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Abstract

Mathematical models are key tools to guide public health measures, and the field of epidemiological

modelling must play an intrinsic part when deciding how to tackle a pandemic. The complexity of

epidemiological models varies. The approach chosen by epidemiologists deeply depends on how much

is known about the disease, purpose of the study and the amount/quality of the data available. Despite

unavoidable uncertainties and errors associated with the data, models can reveal extremely important

information such as predictions on the number of infected and casualties, how vaccination efforts will

impact the disease’s development, and how one can limit the spread of the disease.

Over the last decades remarkable developments have been made in the field and with the global

phenomenon of COVID-19, the opportunity to study a pandemic in the modern days arose. In this work a

thorough analysis of the evolution of SARS-CoV-2 took place. This analysis includes the computation of

the level of under report, positivity rate, lethality and the (basic) reproduction number accompanied by a

new formula with a non-constant viral load.

At last, there was fitting of epidemiological models to the second and third wave of the pandemic in

Portugal. To do so, we resorted to the SIR and SEIRD models, where the latter had significantly better

results. The error metrics used were squared errors and mean absolute percentage error. For a more

complete analysis, this process was also made per region and gender.

Health care systems endured a test like no other as COVID-19 patients filled up hospitals leading to

increasingly crowded hospitals. Overcrowded hospitals have severe consequences and for that reason,

the proposal of a model that takes into account the number of patients in the infirmary and in intensive

care units is the main contribution of this work.

Keywords: SARS-CoV-2, SIR Model, SEIRD Model, Reproduction Number
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Resumo

Modelos matemáticos são ferramentas chave para gerir medidas de saúde pública e como tal, a

área de modelação epidemiológica deverá ser uma parte intrínseca no processo de decisão de como

enfrentar uma pandemia. A complexidade dos modelos epidemiológicos varia e consequentemente, a

abordagem escolhida pelos epidemiologistas irá depender de diversos fatores. Os mais importantes

incluem o quão vasto é o conhecimento sobre a doença, o objetivo do estudo e a quantidade/qualidade

dos dados disponíveis. Apesar de incertezas inevitáveis e erros associados, os modelos podem revelar

informações extremamente importantes, como previsão sobre o número de infetados e mortes, quão

eficazes serão os esforços de vacinação e como se pode limitar a propagação do vírus.

Durante as últimas décadas, avanços notáveis foram feitos na área e com o fenómeno global da

doença COVID-19, surgiu a oportunidade de estudar uma pandeia nos tempos modernos. Neste trabalho

foi feita uma análise minuciosa à evolução do vírus SARS-CoV-2 em Portugal. Esta análise inclui o

cálculo da percentagem de casos por reportar, da taxa de positividade, da letalidade e do índice de

transmissibilidade acompanhado por uma nova fórmula que considera uma carga viral não constante ao

longo do tempo.

Por fim, houve ajuste de modelos epidemiológicos à segunda e terceira onda da pandemia em Porugal.

Para tal recorreu-se aos modelos SIR e SEIRD, em que o último obteve resultados significativamente

melhores. Quanto às métricas de erro foram utilizados erros quadrados e erro médio percentual absoluto.

Para uma mais completa análise, este processo foi também realizado por região e por sexo.

Durante a pandemia, o número de pacientes admitidos em hospitais aumentava de forma perigosa,

levando os sistemas nacionais de saúde a enfrentar um teste nunca antes visto. Hospitais sobrelotados

têm consequências gravíssimas. Tudo isto culmina na introdução de um novo modelo que considera o

número de indivíduos nas enfermermarias e cuidados intensivos, que é a principal contribuição deste

trabalho.

Palavras-Chave: SARS-CoV-2, Modelo SIR, Modelo SEIRD, Índice de Transmissibili-
dade
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Glossary

susceptible An individual who has not yet been infected and is at risk of

infection.

effective contact A contact that is sufficient to lead to transmission. Occurs

between an infectious and susceptible individual.

exposed A susceptible individual that has a potentially-transmitting con-

tact. Exposed individual may or may not develop the disease.

Typically, these individuals are non infectious.

infected Referring to an exposed individual in which the pathogen has

established itself.

infectious Infected individuals who can transmit the disease to others.

asymptomatic An infected person who does not have any recognised signs of

the disease.

latent period Time from infection to when the host can transmit the agent to

others.

incubation period The time period between infection and onset of clinical symp-

toms of the disease.

incidence Number of new infections in a specified interval of time. Occa-

sionally, incidence is the number of individuals who contract the

disease per unit time and per unit person.

prevalence Number of individuals that have the disease at a specific time.

It can also be written as the number of infected people per unit

person.

force of infection The rate at which susceptible individuals become infected per

time unit.

reproduction number Number of secondary cases produced by a single infectious

individual in a population consisting only of susceptible individu-

als.

herd immunity threshold The indirect protection from infection conferred to susceptible

individuals when a sufficiently large proportion of immune indi-

viduals exist in a population.
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efficacy (vaccine) The direct protection provided by vaccination against infection

or other outcome of interest. It excludes any indirect herd effect.

immune A person who has complete protection to an infection, which

results from either vaccination or previous infection. Individuals

are said to be partially immune if they are not fully protected.

outbreak A time when something suddenly begins, especially a disease

or something else dangerous or unpleasant.
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Chapter 1

Introduction

1.1 Motivation

Since its beginnings, mathematics aims to observe and formalise real world issues. And now, more

than ever, with the global phenomenon of COVID-19, the study of epidemiological diseases is of the

utmost importance.

Epidemiology studies the patterns and causes/risk factors of health-related states and events in

specified populations, tacitly the spread of infectious viruses and its consequences in human populations.

The top global causes of deaths are associated with cardiovascular malfunctions such as heart disease

and stroke [42], which positions diseases that do not transmit from one person to another the main concern

of epidemiology. Lower respiratory infections (tuberculosis or pneumonia, for example) and HIV are

among the deadliest infectious diseases.

Throughout the years humanity has faced several infectious diseases, which are caused by the

presence of a pathogenic microbial agent. This agent can be bacterial, viral, fungal, parasitic or toxic

proteins (commonly named as prions).

The latest respiratory infectious disease caught everyone off guard. Suddenly, global economies had

to come to an alt and people’s livelihood were in danger. The governments had to turn to epidemiologists

to properly respond to such an unusual situation.

Mathematical models are of great importance to get a better understanding of a given system, providing

us an opportunity to seek optimal performances, intervention strategies and predictions about its behaviour,

all of which can be life saving.

Having said this, the necessity to do further research on epidemic models and make a thorough

analysis of the evolution of COVID-19 in Portugal throughout the past year becomes clear. That is the

main goal of this work. Hopefully, this work will pave the way for how to approach a future pandemic,

specifically certain indicators that one should be aware of.
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1.2 Historical Remarks on Infectious Diseases

The first plague ever described by historians was the Plague of Athens (430−426 BCE), which occurred

during the Peloponnesian War and ravaged the city of Athens, killing nearly two thirds of the Athenians’

population. The scientific historian Thucydides (460 − 400 BCE), who himself suffered the disease, vividly

describes in his book [56] (The History of the Peloponnesian War) the symptoms, the evolution and

the number of deaths caused by such plague, stating that “...a pestilence of such extent and mortality

was nowhere remembered.". Thucydides’ precise description remained influential for centuries and it is

considered a landmark in epidemic history.

The Black Death (1347 − 1352) was one of the most significant and devastating events occurred in

the late medieval ages, and it is considered by some historians as a turning point in European history.

Overall mortality estimates are extremely difficult to obtain, taking into account that such areas did not

kept consistent/accurate census nor burial reports. Nevertheless, continuous efforts to approximate those

estimates from historians working on multiple locations yield a mortality rate ranging from 45 to 60 percent

across the affected areas. Over the following centuries, Europeans suffered more outbreaks from this

bubonic plague.

A devastating pandemic in history was the 1918− 1919 flu pandemic, commonly known as the Spanish

flu. With its highly morbidity rate, it was responsible for over 40 million casualties. This was the first time

due to a virus that citizens were ordered to use masks to protect themselves and others.

Up to the present time there are a few other significant pandemics worth mentioning. The HIV/AIDS in

the 1980’s and early 1990’s, and with no vaccine to eradicate the disease, it is still a major global public

health issue, having claimed over 33 million lives so far, and according to the World Health Organization

an estimate of 38 million people were still living with HIV by the end of 2019 [41]. The 2003 severe acute

respiratory syndrome (SARS) affected 8.000 people worldwide and killing close to 800, leading to the

discovery of a new strain of coronavirus called SARS-CoV. More recently, another coronavirus outbreak

took place in 2012 in the Middle East, naming the virus as Middle East respiratory syndrome (MERS-CoV).

There was also the H1N1 swine flu pandemic (2009), a subtype of Influenza A virus.

Please note that the previous information was extracted from [6, 7, 9].

1.3 State of the Art

Even though epidemics has been around for thousands of years, its mathematical study is a relatively

new field of research. The first statistical study developed in this area was in 1662 by a respected

businessman in London, John Graunt. His small book concerned public health statistics with the analysis

of bills - weekly records of diseases and casualties made public. The 5t h edition [24] of his study was

published in 1899.

What is now considered the first epidemiological model would only be published over a century later in

1766 by one of the greatest scientist of the 18t h century, Daniel Bernoulli. The main question of his work

[5] was whether inoculation (the voluntary introduction of a small amount of the less virulent smallpox in
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the body to protect it against later infections) should be encouraged in order to reduce the death rate and

thereby increase the population, even if the inoculation itself is at times a deadly operation.

There were other valuable contributions to the understanding of infectious diseases before there

was knowledge about the transmission process of such diseases, namely [53] the study of the temporal

and spatial pattern of cholera cases in London in 1855 by John Snow, who was able to pinpoint the

source of infection to the Broad Street water pump. In 1873, with [8] William Budd also achieved a similar

understanding concerning the spread of the typhoid. Another relevant study to mention was a letter [14]

submitted by William Farr to the Annual Report of the Registrar General of Births, Deaths and Marriages

in England in 1840, that was focused on the laws that underlie the rise and fall of epidemics.

In the 19t h and early 20t h century remarkable breakthroughs concerning causes and prevention of

diseases were accomplished, which provided a direct support to the germ theory of disease. Louis

Pasteur reduced mortality from puerperal fever and created the first vaccines for rabies and anthrax.

Robert Koch, a German physician and microbiologist, not only identified the specific causative agents of

tuberculosis, cholera and anthrax but also provided experimental support for the concept of infectious

disease. He is also notable for the development of Koch’s postulates. At this point in time, science could

finally comprehend the mechanism of how an individual became ill, paving the way for mathematical

modelling of infectious diseases. Major progress was made in this area from this point on.

In 1906, William H. Hamer proposed [17] where he stated that the spread of infection should depend

on the number of susceptible and infected individuals. Even though Hamer was the first to suggest a

mass action law for the rate of new infections, the father of modern mathematical epidemiology is Sir

Ronald Ross. He won the Nobel Prize in Medicine with his pioneer work on the life cycle of the malaria

parasite, proposing a simple compartmental model in which he showed that the reduction of the mosquito

population below a critical level (known nowadays as basic reproduction number) would be sufficient

to control malaria [50]. In 1929, the work of William Hamer was followed up by Herbert E. Soper in

[54], providing a treatment of the periodicity of measles epidemics only departing in detail from Hamer’s

method.

Rising the level of mathematical modelling of infectious diseases and likely the most influential

contribution to this area is the paper published by Kermack and McKendrick in 1927. Their joint paper

[29] is cited in a great number of papers and is the first to consider a deterministic epidemic model that

takes into account susceptible, infected and removed individuals. This model disregards natural births

and deaths and for this particular reason it only models outbreaks. In order to capture diseases that

established themselves and persist in population, Part II and Part III of A contribution to the mathematical

theory of epidemics were published in 1932 and 1933, respectively. Due to their groundbreaking work in

mathematical epidemiology, the Kermack-McKendrick trilogy was reprinted in 1991 [30, 31, 32].

Around the same time, the mathematical study of differential equations was of the utmost importance,

creating a bridge between epidemics and its modelling. Regarding ordinary differential equations, we

follow the perspective of [25] published originally in the 70’s as a basic text in qualitative theory.

In the 80’s and early 90’s, the study of modelling mathematical diseases increased rapidly with the

outbreak of HIV/AIDS across the world, though the disease originated decades earlier.
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Herbert Hethcote published scientific papers, such as [20, 21, 22, 23], that were crucial to the rapidly

development and analysis of compartment models. Hethcote did several research on several types

of models besides the common at the time SI, SIS and SIR models. He did groundbreaking work on

multiple fronts of mathematical epidemiology, including age-structured models that included passively

immune newborns, asymptomatic infectives, recovered individuals, casualties originated from all classes,

vaccination.

In 2015, the mathematical biologist Maia Martcheva published her first book [37] consisting of an

introduction to mathematical modelling and analysis of infectious diseases. This book covers very

important topics including ordinary differential equation models, which is the foundation of this thesis.

1.4 Claim of Contributions

With this work, we aim to properly analyse the evolution of SARS-CoV-2 in Portugal, which will allow a

better understanding on what went wrong and what were the signs one should have paid more attention

to in order to avoid not only countless deaths but lock downs that had severe consequences on multiple

fronts. Other important computations such as the (basic) reproduction number were made, including a

new formula that considers a non-constant viral load.

Furthermore, we will use mathematical models previously discussed to fit into the number of infected

individuals. A similar type of work has been made before in [4]. The metrics used to choose the best

model were the square errors: Sum of Square Errors (SSE), Mean Sum of Square Errors (MSE) and

Residual Mean Square Errors (RMSE). It was also used the Mean Absolute Percentage Error (MAPE)

that has the big advantage of being invariant to scales, and hence comparisons between different curves

can be made. One quick example is with the number of infected individuals in North versus Alentejo.

As the number of cases of COVID-19 increased, so did the number of individuals to require medical

assistance in hospital. As a direct consequence, hospitals were getting more crowded by the day. The

overall panorama was so worrying that some feared the collapse of national health care systems. The

main contribution of this work is the proposal of a model that takes into consideration the number of

patients in infirmaries and intensive care units. In terms of model fitting, a similar process will occur. The

only difference relies in choosing the best model with the lowest mean error metric of the three curves.

1.5 Overview of the Thesis

This section concludes with a brief overview of this dissertation. Chapter 2 covers some basics

regarding infections and its transmission. This chapter also provides some mathematical background for

different types of models and computation of important parameters. On Chapter 3 a brief overview of

the evolution of SARS-CoV-2 is provided, followed by a careful analysis of the virus in Portugal. In this

chapter, models discussed in Chapter 2 will be fitted into the data. Finally, on Chapter 4 a new model is

introduced, accounting for individuals in infirmaries and in intensive care units.
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Chapter 2

Background

2.1 Basics: Infections, Transmission and Models

This section provides an introduction to the definitions of infections, transmission, mathematical models

and key concepts in infectious disease epidemiology. To write this section, we took advantage of [37, 58].

Infection is a frequent phenomenon in nature. All species carry infections of a wide variety. Many of

them are harmless, some are actually beneficial, but some, the pathogens, harm their hosts and lead to

diseases. This thesis will focus on the latter. When a transmission of the infection occurs between two

individuals it is usually called effective contact. The transmission of a disease can happen one of two

ways: vertical or horizontal transmission. Vertical transmission occurs when pathogens are transmitted

from parent to offspring during pregnancy, birth, or breastfeeding. On the other hand, horizontal diseases

are transmitted from one individual to another in the same generation. There are several other ways to

categorise transmissions of infections:

• Airborne Infection: refers to infectious agents that are spread via droplet nuclei. These organisms

can survive outside the body and remain suspended in the air for long periods of time. (examples:

tuberculosis, chickenpox, measles)

• Droplet Infection: refers to the transmission of a pathogen to a new host over distances of one

meter or less, when an individual coughs or sneezes, small droplets of mucus, ejecting the pathogen.

(examples: influenza virus, rubella, corona viruses)

• Direct Contact: occurs through skin-to-skin contact, kissing and sexual intercourse. (examples:

athlete’s foot, syphilis, conjunctivitis, Ebola)

• Indirect Contact: involves transmission through contamination of inanimate objects, also known

as vehicle-borne transmission. (examples: hepatitis A, cholera, salmonella)

• Vector-borne Transmission: a vector is an organism that does not cause the disease itself, but

transmits the infection from one host to another. (examples: malaria, viral encephalitis, Lyme

disease, bubonic plague)
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• Fecal-oral Route: refers to pathogens in the fecal particles that pass from one individual to the

mouth of another. (examples: cholera, hepatitis A, polio)

Note: Some viruses are spread using multiple mechanisms.

Once the pathogen establishes itself in the host, typically it takes a certain period of time for the

infectious agent to replicate before being able to infect other individuals. For the exact purpose of

understanding the behaviour of infectious diseases and its dynamics, it is of the utmost importance to

distinguish three essential time periods. The latent period, occasionally called pre-infectious period, is

defined as the time interval between the infection of an host by a pathogen and when this host becomes

infectious, i.e. capable of transmitting pathogens to susceptible individuals. The incubation period refers

to the time period between exposure to an infectious agent and the onset of symptoms of the disease. As

for the infectious period it refers to the period where an host can transmit the pathogen to other individuals.

Time

Incubation period Clinical symptoms

Latent period Infectious period

t1 t2

t3

t4

t5

Figure 2.1: Summary of the relevant time periods.

As it can be observed above, the incubation period does not necessarily coincide with the latent period.

In fact, for some diseases individuals become infectious before starting to exhibit symptoms (influenza,

for example). For others, symptoms develop before the infectious period, allowing people to recognise

themselves as ill and prevent the spread of the virus (Ebola fits this description). A similar situation occurs

with the infectious period and the phase with clinical symptoms, depending on the disease considered we

have one of three scenarios: t4 < t5, t4 = t5 or t4 > t5.

Note that there might be individuals that make a potentially disease transmitting contact, becoming

exposed, and may or may not develop the disease (typically are non infectious). However, mathematical

models often assume that all exposed individuals develop the disease. Therefore, for the purpose of this

work individuals in the latent period will be considered as exposed individuals.

There are different outcomes after an infection. Some may be mild, causing little to no illness to their

host, while there are some more extreme that may be fatal. As far as the duration of the infectiousness

goes, it is usually determined by the ability of the host to create an immune response, or vaccine induced

immunity. Disregarding the latter, infected individuals may become solidly immune (measles for example),

may rid themselves of the infections but still remain susceptible to a greater or lesser degree of the

disease (occurs with malaria), or develop small or no immunity whatsoever and hence, remain infectious

for life (Herpes simplex). There are many other variations regarding the nature of immunity developed to

infections, but are well beyond the scope of this thesis.

A mathematical epidemiological model is a simplified representation of complex phenomenons. These
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models are developed to help explain a system, study the effects of each component and to help make

predictions about their behaviour.

Mathematical models consist of parameters and variables that are somehow connected. These

variables represent a part of the system that can be quantified/measured. As mentioned in [37], there are

several ways to classify a model:

• Linear vs. nonlinear: If there is nonlinear dependence on variables (for example, product of

variables), the model is nonlinear.

• Static vs. dynamic: A static model describes a system in equilibrium (time-invariant), while

a dynamic model represents the time-dependent aspects of a system. The latter are typically

represented by differential equations.

• Discrete vs. continuous: Discrete models treat time/states as discrete (distinct and separate

values). Continuous models treat time/states as continuous (any value within a finite or infinite

interval).

• Deterministic vs. stochastic: In deterministic models, the output of the model is fully determined

by the parameters in the model initial conditions. Stochastic models possess some inherent

randomness, where variable states are described by probability distributions.

In this thesis, ordinary differential equation models will be used to model the distribution of infectious dis-

eases in populations. These models are nonlinear, dynamic, continuous and deterministic. Nevertheless,

stochastic epidemic models have been developed and used in literature in works like [1].

2.2 Epidemic Models

Throughout time epidemic models have evolved and been enhanced. This section was written taking

into account [25, 37] which explore different types of epidemic models.

2.2.1 SI Model

We start by considering one of the simplest epidemiological models, in which the population splits

into two non-intersecting classes: susceptible (S) and infected (I) individuals. In all of the models here

presented, the total population size N remains the same throughout time, and it is the sum of all classes:

N = S (t ) + I (t ). (2.1)

This epidemic model considers a non existent latency period, hence all infected individuals are

infectious. When an infectious individual comes in contact with a susceptible the latter becomes infected

(and infectious) with a certain probability moving from the susceptible class to the infected class. The

number of individuals who become infected per unit of time is called incidence. These types of models
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are called compartment models. In these models, an individual can reside in a single compartment and

move to another according to movement arrows. In Figure 2.2, a flowchart for the SI model is presented,

where β is the transmission rate constant.

S I
β

Figure 2.2: Compartment flowchart for SI model.

For a better understanding of this model, let us define some variables:

• c is the contact rate per capita (regarding the total population size N );

• pt is the probability that a contact of a susceptible individual with an infectious results in transmission;

With these definitions, the explicit computation of the incidence is achieved quite easily. First and

foremost, pt cS is the number of susceptible individuals who are infected per unit time per infectious

individual and consequently, βSI is the number of new infected individuals per unit time (incidence), with

the coefficient β = pt c. Another important parameter to the study of infectious diseases is the force of

infection which represents the rate at which susceptible acquire the infection, that is defined as λ (t ) = βI .

Due to the simplicity of this model, it is simple to write the system of ODEs that define the model

considering that those who leave the susceptible class must go to the infected class.


S ′(t ) = −βS (t )I (t )

I ′(t ) = βS (t )I (t ).
(2.2)

The associated initial conditions are S (0) and I (0). By adding the equations from system (2.2), results

in N ′(t ) = S ′(t ) + I ′(t ) = 0 for all t . Thus, the population size is constant and equal to its initial value,

N (t ) = N .

Table 2.1: Summary of notation for the SI model.

β Transmission rate

A very important matter that we should concern are the units of the quantities involved. Both sides of

the equation must have the same units. Undoubtedly, the units of the derivatives are number of people

per time unit. Let us take a closer look at the right hand side of the equations. S and I are expressed

in number of people. Parameter β has units 1/(time unit × number of people). Consequently, the right

hand side of the equations has the desired units of number of people per time unit. In order to solve the

system (2.2) of ODEs, S can be replaced by N − I since the population size is constant, which leads to

the first-order, autonomous, nonlinear differential equation

dI

d t
= βSI = β (N − I )I = βN (1 − I

N
)I . (2.3)
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The previous equation is a logistic differential equation [25] and its solution is easily found by integrating

on both sides, yielding ∫
1

N (1 − I
N )I

dI =

∫
β d t ⇔

∫
1

(N − I )I dI =

∫
β d t . (2.4)

Taking a closer look at the left hand side of the equation, and taking advantage of the method of the

partial fractions decomposition, the integral can be simplified as follows∫
1

(N − I )I dI =

∫
1

I
+

1

(N − I ) dI . (2.5)

Combining equations (2.4) and (2.5), and solving for I (t ) we have

I (t ) = Nc1e
β t

1 + c1eβ t
, (2.6)

where c1 is the arbitrary integration constant. By evaluating the expression at t = 0, it follows that

c1 = I (0)/(N − I (0)) and replacing in (2.6) the final expression is

I (t ) = I (0)N
I (0) + e−β t (N − I (0))

. (2.7)

Regardless of the initial condition I (0) > 0, I (t ) and S (t ) are monotone and positive. On one hand,

the number of infected individuals approaches N monotonically and on the other hand, the number of

susceptible individuals approaches 0 monotonically.

lim
t→∞

I (t ) = N (2.8a)

lim
t→∞

S (t ) = N − lim
t→∞

I (t ) = 0. (2.8b)

From equations (2.8a) and (2.8b) it becomes clear that in the SI model, all individuals will be infected

regardless of the transmission rate constant β .

2.2.2 SIS Model

Similarly to the previous model, the SIS model only has two non-overlapping classes: susceptible and

infected, where infected are considered infectious. Opposite to the SI model, the relation between the two

classes flows in both directions. By disregarding full immunity, infected individuals become susceptible at

a given recovery rate α .

S I

β

α

Figure 2.3: Compartment flowchart for SIS model.
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The ordinary differential equations have the form


S ′(t ) = −βS (t )I (t ) + αI (t )

I ′(t ) = βS (t )I (t ) − αI (t ),
(2.9)

with the initial conditions S (0) and I (0). Once again, condition (2.1) holds, translating in a constant

population size. This can be proven by summing all equations, resulting in N ′(t ) = S ′(t ) + I ′(t ) = 0 for all

t and hence N (t ) is constant throughout time.

Table 2.2: Summary of notation for the SIS model.

β Transmission rate
α Recovery rate

In order to solve the ODE (2.9), let us express S as S = N −I . The resulting equation can be expressed

as a logistic equation

dI

d t
= βSI − αI = β (N − I )I − αI = (Nβ − α)I

(
1 − I

N − α
β

)
= r I

(
1 − I

r β−1

)
(2.10)

where r = Nβ − α is often called the growth rate. Following a very similar process as in the SI model, the

solution of (2.9) is

I (t ) = I (0)r β−1
I (0) + e−r t (r β−1 − I (0))

. (2.11)

With the explicit number of infected individuals over time, the system of ODEs is automatically defined

since S (t ) = N − I (t ). Now, there are three possible scenarios:

• r = 0 : the obvious case, where the number of infected is constant.

• r < 0 : If the growth rate is negative, then the number of infected individuals will tend to 0 as t → +∞

as the whole class becomes susceptible

lim
t→+∞

I (t ) = I (0)r β−1
+∞ → 0 (2.12)

lim
t→∞

S (t ) = N − lim
t→∞

I (t ) = N . (2.13)

• r > 0 : With a positive growth rate, I (t ) will converge to an equilibrium point

lim
t→+∞

I (t ) = I (0)r β−1
I (0) + 0

= r β−1 (2.14)

lim
t→∞

S (t ) = N − lim
t→∞

I (t ) = N − r β−1, (2.15)

where the disease remains in the population for an indefinite amount of time.

The threshold condition r > 0 is extremely important and can be rewritten as

r > 0⇔ Nβ − α > 0⇔ Nβ

α
> 1⇔ R0 > 1, (2.16)
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where R0 = Nβ
α is the basic reproduction number. This value plays a very important role in modelling

epidemics, representing the number of secondary infections produced by a single infectious individual in a

population consisting only of susceptible individuals. This number allows one to understand if the disease

will remain in the population indefinitely or if it gradually dies out, disappearing from the population.

2.2.3 SIR Model

This model dates back to 1927 from the famous article [29] of Kermack and McKendrick, and takes

into account susceptible (S), infected (I) and recovered (R) individuals. This model supports itself on

several assumptions:

1. There are neither births nor deaths in the population;

2. The population is closed, there are no entries or exits to/from the population. The following equation

is verified for all time t

N = S (t ) + I (t ) + R (t ); (2.17)

3. Infected individuals are considered infectious;

4. Recovered individuals are considered to have full immunity and cannot be reinfected. Sometimes

deceased individuals are also included in this class.

Analogous to the SI model, the movement of individuals is unidirectional and hence if an individual

changes classes, he cannot return to the previous. Individuals, that either recover or die, leave the infected

class at a per capita probability per time unit ρ, known as the recovery rate.

S I R
β ρ

Figure 2.4: Compartment flowchart for SIR model.

The model is given by the ordinary differential equations


S ′(t ) = −βS (t )I (t )

I ′(t ) = βS (t )I (t ) − ρI (t )

R ′(t ) = ρI (t ),

(2.18)

with initial conditions S (0), I (0) and R (0). Similar to the previous model, we can verify that the population

remains constant by adding all equations from (2.18), resulting N ′(t ) = S ′(t ) + I ′(t ) + R ′(t ) = 0 yielding

again N (t ) = N for all t .

For a better understanding of the behaviour of this model, a few computations are made with respect

to the numbers of susceptible and recovered individuals. By dividing S ′(t ) for R ′(t ), it yields

S ′

R ′
= −β

ρ
S (t ). (2.19)
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Table 2.3: Summary of notation for the SIR model.

β Transmission rate
ρ Recovery rate

By rearranging and integrating the previous equation, it follows

S ′(t ) = −β
ρ
S (t )R ′(t ) ⇔

∫
S ′(t ) d t = −

∫
β

ρ
S (t )R ′(t ) d t ⇔

⇔ S (t ) = S (0)e
β
ρ R (t ) .

(2.20)

The number of recovered individuals is monotone and bounded by N , and consequently S (t ) > 0.

Therefore, the epidemics does not end. Some individuals always escape the disease.

Taking advantage of (2.17), the number of recovered individuals, R (t ), one can express it explicitly as

a function of number of susceptible and infected individuals, R (t ) = N − S (t ) − I (t ). Thereby, the system

(2.18) can be solved solely by considering the first two equations.

In order to solve the differential equations, let us divide both equations

I ′

S ′
=
βSI − ρI
−βSI ⇔ I ′

S ′
= −1 + ρ

βS
⇔ I ′ =

(
− 1 + ρ

βS

)
S ′. (2.21)

By a simple integration on both sides, the following result is obtained∫
I ′ d t =

∫ (
− 1 + ρ

βS

)
S ′ d t ⇔ I (t ) = −S (t ) + ρ

β
log S (t ) + c2, (2.22)

where c2 is an integration constant. Using the initial conditions, the arbitrary constant c2 can be computed

c2 = I (0) + S (0) −
ρ

β
log S (0). (2.23)

Bearing in mind that S (t ) is a monotonically decreasing function and by analysing equation (2.21), the

maximum number of infections can be easily computed. This number expresses the maximum severity of

the disease and occurs when

I ′ = 0⇔ S (t ) = ρ

β
. (2.24)

Hence, the maximum number of infected individuals can be estimated for newly infectious diseases,

which is an extremely important information when fighting this type of diseases. Combining and rearranging

equations (2.22), (2.23) and (2.24), the desired value is achieved

Imax = − ρ
β
+
ρ

β
log ρ

β
+ I (0) + S (0) − ρ

β
log S (0). (2.25)

In equation (2.24), an important threshold quantity is hidden. First and foremost, with a simple analysis

of I ′(t ), we know that the infected population arises at first reaching an all time high and then declines. As

mentioned previously this maximum value occurs for S (t ) = ρ
β , which allows us to compute the effective
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reproduction number

S (t ) = ρ

β
⇔ β

ρ
S (t ) = 1⇒ Rt =

β

ρ
S (t ), (2.26)

where for t = 0, we are considering the basic reproduction number R0. In this particular case, S (0) ≈ N

returning the same value computed for the SIS model in (2.16). The effective reproduction number is

of great significance for occurring infectious diseases since it allows a daily study of the pandemic’s

evolution.

Linearization

Another approach to solve this problem is resorting to linearization. First of all, to simplify computations

let us consider the number of individuals per class as a percentage of the whole population N . With this

modification, we have

• Incidence: λ (t ) = NβS (t )I (t );

• Force of infection: λ (t ) = NβI (t );

• Basic reproduction number: R0 =
β
ρ ;

Bearing in mind that R (t ) is easily obtained with simple quadratures from the variable I (t ), it suffices

to consider a two dimensional system, disregarding the number of recovered individuals. Let us consider

the field

f1 (S , I ) = −βSI

f2 (S , I ) = βSI − ρI
(2.27)

and its Jacobian matrix

J(S ,I ) =

−βI −βS

βI βS − ρ

 . (2.28)

The disease-free equilibrium happens at (1, 0), representing the scenario where all are susceptible

and none is infected. Linearizing near this point leads to the following Jacobian matrix

J(1,0) =

0 −β

0 β − ρ

 . (2.29)

With the previous matrix, important information such as the basic reproduction number can be

withdrawn. There are two eigenvalues: 0 and β − ρ. The latter is negative if ρβ > 1 and positive if ρβ < 1.

Hence the infected population increases while the susceptible decreases monotonically and R0 =
ρ
β , as

proved earlier.

The linearized equation is given by


S ′(t ) = −βI (t )

I ′(t ) = (β − ρ)I (t ),
(2.30)
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which is very easy to integrate and only depends on I (t ). Integrating the last equation on both sides

results in

I (t ) = I (0)e (β−ρ)t , (2.31)

where I (0) is the initial number of infected individuals. Taking into account that we study the population

on a daily basis, the next relation can be established

I (t + n) = anI (t ), (2.32)

where a represents the daily growth of infected individuals per day. Considering that only one individual

out of all the population is infected at t = 0, it is possible to obtain an interesting expression

I (t + 1) = aI (t ) ⇔ e (β−ρ) (t+1)

N
= a

e (β−ρ)t

N
⇔ β = ρ + log a . (2.33)

This provides us the value of β from official data from on going pandemic. Finally, the value of R0 is

R0 =
β

ρ
= 1 +

log a
ρ
. (2.34)

2.2.4 SIRD Model

With a small modification on the model discussed in the previous section 2.2.3, the number of deceased

individuals is now included, representing a fraction of those that are retired from the infected class. Thus,

we are facing a model with four non-overlapping classes: susceptible (S), infected (I), recovered (R) and

deceased (D). An individual can never return to a previous state.

S I

R

D

β

ργ

ρ (1 − γ)

Figure 2.5: Compartment flowchart for SIRD model.

Once again, this is a closed system. Neither exits nor entries are possible and, consequently, the total

population size will not suffer any alterations whatsoever. This can be verified by performing a similar

process as stated in previous sections

N = S (t ) + I (t ) + R (t ) + D (t ). (2.35)

Thus, the parameters mentioned in Figure 2.5 will be used to shape the model. The summary of its

notation is presented in Table 2.4. The value of 1/ρ is the average period of infection. The fraction of
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recovered and deceased individuals from the infected class is given by γ and 1 − γ, respectively.

Table 2.4: Summary of notation for the SIRD model.

β Transmission rate
1/ρ Infection period
γ Fraction of recovered individuals

The SIRD model is a system of four ordinary differential equations



S ′(t ) = −βS (t )I (t )

I ′(t ) = βS (t )I (t ) − ρI (t )

R ′(t ) = γρI (t )

D ′(t ) = (1 − γ)ρI (t ),

(2.36)

with initial conditions S (0), I (0), R (0) and D (0). Due to its similarity to the Kermack-McKendrick model,

with the first two equations equal to (2.18), most of the outcomes will be the same and it is unnecessary

to explicitly show, yet again, the results.

By dividing the third and fourth equation from (2.36), a simple result follows

D ′

R ′
=
(1 − γ)ρI
γρI

⇔ D ′ =
(1 − γ)
γ

R ′⇔ D (t ) = (1 − γ)
γ

R (t ). (2.37)

Concerning the evolution of susceptible and infected, the results obtained for the SIR model still apply.

The only difference between the models is that here individuals that leave the infected class can either be

considered as recovered or as deceased.

2.2.5 SEIRD Model

As stated before, many infectious diseases have a period after the transmission of the pathogen where

individuals carry the disease but are not yet contagious (latent period). Giving its importance to how the

spread of an infection can occur, this particular model considers a new class, exposed individuals (E).

S E I

R

D

β σ

ργ

ρ (1 − γ)

Figure 2.6: Compartment flowchart for SEIRD model.

In Figure 2.6 a flowchart represents how the movement of individuals between classes occurs in this
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model and in Table 2.5 is presented a summary of the notation here used.

The new parameter σ is the rate of conversion of exposed individuals to contagious individuals, where

the inverse is the average number of days an individual spends as non-contagious after being exposed

to the disease. The parameter γ is the rate at which individuals leave the infected class and 1/γ can be

interpreted as the time one remains contagious.

Table 2.5: Summary of notation for the SEIRD model.

β Transmission rate
1/σ Average latent period
1/ρ Average infectious period
γ Fraction of recovered individuals

The ordinary differential equations that define this model are



S ′(t ) = −βS (t )I (t )

E ′(t ) = βS (t )I (t ) − σE (t )

I ′(t ) = σE (t ) − ρI (t )

R ′(t ) = γρI (t )

D ′(t ) = (1 − γ)ρI (t ),

(2.38)

with initial conditions S (0), E (0), I (0), R (0) and D (0). As previously mentioned, all models are closed

with no entries nor exits. Thus, again, the population size remains constant which can be easily proven.

Linearization

Since the last two variables, R and D , can be obtained using simple quadratures, the first three

equations will provide full information on the behaviour of this model. To obtain approximate solutions of

these equations, we will be resorting to linearization once again. Considering the field

f1 (S , E , I ) = −βSI

f2 (S , E , I ) = βSI − σE

f3 (S , E , I ) = σE − ρI ,

(2.39)

its Jacobian matrix is as follows

J(S ,E ,I ) =


−βI 0 −βS

βI −σ βS

0 σ −ρ


. (2.40)

Aiming to linearize the system near the disease-free equilibrium point (1, 0, 0), i.e. when everyone is

susceptible and there are neither exposed nor infected individuals, the Jacobian matrix yields
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J(1,0,0) =


0 0 −β

0 −σ β

0 σ −ρ


. (2.41)

The linearized equation is now


S ′(t ) = −βI (t )

E ′(t ) = −σE (t ) + βI (t )

I ′(t ) = σE (t ) − ρI (t ).

(2.42)

Looking at the last two equations, the system can be written as

X ′(t ) = AX (t ) ⇔

E ′(t )

I ′(t )

 =


−σ β

σ −ρ



E (t )

I (t )

 . (2.43)

The previous system has a simple solution and considering that at time t = 0 there are no exposed

cases and only one individual carries the disease ( 1N ), the result follows

I (t ) = I (0)eλt = eλt

N
, (2.44)

where λ is the dominant eigenvalue, which can be obtained one of two ways. On one hand, taking equation

(2.32) with n = 1, we have

I (t + 1) = aI (t ) ⇔ eλ (t+1)

N
= a

eλt

N
⇔ λ = log a . (2.45)

On the other hand, the dominant eigenvalue can be computed directly from matrix A

det(A − λI ) = 0⇔

������−σ − λ β

σ −ρ − λ

������ = 0⇔ λ =
1

2

(
− ρ − σ −

√
(ρ − σ)2 + 4βρ

)
. (2.46)

With the relations provided in (2.45) and (2.46), the value for the transmission rate can be derived

β =
ρσ + ρ log a + σ log a + log2 a

σ
. (2.47)

This relation is very interesting, in the sense that provides us the value of β from real time data, and by

having information regarding the average days of latency and infectious period of the disease. Additionally,

the value for the basic reproduction number R0 is

R0 =
β

ρ
=
ρσ + ρ log a + σ log a + log2 a

ρσ
= 1 +

log a
ρ

+
log a
σ

+
log2 a
ρσ
. (2.48)
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2.3 Herd Immunity Threshold

If the fraction of susceptible individuals is sufficiently low and the number of immune individuals is

high, then the pathogen will not be able to successfully spread and a decrease in the prevalence will be

observed. The reduction of susceptible individuals in a population is achieved by individuals acquiring

immunity, either through natural infection or through vaccination.

Herd immunity arises from the effects of individual immunity in a whole population, and defines itself as

the indirect protection from an infectious disease when a significant fraction of the population is immune

to the virus [47]. Herd immunity is of the utmost importance since it allows immunocompromised and

younger people to remain unvaccinated.

In a population full of non-bearers of the pathogen, the virus will spread in an unchecked manner,

whereas if a portion of the population is immune, the likelihood of an effective contact between a susceptible

and an infected individual decreases.

The value of the reproduction number is required to compute the percentage threshold of the population

that must be immune to block sustained transmission, i.e. the herd immunity threshold

H = 1 − 1

R0
. (2.49)

Thus, the greater the number of secondary infections caused by a single person, the bigger the fraction

of immunised individuals needed for the purpose of stopping the virus from spreading. Nevertheless,

the herd immunity formula relies itself on a few assumptions, that most of the times are not met in real

scenarios. There must be an homogeneous mixing of individuals within a population and all individuals

must develop immunity that provides a lifelong protection against the virus. In real-world cases, population

density differs immensely from region to region and vaccines may not confer full immunity, specially in

new viruses where new variants can emerge.

With new variants, vaccines lose some of its efficacy resulting in a need to adjust the herd immunity

value:

Hadj =
(
1 − 1

R0

) 1

Ve
, (2.50)

whereVe represents the vaccine effectiveness, i.e. the immunity to the virus that the vaccine confers to

an individual.
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Chapter 3

Analysis of SARS-CoV-2 in Portugal

Bearing in mind everything that has been stated so far, an extensive and thorough analysis of SARS-

CoV-2 in Portugal will take place in this chapter.

3.1 SARS-CoV-2: An Overview

Before entering into the analysis of any pathogen in a given population, it is of the utmost importance

to fully comprehend how the virus spreads and its characteristics, gathering as much information as one

can. The real world context in which a mathematical problem settles is crucial to its analysis.

In December 2019, multiple cases of pneumonia of unknown origin were reported in Wuhan (Hubei

Province, China). On January 9t h , China announced a novel coronavirus as the agent of the outbreak.

Within a short span of time, human-to-human transmission was confirmed, Wuhan went under confinement,

all provinces across China reported cases of coronavirus, the WHO declared the outbreak a Public

Health Emergency of International Concern (PHEIC), and by February 11t h the International Committee

on Taxonomy of Viruses (ICTV) named the virus as SARS-CoV-2, short for severe acute respiratory

syndrome coronavirus 2 [26]. The WHO designated the disease resulting from the infection as coronavirus

disease (COVID-19).

With the goal of containing COVID-19, unprecedented strict public health measures were implemented

in China. Not only the uncertainties around the disease but also the abundance of international travel

enabled a rapid worldwide spread. By the end of February, large clusters of infections were reported over

several countries and the world was on the verge of facing a never before seen global event. On March

11t h , the World Health Organization officially characterised COVID-19 as a pandemic [43]. Soon enough

a majority of countries were taking severe unparalleled public health and social measures.

Even though the scientific community cannot pinpoint the specific circumstances in which the virus

was developed and transmitted to humans, careful and thorough research on this pathogen allowed a

better understanding on the subject. Coronaviruses can be grouped in four genera, and this particular

virus is very similar to betacoronaviruses (β -CoV) found in bats [16, 62], albeit distinct from the 2003

SARS-CoV and the 2012 MERS-CoV. There was more proximity to the SARS-CoV in terms of genome,
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and hence the name SARS-CoV-2. Nevertheless, bats are the natural reservoir for a wide variety of CoVs

and thus it can be assumed that the origin of the virus was indeed the bats and has been transmitted at

some point in time to other animal hosts and eventually to humans. Articles like [3, 26, 62] provide a lot

more information on a biological level, however the biological theory is out of scope of this work and will

not be here presented.

Respiratory infectious diseases spread through multiple ways: contact with an infected person or

touching a surface that is contaminated, by droplet transmission of respiratory particles that contain the

virus (occurs near an infected person) and lastly by airborne transmission droplets/particles suspended in

the air for longer periods of time and distance. There were reports of other routes of transmission, but those

seem to be isolated cases and do not amount to a significant slice of the worldwide transmissions, and

consequently can be disregarded. In early stages of the pandemic, there were greater concerns regarding

surface transmission, however recent studies [11, 38] consider as unlikely this type of transmission to be

a major route for infections, even though the virus can persist for days on inanimate surfaces.

All ages are susceptible to infection, however clinical manifestations differ with age. Most young people

or children have only mild diseases (non-pneumonia or mild pneumonia) or are asymptomatic whereas

elderly (> 65 years of age) with co-morbidities are more susceptible to develop severe disease. The

underlying health conditions that increase susceptibility are hypertension, diabetes, chronic obstructive

pulmonary disease and cardiovascular disease. The most common symptoms include fever and cough.

Other less common clinical manifestation include fatigue, sputum production, shortness of breath, sore

throat, headache and diarrhea (uncommon). As far as more severe complications go, there is acute

respiratory distress syndrome (ARDS), pneumonia, septic shock, liver problems, coagulation dysfunction,

multiple organ failure and even death. This information can be obtained in articles such as [15, 16, 26,

52].

As far as the length of the latency and incubation period, today persists a lot of uncertainty. It varies

greatly from one individual to another. Nevertheless, recent studies [44, 61] point to a shorter latency

period, meaning that an individual becomes infectious before developing onset symptoms.

3.2 Preliminary Analysis

The data here used is of public access and provided daily by the Directorate General for Health

(DGS) in [51] and by the Environmental Systems Research Institute (ESRI) [36]. In this work, we will take

advantage of the data available in [49] which was built from the last two references. All the results here

presented were obtained resorting to the software Wolfram Mathematica.

A large amount of information was collected of Portugal and its regions (North, Centre, Lisbon and

Tagus Valley, Alentejo, Algarve, Madeira and Azores):

• total number of confirmed cases by gender and age;

• new daily cases;

• total number of deaths;
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• new daily deaths;

• total number of recovered individuals;

There is also overall information regarding the number of confirmed, recovered and casualties cases

by gender and age (sprawled in ten year classes), number of infirmary and ICU patients, active cases

and number of individuals in vigilance. Data regarding vaccination is also available since January 2021.

On a couple of days, October 5t h , 2020 and April 25t h , 2021, the number of casualties and daily

cases by age and gender were not reported. To avoid problems with computations, these values were

interpolated. In order to do so, we resorted to spline interpolation with third degree piecewise polynomials.

By using cubic polynomials, we guarantee that the first and second derivative are continuous everywhere,

i.e. each successive polynomial will have identical values in the knots in terms of first and second

derivative.

The first reported case was on the 2nd of March, however the dataset starts on the 26t h of February

with 25 individuals already in vigilance. All mentioned information was reported daily, and the last day of

the pandemic here considered is May 31st , 2021, which results in a total of 461 days.

During this time period, the pandemic in Portugal consisted of three waves, where the first one started

on March 2nd , 2020 and ended around mid May, with a great level of under reporting of cases. In the

first few months, there was a lot of uncertainty around the disease and how to properly attack it on all

fronts. There was a deficit on the number of tests performed and not enough control on individuals that

had been in contact with infected ones for example. Portugal spent the summer with a rather controlled

number of cases, and the second wave only began mid September, around the time schools opened and

classes were given on site. On the 13t h of September, the daily incidence surpassed the threshold of 500,

a worrying indication of the approach of a new wave. This second wave hit its peak early December. This

wave was apparently on a slow downward trend when the celebration of two major events (Christmas and

New Year) caused a major outbreak on all regions and the deadliest wave of the pandemic in Portugal.
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Figure 3.1: Number of daily new cases reported by DGS without and with a 7-day moving average
from left to right.

One of the biggest problems when modelling this pandemic was the level of unreliability of the data

published by "Direcção Geral de Saúde", the Portuguese health authority (DGS). Due to asymptomatic
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individuals, limitations regarding the number of tests performed and most laboratories only being open

during the weekdays, the daily reported number of new cases was always inaccurate. Hence, on Figure

3.1 the number of daily cases are presented with and without a 7-day moving average, this computation

will help stabilise some irregularities. Nonetheless, the three waves that hit Portugal during this period are

still very clear.
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Figure 3.2: Total number of cases per region.

On Figure 3.2, the number of cumulative cases per region is presented. Three significant rises in the

number of reported cases are very clear, indicating the existence of each wave. The population density is

a crucial factor for the evolution of a pandemic. For example, Alentejo is Portugal’s biggest region but it

also has the lowest ratio of people per square kilometre. With relatively small cities, when compared to

cities like Lisbon or Oporto, the number of people each individual contacts with is significantly lower and

thus, the transmission rate will decrease accordingly.

For the purpose of achieving a good approximation of the real number of infected individuals in Portugal,

one can take advantage of the number of casualties. A recent article [12] used age specific COVID-19

data from multiple countries to investigate the consistency of infection and fatality patterns. The infection

fatality ratio estimated for Portugal was 0.86% with a 95% confidence interval of 0.75 − 0.99%. With this

information, and considering x days from onset symptoms of COVID-19 to death, we are able to compute

the total number of cases. Also, if we know how much time an individual spends infected, the number of

active cases per day can be computed. By tuning these two parameters, we can obtain the real number

of infected individuals for each point in time, which is of the utmost importance to fit models discussed in

Chapter 2.

The average time interval from onset symptoms to death can be extracted from the data at our disposal

by computing the difference between peaks of two curves: active cases and daily deaths. The curves

should have a similar shape with a slight delay for the deceased curve. However, we face an unexpected

outcome when analysing this difference for the most protuberant wave of the pandemic. The peak of

deaths occurs a day prior to the maximum number of active cases, when it was to be expected a delay

in the number of deaths (see Figure 3.3). This actively demonstrates that there was an higher level of

under-reporting in the days prior to the peak of infected individuals. Unfortunately, this entails the necessity
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to solely resort to scientific papers in order to obtain the best value for the referred time interval.
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Figure 3.3: Comparison between the number of active cases (blue line) and six hundred times
the number of daily casualties provided by DGS (purple line), exhibiting an unexpected overlap of
the peaks of both curves.

The Scientific Advisory Group for Emergencies of the United Kingdom wrote an unpublished paper

[18] where they questioned themselves on the time from symptom onset to death and if it differs by age,

sex and first/second wave. Median of time from symptom onset to death was shorter in the second wave

(7 days) compared to the first wave (13 days). The scientific article [33] synthesises results obtained

from several studies, where three studies in China report an overall 15.93 ± 2.86 days from symptoms to

casualty. Another study [59] in Wuhan reports a mean 17.4 ± 8.4 days to death. These articles have wide

confidence intervals, making it extremely difficult to establish an accurate value for this number since it

depends greatly on each individual and health care conditions of each country. We must also take into

account that once an individual starts developing symptoms, there is still a small time gap until a person

is officially considered positive. It might be a day or two until a person is fully aware of their symptoms

in order to call DGS’s line for medical information and advice on COVID-19, to then schedule a date to

finally be tested.

Bearing everything that has been stated in mind, we will consider a two-week period (14 days) for an

individual to die after symptoms start to manifest, and it is now possible to calculate the estimated number
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Figure 3.4: Comparison between the number of cases reported by DGS (blue line) and the
estimated real number of cases computed with the number of deaths (purple line), taking advantage
of the infection fatality ratio 0.086% and a 14 days from onset symptoms to death.
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of overall infections (check Figure 3.4). With a 14-day delay, a surprising total of 1.97965 × 106 people

have been infected by May 17t h even though by the same date only 842.381 cases have been reported,

representing only 42.55% of the cases.

With an approximation for the real cumulative number of infected individuals, an estimation for the

level of under-reporting in Portugal can be computed. It is expected an higher lever of undetected cases

at the beginning of the pandemic. As it progresses the government starts to have a better understanding

of the virus, allowing the increase of number of tests performed and enhancement of methods to control

the spread of the virus. Eventually, a more stable level of under-reported cases should be achieved,

representing individuals that are asymptomatic and never had a reason to get tested. By observing Figure

3.5, we can infer that, from November 2020 forward, the government was only able to assess 40 − 50% of

the estimated real number of cases.
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Figure 3.5: Ratio between the number of cases reported and the number of estimated cases.

As far as the number of days it takes for a person to recover, let us consider 7, 14 or 21 days. We

take these values on account of that for individuals with none to mild symptoms it takes a week or two

to recover, while patients with severe complications caused by the virus may spend over a month in the

hospital. To best choose the dataset we wish to use, we will take advantage of the third wave of the

pandemic. First and foremost, by analysing the values for each recovery time, the maximum number of

active cases can be computed.

Table 3.1: Maximum number of active cases with different recovery times.

7 days 14 days 21 days
Peak of active cases 236.744 444.186 619.302

The highest number of active cases reported by DGS was 181.811, which is lower than all values

presented in Table 3.1. There will always be missing cases, generally asymptomatic individuals. A

recovery time of 21 days represents a report of approximately 30% of the real number of cases, and even

if this number is correct, after two weeks after onset of symptoms if a person presents itself with a positive

test for COVID-19, its viral load will most likely be too low to effectively infect another individual, which is

not relevant for the purposes of mathematical epidemiology. For that reason, a 21-day recovery time will

be disregarded.
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The recovery time that more accurately represents the level of under-reporting is a 14-day period,

which can be verified by checking Figure 3.5 and performing simple computations. Notwithstanding the

relevance of a 7-day period, since it may be a better representation of real-world scenarios. Once an

individual becomes aware of bearing such virus, he will most likely confine to prevent the spread of the

virus to others, and despite the fact that this person is still infectious, in practical terms he will no longer

be responsible for other infections on his behalf.
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Figure 3.6: Comparison of different curves for the number of active cases. The blue and purple
lines represent the number of active cases considering 7 and 14 days, respectively, to leave the
infectious class either by recovery or death. The green one stands for the number of active cases
reported by DGS.

There are several indicators that can help us have a better understanding of how the pandemic

is evolving. An important indicator that a new wave may be emerging is the positivity rate, the daily

percentage of performed tests that are actually positive. If the percentage of positive tests starts increasing,

it is a good indicator that the level of under reporting is increasing and consequently, more tests should be

performed. During the weekend the number of performed tests is reduced given that some laboratories

are only open on weekdays, and for this particular reason a 7-day moving average is performed to stabilise

these weekly irregularities.
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Figure 3.7: On the left is the comparison between the number of performed tests (represented
by a blue line) and the number of positive tests (represented by a purple line), both with a 7-day
moving average. On the right, the positivity rate (%) is presented.
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As it can be easily perceived on Figure 3.7(b), there were spikes in the positivity rate representing all

three waves. This actively demonstrates that there was an higher number of unreported cases during

these periods.

Another indicator that help us evaluate the pandemic is the number of individuals hospitalised. As

we know, the number of resources available is limited, whether it is in terms of personnel or ventilators.

Throughout time, the number of beds available in the ICU for COVID-19 patients has been adjusted

according to the needs, but nonetheless there is a ceiling for the maximum capacity of critical beds. This

value was reported to be 900 during the third wave of the pandemic, even though an extra 4 critical beds

above this threshold were occupied by February the 5t h .

Apr Jul Oct Jan Apr
0

1000

2000

3000

4000

5000

6000

7000

Date

In
di
vi
du
al
s

Hospitalizations vs. ICU

(a) Hospitalisations vs. ICU

Apr Jul Oct Jan Apr
0

200

400

600

800

Date

In
di
vi
du
al
s

ICU vs daily deaths

(b) ICU vs. daily deaths

Figure 3.8: On the left, the number of patients in the hospital (infirmary and ICU) is presented by
a blue line. In both figures, the purple curve represents the number of individuals in intensive care
units. The green line stands for the number of daily deaths.

It is common for individuals in the hospital to move from the infirmary to the ICU or vice versa according

to one’s condition. Consequently, it was expected both curves in Figure 3.8(a) to have such similar

trends. At first, one would also anticipate similar trends for the daily casualties but with a slight delay in

comparison to the other two curves. However, if we focus on the third wave of the pandemic, we notice

that the peak of daily deaths (January 28t h) occurs earlier than the peak of ICU individuals (February

5t h). This can be explained by the sudden increase of hospitalisations, catching the government and

health care professionals by surprise. Rapid adjustments had to be made, which included new wings

for intensive care patients, reallocation of non COVID-19 patients, new and more exhausting schedules

for professionals, among others. We must also bear in mind that different bodies react differently to the

disease and it is possible that an higher number of individuals with a worse reaction to the virus may have

been infected in an earlier stage of the wave.

Not only the population density is relevant when fighting a virus, but also how elderly the population is

on different regions. Alentejo is the region with the most elderly population, followed by Centre of Portugal,

as stated in [46]. The report [40] published in 2020 by the Organisation for Economic Co-operation and

Development (OECD) declares Alentejo as the region with the lowest ratio of hospital beds per 1000

inhabitants, followed in order by Algarve, Centre of Portugal, North and Lisbon and Tagus Valley. It is

expected that regions with worse scores on these factors to be more likely to have an higher case fatality
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rate (CFR).

To compute the daily CFR, we can consider a 14-day gap from the moment an individual tests positive

for SARS-CoV-2 to death. With the goal of smoothing the data, a 7-day moving average is performed.

For the sake of having more reliable computations, we will solely compute this ratio during the time

period where the number of deaths were more significant, i.e. during the second and third wave. Since

the number of deaths in the beginning of the second wave were still low, the computations will start on

November 4t h , 2020, the day in which the threshold of fifty deaths was exceeded. Our suspicions are

confirmed when observing Figure 3.9, where the orange curve representing Alentejo stands out for the

worst reasons. For the most part, throughout the time window presented, Alentejo has the highest CFR of

all regions achieving an extremely high value of 11.9213% on January 16t h , 2021. The other regions have

a CFR that does not differ as much, even though there is some relevance in pointing out that from all the

curves, the Centre of Portugal scores higher as expected from the information in the previous paragraph.
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Figure 3.9: Case fatality ratio per region. The black curve represents the overall CFR in Portugal.

Out of curiosity, it is particularly interesting to check how the number of deaths increased during this

pandemic in comparison to previous years. Even though the number of casualties due to COVID-19

were extremely high, the fact that people were quarantining and following protection measures against

COVID-19 such as regularly using masks and social distancing helped in reducing the number of contagion

Figure 3.10: Excess mortality (%) in Portugal during the pandemic in comparison to the years
2015-2019.
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for others diseases, resulting in zero flu deaths [57]. Obviously, this leads to a lower immunity, increasing

the risk of a more serious disease during the winter of 2021-2022. Resorting to [48], it is shown in Figure

3.10 the number of weekly or monthly deaths in 2020–2021 differs as a percentage from the average

number of deaths in the same period over the years 2015–2019. To be noticed that there might some

error in these values due to incomplete coverage or delays in death reporting. The fact that even with a

decrease of cases for other infectious diseases, the excess mortality is almost always positive shows how

deadly COVID-19 was. The highest percentage recorded was unexpectedly during the third wave, from

January 17t h to January 24t h , with an astonishing 76.45% more deaths when compared to same period

during 2015-2019.

3.3 Reproduction Number Computation

As discussed in the previous chapter, the reproduction number is a very important indicator in order to

have a better understanding on how fast a pathogen is spreading. With the goal of empirically compute

the reproduction number, it must be taken into account its definition discussed in a prior chapter. Hence,

we want to compute how many individuals does in fact an infected person transmits the virus.

3.3.1 Robert Koch Institute Formula

The Robert Koch Institute (RKI) published a report [27] with an empirical formula for the Rt . This

formula consists on studying the number of new daily cases, by considering a moving given window of

time to check the number of new cases that emerge from the wave of infected from that previous time.

The formula is as follows

Rt ,τ =
∑t
i=t−τ+1 Ei∑t
i=t−τ+1 Ei−ν

, (3.1)

where l the time lag corresponding to the latent period and τ represents the time an individual spends

as infectious. The RKI assumes a time lag ν = 4 and considers two possible scenarios, τ = 4 or a more

stable 7-day Rt value (τ = 7). On Figure 3.11 is a visual representation of the formula, where for the

computation of Rt+11 it is considered that the new cases in the blue box originated from contacts with

individuals that were initially infected during the purple period.

. . . Et Et+1 Et+2 Et+3 Et+4 Et+5 Et+6 Et+7 Et+8 Et+9 Et+10 Et+11 Et+12 Et+13 . . .

Figure 3.11: Representation of Rt+11 by RKI with τ = 7 and τ = 4.

As mentioned previously, the data provided by the Portuguese government was affected by the

reduction of tests performed on the weekends and by laboratories that are only open during week days.

These factors led to major irregularities on the number of cases that were daily reported. It was observed

a decrease of cases on the weekend followed by a big increase on Monday and Tuesday to compensate

the previous days. For that reason, a 7-day moving average on the daily new cases was performed
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before applying the formula (3.1). A big advantage of this formula is that allows the computation of the

reproduction number of the current day.

On Figure 3.12 the reproduction number for each day is represented for an infectious period of τ = 4

and τ = 7, from left to right. As expected, a 7-day period of infectiousness creates a more stable and

smoother Rt . It is also visible when the pandemic waves occurred.
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Figure 3.12: The blue line stands for the reproduction number in Portugal using the RKI formula.
On the left, an infectious period of 4 days is considered while on the right there is a 7-day infectious
period. The black line represents the important threshold of Rt = 1.

Another interesting subject worth exploring is to compute this number for each gender and for different

age classes, that we present in Figure A.1 and A.2 in Appendix A, respectively. All plots presented were

computed using a 7-day infectious period and a time lag ν = 4. In terms of age, each class has a ten year

range and do not overlap. As expected, the plots are extremely similar and do not indicate significantly

different spread rates according to the gender. The government only made available information by gender

on March 19t h , and consequently the values for the Rt start a bit latter and preclude the computation of

the basic reproduction number R0 specific to gender.

3.3.2 Non-constant Viral Load Formula

Throughout this pandemic, we also resorted to a new empirical formula to compute the reproduction

number. In a very similar manner, we took advantage of the new daily cases and a 7-day infectious period.

The major difference with this formula relies on the fact that here we consider that SARS-CoV-2 viral load

is not constant during the infectious period, and therefore an additional weight must be added. The viral

load will follow a Gaussian distribution with its peak in the middle of the infectious period. The formula is

Rt =
∑t+ω
i=t−ω wi−t+4Ei∑t+ω
i=t−ω wi−t+4Ei−ν

, (3.2)

where Ei is the number of new cases on day i , ν is the number of days in the latency period, wj with

j ∈ {1, . . . , τ} is the weight associated with j t h day of infection, and ω = b τ2 c, with τ an odd number (of

days spent as infectious). A disadvantage when comparing equations (3.1) and (3.2) is that the latter will

always compute the reproduction number with a b τ2 c days delay.
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Similar to the computations made by the German RKI, we will use a latency period of 4 days and

an infectious period of 7 days. As for the percentage of viral load on each day, it will be considered a

Gaussian distribution with mean value µ = 0 and standard deviation σ = 2, leading to the following weight

vector

w = (0.324652, 0.606531, 0.882497, 1, 0.882497, 0.606531, 0.324652). (3.3)

As expected the probability of transmitting the disease is not constant (wi , 1, [i ), instead it is lower

on the first and last day of the infectious period (≈ 32.5%), increasing symmetrically, hitting its peak on the

4t h day with 100%.

One major disadvantage of this formula is that it computes the reproduction number with a delay of 3

days, which can be an important factor when fighting a pandemic on real time. Since there are several

variables that might influence the value of the reproduction number in real-world scenarios, a 10% error

margin can be considered (see Figure 3.13).
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Figure 3.13: Reproduction number represented by the purple curve, using the number of active
cases and the viral load during a 7-day infectious period follows N(0, 4). The blue lines describe a
10% error margin and Rt = 1 is illustrated by the black line.

As mentioned in the previous section, the population density is of the utmost importance in regards

of fast a virus can spread, and thus on Figure 3.14 are presented plots for the reproduction number for

Portugal’s regions. Açores and Madeira were left out in view of the low number of cases that were daily

presented. Alentejo and Algarve are proof of how a lower number of cases can impact the reproduction

number plot. Both present quite a spiky plot (Figures 3.14(d) and 3.14(e), respectively) that only gets

stabler around the second and third wave.

An estimation of the Rt can also be performed resorting to number of deceased individuals. To perform

this computation a time gap of fourteen days from infection to death is, once again, considered. This very

reason leads to its first major disadvantage: computing the Rt with a delay of 14 days can reveal itself

deadly when fighting a real pandemic.

The other disadvantage lies with the fact that during periods with lower deaths, the reproduction

number becomes more unstable. During the second and specially, the third wave of the pandemic the

number of casualties were much higher which allows better estimates. As for the other intervals of time,

the curve tends to be rougher and very often with spikes which do not represent the situation at the time
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Figure 3.14: Reproduction number using equation (3.2) (with τ = 7 and ν = 4) for regions of
Portugal, described by the purple line with blue lines illustrating a 10% error margin. The black line
represents the important threshold of Rt = 1.

of the pandemic. For this reason, it is not sound to take advantage of this basic reproduction number to

compute the herd immunity.
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Figure 3.15: Reproduction number represented by the purple curve, using the number of deceased
individuals instead of the new daily cases in equation (3.2) with a 7-day infectious period following
a N(0, 4). The blue lines describe a 10% error margin and Rt = 1 is illustrated by the black line.

Similar to the previous subsection, the plots of the reproduction number by gender and age class are

presented in appendix A in Figures A.3 and A.4, respectively. The plots obtained from the non-constant

viral load formula are very similar to the corresponding plot using the RKI formula, only a bit smoother.

Regarding the values achieved for the age classes it is relevant to mention the basic reproduction number,

R0. Up until the age of nineteen, this value is quite low in comparison to the other plots that indicate a R0

above two. The age class 60-69 stands out with an higher basic reproduction number of 5.24732.
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3.4 Third Wave Analysis

It is particularly interesting to analyse how the variables are intertwined. To give a better perception on

how the emergence of a new wave can be predicted and consequently, contained, we will focus ourselves

on the third wave of the pandemic (from 26t h December, 2020 to 28t h February, 2021).

The first alarm signals one should be aware of is the number of daily new cases (Figure 3.1) and the

positivity rate (Figure 3.7(b)). As the second wave was on its apparent downward trend, the number of

daily cases started to rise. On New Year’s Eve hits what it was at the time the second highest value ever

recorded in Portugal, 7.627 cases, which occurs a week after Christmas. This was the first warning that

the number of cases would start increasing in the following days if no actions were taken. The positivity

rate accompanies the same movement and on January 6t h hits a new all time high with 19.0528% of tests

positive. On the same day the threshold of 10.000 daily cases is crossed, with an alarming 10.027 cases.

On this day, one could predict that the worst was yet to come as the effects of irresponsible celebrations

of Christmas and New Year started to reveal itself catastrophic. The virus was already spread widely

across the country and severe measures had to be taken immediately.

Unfortunately, the government was not duly prepared and no major decisions were made before

the meeting at INFARMED (a Government agency accountable to the Health Ministry, that evaluates,

authorises, regulates and controls human medicines as well as health products, namely, medical devices

and cosmetics for the protection of Public Health) that took place on January 12t h , 2021. The decisions

made on this day were only made effective on the 15t h , representing an eight day delay that allowed

a further spread of the disease. The reproduction number computed in Section 3.3 is also another

confirmation of how serious the situation was. A fast increase in this value occurred, with the threshold

of Rt = 1 being surpassed in a matter of days. On December 29t h , 2020, the reproduction number was

0.901646 and on January 7t h , 2021, this value was at an impressive 1.3514 (these values were obtained

from the RKI formula with τ = 7 presented in Figure 3.12(b)).

The lack of a fast response to a serious problem had tremendous consequences. As it can be observed

in Figure 3.8, the number of hospitalised individuals increased immensely, including the number of critically

ill patients in the ICUs. Unfortunately, the number of people that lost their lives too soon due to COVID-19

increased accordingly, leading to an higher case fatality ratio represented in Figure 3.9.

Finally, after the country went through a strict lockdown, only complete on January 22nd , 2021, it was

possible to contain a great amount of virus’ outbreaks throughout the country and as time went by all

indicators started its downward trend, indicating that this wave was finally ending.

3.5 Comparison with other Countries

Even if one believes that the previous analysis solely on Portugal is not enough to accurately analyse

and predict the pandemic, a quick comparison with other countries will reveal how critical the situation in

Portugal was. Taking advantage of a scientific online publication, Our World in Data (OWID), that uses

interactive charts and maps to illustrate research findings on large global problems, we present Figure

32



3.16 and 3.17 attained from [48]. On such figures is a comparison of the daily new confirmed COVID-19

cases/deaths per million people in Portugal versus other countries and regions, respectively. To be noted

that all plots have a 7-day moving average and in both cases there is some inaccuracy involved, mainly

due to limited testing and also challenges to attribute the cause of death.

First of all, when comparing Portugal’s numbers with the ones for each continent (Figures 3.16(a) and

3.17(a)), it is noticeable two very flat curves that correspond to Africa and Oceania. Each has very distinct

reasons to justify such behaviour, mentioned in [60] and [19, 28], respectively.

Besides the weather, where higher temperatures have been linked to lower cases of COVID-19 in

works like [10], the large majority of Africa is constituted by developing countries (with a low Human

Development Index), which implies several characteristics associated with such countries. With a very

youthful population, it is expected that most COVID-19 cases are either asymptomatic or just mild

symptoms, resulting in a high rate of undetected cases. Combining high levels of pollution and poverty

with low levels of access to safe drinking water, sanitation and hygiene leads to an high proportion of

people with tropical and infectious diseases. The previous sentence makes us talk about the elephant

in the room: with so many other diseases and problems these countries face, there is most likely an

inaccurate counting of the number of cases and casualties and a lower CFR due to age structure.

In Oceania, countries like Australia and New Zealand tackled the virus very efficiently. The major

key factor for such successful containments and management of all SARS-CoV-2 variants is a quick

response based on the new daily data. As soon as a single new case emerged, severe measures were

taken immediately to contain that chain of transmission as soon as possible, which contrasts with how

European governments dealt with similar situations. This success proves that a strong public health

response enforced by a government focused on regular testing, tracing and quarantine is the key to

fighting a pandemic in its initial stages.

As far as the other continents go, its numbers of cases and deaths are quite low in comparison to

Portugal which was expected since we are discussing extremely wide regions that might have extremely

different numbers according to how each country managed the pandemic and consequently, it is not

possible to withdraw significant conclusions on its regard.

At this point, it makes sense to shorten the spectrum to countries/regions that are more similar to

Portugal. In order to do so, we resorted to the Country Similarity Index (CSI) [34] that is built based on 5

pillars: Demographics, Culture, Politics, Infrastructure and Geography. This index will allow a comparison

not solely on sanitation, medical infrastructures and how the government responds to emergencies but also

in terms of culture (traditions, religion, recreation and behaviour). This is of the utmost importance when

one intends to inspect how a population will react in terms of following the measures/guidelines/restrictions

even if it means breaking some habits/traditions. As expected, the first twenty positions are occupied

by countries that are members/candidates of the EU. Even though countries like the United States of

America (USA) and United Kingdom (UK) do not have an index with Portugal as high as other countries,

both have reported extremely high numbers of cases/deaths throughout the pandemic. For this particular

reason, these countries are represented on Figures 3.16(b) and 3.17(b) along with Portugal and the EU.

The EU’s number of cases/deaths was considerably low up until early October, when new waves started
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(a) Continents (b) USA, UK and EU

(c) EU member countries

Figure 3.16: Comparison between the daily new confirmed COVID-19 cases per million people in
Portugal and throughout the continents, United Kingdom (UK), United States of America (USA),
European Union (EU) and some of its member countries.

(a) Continents (b) USA, UK and EU

(c) EU member countries

Figure 3.17: Comparison between the daily new confirmed COVID-19 casualties per million people
in Portugal and throughout the continents, United Kingdom (UK), United States of America (USA),
European Union (EU) and some of its member countries.
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emerging throughout Europe. Similar to what happened to the continents’ curves, it is worth mentioning

that EU’s curves do not have a similar shape to the ones from epidemiological models (remaining more or

less steady until the end of April). This can be explained by the fact that not all waves occurred during the

same time period on all countries. Looking in particular to the evolution of COVID-19 in the USA and the

UK, we notice curves that resemble what occurred in Portugal, especially the UK where the curves are

extremely alike. Nonetheless, neither hit values per million people as high as Portugal did during the third

wave.

At last, on Figures 3.16(c) and 3.17(c) is the comparison with the countries that score the highest on

the CSI: Spain, Italy, France, Greece and Croatia, from highest to lowest. With these figures one can

indeed confirm that the waves hit the European countries in different time periods, which is expected from

infectious disease. Once again no country since the beginning of the pandemic had the amount of cases

and deaths per million people as Portugal did in January, 2021. It is particularly interesting to notice that

our neighbour Spain had the second and third wave during similar time periods as Portugal. Even if not

reaching the high values of Portugal, Croatia had a very worrying second wave with almost 900 cases of

COVID-19 per million and close to 20 deaths per million.

To sum up everything that has been stated so far, one thing becomes clear: the third wave of the

pandemic in Portugal could and should have been better handled. By the 10t h of January, from the

mentioned regions only the UK had more cases per million people than Portugal and not to mention that

Portugal was considered worldwide to be the country with the highest daily incidence per million people

from January 18t h to February 5t h , 2021. To be noted that at that time a further study on the circumstances

of how each country was handling the disease should have been made before jumping to conclusions,

such as the positivity rate and restrictions imposed by the government. Nonetheless, these results allow

us to conclude that the third wave in Portugal was very worrying and if the government had decided to

delay a few more days to take the severe measures required, the consequences would have been even

more catastrophic: the national health care system could have easily collapsed, a bigger impact on heath

care workers’ physical and mental health, a larger number of deaths would have been registered, among

others.

3.6 Model Adjustment

In order to adjust epidemiological models to the data in hands, research is deeply valued, given that

it will allow for a better tuning of parameters. To properly measure which epidemiological model is the

best fit, some error measurements were considered. The simpler and most well-known technique [39] to

measure the amount of variance in a data set is the sum of square errors (SSE), occasionally known as

residual sum of squares (RSS)

SSE =
n∑
i=1

(yi − ŷi )2. (3.4)

Since we will be working on data with sufficiently large values, the SSE can very easily take extremely

high values, and for that reason measures like the mean squared error (MSE) and residual mean squared
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error (RMSE) provide simple transformations of the SSE that can be more easily interpreted

MSE =

∑n
i=1 (y − ŷi )2

n
=
SSE

n
, (3.5)

RMSE =

√∑n
i=1 (y − ŷi )2

n
=
√
MSE . (3.6)

It is relevant to point out that all the three previous measures rely on the sum of square errors, and

subsequently if a set of parameters of a given model produces the lowest value for one of the previous

error measurements, it will be the lowest for the remaining two measures as well.

Nonetheless, at times it will be necessary to compare curves that will be on different scales, and

therefore the previous error measurements will not be able to accurately compare the results obtained for

each curve. The solution for this problem is the mean absolute percentage error

MAPE =
1

n

n∑
i=1

|yi − ŷi |
yi

. (3.7)

With the goal of adjusting the models discussed in Chapter 2, the class that we must try to replicate

with the epidemiological models is the infected class. To do so, two functions were created, one for

each model, SIR and SEIRD. Both functions receive an initial and final date corresponding to the time

interval we aim to adjust, and a set of possible values for each parameter we are intending to tune. For

the SIR model, only the transmission rate and the recovery rate are needed, whereas for the SEIRD

model an extra parameter, responsible for controlling the latency period, must be tuned. Last but not least,

the SEIRD model requires the knowledge of how many individuals are already bearing the virus but as

non-contagious (i.e. in the exposed class) for the initial condition of the ordinary differential equation. To

solve this problem, we will consider that the number of individuals in the exposed class is a ratio of how

many are on the infectious class. Thus, a variable pe is going to represent the ratio between the number

of individuals on the exposed class and the ones on the infectious class. This ratio will be tuned alongside

the parameters of the model.

The code used to implement both functions is available on Listings 1 and 2 in Appendix B. At each

time step, with a different set of parameters, we resorted to Mathematica’s command NDSolve to find a

numerical solution to the ordinary differential equations. The method used by this command is automatic,

meaning that accordingly to the set of ODEs given, it will be chosen the method that best fits the problem.

This step is followed by computing the error metrics (SSE, MSE, RMSE and MAPE) between the numerical

solution obtained via Mathematica and the number of infected individuals in Portugal. Finally, the function

returns the models that had the best scores in terms of square errors and mean absolute percentage

error.

First and foremost, the time period of each wave must be defined. The second wave will be assumed

to start on September 13t h , 2020, the day where the daily incidence of five hundred cases was surpassed.

As for its end we cannot consider the same criteria since the emerge of a deadlier wave is the cause for

its early and abrupt end. The 26t h of December, the day with least new daily cases, will mark both the end
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and the start of the second and third wave, respectively. Maintaining the same criteria of a threshold of

five hundred cases per day, the 28t h of February, 2021, is the last day of the biggest wave Portugal has

faced.

As previously stated, there are three data sets that account for the number of active cases on each

day: the reports provided by DGS and the data obtained from the number of deaths with 7 and 14 days to

recover/die. For each dataset, the two models, SIR and SEIRD, will be adjusted with the set of parameters

that minimise the error measurements described above.

Some thresholds for the parameters were used when computing the functions. When adjusting the

SEIRD model, the time one spends in the latency period is of at least two days and hence σ ≤ 0.5. The

ratio pe was analysed by observing the infected curve. If within a small interval of time the number of

individuals in the infectious class increased a given percentage, then these new arrivals came from the

exposed class, creating an initial value to begin with. As for the SIR model, there was not a need to

reduce as much the possibilities for the values of β and ρ since there are only two parameters and there

is no problem in regards of computational cost. With both β and ρ ranging from 0 to 1 with 0.01 interval

jumps, all 101 × 101 = 10.201 combinations of parameters will be considered for this model. Occasionally,

a second tuning will occur considering a parameter error smaller than 10−3.

3.6.1 Second Wave

Focusing ourselves in the second wave, it lasts 105 days and accounts for a total of 4696 casualties

during this time gap. For all three data sets, the curve does not have the common shape known of

epidemiological models. It has a steady increase during a month and a half, but then it stabilises in a

dangerous area, leaving open the possibility of major outbreak if a significant event were to disturb the

sensitive system, which unfortunately did occur with the Christmas celebrations.

On Table 3.2 are presented the models that better adjust the number of active cases provided by the

Portuguese government. The SIR model presented obtained the lowest values on all error measurements,

with an infected period of 1/ρ ≈ 4.17 days.

Table 3.2: Error measurements for the models that best fit the data provided by DGS for the second
wave.

Parameters Error Measurements

β σ ρ pe SSE MSE RMSE MAPE (%)

SIR 0.27 - 0.24 - 4.36372 × 109 4.15592 × 107 6446.64 9.56513

SEIRD
0.53 0.42 0.44 0.3 1.67633 × 109 1.5965 × 107 3995.62 8.55783

0.50 0.45 0.42 0.3 2.35601 × 109 2.24381 × 107 4736.89 8.29674

As for the SEIRD model, two set of parameters are presented in view of the fact that one obtain

better results in terms of square errors and another has a slightly better mean absolute percentage error.

Nonetheless, the values obtained were quite similar. For the first, there is a latency period of 1/σ ≈ 2.38

days whereas the second indicates an approximate 2.22 days. This difference is not significant in practical
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terms and a similar situation occurs for the remaining parameters, where is relevant to point out that for

both SEIRD models, there is an indication of very short infectious periods, approximately 2.27 and 2.38

days, respectively.

By observing Figure 3.18, we can state than even if the mean absolute percentage error is relatively

low, no model has a similar shape to the data provided by DGS, as expected since there are some

irregularities associated. To be noted that it was applied a 7-day moving average to try and smooth the

data, and even so the curve is not as clean as one would like.
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Figure 3.18: Visual representation of the models presented in Table 3.2 for the second wave. The
purple points correspond to the number of daily active cases provided by DGS. On the left, the
black line represents the SIR model that performed better on all error measurements. On the
remaining figures, the two best SEIRD models are presented by a black line. Figure 3.18(b) had
the best results for square errors metrics and Figure 3.18(c) had the lowest value for the MAPE.

Next, the same process was repeated, but now taking advantage of the dataset built from the number

of casualties and then a 7 day period for the individuals to leave the class, either by recovery or death.

Before analysing the results, it is relevant to emphasise that this dataset is not very smooth during the

second wave. The number of casualties increased but eventually reached a zone where there were

small variations but never surpassing a given interval. Consequently, it is only to be expected a period of

instability where the mathematical models will have a hard time adjusting.

Table 3.3: Error measurements for the models that best fit the data built from the number of
deceased and with a 7-day period in the infected class for the second wave.

Parameters Error Measurements

β σ ρ pe SSE MSE RMSE MAPE (%)

SIR
0.46 - 0.4 - 2.81912 × 109 2.68488 × 107 5181.58 17.5323

0.39 - 0.34 - 7.53108 × 109 7.17246 × 107 8469.04 17.1954

SEIRD 0.87 0.5 0.7 0.26 4.8211 × 109 4.59153 × 107 6776.08 12.0944

On Table 3.3 the best results in terms of metrics are presented. The more complex model has a

significant difference for the MAPE when comparing to the one that attained the best value for this metric

within the SIR model. This model has a 2-day latency period and 1/ρ ≈ 1.43 days as infectious.

The time spend in the infected class is, approximately, 2.5 and 2.94 days for the two best SIR models

with respect to the square errors metrics and the MAPE, respectively.
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Figure 3.19: Visual representation of the models presented in Table 3.3 for the second wave. The
purple points correspond to the number of daily active cases obtained from the data created from
the number of casualties and with a 7-day period. On the left and middle, the black line represents
the SIR model that performed better on the square error measures and on the MAPE, respectively.
Figure 3.19(c) illustrates the SEIRD model with the best overall results with a black line.

At last, we fit SIR and SEIRD models to a dataset that was built in a similar manner to the previous,

but with a 14-day period to leave the active class. As anticipated, the values for SSE, MSE and RMSE

increase with this data. This is due to an higher level of infected individuals, justifying why these metrics

lose reliability if we aim to compare data sets with very distinct values for the number of active cases.

In this case, it is presented on Table 3.4 two distinct set of parameters for each type of model. For a

better reading, the first set will always be the one with the best values for the square errors metrics and

the second set will be the one that scored the lowest in the MAPE.

Table 3.4: Error measurements for the models that best fit the data built from the number of
deceased and with a 14-day period in the infected class for the second wave.

Parameters Error Measurements

β σ ρ pe SSE MSE RMSE MAPE (%)

SIR
0.34 - 0.28 - 1.31841 × 1010 1.25563 × 108 11205.5 21.2055

0.29 - 0.24 - 1.62285 × 1010 1.54557 × 108 12432.1 14.938

SEIRD
0.52 0.47 0.4 0.25 8.25886 × 109 7.86558 × 107 8868.81 9.05434

0.49 0.5 0.38 0.25 8.47488 × 109 8.07131 × 107 8984.05 8.5526

In this data set, it becomes extremely clear that a model that incorporates a latency period adjusts

better to the data for all error measurements. Both SIR models provide similar values for the infected

period, 3.57 and 4.17 days, correspondingly.

As for the SEIRD model, both set of arguments are quite alike. The first model has a latency period of

2.13 days and an infectious period of 2.5 days, whereas the MAPE’s best scorer has a 2-day period as

non-contagious and considers that an individual spends 2.63 days as infectious.

Even with a 7-day moving average on the data set that considers a 14-day recovery period, the

curve is not perfect to adjust mathematical models since, from mid-November until the 26t h of December,

2020, the number of active cases oscillates from 110.000 to 130.000, making it difficult to reduce the error

measurements presented in Table 3.4.

39



Oct Nov Dec
0

20000

40000

60000

80000

100000

120000

140000

Date

In
di
vi
du
al
s

Active cases - 14 day recovery vs. SIR model

(a) Best SIR model for square errors

Oct Nov Dec
0

20000

40000

60000

80000

100000

120000

140000

Date

In
di
vi
du
al
s

Active cases - 14 day recovery vs. SIR model

(b) Best SIR model for MAPE

Oct Nov Dec
0

20000

40000

60000

80000

100000

120000

140000

Date

In
di
vi
du
al
s

Active cases - 14 day recovery vs. SEIRD model

(c) Best SEIRD model for square errors

Oct Nov Dec
0

20000

40000

60000

80000

100000

120000

140000

Date

In
di
vi
du
al
s

Active cases - 14 day recovery vs. SEIRD model

(d) Best SEIRD model for MAPE

Figure 3.20: Visual representation of the models presented in Table 3.4 for the second wave. The
purple points correspond to the number of daily active cases obtained from the data created from
the number of casualties and with a 14-day period. The black line represents the SIR model for
the figures on top and the SEIRD model for the figures on the bottom. On the left are the graphs
that had the best score for the square errors metrics. On the right are the graphs with the best
MAPE values.

3.6.2 Third Wave

The third wave is shorter, but much deadlier. It lasts 65 days, and is responsible for around 9761

deaths, disregarding that some in the beginning still belong to the second wave and others occur after we

consider this wave as over. In consequence of being the deadlier wave, the data sets that were generated

from the daily deaths are a more accurate representation of a epidemiological curve of an outbreak, so it

is expected better results than those attained so far.

National Results

A big discrepancy regarding the error measurements is observed between the models that consider

the host of the virus to pass through a latency period and those who do not (check Table 3.5). These are

the lowest values obtained so far for the mean absolute percentage error, 6.87% and 6.83%. As usual

the values of the parameters do not differ that much for the SEIRD models. The first has a latency of

1/σ = 2.5 days, whilst the second has a 2.38 days period. Both models share an approximate value of

1.82 days as infectious.

The SIR model had a poor performance with this data, as it can be seen in Figure 3.21, where it has

an hard time getting a similar shape to the curve of actives cases by DGS. Nonetheless, the time an

individual spends as infectious is, according to these models, 3.23 and 3.45 days.

Unsurprisingly, when inspecting Figures 3.21(c) and 3.21(d), the mathematical models seem to adjust
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quite better to the third wave, and it is expected the improving of such values when using the two more

reliable data sets.

Table 3.5: Error measurements for the models that best fit the data provided by DGS for the third
wave.

Parameters Error Measurements

β σ ρ pe SSE MSE RMSE MAPE (%)

SIR
0.37 - 0.31 - 2.14586 × 1010 3.30132 × 108 18169.5 13.9784

0.34 - 0.29 - 2.7624 × 1010 4.24984 × 108 20615.1 13.3031

SEIRD
0.75 0.42 0.55 0.25 4.58083 × 109 7.04743 × 107 8394.9 6.87465

0.75 0.4 0.55 0.3 4.91156 × 109 7.55625 × 107 8692.67 6.82885
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Figure 3.21: Visual representation of the models presented in Table 3.5 for the third wave. The
purple points correspond to the number of daily active cases provided by DGS. The black line
represents the SIR model for the figures on top and the SEIRD model for the figures on the bottom.
On the left are the graphs that had the best score for the square errors metrics. On the right are
the graphs with the best MAPE values.

Now, the models will be fitted into the most reliable data sets. Starting with the one that considers a

7-day period to leave the infected, the results are displayed in Table 3.6. In terms of square errors metrics,

both SEIRD models achieved, once again, better results than the SIR models. As for the MAPE, the best

model is, surprisingly, the one that does not have an exposed class.

For the SIR models, the length of the infected period are very similar, 2.44 and 2.38 days. As for the

SEIRD models, individuals spend approximately 2 days as non-contagious and around 1.45 days as

infectious.

Even though the SEIRD models did not score as well as expected, Figure 3.22 explains why. The

models are able to capture quite well the real number of active cases including its peak, however the first
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Table 3.6: Error measurements for the models that best fit the data built from the number of
deceased and with a 7-day period in the infected class for the third wave.

Parameters Error Measurements

β σ ρ pe SSE MSE RMSE MAPE (%)

SIR
0.54 - 0.41 - 1.05013 × 1010 1.61558 × 108 12710.5 10.787

0.56 - 0.42 - 1.29442 × 1010 1.99142 × 107 14111.8 8.5582

SEIRD
1.1 0.49 0.7 0.4 6.00007 × 109 9.23087 × 107 9607.74 11.4101

1.05 0.5 0.68 0.4 6.61105 × 109 1.01708 × 107 10085.1 9.58651

days underestimate slightly. This actively demonstrates that the level of under reporting might have been

lower on these first few days than one anticipated.
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Figure 3.22: Visual representation of the models presented in Table 3.6 for the third wave. The
purple points correspond to the number of daily active cases obtained from the data created from
the number of casualties and with a 7-day period. The black line represents the SIR model for the
figures on top and the SEIRD model for the figures on the bottom. On the left are the graphs that
had the best score for the square errors metrics. On the right are the graphs with the best MAPE
values.

It is relevant to mention how the ratio pe can have a great impact on these computations. This

parameter is allowing the models to adjust the initial number of infected individuals and consequently, a

possible improvement on the remaining days of the data set.

Last but not least, we will fit the epidemiological models to what is probably the most stable data.

The previous statement is confirmed by the mean absolute percentage errors obtained by the SEIRD

models (see Table 3.7), where the best score has only a 4.65% error. In spite of an high level of infected

individuals (over 400.000), the errors for the square errors metrics are quite low.

The MAPE’s best scorer states that the latency period is 1/σ ≈ 2.44 days and the infectious period is

1/ρ ≈ 2.56 days. The difference between SIR and SEIRD models is evident when checking Figure 3.23,
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Table 3.7: Error measurements for the models that best fit the data built from the number of
deceased and with a 14-day period in the infected class for the third wave.

Parameters Error Measurements

β σ ρ pe SSE MSE RMSE MAPE (%)

SIR
0.366 - 0.256 - 6.86537 × 1010 1.05621 × 109 32499.4 16.4994

0.388 - 0.27 - 9.60423 × 1010 1.47757 × 108 38439.2 12.8535

SEIRD
0.66 0.415 0.385 0.18 8.79979 × 109 1.35381 × 107 11635.3 4.86516

0.67 0.41 0.39 0.18 8.93433 × 109 1.37451 × 107 11724 4.64901

which was a result we intended on proving on this work. The SARS-CoV-2 has an average latency period

of 2 − 5 days, and thereby the models should corroborate this fact.
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Figure 3.23: Visual representation of the models presented in Table 3.7 for the third wave. The
purple points correspond to the number of daily active cases obtained from the data created from
the number of casualties and with a 14-day period. The black line represents the SIR model for
the figures on top and the SEIRD model for the figures on the bottom. On the left are the graphs
on the left that had the best score for the square errors metrics. On the right are the graphs with
the best MAPE values.

Once again, it seems that there was a bit of over estimation in the first few days of the data set built

from the number of deaths. Regardless, the number of infected individuals predicted in the first few days

of the third wave are still higher than what was reported by DGS.

A common occurrence on all results was the unexpected values of the low time an individual spends as

infectious. The models return infectious periods that vary from one to three days. From scientific research

on the virus, this value should be higher, around fourteen days in most cases even though the viral load

might not be sufficiently high during this whole period to make an effective infection. This phenomenon can

be explained by people’s behaviour. In real-world scenarios, with a disease as dangerous as COVID-19,

once a person discovers that it is infected, the normal course of action is to isolate himself in order to
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avoid infecting others that could potentially lead to severe diseases/complications and eventually death.

Consequently, this individual will only be at risk of infecting others for the first three days, until he realises

that he carries the virus.

As for the latency period obtained in the SEIRD models, all give an indication for a very short period, 2

to 2.5 days.

Nevertheless, the results here achieved, particularly the last scenario, are remarkable taking into

consideration that the curves we were adjusting our models into have a lot of observational error associated.

Results by Gender

Since the results were better for the data with a 14-day time period from infection to death/recovery,

we will now fit models for each gender during the third wave. Hence, it will be considered fourteen days

from infection to death and/or recovery according to each model. In terms of gender, Portugal tends very

slightly to a more female population accounting for 52.8% of the population, whereas the male population

is 47.2% [45].

On table 3.8 is clear once again how much better the SEIRD model adjusts to this infectious disease.

The female population seems to have slighter shorter latency and infectious period, 1/σ ≈ 2.44 and

1/ρ ≈ 2.38 days, than the male population, 1/σ ≈ 2.36 and 1/ρ ≈ 2.94 days, respectively. Of course, these

small differences are not relevant in practical terms. Nonetheless, it seems that a bigger percentage of

the number of females were in the latency period at the beginning of the wave, 20.635 versus 16.231 male

individuals.

Table 3.8: Error measurements for the models that best fit each gender during the third wave.

Parameters Error Measurements

β σ ρ pe SSE MSE RMSE MAPE (%)

Fe
m
al
e SIR

0.384 - 0.275 - 1.62214 × 1010 2.4956 × 108 15797.5 17.8803

0.41 - 0.294 - 2.46836 × 1010 3.79748 × 108 19487.1 13.4098

SEIRD
0.7 0.41 0.42 0.32 1.98224 × 109 3.0496 × 107 5522.32 4.74318

0.7 0.41 0.42 0.38 2.37107 × 109 3.64781 × 107 6039.71 4.29528

M
al
e SIR

0.349 - 0.238 - 1.83127 × 1010 2.81734 × 108 16784.9 15.6141

0.37 - 0.252 - 2.5768 × 1010 3.96431 × 108 19910.6 12.3034

SEIRD
0.59 0.42 0.34 0.26 1.99808 × 109 3.07398 × 107 5544.34 4.85753

0.59 0.43 0.34 0.27 2.40264 × 109 3.69636 × 107 6079.77 4.45436

The best fit for each gender is presented on Figure 3.24 confirming how well the models fit the data.
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Figure 3.24: Visual representation of the best SEIRD model in terms of MAPE for the female
and male population during the third wave. The purple points correspond to the daily number of
female/male active cases. The black line represents the curve for the infected class obtained from
each model.

Results by Region

Taking into account, once more, how the population density can affect the spread of a given virus, the

process made previously for each gender will be repeated for each region.

It is particular relevant to notice on Table 3.9 how misleading it is to compare regions based on square

error measures. As it can be observed, regions with smaller populations (Alentejo and Algarve) have

extremely good results for the RMSE, however this does not necessarily mean we are facing a good fit.

For example, Lisbon and Tagus Valley has a poorer result for the square errors but in terms of MAPE

score, it has a way better result.
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Figure 3.25: Visual representation of the best SEIRD model in terms of MAPE for each region
during the third wave. The purple points correspond to the daily number of active cases. The black
line represents the curve for the infected class obtained from each model.

To give a better perception on how each model fits the data on each region, plots for the best SEIRD
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model concerning the MAPE score are represented on Figure 3.25. Both regions with a smaller number

of individuals have a more unstable curve, which explains why the models were never able to reach as

lower MAPE scores as the other regions. It is remarkable how low the percentage error (≤ 5%) is for the

Centre of Portugal and Lisbon and Tagus Valley, specially taking into account the amount of errors that

are associated with the data.

Table 3.9: Error measurements for the models that best fit each region during the third wave.

Parameters Error Measurements

β σ ρ pe SSE MSE RMSE MAPE (%)

N
or
th

SIR
0.399 - 0.3 - 5.24171 × 109 8.06418 × 107 8980.08 21.5112

0.443 - 0.33 - 7.86073 × 109 1.20934 × 108 10997 15.1552

SEIRD
0.76 0.45 0.49 0.3 1.10596 × 109 1.70147 × 107 4124.89 8.08957

0.85 0.41 0.53 0.24 1.28722 × 109 1.98033 × 107 4450.09 6.21033

C
en

tre

SIR
0.408 - 0.291 - 1.32212 × 109 2.03403 × 107 4510.02 11.3012

0.424 - 0.302 - 1.87227 × 109 2.88041 × 107 5366.94 7.8828

SEIRD
0.64 0.55 0.4 0.33 1.52967 × 108 2.35334 × 106 1534.06 4.26066

0.64 0.54 0.4 0.33 1.84782 × 108 2.84279 × 106 1686.06 4.24997

LT
V

SIR
0.309 - 0.187 - 1.60374 × 1010 2.4673 × 109 15707.6 16.9956

0.326 - 0.2 - 2.40606 × 1010 3.70164 × 108 19239.6 13.5241

SEIRD
0.63 0.25 0.28 0.31 1.25514 × 109 1.93098 × 107 4394.3 4.60571

0.63 0.25 0.28 0.33 1.28047 × 109 1.96995 × 107 4438.41 4.52945

Al
en

te
jo SIR

0.329 - 0.241 - 4.28573 × 108 6.59343 × 106 2567.77 20.6542

0.365 - 0.267 - 8.75067 × 108 1.34626 × 107 3669.14 14.1445

SEIRD
0.62 0.35 0.37 0.31 1.5406 × 108 2.37015 × 106 1539.53 9.91095

0.61 0.39 0.37 0.31 1.85166 × 108 2.8487 × 106 1687.81 7.34761

Al
ga

rv
e SIR

0.498 - 0.384 - 3.19065 × 107 4.90870 × 105 700.621 10.6266

0.512 - 0.393 - 4.15505 × 107 6.39238 × 105 799.524 9.26353

SEIRD
0.64 0.8 0.46 0.8 3.49047 × 107 5.36995 × 105 732.8 10.5888

0.68 0.78 0.48 0.8 5.64738 × 107 8.68827 × 105 932.109 9.16083

It would also have been interesting to fit the data per age class, however we did not find information

online regarding the total number of individuals with the same time gaps as the ones provided in the

dataset at our disposal. The lack of the total number of people in a given age class forbids us to know

how many susceptible individuals are in the population at all times and, consequently the initial condition

is incomplete preventing the fit of any of the epidemic models discussed in this work.
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3.7 Threshold of Herd Immunity

Hopefully, vaccines for infectious diseases are able to be fabricated in order to save a great number of

lives. As discussed in section 2.3, the percentage threshold of the population that must be immune, either

by infection or vaccination, allows a better understanding of the disease and consequently, governments

can have the most educated decisions in regards of fighting the pandemic.

Nonetheless, genetic variants of SARS-CoV-2 have been rapidly emerging for which the vaccines are

not as effective and natural infection no longer provide full immunity. Thereby, a bigger percentage of the

population will require vaccination to achieve herd immunity. To this date, the Delta variant is believed to

be the most transmissible yet, although more research is needed. The study [55] conducted by the Public

Health England reports an 88% vaccine effectiveness for the Pfizer-BioNTech COVID-19, which is the

one with the higher score in regards ofVe .

As explored in Subsection 2.2.5, by resorting to linearization, the explicit formula (2.48) for the basic

reproduction number is attained. In order to stabilise the daily growth, a, of the number of infected

individuals, a 7-day geometric mean is performed. The initial growth rate is a0 = 1.52859. To finally obtain

the number R0, we must know how long is the latency and infectious period.

On Table 3.10 is presented the basic reproduction number and both herd immunity values obtained

from each pair of initial parameters chosen. In the first two lines, similar to what the RKI in Germany

states, a 4-day latency period is considered and as far as the infectious period goes, it will be considered

a 4 and 7 day period. The last two entries of the table have the best pair of input parameters, in terms of

MAPE, obtained in the last section for the second and third wave, respectively.

Table 3.10: Basic reproduction number and herd immunity values attained from equations (2.48),
(2.49) and (2.50). The input parameters on the first two lines are values used by the RKI. The last
two are the best values obtained in the previous section for the second and third wave, respectively.

Input Parameters Results

σ ρ R0 H Hadj

1/4 1/7 10.7097 0.906627 1

1/4 1/4 7.27586 0.862559 0.980181

0.45 0.42 3.90608 0.743989 0.845442

0.41 0.39 4.24918 0.764661 0.868933

Another way to approach the problem is to take advantage of Section 3.3 to get the basic reproduction

number, R0. Using the initial values of Figures 3.12(a), 3.12(b) and 3.13, the computation for the herd

immunity easily follows, which are presented on Table 3.11. As one can observe, these results fall close to

the case where the values of σ and ρ used were computed from model fitting of the second and third wave.

Once again this suggests that we must consider a shorter period for the time an individuals spends as

infectious since people isolate themselves once they discover to be carrying the virus. A major conclusion

that can be withdrawn from such results, specifically on the first entry of the table, is the real estimation of

basic reproduction number if people did not take precautions/measures regarding the virus, R0 = 10.7097.
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The initial growth rate is computed with the initial values of the pandemic where the most simple measures

such as wearing a mask in closed spaces did not exist and then it is considered a 7-day infectious period

which even though is believed to be close to its real value, a person that follows the government measures

regarding COVID-19 will not infect individuals during this whole period. With such a high value for the

reproduction number, the herd immunity thresholds are extremely high and for the value that considers

the SARS-CoV-2 variants there is indication that the whole population should be vaccinated.

Table 3.11: Basic reproduction number obtained from Figures 3.12(a), 3.12(b) and 3.13 in this
particular order, and its herd immunity thresholds.

R0 H Hadj

3.38217 0.704331 0.800377

3.83298 0.739106 0.839894

3.91142 0.744338 0.845839

For a better visualization, on Figure 3.26 are presented the results obtained above for the herd immunity

values. All computations indicate that at least 70% of the population must be immune to the virus if there

were no variants besides the original one. With the Delta variant, the previous threshold rises to at least

80%, requiring an extra effort on behalf of national health organizations to achieve such goal.
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Figure 3.26: Visual representation of the herd immunity thresholds presented in Tables 3.10
and 3.11. The light and dark purple points were attained from the 4 and 7-day infectious period,
respectively, presented on Table 3.10. The light and dark orange correspond to the best values
obtained from model fitting for the second and third wave, respectively. The light and dark blue
were derived from the values obtained using the Rt formula from RKI for τ = 4 and τ = 7. At last,
the green point derived from the non-constant viral load formula of the reproduction number.

By the end of May, a total of 809.135 individuals have been reported to recover from the disease and at

this point, 1.987.389 people have been fully vaccinated. This represents approximately 27% of individuals

immune to the virus, which is nowhere near enough to the herd immunity threshold and to allow the

population to fully return to the lifestyle one had before COVID-19.

Note: After we closed our study, a number of nearly 85% individuals were vaccinated which is very

close to the number we believe to be safe to return to our almost regular pre pandemic lives.
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Chapter 4

Proposal of a New Model

As mentioned in the previous chapter, an alarming number of new cases occurred on a daily basis

during the fall and winter of 2020/21, leading to increasingly crowded hospitals. The consequences of

overcrowded hospitals include shortage of medical beds, delays in laboratory tests, shortage of healthcare

professionals, increased waiting times, higher mortality, emotional/physical exhaustion of health care

professionals and not to mention economic costs. The creation of a model that considers hospitalised

patients was necessary.

4.1 SEIHCRD Model

In order to create the desired model, two new classes were added to the preexisting model SEIRD:

hospitalised (H) and critical (C) individuals. Please note that even though patients in critical conditions

(ICU) are indeed hospitalised, here we consider the class of hospitalised formed only by those in the

infirmary. In contrast to the previously mentioned models, more variables must be considered to correctly

represent this new model (see Table 4.1).

Table 4.1: Summary of notation for the SEIHCRD model.

β Transmission rate
1/σ Average latent period
1/ρ Average infectious period outside the hospital
1/τ Average period spent in the infirmary
1/γ Average period spent in the ICU
Th Rate of individuals in the hospital (infirmary and ICU)
Tc Rate of ICU patients from the ones in the hospital
Lh Lethality in the infirmary
Lh Lethality without attending the hospital
Lc Lethality in ICU

Similarly to models that take into account the latency period, an extra parameter hides beneath the

system when fitting it to real data. Generally, during the latency period it is unbeknownst to the individual
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the bearing of such virus, making it hard for the scientific community to accurately predict the number

of exposed individuals. Even though this model is a better representation of the evolution of a virus in

the modern day society, it will have other troublesome problems of its own, including an high number of

parameters to tune leading to computationally expensive algorithms.

In Figure 4.1, the compartment flowchart for the model is displayed, where the scenario with over-

crowded hospitals, specifically saturation of ICUs, is taken into account by modifying the flow between

classes. The most common path for an infected individual in an hospital is to be admitted in the infirmary,

and if its condition worsens he will be moved to the ICU. At this point, the patient either improves, returning

to the infirmary, or the disease gets the best out of him, resulting in a casualty. However, it is not always

this straightforward, there are infected individuals who are immediately admitted to the ICU, occasionally

patients go back and forth from the ICU and the infirmary and some can die while still in the infirmary.

After careful consideration, this model will not represent the exact dynamics described on the grounds that

each body reacts to the virus differently and it is difficult to pinpoint the time spent in the infirmary before

moving to the ICU. Bearing this in mind, this model will consider infected individuals to move directly to

the critical class, and then move either to the infirmary or the deceased class.
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Figure 4.1: Compartment flowchart for SEIHCRD model.

Susceptible individuals are automatically considered as recovered if they are vaccine-immune to the

virus (transitioning from class S to class R). The rate at which the vaccination occurs is explained by

f (t , S (t )) presented in Figure 4.1. For new viruses, not only the development of a vaccine takes time
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but also the large production necessary to meet the world’s needs. Thereby, it is expected for an initially

low value that increases as time goes by, explained by the arrival of an higher number of vaccines as the

producing intensifies and several types of vaccines become available. Eventually, a threshold is achieved

for which no more vaccines can be administrated daily due several factors, such as shortage of staff

and lack of appropriate locations/equipment. During this period of time f (t , S (t )) is constant, until the

number of susceptible begins approaching zero leading to a fast decrease on the number of daily vaccines

administrated.

The model is modelled by the system of equations



S ′(t ) = −βS (t )I (t ) − f (t , S (t ))

E ′(t ) = βS (t )I (t ) − σE (t )

I ′(t ) = σE (t ) − ρI (t )

H ′(t ) = Th (1 −Tc)ρI (t ) + γ (1 − Lc)C (t ) − τH (t )

C ′(t ) = (1 − I ncr (t )Sat (t )) [ThTcρI (t ) − γC (t )]

R ′(t ) = (1 −Th) (1 − Lh)ρI (t ) + (1 − Lh)τH (t ) + f (S (t ), t )

D ′(t ) = (1 −Th)LhρI (t ) + LhτH (t ) + γLcC (t ) + I ncr (t )Sat (t ) [ThTcρI (t ) − γC (t )],

(4.1)

where Ncb is the number of beds available in the ICU. Function Sat (t ) will be responsible for monitoring if

there is saturation in the intensive care units. If all beds destined to COVID-19 patients (Ncb ) are occupied,

the function will return 1, otherwise Sat (t ) = 0. As for function I ncr (t ), it will indicate whether the number

of ICU patients is in an downward trend (I ncr (t ) = 0) or in a upward trend (I ncr (t ) = 1). The previous

functions are represented as sigmoids to avoid discontinuity points

Sat (t ) = 1

1 + e−10(NC (t )−Ncb )
(4.2)

I ncr (t ) = 1

1 + e−1010 (ThTcρI (t )−γC (t ))
. (4.3)

By taking advantage of sigmoid functions, there will be a rapid increase from 0 to 1 in specific points in

time. The function regarding the trend of critical patients requires a steepest increase from 0 to 1 than

the function that controls the saturation of critical beds, which are controlled by the factors 10 and 1010

respectively. The reason behind the previous statement relies with the fact that I ncr (t ) must be more

sensitive to sign changes in ThTcρI (t ) − γC (t ), since it represents the trend of the critical individuals,

whereas if NC (t ) − Ncb < 0.5 it can be considered that no more beds are available in the intensive

care units. Consequently, if the ICUs are at its full capacity and there are still more patients who need

specialised medical attention than those leaving the critical class, these will move to the deceased class.

Finally, to have a mathematically well defined system of ODEs, initial conditions S (0), E (0), I (0), H (0),

C (0), R (0) and D (0) must be established. The total population size N remains constant for all time t , and
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can be obtained by adding all classes

N = S (t ) + E (t ) + I (t ) + H (t ) + C (t ) + R (t ) + D (t ). (4.4)

To prove the previous statement, all equations from (4.1) can be added resulting in the desired result

N ′(t ) = 0 for all t

N ′(t ) = S ′(t ) + E ′(t ) + I ′(t ) + H ′(t ) + C ′(t ) + R ′(t ) + D ′(t ) =

= −βS (t )I (t ) − f (t , S (t )) + βS (t )I (t ) − σE (t ) + σE (t ) − ρI (t ) +Th (1 −Tc)ρI (t )+

+ γ (1 − Lc)C (t ) − τH (t ) + (1 − I ncr (t )Sat (t )) [ThTcρI (t ) − γC (t )]+

+ (1 −Th) (1 − Lh)ρI (t ) + (1 − Lh)τH (t ) + f (S (t ), t ) + (1 −Th)LhρI (t )+

+ LhτH (t ) + γLcC (t ) + I ncr (t )Sat (t ) [ThTcρI (t ) − γC (t )] =

= −ρI (t ) +ThρI (t ) −ThTcρI (t ) + γC (t ) − γLcC (t ) − τH (t ) +ThTcρI (t ) − γC (t )+

+ ρI (t ) − LhρI (t ) −ThρI (t ) +ThLhρI (t ) + τH (t ) − LhτH (t ) + LhρI (t )−

−ThLhρI (t ) + LhτH (t ) + γLcC (t ) =

= 0.

(4.5)

4.2 Model Adjustment

In the previous chapter, computational programs were created to adjust models to the real number

of infected individuals. However, in this case our main goal is to predict the number of intensive care

patients. Consequently, it was necessary the creation of a function that simultaneously adjusted three

curves (hospitalised, critical and deceased individuals), returning the best set of parameters.

Regarding error measurements, there is a need to use a metric that incorporates the fit of all three

curves simultaneously. This is where the square errors metrics lose relevance on account of disregarding

the scale of each curve, resulting in a biased estimator that would give more importance to data with

bigger values. Therefore, the only observational error here used will be the mean absolute percentage

error (MAPE). We will compute this value for all curves with a given set of parameters and then proceed to

calculate the mean of these three values. The chosen set of parameters shall be the one with the lowest

mean MAPE value.

The code used to implement the fit of SEIHCRD can be observed on listing 3 in Appendix B. Similar to

the code used for the previous chapter, we take advantage of the command NDSolve to solve the ODEs

for each set of parameters. As mentioned in the previous paragraph, the computation of the MAPE for

the model obtained is the average of the errors for three curves: hospitalised, critical and deceased. The

function returns not only the set of parameters that scored the lowest mean MAPE but also the ones with

the best score for each curve. These last results show the importance of tuning all three curves at once.

The cost of trying to have the best fit on only one curve is extremely high, resulting in poor results on the

other two curves. Consequently, the overall panorama of the pandemic is not accurate and the model

loses its relevance.
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Considering the large amount of parameters that can be tuned, we will take advantage of the best set

of parameters obtained for the SEIRD model in the previous Chapter 3 for each dataset. Nonetheless, that

still leaves us with seven variables to adjust. At this point, information from scientific articles is extremely

relevant, allowing us to start with a more or less accurate interval for where the parameter value must

belong.

From papers like [2], we know that the mortality in the ICU must lie with the interval 35 − 50%. The

article [35] was published early 2021, and it gathered 33 studies with 13.000 patients with a COVID-19

diagnosis and analysed the fatality rates of the disease. It was here stated that the mortality rate in

hospitals, aside from critical care patients, is 11.5% with a 95% confidence interval of 7.7 − 16.9%. It is

worth mentioning that this article reports a 40.5% mortality with a 95% C.I. of 31.2 − 50.6 among critical ill

patients, which supports the statement made in the beginning of the paragraph from [2].

The scientific article [13] published on October 2020 studies a group of over 14.000 patients from

different hospitals in Belgium regarding the time from onset symptoms of COVID-19 to hospitalisation as

well as the length of stay (LoS) in the hospital. The results for both time intervals are very similar, ranging

from 3 to 10.4 days depending on the age of the patient. This work also has information on the LoS in

ICUs, reporting an interval that varies from 3.8 to 15.7 days.

Two particular parameter need some extra attention. The way our model was created, there is not a

constant to regulate how much it takes an individual to leave the infected class in case he is moving to the

infirmary or to the ICU. The parameter ρ only controls how much time it takes to leave class I, disregarding

where the person is heading to. One solution to overcome this obstacle is to write Th = T ′h th
1
ρ , where T ′h

represents the percentage of infected individuals that will go to the hospital (infirmary and ICU) and 1
th

is

the time it takes for an individual to leave the infected class if moving to the infirmary. A similar process

will occur for the value of Tc , except in this case it will help us separate the infirmary from the intensive

care units and we will have Tc = T ′c tc
1
th
. The nomenclature follows the same pattern: 1

tc
is the time it

takes to leave the infected class to go to the ICU and T ′c is a fraction of T ′h representing the number of

hospitalised individuals that will go to ICUs.

With the information from the last paragraphs, we have some guidance for all parameters except one.

There is still few information on the lethality of COVID-19 in individuals that never attended an hospital,

nevertheless the health care conditions existent in a developed country, such as Portugal, are quite good,

and thus this value should be low.

Before starting with model fitting and its results, it must be pointed out that only the third wave will be

taken into consideration here since it is the one with higher values of hospitalisations, ICU admissions

and deaths. During this time period, some vaccines had already been administrated, specially to health

care workers, however it was a small portion of individuals and consequently, the function f (t , S (t )) will

be disregarded. Once again, we will resort to the three data sets of infected individuals at our disposal.

The values for T ′h and T ′c can be estimated by computing the ratio of the total number of individuals

that are in the hospital (infirmary and ICU) out of the total of infected and how many of the former are in

the ICU. These values can be computed on a daily basis for each of the data.

The previous computations will allow us to focus solely on the time each individual stays on each class.
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(b) 7-day data set
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Figure 4.2: Visual representation of the rate of T ′h and T ′c by a blue and purple line, respectively.
The three figures illustrate these values for each data set of infected individuals for the whole period
of the pandemic.

To simplify we will take the mean of the previous ratios for the period of the 3r d wave, 26t h December,

2020 to 28t h February, 2021. These values can be consulted on Table 4.2.

Table 4.2: Mean value for T ′h and T ′c during the third wave period.

DGS data 7-day data 14-day data
T ′h 0.0393962 0.0614479 0.0254821

T ′c 0.154776 0.154776 0.154776

Without further ado, we present the results. Starting with the data provided by DGS and taking

advantage of the SEIRD model that had the best parameters with this data, the results for the SEIHCRD

parameters are presented on the table below.

Table 4.3: Parameters of the best SEIHCRD model for the DGS data set, where the first four
values are from the best MAPE performance of Table 3.5 and did not require tuning.

β σ ρ pe τ γ Th Tc Lh Lh Lc

0.75 0.4 0.55 0.3 0.285714 0.203008 0.0256451 0.108343 0.077 0.0005 0.4

Now, it is necessary to analyse the previous parameters to check if they adjust well to reality. The

average period spent in the infirmary is 1/τ ≈ 3.5 days, and the LoS in the ICU is 1/γ ≈ 4.92591 days.

Both values lie within the expected range mentioned earlier on this section. As for the values of Th , we

have

Th = T
′
h th

1

ρ
⇔ th =

ρTh
T ′
h

⇔ th = 0.358025. (4.6)

This value represents an approximate of 2.7931 days for an individual to require medical care in an

hospital, a very close value to the mentioned range. As for the time until one is admitted to the ICU, it can

be easily computed by solving

Tc = T
′
c tc

1

th
⇔ tc =

Tc th
T ′c
⇔ tc = 0.250617, (4.7)

resulting in 3.99015 days. The remaining parameters do not need computations to be interpreted.

The following results confirm what has been previously commented: the number of active cases

provided by DGS are not as reliable as one would like. The error measurements obtained in this model
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are quite good, except the hospitalised curve that scored an 19% error. Taking a closer look on Figure 4.3,

where the curves of relevance are represented, the slightly poor adjustment on the hospitalisations’ curve

is confirmed. This curve has a particular hard time fitting into the real data regardless of the imputed

parameters. As discussed previously, the number of active cases provided by DGS are severely affected

by under reporting, especially in the beginning of the third wave, leading to an uneven curve with different

levels of under report throughout time. For this particular reason, the parameters have trouble tuning

since there are a lot of irregularities.

Table 4.4: Mean absolute percentage error for the three relevant classes and its mean value, with
the parameters from Table 4.3.

Hospitalised (H) Critical (C) Deceased (D) Mean value
MAPE (%) 19.1644 7.04538 3.18098 9.79691

It must be also pointed out that even though the MAPE for the deceased curve is very satisfactory, it

can be perceived that the model is increasing faster in the last few days than the real number of deaths, a

direct consequence of the poor adjustment of the infected curve.
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Figure 4.3: Visual representation of the model presented in Table 4.3 for the three curves of
interest. Hospitalised patients on the top left, ICU patients on the top right and number of deaths
on the bottom. The red points represent the data we aim to fit the models into, which are represent
by black curves.

For the data set that considers a 7-day infected period, the best model presents itself with the

parameters shown on Table 4.5.

A similar process must be made once again. The average period spent in the infirmary is 1/τ = 10.9091
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Table 4.5: Parameters of the best SEIHCRD model for the 7-day data set, where the first four
values are from the best MAPE performance of Table 3.6 and do not needed tuning.

β σ ρ pe τ γ Th Tc Lh Lh Lc

1.05 0.5 0.68 0.4 0.0916667 0.04 0.00451823 0.0742926 0.14 0.0011 0.48

days, and the LoS in the ICU is 1/γ = 25 days. The first value lies right outside the edge of the interval

mentioned earlier on this section. The LoS in the ICU is significantly higher than the expected maximum

value of 15.7 days. As for Th and Tc , the results are not satisfactory. The time it takes for one to be

admitted the infirmary or ICU are too high and do not make sense in practical terms.

It is necessary to mention that when tuning the parameters at first, we took advantage of intervals

obtained from other studies and scientific articles. Nonetheless, by analysing the graphs it was very

straight forward which values could be changed in order to improve the results and that enhancement

occurred instantly.

Table 4.6: Mean absolute percentage error for the three relevant classes and its mean value, with
the parameters from Table 4.5.

Hospitalised (H) Critical (C) Deceased (D) Mean value
MAPE (%) 5.2134 4.11551 2.86027 4.06306
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Figure 4.4: Visual representation of the model presented in Table 4.5 for the three curves of
interest. Hospitalised patients on the top left, ICU patients on the top right and number of deaths
on the bottom. The red points represent the data we aim to fit the models into, which are represent
by black curves.

This model is extremely well-fitted to the data (check Figure 4.4) with ameanMAPE of 4%approximately.
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To be noticed that on Figure 4.4(b) the number of patients in the ICU hits the threshold of 900 for four

days from January 30t h to February 2nd , 2021.

At last, the SEIHCRD will be fitted into the 14-day recovery data. The best performance on the previous

chapter was with this data, and the parameters obtained for this new model are presented on Table 4.7.

Table 4.7: Parameters of the best SEIHCRD model for the 14-day data set, where the first four
values are from the best MAPE performance of Table 3.7 and do not needed tuning.

β σ ρ pe τ γ Th Tc Lh Lh Lc

0.67 0.41 0.39 0.18 0.11 0.05 0.00458367 0.0773881 0.08 0.0011 0.49

For this model, an individual spends an average of 1/τ = 9.09 days in the infirmary and around 1/γ = 20

days in the ICU. The first value lies within the expected range, whereas the second has a bit over four

days to the expected top limit range. With the values of Th and Tc , we can derive that it takes around

14.2547 days for a patient to be admitted in the infirmary and approximately 28.5094 days to arrive to the

ICU. These values are a bit higher than expected, where the first value considers an extra four days than

our initial expected range. As for the time it takes to get to the ICU, we still observed an unexpected high

Table 4.8: Mean absolute percentage error for the three relevant classes and its mean value, with
the parameters from Table 4.7.

Hospitalised (H) Critical (C) Deceased (D) Mean value
MAPE (%) 8.00091 4.61049 1.80115 4.80419
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Figure 4.5: Visual representation of the model presented in Table 4.7 for the three curves of
interest. Hospitalised patients on the top left, ICU patients on the top right and number of deaths
on the bottom. The red points represent the data we aim to fit the models into, which are represent
by black curves.
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value, even if is not as high as the one attained with the previous data set.

This model has great scores for all three curves as it can be easily viewed with Table 4.8 with a mean

error of 4.80%. The values presented in the table can be corroborated by observing Figure 4.5, where the

curves have a great fit to the data.

All three fittings have mortality rates (in the infirmary and ICU) within the expected range.

One of the biggest struggles in this chapter was the amount of parameters that needed tuning and the

different levels of sensitiveness. While in the previous chapter, one had few parameters to tune and it was

possible to try a great amount of combinations with a given error, here it was not possible to do so in a

reasonable amount of time. For example, for the Th , we were tuning the third decimal place and on wards

whereas for the lethality in the intensive care units Lc it was only by percentage point at most.

Our way to overcome this obstacle was to tune taking into account the parameter at hands. For

example, for the rate of individuals in the hospital (infirmary and ICU), Th , we aimed to know the value of

th (number of days to get to the infirmary), thus we decomposedTh so that the possible tuning parameters

implied 1/th to be integer.

There are several observational errors that occurred until this point associated with population density,

lack of resources at some point in time, under-reporting, inadequate control on the number of active cases,

and so on. Bearing all of this in mind, an error below 5% is very impressive since the data itself has a

significant error associated to disturb computations.

Finally, the admission time in infirmary and ICU is overestimated. This is a problem of this method.

Nevertheless, the second and third modelation in this chapter are very good to estimate the actual numbers

observed and can be used in the future to predict pandemic waves.
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Chapter 5

Conclusions

5.1 General Overview

If there is something we can learn from this past year is that infectious diseases can have profound

impact on the most diverse sectors and on society at large. Its implications are broad and complex, and

as of today its depths are still unknown.

The amount of recent articles on this subject was both a bless and a curse. There was never lack

of information regarding any subject, but there was the need to filter such huge amounts of information.

Countries behave differently according to several factors (government, economic situation, religion,

traditions, weather and so on), which require a careful analysis on what the circumstances of each study

were. Furthermore, there was also a constant flow of articles emerging and new information about the

virus that made it harder to keep up to date, and for that reason some of the bibliography might not be as

correct and recent as one would like.

The computation of reproduction number, Rt , was extremely important to understand on a daily basis

how the pandemic was evolving. Later on, these estimations were helpful to compute the herd immunity

threshold. All values attained for Hadj were very close to the 85% threshold. The Portuguese government

established, after we closed our study, this threshold to be the goal of vaccines administrated in order to

start returning to life pre COVID-19.

From the two models fitted into the data, SIR and SEIRD model, the latter was the one with the best

results. The major difference from these models is that the SEIRD model accounts for individuals in the

latency period, which is a characteristic of SARS-CoV-2, explaining why it performed better. On Chapter 3,

we were able to obtain models with a mean absolute percentage error lower than 5% which is remarkable

considering the amount of bias in the data. Not only the irregularities in the number of tests performed

(due to closed laboratories and lack of testing) took a toll on the reliability of the data, but also factors as

uneven population density and more importantly, how unpredictable people’s behaviour can be.

Regarding the latency period, all SEIRD models indicate a period of 1.5 to 4 days, which are results

that confirm the literature on the disease. The only exception is Algarve, with a latency period of 1.28

days, approximately. As mentioned previously, this region’s curve does not have the shape one would like
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for different reasons, explaining the poorer and more unreliable results.

An important and interesting result was how the models accurately represented smaller infectious

periods that are directly related to the isolation of individuals once they discovered to be bearers of the

virus. No model pointed out an infectious period greater than six days, and the majority does not exceed

three days.

As far as the model proposed in Chapter 4, the results are quite satisfactory. The mean MAPE of

the three curves of interest was particularly low (smaller than 5%) for the two data sets built from the

number of deaths. Since the fit of the number of infected individuals for these models came from Section

3.6, we are able to obtain models with extremely good fits on four curves (infected, hospitalised, critical

and deaths). Nonetheless, unexpected results arose when computing the time it takes to arrive to the

hospital and LoS in the ICUs. We were not able to fully grasp why these values were so high, but one

should always keep in mind the amount of errors associated in the process, namely under report of cases,

oscillation in the number of daily tests performed and population density.

The major result that should be captured from this work when a similar pandemic falls upon us is the

need for a daily study on the evolution of the virus on all indicators. The government must keep a close

connection to mathematicians and epidemiologists so that action can be taken fast and effectively and

hence, severe consequences are avoided.

5.2 Future Directions of Work

The fitting of the models was made on a trial and error, i.e. with a given possibilities for a each

parameter, the function would try all scenarios and choose the one with the best score. This type of

programming is extremely expensive, which explains the problems we had on the last chapter. The

enhancement of these functions should be made.

As mentioned in Section 3.5, the comparison made between countries can be very important. This

allows the assessment of the evolution of the pandemic in other countries that may be already experiencing

a new wave. Consequently, countries can better prepare themselves. Nonetheless, a further and more

thorough study should be made. The fit of epidemiological models in more populated countries could be

really helpful considering that in Portugal it became harder to study the pandemic when the number of

cases reduced significantly.

Another direction of work relies with the use of dynamic models, where the transmission rate β varies

throughout time. This type of dynamism could be very useful to take advantage on real world scenarios

since the rate at which a disease spreads can depend on numerous factors: events, religion, weather,

medical infrastructure, sanitation, how the government will respond to emergencies, among others.

If there was further information on each infected individual, a wide range of possibilities to analyse

the data would emerge. With information regarding symptoms, time spent in the infirmary and ICU, age,

preexisting medical conditions, and so on, one could take advantage of machine learning algorithms

to check, for example, which variables have an higher relevance when predicting which individuals will

attend the infirmary, ICU or even death. Moreover, it would be very useful to have information regarding
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time spent in the hospital to possibly make adjustments to the model developed in Chapter 4.

With this type of information, the door to the field of survival analysis would also open. This branch of

statistics could allow one to answer important questions such as: what is the proportion of a population

which will survive past a certain time? Can multiple causes of death or failure be taken into account?

How do particular circumstances or characteristics increase or decrease the probability of survival?

With the need to develop this field of study, several articles on the subject are being published and

without a doubt remarkable advances in the area will be made.
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Appendix A

Complementary Reproduction

Number Plots

Complementary plots for the reproduction number according to the gender and age class.

A.1 Robert Koch Institute Formula
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(b) Male Rt with τ = 7
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(c) Female Rt with τ = 4
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Figure A.1: Reproduction number (by RKI formula) for each gender and for an infectious period
of τ = 4 and τ = 7, represented by the blue curve. The black line is threshold for Rt = 1.
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(a) Rt for 0-9 age class
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(b) Rt for 10-19 age class
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(c) Rt for 20-29 age class
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(d) Rt for 30-39 age class
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(e) Rt for 40-49 age class

Apr Jul Oct Jan Apr
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Date

R
t

Rt with a 7-day infectious period (RKI formula) for 50-60 age class

(f) Rt for 50-59 age class
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(g) Rt for 60-69 age class
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(h) Rt for 70-79 age class
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Figure A.2: Reproduction number (by RKI formula) for each age class of ten years each and for
an infectious period of τ = 7 and ν = 4, represented by the blue curve. The black line is threshold
for Rt = 1.

A.2 Non-constant Viral Load Formula
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Figure A.3: Reproduction number (with non-constant viral load formula) for each gender and for
τ = 7 and ν = 4, represented by the blue curve. The black line is threshold for Rt = 1.
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Figure A.4: Reproduction number (with non-constant viral load formula) for each age class of ten
years each and for an infectious period of τ = 7 and ν = 4, represented by the blue curve. The
black line is threshold for Rt = 1.
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Appendix B

Implementations in Wolfram

Mathematica

Listing 1: SIR function.

1 (* Function that fits the best SIR model into the infected curve *)
2 (* The function receives:
3 - the datasets (active cases and total number of cases) as a vector;
4 - all possible values for each parameter of the model (\[Beta], \[Sigma]) as vectors;
5 - first and last day of the data to fit, written in the format {year, month, day};
6 - the population number (npop);
7 *)
8 (* Function that fits the best SIR model into the infected curve *)
9

10 bestmodelSIR[betas_,rhos_,initialday_,finalday_,dataActive_,dataTotal_,npop_]:=Module[
11 {start,end,point,realData,rmse,mse,sse,mape,infected,k,\[Beta],\[Rho],sir,
12 s,i,r,results,finalpairSSE,finalpairMAPE,posSSE,posMAPE,combinations},
13 (* all the data in Portugal starts on the 26^{th} of February, 2020 *)
14 start=DayCount[DateObject[{2020,2,26}],DateObject[initialday]]+1;
15 Print[Style["Initial index of the dataset: ",Bold],start];
16 end=DayCount[DateObject[{2020,2,26}],DateObject[finalday]]+1;
17 Print[Style["Final index of the dataset: ",Bold],end];
18 (* 7-day moving average to smooth the number of active cases *)
19 realData=MovingAverage[dataActive[[start-6;;end]],7];
20 (* Initial conditions *)
21 point={(npop-dataTotal[[start]])/npop,realData[[1]]/npop,(dataTotal[[start]]-realData[[1]])/npop};
22 Print[Style["Initial conditions: ",Bold],point];
23 results={};
24 combinations=Outer[List,betas,rhos]//Flatten[#,1]&; (* All possible combinations *)
25 k=1;
26 While[k<=Length[combinations],
27 \[Beta]=combinations[[k,1]];
28 \[Rho]=combinations[[k,2]];
29 sir=NDSolve[ (* Solving the ODE *)
30 {s'[t]==-\[Beta]* i[t]*s[t], (* Susceptible class *)
31 i'[t]==\[Beta]*i[t]*s[t]-\[Rho]*i[t], (* Infected class *)
32 r'[t]== \[Rho]*i[t], (* Recovered class *)
33 Thread[{s[0],i[0],r[0]}==point]},{s,i,r},{t,0,end-start}
34 ];
35 (* Extracting the values for the infected for each day and computing the scores *)
36 infected=Table[Floor[Extract[npop*i[j]/.sir,1]],{j,0,end-start}];
37 mape=MAPE[realData,infected];
38 rmse=RMSE[realData,infected];
39 mse=MSE[realData,infected];
40 sse=SSE[realData,infected];
41 AppendTo[results,{{\[Beta],\[Rho]},sse,mse,rmse,mape}];
42 k=k+1;
43 ];
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44 (* Checking the best square errors and MAPE score *)
45 posSSE=Position[results[[All,2]],Min[results[[All,2]]]][[1,1]];
46 posMAPE=Position[results[[All,5]],Min[results[[All,5]]]][[1,1]];
47 finalpairSSE=results[[posSSE]];
48 finalpairMAPE=results[[posMAPE]];
49 Print[Style["Best fit for square error metrics:",Bold]];
50 Print[" ",Grid[Prepend[{Flatten[finalpairSSE]},{"\[Beta]","\[Rho]","SSE","MSE","RMSE","MAPE"}],Frame->All]];
51 Print[Style["Best fit for MAPE:",Bold]];
52 Print[" ",Grid[Prepend[{Flatten[finalpairMAPE]},{"\[Beta]","\[Rho]","SSE","MSE","RMSE","MAPE"}],Frame->All]];
53 Return[{finalpairSSE,finalpairMAPE,point}]
54 ];

Listing 2: SEIRD function.

1 (* Function that fits the best SEIRD model into the infected curve *)
2 (* The function receives:
3 - the datasets (active cases, total number of cases, number of deceased individuals) as a vector;
4 - all possible values for each parameter of the model (\[Beta], \[Sigma], \[Rho], factor) as vectors;
5 - first and last day of the data to fit, writeen in the format {year, month, day};
6 - the population number (npop);
7 *)
8 bestmodelSEIRD[betas_,sigmas_,rhos_,initialday_,finalday_,dataActive_,dataTotal_,factor_,npop_,deathsRegion_]:=Module[
9 {start,end,point,realData,sse,mse,rmse,mape,res2,infected,k,\[Beta],\[Sigma],\[Rho],

10 seird,s,e,i,r,d,results,posSSE,posMAPE,finalpairSSE,finalpairMAPE,combinations,fator},
11 (* all the data in Portugal starts on the 26^{th} of February, 2020 *)
12 start=DayCount[DateObject[{2020,2,26}],DateObject[initialday]]+1;
13 Print[Style["Initial index of the dataset: ",Bold],start];
14 end=DayCount[DateObject[{2020,2,26}],DateObject[finalday]]+1;
15 Print[Style["Final index of the dataset: ",Bold],end];
16 (* 7-day moving average to smooth the number of active cases *)
17 realData=MovingAverage[dataActive[[start-6;;end]],7];
18 results={};
19 combinations=Outer[List,betas,sigmas,rhos,factor]//Flatten[#,3]&; (* All possible combinations *)
20 k=1;
21 While[k<=Length[combinations],
22 \[Beta]=combinations[[k,1]];
23 \[Sigma]=combinations[[k,2]];
24 \[Rho]=combinations[[k,3]];
25 fator=combinations[[k,4]];
26 (* Initial conditions *)
27 point={(npop-dataTotal[[start]]-fator*realData[[1]])/npop,(fator*realData[[1]])/npop,realData[[1]]/npop,
28 (dataTotal[[start]]-realData[[1]]-deathsRegion[[start]])/npop,deathsRegion[[start]]/npop};
29 seird=NDSolve[ (* Solving the ODE *)
30 {s'[t]==-\[Beta]* i[t]*s[t], (* Susceptible class *)
31 e'[t]==\[Beta]*i[t]*s[t]-\[Sigma] e[t], (* Exposed class *)
32 i'[t]==\[Sigma] e[t]-\[Rho] i[t], (* Infected class *)
33 r'[t]== \[Gamma]*\[Rho]*i[t], (* Recovered class *)
34 d'[t]== (1-\[Gamma])*\[Rho]*i[t], (* Deceased class *)
35 Thread[{s[0],e[0],i[0],r[0],d[0]}==point]},{s,e,i,r,d},{t,0,end-start}
36 ];
37 (* Extracting the values for the infected for each day and computing the scores *)
38 infected=Table[Floor[Extract[npop*i[j]/.seird,1]],{j,0,end-start}];
39 sse=SSE[realData,infected];
40 mse=MSE[realData,infected];
41 rmse=RMSE[realData,infected];
42 mape=MAPE[realData,infected];
43 AppendTo[results,{{\[Beta],\[Sigma],\[Rho]},fator,sse,mse,rmse,mape,point}];
44 k=k+1;
45 ];
46 (* Checking the best square errors and MAPE score *)
47 posSSE=Position[results[[All,3]],Min[results[[All,3]]]][[1,1]];
48 posMAPE=Position[results[[All,6]],Min[results[[All,6]]]][[1,1]];
49 finalpairSSE=results[[posSSE]];
50 finalpairMAPE=results[[posMAPE]];
51 (* Printing the results *)
52 Print[Style["Best fit for square error metrics:",Bold]];
53 Print[" ","Initial conditions: ",finalpairSSE[[-1]]];
54 Print[" ",Grid[Prepend[{Flatten[finalpairSSE[[;;-2]]]},
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55 {"\[Beta]","\[Sigma]","\[Rho]","factor","SSE","MSE","RMSE","MAPE"}],Frame->All]];
56 Print[Style["Best fit for MAPE:",Bold]];
57 Print[" ","Initial conditions: ",finalpairMAPE[[-1]]];
58 Print[" ",Grid[Prepend[{Flatten[finalpairMAPE[[;;-2]]]},
59 {"\[Beta]","\[Sigma]","\[Rho]","factor","SSE","MSE","RMSE","MAPE"}],Frame->All]];
60 Return[{finalpairSSE,finalpairMAPE}]
61 ];

Listing 3: SEIHCRD function.

1 (* Function that fits the best SEIHCRD model considering three curves: hospitalised, critical and deceased individuals *)
2 (* The function receives:
3 - the datasets (active cases, total number of cases, number of hospitalised, critical and deceased individuals) as a
4 vector;
5 - all possible values for each parameter of the model (\[Beta], \[Sigma], \[Rho], \[Tau], \[Gamma], TH, TC, LH, LSH,
6 LCs, factor) as vectors;
7 - first and last day of the data to fit, written in the format {year, month, day};
8 - the population number (npop);
9 *)

10 bestmodelSEIHCRD[betas_,sigmas_,rhos_,taus_,gammas_,THs_,TCs_,LHs_,LSHs_,LCs_,initialday_,finalday_,dataActive_,
11 dataHosp_,dataCrit_,dataDeath_,dataTotal_,factor_,npop_]:=Module[
12 {start,end,point,realData,sseH,mseH,rmseH,mapeH,sseC,mseC,rmseC,mapeC,sseD,mseD,rmseD,mapeD,res2,
13 hospitalised,critical,deaths,k,\[Beta],\[Sigma],\[Rho],\[Tau],\[Gamma],Th,Tc,Lh,Lsh,Lc,seihcrd,s,e,i,h,c,r,d,
14 results,posH,posC,posD,pos,finalpairH,finalpairC,finalpairD,finalpair,combinations,fator,sat,incr},
15 (* all the data in Portugal starts on the 26^{th} of February, 2020 *)
16 start=DayCount[DateObject[{2020,2,26}],DateObject[initialday]]+1;
17 Print[Style["Initial index of the dataset: ",Bold],start];
18 end=DayCount[DateObject[{2020,2,26}],DateObject[finalday]]+1;
19 Print[Style["Final index of the dataset: ",Bold],end];
20 (* 7-day moving average to smooth the number of active cases *)
21 realData=MovingAverage[dataActive[[start-6;;end]],7];
22 results={};
23 (* all possible parameter combinations *)
24 combinations=Outer[List,betas,sigmas,rhos,taus,gammas,THs,TCs,LHs,LSHs,LCs,factor]//Flatten[#,10]&;
25 k=1;
26 While[k<=Length[combinations],
27 {\[Beta],\[Sigma],\[Rho],\[Tau],\[Gamma],Th,Tc,Lh,Lsh,Lc,fator}=combinations[[k]];
28 (* Initial conditions *)
29 point={(npop-dataTotal[[start]]-fator*realData[[1]])/npop,(fator*realData[[1]])/npop,realData[[1]]/npop,
30 (dataHosp[[start]]-dataCrit[[start]])/npop,dataCrit[[start]]/npop,
31 (dataTotal[[start]]-realData[[1]]-dataHosp[[start]])/npop,dataDeath[[start]]/npop};
32 seihcrd=NDSolve[ (* Solving the ODE *)
33 {sat[t_]:=1/(1+Exp[-10( Npop*c[t] -Ncb)]);(* if no more beds are available sat = 1 *)
34 (* if c(t) is an upward trend (risk of saturation) then incr(t) = 1 *)
35 incr[t_]:=1/(1+Exp[-10^10( Th*Tc*\[Rho]*i[t]-\[Gamma]*c[t])]);
36 s'[t]==-\[Beta]*i[t]*s[t], (* Susceptible class *)
37 e'[t]==\[Beta]*i[t]*s[t]-\[Sigma]*e[t], (* Exposed class *)
38 i'[t]==\[Sigma]*e[t]-\[Rho]*i[t], (* Infected class *)
39 h'[t]==Th*(1-Tc)*\[Rho]*i[t]+\[Gamma]*(1-Lc)*c[t]-\[Tau]*h[t], (* Hospitalised class *)
40 c'[t]==(1-sat[t]*incr[t])*(Th*Tc*\[Rho]*i[t]-\[Gamma]*c[t]), (* Critical class *)
41 r'[t]==(1-Th)*(1-Lsh)*\[Rho]*i[t]+(1-Lh)*\[Tau]*h[t], (* Recovered class *)
42 d'[t]==(1-Th)*Lsh*\[Rho]*i[t]+Lh*\[Tau]*h[t]+\[Gamma]*Lc*c[t]+
43 sat[t]*incr[t]*(Th*Tc*\[Rho]*i[t]-\[Gamma]*c[t]), (* Deceased class *)
44 Thread[{s[0],e[0],i[0],h[0],c[0],r[0],d[0]}==point]},{s,e,i,h,c,r,d},{t,0,end-start}
45 ];
46 (* Extracting all the values for the three curves of interest and computing the MAPE score *)
47 hospitalised=Table[Floor[Extract[npop*h[j]/.seihcrd,1]],{j,0,end-start}];
48 mapeH=MAPE[dataHosp[[start;;end]]-dataCrit[[start;;end]],hospitalised];
49 critical=Table[Floor[Extract[npop*c[j]/.seihcrd,1]],{j,0,end-start}];
50 mapeC=MAPE[dataCrit[[start;;end]],critical];
51 deaths=Table[Floor[Extract[npop*d[j]/.seihcrd,1]],{j,0,end-start}];
52 mapeD=MAPE[dataDeath[[start;;end]],deaths];
53 AppendTo[results,{{\[Beta],\[Sigma],\[Rho],\[Tau],\[Gamma],Th,Tc,Lh,Lsh,Lc},mapeH,mapeC,mapeD,point,fator}];
54 k=k+1;
55 ];
56 (* Checking the best MAPE score for each curve *)
57 posH=Position[results[[All,2]],Min[results[[All,2]]]][[1,1]];
58 finalpairH=results[[posH]];

75



59 posC=Position[results[[All,3]],Min[results[[All,3]]]][[1,1]];
60 finalpairC=results[[posC]];
61 posD=Position[results[[All,4]],Min[results[[All,4]]]][[1,1]];
62 finalpairD=results[[posD]];
63 (* Best overall MAPE score *)
64 pos=Position[results[[All,2]]+results[[All,3]]+results[[All,4]],
65 Min[results[[All,2]]+results[[All,3]]+results[[All,4]]]][[1,1]];
66 finalpair=results[[pos]];
67 (* Printing the results *)
68 Print[Style["Best fit for the Hospitalised curve:",Bold]];
69 Print[" Initial conditions: ",finalpairH[[5]],";"];
70 Print[" Parameters: \n ",Grid[Prepend[
71 {finalpairH[[1]]},{"\[Beta]","\[Sigma]","\[Rho]","\[Tau]","\[Gamma]","Th","Tc","Lh","Lsh","Lc"}],Frame->All]];
72 Print[" MAPE Scores (\%): \n ",Grid[Prepend[{Flatten[
73 {finalpairH[[2;;4]],(Plus@@finalpairH[[2;;4]])/3}]},{"Hospitalised","Critical","Deceased","Mean"}],Frame->All]];
74 Print[" Factor: ",finalpairH[[6]]];
75 Print[Style["Best fit for the Critical curve:",Bold]];
76 Print[" Initial conditions: ",finalpairC[[5]],";"];
77 Print[" Parameters: \n ",Grid[Prepend[
78 {finalpairC[[1]]},{"\[Beta]","\[Sigma]","\[Rho]","\[Tau]","\[Gamma]","Th","Tc","Lh","Lsh","Lc"}],Frame->All]];
79 Print[" MAPE Scores (\%): \n ",Grid[Prepend[{Flatten[
80 {finalpairC[[2;;4]],(Plus@@finalpairC[[2;;4]])/3}]},{"Hospitalised","Critical","Deceased","Mean"}],Frame->All]];
81 Print[" Factor: ",finalpairC[[6]]];
82 Print[Style["Best fit for the Deceased curve:",Bold]];
83 Print[" Initial conditions: ",finalpairD[[5]],";"];
84 Print[" Parameters: \n ",Grid[Prepend[
85 {finalpairD[[1]]},{"\[Beta]","\[Sigma]","\[Rho]","\[Tau]","\[Gamma]","Th","Tc","Lh","Lsh","Lc"}],Frame->All]];
86 Print[" MAPE Scores (\%): \n ",Grid[Prepend[{Flatten[
87 {finalpairD[[2;;4]],(Plus@@finalpairD[[2;;4]])/3}]},{"Hospitalised","Critical","Deceased","Mean"}],Frame->All]];
88 Print[" Factor: ",finalpairD[[6]]];
89 Print[Style["Best fit for the Hospitalised + Critical + Deceased curve:",Bold]];
90 Print[" Initial conditions: ",finalpair[[5]],";"];
91 Print[" Parameters: \n ",Grid[Prepend[
92 {finalpair[[1]]},{"\[Beta]","\[Sigma]","\[Rho]","\[Tau]","\[Gamma]","Th","Tc","Lh","Lsh","Lc"}],Frame->All]];
93 Print[" MAPE Scores (\%): \n ",Grid[Prepend[{Flatten[
94 {finalpair[[2;;4]],(Plus@@finalpair[[2;;4]])/3}]},{"Hospitalised","Critical","Deceased","Mean"}],Frame->All]];
95 Print[" Factor: ",finalpair[[6]]];
96 Return[{finalpairH,finalpairC,finalpairD,finalpair}]
97 ];
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