were not able to fully grasp why
these values were so high, but one should always keep in
mind the amount of errors associated in the process, namely
under report of cases, oscillation in the number of daily tests
performed and population density.

The major result that should be captured from this work
when a similar pandemic falls upon us is the need for a daily
study on the evolution of the virus on all indicators.

The fitting of the models was made on a trial and er-
ror, i.e. with a given possibilities for a each parameter, the
function would try all scenarios and choose the one with the
best score. This type of programming is extremely expen-
sive, which explains the problems we had on the last section.
The enhancement of these functions should be made.

Another direction of work relies with the use of dynamic
models, where the transmission rate β varies throughout
time. This type of dynamism could be very useful to take
advantage on real world scenarios since the rate at which a
disease spreads can depend on numerous factors.

If there was further information on each infected individ-
ual, a wide range of possibilities to analyse the data would
emerge. With information regarding symptoms, time spent
in the infirmary and ICU, age, preexisting medical condi-
tions, and so on, one could take advantage of machine learn-
ing algorithms to check, for example, which variables have
an higher relevance when predicting which individuals will
attend the infirmary, ICU or even death. With this type of
information, the door to the field of survival analysis would
also open.
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